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ABSTRACT 
The solving of complex tasks requires the functions of more than one brain area and their                

interaction. Whilst spatial navigation and memory is dependent on the hippocampus, flexible            

behavior relies on the medial prefrontal cortex (mPFC). To further examine the roles of the               

hippocampus and mPFC, we recorded their neural activity during a task that depends on              

both of these brain regions.  

 

With tetrodes, we recorded the extracellular activity of dorsal hippocampal CA1 (HPC) and             

mPFC neurons in Long-Evans rats performing a rule-switching task on the plus-maze. The             

plus-maze task had a spatial component since it required navigation along one of the two               

start arms and at the maze center a choice between one of the two goal arms. Which goal                  

contained a reward depended on the rule currently in place. After an uncued rule change the                

animal had to abandon the old strategy and switch to the new rule, testing cognitive               

flexibility. Investigating the coordination of activity between the HPC and mPFC allows            

determination during which task stages their interaction is required. Additionally, comparing           

neural activity patterns in these two brain regions allows delineation of the specialized             

functions of the HPC and mPFC in this task. We analyzed neural activity in the HPC and                 

mPFC in terms of oscillatory interactions, rule coding and replay. 

 

We found that theta coherence between the HPC and mPFC is increased at the center and                

goals of the maze, both when the rule was stable or has changed. Similar results were found                 

for locking of HPC and mPFC neurons to HPC theta oscillations. However, no differences in               

HPC-mPFC theta coordination were observed between the spatially- and cue-guided rule.           

Phase locking of HPC and mPFC neurons to HPC gamma oscillations was not modulated by               

maze position or rule type. 

 

We found that the HPC coded for the two different rules with cofiring relationships between               

cell pairs. However, we could not find conclusive evidence for rule coding in the mPFC. 

 

Spatially-selective firing in the mPFC generalized between the two start and two goal arms.              

With Bayesian positional decoding, we found that the mPFC reactivated non-local positions            

during awake immobility periods. Replay of these non-local positions could represent entire            

behavioral trajectories resembling trajectory replay of the HPC. Furthermore, mPFC          

trajectory-replay at the goal positively correlated with rule-switching performance. Finally,          
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HPC and mPFC trajectory replay occurred independently of each other. These results show             

that the mPFC can replay ordered patterns of activity during awake immobility, possibly             

underlying its role in flexible behavior.  
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INTRODUCTION 

Navigating within an environment and learning which behavior leads to a reward, combined             

with the ability to flexibly adapt behavioral strategies upon changed reward contingencies,            

requires the interplay of brain regions. Two brain areas that are implicated in these cognitive               

processes are the hippocampus and medial prefrontal cortex (mPFC). Although learning and            

memory functions have been ascribed to most brain regions, declarative memory - the             

memory of facts and events - has been particularly associated with the hippocampus             

(Scoville and Milner, 1957; Eichenbaum, 2001). With the discovery of place cells and that              

hippocampal lesions cause severe impairments in spatial navigation, spatial memory, a type            

of declarative memory, is the most widely studied function of the hippocampus (Morris et al.,               

1982; O’Keefe and Dostrovsky, 1971). On the other hand, cognitive control of behavior such              

as attention and planning, is thought to depend on the mPFC. Flexibly switching between              

strategies requires cognitive control and the mPFC (Ragozzino et al., 1999a). A study             

demonstrating that humans with lesions to the prefrontal cortex show perseverative behavior            

provided early evidence for a mPFC involvement in flexibly switching between strategies            

(Milner, 1963).  

 

The hippocampus and mPFC have been implicated in various behaviors, but the following             

introduction will focus on studies that link these areas with cognitive functions required for              

the performance of goal-directed behavior. 

 

The hippocampus 

The ​hippocampus proper is divided into the three subregions dentate gyrus (DG), CA3 (CA              

for cornu ammonis) and CA1. The three subregions are connected via excitatory synapses             

and information is routed from DG → CA3 → CA1 (Andersen, 1975). The excitatory              

projections connecting the DG to CA3 are called the mossy fibers and those connecting the               

CA3 to CA1 are the Schaffer collaterals. Most sensory information reaches the hippocampus             

through the entorhinal cortex (EC). The perforant path describes the input from EC layer II               

reaching the DG and CA3. Through the temporoammonic path input from EC layer III              

reaches the CA1. EC layer V is innervated by the CA1 and subiculum, making the EC also                 

the main relay for information flow out of the hippocampus to neocortical areas.  
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Figure 1: Schematic representation of the excitatory pathways in the hippocampus.  
(​a​) Input reaches the hippocampus over the perforant path: EC layer II projects onto granule               
cells in the DG (1) and CA3 pyramidal neurons (2). Another input constitutes the              
temporoammonic path: EC layer III projects onto CA1 pyramidal neurons (5). 
(​b​) Mossy fibers of granule cells project to CA3 (3).  
(​c​) Schaffer collaterals of CA3 pyramidal neurons project onto CA1 pyramidal neurons (4). 
(​d​) Recurrent collaterals (RC) of CA3 pyramidal neurons project to other CA3 pyramidal             
neurons. 
(​e​) CA1 pyramidal neurons project to the subiculum and deep layers of the EC. 
(Figure adapted from (Rolls and Treves, 1998).) 
 

