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A key challenge for community ecology is to understand to what extent observational 
data can be used to infer the underlying community assembly processes. As different 
processes can lead to similar or even identical patterns, statistical analyses of non-
manipulative observational data never yield undisputable causal inference on the 
underlying processes. Still, most empirical studies in community ecology are based 
on observational data, and hence understanding under which circumstances such data 
can shed light on assembly processes is a central concern for community ecologists. 
We simulated a spatial agent-based model that generates variation in metacommunity 
dynamics across multiple axes, including the four classic metacommunity paradigms 
as special cases. We further simulated a virtual ecologist who analysed snapshot data 
sampled from the simulations using eighteen output metrics derived from beta-diver-
sity and habitat variation indices, variation partitioning and joint species distribution 
modelling. Our results indicated two main axes of variation in the output metrics. The 
first axis of variation described whether the landscape has patchy or continuous varia-
tion, and thus was essentially independent of the properties of the species community. 
The second axis of variation related to the level of predictability of the metacommunity. 
The most predictable communities were niche-based metacommunities inhabiting 
static landscapes with marked environmental heterogeneity, such as metacommuni-
ties following the species sorting paradigm or the mass effects paradigm. The most 
unpredictable communities were neutral-based metacommunities inhabiting dynam-
ics landscapes with little spatial heterogeneity, such as metacommunities following the 
neutral or patch sorting paradigms. The output metrics from joint species distribution 
modelling yielded generally the highest resolution to disentangle among the simulated 
scenarios. Yet, the different types of statistical approaches utilized in this study carried 
complementary information, and thus our results suggest that the most comprehensive 
evaluation of metacommunity structure can be obtained by combining them.
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Introduction

Community ecologists apply theoretical, experimental and 
observational approaches to determine which processes struc-
ture ecological communities (Morin 2011). Experimental 
approaches provide the most direct way of testing the effects 
of specific processes in assembling particular communities, 
yet they hardly resemble the complexity of natural systems 
(Carpenter 1996, Schindler 1998). Likewise, while mathe-
matical models can be used to clarify the links from underly-
ing mechanisms to the dynamics of ecological communities, 
they typically rely on highly simplified assumptions and thus 
can be difficult to relate to empirical data. Data acquired by 
non-manipulative observational approaches are shaped by 
the full complexity of assembly processes, but as these pro-
cesses can seldom be observed directly, the challenge with this 
approach is to infer the assembly processes from the observed 
patterns. As different underlying processes can lead to similar 
or even identical patterns, statistical analyses of non-manip-
ulative observational data never yield undisputable causal 
inference on the underlying processes (Cale et al. 1989). Still, 
most empirical studies in community ecology are based on 
observational data, and hence understanding if and how such 
data can shed light on assembly processes is a central concern 
for community ecologists (Logue et al. 2011).

Metacommunity theory explains how networks of local 
species communities (metacommunities) result from the 
interplay of various stochastic (e.g. related to dispersal and 
extinction) and deterministic processes (e.g. niche differ-
ences and variation in competitive abilities), which are col-
lectively called assembly processes (Lortie et al. 2004, Leibold 
and McPeek 2006, Vellend 2010, Götzenberger et al. 2012). 
Classic metacommunity theory synthesizes four perspectives, 
each arising from a different – but not mutually exclusive 
– conceptual framework: neutral, patch dynamics, species 
sorting and mass effects paradigms (Leibold  et  al. 2004, 
Holyoak et al. 2005). In the neutral paradigm, all individuals 
are considered to be equal in competitive capabilities as well 
as niche preferences irrespective to which species they belong 
to, so that the differences in species composition emerge 
solely from stochastic ecological drift. The patch dynam-
ics perspective assumes that species track ephemeral habitat 
patches through colonization–extinction dynamics, in which 
case species coexistence is facilitated by e.g. colonization–
competition trade-off. Species sorting focuses on the differ-
ences in the species’ niche preferences along environmental 
gradients. The mass effects perspective differs from species 
sorting by assuming a much greater dispersal rate between 
the metacommunities which may influence variation in com-
munity composition e.g. through source–sink dynamics.

