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Abstract

In many shear flows like pipe flow, plane Couette flow, plane Poiseuille flow, etc. tur-

bulence emerges subcritically. Here, when subjected to strong enough perturbations,

the flow becomes turbulent in spite of the laminar base flow being linearly stable. The

nature of this instability has puzzled the scientific community for decades. At onset, tur-

bulence appears in localized patches and flows are spatio-temporally intermittent. In

pipe flow the localized turbulent structures are referred to as puffs and in planar flows

like plane Couette and channel flow, patches arise in the form of localized oblique

bands. In this thesis, we study the onset of turbulence in channel flow in direct numer-

ical simulations from a dynamical system theory perspective, as well as by performing

experiments in a large aspect ratio channel.

The aim of the experimental work is to determine the critical Reynolds number

where turbulence first becomes sustained. Recently, the onset of turbulence has been

described in analogy to absorbing state phase transition (i.e. directed percolation). In

particular, it has been shown that the critical point can be estimated from the compe-

tition between spreading and decay processes. Here, by performing experiments, we

identify the mechanisms underlying turbulence proliferation in channel flow and find

the critical Reynolds number, above which turbulence becomes sustained. Above the

critical point, the continuous growth at the tip of the stripes outweighs the stochastic

shedding of turbulent patches at the tail and the stripes expand. For growing stripes,

the probability to decay decreases while the probability of stripe splitting increases.

Consequently, and unlike for the puffs in pipe flow, neither of these two processes is

time-independent i.e. memoryless. Coupling between stripe expansion and creation of

new stripes via splitting leads to a significantly lower critical point (Rec = 670 + /− 10)

than most earlier studies suggest.
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While the above approach sheds light on how turbulence first becomes sustained,

it provides no insight into the origin of the stripes themselves. In the numerical part

of the thesis we investigate how turbulent stripes form from invariant solutions of the

Navier-Stokes equations. The origin of these turbulent stripes can be identified by ap-

plying concepts from the dynamical system theory. In doing so, we identify the exact

coherent structures underlying stripes and their bifurcations and how they give rise

to the turbulent attractor in phase space. We first report a family of localized nonlin-

ear traveling wave solutions of the Navier-Stokes equations in channel flow. These

solutions show structural similarities with turbulent stripes in experiments like oblique-

ness, quasi-streamwise streaks and vortices, etc. A parametric study of these traveling

wave solution is performed, with parameters like Reynolds number, stripe tilt angle and

domain size, including the stability of the solutions. These solutions emerge through

saddle-node bifurcations and form a phase space skeleton for the turbulent stripes ob-

served in the experiments. The lower branches of these TW solutions at different tilt

angles undergo Hopf bifurcation and new solutions branches of relative periodic orbits

emerge. These RPO solutions do not belong to the same family and therefore the

routes to chaos for different angles are different.

In shear flows, turbulence at onset is transient in nature. Consequently,turbulence

can not be tracked to lower Reynolds numbers, where the dynamics may simplify. Be-

fore this happens, turbulence becomes short-lived and laminarizes. In the last part of

the thesis, we show that using numerical simulations we can continue turbulent stripes

in channel flow past the ’relaminarization barrier’ all the way to their origin. Here, tur-

bulent stripe dynamics simplifies and the fluctuations are no longer stochastic and the

stripe settles down to a relative periodic orbit. This relative periodic orbit originates

from the aforementioned traveling wave solutions. Starting from the relative periodic

orbit, a small increase in speed i.e. Reynolds number gives rise to chaos and the

attractor dimension sharply increases in contrast to the classical transition scenario

where the instabilities affect the flow globally and give rise to much more gradual route

to turbulence.
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1 Transition to turbulence

1.1 Introduction

Most flows occurring in nature and engineering applications are turbulent. A wide range

of flows such as geophysical flows like atmospheric flows and ocean currents, river

streams, flow around aeroplane wings, and flow inside heat-exchanger components

and pipelines exhibit turbulence. Despite the widespread occurrence of turbulence, our

understanding of this phenomenon is limited. Unlike laminar flow, where fluid particles

move smoothly in an orderly fashion in layers, turbulence is characterized by eddying

multi-scale chaotic motion. Even though the differential equations which govern the

fluid motion - the Navier-Stokes equations - have been established in the first half of

the 19th century, we can not generally predict at what flow rate the laminar motion

becomes turbulent. The nonlinear nature of the governing equations makes long term

prediction of turbulent flow difficult.

For incompressible flows, the governing equations take the following form.

∂u

∂t
+ (u · ∇)u = −∇p

ρ
+ ν∇2u + f (1.1)

where, u(x, t) is the velocity as a function of space x and time t. p(x, t) is the pressure,

ρ is the density of the fluid and ν is the kinematic viscosity of the fluid. Finally, f(x, t)

is an external forcing term. The continuity equation for the incompressible flow is

∇ · u = 0 (1.2)

The laminar solutions of these equations can be determined for some simple geome-

tries like pipe flow. However, in experiments at larger speeds, experimental data de-

viate from the laminar solution. This mismatch was explained by a seminal work by
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physicist Osborne Reynolds in 1883 [Sengupta and Poinsot, 2010]. He studied the

fluid flow through a circular, straight pipe and identified three regimes of the flow. At

low flow rates, the fluid motion behaves in an orderly fashion - a laminar regime. At

high flow rates, the flow is turbulent exhibiting multi-scale behaviour. The third regime

identified is an intermediate regime where the laminar regime coexists with the inter-

mittent turbulent patches. Additionally, he observed that fluid flow is parametrized by a

parameter - now known as Reynolds number - which is a combination of flow velocity,

the characteristic length-scale of the flow domain, and kinematic viscosity of the fluid

[Reynolds, 1883a; Reynolds, 1883b]. The interesting philosophical question is to un-

derstand how these distinct regimes can be explained with the same set of governing

equations viz. Navier Stokes equations [Eckert, 2007]. Scientists have been approach-

ing this problem in different ways. Some of the approaches have been discussed in the

following.

1.1.1 Stability of shear flows

In the first half of the 20th century, many studies were concerned with the stability anal-

ysis of the laminar base flows in different flow geometries [Lumley and Yaglom, 2001].

Here, generally, a disturbance is superposed on the laminar base flow, which is a trivial

solution of Navier-Stokes equations, and its evolution is studied analytically. Typically

for this purpose, the governing equations are linearized, and so the disturbance must

be of a small amplitude [Drazin and Reid, 2004]. Eventually, as the disturbance grows,

the linear assumption fails, and nonlinear effects start dominating. Therefore, the lin-

ear stability analysis only holds for the initial phase where the disturbances are small

enough. In the cases where flows become unstable to infinitesimal perturbations, this

methodology correctly predicts the transition point and the mode of the instability like in

Taylor-Couette flow and Rayleigh-Bénard convection [Schmid and Henningson, 2012].

Concerning channel flow, the linear stability problem for incompressible parallel

flows with viscous fluids was formulated by Orr and Sommerfeld in the first decade

of the 20th century [Orr, 1907; Sommerfeld, 1908]. Several attempts were made to

determine the linear stability limit in Reynolds number Re in PPf [Heisenberg, 1924;

Lin, 1945b; Lin, 1945a], where, Re is defined by centerline velocity, half channel gap,



3

(a) Reynolds’s apparatus

(b) Different regimes of fluid flow in pipe,

identified by Reynolds

Figure 1.1: Pipe experiments by Reynolds

and kinematic viscosity. However, the accurate estimation of the critical Re for linear

stability was finally determined numerically by Orszag [Orszag, 1971]. The linear sta-

bility limit for the PPf is found to be Re = 5772.22. Below this Re, if the laminar base

flow is subjected to infinitesimally small perturbations, the perturbations decay, and the

flow remains laminar.

However, turbulence in channel flow typically sets in well below this critical point

where the flow becomes linearly unstable and, therefore, linear stability analysis fails

to predict a value of Re at which turbulence first occurs in channel. Additionally, the

structures observed at the onset of this subcritical transition do not agree with the

unstable modes predicted by the linear stability analysis. Pipe flow is even believed to

be linearly stable for all Re [Meseguer and Trefethen, 2003]. Nevertheless turbulence

already occurs in the form of localized patches called puffs at Re 1800 and becomes

sustained for Re > 2040 [Avila et al., 2011] and then in the form of slug at higher

Re ≈ 2100 [Wygnanski and Champagne, 1973; Barkley et al., 2015]. Similarly for

plane Couette flow (PCf), the base laminar profile is linearly stable for all Re [Drazin

and Reid, 2004], but the turbulence becomes sustained at Re > 325 [Dauchot and

Daviaud, 1995; Bottin et al., 1998a]. In the case of PPf, the early experiments in

channel flow showed the occurrence of turbulence at Re 1000, which is much smaller

than the linear stability limit [Davies et al., 1928; Narayanan and Narayana, 1967; Patel
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Figure 1.2: φ1 and φ2 are the monotonically decaying nonnormal eigenvector, and f

is the resultant. The figure demonstrates how the resultant vector grows transiently

before an ultimate decay due to the non-normality of the eigenfunctions. (Figure credit:

Schmid Ann.Rev.Fluid. 2007 [Schmid, 2007])

and Head, 1969; Carlson et al., 1982; Nishioka and Asai, 1985; Alavyoon et al., 1986].

Linear stability theory only provides limited insight into the existence of sustained

turbulence even when the base laminar flow is linearly stable, i.e., when all the eigen-

modes are stable. In other words, the mechanism for the growth of a finite disturbance

is different from the unstable eigenmode of the base laminar flow. However, as will be

discussed later, linear stability analysis can also be used to determine the stability of

non-trivial i.e., non-laminar invariant solutions of the Navier-Stokes equations.

1.1.2 Nonmodal stability analysis

In the last 30 years, the nonmodal analysis has attracted the attention of the fluid

dynamics community. Traditional linear stability analysis looks at the evolution of dis-

turbances as t → ∞, whereas the nonmodal stability analysis looks into the evolution

of the disturbances in a finite time window [Schmid, 2007].

The operator of the Orr-Sommerfeld equations has non-normal eigenfunctions [Tre-

fethen et al., 1993; Grossmann, 2000]. Because of this nonnormality, the perturbations

on the base flow transiently grow in energy, before finally decaying at t→∞ [Trefethen

et al., 1993]. This concept has been illustrated in Figure 1.2 from a review by Schmid
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[Schmid, 2007]. Here, φ1 and φ2 are two non-normal eigenvectors and f is their resul-

tant. Both the eigenvectors monotonically diminish in magnitude. However, because of

the non-normality between φ1 and φ2, the resultant f grows transiently before decaying

eventually at t → ∞. This temporary growth is called transient growth or algebraic

growth. Figure 1.3 shows energy growth curves in plane Poiseuille flow at different

Re based on the computation of transient growth in PPf by Reddy and Henningson

[Reddy and Henningson, 1993]. To further illustrate the difference between the linear

stability and the transient growth, let us consider the transient growth in channel flow

in the linearly stable (Re < 5772) and in the linearly unstable (Re > 5772) regime. In-

terestingly, as shown in Figure 1.3, for a small value of t, i.e., in the transient regime,

the disturbance grows transiently in a similar fashion in the linearly stable and linearly

unstable regime and is independent of the stability properties of the laminar base flow.

However, the stability properties are revealed only at larger values of t, where, for the

linearly stable case, the perturbations decay as t → ∞, and for the linearly unstable

case, the energy grows infinitely with t→∞.
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Figure 1.3: Transient growth of small perturbations in plane Poiseuille flow at different

Re. For each Re, the curves are normalized with the energy of the initial perturbations.

A small perturbation over the base flow grows algebraically before exponentially de-

caying for linearly stable base laminar flow regime at Re < 5772. For linearly unstable

regime the energy keeps growing as t→∞

In a nutshell, the nonmodal analysis shows that the energy of the perturbations

grow transiently even when the base flow is linearly stable. However, it can not explain
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the nonlinear evolution of the perturbations, which makes the flow turbulent. After the

initial growth, the perturbation levels always go to zero if the flow is linearly stable. In re-

ality, however, the nonlinear effects become prominent if the amplitudes are sufficiently

large.

1.1.3 Dynamical system theory

In recent years another viewpoint towards the phenomenon of turbulence has become

popular. In this approach, the transition to turbulence is studied from the perspective

of the dynamical system theory.

The fluid flow is governed by a set of partial differential equations- the Navier-Stokes

equations. Expanding the velocity field u as a projection on a complete set of orthonor-

mal function basis transforms these partial differential equations into a set of ordinary

differential equations, where the velocity vector u is replaced by a vector of the spectral

expansion coefficients û. The system takes the form of

dû

dt
= f(û, P ) (1.3)

where P is a parameter.

Here, turbulence is viewed as a trajectory traveling in an infinite-dimensional state-

space with the Navier-Stokes equations acting as the evolution equations. This idea

dates back to Hopf [Hopf, 1948]. Each point on the trajectory represents a complete 3D

velocity field of the entire domain, which fulfills the boundary conditions. Because of the

viscous dissipation, microscopic scales can be neglected, and the infinite-dimensional

state-space can be approximated with finite but very high dimensional state-space.

Landau suggested that the turbulence is, in some sense, a quasiperiodic motion

resulting from an infinite cascade of bifurcating incommensurable frequencies as Re

increases [Landau, 1944]. In this picture, each bifurcation adds new temporal fre-

quency and then results in a continuous spectrum of frequencies- which is a signature

feature of turbulent flow. Later, Ruelle and Takens [Ruelle and Takens, 1971] showed

that very few instabilities are sufficient to generate chaotic dynamics. Experiments in

Taylor Couette flow with only the inner cylinder rotating showed the agreement with the

picture suggested by Ruelle and Takens [Gollub and Swinney, 1975]. Here, the laminar
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base flow becomes linearly unstable as Re increases, and flow renders in the form of

rolls called Taylor’s vortices. These rolls further become unstable and become wavy

and then sharply become aperiodic, i.e., the flow becomes chaotic. A similar scenario

is observed in Rayleigh-Benard convection [Maurer and Libchaber, 1979].

Figure 1.4: Turbulence is thought as a trajectory in the state space traveling through

a jungle of invariant solutions guided by the entanglement of their stable and unstable

manifolds and homoclinic and heteroclinic connections between these solutions. This

schematic representation has been adapted from [Kreilos, 2014]

However, in many linearly stable shear flows like pipe flow and plane Poiseuille flow,

turbulence does not arise from the laminar state. Instead, it is believed to originate

from unstable invariant solutions of the Navier-Stokes equations, disconnected from

the base laminar flow. Also, at the onset, turbulence is in the form of localized patches

surrounded by the laminar flow. The situation is more complicated than the flows where

the sequence of instabilities start from the base laminar flow itself, as here, the laminar

base flow is a global attractor, and turbulence is observed to be transient at onset [Hof

et al., 2006] [Bottin et al., 1998b].

The transient nature of turbulence near onset can be though as trajectories in

chaotic saddles. These chaotic sets result from the existence of different invariant

solutions of the evolution equations (in the case of hydrodynamics- the Navier-Stokes

equations) like equilibrium/traveling waves, periodic orbits/relative periodic orbits, tori,

etc. and the entanglement of their stable and unstable manifolds. The turbulent trajec-
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tories are organized around the agglomeration of these invariant solutions and spend

a considerable amount of time in the neighbourhoods of these solutions. The temporal

and spatial turbulent dynamics can be described as a weighted sum over the set of

these invariant solutions [Cvitanović, 1988]. The transient nature of turbulence near

onset suggests that the turbulence structures are not organized around a chaotic at-

tractor but around a chaotic saddle [Eckhardt et al., 2007; Schneider et al., 2010a].

When these trajectories leave the chaotic saddle, they converge to the global attractor

- the laminar fixed point - which results in a relaminarization in the physical flow domain

(Figure 1.4).

It can be inferred that there exists a boundary in the phase space which separates

the chaotic saddle/attractor from the laminar fixed point. The laminar-turbulent bound-

ary separates the initial conditions such that the trajectories starting from the initial

conditions on one side of the boundary visit the chaotic saddle/attractor and the trajec-

tories starting from the initial conditions from the other side directly go to the laminar

fixed point. This boundary is a hypersurface in the phase space - called the ’edge of

chaos’ [Itano and Toh, 2001; Skufca et al., 2006] - formed by the stable manifolds of

the invariant saddle structures -the ’edge states’. Often, these ’edge states’ are equi-

librium points (EQ), periodic orbits (PO), traveling waves (TW), relative periodic orbits

(RPO), higher dimensional objects like 2-Tori, or even chaotic saddles. It is to be noted

that RPOs are POs, and TWs are EQs in the appropriate moving frame of reference.

By definition, the edge states are unstable, with only one unstable eigenvalue. The

hypersurface, i.e., the edge of chaos, therefore, has codimension 1. The stable mani-

fold of the edge states i.e., the edge of chaos, can have a very complicated geometry,

as is evident from the Re vs. amplitude plane in pipe experiments by Darbyshire and

Mullin [Darbyshire and Mullin, 1995]. The convoluted nature of the laminar-turbulent

boundary can be understood from Re vs amplitude vs lifetimes shown in Figure 1.5

taken from a review paper by Eckhardt et al. [Eckhardt et al., 2007].

With numerical techniques like bisection methods [Skufca et al., 2006], it is possible

to follow the edge of chaos for a longer time. The trajectories that lie on the edge

of chaos eventually converge to the ’relative attractors’ on the edge of chaos or the

’edge states’. The edge states feature structural similarities with the turbulent flows

like streamwise streaks and vortices. They are approached by turbulent trajectories
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Figure 1.5: Numerical experiments from pipe flow show the amplitude of a fixed initial

condition and the corresponding lifetimes of the trajectories at various Re. If the lifetime

is higher than certain T0, then the initial condition is considered lying on the turbulent

side of the laminar-turbulent boundary (from [Eckhardt et al., 2007])
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transiently. The stable and unstable manifolds of the edge states nudge the turbulent

trajectories. The origin of these invariant solutions can be determined by tracing them

in the parameter space.

A variety of these invariant solutions or edge states have been computed throughout

the last few decades. The first three dimensional invariant solutions of Navier-Stokes

equations were found by Nagata in 1990 [Nagata, 1990] in plane Couette flow (PCf),

which were the equilibrium solutions. Subsequently, many other equilibria, traveling

wave, and periodic/relative periodic orbit solutions were computed in PCf in the doubly

periodic domains [Viswanath, 2007; Gibson et al., 2009; Kawahara and Kida, 2001;

Kreilos and Eckhardt, 2012]. The heteroclinic connections between the invariant solu-

tions in PCf have been demonstrated [Gibson et al., 2008; Halcrow et al., 2009], which

in turn helps in understanding the structure of the chaotic saddle in the phase space.

In the pipe flow and plane Poiseuille flow, there are no equilibrium solutions because

of non-zero advection in the downstream direction. Traveling wave solutions [Faisst

and Eckhardt, 2003; Wedin and Kerswell, 2004] and relative periodic orbits [Duguet

et al., 2008] in pipe flow were computed initially in the small periodic domains. Simi-

larly, in the case of plane Poiseuille flow (PPf), traveling wave solutions [Waleffe, 2001;

Waleffe, 2003; Nagata and Deguchi, 2013] periodic solutions [Toh and Itano, 2003]

and doubly localized relative periodic orbits [Zammert and Eckhardt, 2014b] were com-

puted.

An essential feature of a subcritical shear flow turbulence at onset is the spatio-

temporal intermittent nature of turbulence. Here, the localized turbulent patches are

surrounded by laminar flow. In pipes, these patches appear in the form of turbulent

puffs [Wygnanski and Champagne, 1973], and in PCf and PPf, the turbulence occurs

in the form of oblique turbulent bands surrounded by laminar flow [Prigent et al., 2003;

Barkley and Tuckerman, 2005; Duguet and Schlatter, 2013; Xiong et al., 2015]. The

origins of spatio-temporally intermittent turbulence in the transitional regime can be

studied from a dynamical systems perspective by identifying the localized solutions of

Navier-Stokes equations in these flow geometries. In PCf, the spanwise localized and

the streamwise periodic solutions were computed by [Schneider et al., 2010b; Gibson

and Brand, 2014]. Moreover, doubly localized solutions in PCf were also computed

by Brand et al. [Brand and Gibson, 2014]. In pipe flow geometry, localized edge
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states were computed [Willis and Kerswell, 2009; Mellibovsky et al., 2009; Duguet

et al., 2010b]. Avila et al. computed the first streamwise localized relative periodic orbit

solutions for pipe flow[Avila et al., 2013].

Typically these solutions are unstable with one or more unstable eigenvalues. Here

a small perturbation to these solutions will lead to the evolution of trajectories away

from the solutions. Being unstable, they can not be directly realized in experiments.

These solutions are computed in numerical flow domains using sophisticated tech-

niques. However, there is experimental evidence in pipe flow where the turbulent puffs

approach the invariant solutions (traveling waves) intermittently [Hof et al., 2004].