Place coding 

A breakthrough in the field of hippocampal research came with the discovery that CA1              

pyramidal cells are active in discrete places of an environment. These spatially-selective            

cells were named place cells and it was proposed that entire ensembles of these cells are                

the substrate for the cognitive spatial map required for spatial navigation (O’Keefe and             

Nadel, 1978; Tolman, 1948). As the number of simultaneously recorded place cells            

increased, it became possible to predict the spatial position of the animal based on the               

activity of the neural population (Wilson and McNaughton, 1993). 

 

Hippocampal-dependent and hippocampal-independent task 

Additional evidence that the hippocampus has a role in spatial processing came from lesion              

studies. Hippocampal lesions typically result in performance deficits for tasks with a spatial             
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component, whilst versions of the task without a spatial component can be solved without              

the hippocampus. A seminal study required rats to navigate in a pool of water positioned in a                 

room with external landmarks and find a hidden platform for escape (Morris et al., 1982).               

Hippocampus lesions caused profound increases in escape latency. When the platform           

protruded out of the water, and thereby was made visible to the rat, the performance of                

hippocampus-lesioned rats reached that of controls. This Morris Water Maze study therefore            

demonstrated that tasks involving spatial navigation are hippocampus-dependent. Numerous         

subsequent studies further corroborated the notion that the hippocampus is required for            

spatially-guided strategies, whilst response- or cue-guided strategies are        

hippocampus-independent (Colombo et al., 2003; Ferbinteanu, 2016; Packard et al., 1989;           

Stringer et al., 2005). 

 

Remapping 

With the discovery of place cells an extensive body of studies investigated their properties              

further. In particular, the stability of place cell coding was first tested by comparing their               

spatial firing fields, i.e., place fields, at various exposures to the same environment. Indeed,              

place cells would show stable firing patterns over days if the environment was kept constant               

(Muller et al., 1987). However, changes to visual cues and the environment lead to the               

appearance, disappearance or moving of place fields, a phenomenon termed global           

remapping (Muller and Kubie, 1987). Later it was found that place cells also showed              

variations in firing rates, without changing their spatial selectivity, which was termed rate             

remapping. Remapping does not only result from changes in sensory cues but also             

motivational state and behavioral context (Markus et al., 1995; Wood et al., 2000).             

Therefore, the hippocampus can separate memories by providing distinct representations for           

similar environments via remapping. Global and rate remapping will lead to changes in the              

temporal firing relationship between cells. Co-firing between cell pairs is therefore also            

measured when investigating for changes in population coding (Averbeck et al., 2006). 

 

Local field potential 

The electrophysiological signal arising from the summed electrical activity of many nearby            

neurons is called the local field potential (LFP). The LFP can oscillate at different              

frequencies that are associated with cognitive functions. Theta oscillations (6-10 Hz)           

represent a prominent pattern of hippocampal activity that, in rodents, mainly arise during             
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voluntary movement such as running (Vanderwolf, 1969). The theta phase at which            

hippocampal cells fire provides additional information (Huxter et al., 2008; Lever et al., 2010;              

O’Keefe and Recce, 1993). Another prominent pattern in the hippocampal LFP, specifically            

in CA1, are the sharp wave-ripples (SWRs), which are transient (50-100 ms) and fast              

(150-250 Hz) oscillatory events (Buzsaki et al., 1992). During SWRs pyramidal and            

interneurons exhibit burst firing, leading to periods of high synchrony among the            

hippocampal population (Buzsaki et al., 1992). SWRs primarily occur during slow-wave sleep            

and behavioral immobility, such as exploratory pauses or consummatory behavior (Buzsaki           

et al., 1992; Csicsvari et al., 1999). Tonic excitation from CA3 and phasic inhibition within               

CA1 underlie the generation of CA1 SWRs (Gan et al., 2017). 

 

SWRs and replay 

The finding that hippocampal neurons exhibit burst firing during SWRs, led to the question of               

whether cells randomly participated in increased firing or whether a selective group of cells              

was active during these events. First indication that firing during sleep may serve a              

mnemonic function came from a study showing that hippocampal cells that were active             

during the waking period would increase their firing rate in subsequent sleep (Pavlides and              

Winson, 1989). Later it was shown that place cell pairs that had overlapping place fields, and                

hence fired together with short latencies during waking, also showed an increased tendency             

to fire together in subsequent sleep, representing a cellular correlate of learning (Wilson and              

McNaughton, 1994; O’Neill et al., 2008). The reactivation of awake cell pair co-firing in sleep               

was larger during SWRs than compared to the rest of sleep. Finally, it was demonstrated               

that the order of reactivation is maintained in sleep SWRs and can replay entire spatial               

trajectories in a time-compressed manner (Louie and Wilson, 2001; Skaggs and           

McNaughton, 1996). The role of sleep replay is thought to lie in the consolidation of               

memories for behavioral events. Indeed, reactivation of goal-related hippocampal         

assemblies in sleep predicts later goal memory and selective disruption of SWRs during             

sleep impairs spatial learning and memory (Dupret et al., 2010; Ego-Stengel and Wilson,             

2010; Girardeau et al., 2009). 