While metacommunity theory describes how different 
ecological processes influence community structure, a major 
challenge for community ecologists is to relate their data to 
theory, that is, to disentangle the relative importance of the 
various assembly processes in structuring the focal commu-
nity (Cottenie  et  al. 2003, Tuomisto  et  al. 2003, Cottenie 

2005, Vanschoenwinkel  et  al. 2007, Legendre  et  al. 2009, 
Kuglerová  et  al. 2015). For example, if observing that the 
community varies only little over space, this may be either 
because of high dispersal rates or because of low level of 
environmental variation or lack of niche differentiation 
(Chave and Leigh 2002, Condit  et  al. 2002, Chase 2003). 
Conversely, if the community varies much over space, this 
may indicate either the importance of stochastic process, or 
a high level of environmental variation combined with niche 
differences (Chase and Myers 2011, Weinstein et al. 2014). 
Conclusive disentangling among the alternative explanations 
is not possible solely based on observational data, but requires 
other kinds of information or biological knowledge on the 
system. For instance, if the relevant aspects of environmental 
variation are unknown or unmeasured, the researcher may 
falsely conclude that the community is structured by stochas-
tic processes rather than niche differentiation (Chang et al. 
2013).

A key question for empirical researchers is whether and 
how the broad array of available analysis methods allows 
one to relate observational data to metacommunity theory. 
One common approach for assessing how communities are 
structured along environmental gradients, or more gener-
ally across space, is to examine patterns in species turnover, 
i.e. beta-diversity, which can be measured by various indi-
ces (Baselga 2010, Chase and Bengtsson 2010, Chase and 
Myers 2011). Another related approach is that of variation 
partitioning, where variation in community structure is 
decomposed into environmental and spatial components 
(McArdle and Anderson 2001, Legendre et al. 2005, Smith 
and Lundholm 2010). These approaches can be combined 
with data on species traits or phylogenetic relationships, 
e.g. to assess patterns of trait beta-diversity or phylogenetic 
beta-diversity (Weinstein et al. 2014). Alternatively, one may 
start from the species-specific perspective, assessing how the 
occurrences of individual species vary over space or environ-
mental gradients, as done with species distribution modeling 
(D’Amen et al. 2017). Recently emerged joint species distri-
bution models (JSDM) consider multiple interlinked species 
simultaneously, making it possible to derive both species- and 
community-level inferences (Warton et al. 2015, Clark et al. 
2017, Ovaskainen et al. 2017).

Several studies have examined the ability of diversity 
indices and variation partitioning approaches to disentangle 
among neutral- and niche-based metacommunity processes 
using data simulated either by mechanistic metacommu-
nity models based on birth–death processes (Smith and 
Lundholm 2010, Münkemüller  et  al. 2012, Tucker  et  al. 
2016, Clappe  et  al. 2018) or phenomenological metacom-
munity models that generate directly patterns of species 
occurrence (Miller  et  al. 2017). These studies have shown 
that diversity indices and variation partitioning can under 
certain conditions separate communities simulated with neu-
tral dynamics, environmental filtering and competitive inter-
actions, especially when utilized along with phylogenetic and 
functional information. Further, Zurell et al. (2018) showed 
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that residual species-to-species correlations estimated by 
JSDMs coincide with co-occurrence indices in homogeneous 
landscapes, but that inferring the causal species interac-
tions behind co-occurrence is difficult, as e.g. predator–prey 
interactions can lead to either positive or negative pattern of 
co-occurrence.

