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Abstract— In this paper, we design novel liquid time-constant
recurrent neural networks for robotic control, inspired by the
brain of the nematode, C. elegans. In the worm’s nervous
system, neurons communicate through nonlinear time-varying
synaptic links established amongst them by their particular
wiring structure. This property enables neurons to express
liquid time-constants dynamics and therefore allows the net-
work to originate complex behaviors with a small number
of neurons. We identify neuron-pair communication motifs as
design operators and use them to configure compact neuronal
network structures to govern sequential robotic tasks. The
networks are systematically designed to map the environmental
observations to motor actions, by their hierarchical topology
from sensory neurons, through recurrently-wired interneurons,
to motor neurons. The networks are then parametrized in
a supervised-learning scheme by a search-based algorithm.
We demonstrate that obtained networks realize interpretable
dynamics. We evaluate their performance in controlling mobile
and arm robots, and compare their attributes to other artificial
neural network-based control agents. Finally, we experimentally
show their superior resilience to environmental noise, compared
to the existing machine learning-based methods.

I. INTRODUCTION

The C. elegans nematode, with a rather simple nervous
system composed of 302 neurons and 8000 synapses [1],
exhibits remarkable controllability in it’s surroundings; it ex-
presses behaviors such as processing complex chemical input
stimulations [2], sleeping [3], realizing adaptive behavior [4],
[5], performing mechano-sensation [6], and controlling 96
muscles [7]. How does C. elegans perform so much with so
little? What are the underlying computational principles to
gain such high degrees of controllability? and how can we
design worm-like artificial intelligent (AI) systems based on
these principles to obtain better AI controllers? To answer
these questions, we take a computational approach.

It has been recently shown that neural networks con-
structed by a worm-inspired neuronal and synaptic model,
realize liquid time-constant (LTC) recurrent neural networks
(RNN)s with universal approximation capabilities [8], [9].
LTC-RNNs can capture complex dynamics with a few num-
ber of neurons, due to the existence of sigmoidal non-
linearities on the synapses which enable neurons to express
varying time-constants. The open question is how to build
such network topologies systematically in robotic control
domains while enhancing the interpretability of the system?
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Fig. 1. We design compact, interpretable and noise-robust neural controllers
inspired by the relational structures of the worm’s brain, to control robots.

In the present study, we propose a worm-inspired network
design methodology that utilizes the LTC-RNN model to
create interpretable neural controllers in robotic tasks. The
method proposes a set of rules to construct hierarchical
architectures, from sensory neurons, through an interleaved
set of interneurons, to motor neurons, by means of binary
relational structures named design operators (DO), illustrated
in Fig. 1. This design procedure imposes a high degree of
sparsity (around 80%), and builds up an attention mecha-
nism through distinct network pathways that enhances inter-
pretability. Along with the recent successes of the search-
based learning techniques for neural networks in control
environments [10], [11], [12], we adopt a random-search
memetic algorithm to parametrize the synaptic weights. The
key contributions of this paper are as follows:

1) Introducing novel network-design principles for the
liquid time-constant neuronal models, and equipping
the designed network with a search-based learning
algorithm, to govern robotic tasks.

2) Deploying DO-based networks in experiments with
real and simulated robotic environments.

3) Experimental demonstrations of the superiority of
the performance of DO-based networks in terms of
their compactness, robustness to noise and their inter-
pretable dynamics, compared to common RNNs.



II. RELATED WORKS

Brain-inspired Robotic Control. The way nervous sys-
tems of living creatures process information has been exten-
sively used in robotic control as a source of inspiration [13],
[14], [15], [16]. In particular, networks of biophysically mod-
elled neurons [17], [18] are deployed in applications such as
navigation of mobile robots [15], [19], control of unmanned
aerial vehicles (UAV) [20] and legged robots [21], [22], [23].
Obtained networks can be topologically divided into two
categories: 1) Networks that are put together by hand in a
piece-by-piece and trial-and-error fashion [21], [23], [15],
[20]. These approaches lack fundamental design principles.
2) Networks that deploy fully-connected structures and rely
purely on the learning phase to determine functions. Similar
to Deep learning models, interpreting dynamics of these
networks becomes a challenge [24], [25]. Our networks
address both challenges by incorporating a systematic design
together with a set of rules that improves interpretability.