Replay was later also demonstrated to occur during periods of immobility during the awake              

state. The firing rate of hippocampal cells was increased during awake SWRs as was the               

cofiring of cell pairs with neighboring place fields (O’Neill et al., 2006). Finally, hippocampal              

replay of entire trajectories could also occur during awake SWRs (Diba and Buzsáki, 2007;              

Foster and Wilson, 2006; Pfeiffer and Foster, 2013; Singer et al., 2013). Several functional              
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roles have been proposed for awake replay in the hippocampus. For example, reactivation             

during awake SWRs was enhanced after rewarded outcomes, suggesting that awake replay            

might have a role in assigning value to places (Ambrose et al., 2016; Singer and Frank,                

2009). Awake replay might facilitate storage of new memories since novel experiences also             

enhance reactivation (Cheng and Frank, 2008). Finally, there is increasing evidence that            

awake replay supports planning of future paths and goal-directed behavior. Awake replay            

was increased at the decision point before correct choices and inhibition of awake SWRs              

resulted in impairments in the learning of a spatial alternation task (Jadhav et al., 2012;               

Singer et al., 2013). Interestingly, reactivated trajectories at the decision point included both             

the upcoming correct arm as well as the other not chosen arm and were therefore not                

predictive of the behavioral choice (Singer et al., 2013). Later studies however did             

demonstrate that awake replay can be predictive of choice (Pfeiffer and Foster, 2013; Xu et               

al., 2019). The Xu et al. study, for instance, found that replay at the choice point in the                  

reference memory version of the radial maze was predictive of the future arm taken, whilst in                

the working memory version of the task was predictive of the past arm (Xu et al., 2019).                 

Further evidence that awake replay is not a mere recapitulation of experience, but may have               

a role in planning or evaluating choices, came from studies that showed that replay was not                

necessarily linked to ongoing behavior and could replay previously not-experienced          

trajectories and even trajectories avoided by the animal (Gupta et al., 2010; Pfeiffer and              

Foster, 2013; Wu et al., 2017). 

 

Mechanisms of replay 

The mechanisms that underlie replay remain controversial. Whilst one line of evidence            

suggests that replay is generated from experience (Silva et al., 2015), others suggest that              

replay reflects preconfigured and hardwired assemblies (Dragoi and Tonegawa, 2011). The           

study of Dragoi and Tonegawa coined the term preplay, where place cell sequences in a               

novel environment can already be found in sleep preceding novel environment exploration            

(Dragoi and Tonegawa, 2011). According to this finding, place sequences during behavior            

reflect a pre-configured temporal order of place cells, diminishing the role of experience in              

replay and thus a role of replay in learning and memory. A follow-up study by Silva et al.                  

performing large-scale hippocampal recordings, however demonstrated that experience is         

required for trajectory events in the hippocampus. They report that post-experience, and not             

pre-experience, replay events were better correlated with behavior and that post-experience           

events were less jumpy and more linear. Since larger numbers of recorded cells allow the               
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detection of smoother trajectories, a low number of cells in the preplay studies might have               

prevented the observation that post-experience events contained better trajectory replay          

than pre-experience events. Finally, these two competing views could be reconciled with the             

finding that place cell sequences during novel environment exploration contained firing of            

both, cells that contributed to sequence replay before and thus are hard-wired, and plastic              

cells that are added (Grosmark and Buzsáki, 2016). Similarly, post-task sleep replay            

consisted of rigid cells that were present during pre-task sleep and the task, and the plastic                

cells that were added to the preexisting backbone, thus adding an experience dependency             

to replay (Grosmark and Buzsáki, 2016).  

 

Since replay is the reactivation of behavioral experiences it (so far) could not be studied in                

vitro and thus its synaptic mechanisms are poorly understood. However, considering that            

experience determines the content of replay, it suggests that during behavior certain            

synaptic modifications between place cells occur that lead to their subsequent reactivation.            

NMDA-receptors are required for activity-dependent synaptic modifications and when         

activated can lead to strengthening or weakening of synapses (Banerjee et al., 2016;             

Lüscher and Malenka, 2012). Indeed, blocking of NMDA receptors during goal-learning           

prevented subsequent enhanced replay of goal locations resulting in memory deficits           

(Dupret et al., 2010) and NMDA-receptor blocking during exploration abolished sequential           

replay without impairing the spatial coding of place cells (Silva et al., 2015). Additionally,              

replayed sequences are temporally compressed, providing the temporal window for          

spike-timing-dependent plasticity mediated by NMDA-receptors. Together, NMDA       

receptor-dependent strengthening of synapses between cells during behavior may thus          

facilitate their later reactivation. However, since the hippocampus can replay trajectories that            

have never been experienced, replay is not just the reactivation of cells with synapses              

strengthened by experience (Gupta et al., 2010; Pfeiffer and Foster, 2013). It may rather              

represent the attempt to access information from a learned cognitive map (Silva et al., 2015). 

 

The hippocampus in disease 

When studying the effects of a disease on brain function, studies often investigate how the               

above-mentioned computations of the hippocampus are altered in the disease state. First an             

animal model of the studied disease is generated and then electrophysiological recordings            

performed. An example of such a study investigated how aggregation of the            

Disrupted-in-schizophrenia 1 (DISC1) protein in the brain, a model of chronic mental illness,             
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alters hippocampal function (Kaefer et al., 2019). Rats transgenically overexpressed the           

DISC1 gene (tgDISC1 rats), which led to DISC1 protein aggregations in brain areas             

including the hippocampus and disturbances in the dopaminergic system. The activities of            

pyramidal cells were recorded from the dorsal CA1 of the hippocampus whilst tgDISC1 rats              

explored a familiar and novel environment and during sleep. The study found that the size of                

place cell firing fields was smaller in tgDISC1 rats, improving their place coding precision.              