In this paper, we use simulated metacommunities to ask 
to what extent assembly processes can be inferred from non-
manipulative observational data. Compared to the previous 
studies discussed above, our aims differ in three important 
ways. First, we provide a comparison between the widely 
used index-based and variation partitioning approaches 
to the more recently proposed JSDM approaches, which 
comparison has thus far been lacking. Second, we fill in the 
knowledge gap identified by Zurell et al. (2018), which is to 
test the ability of JSDMs to infer metacommunity processes 
using mechanistic and spatially explicit population models. 
Third, while the earlier studies have been chiefly concerned 
in disentangling among the classical metacommunity para-
digms (Smith and Lundholm 2010, Münkemüller  et  al. 
2012, Tucker  et  al. 2016, Miller  et  al. 2017, Clappe  et  al. 
2018), we focus on simultaneous variation in multiple 
assembly processes underlying these paradigms rather on the 
paradigms themselves. To do so, we devise a general agent-
based metacommunity model to simulate many kinds of 
metacommunities, including as special cases scenarios that 
mimic the four central metacommunity paradigms, but 
more importantly also the parameter space between these 
distinct paradigms. Our approach is conceptually depicted 
in Fig. 1. In addition to the metacommunity dynamics, we 
simulate a ‘virtual ecologist’ (Zurell et al. 2010) who gathers 
data from the simulated metacommunities by sampling both 

environmental covariates and species occurrences over a set of 
spatial locations, and then statistically analyses the data. Our 
key aim is to identify how output metrics that can be derived 
from snapshot data co-vary with the community assembly 
processes, and conclude how effective the output metrics are 
in disentangling the assembly processes that generated the 
observed data.

Material and methods

The simulation model

We simulated metacommunity dynamics using an agent-
based resource–consumer model, the details of which are 
given in the Supplementary material Appendix 1. To generate 
scenarios that span the range of the classic metacommunity 
paradigms, we consider a number of parameterizations of 
the individual-based model, presented with the help of the 
nine choices (C1–C9) that are described conceptually below 
and in Fig. 2, and in full detail in Supplementary material 
Appendix 1. To generate variation in resource types and their 
availability, we assume that there are four types of habitat 
patches, each of which produce six types of resource particles, 
so that the total type of resource types is 24. The landscape 
either has or has not large-scale gradients in resource avail-
ability (Choice C1). The landscape is further either patchy so 
that it consists of distinct patches, or that the patches overlap 
to the extent that spatial variation in the habitat availability 
is continuous (Choice C2). We further assume that either all 
patches are of equal quality, or that there is quality variation, 
some patches being sources and others sinks (Choice C3). 

Sta�s�cal analysis(a) (b)

(d)