Motion Planning. to (optimally) solve the motion-
planning problem, various model driven techniques have
been proposed, such as rapidly-exploring random trees [26],
[27], [28], cell decomposition [27], [29], [30], potential
fields [27], [31], [29], [30], satisfiability modulo theories
(SMT) [32], [33], [34] and model predictive control (MPC)
[35], [36]. These approaches are often human expert labor
intensive, to distill task-specific solutions. We aim to ease
the effort by introducing a combination of systematic design
equipped with machine learning techniques. In Parallel to
model-driven control systems, deep reinforcement learning
(RL) has achieved significant successes in agent control
[37], [38], [39], [10]. In a deep RL setting, parameters of
the neural network are tuned by a learning algorithm for
the control agent to take actions that maximize the total
reward. While they perform as good or surpass the perfor-
mance of the manually designed agents, their explainability
becomes a challenge, which is not desirable in safety-critical
applications. Our methodology overcomes this challenge
by imposing sparse network connectivity and by using an
interpretable neuronal model [9].

III. PRELIMINARIES

Here, we revisit the liquid time-constant (LTC) RNN
model, used to design DO-based networks and recap its
properties.

A. Neuron and Synapse Model

Neuronal communication is modelled by ordinary differ-
ential equations (ODE) describing the biophysical dynamics
of a passive cell [9]:

V̇i(t) = [Ii,L+ ∑
n
j=1 Îi, j(t)+∑

n
j=1 Ii, j(t)]/Ci,m

Ii,L(t) = ωi,L [Ei,L−Vi(t)]

Îi, j(t) = ω̂i, j [Vj(t)−Vi(t)]

Ii, j(t) = ωi, j [Ei, j,R−Vi(t)]gi, j(t)

gi, j(t) = 1/ [1+ exp(−σi, j (Vj(t)−µi, j))]

(1)

Algorithm 1: Network simulator
Input: Network V , Sensory neurons S, Motor neurons M

1 v[0 . . .n] ←Vleak ;
2 while True do
3 v[s ∈ S]← read sensor values();
4 I[0 . . .n] ← 0 ;
5 for e = (pre,post) ∈ E do
6 I[post]← I[post]+ (Erev(e)− v[post])w(e) ·σ(v[pre]);
7 end
8 for i ∈ 0, . . .n do
9 v[i]← ODE update(v, I);

10 end
11 set output(v[m ∈M]);
12 end

where Vi(t) and Vj(t) are the membrane potential of the
post and pre-synaptic neurons, Ei,L and Ei, j are the reversal
potentials of the leakage-channel and chemical-synapse, Ii,L,
Îi, j, and Ii, j are the currents flowing through the leakage-
channel, electric-synapse, and chemical-synapse, with con-
ductances ωi,L, ω̂i, j, and ωi, j, respectively, gi, j(t) is the
dynamic conductance of the chemical-synapse, and Ci,m is
the neuron’s capacitance. Ei, j determines the polarity of a
synapse either being inhibitory or excitatory. We also utilize
the artificial model for sensory and motor neurons introduced
in [9], in order to exchange information between networks
and their environment. In order to solve the ODE in real-time
efficiently, we used a fixed step solver [40]. Our simulator
(Algorithm 1) runs with O(|# neurons|+ |# synapses|) time
complexity for each time step ∆t .

B. Universal Approximation capability of the model

It has been recently shown that internal dynamics of a
neural network built by the neuronal and synaptic model
introduced by Eq. 1, realizes an LTC-RNN [9]. In addition
to varying their state-dynamics, LTC-RNNs adapt their time-
constant of activity particularly corresponding to their input
currents through a sigmoidal nonlinearity. It has been proved
that any finite-time horizon of n-dimensional continuous
dynamical systems, can get approximated by the internal
state and the n-output states of an RNN with units of the
form Eq. 1 (see Theorem 1 of [9]). Here, we take advantage
of the universal approximation capability of LTC-RNNs, to
introduce a systematic way to design interpretable and noise-
resilient controllers for robots.

IV. DESIGN OPERATORS

In this section, we characterize a set of relational com-
ponents with which we construct DO-based networks. The
wiring patterns among two neurons, discovered in C. ele-
gans, are called binary motifs [41], [42], [43]. Equipping
these motifs with the neuronal model of Eq. 1, results in
six design operators (DO)s: Excitation, inhibition, coupling,
sequencing, conservation, and selection, presented in Fig. 2.