However, tgDISC1 place cells were impaired in coding for location-independent information           

such as the running speed of the animal. Furthermore, tgDISC1 cells did not exhibit a shift in                 

preferred theta oscillation firing phase, which is observed in control animals upon novel             

environment exploration. Finally, during sleep SWRs, pyramidal cells of tgDISC1 rats had a             

lower firing rate than those of controls. This study demonstrates that increasing knowledge             

about hippocampal functioning also advances our understanding of the mechanisms          

underlying brain-related diseases.  

 

The medial prefrontal cortex 

Although the neocortex of the rat can have six layers, the prefrontal cortex does not exhibit                

the granular layer four. It was therefore long debated whether rats have a prefrontal cortex,               

because layer four was regarded as the major input area of thalamic projections and hence               

the beginning of information processing in the cortex. However, the rat prefrontal cortex             

qualifies as such because other layers form connections with the thalamic mediodorsal            

nucleus (Uylings et al., 2003). The prefrontal cortex is divided into three agranular regions,              

the orbital, insular and medial part of the frontal cerebral hemispheres. The medial prefrontal              

cortex (mPFC) further divides from dorsal to ventral into the anterior cingulate (AC),             

prelimbic area (Prl), infralimbic area (Ifl) and medial orbitofrontal cortex (OFC). The Prl and Ifl               

together, as opposed to the AC and OFC, are the mPFC regions that have been most                

associated with switching and coding of rules (see ‘Rule coding and rule-switching’ section).             

Additionally, neural population changes related to rule-switching were reported to first occur            

in the Prl and only then in the Ifl (Rich and Shapiro, 2009). Therefore, in this study,                 

recordings were specifically performed in the Prl of the mPFC. In the following, when              

reporting results from other studies on mPFC, brackets indicate which mPFC division their             

work refers to.  

 

Retrograde tracing studies showed that the input the mPFC receives differs along it             

dorsoventral axis (Hoover and Vertes, 2007). The AC receives increased sensorimotor input            
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from widespread cortical areas and their associated thalamic nuclei. The Prl and Ifl receive              

less sensorimotor, but increased input from the perirhinal and entorhinal cortices, the            

hippocampus, basal nuclei of the amygdala, the thalamus (to layer three, five and six) and               

brainstem monoaminergic nuclei (Heidbreder and Groenewegen, 2003; Hoover and Vertes,          

2007).  

 

Pyramidal cells of layer two and three of the prefrontal cortex project to other cortical areas.                

Subcortical areas are targeted by layer five pyramidal cells, whilst the thalamus receives its              

prefrontal input mainly from layer six (but also layer three). Anterograde tracing studies             

demonstrated that the Prl and Ifl share only a few common output areas. The Prl and Ifl both                  

project to the OFC and midline thalamus. Some of the main projection sites of the Prl are the                  

nucleus accumbens, mediodorsal thalamus, nucleus reuniens, the amygdala, and the dorsal           

and median raphe nuclei of the brainstem (Vertes, 2004). 

 

 

 

 
Figure 2: Neuroanatomical divisions of the mPFC.  
Sagittal (left) and coronal (right) sections of the mPFC showing the anterior cingulate (AC),              
prelimbic (Prl), infralimbic (Il) and orbitofrontal (OFC) cortices. The dotted line on the sagittal              
view denotes the location of the coronal section. CC, corpus callosum; OB, olfactory bulb.              
Scheme adapted from (McKlveen et al., 2015). 
 

Reward and goal coding 

Learning and performance of goal-directed behaviors requires encoding of goals and           

recognition of which behaviors lead to the desired outcome and which do not. Studies have               

found that the mPFC codes for reward, approach and departure from reward areas and              

relative value of reward (Jung et al., 1998; Pratt and Mizumori, 2001). One study              

demonstrated that the mPFC does not just code for reward consumption but actual spatial              

goals. Their task required rats to enter an unmarked zone in an open field to trigger an                 
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overhead feeder to release a food pellet, which could fall anywhere on the maze (Hok et al.,                 

2005). They found that cells of the mPFC (Prl + Ifl) had discrete place fields mostly around                 

the goal zone, demonstrating that mPFC cells have goal selectivity that is not directly related               

to reward consumption. This study also showed that the mPFC has spatial selectivity.  

 

Planning and evaluation 

Unexpected outcomes, such as a large rewards or no reward at all, are encoded in mPFC                

neurons of monkeys primarily with increases in firing rates (Asaad and Eskandar, 2011). In              

rats the firing rates of mPFC cells are also modulated by errors and a decrease in                

anticipatory firing at reward absences has been reported, indicating some sort of outcome             

evaluation (Narayanan and Laubach, 2008; Pratt and Mizumori, 2001; Sul et al., 2010).             

Population vector analysis showed that as learning in a continuous T-maze improved so did              

decoding of the past and future goal from central stem activity (Baeg et al., 2003). However,                

correlating neural ensembles occurring in the central stem of correct and error trials, showed              

that they were only significantly different when the past and not future goal was different.               

These findings therefore support a prefrontal role in past choice evaluation rather than in              

planning and indicate that future goal decoding was only possible due to the high stereotypy               

of the task. Similarly, prediction of a future goal from mPFC neurons (AC, Prl, Ifl, OFC) was                 

weak on the central arm of a T-maze and increased steeply once the trajectories diverged               

(Sul et al., 2010). However, others did find trajectory-dependent firing in the mPFC (AC, Prl)               

that was not explained by variances in running behavior, such as lateral position, and hence               

provide evidence for a planning role of the mPFC (Ito et al., 2015). The same study lesioned                 

the nucleus reuniens, a thalamic area that connects the Prl and dorsal hippocampus and              

that also shows trajectory-dependent firing. Nucleus reuniens lesioning lead to the disruption            

of trajectory-dependent firing in the dorsal CA1, suggesting that representations of future            

paths are passed on from the mPFC to the dorsal CA1. 