(c)Metacommunity scenarios Data collec�on

Linking pa�erns to 
processes

Neutral paradigm Patch dynamics

Species sor�ng Mass effects

Habitat patch type 1
Habitat patch type 2

Species sor�ng Mass effe effff cts

Habitat patch type 1
Habitat patch type 2

Species A
Species B

ANALYSIS OF 
HABITAT 

VARIATION

JOINT SPECIES 
DISTRIBUTION 

MODELLING

BETA-DIVERSITY 
INDICES

DISTANCE-BASED 
VARIATION 

PARTITIONING

DISTANCE-BASED 
REDUNDANCY 

ANALYSIS

Spa�al sampling design

Figure 1. The general workflow of the study. Panel (a) illustrates the metacommunity scenarios corresponding to the four central metacom-
munity paradigms (adapted from Leibold et al. 2004). Panel (b) illustrates the ‘virtual ecologist’ collecting data on environmental covariates 
and community composition along a number of sampling locations. Panel (c) illustrates the ecologist applying statistical analyses to the 
data, resulting into the output metrics described in Table 1. Panel (d) symbolizes the ecologist trying to connect the statistical results to the 
underlying processes structuring the observed communities.
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Concerning the temporal structure, we assume that the 
landscape is either static or dynamic (Choice C4), and that 
in the dynamic case the patches are either short- or long-
lived (Choice C5). In a snapshot, the dynamic and static 
landscapes are indistinguishable in their habitat structure. 
Concerning variation in resource use, we assume that either 
all species are generalists utilizing equally well all resource 
types (in which case they all compete for the same resources), 
or that the species are specialist for particular resource types 
(Choice C6). In the latter case, we further assume that the 
level of specialization is either strict (one-to-one correspon-
dence between species and resource types, in which case the 
species do not show resource competition) or partial (spe-
cies are specialized to patches rather than resource types, in 
which case those species that are specialized to the same patch 
compete with each other) (Choice C7). Concerning variation 
in dispersal capacity, we assume that the species are either 
restricted to short-distance dispersal or also capable of long-
distance dispersal. The first choice (Choice C8) is whether 
all species follow the same dispersal strategy, or if half of the 
species follow short-distance dispersal and the remaining half 
long-distance dispersal. The latter case generates a coloniza-
tion–competition trade-off: the short-distance dispersers 
leave more propagules locally, and thus, they are superior 
in within-patch competition, whereas the long-distance dis-
persers are superior in colonizing empty patches located far 
away from the source patches. If all species follow the same 
dispersal strategy, they follow either short or long-dispersal 

(Choice C9). Combinations of the nine Choices C1–C9 
yield a total number 216 different metacommunity scenarios 
(Supplementary material Appendix 1).

Some particular parameterizations of the general agent-
based model conceptually match the four classic metacom-
munity paradigms. We first note that the metacommunity 
concept refers most characteristically to situations where 
it is possible to define well-lineated local communities, 
which is here achieved by patchy variation in habitat qual-
ity (Choice C2). The neutral perspective is represented by 
generalist resource use by the species, and the absence of 
competition–colonization trade-off: with these assump-
tions, species’ identity does not influence birth and death 
rates, and only total abundance of species is regulated, as is 
characteristic of the neutral paradigm. The species sorting 
perspective corresponds most characteristically to a static 
landscape that involves large-scale gradient in habitat avail-
ability, uniform patch quality, strict specialization in resource 
use, and species that follow the short dispersal strategy. In 
this case, the species have time to colonize the parts of the 
landscape that are most suitable for them (due to the static 
landscape), different parts of the landscape support different 
subsets of species (due to the presence of large-scale gradi-
ent), all patches are of high enough quality for supporting 
local populations (due to uniform patch quality), and the 
dynamics within local communities are not much influenced 
by other local communities (due to short dispersal). The mass 
effect perspective is similar to the species sorting paradigm, 
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but without large-scale variation in resource availability and 
with varying patch quality, and with all species following the 
long dispersal strategy. In this case, the dynamics within local 
communities are substantially influenced by other local com-
munities (due to long dispersal range and lack of large-scale 
gradient separating different types of local communities), 
and some patches are not of sufficient quality for support-
ing local populations (due to varying patch quality), which 
creates source–sink dynamics. The patch dynamics perspec-
tive is based on a dynamic landscape (which creates patch 
turnover), absence of large-scale gradients in resource avail-
ability and uniform patch qualities (which creates identical 
patches and homogeneous connectivities among patches), 
generalist resource use (which makes the patches identical 
from the species point of view), and that some species follow 
the short and others the long dispersal scenario (which creates 
a competition–colonization trade-off).