Definition 1: Given the neurons in circuit G =
{N1,N2, ...Nn}, a Design Operator is a relation formed
among the activation state of neurons, based on their distinct
connectivity structure and their synaptic parametrization.
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Fig. 2. Design Operators. (A) Time series of the activity of DOs. (B)
Sampling process used in the correlation analysis. (C-J) Cross-correlation.
(I-J) Cross-correlation of the conservation DO with strong and weak
synaptic weights, respectively. (K) Bifurcation analysis of self-conservation
(unary) DO (at most three stationary points). (L) Bifurcation analysis for
conservation DO with strong synaptic weights. The isolines for dX(t)/dt=0
and dY (t)/dt=0, of the membrane potential of neurons X and Y , plotted on
the base plane have three intersections (stationary points). (M) Bifurcation
analysis for conservation DO with weak synaptic weights. The isolines
plotted on the base plane have only one intersection (stationary point).

DOs are fundamentally different compared to network mo-
tifs. Motifs [44], are frequently repeated structural patterns
in biological networks, whereas DOs are both structural and
relational dependencies of neurons. Motifs’ significance is
mainly limited due to the lack of information about the
synaptic polarities in biological networks [41]. However, We
adopted the concept of DOs from the functional dynamics
of neurons, captured by investigating calcium imaging of
the neuronal activity of the C. elegans’ brain [45]. More
importantly, the general goal of network motifs is to explain
the mechanisms underlying behavior of a biological network
through the interaction of basic building blocks [44]. A
design operator, in contrast, may result in the emergence
of many behaviors, for a given structure due to its output
dependencies on the alternation of the synaptic parameters.

We quantify this dependence by performing cross correla-
tion and bifurcation analyses. A short simulation for each
DO is depicted in Fig. 2A. An excitation/inhibition DO
occurs through one excitatory/inhibitory chemical synapse
and leads to the stimulation/inhibition of the post-synaptic
neuron. A coupling DO occurs through one electrical synapse
and establishes the coupling of the activity of the two
neurons. A sequencing DO imposes a sequential activation
of the neurons. A conservation/selection realizes a synchro-
nizing/antagonizing activity.

The correlation analysis of the DOs given in Fig. 2C-

J, was obtained by subjecting the neurons to independent
random-pulse generators, as in Fig. 2B, and collecting their
outputs. In an excitation/inhibition DO, the neurons are
phase-aligned with a positive/negative correlation at the main
diagonal, (Fig. 2D, 2E). This means that excitation/inhibition
does not introduce delay or memory. In a Coupling DO,
the neurons are also phase-aligned Fig. 2F. In a selection
DO, the dynamics are antagonistic, and result in a compe-
tition for being active, (Fig. 2G). In a sequencing DO, a
positive/negative correlation appears above/below the main
diagonal, (Fig. 2H). Finally, in a conservation DO, the
activity is correlated, independently of phase differences. It
thus introduces a memory element (Fig. 2I), which vanishes
at low synaptic weights, (Fig. 2J).

To understand the dependencies of a DO to its parameters,
let us take the memory effect realized by the conservation
DO and perform a bifurcation analysis, to explore the num-
ber of fixed points, for different synaptic weights [46].
In Fig. 2K, The bifurcation plot represents how a self-
excited neuron, as a special case of conservation, determines
the dynamics. For large weights (purple line), the neuron
has three fixed-points as follows: Stable (left), meta-stable
(middle), and stable (right). The stable fixed-points are able
to robustly preserve the membrane potential values, as being
intuitively inactive (resting) at around −70mV , and active
at around −20mV . This ability vanishes for a low synaptic
weight (green line), as the only fixed-point corresponds to
the resting potential. In Fig. 2L-M, we show the same
analyses for two neurons. For large synaptic weights, the
leftmost and rightmost fixed-points of the isolines plotted
on the base plane, robustly preserve the potential. For low
synaptic weights, this ability of the DO demolishes. In the
next section, we describe how to design neural controllers
based on DOs.

V. DESIGN A DO-BASED NEURAL NETWORK

In this section, we introduce our methodology for design-
ing DO-based neural networks. For a sequential robot control
task with identifiable finite action primitives, a network
can be designed to fit the given behavior. Given a robotic
environment with p sequential action primitives, we design
a DO-based network by the principles described below:

Rule 1: Add p command neurons for p motion primitive.
- If two primitives have direct temporal dependencies, add a
Sequencing DO between their underlying command neurons.
- If two primitives function in parallel, add Conversation DO.
- If two action primitives are mutual exclusive, add a Selec-
tion DO between their corresponding command neurons.
- If a single action primitive should persist over a certain
time, add a Self-Conservation DO.