 

Rule coding and rule-switching 

Early indications that the mPFC is involved in flexible learning came from patients with              

dorsolateral frontal lobe damage performing the Wisconsin Card Sorting Task. In this test             

subjects are given a set of cards displaying different shapes that also vary in color and                

number. The subjects are not told according to which of these dimensions the cards should               

be sorted, but through the experimenter’s feedback quickly learn. The sorting rule is then              
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changed without informing the subject, who then typically realizes the rule change and             

flexibly shifts to a different sorting strategy. Patients with dorsolateral frontal lobe damage             

performed poorly compared to controls (Milner, 1963). Similarly, studies that lesioned or            

inactivated the mPFC in rats found that this brain area was critical for flexible rule-switching               

in various behavioral tasks (Birrell and Brown, 2000; de Bruin et al., 1994; Ragozzino et al.,                

1999a, 1999b). Interestingly, these studies showed that the mPFC was not required for the              

initial learning of the task and that it was specifically required for extra-dimensional rather              

than intra-dimensional rule-switching (i.e., from spatial to cue-guided and not spatial-east to            

spatial-west) (but see (Guise and Shapiro, 2017) which found deficits in intra-dimensional            

switch).  

 

Further evidence for a mPFC involvement in rule-switching came from electrophysiological           

studies. Neural correlates for rule coding have been reported for mPFC (Prl, Ifl) cells that               

distinguished between two rules with their firing (Bissonette and Roesch, 2015; Durstewitz et             

al., 2010; Rich and Shapiro, 2009). Increased firing rate during high conflict trials was also               

reported for mPFC cells (Bissonette and Roesch, 2015).  

 

Beyond single neuron correlates, studies recording from a large population of neurons            

reported changes in the mPFC network state following rule switches. The first study to report               

Prl neural population changes during rule-switching was on rats that had to shift from a               

light-guided to an egocentric strategy in a lever task. With firing rate population vectors, the               

study found that neural ensembles distinguished between the two rules (Durstewitz et al.,             

2010). Furthermore, often during learning of the new rule the Prl population showed an              

abrupt rather than gradual transition to the neural representation of the novel rule, indicating              

moments of sudden insight. One explanation for this finding is that an accumulation of errors               

may lead to a destabilization of one Prl network state and the emergence of another               

corresponding to the new rule. Another study found that when rats abandoned an old rule               

and started exploring new strategies, neurons of the AC would coordinately show transient             

changes in their firing rate (Karlsson et al., 2012). These unexpectedly large firing rate              

changes spanned several trials and accompanied periods with increased errors when new            

strategies were tested. The network transitions may therefore reflect behavioral uncertainty           

or newly established beliefs, and confidence and hence good performance may come            

gradually due to the probabilistic nature of their task. Support for this comes from a study                

showing that rule switch-related changes in mPFC (Prl) representation occurred before a            

change in the animal’s behavior, indicating that mPFC may code for the need of changing a                
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strategy rather than the actual strategy shift itself (Powell and Redish, 2016). However, a              

study comparing mPFC (Prl) activity in sleep before and after performance on a Y-maze              

showed that population activity always changed irrespective of whether the animal           

experienced a rule switch or not (Singh et al., 2019).  

 

Replay in the mPFC 

Replay has also been shown for the mPFC population. This was first demonstrated in sleep               

where previous behaviorally-driven firing sequences of neuronal assemblies become         

reactivated in subsequent rest periods (Euston et al., 2007). All other studies investigated             

mPFC replay in conjunction with SWRs and associated hippocampal replay and will            

therefore be discussed below in the hippocampal-prefrontal interactions section. 

 

Hippocampal-prefrontal interactions 

Interactions between the Prl and hippocampus can occur through direct or indirect            

connections. Injecting retrograde tracers into the Prl showed that this area receives            

prominent direct projections from the ventral CA1 and proximal subiculum (Hoover and            

Vertes, 2007). The Prl does not directly project back to the hippocampus. It instead connects               

to the dorsal and ventral CA1 indirectly and bidirectionally via the thalamic nucleus reuniens              

(Varela et al., 2014; Vertes et al., 2006; Xu and Südhof, 2013) and via the perirhinal and                 

lateral entorhinal cortices (Delatour and Witter, 2002; Hoover and Vertes, 2007). Recently,            

sparse direct connections from the dorsal CA1 to Prl have also been reported (Ye et al.,                

2017). Connectivity studies therefore provide indications for a bidirectional flow of           

information between the Prl and the dorsal CA1.  

 

Disconnection and inactivation studies 

Direct evidence that the hippocampus and mPFC functionally interact comes from crossed            

lesion studies. With crossed lesions each area is lesioned or inactivated in opposite             

hemispheres, leaving one of the two areas intact in one hemisphere, but preventing             

ipsilateral communication between them. Inactivating ipsilateral hippocampal-mPFC       

communication lead to performance deficits in the delayed-version of the radial maze that             

were not present when only one of the two areas was inactivated unilateraly (Floresco et al.,                
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1997). Selectively inactivating the ipsilateral connection between the dorsal hippocampus          

and mPFC resulted in temporal order memory deficits, whilst inactivating the ventral            

hippocampus to mPFC ipsilateral connection caused deficits in spatial memory (Barker et al.,             

2017). Finally, optogenetic inactivation of ventral CA1 projections to the mPFC (Prl + Ifl)              

resulted in specific deficits in spatial encoding during a T-maze task (Spellman et al., 2015).  