Data sampling

We assume that a virtual ecologist samples three kinds of 
data from the simulations: data on species occurrences 
on a set of sites (Y), data on environmental conditions on 
those sites (X) and the spatial coordinates of the sites (xy). 
While trait data and phylogenetic data can be highly use-
ful for inferring metacommunity processes, for simplicity we 
do not assume the availability of such data in the current 
study, but instead refer to earlier work (Münkemüller et al. 
2012, Weinstein  et  al. 2014, Miller  et  al. 2017) that has 
examined the ability of trait-based and phylogenetic-based 
divergence indices to separate metacommunity paradigms. 
We assumed that a virtual ecologist acquired data from the 
final state of the simulation, placing 100 study plots into 
a regular 10 × 10 grid (Fig. 1b). The researcher scored the 
presence–absence of each species in each study plot, resulting 

in the matrix Y, where the columns correspond to species 
and rows to sampling locations. The virtual ecologist col-
lected data also on habitat quality according to two sam-
pling scenarios: either the virtual ecologist acquired covariate 
data on all four habitat types included in our simulations 
(Supplementary material Appendix 1), or only on three out 
of the four habitat types, the fourth one thus being miss-
ing covariate (Choice C10). These data form the matrix 
X, where the columns correspond to habitat types and the 
rows to sampling locations, and the values give the habitat 
qualities. As the number of metacommunity scenarios is 216 
(Choices C1–C9) and the number of sampling scenarios is 
two (Choice 10), the total number of the types of data sets 
that we generated was 432.

Statistical methods

The virtual ecologist computed in total eighteen output 
metrics characterizing the data (Table 1). These output met-
rics include two indices of habitat variation (based on X and 
xy), three beta-diversity indices (Baselga 2010) (based on Y 
only), three metrics derived from distance-based variation 
partitioning (Legendre  et  al. 2005, Smith and Lundholm 
2010) (based on X, Y and xy), three metrics derived from 
distance-based redundancy analysis (McArdle and Anderson 
2001) (based on X, Y and xy), and seven output metrics 
derived from the joint species distribution model HMSC 
(Ovaskainen  et  al. 2017) (based on X, Y and xy). These 
output metrics are listed in Table 1, and details on how they 
were calculated as well as hypotheses about how they might 
relate to assembly processes are given in the Supplementary 
material Appendix 1.

The analyses described above produced eighteen out-
put metrics for each of the 432 scenarios. To synthesize 
these results, we performed three kinds of analyses. First, to 

Table 1. Output metrics included in the analyses. The eighteen output metrics are derived from five different analysis types: analysis of 
habitat variation (HAB), beta-diversity indices (BETA), distance-based variation partitioning (db-VP), distance-based redundancy analysis 
(db-RDA) and joint species distribution modelling (JSDM).

No. Analysis type Metric Description

1 HAB VHAB Variance in habitat quality
2 HAB DHAB Distance decay in habitat similarity
3 BETA βSOR Sørensen-based multiple-site dissimilarity
4 BETA βSIM Simpson-based multiple-site dissimilarity
5 BETA βNES Nestedness-resultant multiple-site dissimilarity
6 db-VP VABC Total explained variance in dp-VP
7 db-VP VAB/VABC Environmental proportion in dp-VP
8 db-VP VBC/VABC Spatial proportion in dp-VP
9 db-RDA R2.adj Total explained variance in dp-RDA
10 db-RDA X1|X2/R2.adj Environmental proportion in dp-RDA
11 db-RDA X2|X1/R2.adj Spatial proportion in dp-RDA
12 JSDM AUC Predictive power
13 JSDM VRAND Variance attributed to random effects
14 JSDM RUS Evidence for resource use specialization
15 JSDM POS Proportion of species pairs with positive association
16 JSDM NEG Proportion of species pairs with negative association
17 JSDM E[α] Posterior mean of spatial scale of residual variation
18 JSDM Pr[α > 0] Posterior support for spatially structured residual variation
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summarize how the output metrics vary generally among the 
scenarios, we applied redundancy analysis (RDA, Legendre 
and Anderson 1999), where we used the output metrics as 
the response variables and the choices C1–C10 as explana-
tory variables. Second, we explored to what extent the distri-
butions of the individual output metrics were able to separate 
among each of the Choices C1–C10. To do so, we examined 
the distributions of the output metrics for the sets of sce-
narios that differed in each of the focal choices. We consid-
ered that an output metric provided substantial evidence for 
identifying a particular choice if its value showed a consistent 
difference in at least 80% of the comparisons that differed in 
the focal choice (say, in case of Choice C2, the output met-
ric was greater in patchy than in continuous landscapes in at 
least 80% of comparisons). Third, to ask to which extent they 
can identify the scenario that generated the data, we applied 
multivariate probit-regression in HMSC, where the response 
variable was the Choices C1–C10 (a vector of zeros or ones 
or NA in case of the choice having no effect, e.g. slow or fast 
dynamics for static landscapes) and the explanatory variables 
were the output metrics. We recorded the predictive power 
for disentangling among simulated scenarios with AUC value 
based on 10-fold cross-validation. To examine which groups 