It is observed that these solutions emerge through saddle-node bifurcations and

are not connected with the laminar flow. They come in pairs and form two solution

branches in the parameter space. The solution branches are named upper branch

and lower branch, where, the lower branch, in terms of the energy of perturbations, is

in between the upper branch and the laminar fixed point. The lower branch solutions

are approximated by edge tracking using bisection methods, which are then further

converged using root-finding algorithms such as the Newton method. These solution

branches play an important role in understanding the route to chaos. Bifurcation se-

quences to chaos, starting from invariant solutions have been demonstrated for several

flow cases e.g. PCf [Kreilos and Eckhardt, 2012], pipe flow [Avila et al., 2013] and PPf

[Zammert and Eckhardt, 2015]. In all these cases, it was observed that the upper

branch of the invariant solutions become successively unstable by undergoing a se-

quence of bifurcations, and eventually, the dynamics become chaotic. All these studies

also describe the transition of a chaotic attractor to a chaotic saddle that can occur

by the process of boundary crisis or internal crisis. In the boundary crisis, the chaotic

attractor collides with an unstable invariant set or a stable manifold of that invariant set,

making the chaotic attractor leaky. In the interior crisis, the chaotic attractor becomes

non-attracting by colliding with an already coexisting non-attracting chaotic set or its

stable manifold [Lai and Tél, 2011].
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1.1.4 Turbulence at the onset

As explained earlier, turbulence at onset is composed of localized patches. In a pipe,

the puffs first occur at around Re ∼ 2000 and are advected at velocity about the mean

velocity [Wygnanski and Champagne, 1973]. As shown in the subsequent studies,

puffs have a finite lifetime, and the probability of the puff surviving for time > t shows

exponential distribution, which is a signature of a memoryless process [Peixinho and

Mullin, 2006; Hof et al., 2006]. Corresponding lifetimes (i.e. the slopes of the distribu-

tions) show superexponential behaviour with Re [Hof et al., 2008].

At slightly larger Re (≈ 2100), puffs are observed to split and grow into more puffs,

which results in increased turbulent fraction. This puff splitting is also a memoryless

process and the lifetimes of splitting, i.e., the characteristic time for the splitting show

a super-exponential decrease with Re [Avila et al., 2011]. Therefore in a very long

pipe, if the splitting time is less than the decay time, the turbulence will proliferate and

sustain eventually. On the other hand, if the characteristic decay time is less than that

of splitting time, turbulence eventually vanishes. Therefore spreading of turbulence is

a competition between decay and splitting of the puffs (see Figure 1.6). When the

characteristic splitting and decay times are balanced, turbulence becomes sustained

in a very long pipe at Rec ≈ 2040.

In planar shear flow like PPf and PCf, the turbulence at the onset is in the form of

oblique localized bands. In PCf, just like pipe flow, the base laminar flow is linearly

stable for all Re. However, the flow becomes turbulent despite that. The critical Re at

which turbulence becomes sustained is estimated in experiments by Bottin and Chaté

[Bottin and Chaté, 1998]. By examining if the turbulence is sustained beyond a certain

large time, the critical value of Rec = 323± is determined. This value of Rec is also

confirmed in simulations in large domains by Duguet et al. [Duguet et al., 2010a].

Similary, in PPf, the laminar base flow is linearly stable until Re = 5772 [Ruelle

and Takens, 1971]. But the experiments show that the flow becomes turbulent even at

Re = 1000 [Narayanan and Narayana, 1967; Narayanan, 1968; Narayanan and Ram-

jee, 1969; Patel and Head, 1969]. The flow visualizations by Carlson et al. showed that

turbulence at onset appears in the form of localized spots surrounded by the laminar

flow [Carlson et al., 1982; Alavyoon et al., 1986]. These structures were called turbu-
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Figure 1.6: The onset of sustained turbulence in pipe flow as a competition between

puff decay and puff splitting. The fits are super-exponential fits which intersect at

Re ≈ 2040 which is a critical Re below which the turbulence is not sustained in thermo-

dynamic limit [Avila et al., 2011]

lent spots. However, experiments by Hashimoto et al. [Hashimoto et al., 2009] and

numerical simulations by Tsukahara et al. [Tsukahara et al., 2005] show that at these

Re, near the onset, turbulence is in the form of extended bands or stripes oblique to

the mean flow direction. The recent numerical simulations in relatively extended do-

mains show that these turbulent stripes can exist below Re 700 [Xiong et al., 2015;

Tao et al., 2018]

An important distinction between these turbulent structures in planar flows and in

pipe flow is that the puffs in pipe flow do not grow in size as they advect downstream

and the proliferation of turbulence is solely due to competition between decay and

splitting, whereas in PPf and PCf the turbulent stripes grow in the oblique direction as

they move downstream.
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1.2 Problems addressed in the thesis

In this study, the focus is mainly on the transition to turbulence in plane Poiseuille flow

(PPf), which is also known as channel flow. Compared to many other shear flows like

flow around aeroplanes, atmospheric flows, PPf is less complicated, and the analytical

solution for the base laminar case is available. Due to its simple geometry, this flow is

easier to simulate numerically than many other complicated shear flows. Therefore it

is one of the favored candidates for studying the transition to turbulence.

In the present study, the transition in the channel flow is approached from various

perspectives.

1. Experiments : At the onset, the turbulence is spatio-temporally intermittent and

is in the form of oblique stripes surrounded by the base laminar flow. In the exper-

iments, we studied the behaviour of these turbulent structures such as the mean

growth rate, the orientation, different regimes of the proliferation of turbulence in

channel flow and the relevant mechanisms of the growth of turbulence near on-

set. The critical Rec above which turbulence is sustained is also estimated. This

Rec is much lower than the previously reported values.

2. Dynamical system theory approach : To understand the dynamical systems

framework of turbulence in PPf, various invariant solutions of the PPf are com-

puted. These solutions in the periodic domains with necessary constraints show

structural similarities with the turbulent stripes which characterize the onset of

turbulence in PPf. To our knowledge, these are the first invariant oblique stripe

solutions computed in PPf.

3. Deterministic origin of turbulent stripes : The connection between the turbu-

lent stripes and the simple invariant solutions in parameter space is shown. Also

the aspects of the origin of the turbulent dynamics starting from these invariant

solutions are discussed.
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1.3 Organization of the thesis

The thesis is organized in 6 chapter. Following is the description of the material dis-

cussed in each of the chapters.

• Chapter 2 covers the numerical methods and techniques used in this thesis. It

summarizes the governing equations, various algorithms used for simulating the

flow in plane Poiseuille geometry. It also describes a method to compute the

invariant solutions and an algorithm used to converge these invariant solutions

and an algorithm to study the stability properties of these solutions.

• Chapter 3 covers the experimental work carried out in the channel flow. It sum-

marizes the experimental set-up, methodologies, techniques used for analyzing

the data and the results from the channel experiments.

• Chapter 4 includes the computation of the invariant stripe solutions in PPf and

their bifurcations. It also covers the bifurcation diagrams for the various parame-

ters like stripe angles, domain size and different routes to chaos.

• Chapter 5 contains the results regarding the deterministic origin of the turbulent

stripes in PPf.

• Chapter 6 is a summary of the thesis with outlooks.
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2 Numerical techniques

In this chapter, the governing equations of plane Poiseuille flow (PPf), a numerical

procedure -the tilted domain- employed to simulate the turbulent stripes, the algorithms

used for the simulations of PPf and the tools to obtain the non-trivial invariant solutions

of the incompressible Navier Stokes equations are discussed.

2.1 Plane Poiseuille flow

Plane Poiseuille flow (PPf)is a pressure-driven shear flow between two infinitely ex-

tended parallel plates (figure 2.1). These plates do not have any relative motion be-

tween them. The resulting laminar velocity profile is parabolic with its maximum velocity

at the center plane of the channel. The parabolic velocity profile when normalized with

the centerline velocity Ucl and half channel height h. can be written as

U(y) = (1− y2)

−1 ≤ y ≤ 1 (2.1)

Here y is the wall normal direction.

2.2 Governing equations

In this study, we only consider the incompressible flows of the Newtonian fluids. The

fluid motion in PPf is described by the Navier-Stokes equations with the continuity

equation. The momentum equations are as follows.

∂utot
∂t

+ (utot · ∇)utot = −∇ptot +
1

Re
∇2utot + f (2.2)
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Figure 2.1: Illustration of plane Poiseuille flow. The coordinate system is chosen in

such a way that the mean flow or streamwise direction is along direction x′, the z′ axis

represents the spanwise direction and y the wall-normal direction. The flow is induced

as a result of the negative pressure gradient from left to right. At the walls, a no-slip

boundary condition is imposed. The resulting base laminar velocity profile is parabolic

with a maximum velocity at the center-plane y = 0.

The continuity equation for incompressible flows is

∇ · utot = 0 (2.3)

Here, utot(x′, y, z′, t) = Ulam + u is the velocity field, p is the pressure, f is the body

force and the Reynolds number Re of a corresponding laminar flow at the same flow

rate is defined as Re = Uclh/ν where Ucl is the maximum velocity of the parabolic

laminar profile, h is the half gap between the two parallel plates and ν is the kinematic

viscosity. No-slip boundary conditions are imposed at the walls.

utot(x
′,±1, z′) = 0 (2.4)

where x′ is the streamwise direction, z′ is the spanwise direction, and y is the wall-

normal direction.

In the equations above, velocities are normalized with Ucl, lengths with the half

channel gap h. Time is normalized by h/Ucl and the pressure terms by ρUcl2.
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2.3 Tilted domain

The dynamics at the onset of turbulence in PPf is dominated by the localized turbulent

stripes oblique to the mean flow direction, which are surrounded by laminar flow. In the

numerical simulations, to capture a turbulent stripe, the domain should be large enough

in the spanwise and the streamwise direction so that the stripe does not self-interact via

the periodic boundary conditions which in turn makes the simulations computationally

expensive. This issue is eliminated by tilting the domain with respect to the streamwise

direction. This trick was used by Barkley et al. to simulate turbulent bands in PCf

[Barkley and Tuckerman, 2005] and also in the simulations of PPf by Tuckermann et al.

[Tuckerman et al., 2014].

Figure 2.2a illustrates the concept of the tilted domain. Let x′ and z′ be the real/physical

streamwise and spanwise directions, respectively. We introduce coordinates x and

z, which are tilted with respect to x′ and z′ by an angle θ. The numerical domain

is oriented along with the tilted coordinates x and z. For the appropriate angles

(20◦ < θ < 70◦) the stripes will automatically align with the x direction (see Figure

2.2) so that the stripe connects onto itself. In a similar size non-tilted domain, the stripe

does not connect to itself but continues via periodic boundary, and the self-interaction

causes the stripe to decay.

The unit vectors in the new x and z directions êx and êz respectively have the follow-

ing relation with the unit vectors in the physical streamwise and the physical spanwise

directions ex′ and ez′ respectively.

êx′ = cos θêx + sin θêz (2.5)

êz′ = − sin θêx + cos θêz (2.6)

where θ is the tilt angle i.e., the angle between the shorter side of the rectangular box

and the physical streamwise direction.

Let Ub represent the bulk velocity in the “physical” streamwise direction x′. The com-

ponents of the bulk velocity along the new x and z directions of the tilted rectangular

box are

Ux
b = Ub cos θ (2.7)

U z
b = Ub sin θ (2.8)
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At the moderate values Re, e.g. Re = 660, after starting the simulations from a

random initial condition, the dynamics settle to a turbulent stripe localized in the longer

direction of the rectangular domain and extended in the shorter direction. In the large

aspect ratio experiments and simulations, turbulent stripes are observed in the same

Re regime. It features the quasi-streamwise streaks and vortices similar to the turbulent

stripe from the experiments or the simulations of non-tilted large domains. Figure 2.2a

shows the turbulent stripe in the large domain at Re = 660 and Figure 2.2b shows the

turbulent stripe at the same Re in the domain tilted at an angle θ = 45◦ with respect to

the streamwise direction. The turbulent stripe in extended direction attaches itself due

to the periodic boundary conditions. This fact forces the turbulent stripe to have the

same orientation as the tilted domain with respect to the streamwise direction.

As will be explained in the later chapters, this trick allows us to investigate stripes

in a small domain, at a much lower computational cost.
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(a)

(b)

Figure 2.2: Concept of the tilted domain. (a)The isolated turbulent stripe at Re = 660

showing wall-normal fluctuations. The arrow shows the direction of the mean flow. The

stripe appears to be tilted with respect to the streamwise direction at an angle θ =

45◦. The tilted rectangular box in red colour, embedded with the appropriate boundary

conditions captures the dynamics of the stripe at the selected tilt angle θ = 45◦ (b)The

turbulent stripe at Re = 660 in the tilted domain.
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2.4 Numerical methods

In the present study, fluid flows are simulated using direct numerical simulations (DNS),

which involve solving the Navier Stokes equations by fully resolving all the relevant

scales. The simulations have been performed using two codes. The first code is based

on openpipeflow code by Ashley P. Willis [Willis, 2017] and which has been adapted

by Baofang Song to simulate the PPf in a regular domain. Further modifications were

done by the author to simulate the PPf in the tilted domain (here onwards referred to as

Code-1). The second code used in this thesis is Channelflow code (hereafter referred

as Code-2) developed by John Gibson [Gibson, 2014] [Gibson et al., 2008]

Both these codes solve the incompressible Navier-Stokes equations for the fluctu-

ating component of the velocity. The velocity is decomposed as utot = U + u, where

U = (1− y2) cos θêx + (1− y2) sin θêz is the base flow with the components in the x and

z direction of the periodic rectangular domain êx and êz respectively. θ ∈ [0, 2π] is the

angle at which the rectangular domain is tilted with respect to the physical streamwise

direction.The Navier-Stokes equations for the primitive variables (u, p) take the form

∂u

∂t
+ (u · ∇)u + (u · ∇)U + (U · ∇)u = −∇ptot +

1

Re
∇2U +

1

Re
∇2u

∇ · u = 0 (2.9)

The no-slip boundary conditions are imposed at the walls of the channel at (y = ±1).

The periodic boundary conditions are imposed in the homogeneous directions i.e., x

and z.

u(x,±1, z) = 0

u(x, y, z) = u(x+ Lx, y, z)

u(x, y, z) = u(x, y, z + Lz) (2.10)

As discussed previously, the PPf is a pressure-driven shear flow. Therefore the

pressure is not constant in the flow direction. The pressure can be decomposed into
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a linear and a periodic fluctuating component. Let Px(t)x and Pz(t)z be the linear in x

and linear in z and p(x, y, z, t) be the fluctuating component of the pressure.

ptot = p(x, y, x, t) + Px(t)x+ Pz(t)z (2.11)

and

∇ptot = ∇p(x, y, x, t) + Px(t)ex + Pz(t)ez (2.12)

When the constant mass flux condition is imposed, the flow rate averaged over the

surfaces normal to the vectors ex and ez should remain constant. As discussed in

Section 2.5, this is achieved by adjusting the terms Px(t)x and Pz(t)z such that the

mass flux remains constant. The next two sections discuss the spatial discretization

and the time-stepping algorithms used to simulate the PPf.

2.5 Code-1

This code solves the Navier-Stokes equations in the Cartesian coordinate system with

two periodic directions(x and z) and one inhomogeneous wall-normal direction (y).

2.5.1 Formulation

Equation (2.9) can be written as

∂u

∂t
+N(u) = −∇ptot +

1

Re
L(u)

∇ · u = 0

u(x,±1, z, t) = 0 (2.13)

The pressure and velocity are coupled in the Navier Stokes equations. This coupling is

tackled by taking the divergence of the Navier Stokes equations (2.13). The resulting

equation for the pressure is a Poisson equation called a pressure Poisson equation

(PPE).

∇2ptot = −∇ ·N(u) (2.14)
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In (2.13), the divergence of the linear terms is zero because of the incompressibility

condition. At the boundaries, the Neumann condition is defined by

dptot
dy

= ey ·
(
−∂u
∂t
−N(u) +

1

Re
L(u)

)
at y = ±1 (2.15)

Now, as explained in section 2.4, the pressure term is decomposed into a fluctuating

part and a linear part. Therefore the pressure term can be expanded as follows

ptot(x, y, z, t) =
K∑

k=−K

M∑
m=−M

p̂k,m(y, t)ei(αkxx+βmzz) + Px(t)x+ Pz(t)z (2.16)

where k and m are Fourier modes in x and z direction respectively, α = 2π/Lx, β =

2π/Lz and Lx ,Lz are the lengths of the domain in x and z directions respectively.

Because of the imposed constant mass flux condition, the pressure gradient is time-

dependent. In other words, the constant mass flux is maintained across the surfaces

normal to x and z (i.e., across the tilted domain sides) by adjusting the pressure term

at every time step.

2.5.2 Spatial discretization

This spectral code consists of Fourier×Fourier modes in the two periodic directions

and Finite difference with 9-point stencil in the wall normal direction. All lengths are

normalized with h. Therefore y varies as y = ±1. The wall normal direction the grid

points are defined as Gauss-Lobatto points i.e. yj = cos( jπ
N−1) where j ∈ [0, N −1]. The

fluctuating component of the velocity is expanded as follows

u(x, y, z, t) =
K∑

k=−K

M∑
m=−M

ûk,m(y, t)ei(αkxx+βmzz) (2.17)

By substituting (2.17) in (2.13), we project the equations in Fourier space which

results in a system of ordinary differential equations, with 3 equations for each (k,m)

pair. The nonlinear terms are evaluated using convolution which results in “aliasing”

of the Fourier modes. To make the convolution terms free of aliasing, we use the 3/2

dealiasing rule [Canuto, 1988].
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2.5.3 Algorithm

The linear terms are integrated implicitly. However, to reduce the computation cost,

nonlinear terms are integrated using explicit methods. Here, the time integration is per-

formed using a second-order backward differentiation for linear terms and the Adam-

Bashforth method for the nonlinear terms.

3ûn+1 − 4ûn + ûn−1

24t
+ 2N(ûn)−N(ûn−1) = −∇pn+1 +

1

Re
L(ûn+1) (2.18)

In the beginning with the given initial condition û0 we set û−1 = û0 to kick-start the

integration algorithm.

1. The pressure Poisson equation in discretized form is as follows.

∇2p̃n+1 = ∇ · (−2N(ûn) +N(ûn−1))

dp

dy
= 0 at y = ±1 (2.19)

At the boundary, the pressure gradient in the wall-normal direction vanishes be-

cause of the no-slip boundary conditions and the incompressibility condition. The

above equation is solved by taking the inverse of the operator using LU decom-

position. The resulting pressure term is a predictor pressure step p̃n+1 which is

then used to compute the predictor velocity field.

2. The predictor velocity û∗ is obtained using the no-slip boundary conditions and

the predictor pressure.

3û∗ − 4ûn + ûn−1

24t
+ 2N(ûn)−N(ûn−1)

= −∇(p̃n+1 + Pxx+ Pzz) +
1

Re
L(û∗) (2.20)

No-slip boundary conditions are maintained at the walls as u∗ = 0 at y = ±1.

The pressure terms Px and Pz are solved by imposing the constant mass flux

condition in the periodic directions as∫ Lx

0

∫ 1

−1
u∗xdydx = C1∫ Lz

0

∫ 1

−1
u∗zdydz = C2 (2.21)
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Due to the Fourier representation of the velocity u∗ the modes with k 6= 0 and

m 6= 0 do not contribute to the mass flux. Therefore the pressure gradients Px

and Pz which depend only on time, act on (k,m) = (0, 0). Therefore,∫ Lx

0

∫ 1

−1
u∗xdydx = Lx

∫ 1

−1
û∗x(0,0)dy = C1∫ Lz

0

∫ 1

−1
u∗zdydz = Lz

∫ 1

−1
û∗z(0,0)dy = C2 (2.22)

Next û∗x(0,0) and û∗z(0,0) are solved using (2.20) and (2.22). ˆuy(k,m)

∗ and the remaining

modes of ûx∗ and ûz∗ can be obtained by solving (2.20) alone.

3. In the corrector step, the pressure p̃n+1 is corrected in order to satisfy the incom-

pressibility condition. In the predictor step, the condition∇·u∗ = 0 is not imposed,

leaving the predictor velocity field u∗ not divergence-free. In the corrector step the

pressure p̃n+1 is corrected for the incompressibility condition. Now, consider the

following equation.

3un+1 − 3u∗

24t
= −∇(pn+1 − p̃n+1)

∇ · un+1 = 0

un+1 = u∗ = 0 at y = ±1 (2.23)

Defining % = 24t
3

(pn+1 − p̃n+1), we have

∇2% = −∇ · (un+1 − u∗) i.e. ∇2% = −∇ · u∗

∂%

∂y
= 0 at y = ±1 (2.24)

Using LU decomposition, % is determined. Then the pressure and the velocity

can be corrected as

pn+1 = p̃n+1 +
3

24t
%

un+1 = u∗ −∇% (2.25)

This code is parallelized with MPI. For further details of the MPI-implementation

refer to the documentation on openpipeflow website. A precursor to the Code-1 can

be found in the Ph.D. dissertation by Baofang Song, as a routine to simulate pipe flow

[Song, 2014].
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2.6 Code-2

This code has been developed by John F. Gibson [Gibson, 2014]. It is written as a set

of C++ classes, designed to simulate the wall-bounded incompressible flows (plane

Poiseuille and plane Couette) in a 3D rectangular periodic domain. This code also

uses spectral discretization viz. Fourier × Chebyshev × Fourier , with the Fourier

discretization in the two periodic directions and the Chebyshev polynomials in the in-

homogeneous i.e. wall-normal direction.