Rule 2: Identify trigger conditions of primitives; add an
Upper interneuron for each of the conditions and connect the
interneuron to the command neurons by Excitation DOs.

Rule 3: For each of the Upper interneurons, identify the
signals on which its condition triggers. This signals can come
from other neural circuit modules or be defined based on the
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Fig. 3. (B-E) The architecture of the DO-based network designed parking. (A) Rover searches for a spot and performs the parking. (B) Parking-trajectory
circuit. (C) Six motion primitives for parking controlled by six command neurons. (D) The spot-locator circuit (E) The rear-side collision-avoidance circuit.
(F-K) Input noise resilience. (F) Noise injection analysis. The increasing noise (from left to right) is directly applied to the sensory neurons. (G) The effect
of noisy input data on the function of the network. (H) The variance of the linear-velocity output error, while increasing the variance of the input noise.
(I) The same analysis for the angular-velocity output. (J) The response of the network in the presence of noisy input. (K) The response of the TDNN
10D−100 100N RNN (10D = 10 delay elements and 100 100N = 2 layer each with 100 neurons), to the same noisy input. TDNN = time-delayed neural
network [47]. NARX = nonlinear auto-regressive network with exogenous input [48]. LSTM = long short term memory [49].

characteristics of the environment. Signals link their activity
to their downstream interneurons, by Coupling DOs.

Rule 4: k Sensory neurons are deployed for k obser-
vation variables. Sensory neurons are coupled with their
downstream upper interneurons, by coupling DOs. Their
connections are established such that particular pathways
from the input to output, direct the attention [50] of the
network towards specific actions.

Rule 5: Devote n motor neurons corresponding to n con-
trol action. Command neurons positively correlating with the
control action, synapse into the motor neurons by Excitation
DO and inhibit their negatively correlating downstream mo-
tor neurons, by inhibitory DOs.

Described rules enable us to design highly sparse neural
networks with auditable internal dynamics. By learning the
parameters of these networks, we can guide the architecture
to perform and generalize well in the control of robots.

VI. SYNAPTIC PARAMETRIZATION

To optimize the parameters of a DO-based network, we
adopted a Random-search memetic learning algorithm. Re-
cently it has been shown that random search optimization
strategies [51], can perform as good as gradient-based ap-
proaches, with additional advantages such as skipping the
gradient issues [10], [11], [12].

Our learning algorithm uses a population of (synaptic)
parameter particles and repeats the following two steps
until convergence: Generate a new population by randomly

perturbing the current one. Resample the obtained population
according to the cost of the particles (Network behavior de-
viation for this particle, from a desired behavior). Algorithm
2 outlines the working principles of the learning system.

VII. AUTONOMOUS PARKING OF A MOBILE ROBOT

In this section, we design DO-based neural networks to
perform an autonomous parking procedure with a Pioneer
P3-AT robot [52], by the design rules introduce in Sec. V.

Algorithm 2: Random-Search Memetic Algorithm
Input: A cost function f to minimize, Population size n
Output: Parameter θ such that θ is a minimum of f

1 P← random Population of size n;
2 θbest ← rand();
3 while New θbest found recently do
4 for i← 1 to n do
5 Local-random-search( f ,P[i]);
6 if f (P[i])< f (θbest) then
7 θbest ← P[i];

8 for i← 1 to n do
9 q← select best parameters from P;

10 Q[i]← q+ rand();

11 P← Q;

12 return θbest ;



The task includes 3 control procedures as finding a parking
spot, performing a parking trajectory and simultaneously
avoiding possible obstacles. For each task, a DO-based
network is designed and presented in Fig. 3D, 3B, and 3E,
respectively. The core circuit (the parking trajectory), in Fig.
3B, follows Rule 1 to include 6 command neurons for six
motion primitives shown in Fig. 3C second column, and con-
figures sequencing DO amongst them. Upper interneurons
establish Coupling DO with the Parameter neurons which
condition their activation, based on Rule 2 and 3. (See
Fig. 3B top side box). Based on Rule 4, sensory neurons
only synapse into their downstream pathways on which they
impose a high impact. For instance, the angular position (θ )
sensor, connects to interneuron pathways that are involved
in the control of the robot’s turns. 3 motor neurons are set
to control right turning, left turning and moving backward,
then Rule 5 is applied for their connectivity.