of output metrics carried the most relevant information, we 
performed this analysis in six different ways: by including the 
output metrics either only from one of the five analysis types 
(Table 1), or by including all eighteen output metrics.

Results

Figure 3 shows the results of the RDA analysis synthesizing 
how the output metrics varied among the scenarios. We 
interpret the first axis of variation (RDA1) to describe 
whether the landscape was patchy or homogeneous. This 
result shows that the output metrics are generally sensi-
tive to landscape structure, which in our study design was 
independent of the properties of the species that inhabit the 
landscape. We interpret the second axis of variation (RDA2) 
to relate to the predictability of the metacommunity. Overall, 
the most predictable metacommunities generally clustered to 
the upper and the most unpredictable metacommunities to 
the lower part of the RDA space, as indicated by the out-
put metrics O2 (AUC), O6 (VABC) and O9 (R2.adj) being 
located in the upper part of the space. Species belonging to 
predictable metacommunities were characterized by niche 
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separation and short-distance dispersal, and they inhabit 
static landscapes with large-scale gradient in habitat avail-
ability. Examples of predictable metacommunities are given 
by those following the species sorting and the mass effects 
scenarios, whereas examples of unpredictable metacommu-
nities are given by those following the neutral and patch 
dynamics scenarios (Fig. 3). The neutral scenarios spread over 
a large part of the RDA space, and the scenarios that followed 
the classical paradigms (red, green, brown and cyan dots in 
Fig. 3) are mixed with those that do not follow any classical 
paradigm (grey dots in Fig. 3). That is, the classical meta-
community paradigms reflected only part of the community 
variation.

Figure 3 suggests that patchy landscapes are characterized 
by high values of the output metrics O1 (VHAB), O2 (DHAB), 
O3 (βSOR), O5 (βNES), O10 (X1|X2/R2.adj) and O15 (POS) 
and low value of O17 (E[α]). These results obtained strong 
statistical support by the evaluation of the distributions of 
the individual output metrics. Figure 3 further suggests 
that predictable metacommunities are characterized by high 
values of the output metrics O2 (AUC), O9 (R2.adj) and 
O14 (RUS), but these results did not gain strong support 
based on the distributions of the individual output metrics 
(Supplementary material Appendix 1). In general, the indi-
vidual output metrics separated the simulated scenarios only 
in few cases on top for separating whether the landscape was 
patchy or continuous. As some exceptions, the measure and 
O14 (RUS) was informative for separating specialists from 
generalists, and the measure O3 (βSIM) was informative from 
separating long dispersal from short dispersal (Supplementary 
material Appendix 1).

While the individual output metrics provided only limited 
information to disentangle among assembly processes, their 
combinations were more informative. This was especially the 
case with the combination of output metrics derived from 
the JSDM model, which were informative in separating 
more aspects of the simulated scenarios than other types of 
output metrics (Table 2). All types of output metrics were 
successful in identifying if the simulated scenario involved a 
large-scale gradient in the distributions of habitat types, and 
if the landscape was patchy or continuous, but none of them 