2.6.1 Formulation

The code solves the Navier-Stokes equations

∂utot
∂t

+ (∇× utot)× utot = −∇q +
1

Re
∇2utot

∇ · utot = 0

utot(x,±1, z) = 0 (2.26)

where q = p + 1
2
|utot|2 is a dynamic pressure. As explained in section 2.4 the velocity

is decomposed as the laminar base flow and a fluctuating component

utot = U + u (2.27)

where U = Ux(y)êx + Uz(y)êz

The pressure term is also decomposed as described in equation (2.12). After the

decomposition, equation (2.26) takes the form

∂u

∂t
+∇

(
p+

1

2
u · u

)
=

1

Re
∇2u−

(
(u×∇)× u + Ux

∂u

∂x
+ Uz

∂u

∂z
+ v

∂Ux
∂y

êx + v
∂Uz
∂y

êz

)
+

(
1

Re

∂2Ux
∂

y2 + Px(t)

)
êx +

(
1

Re

∂2Uz
∂

y2 + Pz(t)

)
êz

(2.28)

These equations can be written as

∂u

∂t
+∇q = L(u)−N(u) + C(t) (2.29)

The term C(t) is a time dependent forcing term which is adjusted at every timestep to

maintain constant mass flux across the mean flow directions.
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2.6.2 Spatial discretization

The velocity is expanded in the following form.

u(x, y, z, t) =

Nx/2∑
kx=−Nx/2+1

Ny∑
n=0

Nz∑
kz=−Nz/2+1

ûkx,ny ,kz(y, t)T̂n(y, t)e2πi(kxx/Lx+kzz/Lz) (2.30)

whereNx andNz are the number of Fourier modes in the periodic directions. Nx and

Nz are even. Ny is the number of Chebyshev modes in the wall normal direction. Lx and

Lz are the lengths of the domain in x and z directions respectively. The grid points in

the wall normal direction are defined as Gauss-Lobatto points such that yj = cos( jπ
N−1)

where j ∈ [0, N − 1]. The nth Chebyshev polynomial is Tn(y, t) = cos(n cos−1(y)) where

y ∈ [−1, 1].

The code is designed to maintain either a constant mass flux or a constant pressure

gradient. In this study, we have used the constant mass flux constraint which in turn

maintains constant Re based on the centerline velocity Ucl.

2.6.3 Algorithm

The equations are integrated in time by using a 3rd order Adam-Bashforth backward

differentiation method with the linear terms treated with a third-order backward differ-

ence and the nonlinear terms with the 3rd order Adam-Bashforth method. The dis-

cretization is as follows.

1

4t

(
11

6
un+1 − 3un +

3

2
un−1 − 1

3
un−2

)
= 3N(un)− 3N(un−1)

+N(un−2) + L(un+1) (2.31)

The algorithm uses a variable time-step. The constraint is a CFL condition which is

defined as

C =
u4 t

4x
(2.32)

where u is a magnitude of velocity, 4t is a timestep and 4x is a spatial resolution.

Therefore the time-step is chosen such that the C < 0.55. For more details of the time

integration see documentation on channelflow and chapter 4 of [Peyret, 2010].



29

2.7 Bisection

In a variety of shear flows like PPf, PCf, HPf turbulence exists subcritically i.e., de-

spite the laminar base flow being linearly stable. It suggests that there are two distinct

regimes in the phase space (a) a fixed point that corresponds to the laminar base flow

and (b) a chaotic attractor/saddle that corresponds to the turbulent flow [Skufca et al.,

2006; Faisst and Eckhardt, 2004].

These laminar and the turbulent states are separated by a hypersurface or a sep-

aratrix in phase space [Skufca et al., 2006; Schneider et al., 2008]. A trajectory

starting from an initial condition in phase space ends up either on the laminar or the

chaotic/turbulent set depending upon which side of the separatrix the initial condition

lies. However, the initial conditions which lie on the separatrix neither go to the laminar

fixed point nor to the turbulent/chaotic set but remain on the separatrix and eventually

converge to the relative attractor on it. These trajectories on the separatrix are called

the ’edge,’ and the relative attractor to which these ’edge’ trajectories converge is called

the ’edge state’ [Duguet et al., 2009].

These relative attractors are either can be chaotic in nature or the exact invariant

solutions (ECS) of the Navier-Stokes equations. These ECS can be equilibria (EQ),

traveling waves (TW), periodic orbits (PO) or relative periodic orbits (RPO). It should

be noted that in a co-moving frame, TWs are EQs and RPOs are POs. These solu-

tions are important in order to study the turbulence from the dynamical system theory

perspective.

To find an edge state the method used is described in Schneider et al. [Schneider

and Eckhardt, 2009]. Let u0(x) be an initial condition of any trajectory that visits the

turbulent attractor. Clearly the initial condition lies on a turbulent side of the separatrix.

Now consider a scalar λ ∈ (0, 1) which is used to scale the initial condition as λu0(x)

Let uL(x) = λLu0(x) be an initial condition such that the trajectory starting from it

goes to the laminar fixed point and uT (x) = λTu0(x) be the initial condition such that

the trajectory staring from it goes to the turbulent attractor. Now bisecting between λL

and λT for n iterations, we find an initial condition which is very close to the edge of

chaos. Then u∗
0(x) = λ∗u0(x) is the initial condition such that a trajectory starting from

that initial condition visits the relative attractor on the edge called as edge state u∗. In
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Figure 2.3: The edge tracking at Re = 720 at a tilt angle θ = 35◦. The trajectories in

red are the turbulent trajectories which go to the chaotic set and the trajectories in blue

go to the laminar fixed point. The flat plateau between these blue and red trajectories

represents the edge state. As the bisection method brings the initial condition closer

and closer to the edge of chaos, the time the trajectories spend near the edge state

also increases. In the case demonstrated here, the edge state was found to be a

traveling wave.

practice, the initial condition on the edge of chaos is determined with a finite numerical

error, usually |λL−λT | ≈ 10−10. This provides an approximate invariant solution which is

converged further using the Newton-Krylov algorithm [Viswanath, 2007] as explained

in Section 2.8. The stability of these invariant solutions is quantified using Arnoldi

iterations as described in Section 2.9

2.8 Newton-Krylov method

In PPf, the invariant solutions of the Navier-Stokes equations are traveling waves and

relative periodic orbits. These solutions are approximated using the bisection methods

and then further converged using a root-finding algorithm called the Newton-Krylov

method. The corresponding routine from the channelflow code - based on the Newton-

Krylov-Hookstep algorithm by D. Viswanath [Viswanath, 2007] - is used for converging

the solutions.
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Let φτ be the evolution operator after time τ , and σ be a spatial shift operator such

that (σu) (x) = u(x + ∆x), where ∆x is a two-dimensional vector. Then for traveling

wave solutions, we look for G(u, σ, τ) = |φτ (X) − σX|2 = 0 for any arbitrary τ and

given ∆x. For relative periodic orbit, we have G(u, σ, T ) = |φT (X) − σX|2 = 0 for a

fixed time period T and given ∆x.

Now let X = [u, σ, T ] be a vector which is an initial guess for the relative periodic

orbit. Let X∗ = [u∗, σ∗, T ∗] be a solution such that G(X∗) = 0. Let X∗ = XN + dXN ,

where N represents the nth Newton step.

G(X∗) = G(XN + dXN) i.e.

0 = G(XN) + J(XN)dXN +O(|dXN |2) (2.33)

where J is the Jacobian with

Ji,j =
∂Gi

∂xj
(2.34)

Dropping the higher-order terms, the Newton equation to be solved is

J(XN)dXN = −G(XN) (2.35)

We want to find a correction dXN such that above equation is satisfied. In practice dXN

is determined such that |J(XN)dXN +G(XN)| < ε where ε < 10−13.

Equation (2.35) is of the form

Ax = b (2.36)

Let A be a matrix with A ∈ Rm×m,x ∈ Rm×1and b ∈ Rm×1.

This problem is then solved by implementing the GMRES-Krylov subspace algo-

rithm [Saad and Schultz, 1986] [Knoll and Keyes, 2004] with the hookstep suggested

by D. Viswanath.

The Generalized Minimal RESidual or GMRES method solves a least square prob-

lem at each step. At every pth step, the solution x∗ = A−1b is approximated by a

vector xp ∈ Kp. Kp is a pth order Krylov space. The residual ‖ rp ‖2=‖ Axp − b− ‖2
is minimized in each iteration. The corresponding Krylov matrix is given by Kp =

[b,Ab,A2b...Ap−1b] ∈ Rm×p. Now, the orthonormal basis Qp ∈ Rm×p of Kp is formed
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by Arnoldi iterations. The vector xp can be written as xp = Qpyp where yp ∈ Rp. The

Arnoldi iteration also computes an upper Hessenberg matrix Ĥp such that

AQp = Qp+1Ĥp. Because of the orthogonality of the matrix Qp, we have

‖ rp ‖2 =‖ Axp − b ‖2 =‖ AQpyp − b ‖2=‖ Qp+1Ĥpyp − b ‖2 (2.37)

Multiplication by QT
p+1 does not change the norm as QT

p+1 is a unitary matrix.

‖ rp ‖2 =‖ Ĥpyp −QT
p+1b ‖2=‖ Ĥpyp − βe1 ‖2 (2.38)

This least-squares problem is then solved by QR factorization. At the end of the

GMRES iterations a Newton step dXN is determined. Then the Newton-iteration is

continued further till |J(XN)dXN + G(XN)| < ε where ε < 10−13. If the Newton step

dXN does not reduce the residual, a smaller step -a hookstep - dXh is obtained by

minimizing ‖ J(XN)dXh + G(XN) ‖2 such that ‖ dXh ‖22 < δ2. The δ is a radius of

a trust region. It is determined by comparing the reduction in residual obtained by

considering step dXh to the reduction in residual predicted by the linearized model

G(XN) + J(XN)dXh. The region δ is increased in steps such that the reduction is

large and marginally accurate.

Continuation of the solutions in the parametric space is performed using the quadratic

extrapolation. Here, the guess for the solution in the parameter space is obtained from

quadratic extrapolation based on three converged solutions in the parametric space.

The guess is then further converged using the Newton-Krylov- Hookstep algorithm.

2.9 Computation of the Eigenvalues

The linear stability of the exact coherent solutions is determined by identifying the

eigenvalues of these invariant solutions. The eigenvalues are computed by iterative

methods.

Let A be a matrix with A ∈ Cm×m. The nth Krylov-subspace for A is

Kn =
[
p,Ap,A2pAn−1p

]
∈ Cm×n (2.39)

where, p ∈ Cm×1 be an initial vector.
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An approximate eigenpair (λ, ṽ) is sought through orthogonal projection of sub-

space K by imposing a condition

〈Aṽ − λṽ, q〉 = 0 (2.40)

where Qn = {q1, q2, ..., qn} is an orthonormal basis of Krylov subspace K and ṽ ∈

K. Let ṽ = Qny. Therefore, now the Equation 2.40 becomes

〈AQny − λQny, qk〉 = 0, k = 1, .., n (2.41)

This means, Q∗nAQny = λy. Therefore, the eigenvalues λk of Hn = Q∗nAQn where

k = 1, ...n, are computed. The eigenvalues are called as Ritz eigenvalues and the

vectors Qny are corresponding Ritz eigenvectors.

The Arnoldi algorithm computes the orthonormal basis Q of Krylov subspace K

of A and transforms the matrix K into |bmH upper Hessenberg matrix. It reduces the

complexity of the problem because of the zeros in the lower triangle of the matrix. Then

the eigenvalues of |bmH are computed with QR- algorithm.

Consider an evolution operator F t such that F T (u(t)) = u(t + T ). Then, for an

equilibrium we have F T (u∗) = u∗. Now the stability of the equilibrium solution u∗

can be determined by investigating how a small perturbation du on u∗ develops. The

eigenvalues of the operator S where, S(u∗)du = F T (u∗ + du)−F T (u∗), demonstrate

the stability of the invariant solution u∗.

2.10 Observables

In order to understand the temporal evolution of the turbulent structures, we need to

monitor the temporal evolution of a few scalars related to the flow. Unlike in the exper-

iments, in the simulations, we can define a variety of scalars with a global measure.

The perturbation kinetic energy averaged over the entire domain is one such quantity.

The perturbation kinetic energy is defined as E by E(t) =< e(x, y, z, t) > where

e(x, y, z, t) = |u(x, y, z, t)|2 is the local (pointwise) kinetic energy and < · > represents

the spatial averaging. E can be re-expressed as

E(t) =
1

LxLyLz

∫ 1

−1

(∫ Lz

0

∫ Lx

0

|u|2dxdz
)
dy. (2.42)
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Figure 2.4: A trajectory of turbulent dynamics at Re = 704 in a domain tilted at θ = 45o.

The portrait of a very high dimensional state space on two dimensions is achieved by

computing the scalars Eu and Ew along with the temporal evolution of the trajectory

In the case of the tilted domain, any velocity field u decomposes into three components

u, v and w, where u is the component parallel to the shorter side of the domain, the

component w, parallel to the longer side, and v is the wall-normal velocity component.

It is possible to define the kinetic energy by each component, such as

Eu(t) =
1

LxLyLz

∫ 1

−1

(∫ Lz

0

∫ Lx

0

u2dxdz

)
dy. (2.43)

Ev(t) =
1

LxLyLz

∫ 1

−1

(∫ Lz

0

∫ Lx

0

v2dxdz

)
dy. (2.44)

Ew(t) =
1

LxLyLz

∫ 1

−1

(∫ Lz

0

∫ Lx

0

w2dxdz

)
dy. (2.45)

Here it is noted that E = Eu +Ev +Ew. These scalar observables are used to analyze

the three-dimensional phase portraits and to visually identify the type of asymptotic

temporal dynamics obtained for a particular value of Re. As depicted in figure 2.4,

these observables, when plotted on 2-D or 3-D plots, help us in visualizing the state

space of the dynamics.

Another observable is ei(z) which is perturbation energy of ith component of the

fluctuation velocity field averaged over x and y as a function of z.

ei(z) =
1

LxLy

∫ 1

−1

(∫ Lx

0

ui
2dx

)
dy. (2.46)

(2.47)
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3 Experiments in channel flow

Being one of the canonical wall-bounded shear flows, a significant amount of exper-

imental as well as theoretical studies have been dedicated to channel flow or plane

Poiseuille flow (PPf). A linear stability analysis gives the value of Re below which the

laminar base flow of PPf is linearly stable for infinitesimal disturbances. Nishioka et al.

[Nishioka et al., 1975] experimentally verified the linear stability of channel flow. They

also noted that below the critical ReLS = 5772 [Orszag, 1971], the subcritical transi-

tion to turbulence happens when the intensity of the disturbance exceeds some critical

threshold value, which increases with decreasing Re. However, even in the earlier ex-

periments, it is observed that PPf has sustained turbulence at much lower Re than the

one predicted by the linear stability analysis [Davies et al., 1928].

Clearly, the critical Re at the onset of turbulence is not the one predicted by the

linear stability analysis where the base laminar flow turns to turbulence pertaining to

infinitesimal perturbations, but the critical point is Re above which turbulence sustains

following an appropriate initial condition. Visualizations of the flow also make it clear

that the structural components of subcritical turbulence are different from the shape

of the unstable modes predicted by the linear stability analysis, unlike for convection

rolls. Narayanan [Narayanan, 1968] performed experiments in reverse transition where

Re of turbulent flow is reduced by widening the channel and reported the critical value

as Re ≈ 2100. In the experiments to measure skin-friction, Patel, and Head [Patel

and Head, 1969] reported Re ≈ 975 as a lower critical value for the transition. In a

numerical study of three-dimensional finite-amplitude disturbances to the PPf, Orszag,

et al. [Orszag and Patera, 1980] stated the critical Re ≈ 1000.

The first flow visualizations in a channel with water seeded with particles is due to

Carlson et al.[Carlson et al., 1982]. It was observed that the turbulence was in the
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form of localized patches surrounded by the laminar flow. Here, the turbulent patches

are called “spots”. This study again claims the critical Re ≈ 1000. Later experimen-

tal studies also reported the critical value of Re around 1000 [Alavyoon et al., 1986;

Lemoult et al., 2012; Lemoult et al., 2013; Lemoult et al., 2014]

In most of the earlier experiments, the studies were carried out in relatively shorter

channels, because of which turbulent structures leave the channels in a relatively

shorter time. Due to this, observing the evolution of the turbulent structures over

large timescales becomes difficult. In longer and wider channels, the “spots” cre-

ated by perturbing the flow further evolve into localized stripes surrounded by the

laminar flow oblique to the mean flow direction. This was confirmed in the exper-

iments by Hashimoto et al. [Hashimoto et al., 2009] and in the various numerical

studies [Tsukahara et al., 2010; Aida et al., 2011; Xiong et al., 2015; Tao et al., 2018;

Shimizu and Manneville, 2018]

The numerical studies [Xiong et al., 2015] show that the stripes can exist at Re as

low as 660. However, the authors also noted that the stripes eventually interact with

each other because of the periodic boundary conditions imposed on the numerical

domain and eventually decay until a value of 1000 is reached. Recent experiments by

Sano and Tamai [Sano and Tamai, 2016] suggested that the critical point above which

these stripes can sustain indefinitely, to be Rec = 830 and claimed that the transition

to turbulence in PPf falls under 2 + 1 dimensional directed percolation (DP) universality

class. Directed percolation has been suggested as an appropriate framework for other

planar shear flows [Shi et al., 2013; Chantry et al., 2017]. In directed percolation

type transition [Hof et al., 2006; Hof et al., 2008; Avila et al., 2010], the turbulence

remains transient, and laminar flow is the only attractor, i.e., the unique absorbing

phase. In a numerical study by Tao et al. [Tao et al., 2018], it was proposed that the

transition scenario is more complicated than DP and has two stages. Near Re ∼ 700,

it reports, the individual stripes elongate indefinitely and can not contaminate the other

planar dimension, and therefore the overall turbulence remains sparse and turbulent

fraction depends on the initial conditions. A more recent numerical study [Shimizu

and Manneville, 2018] advocates a different two-step process. Here, the stripes are

sustained for Re > 700 but take the form of ’concrete coherent structures’ and the

’non-trivial chaotic flow’ only arises at a masked DP transition at Re = 976.
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With this background, we aim to determine the critical point of PPf robustly. The

main challenge, in determining the critical Re for sustained turbulence in the wall-

bounded shear flows like pipe flow and channel flow, is the long timescales involved

in the growth and the decay processes. The advection of turbulent structures with

the mean flow severely restricts the observation times. Therefore, performing experi-

ments in PPf is not without difficulties. To study localized structures around the onset

of turbulence, it is necessary to have a large aspect ratio channel in terms of length

(Lx/Ly) and breadth (Lz/Ly). Also, these structures advect in the streamwise as well

as spanwise direction. Therefore unlike pipe experiments, where the observation time

can be increased by just increasing the length of the pipe in the axial direction, here

the channel must be extended in the streamwise as well as the spanwise direction.

In the present study, the critical point is determined by performing experiments in a

channel with a large aspect ratio. Other properties of stripe turbulence near the onset

of turbulence, like the angle of the stripes, advection velocity, etc. are also studied. We

also propose the mechanisms which are responsible for the proliferation of turbulence

near onset.

3.1 Experimental setup

The setup consists of a channel test section formed by two flat plates separated by

a narrow gap. The bottom plate is a 10 mm thick aluminium plate. The top plate

is made of 10 mm thick transparent float glass. Both plates are 2000 mm in length.

The bottom plate is 365 mm wide, and just near the entrance, the width of the plate

reduces to 290 mm, whereas, the top plate is 290 mm wide. A narrow gap of 1 mm is

maintained between these two plates with the help of two 1 mm stainless steel spacers.

These spacers run parallel to each other along the channel. The spacers are fixed

to the bottom plate with small screws. Rubber strings with circular cross-section are

placed adjacent to the inner walls of the spacers act as gaskets and make the channel

leak-proof. The distance between the side walls is carefully maintained at 245 mm.

The glass plate is placed on the spacers that are sandwiched between the bottom

aluminium plate and the transparent top plate. The top plate is held to the aluminium

plate with the help of 54 L-clamps. The dimensions of the channel are- (Lx, Ly, Lz) =
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Figure 3.1: Experimental setup.

(4000h, 2h, 490h), where Lx,Ly and Lz are lengths along the streamwise direction, wall-

normal direction and spanwise direction respectively. The gap between the two plates

is Ly = 2h = 1 mm.

The working fluid is water seeded with particles for flow visualization. A reservoir

kept at the height of 21 m giving enough pressure head for the water to flow through

the channel. The water level in the reservoir is maintained within ±2 cm. The water

from the reservoir is brought to the channel inlet through a PVC pipe with a 25 mm

internal diameter. As the flow is gravity driven, the flow rate can change depending

upon the pressure drop in the system. In the present experiments, isolated stripes

surrounded by laminar flow are studied. The pressure drop due to an isolated stripe

deviates little from laminar flow, and the resulting fluctuations in the pressure drop are

small compared to the pressure head available. Therefore we can safely approximate

the flow to be with the constant flux. Water is injected in the settling chamber through
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4 inlets and is allowed to pass around a plate installed in the front of the four pipe inlets

inside the settling chamber preventing turbulent jets from entering the settling chamber

and the convergence. A porous sponge is kept in the settling chamber just before the

convergence, which breaks the large eddies passing to the channel at the entry. This

arrangement maintains laminar flow in the channel up to Re ≈ 1150. After the flow is

passed through the porous sponge, it is accelerated through a convergence of length

100 mm and with the ration of convergence 90:1. For Re > 1150, the disturbances from

the side walls can trigger turbulence. However, the onset of turbulence is well below

this value of Re, and in the range of Re of interest, the flow in the channel remains

laminar if not perturbed voluntarily.

A flowmeter is installed between the reservoir and the entrance of the channel. The

temperature probe is installed in the settling chamber just upstream of the sponge.

The channel is illuminated along both sides with the help of LED lamp-banks installed

parallel to the channel axis kept at both sides of the channel 1400 mm above it. Three

high frame rate cameras are installed above the channel to capture the evolution of

the turbulent structures. The water exits the channel at atmospheric pressure and then

recirculated to the reservoir with the help of a submersible pump.