The spot locator neural circuit, shown in Fig. 3D, designed
to move the robot forward until a filtered Light Detection and
Ranging (LIDAR) signal flags a proper parking location. We
pre-processed the LIDAR signal with a non-linear Finite-
Impulse-Response (FIR) filter before feeding it into the
network [53]. Once the spot is found, the circuit activates
the Parking trajectory agent to initiate the parking process.
While the parking is in action, a rear-side collision avoiding
circuit (Fig. 3E), translates the Sonar sensory inputs to
preventive signals to the motor neurons by the inhibition
DO. A parking reference trajectory is provided as a set of
points T ={(xt ,yt ,θt) | t∈{0, . . .,M}}. Correspondingly, we
set a cost (objective) function as:

R= ∑
i∈T

(i(t).x−s(t).x)2+(i(t).y−s(t).y)2+(i(t).θ−s(t).θ)2, (2)

where s(t) is the state (xt ,yt ,θt) of the rover at time t. We
then call the learning algorithm, to minimize this function
with respect to the synaptic weights. A video of the resulting
neural network’s performance can be viewed at https://
youtu.be/zOnqVaSl9nM.

VIII. MANIPULATING A ROBOTIC ARM

In this section, we extend our experimentation to the
design of a DO-based network to move a Cyton-Epsilon-
300 robotic arm with eight degrees of freedom (seven joints
and a gripper) [54] in Fig. 4C, to a certain location, grab
an object, move the object to a second location and then
release the object (Fig. 4A). Action primitives are divided
into 5 tasks schematically explained in Fig. 4A right box,
and based on Rule 1, 5 command neurons are wired together
to control each action. Upper Interneurons in this setting,
adopt a fully connected topology to translate 14 sensory
observations to trigger commands for the command interneu-
rons while respecting Rules 2 and 3. Each sensory neuron
that corresponds to the angle of individual joints (see the
setting in Fig. 4D), forms coupling DO with two downstream
interneurons randomly. This sparsity imposes an attention
mechanism on the network and makes the interpretation of
the decision pathways easier. Command neurons controlling
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Fig. 4. Manipulating a robotic arm. (A) Grasping and releasing an object
at distinct positions. (B) Arm controller neural network (C) Command
neurons’ sequential activation (D) Illustration of the controlled end-effector
composted of 7 joints and one gripper. (E) Indented cooperation of the
command neurons.

the joints densely synapse into their 14 downstream motor
neurons by Excitation DOs. The designed neural circuit is
presented in Fig. 4B. The learning process of the network has
been performed hierarchically. First, the sub-circuit including
sensory neurons to upper interneurons was trained in a sepa-
rate environment with the objective to activate when the arm
reached a desired position. Then the motor neuron network
is optimized in isolation with a supervised setting that with
an objective of moving the arm to a desired position if the
corresponding command neuron is activated. After stacking
up the entire network, we fine-tuned all synaptic weights
with Algorithm 2. A video demonstrating the performance
of the neural controller on the arm in Gazebo can be viewed
at https://youtu.be/p8D3JTb8qLM.

IX. EXPERIMENTAL EVALUATION

In this section, we point out the distinctions of DO-
based networks compared to that of artificial recurrent neural
networks and assess their performance. The parking network
shown in Fig. 3B comprises 39 neurons together with 49
trainable parameters. Compared to standard artificial neural
networks generating similar dynamics, they are significantly
smaller. We conducted an experiment to compare the parking
performance of standard RNNs in generating the outputs



TABLE I
COMPARING PARKING PERFORMANCE OF DO-BASED NETWORKS IN

TERMS OF THEIR NETWORK SIZE WITH STANDARD RNNS. RMSD =

ROOT MEAN SQUARED DEVIATION, v = LINEAR VELOCITY OUTPUT, ω =

ANGULAR VELOCITY OUTPUT AND E = TERMINATION OUTPUT

RNN Neurons Params v ω E
Type Per-Layer Total RMSD RMSD RMSD

TDNN-10D 10-3 943 8.9·10−3 4.1·10−3 7.7·10−3

TDNN-10D 100-100-3 19503 7.0·10−3 4.2·10−3 9.4·10−3

TDNN-10D 50-50-50-3 9803 6.2·10−3 3.3·10−3 8.4·10−3

NARX-50D 50-50-50-3 13153 3.5·10−3 2.6·10−3 4.8·10−3

LSTM 10-3 968 3.5·10−3 3.5·10−3 3.5·10−3

LSTM 100-3 45248 2.0·10−3 2.0·10−3 2.0·10−3

LSTM 100-80-3 102928 1.6·10−3 1.6·10−3 1.6·10−3

DO-based 39 49 Ground-truth

of a DO-based network, given the sensory inputs. Table I,
summaries the performance of various RNN topologies.