were able to identify whether patch quality was uniform or 
heterogeneous (Table 2). The JSDM approach was the only 
approach capable of identifying whether metacommunity 
dynamics were simulated on static or dynamic landscape, 
and it further identified whether landscape dynamics were 
slow or fast. Both the beta-diversity indices as well as the 
JSDM approach were able to separate whether the species 
were generalists or specialists. The beta-diversity indices, 
distance-based redundancy analysis, and the JSDM approach 
were able to identify whether the species followed short or 
long dispersal, but none of the approaches was able to sepa-
rate whether the species varied in their dispersal distances. 
The JSDM approach was the only approach that was able 
to identify that the analyses missed some of the relevant 
environmental covariates (Table 2). Importantly, using com-
bined information from all approaches yielded the highest 
predictive power generally in all cases, suggesting the different 
analysis types carry complementary information (Table 2). In 
particular, only the combined approach was able to separate 
whether resource use specialisation was partial or full.

Discussion

In this work, we have applied statistical analyses to data 
on simulated species communities to examine what kind 
of signatures community assembly processes leave on non-
manipulative observational data. Beyond the much studied 
neutral–niche axis, we followed Brown  et  al. (2017) and 
considered variation among communities in a multidimen-
sional space consisting of the properties of the involved 
taxa as well as their abiotic environment. As a result, our 
metacommunity scenarios included not only the classical 
paradigms, but also the parameter space between them. 
In concordance with earlier simulation studies (Smith and 
Lundholm 2010, Münkemüller  et  al. 2012, Tucker  et  al. 
2016, Miller et al. 2017, Clappe et al. 2018) we found that 
many kinds of output metrics can be used to separate niche-
based and neutral communities. However, the classification 
of the scenarios into the classical paradigms reflects only 
part of the community variation that the assembly processes 

Table 2. Predictive power to disentangle among simulated metacommunity scenarios. The values give AUC values for predicting each of the 
Choices C1–C10 based on 10-fold cross-validation, using as predictors the output metrics related to each of the five analyses types listed in 
Table 1. The column ALL shows the predictive power if using all output metrics of the five statistical approaches simultaneously. Values 
smaller than 75% are not shown to emphasize the cases where predictive power is substantial.

Statistical approach HAB BETA db-VP db-RDA JSDM ALL

C1. presence versus absence of gradient 0.94 0.88 0.82 0.79 0.97
C2. patchy versus continuous landscape 1 0.99 0.78 0.97 0.92 1
C3. uniform versus varying patch quality
C4. dynamic versus.static patches 0.78 0.82
C5. slow versus.fast patch turnover 0.8 0.93
C6. generalists versus specialists 0.76 0.9 0.96
C7. partial versus strict specialists 0.81
C8. variation versus no variation in dispersal strategy
C9. short versus long dispersal 0.87 0.8 0.75 0.93
C10. missing versus not missing covariates 0.87 0.9
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create. Thus, the classical paradigms should be viewed only as 
special cases in the continuum of metacommunity dynamics 
generated by the varying underlying processes. Importantly 
regarding which analyses are most informative to disentangle 
among metacommunity processes, our results demonstrate 
that the best practice is to apply different types of statistical 
approaches simultaneously to gain complementary informa-
tion (Table 2). Thus, the most comprehensive evaluation of 
metacommunity structure can be obtained by combining dif-
ferent types of output metrics. This is in line with the JSDM 
approach being generally the most powerful approach for 
separating among the scenarios (Table 2), as it provides a 
wider set of output metrics than the other types of analyses 
considered here (Table 1).