At a distance of 100 mm from the test section entrance, three holes of diameter 0.25

mm each, are drilled in the bottom plate along the spanwise direction. The distance

between two adjacent holes is 100 mm, and the central hole among the three lies on

the streamwise axis, i.e., the centerline of the channel. These holes are used to inject

pressurized water jet in the channel in order to create spot perturbations. Additional

methods to generate turbulence in the flow are explained in Section 3.3

3.2 Measurements and instruments

An accurate estimate of the flow velocity and the kinematic viscosity is necessary to

estimate Reynolds number (Re) correctly. Flow velocity is determined based on the

measured flow-rate and the area of the cross-section of the channel. As the viscosity

of water changes with temperature, an accurate value of the fluid temperature is also

essential. This section summarizes the instruments used to measure these quantities.
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3.2.1 Temperature measurement

The viscosity of water changes with the temperature. The viscosity dependence on the

temperature of the working fluid i.e., water, is approximated with the following relation

ν = a+ bT + cT 2 + dT 3 where

a = 1.7869× 10−6, b = −0.05839× 10−6, c = 0.00118× 10−6 and d = −0.00001118× 10−6

(3.1)

This relation is obtained by fitting a cubic curve on kinematic viscosity-temperature

data of water from IAPWS 2008 [Cooper and Dooley, 2008]. Temperature is in ◦C and

kinematic viscosity is m2/s. As can be seen from Figure 3.2, this fit is valid in the

operational range of temperature i.e.T ∈ (18, 26).

Figure 3.2: Kinematic viscosity of water as a function of temperature. The cubic fit is

valid for an operational range of temperature, which is T ∈ (18, 26).

Therefore to determineRe accurately, it is necessary to have an accurate estimation

of the fluid temperature. Temperature is measured with the help of a PT100 probe,

which has an accuracy of ±0.5◦C. The probe is placed inside the settling chamber

just before the convergence, upstream of the sponge. The signal is averaged over a

timespan of 2 s.
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3.2.2 Flow measurement

Another necessary quantity other than the temperature in estimating Re is the bulk

velocity in the channel, which can be deduced from the flow rate. The flow rate is

measured with the help of an electromagnetic flowmeter installed before the entrance

to the channel. The flowmeter is manufactured by ABB (model FEP311), with the

internal diameter 25mm. The accuracy of the flowmeter is 0.4% of the measured flow

rate. The range of the measurement of the flow rate that can be handled with the

flowmeter is 4−200lpm. For the experiments, the flow rate range is Q ∈ [9, 20]lpm. The

flow rate is estimated by averaging over 2 s of the signal from the flowmeter.

3.2.3 Cameras/Image capturing

The evolution of the flow is captured by three overhead high frame rate cameras

(Model:acA2040-180km-Basler ace) placed on the top of the channel at a distance

of ∼ 165 cm from the channel top. The standard Nikon lens (model AF Nikkor 50mm

f/1.8D) is attached to all the three cameras. The three cameras are placed in a line

equidistantly. These cameras have a maximum frame rate of 180 fps at 4 MP resolu-

tion, and the maximum resolution is 2048 × 2048 pixels. However, the lower resolution

of 512 × 512 is used in this experiment as it is enough to capture the turbulent fraction

of the stripes, and it also makes image processing faster and uses lower storage is

512× 512. The images captured are grayscale.

Each camera captures an area ∼ 35cm × 35cm. The three cameras are arranged

in such a way that the lens axis is vertical, and there is a small overlap of ∼ 1cm in the

view fields of the neighbouring cameras. The images are stitched together, cropping

the overlap and the extra regions, to get the larger frame of the channel. Together, the

view fields of the cameras cover an area of ∼ 1000 mm ×245 mm of the channel- which

translates into lengthscales 2000h× 490h.
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3.3 Perturbation methods

In plane Poiseuille flow (PPf), for Re < 5772, a finite perturbation is needed in order to

trigger turbulence. We perturb the flow using two different methods. One is a localized

or spot perturbation which is suitable for a higher flow rate (Re > 900), and the other

method is the extended perturbation, which is suitable at a lower flow rate (Re < 900).

3.3.1 Spot perturbation

The spot perturbations are triggered by injecting a jet of water through one of the small

tap-holes drilled near the entrance of the channel test section (see Figure 3.3). It is

a prevalent method used in experiments to trigger turbulence [Alavyoon et al., 1986;

Henningson and Alfredsson, 1987]. Water is kept in a pressurized reservoir connected

to the small injection holes of diameter 0.25 mm via a solenoid valve. Pressure in the

reservoir is maintained at ∼ 8 bar. The flow can be perturbed by opening the valve

continuously for 4 − 5 ms or by firing the valve for 2-3 times in a small time interval

of 7 − 8 ms. When the valve opens, pressurized water from the reservoir is allowed

to pass through it, creating localized spot-like perturbations in the laminar flow in the

channel. This turbulent spot eventually develops into turbulent stripes. The quantity of

water that passes through the valve every time it opens is minimal (< 0.1 ml)compared

to the flow rate ( ∼ 0.3 l/s) in the channel. This perturbation method works efficiently

for Re > 900. However, below that, the method is no more efficient as stripes are rarely

formed using spot perturbations as Re reduces.

3.3.2 Extended perturbation

Similar to the pipe flow, the perturbation amplitude necessary to trigger turbulence

increases as Re decreases ([Darbyshire and Mullin, 1995]). The spot perturbations are

not strong enough to nucleate turbulence at Re < 900. Therefore a different method is

implemented to perturb the flow. In this method, a small magnetic object such as an

iron sphere or a flat small iron piece is permanently kept inside the channel held in a

place by an external magnet. Turbulence is triggered by moving this object suddenly

in the laminar environment. A sudden motion of the object in the laminar flow creates
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Figure 3.3: Spot perturbation produces a small perturbed nucleus near the channel

entrance by injecting pressurized water through the tap holes drilled near the test sec-

tion entrance. These perturbations evolve further into oblique turbulent stripes. This

method is effective for Re > 900. (Flow is from the left to the right)

perturbations that have a larger area. These perturbations are powerful enough to

trigger turbulence, which evolves further downstream into a turbulent stripe. As the

object permanently remains inside the channel, there is a constant wake downstream

of this object. However, for Re < 900, this wake decays and by itself does not trigger

any turbulence.

Figure 3.4: Extended perturbation at lower Re is achieved by moving an object placed

permanently inside the channel with an external magnet. This method works efficiently

in the range of 675 < Re < 900 as it creates strong perturbations which can trigger

turbulence at these Re.

This perturbation method is achieved through an external mechanism, fondly named

’Klitschko’. It consists of a pneumatic cylinder with a three-way valve, supplied with air

at a pressure of 9 bar. The magnet is held in the holder attached to the free end of a

piston of the pneumatic cylinder. This cylinder is mounted on an aluminium frame such
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that the cylinder remains horizontal. A padded stopper is placed in front of the cylinder,

and it can be adjusted on the aluminium frame such that the stroke of the piston can

be changed. The object inside the channel is held at a position with the help of this

magnet. When the magnet moves, the object inside the channel follows it.

Care is taken such that the magnet does not have any physical contact with the

channel. It is necessary in order to avoid any unnecessary background noise, which

may otherwise occur due to the high acceleration and deceleration of the magnet.

In a small range for 900 < Re < 950, both the perturbation methods -spot pertur-

bation and extended perturbation - can be used. However, above Re > 950 extended

perturbation becomes impractical as the wake of the object placed inside the channel

starts triggering turbulence by itself.

3.3.3 Quenching

For Re < 675, it becomes challenging to create strong perturbations, even with the

extended perturbation method. To study the dynamics of turbulent stripes at these

low Re, an effective generation of the turbulent stripes is necessary. To ensure this,

we used the method of quenching. Here, the principle is to create a turbulent stripe

using extended perturbation at a Re where the extended perturbation is sufficient, i.e.,

Re > 675, and then subsequently reduce the flow rate to the Re of interest.

In the experimental setup, an arrangement is made such that the water to the chan-

nel can be bypassed through a parallel loop fixed with a solenoid valve which is nor-

mally closed. For the quenching, this solenoid valve is opened, allowing more water

to flow through the channel, increasing the Re. Then the extended perturbation is ac-

tivated, and a stripe is created. The valve is kept open for some time, allowing the

turbulent stripe to evolve at this higher Re over a distance of 1200h. Then the solenoid

valve in the loop is closed, and Re is reduced - or quenched - suddenly. The stripe is al-

lowed to settle at this lower Re for an approximate distance of 800h before the readings

are taken. To investigate if the results are independent of the method of perturbation,

experiments were performed at Re = 700, using extended perturbations as well as

quenching. The results were not influenced by the use of any of the methods. There-

fore, quenching perturbation is used o study turbulence in a range of Re ∈ [600, 675].
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3.4 Flow visualization

This experiment is designed to study the evolution of turbulent structures in the chan-

nel. In water, the turbulent structures or patterns are not visible to the naked eye.

Therefore, flow visualization is necessary in order to observe these structures as they

advect and evolve downstream. For the flow visualization, water in the channel is

seeded with the synthetic mica particles. They are not spherical in shape but flat/ellipsoidal.

These particles are coated with TiO2, which can reflect incident light specularly. Though

they are little heavier than water, because of the high velocities ( 0.6m/s), they remain

in the channel for a very short time. It reduces the possibility of the particles settling

in the channel. Instead, they follow the flow well enough, allowing us to visualize the

turbulent patterns in the flow. We used synthetic mica particles (Eckart SYMIC C001)

with diameter (10µm− 40µm).

Figure 3.5: A turbulent stripe at Re = 675. The stripe is surrounded by bright laminar

flow, and dark patches mark the turbulent region of the stripe. This difference is visible

because of the difference in the reflected light intensities of the mica particles in the

laminar and turbulent regions.

When the particles are in the laminar region, they align with the flow in the direction

of the shear. Whereas in the non-laminar regions, on the other hand, the particles fol-

low the eddies and their orientation changes continuously. Therefore these two regions

show a difference in the intensity of the reflected light. The channel is illuminated with

the LED banks installed on both sides of the channel parallel to the channel axis at the

height of 140cm from the channel top. The LED banks are tilted at 60◦ with the vertical
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axis. With this arrangement, the region with laminar flow looks bright, and a darker

region marks the turbulent patch. Figure 3.5 shows a turbulent stripe at Re = 675.

The dark regions represent a turbulent stripe, and the brighter region represents the

laminar flow surrounding the turbulent stripe.

This visualization technique does not provide information about the 3D velocity field

but only a projection of turbulent structure on (x − z) plane where x and z are along

streamwise and spanwise direction respectively. However, for this experiment, informa-

tion on turbulent fraction and general shape of the turbulent structures are adequate.

3.5 Image processing

In this experiment, the turbulent structures are recorded in the form of images cap-

tured by overhead cameras. The information about the turbulent structures like the

length of the stripes, their orientation with respect to the mean flow direction, turbu-

lent fraction, i.e., the area occupied by the turbulent structures are extracted from the

images. A MATLAB code is developed using the inbuilt image processing toolbox in

order to process these images. In the following, the algorithm for image processing is

summarized. To estimate the area and length of the turbulent stripe in the image, it is

necessary to process the images in order to detect the edges between the regions of

different intensities (i.e., laminar and turbulent regimes).

1. Background images are captured at the start of the experiment before taking

the readings at each Re. These background images are the images of the fully

laminar velocity field.

2. The three cameras provide three images at each instant. Therefore all the images

are cropped and stitched together to have a full view of the flowfield.

3. Non-uniformities in the image result from the illumination gradient due to the light-

ing arrangements. This non-uniformity can be removed either by subtracting the

grayscale values of the background image from the image to be processed or by

dividing the grayscale values of the image of interest with the background image.
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The background image also has identical non-uniformity as this image is cap-

tured with identical illumination settings. Here we remove the non-uniformities by

dividing the grayscale values of the image with the background image.

4. After removing the non-uniformities, the high-frequency noise in the image is fil-

tered using 2D adaptive noise filter known as Wiener filter, using 5 × 5 masking.

This smoothing operation helps in distinguishing whole turbulent stripe from lam-

inar flow.

5. Further sharpening of the edges of the laminar-turbulent interface in the smoothed

image is done using “unsharp masking”. In this technique, the image is sharp-

ened by subtracting blurred -“unsharpen” version of the image from itself. It, in

turn, sharpens the edges between the laminar-turbulent interface in the image.

These parameters are chosen by trial and error so that they are robust for all the

images captured in the experiment.

6. Now the image is converted to a binary image with a threshold. In the binary

image, laminar flow is represented by 0, and the turbulent region is marked by 1.

7. The connected domains are then identified from the binary image by identifying

continuous clusters of the binary values. Each connected domain is treated as a

single stripe. This is important in evaluating the evolution of the length and the

area of the turbulent stripe.

This image -processing algorithm is robust for different threshold values used for differ-

ent image-processing techniques used. The information extracted from the processed

images is listed in the following section.
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3.6 Inferred quantities

The following information can be extracted from the processed images.

Length of a stripe The length of a stripe is determined by estimating a curve-length

along a turbulent stripe. From a processed image, many points at inside a stripe

are identified with equidistant z coordinate (along spanwise direction). Connect-

ing these points, in turn, gives curve-length of the stripe

Turbulent fraction One way of estimating turbulent fraction is to compute the exact

area of the turbulent region from the pixels in the turbulent region. The other way

with which turbulent fraction can be approximated is by multiplying stripe curve-

length by its thickness. We choose the latter because - as will be discussed later

- it is observed that the stripe thickness remains almost the same for the range of

Re of our interest. Therefore, the estimation of the curve length is representative

of the turbulent fraction.

Angle of the stripe An isolated turbulent stripe is reasonably straight barring the re-

gion near the tail. The angle of the stripe is defined as the angle made by this

straight part of the stripe with the mean flow i.e., the streamwise direction. There-

fore, fitting a straight line on the stripe-barring the near-tail region - on the pro-

cessed image gives the angle of the stripe

Velocity of the stripe Information such as bulk velocity/centerline velocity of the lam-

inar flow at particular Re, the frame rate of the cameras used is coupled with the

location of the stripe in the successive images to estimate the normalized veloc-

ity of the stripe. The velocity of the tip and the tail of the stripe is estimated by

identifying the location of the tip and the tail in successive images. Difference be-

tween the locations and information about the time gap between two images give

the absolute velocity of the tip and the tail in the streamwise and the spanwise

direction. The advective time units are defined as t∗ = h/Ucl. The stripe velocities

are computed with respect to the advective time units.
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3.7 Experimental procedure

The Re of interest is obtained by adjusting the flow rate, taking into account the tem-

perature and depending upon the Reynolds number suitable perturbation method is

chosen. In either of the perturbation methods, an isolated individual stripe is gener-

ated near the entrance of the test section at a location ≈ 300h from the inlet. The stripe

then travels downstream, and once it enters the view field of the overhead cameras,

the cameras are triggered. The turbulent stripes advect in the streamwise as well as in

the spanwise direction. When the stripe touches the side-wall of the channel, it decays

at once. Therefore, it is necessary to take the readings of the stripe when it is not

touching the side-walls. Once the stripe leaves the channel completely, the next stripe

is generated.

The location where the entire stripe arrives in the view field is little more than 2000h

from the inlet. Therefore, the stripe evolves for a considerable amount of time before

the readings are taken. As mentioned earlier, the combined view field of the overhead

cameras is 2000h in the streamwise direction. Therefore the evolution of the individual

stripe can observed over this entire length. For every stripe, 25 images are taken

capturing its evolution from one end of the view field to the other end.

At each Re evolution of at least 1200 stripes is recorded. For Re near the critical

point, the number of stripes recorded is even more. All the reported quantities of in-

terest such as growth rate, tip and tail velocities, natural angle of the stripes etc. are

measured and averaged over thousands of stripes.

While performing the experiments, the temperature is monitored continuously. The

flow rate is regularly adjusted to have a constant value of Re to nullify the changes in

Re due to temperature fluctuations. In every run, Re was maintained within ±10 of the

desired value. The range of Re over which readings are taken is [600, 950] in a step of

25.
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3.8 Results

This work aims to study the behaviour of turbulent stripes near the onset of turbulence

and to estimate a critical point above which turbulence can sustain indefinitely. We

investigate a mechanism with which turbulence proliferates near onset. In order to do

so, we estimate the mean growth rate of individual stripes and its relation with Re. Then

we examine the significance of the splitting and the decay of individual stripes and its

effect on the sustenance of turbulence. We also report here a natural angle of the

stripes with respect to the streamwise direction and how it changes with Re.

3.8.1 Angle of the stripes

It is observed that the isolated individual stripes grow at a preferred angle with respect

to the mean flow direction depending on Re. When a stripe is created, as it advects

downstream, it settles to a particular angle. This angle changes with Re. We, hence-

forth refer it as a “natural angle” of the stripes at a particular Re. In other words, when

the stripe is allowed to evolve naturally, it settles down to the orientation equal to its nat-

ural angle as t→∞. In this experiment, the channel is long enough to allow the stripe

to adjust to the natural angle well before it is advected in the view field of the overhead

cameras. Usually, it is observed that the natural angle at any Re has a spread but a

definite mean.

At higher Re, for e.g. Re = 950, the natural angle of the stripe with the streamwise

direction is ≈ 30◦. But as Re decreases this angle increases and for Re < 850 the

natural angle approaches 45◦.

Interestingly the natural angle never exceeds around 45◦ at any value of Re. It can

be noted that a natural angle of the turbulent stripes at the onset of turbulence is 45◦.

3.8.2 Turbulence near onset

Near onset, the turbulent bands are isolated and are tilted with respect to the stream-

wise direction. When the laminar flow is perturbed, the disturbance eventually grows

into an oblique stripe, as shown in Figure 3.10. A turbulent stripe is composed of many
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Figure 3.6: Angle made by the stripes with respect to the mean flow direction as a

function of Re. At higher Re, the stripes make a narrow-angle with respect to the mean

flow direction. As Re reduces, the natural angle approaches 45◦.

quasi-streamwise streaks and vortices or rolls. The downstream tip of the stripe is

characterized by wedge-shaped oblique streaks (Figure 3.7). There is a continuous

addition of new streaks from the “tip” of the stripe by which the stripe grows. This pro-

cess of streak addition is shown in Figure 3.8. At the downstream end i.e., the “tail”

of the stripe, the patches of streaks are shed intermittently. These patches, when get

disconnected from the stripe, generally tend to decay.

As the stripe advects downstream, the combined effect of the addition of new

streaks from the tip and decay from the tail results in translation of the stripe in the

spanwise direction. The length of an individual stripe is determined by the balance

between growth at the tip and decay at the tail.

When the decay at the tail is more than the streak addition from the tip, the stripe

shrinks as it travels downstream before the ultimate collapse. The decay process is

shown in Figure 3.9. The stripe at Re = 640 advects in the streamwise as well as the

spanwise direction. It continuously sheds streaky patches from the tail at a rate higher

than the tip growth. Therefore the length of the stripe reduces as the stripe travels

downstream as can be seen from the middle panel of the figure and then the whole

stripe disintegrates and collapses eventually, as shown in the last panel.
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Figure 3.7: Turbulent stripes in numerical simulations at Re = 660 with wall-normal

component of fluctuation velocity in a domain size (Lx, Ly, Lz) = (400, 2, 400). The

stripe is composed of quasi-streamwise streaks and vortices. The flow is from the left

to the right.

When the tip growth rate is more than that of the tail decay, the stripe grows as it

is advected downstream. Figure 3.10 demonstrates a growing stripe at Re = 675. The

leftmost panel is where the stripe first arrives in the view field of the overhead cameras.

The length of the stripe increases as it moves further downstream as can be seen in

the successive panels.

In addition to the balance between the tip growth and tail decay, another mechanism

that plays an important role in the proliferation of turbulence near onset is the “splitting”

of stripes. As discussed earlier, the streaky patches are shed from the tail and generally

decay once they are separated from the parent stripe. However, sometimes, when the

shed patch is strong enough, it may create another stripe. This nucleation of turbulent

stripe does not always succeed, and the patch decays without creating a new stripe.

However, when the nucleation is successful, a new stripe starts growing upstream of

the parent stripe. Figure 3.11a shows an unsuccessful splitting attempt at Re = 825.

The streaky patch (circled in red colour) after getting detached from the parent stripe

fails to nucleate a new stripe and decays eventually. The successful attempt to nucleate

a new stripe and a consequent increment in the turbulent fraction by “splitting” can be

seen in Figure 3.11b. Here a stripe at Re = 880 sheds a streaky patch- marked by a

red circle- which nucleates a new stripe which starts growing upstream of the parent
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Figure 3.8: Continuous addition of streaks at the tip of the stripe. The figure shows

snapshots of an isolated stripe at Re = 660 in time. It can be seen that at the tip of the

stripe, the streaks are added continuously. The snapshots are taken in the comoving

frame of the tip and contain the wall-normal velocity component at the plane y = 0. The

flow is from the left to the right.

stripe.

Another mechanism in addition to the stripe growth and splitting is “branching”. In

branching - like splitting - a new stripe is nucleated from a shed patch of vortices. How-

ever, unlike splitting, the new stripe is formed in the opposite orientation of the parent

stripe. The angle of the new stripe with the mean flow direction is the same (±θ) as

that of the parent stripe, but the orientation is different (∓θ). Therefore, this mechanism

is responsible for forming criss-cross turbulent stripe patterns in the flow. Figure 3.12

shows a branching event (marked by a red circle) at Re = 1050 of a stripe generated

by the spot perturbation. The spot evolves into two stripes oriented to the streamwise

direction in symmetrically opposite fashion and as the stripe advect downstream, new

stripes “branch out” from the parent stripe in the symmetrically opposite direction that

of the parent stripe.