A. DO-based networks realize complex dynamics with highly
sparse and compact network architectures

DO-based nets are 19 times smaller in terms of their
trainable parameters than the smallest RNN (time-delayed
neural network (TDNN) with 10 delay elements). The reason
for the capability of realizing complex dynamics with a
fewer number of elements lays in their neuronal and synaptic
model (Eq. 1). The model realizes liquid time constant
dynamics, meaning that each neuron varies its time constant
based on its presynaptic inputs. This is due to the synaptic
model’s nonlinearity which becomes a rich resource for
fitting complex dynamics with a fewer number of neurons.

B. DO-based networks are interpretable

Designing neural networks based on DOs, allows us
to establish neuronal pathways with certain functionality,
inside the network. For instance, in the parking network,
the function of every node is known given their underlying
design rules. In a more general case, such as the Arm neural
controller, the layer-wise design principles (Rules 1 to 5)
increases the level of transparency of the network. In fact, the
design principles realize an empirical attention mechanism,
to govern interpretable dynamics, where every input to the
output pathway, contains interneurons with dedicated actions.

C. DO-based networks are highly resilient to noise

For the parking network, we performed two white Gaus-
sian noise-injection experiments. The first exposes all sen-
sory neurons to increasing internal noise and observes how
the robot parks and how the noise propagates through the
network to the output (Fig. 3F). The second watches how
environmental input noise effects the performance of the
network compared to other types of RNNs (Fig. 3G-I),

Fig. 3F-I, show the gradual worsening of the parking
behavior. Fig. 3F and 3J, expose a remarkable property of the
DO-based networks: The noise is filtered out as it propagates
from the sensory-neurons layer to the motor-neurons layer.
The performance of network gets defected by a phase shift

however it still can perform a decent parking trajectory even
at a noise-level as large as the output signal itself. The
capacitive nature of neurons in the neuronal model acting
as a filter, presumably explains this robustness. A video of
the parking performance in the presence of input noise can
be viewed at https://youtu.be/tM9xBQFzBks.

As illustrated in Fig. 3H and 3I, DO-based Networks
considerably outperformed other RNN structures in terms
of expressing noise-resilient output dynamics. The figures
further demonstrate the sensitivity of the RNNs to noise
attacks. While the input noise in DO-based networks causes
a slight phase-shift in the output, as shown in Fig. 3J, the
noise passes unhindered through all the layers of an RNN,
and resulted in distortion of the outputs, as shown in Fig. 3K.
Hence, DO-based neural networks distinct their performance
in terms of robustness to input noise, compared to other
recurrent neural network topologies.

X. CONCLUSIONS AND DISCUSSIONS

We introduced a novel methodology for constructing
compact, interpretable and noise-resilient neural networks
for controlling robots, inspired by the relational structures
(Design Operators) of the nervous system of C. elegans. We
experimentally illustrated the superiority of the performance
of our compact DO-based neural networks in terms of
robustness to noise, compared to standard RNNs.

DO-based networks construct a hierarchical network struc-
ture from sensory neurons, through an interleaved set of
interneurons, to motor neurons. Their wiring structure is
realized by a systematic set of rules, at multi-scale network
resolutions. Furthermore, the synaptic and neuronal model
constructs a sigmoidal nonlinearity on each synaptic link,
resulting in the creation of varying time-constants of the net-
work’s nodes. This property enables DO-based networks to
construct complex dynamics with a few number of elements.

Synaptic parameters of DO-based networks are then
learned in a supervised fashion, utilizing a search-based
optimization algorithm. The learning process enhances the
scalability of the DO-based networks. Application of this
type of circuits is broad in fitting finite-time horizon of n-
dimensional continuous dynamical systems since their neu-
ronal semantics realize universal approximation capabilities.

Many alternative approaches to the construction of DO-
based networks can be taken. Model reduction methods on
a densely connected network can be applied to obtain auto-
matically generated neural networks while respecting Rules
1 to 5. DO-based neural networks are bio-physically realistic
artificial RNNs. We believe that their working principles
presumably results in the development of better and safer AI
systems, specifically in safety-critical robotic applications.
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