 

Oscillatory synchrony 

Early electrophysiological evidence for a functional interaction between the mPFC and           

hippocampus came from a study that simultaneously recorded hippocampal LFP and mPFC            

cell spiking activity whilst the animal performed a variety of spatial tasks. This study reported               

that mPFC cells preferentially fired at certain phases of hippocampal theta oscillations and             

hence were phase locked (Siapas et al., 2005). In a spatial working-memory task it was then                

shown that hippocampal theta phase locking of mPFC cells and hippocampal-mPFC theta            

coherence was highest on correct trials, and lower on error trials and during the working               

memory-independent version of the task (Jones and Wilson, 2005). Further evidence for a             

role of mPFC and hippocampus theta synchronization in memory-guided processes came           

from a study involving a rule-switching task that reported increased hippocampal-mPFC           

theta synchronization and coincident mPFC (Prl) cell pair coactivation after acquisition of a             

new rule (Benchenane et al., 2010). Furthermore, only upon successful rule learning did             

mPFC (Prl) cells change their firing relative to hippocampal theta oscillations (Benchenane            

et al., 2010). Finally, the directionality of hippocampal-mPFC information flow differs with            

different cognitive demands. Theta amplitude cross-correlation analysis indicated that         

information goes from the hippocampus to mPFC during contextual retrieval and from the             

mPFC to hippocampus during retrieval of context-appropriate hippocampal memory (Place          

et al., 2016). 

 

Firing in relation to SWRs 

Evidence for a functional relationship between hippocampal SWRs and mPFC firing came            

from a study employing a rule-switching task that found that mPFC (Prl) firing patterns              

present after acquisition of a new rule were preferentially replayed in subsequent sleep             

during hippocampal SWRs (Peyrache et al., 2009). During sleep, mPFC firing was also             

increased 100 ms after hippocampal SWRs indicating a possible role in memory            

consolidation (Wierzynski et al., 2009). Firing of mPFC neurons are also modulated by             
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awake SWRs. mPFC (Prl) pyramidal cells can exhibit excitation or inhibition upon awake             

SWR occurrence, and hippocampus-mPFC cell pairs that are spatially correlated are also            

more correlated during awake SWRs (Jadhav et al., 2016). The functional role of interactions              

between the mPFC and SWRs is likely different for the awake and sleep state. The               

coordination of hippocampus and mPFC (Prl) cells was stronger for awake than sleep             

SWRs, indicating that coordination during awake SWRs may serve accurate memory           

storage and memory-guided behavior, whilst coordination during sleep SWRs may rather           

support integration of memories across different experiences (Tang et al., 2017). Finally,            

mPFC cells coding for generalized task features were more likely to participate in             

hippocampal replay (Yu et al., 2018). 

 

Effect of mPFC lesions on hippocampal coding 

Lesion and inactivation studies provide final evidence that neural computations in the            

hippocampus and mPFC depend on each other. Recordings from the hippocampus of rats             

with mPFC (AC + dPrl) lesions showed that place fields were less stable over time,               

demonstrating that the mPFC is involved in hippocampal spatial firing responses (Kyd and             

Bilkey, 2003). Another study inactivated the mPFC (Prl + Ifl) with lidocaine and found that               

place cell firing variability was decreased (Hok et al., 2013). Non-spatial information, such as              

episodic memory, is reflected in the firing variability of place cells, therefore the mPFC might               

also be involved in location-independent coding of the hippocampus (Leutgeb et al., 2005).             

Finally, two studies indicate that hippocampal selectivity is modulated by the mPFC. In a              

task in which spatial context guides a rat which of two food wells contains reward, dorsal                

CA1 cell firing reflects specific object-location associations. Object selectivity of hippocampal           

cells decreased with mPFC (Prl) inactivation, resulting in cells that in a given context              

previously fired around one specific object, fire at both objects (Navawongse and            

Eichenbaum, 2013). Interestingly, the spatial location of firing in relation to the object did not               

change with mPFC (Prl) inactivation. In the other study, rats were trained to collect reward               

on a plus-maze based on two spatially-guided strategies. The activity of the hippocampus in              

the start arm distinguished between the two prospective goals, but upon mPFC (Prl)             

inactivation dorsal CA1 trajectory-dependent firing weakened (Guise and Shapiro, 2017).          

Trajectory-dependent information is thought to reach the dorsal CA1 from the Prl via the              

nucleus reuniens (Ito et al., 2015). A study showing that inhibition of ventral CA1 projections               

to the mPFC (Prl + Ifl) caused deficits in spatial encoding demonstrates that the mPFC also                

receives task-related information from the hippocampus (Spellman et al., 2015). 
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AIM OF THE STUDY 
Navigating within an environment and learning which behavioral response leads to a reward,             

combined with the ability to flexibly change behavioral strategies upon changed reward            

contingencies, require the involvement and interaction of more than one brain area. The             

hippocampus has extensively been shown to have a role in learning and memory,             

particularly for spatial information. The ability to flexibly switch between behavioral           

strategies, on the other hand, has been ascribed to the mPFC. The plus-maze rule-switching              

task was designed to elicit cognitive processes subserved by both the hippocampus and             

mPFC. In this task a rat had to navigate towards one of two goals, depending on whether a                  

spatial or light-guided rule was employed. Following an unannounced change in rule, the rat              

had to abandon the old strategy, find out according to which rule the reward is hidden and                 

switch to the new strategy. We recorded local field potentials and single unit activity              

simultaneously from the dorsal hippocampus CA1 (HPC) and the Prl of the mPFC, whilst rats               

performed the plus-maze task. By recording the neural activity of the HPC and mPFC in a                

task that engages these two areas, the neural computations underlying solving of this task              

can be investigated. Furthermore, by comparing the activities in these two areas their             

specialized roles for the successful performance of this task can be delineated.  