As will be demonstrated later, at the onset of sustained turbulence, the two rel-
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Figure 3.9: Decaying turbulent stripe at Re = 640. The stripe grows at the downstream

tip by adding new streaks and decays from the upstream tail by shedding streaks.

When the shedding rate at the tail is higher than the addition of new streaks from the

tip, then the result is an eventual decay of the stripe. The flow is from the left to the

right.

Figure 3.10: Growing turbulent stripe at Re = 675. When a continuous addition of new

streaks at the downstream tip is more than an intermittent streak decay at the upstream

tail, the stripe length increases in an average sense as it is advected in the streamwise

and spanwise direction. The flow is from left to right.
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(a)

(b)

Figure 3.11: Stripe splitting. (a)Unsuccessful splitting of the stripe at Re = 825. The

streaky patch gets separated from the tail. However, as it advects downstream, the

streaky patch decays as it is not strong enough to regenerate a new stripe upstream of

the parent stripe. The decaying patch has been marked by a red circle. The flow is from

left to right. (b) A successful splitting of the stripe at Re = 880. Here, the separated

turbulent patch from the tail is strong enough to create a new stripe upstream of the

parent stripe. The red circle denotes the evolution of the streaky patch as it moves

downstream. The flow is from left to right.

evant mechanisms are stripe growth and splitting. The probability of experiencing a

branching event near the critical point is practically zero. In these experiments, we did

not observe any branching event around the critical point. Therefore, the mechanisms

which are relevant near the critical point are stripe extension, splitting, and stripe decay.

3.8.3 Mean growth rate

The turbulent fraction is determined by computing the area of the stripe from the im-

age. At each Re, we take an ensemble average of turbulent fraction and compute the

mean turbulent fraction as a function of time. The rate of change of averaged turbulent

fraction in time gives a mean growth rate at a particular Re. The mean growth rate of



56

Figure 3.12: Branching event at Re = 1050. In branching, a new stripe is formed from a

parent stripe and grows at a tilt angle the same as the parent stripe but in the opposite

orientation. The flow is from the left to the right

a turbulent fraction of individual stripes with Re is shown in Figure 3.13. For Re < 650,

the mean growth rate is negative i.e., the turbulent fraction shrinks below this Re. For

Re ≈ 650 the mean growth rate becomes positive and then for Re > 670 the mean

growth rate increases almost linearly with Re. It indicates that the turbulence is sus-

tained at Re > 650. Therefore, we propose that Re ≈ 650 is the critical point of the

channel flow above which turbulence sustains indefinitely

Figure 3.13: The mean growth rate of the individual stripes as a function of Re. The

mean growth rate is zero at Re ≈ 650, and increases linearly with Re for Re > 670.

In the subsequent sections, we further investigate the mechanisms behind the

growth and decay of the turbulence around the critical point.
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3.8.4 Extension of an individual turbulent stripe

As discussed earlier, the turbulent stripe is advected downstream with the mean flow.

In addition, the growth due to continuous addition of the streaks at the tip and the

intermittent shedding of the streaky patches from the tail result in the translation of the

stripe in the spanwise direction as well. The advection velocity of the turbulent stripes,

normalized with the centerline velocity of the laminar flow in the streamwise direction is

shown in Figure 3.14. The stripes advect almost at the same velocity 0.7Ucl for all Re.

The advection velocity is slightly higher than the mean or bulk velocity, which is 2Ucl/3.
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Figure 3.14: The advection velocity of the turbulent stripes along the streamwise di-

rection as a function of Re. The whole stripe travels in the streamwise direction with a

velocity slightly larger than the mean flow.

For any individual stripe, the advection velocity along the streamwise direction is the

same for the whole stripe -from tip to tail. This is the reason that once the stripe settles

to its natural angle, it does not change as it advects downstream. The change in the

length of the stripe results from a difference between the spanwise advection of the tip

and the tail, which itself is attributed to the respective growth and decay processes.

It is observed that the velocity of the stripe tip is constant for a particular Re because

the addition of the new streaks at the tip of the stripe is at a constant rate. Similar

to the stripes in PCf [Duguet et al., 2011], when the stripe advects downstream, the

tip velocity along the spanwise direction is constant. However, for an individual stripe,
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there is a lot of variation in the tail velocity along the spanwise direction due to a regular

but random shedding of the streaks.

Figure 3.15: The spanwise velocity of the tip (red dots) and the tail (black dot) - normal-

ized with the centerline velocity of the laminar parabolic profile with the same mass flux

- as a function of Re. When normalized, the velocity of advection along the streamwise

direction does not change with Re, and the stripes travel at a slightly higher velocity

than the bulk velocity.

As can be seen in Figure 3.15, the tip velocity in the spanwise direction (marked

in red) increases significantly with increasing Re until Re ≈ 660 and then more or

less remains constant. However, the tail velocity in the spanwise direction decreases

monotonically with increasing Re. Below Re < 620 the mean tail velocity is more than

the mean tip velocity and the competition between the tail shedding and tip growth

below Re < 620 results in shrinking of the individual stripes. The tip growth and tail

decay process balance each other at Re ≈ 620.
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3.8.5 Mechanism behind turbulence proliferation

As stated earlier, the decay from the tail is due to the regular but intermittent shed-

ding, unlike the tip growth, which is a continuous process. Though the stripe extension

through the tip growth-tail decay balance at Re = 620, the separated patches of the

streaks from the tail fail to nucleate new stripes below Re < 650 and consequently, a

successful splitting event is very rare at Re < 650. Only when Re > 650, we observed

that the streaky patches separated from the tail are strong enough to nucleate a new

stripe upstream of the parent stripe, and both the stripes grow independent to each

other as they travel downstream. Splitting is responsible for the proliferation of turbu-

lence in planar directions. In addition to the growth of a single stripe, splitting causes

multiplication in the number of the stripes.

Figure 3.16: Probability of decay and splitting as a function of Re. Probability of stripe

decay drops as Re increases (black), whereas, probability of successful splitting in-

creases with Re (red). Splitting and decay balance each other at Re ≈ 650.

The probability of the splitting increases with Re as shown in Figure 3.16 marked by

red dots. This probability is estimated by observing the number of stripes which show

successful splitting within the observation window. The black dots, additionally, show

the probability of the stripes decaying completely. For Re < 600, all the stripes decay

within the channel with decay probability 1. However, as Re increases, the probability
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of decay reduces. At Re = 650, only 2.5% of the total number of the investigated stripes

decay before they leave the observation window. The decay and splitting probability

balance at Re ≈ 650. As Re increases further, the splitting probability becomes much

higher than the decay probability.

We further studied the splitting and decay processes closely. At Re = 618, the mean

growth rate is negative, and stripes shrink as they travel downstream before collapsing.

At this Re, almost all the stripes decay before leaving the channel. It is observed that

most of the stripes decay in the downstream half of the channel. We plotted the survival

probability as a function of time of the stripes at Re = 618 at different streamwise

location (i.e. at different advective time units) in Figure 3.17. All the stripes considered

here have an initial length of ∼ 230h. Once the stripes shrink to a length of ∼ 120h,

90% of the stripes decay in the next 500 advective time units.
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Figure 3.17: Survival probability of stripes at Re = 618 at different advective time

units. Until ∼ 670 advective time units, very few stripes decay showing higher survival

probability. However, as stripes shrink, the decay probability also increases. The decay

probability is coupled with the stripe length. For the shorter stripes, the chance of

decaying is much more than that of longer stripes.

Interestingly, the decay probabilities do not fall exponentially with advective time,

contrary to the puffs in pipe flow [Avila et al., 2011]. The decay rate is not constant

and increases with advective time as the stripes shrink. It suggests that the decay rate

depends upon the length of the stripes.

Figure 3.18 shows the distribution of the stripe lengths at the moment of decay (left
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Figure 3.18: Dependence of stripe survival and decay on stripe length. The left panel

consists of a distribution of the lengths of the stripes at Re = 618 at the moment of

decay. Shorter stripes tend to decay more than the longer stripes. The right panel,

on the other hand, shows the distribution of the length of stripes at the moment of

successful splitting at Re = 712. Longer stripes tend to split more compared to the

shorter stripes.

panel) at Re = 618. Stripes with small lengths tend to decay more. Hence, it can be

concluded that the probability of decay is inversely proportional to the stripe length. In

plane Couette simulations [Shi et al., 2013] where the stripe length is fixed because of

the periodic boundary conditions, the decay probabilities fall exponentially. However,

in reality, the stripes are fully localized and grow or shrink, resulting in variability of

the length. We, therefore, propose that the stripe lifetimes are memoryless only for

the stripes with a fixed length. However, for naturally expanding/shrinking stripes, the

decay of a stripe as a whole is not memoryless and the stripes age.

Also, in the same figure (Figure 3.18), the distribution of the stripe length at the

successful splitting is shown (right panel). As stripe length extends more, the proba-

bility of the stripe splitting also increases. The dependence of the splitting and decay

probabilities on the stripe length couples them to the growth rate i.e., stripe expansion

rate.

Therefore, stripe expansion/shrinking is the crucial mechanism that governs split-

ting and decay of the stripes, which in turn plays a vital role in sustaining turbulence in
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the channel. Splitting can take place only when the stripes are expanding. If the stripe

is shrinking, the detachment from the tail results in the relaminarization of the flow.

At the onset of the splitting (Re ≈ 650), the turbulence expands by stripe expansion

and also by creating new stripes upstream of the parent stripe through splitting. In

effect, the turbulence proliferates in the two dimensions, one of the dimensions being

the direction of stripe expansion.

We further studied the final collapse of the stripes. A typical behaviour of a decaying

individual stripe at Re = 618 (Figure 3.19) gives an insight in to the decay process. The

initial length of the stripe is 200h, and it shrinks because of the competition between tip

growth and tail decay until the length becomes 120h (marked by a red trend line). After

120h, the rate of decay increases suddenly (marked with blue line). This behaviour has

been observed over 1000 shrinking and then decaying stripes. The faster decay rate

of the stripe below 120h, which leads to the final collapse of the stripe, is due to the

uniform disintegration of the stripe. Thus the stripe decay as a whole is composed of

two processes viz. shrinking and stripe collapse.
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Figure 3.19: Evolution of a length of an individual stripe at Re = 618. This stripe travels

downstream shrinks initially because of tip growth-tail decay competition (red). Then

once the stripe shrinks below 120h, the rate of decay increases suddenly. This increase

in the decay rate is due to the uniform disintegration of the stripe (black).

This final stripe collapse is studied by plotting the survival probabilities of the stripes

with an initial length of 120h. Only the stripes which are intact at this length are con-
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sidered for the readings. It can be seen that until 400 advective time units, almost all

the stripes survive. However, interestingly after that, the survival probability diminishes

exponentially. It means that for the short stripes, the memoryless behavior of the de-

cay is recovered. This is an additional observation regarding the stripe decay process.

Similar observations about the memoryless collapse of the stripe are reported in a

numerical study of PCf by Manneville [Manneville, 2011].
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Figure 3.20: Survival probabilities of shorter stripes (∼ 120h) at Re = 618. The stripe

survival probability is very high until ∼ 400 advective time units. However, after that,

the survival probability decreases exponentially. It represents the stripe collapse, and

it can be argued that the stripe collapse is a memoryless process.

3.9 Summary

The experiments in the channel flow are carried out in the largest aspect ratio channel

constructed to the knowledge of this author. Near the onset, turbulence manifests in the

form of oblique stripes. At the critical point, the angle made by the stripes with respect

to the mean flow direction is ∼ 45◦. As Re increases, the angle becomes smaller.

The mean growth rate of a turbulent fraction with Re suggests that the critical point

above which turbulence is sustained in channel flow is Re ≈ 650. Unlike pipe flow -



64

where the decay and growth processes are independent - in PPf, all these processes

are coupled.

The key mechanism with which an individual stripe changes its length, as it travels

downstream, is the competition between the tip growth due to streak addition at the

downstream end and shedding of the streaky patches from the upstream tail. These

processes balance each other atRe ≈ 620 and forRe > 620 the stripes start expanding.

In this experiment, the first successful splitting event is observed little above the onset

of stripe expansion i.e., at Re > 650. At this Re, the splittings and the decays are

balanced. Both the splitting and the decay are coupled with the length of the stripe,

and a successful splitting can occur only when the stripes are expanding. Also, the

splitting probability increases with the length of the stripes. On the other hand, stripes

with shorter length tend to decay/collapse more than the longer stripes. The splitting

is responsible for the multiplication of the stripes as successful splitting creates new

stripe downstream of the parent stripe and results in proliferation of turbulence in the

channel flow in two planar dimensions.

The branching mechanism is significant in at Re much higher than the critical.

Near the critical point branching events are infrequent, and in these experiments, no

branching event was recorded around the critical Re. However, at higher Re branching

becomes frequent and is the responsible mechanism for the criss-cross patterns ob-

served at Re > 950. This mechanism has a more significant growth rate and thus much

faster than the slower stripe expansion and thus can be detected easily in the shorter

experiments. In current experiments, we did not study branching in detail.

Finally, we denote that this study is not adequate to comment on any universality

class of the transition. However, it is to be noted that none of the mechanisms vio-

late the conditions stated by directed percolation conjecture by Grassberger-Janssen

[Grassberger, 1982; Janssen, 1981]. We show that the transition to the absorbing state

(laminar state) is expected at the critical point identified here and future study about the

transition should target the regime Re = 650± 15.
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4 Bifurcations of turbulent stripes in plane Poiseuille flow

As stated earlier, a variety of shear flows like pipe flow (HPf), plane Couette flow

(PCf), plane Poiseuille flow (PPf) become turbulent despite the laminar base flow be-

ing linearly stable. The base laminar flow in PCf [Drazin and Reid, 2004] and in pipe

flow [Meseguer and Trefethen, 2003] are linearly stable for all Re. But in PCf, turbu-

lence occurs in the form of oblique stripes at Re ∼ 325 [Dauchot and Daviaud, 1995;

Prigent, 2001] and in pipe flow turbulence is observed in the form of localized patches

called puffs even at Re ≈ 2000 [Wygnanski and Champagne, 1973; Avila et al., 2011].

Similarly,in PPf, though the base laminar flow becomes unstable to infinitesimal per-

turbations at Re = 5772 [Orszag, 1971], as shown in Chapter 3, turbulence exists at

Re much below than this limit [Carlson et al., 1982; Nishioka and Asai, 1985; Alavy-

oon et al., 1986; Lemoult et al., 2013]. This suggests that this subcritical transition

to turbulence is independent of the linear stability properties of the base laminar flow,

and the turbulent structures have a nonlinear origin [Waleffe, 2001; Waleffe, 2003;

Wedin and Kerswell, 2004; Kerswell, 2005; Eckhardt et al., 2007].

Laminar plane Poiseuille flow becomes unstable to Tollmien-Schlischting waves at

Re = 5772. Historically, the investigation started with the possibility of bifurcation of

the base laminar flow to these two-dimensional Tollmien-Schlichting (TS) waves and

then later to the three-dimensional waves [Stuart, 1960]. It was discovered [Ehrenstein

and Koch, 1991] that the first bifurcation towards the TS waves is subcritical, but the

bifurcation branch fails to reach the values Re as low as those observed in early transi-

tion experiments [Carlson et al., 1982; Nishioka and Asai, 1985; Alavyoon et al., 1986].

Also, importantly, the TS waves are composed of spanwise oriented vortices, and the

coherent structures observed near the transitional regime are composed of streamwise

streaks and vortices (Figure 4.1). Therefore TS waves bear little resemblance with the
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(a) Magnified snapshot of the turbulent

stripe at Re = 660 from a numerical sim-

ulation in a domain size 400 × 400. The

velocity field plot consists of a wall-normal

component v. The turbulent stripe in

its core is composed of quasi-streamwise

streaks and vortices.

(b) Turbulent stripes from experiments at Re =

750. The experiments are carried out in a

channel of size 4000h × 2h × 490h. The flow

is from left to right. The stripes are oblique to

the streamwise direction.

Figure 4.1: Turbulent stripes

turbulent structures at onset.

The studies of the self-sustaining process at low Re in small periodic domains

[Hamilton et al., 1995] suggested that the alternative solutions of Navier-Stokes equa-

tions should exist at Re near the onset of turbulence, which are more relevant to the

transition process. These solutions appear in a saddle-node bifurcation at some fi-

nite Re. They are generally expected to be linearly unstable and disconnected from

the base laminar profile. The idea is that turbulence occurs through a sequence of

bifurcations of these invariant solutions.

Many such solutions have been found in PPf in minimal flow units (MFU) [Jiménez

and Moin, 1991; Waleffe, 2001; Nagata and Deguchi, 2013; Wall and Nagata, 2016;

Park and Graham, 2015; Neelavara et al., 2017]. However, the solutions found in

MFU are spatially periodic and lack key features of turbulent structures observed in

experiments near the onset of turbulence such as localization and obliqueness. In the

latter case, turbulence takes the form of localized stripes surrounded by laminar flow

and oblique to the mean flow direction as has been shown in a variety of experimental

studies [Hashimoto et al., 2009] and simulations in large domains [Tsukahara et al.,
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2005; Xiong et al., 2015; Tao et al., 2018]. The turbulent stripes first appear to form

close to regular patterns, and with decreasingRe, they become more and more isolated

(see Figure 5.2 in the subsequent chapter) [Xiong et al., 2015; Tao et al., 2018]. This

property is apparently common to most wall-bounded shear flows near the onset (in

Re) of apparition of non-trivial fluid motion, including plane Couette flow [Prigent et al.,

2002], rotor-stator flow [Cros and Le Gal, 2002], counter-rotating Taylor-Couette flow

[Coles, 1965], annular pipes [Ishida et al., 2016], etc.

Another peculiar fact about PPf is that the turbulent stripes at the onset can take

multiple orientations similar to PCf [Prigent, 2001; Barkley and Tuckerman, 2007]. As

has been shown in Figure 3.6, the stripes have a distinct preferred orientation with re-

spect to the mean flow direction at each Re. As Re reduces the angle of the stripes with

respect to the mean flow direction increases first, and then asymptotically goes to 45◦.

Therefore, a relevant bifurcation scenario explaining the appearance and sustenance

of such oblique turbulence structures should rely on nonlinear solutions satisfying sev-

eral conditions so far never fulfilled together :

1. spatial localization

2. obliqueness of the interface consistent with the experimental range of angles

[Duguet and Schlatter, 2013]

3. presence of quasi-streamwise vortices and streaks [Bottin et al., 1998a].

4. Consistency of the range of existence of the solutions in Re with the range in Re

where turbulence exists in the form of tilted stripes.

In the following, we demonstrate numerically the existence of unstable traveling

waves satisfying the above properties, the emergence of these traveling waves at var-

ious tilt angles θ and the routes to chaos starting from these traveling wave solution

branches.

4.1 Numerical set-up

The simulations are carried out in a doubly periodic rectangular domain tilted with re-

spect to the mean flow direction using Code-2.
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Figure 4.2: Edge tracking at Re = 720 at the tilt angle θ = 35◦ in a domain of size

(Lx, Ly, Lz) = (10, 2, 40). The trajectories marked in red visit the turbulent attractor, and

the blue trajectories directly go to the laminar fixed point. However, as the trajectories

- obtained by the bisection method - approach the edge state, the kinetic energy of

the fluctuations settle down to a constant value. It is the signature of a traveling wave

solution.

The domain size was chosen as (Lx, Ly, Lz) = (10, 2, 40) where Lx and Lz are the

lengths of the domain in periodic directions x and z respectively. Ly is the distance

between the walls of the domain. The resolution used is (Nx, Ny, Nz) = (72, 49, 256). A

first attempt to identify the invariant solutions is carried out at Re = 720 at a tilt angle

35◦ using the bisection method starting from a random divergence-free velocity field as

an initial condition. After a few iterations, it was noticed that the perturbation kinetic

energy E(t) settles to a constant value free from any temporal fluctuations as shown in

Figure 4.2.

This is the signature of a traveling wave solution. This solution is then converged

further using the Newton method (see Figure 4.3a). This traveling wave solution is

localized in z and is periodic in x. The TW consists of three identical pairs of slow and

fast quasi-streamwise streaks (red and blue) arranged alternately along x. This solu-

tion shows structural similarities with an oblique localized turbulent stripe with quasi-

streamwise streaks and vortices arranged alternately (Figure 4.1). Unlike the previ-

ous studies about the bifurcation scenarios [Avila et al., 2013; Zammert and Eckhardt,

2015; Kreilos and Eckhardt, 2012] the simulations are carried out in a full space i.e.,
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without imposing any symmetry constraints on the numerical domain other than peri-

odic boundary conditions in x and z and tilt angle θ i.e., the angle made by the smaller

side (x) of the domain with the mean flow direction. However, it was observed that,

even when no such symmetry was imposed externally, the converged TWs show shift

in x and reflect in y symmetry Srx, where

Srx : [u, v, w](x+
Lx
2
, y, z)→ [u,−v, w](x,−y, z) (4.1)

(a)

(b)

Figure 4.3: Lower branch TW solution at Re = 720 at θ = 35◦ in two domains with

domain dimension along the stripe LX and Lx/3. (a)Edge state which is a traveling

wave solution in domain size (Lx, Ly, Lz) = (10, 2, 40). This Newton converged lower

branch solution has only one unstable eigenvalue. This localized solution features

three identical wavelengths in x comprising of alternate slow and fast quasi-streamwise

streaks. (b) Edge state which is a traveling wave solution in domain size (Lx, Ly, Lz) =

(3.333, 2, 40) at the same tilt angle of θ = 35◦. This solution also has only one unstable

eigenvalue. This localized solution has only one wavelength in x, which is structurally

identical with a wavelength in the bigger domain.