Our results showed that snapshot data on species occur-
rences can to a limited extent be informative about disper-
sal capabilities of the species. Dispersal limitation can be 
expected to increase dissimilarity among local communities 
(Condit et al. 2002, Cottenie et al. 2003, Qian 2009), but 
thus far only few studies have rigorously tested this relation-
ship (Cadotte 2006, Logue et al. 2011, Grainger and Gilbert 
2016). Short dispersal is also expected to lead to steep dis-
tance decay in community similarity (Qian and Ricklefs 
2007, Soininen  et  al. 2007). Our results were in line with 
these expectations in the sense that short distance dispersal 
was related to high Simpson and Sørensen dissimilarities, 
and high spatial proportion in db-RDA. However, even in 
the well-controlled simulations, it was generally difficult to 
disentangle the dispersal mode due to the presence of con-
founding factors, and thus identifying dispersal mode from 
empirical patterns of species occurrences includes a high 
amount of uncertainty. We further note that comparison of 
beta-diversity indices among studies is difficult also for the 
reasons that they depend strongly on the spatial scale consid-
ered (Loreau 2000, Soininen et al. 2007) and the size of the 
data (Baselga 2010).

One long-standing assumption in community ecology is 
that narrow environmental niches promote increased beta-
diversity (Janzen 1967, Whittaker 1975). Several empirical 
studies have found that high resource diversity combined 
with resource use specialization is positively related to beta-
diversity (Buckley and Jetz 2008, Jankowski  et  al. 2009). 
Our results were in line with this expectation, as we found 
communities consisting of specialists to be characterized 
by high overall beta diversity. Further, the observed level of 
habitat specialization that we derived from the model-based 
approach reflected well the assumed level of habitat special-
ization, meaning that snapshot data on species occurrence 
can carry a reliable signal of specialization level.

In our results, many of the output metrics strongly differed 
between communities inhabiting patchy and continuous 
landscapes. Similar results have been found in empirical stud-
ies showing e.g. that spatial isolation among habitat patches 
increases nestedness (Bender  et  al. 2017, Gianuca  et  al. 
2017). The model-based results showed that linking snapshot 
data on species occurrences to prevailing habitat variation 

can inform about habitat turnover rate (Table 2), the signa-
ture of habitat turnover being given by low predictive power 
and high amount of variation attributed to random effects 
(Supplementary material Appendix 1). This is because in a 
dynamic landscape species occurrence does not depend on 
prevailing habitat conditions only but also on past ones, the 
latter representing missing covariates from the viewpoint of 
statistical modelling (Hodgson et al. 2009).

A strength of our study is that all scenarios were based 
on the same underlying agent-based model, and thus any 
differences among them is directly related to variation in 
the underlying assumptions. However, at the same time it is 
clear that our scenarios are simplified caricatures of reality, 
real communities being influenced by myriads of factors 
not considered here. Thus, the results provided in this study 
should be compared to results from real communities only 
qualitatively, not quantitatively. For example, while we 
found that the Simpson index βSIM was higher for scenar-
ios that involved short than long dispersal (Supplementary 
material Appendix 1), it is not possible to give a quanti-
tative threshold value above which βSIM would indicate 
‘short’ and below which ‘long’ dispersal, or to link βSIM to 
the actual length scale of the dispersal. This is because of 
βSIM, as well as all the other output metrics, are simulta-
neously influenced by many factors. Yet, we consider our 
results highly useful because they show which output met-
rics are informative about each of the underlying assembly 
processes. For example, the researcher may compare βSIM 
computed for the same empirical design for different sub-
sets of species, to test whether these subsets of species are 
likely to vary in their dispersal distances. The interpretation 
of βSIM as a measure of dispersal distance however assumes 
that ‘everything else remains constant’, e.g. that the spatial 
variation in resource availability is the same for both subsets 
of species, which may not be the case even if the species 
inhabit the same landscape.

A limitation of our study is that our analyses were restricted 
to spatial snapshot-data on species presence–absences 
derived from a stationary state of an agent-based simula-
tion model. We hope future research to examine how much 
more information about metacommunity processes can be 
inferred if more rich data are available, such as abundance 
data, time-series data or the possibility to combine commu-
nity data with trait-data and phylogenetic data. We further 
hope future research to test the robustness of our results with 
respect to other ecological situations, such as communities in 
a transient state.
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