 

We focused on three prominent activity patterns that have been described for the             

hippocampus: oscillations (theta and gamma), remapping and trajectory replay. The          

analyses performed are divided into the following three chapters with their specific aims: 

 

1. Characterize theta and gamma oscillatory interactions between the HPC and mPFC           

during the hippocampus-dependent and hippocampus-independent version of the        

task. 

2. Quantify remapping dynamics in the HPC and mPFC during rule-switching. 

3. Investigate replay of trajectories in the HPC and mPFC during rule-switching. 
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METHODS  

Surgery 

All procedures involving experimental animals were carried out in accordance with Austrian            

animal law (Austrian federal Law for experiments with live animals) under a project license              

approved by the Austrian Federal Science Ministry (License number:         

BMWFW-66.018/0015-WF/V3b/2014). 

Four male Long-Evans rats (300-350 g) were implanted with microdrives housing 32            

individually-movable tetrodes. The tetrodes were arranged into three bundles targeting the           

right dorsal hippocampus (specifically dorsal CA1, in the analysis referred to as “HPC”) and              

left and right mPFC (specifically Prl, in the analysis referred to as “mPFC”). Each tetrode was                

fabricated out of four 12 um tungsten wires (California Fine Wire Company, Grover Beach,              

CA) that were twisted and then heated to bind into a single bundle. Tetrode bundle lengths                

were cut so that the two mPFC bundles were 1-1.5 mm longer than the hippocampus               

bundle. The tips of the tetrodes were gold-plated to reduce the impedance to around              

300 kΩ. Before commence of surgery the animal was put under deep anesthesia using             

isoflurane (0.5–3%), oxygen (1–2 L/min), and an initial injection of buprenorphine (0.1 mg/kg             

body weight) and ketamine/xylazine (7:3 ketamine (10%) and xylazine (2%), 0.05 ml/100 g).             

Craniotomies were drilled above the hippocampus (anteroposterior (AP): -2.50 to -4.50,           

mediolateral (ML): -1.2 to -3.6) and above the mPFC across the sinus (AP: 4.60 to 2.50, ML:                 

0 to ± 0.8). Six anchoring screws were fixed onto the skull and two ground screws were                 

positioned above the cerebellum. After dura removal the tetrode bundles were centered            

above their respective craniotomies and lowered into the brain at a depth of ~2 mm for the                 

mPFC and ~1 mm for the hippocampus. The exact depth of mPFC tetrode implantation was               

noted to ensure later lowering into the target area. Tetrodes and craniotomies were coated in               

paraffin wax and the microdrive was anchored to the skull and screws with dental cement.               

The analgesic meloxicam (5 mg/kg body weight) was given up to three days after surgery               

and the animal was allowed one week recovery. Thereafter, tetrodes were gradually moved             

in 50-200 µm steps into the hippocampal CA1 pyramidal cell layer and Prl of the mPFC. 
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Microdrive 

To increase the yield of recorded cells we used 32-, instead of the standard 16-tetrode               

drives. The mPFC shuttles were arranged in a way that the eight tetrodes of each bundle are                 

confined to the area of the Prl. Furthermore, the distance between the two bundles was 0.8                

mm, approximately the width of the sinus. Ensuring that each mPFC tetrode bundle was              

positioned adjacent to the sinus allowed recordings of cells also from the outer layers. The               

hippocampus bundle was arranged so that it was confined to the dorsal hippocampus. The              

microdrive was designed and manufactured by Todor Asenov and Thomas Menner of the             

IST Austria Miba Machine shop. 

 

 
 
Figure 3: 32-tetrode microdrive for bilateral mPFC and unilateral HPC recordings.  
(​a​) Outside view of microdrive, where one cylinder targets the HPC and the other the mPFC.  
(​b​) Top view of the shuttles. The upper 16 shuttles target the left and right hemisphere                
mPFC and the lower 16 shuttles target the right hemisphere HPC. 
(​c​) Bottom view of cannulae exit holes. Top and bottom shows the exit holes for the mPFC                 
and HPC respectively.  
 

Plus-maze apparatus and task 

Animals were housed individually in a separate room under a 12h light/ 12h dark cycle.               

Following the recovery period, animals were food-restricted to 85% of their pre-surgery            

weight, with ad libitum access to water and accustomed to the plus-maze and rest box. The                

plus-maze was elevated (80 cm) and consisted of four arms (83 cm long and 12 cm wide)                 

referred to as north, east, south and west and a connecting center. Visual cues were               

mounted on the walls of the experimental room for spatial orientation. The animal was              

placed in one of the two start arms (north or south) and had to collect food reward (MLab                  

rodent tablet 20 mg, TestDiet, Richmod, USA) in one of the two goal arms (east or west),                 
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depending on the rule employed (​Figure 4b​). Access to the arm not chosen as the start was                 

restricted, so that the maze became T-shaped. The distance from start to goal arm was 200                

cm. A small light at the end of one of the two goal arms was switched on. Which arm was                    

chosen as the start and light-on arm was chosen pseudorandomly for every trial, ensuring              

that an arm was not chosen more than three consecutive times. Once the animal reached a                

goal arm and ~5 s passed, it was manually returned to the rest box before commence of the                  

next trial. The animal had to retrieve the reward based on a spatial or response (light) rule.                 