The three pairs of high and low speed streaks suggest that a similar TW solution

should exist in a numerical domain with Lx = Lx/3 and correspondingly Nx = Nx/3.

Therefore, the domain size is reduced by a factor 3 in the x direction. Thus the new

domain size then becomes (Lx, Ly, Lz) = (3.33, 2, 40) with the resolution (Nx, Ny, Nz) =

(24, 49, 256). Again edge tracking has been carried out in this smaller domain. Indeed

the invariant solution or the edge state obtained at Re = 720 for this smaller domain is
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the same as the TW solution in the bigger domain and contains only one wavelength

in x instead of three (Figure 4.3b. This TW also shows Srx i.e., shift in x and reflect in

y symmetry. The reduction in the domain size reduces computational costs and avoids

subharmonic instabilities, which may arise in larger domains.

The edge states have been determined through bisection method for different val-

ues of Lx ∈ {6.66, 13.33} fixing Lz = 40. The invariant solutions in the corresponding

domains belong to the same family of TW solutions and only differ in the number of

wavelengths in x with two high speed-low speed streaks pairs in Lx = 6.66 and four in

Lx = 13.33. Examining the stability of all the solutions by the Arnoldi method show only

one unstable direction. This confirms that these solutions are edge states for the cor-

responding domain sizes at Re = 720 and tilt angle θ = 35◦. Therefore, in the following

study, we fixed the domain size to

(Lx, Ly, Lz) = (3.33, 2, 40).

The governing equations, defined in an unbounded domain, are equivariant with

respect to the two discrete symmetries

Sy : [u′, v, w′](x′, y, z′)→ [u′,−v, w′](x′,−y, z′) (4.2)

S ′z : [u′, v, w′](x′, y, z′)→ [u′, v,−w′](x′, y,−z′) (4.3)

It is to be noted that by virtue of the S ′z symmetry, a twin TW solution should exist

in a domain tilted with angle −θ and its spanwise propagation velocity should also be

opposite.

As discussed in Chapter 2, fixing the tilt angle also fixes the angle of the stripe with

the mean flow direction, which is equal to the domain tilt angle. This fact allows us to

study bifurcation scenarios for the stripes with different orientations with respect to the

mean flow direction.

4.2 Spatial localization in Lz

Experiments show that at Re as low as 700 the turbulent stripes are isolated in space.

The solutions relevant to this regime of turbulence should also show this property. In

order to examine the localization properties of the invariant solutions, the edge tracking
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through bisections is repeated for the different values of Lz ∈ {20, 40, 80, 120} while

keeping Lx = 3.33. The numerical resolution was kept identical in x and y except in

the z direction. Here the integer value Nz was kept proportional to Lz which can be

any real number. The Re is kept at 720, and the domain is tilted with respect to the

mean flow direction at an angle θ = 35◦. In all the cases, the bisection gives TW

solutions that belong to the same family as shown in Figure 4.4 (In the figure, for the

sake of representation twelve domains are stacked on top of each other in x ). They

are localized in z and extended in x. All of these similar TW solutions are composed of

alternate low and high-speed quasi-streamwise streaks.

These solutions are then converged using Newton iterations (see Section 2.8), and

the stability of these solutions is determined using the Arnoldi method. Figure 4.5

shows the Floquet multipliers computed for all the above TW solutions. As can be

seen, only one Floquet multiplier for each TW solution has a value greater than unity,

i.e., the TW solutions are linearly unstable with one unstable direction.

The localization of the TW solutions is evident from Figure 4.6. It shows the z-

dependence of the perturbation kinetic energy ev(z) for all the domains. As the domain

size increases, ev(z) drops exponentially confirming the spatial localization of the TW

solutions in z. It suggests that the corresponding TW for Lz → ∞ exists and is a

spatially isolated state. In what follows, the value of Lz is frozen to 40.

These invariant solutions fulfill the conditions outlined above in agreement with the

experimental observations.
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(a) (Lx, Ly, Lz) =

(3.33, 2, 20)
(b) (Lx, Ly, Lz) = (3.33, 2, 40)

(c) (Lx, Ly, Lz) = (3.33, 2, 80)

(d) (Lx, Ly, Lz) = (3.33, 2, 120)

Figure 4.4: Newton converged TW solutions at Re = 720 for domains of different Lz

with fixed Lx = 3.33 tilted at an angle θ = 35◦ with respect to the mean flow direction.

These solutions are linearly unstable with only one unstable direction and therefore

qualify as edge states for corresponding domains. For the visualization purpose, the

representation consists of domains stacked on top of each other nine times in x in order

to make their oblique structure clearer.
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Figure 4.5: Floquet multipliers for TW solutions in the domain with Lx = 3.33 and

different Lz. For all the solutions, there is only one unstable direction making each of

these solutions an edge state for the corresponding domain size.

Figure 4.6: Independence on Lz. The perturbation kinetic energy averaged over x, and

y is plotted as a function of z. As Lz increases, the tails of the curve show exponential

decay. This confirms the spatial localization of these TW solutions. It means a spatially

isolated TW solution exists even when Lz →∞.
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4.3 Solutions at different tilt angles

In PPf, stripes occur with a multitude of orientations depending upon the Reynolds

number (Figure 3.6). A search for the invariant solutions at different angles is carried

out in a range 0◦ < θ < 90◦ in a step of 5◦ in a domain (Lx, Ly, Lz) = (3.33, 2, 40).

The value of Re chosen is again 720, as turbulent stripes are easily observable in the

experiments at this value. The bisection successfully identified the invariant solutions

only for 25◦ 6 θ 6 60◦. For all these tilt angles, where the bisection was successful, the

invariant solutions at Re = 720 are found to be TWs and belong to the same family.

As can be seen from the velocity fields in Figure 4.7, the TW stripe thickness

changes with the tilt angle θ. An estimate of the stripe thickness can be obtained

from the wall normal component of the perturbation kinetic energy ev(z) as shown in

Figure 4.8a), where

ev(z) =
1

LxLy

∫ 1

−1

(∫ Lx

0

v2dx

)
dy (4.4)

Interestingly, the wall normal energy Ev of the TW solutions monotonically increases

with θ. But in a range θ ∈ (25◦, 45◦) its rate of change with θ is much smaller than for

θ ∈ (45◦, 60◦). However, max(ev(z)) has a clear minimum between θ ∈ (40◦, 45◦).

Looking at Figure 4.8a, it is clear that the spread of ev(z) is narrower at θ = 25◦ and

gradually becomes wider as θ increases and max(ev(z)) decreases at the same time

. For θ > 45◦ the spread continues to widen and max(ev(z)) increases again. The

thickness of the solutions is estimated by choosing a cutoff of ev(z) = 0.0001. As

shown in Figure 4.9 the thickness of the LBTW stripe solution is minimum at θ = 25◦

and then increases monotonically with θ .
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(a) θ = 25◦ (b) θ = 30◦ (c) θ = 35◦

(d) θ = 40◦ (e) θ = 45◦ (f) θ = 50◦

(g) θ = 55◦ (h) θ = 60◦

Figure 4.7: Newton converged lower branch traveling wave solutions at Re = 720 for

different θ obtained through the bisection method. These solutions are localized in

z and are extended in x. All the solutions contain the stripe composed of alternate

slow and fast quasi-streamwise streaks which is also a defining feature of the turbulent

stripes in PPf. Here also ,for the demonstration purpose, the flow fields are plotted by

stacking 12 copies of a domain (Lx, Ly, Lz) = (3.33, 2, 40) along x.
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Figure 4.8: The behaviour of ev with z and maximum of ev(z) with θ (a) The wall-normal

component of the perturbation kinetic energy in ev(z) along z. Setting an appropriate

cutoff gives us the thickness of the stripe. (b) The maximum in wall-normal perturbation

kinetic energy changes with tilt angle θ. The maximum in ev(z) is lower for θ ∈ (40◦, 45◦)
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Figure 4.9: The thickness of the lower branch TW stripe solution increases with θ. The

red curve represents the stripe thickness measured across the stripe i.e., perpendicular

to the stripe, whereas the blue curve shows the stripe thickness measured along the

mean flow direction.



78

4.4 Bifurcation of traveling waves

To investigate the dynamical origins of the above TWs, we continue to solution branches

to lower Re using quadratic extrapolation method explained in 2. The other parameters

like θ, Lx and Lz, are kept unchanged.

θ Saddle Node ReSN Hopf bifurcation ReH No. of unsta-

ble eigenvalues

in the vicinity of

the saddle node

(LB)

25◦ 488.8826 1058.12 1r + 1× 2c

30◦ 426.5995 598.034 1r + 2× 2c

35◦ 393.2030 424.92 1r + 2× 2c

40◦ 375.4929 408.44 1r + 2× 2c

45◦ 370.5567 393.58 1r + 2× 2c

50◦ 377.8913 403.83 1r + 2× 2c

55◦ 400.4196 421.16 1r + 2× 2c

60◦ 448.8425 462.49 1r + 1× 2c

Table 4.1: Values of Re at the saddle-node bifurcation point of TW solutions for different

tilt angles θ. It also lists the stability of LBTW in the vicinity of the saddle-node point.

When LBTW is an edge state, there is only one real unstable eigenvalue. As Re is

reduced, LBTW undergoes Hopf bifurcation adding complex pair of eigenvalues.

The bifurcation diagram of the TW solutions at various angles is shown in Figure

4.10. All the TWs emerge through saddle-node bifurcations at values of Re listed in Ta-

ble 4.1. From the saddle-node towards increasing Re, there are two solution branches

referred to as lower branch (LBTW) and upper branch (UBTW) traveling waves. For

all the solutions, the perturbation kinetic energy decreases for LBTW and increases for

UBTW asRe increases. In other words, asRe increases, the amplitude of perturbations

necessary to cross the laminar-turbulent boundary decreases. For the chosen compu-

tational domain size, the TW solution which exists at the lowest Re is for the stripe tilted

with respect to the streamwise direction at an angle θ = 45◦ which is ReSN = 370.5567.
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Figure 4.10: The bifurcation diagram of TW solutions for various tilt angles θ in differ-

ent colours. The bifurcation is shown on Re vs. E plot where E is the perturbation

kinetic energy averaged over the domain volume. As Re increases, the perturbation

kinetic energy of the lower branch traveling wave solutions decreases, suggesting that

a smaller and smaller perturbation amplitude is needed to cross the laminar-turbulent

boundary and therefore to trigger turbulence.

At the saddle bifurcation point, both the upper and the lower branches of all the so-

lutions are unstable with more than one unstable direction. As Re increases, the upper

branch solutions become more and more unstable with additional unstable eigenval-

ues. However, the lower branch starts losing the unstable directions and after a certain

value of Re retains only one unstable direction and thus qualifying as the edge state. In

Figure 4.11, the saddle-node Re at multiple tilt angles θ is shown (blue). It also shows

values of Re above which the lower branch of TW solution has only one unstable di-

rection. These points have been marked by red dots. These are the points where the

TW solutions undergo a Hopf bifurcation. The value of Re for the Hopf bifurcation of

the LBTWs reduces as the tilt angle θ is increased and reaches minimum value at 45◦.

Then it increases again with θ.

For each tilt angle, the route to chaos starts from this Hopf bifurcation of the LBTW.

The periods of the relative periodic orbits emerging from the Hopf bifurcation of the

lower branch TW solutions are listed in Table 4.2. For different tilt angles, the RPO
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θ Tp1 Tp2

25 42.4874 N/A

30 29.8828 66.832

35 73.0069 31.548

40 84.3443 29.3557

45 27.6013 96.8748

50 109.1105 25,9726

55 120.2174 23.125

60 127.2664 N/A

Table 4.2: Time period Tp1 (resp. Tp2) of the first (resp. second, if any) RPO bifurcating

from the LBTW branch for various tilt angles (deduced from the eigenvalues at their

respective Hopf bifurcation). The period Tp1 is computed at Re = ReH .

time periods are different and change non-monotonically with θ. It can be proposed

from this fact that after the Hopf bifurcations the routes to chaos can be distinct for

distinct tilt angles.

These TW solutions have phase velocities in both the streamwise and the span-

wise directions. Figure 4.12a shows the streamwise and spanwise phase velocities

of the TW solution branches for different θ. The lower branches of all the solutions

are advected faster in the streamwise direction compared to the respective upper

branch solutions. The streamwise phase speed of the lower branch solutions is higher

than the bulk velocity Ub but lower than the streamwise centerline velocity Ucl and the

upper branch solutions travel at a phase speed which is less than the bulk velocity.

This scenario is generic to the wall-bounded shear flows [Wedin and Kerswell, 2004;

Pringle et al., 2008]. It is in agreement with the energy of the lower branch and upper

branch solutions. The higher the perturbation kinetic energy of a turbulent structure,

the lower is its phase speed.

However, interestingly, the phase velocity along the spanwise direction is slower for

the LBTW and higher for the UBTW.
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Figure 4.11: The locus of saddle-node bifurcation points at different tilt angles, con-

nected by a blue curve. The red stars represent the Re above which the LBTW is an

edge state.
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(a)

(b)

Figure 4.12: Phase velocities of the TW solution branches. (a) The streamwise phase

velocity of TW solution branches. The lower branch solutions are faster than the cor-

responding upper branch solutions. (b) The spanwise phase velocity of TW solution

branches. In the spanwise direction, the upper branch solutions have higher velocity

than their lower branch counterparts.
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4.5 Continuation in tilt angle θ

Earlier studies in PCf report that the stripes in PCf do not exist at all the tilt angles

in a range [Barkley and Tuckerman, 2007; Duguet et al., 2010a]. Similarly, in PPf,

the invariant solutions exist only for a subset of θ ∈ [0, 90]. Therefore a parametric

study is necessary in order to determine the range of tilt angles that show the laminar-

turbulent interface i.e., the edge. The bisection carried out at Re = 720 was successful

in identifying TWs as edge states only for 25◦ ≤ θ ≤ 60◦, which in all cases were easily

converged using the Newton algorithm. However, to investigate the range of angles

in which the TW solutions can exist, it is necessary to trace out the TW solutions

in the space of a new parameter, which is a tilt angle θ. Similarly, the continuation

in parameter Re explained in previous section, the LBTW solutions are continued in

parameter θ with fixed Re and domain size Lx and Lz. This continuation reveals the

range of θ in which the TW solutions exist in chosen domain size and at the chosen

value of Re. This continuation in θ is performed at various Re. Figure 4.13

The range of tilt angle (and therefore the stripe angle with the mean flow direction)

θ for which the TW solutions exist, reduces as Re is lowered. At Re = 370.59 which

is the lowest Re the solution exists only for θ = 45◦. The locus of the θmax and θmin

forms a curve on Re − θ plane in Figure 4.13b, which represents all the saddle-node

bifurcation points for the chosen domain size, tilted at an angle θ with the mean flow

direction. This curve is plotted separately in Figure 4.11. It gives an envelope beyond

which the localized, TW stripe solutions do not exist for the chosen domain size. The

curve appears as slightly asymmetric parabola centered around 45◦. It means that

as Re gradually increases from zero, the first TW encountered is found to be the TW

at θ = 45◦. Then as Re continues to increase the range of possible angles widens.

However, as Re increases further, the range seems to become asymptotic, and outside

this range, the stripe solutions do not exist.

Besides, the routes to chaos for stripes of several selected orientations will be dis-

cussed. All the routes start from the secondary bifurcations (viz. Hopf bifurcation) of

the same family of lower branch traveling wave solutions, but the routes to chaos differ

significantly. The upper branch TW appears not to play any significant role in shaping

the state space of the turbulent stripes.
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Figure 4.13: The range in θ of the lower branch TW solutions at different Re.

(a)Continuation of LBTW solutions in θ in E − θ plane (b) Continuation of LBTW solu-

tions in θ for different Re in Re − θ − E space. The dotted curve at the bottom θ − Re

plane represents the locus of the saddle node points for TW solutions for different tilt

angles θ
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4.6 Continuation in Lx

It is found that for the chosen domain size i.e. (Lx, Ly, Lz) = (3.33, 2, 40) the minimum

Re at which TW solution exists is Re = 370.59 at a tilt angle θ = 45◦.The TW solutions

are localized in z but are extended in x due to the periodicity. For the chosen domain

size in x i.e. Lx = 3.33 the solution consists of only one wavelength. A parametric study

of these solutions was performed by changing the wavelength i.e. Lx .

The tilt angle was chosen as θ = 45◦ and Lx is varied, fixing Re = 720. The

numerical resolution used for the parametric study in Lx is different from the previous

investigations. As the continuation in Lx results in a change in the domain size, it is

necessary to choose a numerical resolution which will be sufficient at a larger domain

size. Therefore the numerical resolution is chosen as (Nx, Ny, Nz) = (48, 49, 324). The

LBTW solutios at Re = 720 for different Lx are shown in Figure 4.15.

2.8 3 3.2 3.4 3.6 3.8 4 4.2
350

400

450

500

550

Lx

R
e

Figure 4.14: Minimum Re or saddle node bifurcation point ReSN at tilt angle of θ = 45◦

for different values of Lx in a domain (Lx, 2, 40)

The different solutions obtained at different Lx are then continued in another pa-

rameter i.e., Re. Again, all the solutions with a different wavelength in Lx occur through

saddle-node bifurcations. Figure 4.14 shows the Re of the saddle-node bifurcation for

the solutions with different Lx. A local minimum for ReSN is found around 367 and oc-

curs for Lx = 3.2. Note that this value is close to the value of 3.33 considered in most

of the computations reported here. We can not exclude the possibility for other local

minima corresponding to other yet unreported families of traveling wave solutions.
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(a) LBTW solution

at Re = 720 with

Lx = 2.85

(b) LBTW solution

at Re = 720 with

Lx = 2.90

(c) LBTW solution

at Re = 720 with

Lx = 4.05

(d) LBTW solution

at Re = 720 with

Lx = 4.5821

Figure 4.15: LBTW solutions at Re = 720 at various Lx. The flow-fields show wall

normal velocity v(x, y = 0, z).
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4.7 Route to chaos

For any angle θ for which a TW solution was found as an edge state, it is possible

to track the bifurcations of the TW solution until transient (or possibly sustained) tem-

poral chaos occurs, in the spirit of the studies in Refs. [Kreilos and Eckhardt, 2012],

[Zammert and Eckhardt, 2015] and [Avila et al., 2013]. From these works respectively

in the context of plane Couette flow, plane Poiseuille flow (both MFU) and localized

pipe flow turbulence, both in the presence of additional discrete symmetries imposed,

a generic bifurcation scenario emerged as Re is increased beyond the primary saddle-

node bifurcation : the edge state solution loses stability in a sequence of classical

low-dimensional bifurcations, such as period-doubling or Neimark-Sacker bifurcations,

until a chaotic attractor is formed. The story continues further as this chaotic attrac-

tor grows in size until it touches its own boundary (the “edge”), resulting in transient

rather than sustained chaos, with mean lifetimes decreasing with increasing Re. Mean

lifetimes have been found to increase again for larger Re. Only spatial proliferation

can resolve the apparently contradictory fact that high-Re turbulent flows should have

non-transient dynamics [Avila et al., 2011].

Here we provide an example of a route to chaos for θ = 35◦. It is to be noted that the

situation is roughly analogous to that in pipe flow from Ref. [Avila et al., 2013] as spatial

localization occurs in one dimension only. Here, however, there is no discrete symmetry

imposed beyond the obvious x-periodicity. Besides, θ is a well-defined imposed angle

and plays the role of an additional parameter, whereas in realistic configurations no

angle is imposed.

4.7.1 θ = 35◦

In this section, the tilt angle and therefore, the angle of the stripe with mean flow di-

rection is fixed at θ = 35◦. The domain size is fixed at (Lx, Ly, Lz) = (3.33, 2, 40). As

explained earlier, the invariant TW solution is determined at Re = 720 via the bisec-

tion method. Then the quadratic extrapolation is used to trace the solution branch in

parameter space, the parameter being the Reynolds number Re. The bifurcation dia-

gram showing this route to chaos is shown in Figure 4.16. The y-axis of the diagram

represents the perturbation kinetic energy. The points on the bifurcation diagram are
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plotted taking the mean of this perturbation kinetic energy over corresponding attrac-

tors/saddles. The details of the diagram are discussed in the following.

It is observed that this TW solution emerges through a saddle-node bifurcation at

ResnTW = 393.203. At the bifurcation point, two TW solution branches emerge, the ’up-

per branch’ (UBTW) and the ’lower branch’ (LBTW). From the saddle-node bifurcation,

both the branches can be traced to higher Re. The TW solution determined at Re = 720

and discussed above belongs to the lower branch i.e., LBTW.

Figure 4.16: The route to chaos for a stripe at a tilt angle θ = 35◦.

Importantly, unlike in [Avila et al., 2013; Zammert and Eckhardt, 2015; Kreilos

and Eckhardt, 2012] the lower TW solution is not an edge state for all the values of

Re > ResnTW , which alters the route to chaos. At the saddle-node bifurcation, both

the lower and the upper branch are highly unstable with multiple unstable eigenvalues.

As Re increases, the UBTW becomes more and more unstable, but LBTW loses the

unstable eigenvalues, and from Re > ReH = 414.25 onwards retains only one unstable

eigenvalue. In other words, the LBTW is an edge state on the laminar-turbulent basin

boundary for Re ≥ ReH = 414.25.

While tracing the LBTW towards lower Re, it undergoes a Hopf bifurcation and gains

two unstable complex eigenvalues at Re = ReH = 414.25. A branch corresponding to a

relative periodic orbit solution (RPO) bifurcates off this point and could be tracked using

the same continuation algorithm in the direction of decreasing Re. This RPO solution
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itself appears through a saddle-node bifurcation at ResnRPO = 407.2019.
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Figure 4.17: (a) Stable UBRPO at Re = 407.30. This UBRPO is stable between the

range of 407.20 < Re < 409.1. Then it undergoes Neimark-Sacker bifurcation, and the

new attractor is 2-Torus (b) Stable 2-Torus at Re = 409.2. This 2-Torus emerges from

the bifurcation of the UBRPO. It remains stable in a range Re ∈ (409.1, 410.1). (c) 2-

Torus just before breakdown at Re = 410. This torus becomes unstable for Re > 410.1

and then disappears. Afterward, the dynamics become transient, and the trajectories

starting from underlying RPO spend a considerable amount of time along the unstable

RPO and then go to the laminar fixed point. This transient dynamics is evident in Re ∈

(410.1, 413.3). (d) Complicated attractor at Re = 413.3. This attractor deemed to be

organized around an unstable periodic orbit and an unstable 2-Torus. The heteroclinic

connections between these two unstable sets construct this attractor.
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At the saddle-node bifurcation of the RPO, the upper branch (UBRPO) is stable (Fig.

4.17a) and the lower branch (LBRPO) is unstable, with only one unstable eigenvalue.

Therefore, in the range Re ∈ [407.2019, 414.25] the edge state is the LBRPO and not

the LBTW.

To our knowledge, this is the first example of a stable periodic orbit in subcritical

shear flow in the absence of imposed discrete symmetry (beyond the imposed spatial

periodicity and the tilt angle).
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Figure 4.18: (a) 2-Torus T 2
2 at Re = 414.7. At Re > 414.7 the T 2

2 becomes stable

and remains so for Re < 415.2. (b) The T 2
2 again falls to an RPO for intermediate

range in Re. The figure shows the RPO at Re = 415.498. It is not clear if T 2
2 and

this RPO are connected and if show then in what way. (c) 2-Torus at Re = 418.377.

After a brief periodic window in Re the 2-Torus recovers and is stable in the range

416 / Re < lessapprox418.4. (d) T 2
S becomes unstable and the dynamics look chaotic

for a small range in Re ∈ (418.4, 419.1).

The stable UBRPO is then continued to higher Re from its saddle-node bifurcation

point. At Re > 409.1 it undergoes a Neimark-Säcker and hence becomes unstable in

the favour of a stable T 2
1 (Figure 4.17b). Beyond this point, one cannot rely only on
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Figure 4.19: (a) A 2-Torus at Re = 419.908. (b) 2-Torus at Re = 420.1282. (c) Chaotic

attractor at Re = 421.86.

the continuation algorithm anymore. The direct numerical simulations (DNS) initialized

with the Newton converged invariant solutions are also necessary in order to describe

the route to chaos. It makes fold bifurcations - in particular - difficult to locate. The

2-torus T 2
1 is then tracked until Re = 410.1 beyond which it seems to become linearly

unstable 4.17c. Then in the small window of 410.1 / Re / 413.3, the dynamics are

transient. The trajectories starting from an RPO spend a considerable amount of time

along the RPO and then finally go towards the laminar fixed point. Then again the

attractor emerges in the phase space during the range 413.3 / Re / 414.7 as shown

in Fig 4.17d. The dynamics in this narrow range is harder to describe. It appears that

the attractor is organized around the two unstable invariant sets viz. UBRPO and an

unstable 2-torus. The underlying 2-Torus (Hereafter named as T 2
2 ) becomes evident

as Re is increased further where it becomes linearly stable. This T 2
2 remains stable for

414.68 / Re / 415.4. The phase portrait of the attractor is shown in Figure 4.18a. The

origin of this T 2
2 is not clear. Careful “continuation” of T 2

2 by DNS towards neighbouring

parameters indicates that T 2
1 is most likely born in a saddle-node bifurcation of 2-tori at
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Re ≈ 414.675.

With further increase in Re, another stable relative periodic orbit emerges at Re =

415.49 as shown in Figure 4.18b. It is not clear if T 2
2 and this RPO are connected to

each other and if they are then in what way.

For 415.49 / Re / 418.38 the attractor is another 2-Torus (T 23) (Figure 4.18c).

Further increase in Re makes this -Torus linearly unstable and for a brief interval in Re

the attractor becomes chaotic Figure 4.18d. It is not clear why this 2-Torus evolves to

mildly chaotic attractor just for a brief period. One possibility is there are two unstable

2-Tori in the phase space at this parameter value and the heteroclinic connections

between these two sets make the attractor mildly chaotic. Another unstable 2-Torus

(T 24) appears as Re is increased beyond the point where the 2-Torus (T 24) becomes

stable and remains so in a short range 419.18 / Re / 420.35 as shown in Figure 4.19a

and in Figure 4.19b. Now this (T 24) further becomes unstable and an chaotic attractor

emerges at Re > 420.35 Figure 4.19c. For Re ≥ 426.9 instances of relaminarisation

are reported after a long chaotic transient. This suggests a boundary crisis near Re ≈

426.93.

Figure 4.20 shows the phase portraits of different attractors at different values of

parameter Re. This figure helps in visualizing the evolution of the attractors with the

parameter Re.

Summing up this investigation there is a non-trivial route to chaos, based on three

successive saddle-node bifurcations : First the TW, then the RPO and finally a new

family of tori T 2
2 . Each successive saddle-node bifurcation brings an additional degree

of freedom in the time dependence until robust chaos sets in.
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Figure 4.20: The multiple attractors in the phase space plotted simultaneously to

understand the relation between multiple attractors and their respective evolution

(a)Phase portraits at Re ∈ (407.30, 409.2, 410.0). It represents RPO, and T 2
1 at dif-

ferent Re. (b) Phase portraits at Re ∈ [410.0, 413.3, 414.7](c) Phase portraits at

Re ∈ (413.3, 414.7, 415.498) (d) Phase portraits at Re ∈ (414.7, 415.4985, 418.377). A

stable 2-Torus, then a RPO in a brief window and then again a 2-Torus (e)Phase

portraits at Re ∈ (418.377, 418.681, 419.185). It shows a stable 2-Torus, its evolution

to a mildly chaotic attractor and then to another stable 2-torus (f) Phase portraits at

Re ∈ (419.185, 419.908, 421.861). Two 2-Tori and a chaotic attractor
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4.8 Discussions

Here, we reported new families of nonlinear traveling wave solutions of the channel

flow which show localization, obliqueness of the laminar-turbulent interface and quasi-

streamwise streaks and vortices - features shared by turbulent stripes in a variety of

shear flows. The method relies on the ability of edge tracking to identify simple edge

state solutions, coupled with an efficient root-finding algorithm. All the solutions re-

ported here occur through saddle-node bifurcation in a parameter space parametrized

by Re and are linearly unstable though the number of unstable directions is gener-

ally very low, ranging from one for edge states up to six for upper branch solutions

near their saddle-node bifurcation point. To our knowledge, among all the reported

solutions, these are the localized states which appear at the lowest value of Re with

minimum ReSN ≈ 367 at θ = 45◦. Interestingly, it is the lower branch of all of these

TW solutions from which the route to chaos starts. The routes leading from each of

these traveling waves to chaos are essential to explain the direct emergence of turbu-

lent stripes and deserve a separate parametric study. One example of a route to chaos

for a stripe tilted at an angle θ = 35◦ has been extensively discussed in this chapter.

The main idea is that the state space for the turbulent dynamic is structured around

a skeleton formed by the unstable nonlinear states with their stable and unstable man-

ifold. The TWs identified here are the simplest of these states. The different Hopf

bifurcations of these waves lead to new branches of stable/unstable periodic orbits

whose further bifurcations, cover the turbulent attractor specific to each tilted domain.

We also report a strict subset of tilt angle values for which these TW solutions can

appear. The angle selection mechanism of the stripes observed in the experiments

can be studied considering this fact. As these solutions are nonlinear, adding different

solutions to create a new solution is not allowed. Therefore it can be argued that

different routes to chaos coexist for different values of the stripe tilt angle θ. The TW

with θ = 45◦ is the one that persists to the lowest Re.

Interestingly, in the experiments, the stripes have the same angle with respect to the

mean flow direction at the onset. It remains to be understood why no turbulent stripe

forms or sustains with an angle larger than 45◦ in experiments, whereas this is allowed

for traveling wave solutions. This seemingly contradictory fact is likely to be related to
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the choice of the tilted domains rather than to the traveling waves themselves.
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5 Deterministic origin of turbulent stripes

The classical approach to investigate turbulence is to study the instabilities of the lam-

inar base flow for the infinitesimal perturbations. Flows like Taylor Couette flow (TCf)

with the inner cylinder rotating, show supercritical transition to turbulence where the

flow becomes turbulent following a sequence of instabilities starting from the laminar

base flow [Gollub and Swinney, 1975; Feigenbaum, 1979]. As the rotation speed in-

creases, then at a critical Re, the laminar flow becomes unstable and undergoes a

pitchfork bifurcation as shown in Figure 5.1a giving rise to the Taylor vortices [Cliffe

et al., 2012]. With further increase in the rotation speed, these vortices become wavy,

and eventually, the flow becomes turbulent. However, in many other wall-bounded

shear flows like pipe flow (Hagen Poiseuille flow-HPf), plane Poiseuille flow (PPf), plane

Couette flow (PCf), etc. the transition to turbulence is subcritical meaning, turbulence

arises in spite the laminar base flow being linearly stable, [Drazin and Reid, 2004]. The

sub-critical transition to turbulence is also characterized by localized turbulent patches

called puffs in pipe flow [Wygnanski and Champagne, 1973; Mullin, 2011] and oblique

stripes in flows extended in two dimensions such as PPf,PCf,TCf etc. [Tsukahara et al.,

2005; Dauchot and Daviaud, 1995; Duguet et al., 2010a].
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(a)

(b)

Figure 5.1: The instability sequence in (a) linearly unstable and (b) linearly stable flows.

(a)The instability sequence of a linearly unstable flow (e.g., Taylor Couette flow with

only inner cylinder rotating). The laminar base flow becomes linearly unstable and

undergoes transcritical bifurcation at a critical Re. In the case of TCf with the inner

cylinder rotating, the laminar base flow becomes unstable, giving rise to the Taylor

vortices. As the rotation speed of the inner cylinder increases, the Taylor vortices

become wavy, and eventually, the flow becomes turbulent. (b)In many shear flows,

turbulence occurs despite the laminar base flow being linearly stable. The chaotic

motion results from a sequence of instabilities emerging from the bifurcations of the

non-trivial invariant solutions of the Navier-Stokes equations. These invariant solutions

occur through a saddle-node bifurcation and are disconnected from the laminar base

flow.
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A popular proposition is that in linearly stable flows turbulence does not develop

from a stable (experimentally observable) state but from unstable non-trivial exact co-

herent solutions (ECS) of the Navier-Stokes equations, which appear through saddle-

node bifurcations as shown in Figure 5.1b [Eckhardt et al., 2007]. These solutions are

disconnected from the linearly stable laminar base flow. They can be either equilib-

ria (EQ), traveling waves (TW), periodic orbits (PO) or relative periodic orbits (RPO)

and are also referred to as invariant solutions [Waleffe, 1998; Kawahara et al., 2012].

The invariant solutions are composed of low and high-speed streaks and streamwise

vortices - which are also the structural components of turbulence. A sequence of bi-

furcations starting from these solutions lead to chaotic dynamics. Experiments in the

pipe flow showed some signature of these ECS, especially the traveling waves but the

agreement with the full instantaneous flow field is still inconclusive as recurrence in

experiments is very rare [Hof et al., 2004; De Lozar et al., 2012].

A variety of ECS have been computed for different flows in numerical simulations

[Nagata, 1990; Faisst and Eckhardt, 2003; Duguet et al., 2008; Zammert and Eckhardt,

2014b; Zammert and Eckhardt, 2014a]. Many of them are computed in minimal flow

units and therefore lack the vital property of turbulent structures at low Re which is

their localization. Studies in the pipe flow [Avila et al., 2013; Ritter et al., 2016], plane

Couette flow (PCf) [Kreilos and Eckhardt, 2012] and in PPf [Zammert and Eckhardt,

2015]- which are performed in symmetric subspace- show the emergence of ECS in

saddle-node bifurcations and sequences of instabilities to a chaotic attractor and then

to a chaotic saddle through a boundary crisis. After the boundary crisis when the

chaotic dynamics become transient, it becomes difficult to trace these dynamics further

to higher Re beyond the critical value of Re where the turbulent structures are observed

in the experiments.

Equally, attempts to track turbulent puffs or stripes to lower Re where the dy-

namics are expected to simplify, have failed. Instead of simplifying turbulence be-

comes transient[Faisst and Eckhardt, 2004; Peixinho and Mullin, 2006; Hof et al., 2006;

Borrero-Echeverry et al., 2010; Hof et al., 2008] and abruptly relaminarizes.

As described in Chapter 3, the experiments were performed in a channel of size

(Lx, Ly, Lz) = (4000h, 2h, 490h) where x is streamwise direction, y is wall normal direc-

tion and z is spanwise direction. It is observed that at Re = 1650, turbulence occupies
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the entire domain ( Figure 5.2a). For Re below ∼ 1500 , criss-cross patterns start form-

ing ( Figure 5.2b and 5.2c). Further reduction in Re (below ∼ 1050) these criss-cross

patterns break into isolated stripes (Figure 5.2d). For Re < 850 the stripes orient them-

selves at angle θ ≈ 45◦ with respect to the streamwise direction (Figure 5.2e). Further

reduction in Re below 650 results in laminar flow as the turbulent stripes become tran-

sient in nature.

In the following, we will demonstrate for plane Poiseuille flow that the turbulent state

can be traced all the way to its origin. In this limit, the flow simplifies to a branch of

invariant solutions of the Navier-Stokes equations, which is a traveling wave. As will

be shown in the following, this TW branch is the same branch obtained using edge

tracking at 45◦ in Chapter 4. Similar to the turbulent stripes in experiments, this dynam-

ically simple structure also features obliqueness to the mean flow direction, spatially

localization, and feature quasi-streamwise vortices and streaks.
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(a) Re = 1650. (b) Re = 1380. (c) Re = 1125.

(d) Re = 930. (e) Re = 675.

Figure 5.2: The figure shows flowfield visualizations from the experiments. These

images are taken from the top of the channel where the axis of the camera is in the

direction of the wall-normal direction y. Therefore the images depict flowfields in xz

plane. (a) At Re = 1650, turbulence is fully developed and without any visible patterns

or features. (b) When Re is reduced below 1500, the turbulence breaks into criss-cross

patterns. The figure shows the flowfield at Re = 1380. (c) Further reduction in Re, for

e.g., at 1125 the criss-cross patterns become more sparse. (d) As Re is lowered below

∼ 1050 gives rise to isolated, oblique stripes. The image shows the isolated stripes at

Re = 930 (e) As Re approaches a critical point, the orientation of the stripe tends to

θ ≈ 45◦. In all visualizations, the flow is from the left to the right
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Figure 5.3: As Re is lowered, the stripes have a preferred orientation of θ = 45◦. This

data is obtained from the experiments in the channel flow. (Ref. Chapter 3)
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5.1 Numerical domain

The numerical domain is a rectangular domain of a size (Lx, Ly, Lz) = (10, 2, 40) where

Lx and Lz are the lengths of the domain in the periodic directions x and z respec-

tively. Ly is the distance between the walls of the domain. The resolution used is

(Nx, Ny, Nz) = (96, 49, 256). As explained before, the turbulent stripes at lower Re

have a preferred orientation of θ ≈ 45◦ with respect to the mean flow direction i.e.,

the streamwise direction (Figure 5.3). Here we use the tilted domain to simulate the

turbulent stripes [Barkley and Tuckerman, 2005; Tuckerman et al., 2014]. The tilt angle

of the rectangular box, in turn, fixes the orientation of the stripe with respect to the

streamwise direction (see Chapter 2). Therefore, the tilt angle i.e., the angle between

the shorter side and the mean flow direction is fixed to θ = 45◦. Without any symmetry

reduction, the stripe is simulated in the full space. Constant mass flux is maintained

along with the directions with periodic boundary conditions. No-slip boundary condi-

tions are imposed at the walls of the domain y = ±1. For the simulation of turbulent

stripe, Code-1 is used. The convergence of the invariant solution and the continuation

of these solutions in parameter space is performed using libraries from Code-2. The

solutions are converged until the error becomes ε < 10−13.

5.2 Method

Starting from a random initial condition at Re = 900, the flow settles to a turbulent stripe

after (t ≈ 1000) time units. The stripe is localized in the longer domain direction z and

extended in the shorter direction x and oblique to the streamwise direction at an angle

θ = 45◦. It has all the structural components of turbulent stripes in experiments, like

quasi-streamwise streaks and vortices.

Subsequently, the value of Re is reduced by 2, and the simulation is started using

a turbulent stripe obtained at Re = 900 as an initial condition at Re = 898. This stripe

settles to its attractor in the phase space in time (t ≈ 300). After letting the simulation

run for some more time, a flowfield is selected randomly and used as an initial condition

for the next simulation withRe reduced by a step of 2. This ’quasi-static’ reduction of the

value Re in steps of 2 using the initial condition from the previous iteration is continued
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Figure 5.4: The time series at different Re. Though the stripe becomes transient at

Re < 650, the lifetimes i.e., time for which the stripe sustains before laminarizing are

long. The shortest lifetime is observed at Re = 550, which is τ ∼ 2500. These long

lifetimes allow us to track the stripe at lower Re through a quasi-static reduction in Re.

until the value of Re reaches 430. Afterward, the step-size is reduced to 1, and the

reduction is continued.

At Re < 620 the dynamics become transient i.e., if the simulation is continued for

long enough time, the turbulent stripe laminarizes. Figure 5.4 shows the time series

of the turbulent stripes at different Re. The shortest lifetime is of order t ≈ 2500 which

is at Re = 550. These transients are long enough to allow the dynamics to spend

a considerable amount of time around the chaotic saddle in the phase space before

going to the laminar state. It allows us to continue the quasi-static reduction in Re

towards lower values.

As Re decreases, the fluctuations become smaller and smaller, and the dynamics

become simpler. Figure 5.5 shows the evolution of flowfields as Re is reduced.



105

Figure 5.5: Wall normal component of the fluctuating velocity field in the central plane

y = 0 at different Re. The turbulent stripe gradually evolves into a dynamically simple

periodic orbit with decreasing Re. The leftmost panel shows a turbulent stripe at Re =

900. As Re is reduced, the flow field becomes dynamically simpler. At Re = 420, the

dynamics is still chaotic but the fluctuation levels reduce considerably (See figure 5.8).

At Re = 405, the stripe dynamics in the phase space falls on an attractor, which is

topologically a 2-Torus. Further reduction in Re gives rise to a relative periodic orbit.

The flow field of the RPO at Re = 396 is shown in the rightmost panel. The dynamically

simple state at this Re shows all the structural components of the turbulent stripe, like

quasi-streamwise streaks and vortices.
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5.3 Bifurcation diagram

The bifurcation diagram (Figure 5.6) shows the origins of turbulent stripes in the pa-

rameter space of parameter Re. Starting from a turbulent stripe at Re = 900, as Re

reduces turbulence remains sustained and at Re < 650 the dynamics become transient

i.e., in the phase space, the attractor becomes a chaotic saddle.

Figure 5.6: The bifurcation diagram obtained by adiabatically reducing the Reynolds

number. With reducing Reynolds number, sustained stripe turbulence becomes tran-

sient (Re¡ 650), however, the turbulent stripes remain long-lived (order of thousands of

advective time units) allowing for the reduction in Re. While the stripe energy reduces

with Re, the dynamics remain highly chaotic down to Re 450 and only subsequently

begin to simplify. In a range Re ∈ (403.5, 412.9) the attractor is a 2-Torus. This attractor

further simplifies into a relative periodic orbit at Re < 403.5. This RPO emerges from

Hopf bifurcation of the LBTW at Re = 387.6. The traveling wave solution itself emerges

in saddle-node bifurcation at Re = 370.6.

The dynamics remains transient until Re = 426. Below this value, the chaotic set

becomes attracting through the boundary crisis. Further reduction in Re simplifies the

chaotic attractor, and in a range, 420 > Re > 412.95 the chaotic attractor is char-

acterized by multi-mode oscillations i.e., a base 2-torus with intermediate bursts. At

Re < 412.95 the chaotic attractor simplifies into a stable 2-torus. This 2-torus under-
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goes a reverse Neimark-Sacker bifurcation when Re is reduced, and at Re ≈ 403.5

the attractor simplifies further to a relative periodic orbit or RPO. This RPO is stable

until Re = 393.5. Below that it loses its stability. After the RPO becomes unstable, it is

then continued further down by using quadratic continuation subroutines from Code-

2. All the solutions are converged to ε = 10−14. This relative periodic orbit solution

branch results from the Hopf bifurcation of the traveling wave (TW) at Re = 387.6. This

unstable TW is also continued in parameter space with quadratic continuation. It is

observed that this TW emerges from the saddle-node bifurcation at Re = 370.6. Below

this Re, no ECS was observed. Here, we note that the traveling wave solution found

here belongs to the same family of TW obtained using edge tracking at 45◦ in Chapter

4. The upper branch (UBTW) and lower branch (LBTW) which emerge through the

saddle-node bifurcation are unstable from the beginning. With increasing Re, LBTW

starts becoming more and more stable and in 415 < Re < 433 loses all but one un-

stable direction. After that, the lower branch of TW solution acts as an edge state

with codimension 1 - a stable manifold of which separates the initial conditions that go

turbulent from the ones that laminarize. The upper branch of the TW (UBTW) on the

other hand becomes more and more unstable with increasing Re. The point to be noted

here is that, in the earlier studies of determination of the route to chaos, it is the upper

branch which undergoes a sequence of bifurcations and therefore is instrumental in

the route to chaos [Kreilos and Eckhardt, 2012; Avila et al., 2013; Ritter et al., 2016;

Zammert and Eckhardt, 2015]. In the present study, the solution branch which is rele-

vant for the route to chaos/turbulence bifurcates from the Hopf bifurcation of the LBTW.

The dynamically simple TW solution as well as the RPO solution structurally com-

prises of alternate high and low speed streaks aligned more or less along mean flow

direction, arranged in the form of stripe (Figure 5.7a,5.7b) which are similar to the tur-

bulent stripe (figure 5.7c ).
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(a) Traveling wave at Re = 370.59. The isoval-

ues : Streamwise velocity (red and blue) ±0.13 and

Streamwise vorticity (green and yellow) ±1.0

(b) Relative periodic orbit at Re = 395. The isoval-

ues : Streamwise velocity (red and blue) ±0.13 and

Streamwise vorticity (green and yellow) ±1 .0

(c) Turbulent stripe at Re = 750. The isovalues

: Streamwise velocity (red and blue) ±0.26 and

Streamwise vorticity (green and yellow) ±1.1

Figure 5.7: Figure shows the (a) Traveling wave at its saddle-node bifurcation at

Re = 370.59 (b) periodic orbit at Re = 395. It does not have any additional spatial

symmetries and repeats itself with a period of T = 10.93. These localized structures

are composed of low and high-speed streaks (blue and red resp. ) and clockwise

and counter-clockwise streamwise vortices (green and yellow). (c) Turbulent stripe at

Re = 750 show the structural components like low and high-speed streaks and stream-

wise vortices like relative periodic orbit and the traveling wave solutions. The arrow

shows the mean flow direction.
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Figure 5.8: Phase portraits of different attracting and non-attracting sets at multiple

values of Re on Eu − Ew plane. (a) As Re reduces the size of the attractor also starts

reducing. The chaotic set at Re = 450 is considerably smaller in size than that of

at Re = 650. The mean energy also reduces with Re. (b) The chaotic set shrinks

substantially between Re = 450 and 420. At Re = 406, the attractor is 2-Torus with a

size order of magnitude smaller than that of Re = 420. RPO at Re = 395 is tiny and

order of magnitude smaller than the torus
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As Re is reduced, the mean temporal kinetic energy and the size of the chaotic sets

reduce, as shown in Figure 5.8. The fluctuations at Re = 450 is almost 4 times smaller

than that of Re = 600. The fluctuation levels drop considerably as Re reduces below

450 as can be seen from Figure 5.8b. For example, at Re = 420, the dynamics are

still chaotic, but the fluctuations are an order of magnitude smaller now as compared to

Re = 450. Similarly, the attractor size i.e., the fluctuation amplitude shrinks further as

the attractor transforms from chaotic to 2-Torus to RPO. Figure 5.9 shows the fluctua-

tion amplitudes for different attractors in Re ∈ (393, 418). Interestingly, as 2-Torus turns

into a chaotic attractor with multi-mode oscillations, the fluctuation amplitude jumps

drastically.

Figure 5.9: The amplitude of the attractor in perturbation kinetic energy E with Re.

The amplitudes of attractor increase rapidly when the torus bifurcates into an attractor

characterized by multi-mode oscillations.
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5.4 Time series analysis and correlation dimension

Chaotic attractors are multi-dimensional complex objects. The dimensions of a chaotic

attractor can be estimated using box-counting. However, this method only works reli-

ably if the dimension is not too high.

The more straightforward way of characterizing the attractor is through the time-

series of some scalar quantity obtained from chaotic dynamics. We use the method

suggested by Grassberger-Procaccia in 1983 [Grassberger and Procaccia, 1983b],[Grassberger

and Procaccia, 1983a] for the analysis of the time-series. It computes a particular cor-

relation dimension of the attractor from the time-series. The details of the Grassberger-

Procaccia algorithm and the implementation has been discussed in further subsec-

tions.

5.4.1 Delay coordinates

Consider a dynamical system ẋ = f(x). Let 4t be a discrete timestep used for the

computation and yn = y(xn) be some scalar observable. Then a sequence {yn} is

a discrete timeseries of that scalar computed at every interval of 4t. The timeseries

itself does not directly give the information about the dimensionality of the attractor.

But by ’unfolding’ the timeseries using the delay coordinates, the dimensionality can be

extracted.
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(a)

(b) (c)

Figure 5.10: Comparison between the phase portrait and the reconstructed attractor.

The topology of the attractor is maintained in the reconstructed version. (a)The au-

tocorrelation of the time-series at Re = 407. The autocorrelation function has its first

zero at τ = 60. This τ is used as the delay for the reconstruction of the phase space of

the attractor from the time-series of the scalar yn. *b) The phase portrait at Re = 407.

The high dimensional dynamics is projected on Eu and Ew plane where Eu and Ew are

kinetic energy in x and z direction of the rectangular numerical domain. The attractor

is a 2-Torus. (c)The reconstructed phase portrait at Re = 407 from the time-series of

the global kinetic energy of the flow, with the embedding dimension m = 2. The phase

portrait is reconstructed with the delay vectors yn = (yn−τ , yn) where delay time τ = 60

i.e. first zero of the corresponding autocorrelation function.
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Let τ be a time delay and m be the dimension of the embedding space. Then a

vector in the m-dimensional embedding space is constructed as

yn = (yn−(m−1)τ , yn−(m−2)τ , ...yn) (5.1)

These vectors can reconstruct the phase space with one to one correspondence

[Takens, 1981]. If there are N samples of scalar yn available then for m embedding

dimensions, there are N − (m − 1)τ embedding vectors yn. Usually, the delay time

is chosen as the first zero of the autocorrelation function of the time-series. Figure

5.10c shows the reconstructed phase portrait constructed from the time-series of the

dynamics at Re = 407. The time-series represents the kinetic energy of fluctuations

computed at each time step. The delay vector is formed by using delay time τ = 60

as it is the first zero of the autocorrelation function. The original phase portrait in

Figure 5.10b is constructed from the two scalar observables viz. Eu and Ew. The

reconstructed attractor (Figure 5.10c) maintains the qualitative shape of the attractor.
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5.4.2 Correlation dimension

Let ε be a ball of size r which covers a part of the attractor. Let p(r) be some weight

which corresponds to the part of the attractor covered by this ε-ball. This quantity p(r)

scales with the radius of the ε-ball as

p(r) ≈ rD (5.2)

Where D is the “dimension” of the attractor, which depends on the definition of the

weight p(r).

This weight is defined as a correlation sum. This correlation sum, for any ball of

radius r, any embedding dimension m, and any scalar r > 0 is defined as :

C(m, r) =
1

Npairs

N∑
j=1

∑
k<j−ω

Θ(r − |yj − yk|) (5.3)

where Npairs = (N − m + 1)(N − m − w + 1)/2, Θ is the Heaviside step function,

{xi} the time-delay vector in space with embedding dimension m. It is necessary to

omit the temporally correlated pairs i.e., “false neighbours” from the correlation sum for

the correct estimation of D2. In order to remove highly correlated pairs, we use ω as

a Theiler window, i.e., a positive integer such that all the pairs below that number are

omitted [Theiler, 1990]. Usually, the Theiler window is selected as ∼ 1.5τ , where τ is

the first zero of the correlation function. Then C(m, r) and r is plotted in a log-log plot,

and the slope is calculated in the range of r where the curve is a straight line on the

log-log plot. It gives us the estimation of D2 such that

C(m, r) ∝ rD2 (5.4)

D2 is computed for the attractor unfolded in mth embedding dimension where m =

1, 2, 3.... Then the value where D2 converges, is called as the correlation dimension of

the attractor (see Figure 5.11).

For a correct estimation of D2, the time series must be long enough. Typically

the relation of the length of the time-series (sampling points N ) and the correlation
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Figure 5.11: Correlation dimension and embedding dimension of attractors. (a) and

(c) The correlation sum C(m, r) vs. the ε − ball of size r for the attractor at Re = 407

and Re = 416 respectively. The attractor in (a) is a 2-Torus and in (c) is chaotic. The

different curves are for different values of embedding dimensionsm. The slope of these

curves on log-log plots (blue straight lines) represent D2. (b) and (d) D2 vs. embedding

dimension m. The correlation dimension i.e. the slope of the curve C(m, r) against

the ball radius r on log log plot converges as m increases. The converged value of D2

is the correlation dimension of the attractor. The correlation dimension for 2-Torus is

D2 ∼ 2 and for chaotic attractor is D2 ∼ 6.

dimension is D2 ∼ 2 log10N [Eckmann and Ruelle, 1992] i.e. Nneeded > 10D2/2. For

example, the length of the time-series used to determine the correlation dimension of

an attractor at Re = 420 is 92500 time units with the total number of sampling points

370000. The estimation of D2 for the corresponding attractor is ∼ 8. Therefore, the

number of data points needed to estimate the dimension correctly is at least ∼ 10000.

However, as the complexity of the attractor increases, one needs longer and longer

time-series for the correct estimation of the correlation dimension of the attractor.

We used the package TISEAN for the computation of the correlation dimension

[Hegger et al., 1999],[Hegger et al., 2007].
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5.4.3 Correlation dimension of attractors of stripes

We computed the correlation dimension of the attractors for Re ∈ [395, 420]. In this

range, the attractor evolves from RPO to Torus and then to a chaotic attractor. The

attractor is a relative periodic orbit for Re ∈ [395, 403]. The correlation dimension for

the RPO is D2 ≈ 1. Then as stated in the previous sections, the attractor undergoes

Neimark-Sacker bifurcation, and in the range, Re ∈ [404, 412] the attractor is a 2-Torus

with the correlation dimension D2 ≈ 2. At Rec = 413, the attractor becomes chaotic,

and this Rec is marked as a Reynolds number at the onset of the chaos. For the

attractor at Re > REc the correlation dimension increases rapidly and at Re = 420, the

dimension is D2 ≈ 8 (see the inset in Figure 5.12).

Figure 5.12: The correlation dimension is computed from the kinetic energy time series

at the respective Reynolds numbers for channel flow (blue data set). Rec denotes the

critical point for the onset of chaos Re = 413. The dimension is one when the dynamics

fall onto a limit cycle and two for the torus and ¿2 for chaos. For comparison, we show

data for the transition to turbulence in Taylor Couette flow (Red). In the latter case

(like in other linearly unstable flows) the complexity of the flow increases slowly as

the Reynolds number is increased. After a Reynolds number increase by 60%, the

dimension approaches a value of 4. In contrast, in channel flow, a Reynolds number

increase by about 1% is sufficient to reach the same dimension.
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5.5 Discussions

We compared the evolution of the correlation dimension in the PPf with the dynamics

of the Taylor-Couette system with only the inner cylinder rotating. This data is from

Brandstater and Swinney [Brandstater and Swinney, 1987]. This latter scenario is typi-

cal for flows where the route to chaos starts from a linear instability of the laminar base

flow. We speculate that the difference between the two scenarios is rooted in the spa-

tial complexity of the problems at hand. In Taylor-Couette flow, a global mode arises

smoothly from the laminar state, and the resulting Taylor vortex flow is structurally far

from turbulence. The development of turbulence is slow and only takes place over

an extensive range of velocity. Consecutive instabilities gradually increase the spatial

complexity as well as the temporal disorder - aspects that are consistent with Landau’s

view of a stepwise development towards turbulence.

In contrast, in channel flow, the starting point is a temporally laminar solution that

has the structural complexity of a low Re turbulence inbuilt. The spatial localization

and its nonlinear nature make this turbulent nucleus prone to instability and rationalize

the rapid break down encountered for increasing Re. Being governed by the Navier-

Stokes equations turbulence in principle is deterministic, yet in practice, the strong

disorder in space and time necessitates a statistical treatment. The sharp increase in

the attractor dimension identified here marks the border up to which a deterministic

treatment is suitable whereas above statistical mechanics descriptions become more

appropriate, setting the stage for the non-equilibrium phase transition [Avila et al., 2011;

Lemoult et al., 2016] encountered at larger Re.
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6 Summary

Like in many other wall-bounded shear flow, turbulence in plane Poiseuille flow (PPf)

emerges despite the laminar base flow being linearly stable. Characteristic for these

flows is that turbulence at onset is spatio-temporally intermittent. In planar flows like

channel flow, turbulence appears in the form of localized stripes oblique to the mean

flow direction. The understanding of the nature of subcritical turbulence is far from

complete. The present work combines experiments, direct numerical simulations, and

applies concepts from dynamical system theory to further elucidate this transition type

for the case of channel flow.

6.1 Experiments in channel flow

In the experiments, we focused on determining the critical point where turbulence first

becomes sustained. The experiments were carried out in a large aspect ratio channel.

We found that at the onset, the natural angle of the stripe i.e., the angle made by

the stripe with the mean flow direction is 45◦. As Re increases, this angle reduces.

However, in the vicinity of the critical point, the natural angle remains 45◦.

The turbulent stripes multiply in numbers by two mechanisms: splitting and branch-

ing. In branching, a new stripe starts from a parent stripe which grows in the sym-

metrically opposite direction than the parent stripe. This mechanism is responsible

for forming the characteristic criss-cross stripe patterns in transitional channel flow.

In splitting, a new stripe is formed upstream of a parent stripe, and it maintains the

same orientation as the parent stripe. The new stripe nucleates from the shed streaky

patches from the tail of the parent stripe. At Re > 950, both branching and splitting

mechanisms play an important role in the formation of new stripes. However, near
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onset, only the splitting is a relevant mechanism, and practically no branching event is

observed.

To estimate the critical point, we first measured the mean growth rate of the turbu-

lent fraction with Re. The growth rate first becomes positive at Re ≈ 670. Apart from

stripe splitting, that causes an increase in the stripe number, the growth of individual

stripes is essential for turbulence to become sustained.

A single stripe shrinks or expands as a result of a competition between two key

mechanisms: growth at the tip due to the continuous addition of new streaks and inter-

mittent decay of streaky patches from the tail. In addition to the extension/shrinkage of

the stripes, these mechanisms also result in spanwise advection of turbulent stripe as

they travel downstream. The expansion of the stripe due to the tip growth and the tail

decay balances at Re ≈ 660 and individual stripes start expanding above this value.

However, interestingly, at any particular Re the splitting and the decay probabilities de-

pend on the length of the stripe. For larger stripe length, the probability of the collapse

is smaller than that of the shorter stripe. However, the probability of the splitting in-

creases with increasing stripe length. This dependence of the splitting and the decay

probabilities on the stripe length shows that unlike puff splitting and the puff decay in

pipe flow, these processes are not memoryless.

The critical point reported here is considerably lower than those reported in most

earlier studies. However, we can not comment on any universality class of the transition

as the study is inadequate in that respect.

6.2 Bifurcation of turbulent stripes in PPf

In the second part of the thesis, we carried out direct numerical simulations of Poiseuille

flow and applied dynamical systems concepts. We identified spatially localized invari-

ant solutions that can be regarded as the precursors of turbulent stripes. In experi-

ments, it is observed that the turbulent stripes are tilted with respect to the mean flow

direction. In our numerical study, the domain was tilted matching the angles that are

typically observed in experiments. The invariant solutions at a particular tilt angle deter-

mined using a bisection method correspond to lower branch traveling wave solutions.
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First, we report a family of these TWs at different tilt angles. The origins of the solu-

tion branches in the family in Re are studied by continuing LBTWs in parameter space

parametrized by Re to their saddle-node bifurcation points. All the solutions are un-

stable, with multiple unstable eigenvalues near the saddle-node points. The value of

Re for saddle-node bifurcations for different tilt angles are different with the minimum

value of ReSN = 370 at θ = 45◦. Starting from the saddle-node points, as Re increases,

the LBTWs start losing unstable eigenvalues and finally become edge states with only

one unstable eigenvalue. The UBTWs, on the other hand, become more and more

unstable as Re increases. The change in the stability of LBTWs happens due to Hopf

bifurcations. Again, for the solution branches at different values of the tilt angles, the

Hopf bifurcation point ReH is different. The RPOs which emerge through the Hopf bi-

furcations have distinct periods for distinct tilt angles. Unlike many other bifurcation

studies, it is the instabilities of the lower branches from which routes to chaos start.

Also, as these solutions are nonlinear, new solutions can not be created by just adding

different solutions. Therefore it can be argued that different routes to chaos coexist for

different values of the stripe tilt angle θ. One example of a route to chaos is reported

for θ = 35◦.

In addition, we performed parametric studies on LBTWs with parameters θ and

domain size Lx. Continuing LBTWs in θ gives a subset of tilt angle values for which

these TW solutions can appear. At the lowest value of Re at which a TW solution in

the computational domain exists, the tilt angle is 45◦. As Re increases, the subset of θ

in which the solutions exist also increase and at Re = 700, the solutions can exist for

θ ∈ (20◦, 70◦).

For studying the effects of varying domain size on the TWs, in a direction where the

stripes are not localized direction, i.e., Lx, we chose 45◦ as the tilt angle, based on the

fact that at this tilt angle, TW solution exists at the lowest value of Re. As Lx changes,

so does the wavelength of the streaks. Continuing the solutions in other parameter i.e.

Re, it is observed that a local minimum for ReSN is found around 367 and occurs for

Lx = 3.2.
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6.3 Deterministic origin of turbulent stripes

At onset, turbulence appears on multiple scales in space and time. However, the tran-

sient nature of turbulence makes it difficult to track to lower Re. Here, we successfully

showed that the turbulent stripes could be traced down to their dynamically simpler ori-

gins. Using a rectangular domain tilted at an angle 45◦ - which is a natural angle of the

stripes at onset, we adiabatically reduce Re and trace the localized turbulent stripes

beyond the relaminarization barrier. It is observed that the turbulent stripes, although

transient, exhibit lifetimes large enough to allow a gradual reduction in Re. As Re re-

duces the mean fluctuation energy and the amplitude of the fluctuations also reduces.

At Re < 426 the chaotic set becomes an attractor through a boundary crisis and sim-

plifies to a 2-Torus in a range Re ∈ (403.5, 412.9). Further reduction in Re simplifies the

2-torus into an RPO below Re < 403.5. This RPO emerges from a Hopf bifurcation of

the lower branch of traveling wave solution at Re = 387.6. This TW itself emerges in

the saddle-node bifurcation at Re = 370.6.

The chaotic sets were then characterized by computing correlation dimensions. We

compared the evolution of the correlation dimension with Re with Taylor Couette flow

(TCf) with only inner cylinder rotation [Brandstater and Swinney, 1987]. In that case,

turbulence arises through the instabilities of the laminar base flow, unlike the subcritical

turbulence in PPf. In TCf, turbulence develops slowly over an extensive range of Re as

global mode instabilities gradually increase spatial complexity and temporal disorder.

However, in PPf turbulence originates from a temporally laminar flow with the inbuilt

structural complexity of a lowRe turbulence. The nucleus of the turbulent stripes quickly

becomes unstable wit increasing Re and attractor dimension increase sharply. The

high dimensions suggest that the deterministic treatment to turbulence is of limited

use at larger Re and the statistical mechanics approach is more appropriate than the

deterministic approach.

6.4 Future work

The present experiments are inadequate in commenting on the universality class of the

transition to turbulence [Pomeau, 1986]. Further work is necessary in order to study the
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transition in more detail at and around the critical point Re = 670. The effects of multiple

interacting stripes on the critical point are also necessary to investigate. Such a study

is experimentally challenging due to the long timescales involved, and the advection

of stripes in the streamwise as well as in the spanwise direction limits the observation

times. Computational studies, on the other hand, will require simulations in very large

domains.

In the above, a phenomenological description of splitting and branching of the tur-

bulent stripes and relation of splitting events with Re has been reported. However, the

underlying mechanisms in detail are still not well-understood. As Re increases, first

the stripe splitting kicks in and later, with further increase in the flow rate the branching

also starts. It will be interesting to examine the role of the secondary flow in shaping

these mechanisms.

The mechanism behind the angle selection of the stripes is also not well under-

stood. In experiments, the natural angle of the stripes does not increase beyond 45◦.

However, the underlying TW solutions exist at values of angle above that. The expla-

nation behind the angle selection may lie in the secondary flow around the stripes.

The dynamically simple stripe solutions such as TWs and RPOs can be probed

further to understand the localization of the stripes and to shed more light on how this

localized turbulence sustains. In the above, we studied the invariant stripe solutions

localized only in one direction. The next step will be to identify the doubly localized

invariant stripe solutions. Such solutions will be more similar to the stripes observed

in experiments and therefore may provide further vital insights into the genesis of the

stripes.
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“Equilibrium and travelling-wave solutions of plane Couette flow,” Journal of Fluid

Mechanics, 638:243–266, 2009.

[Gollub and Swinney, 1975] Jerry P Gollub and Harry L Swinney, “Onset of turbulence

in a rotating fluid,” Physical Review Letters, 35(14):927, 1975.

[Grassberger, 1982] Peter Grassberger, “On phase transitions in Schlögl’s second
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