During the spatial rule the reward was always placed in either the east or west arm, whilst                 

during the light rule the reward was placed in the light-on arm. Importantly, also during the                

spatial rule one of the two arms was lit, but did not necessarily indicate the location of                 

reward. To prevent an odor-guided strategy pellet dust was scattered along the maze and              

pellet-filled cups invisible to the animal placed under both goal arms. On each recording day               

the animal underwent behavioral blocks as follows: rest, rule 1 (remote recall), rest,             

rule-switch, rest, rule 2 (recent recall), rest. The rule-switch block was further divided into              

pre-switch, switching and post-switch (​Figure 4a). Rest periods were 40 mins in duration,             

except for the last rest period of every recording day, which was 20 mins. During rule 1                 

(remote recall) the last rule of the previous day applied. Then during the rule-switching block,               

the animal had to first collect reward based on rule 1 (pre-switch) before the rule switched                

and reward had to be collected based on rule 2 (switching, post-switch). Begin of good               

performance marked the beginning of the post-switch block (see Methods - Behavior). The             

switch in rule was not announced to the animal, which had to learn the new rule by                 

trial-and-error. Finally, during rule 2 (recent recall), the newly learnt rule applied. The animal              

had to perform cross-modal switches, i.e., switches from spatial to light or light to spatial rule,                

never between the two spatial rules. Reaching of the performance criterion marked the end              

of a rule block (counting trials of the switching and post-switch block together, and except for                

the recent recall (rule 2) block). Note, that whilst correct performance of a spatial rule               

involves two trajectories (e.g., go-east rule: north-to-east and south-to-east), correct          

performance of the light rule can involve any of the four trajectories. Therefore, performance              

criterion for the spatial rule was set to 12/15 and for the light rule to 24/30 correct trials,                  

ensuring similar number of light rule trials where the animal performed trajectories that             

matched those of the spatial rule (see Methods - Trajectories). In the rule 2 (recent recall)                

block the number of trials was fixed to 20, providing a setting in which the animal                

experienced the same number of trials, irrespective of rule type. 
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Figure 4: Rule-switching task on the plus-maze.  
(​a​) Daily behavioral protocol. 
(​b​) Plus-maze task. The animal had to run down one of the two start arms (south or north),                  
approach the maze center and choose one of the two goal arms (east or west). Reward had                 
to be collected based on a spatial (go west, go east) or light-guided strategy. Also during the                 
spatial rule one goal arm light was switched on, but had to be ignored by the animal. 

Behavior 

The rule-switching block consisted of a pre-switch, switching and post-switch block (​Figure            
4a​). All trials before the rule switch comprised the pre-switch block. Trials performed after the               

switch to the new rule, but before the animal reached good performance comprised the              

switching block. The beginning of good performance (bgp) ​was defined as the center index              

after rule change where the error rate over five consecutive trials dropped to zero. 

 

gp argmin   b =  t ∈ {trials > switch} rror(t ) = 0{ ∑
2

k = −2
e + k =  }   

(1) 

 

Trajectories 

Correctly performed trials of the spatial rule will include two possible trajectories. For             

example, if the go-east rule applied, then only trajectories from north-to-east and            

south-to-east will lead to a correct trial. Conversely, since the light-on arm can be in the east                 

or west, correctly performed trials in the light rule will include all four possible trajectories               
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(north-to-east, north-to-west, south-to-east, south-to-west). When comparing neural activity        

between different rules one has to ensure that any differences observed are not due to               

different behaviors resulting from different trajectories. Therefore only those light-rule trials           

were considered for analysis that matched the trajectories from correct trials of the spatial              

rule. For example, if the spatial rule in a recording session was the go-east rule, then only                 

those correct light rule trials were selected where the light-on arm was in the east and hence                 

had trajectories either from north-to-east or south-to-east. This selection of light rule            

trajectories was done for parts of the phase locking (​Figure 10​) and rule remapping analysis               

(​Figure 12-14​). 
 

Histology and reconstruction of recording positions 

After the last recording day tetrodes were not moved. Animals were administered            

ketamine/xylazine (7:3 ketamine (10%) and xylazine (2%), 0.1 ml/100 g body weight),            

overdosed with pentobarbital and then transcardially perfused with 0.9% saline followed by            

4% formaldehyde. Brains were extracted and stored in 4% formaldehyde. On the same day              

brains were transferred into 30% sucrose solution until sinking for cryoprotection. Finally,            

shock-frozen brains were cut into coronal sections with a cryostat (50-60 µm), mounted on              

glass slides and stained with cresyl violet. The positions of tetrode tips were determined from               

stained sections and cells recorded from tetrodes outside the Prl areas of the mPFC were               

excluded from analysis. For cells recorded from HPC tetrodes the presence of SWRs in the               

field recordings served as the inclusion criteria. 

 

Data Acquisition 

Extracellular electric signals from the tetrodes were pre-amplified using a headstage (4 × 32            

channels, Axona Ltd, St. Albans, Hertfordshire, UK). Wide-band (0.4 Hz–5 kHz) recordings            

were taken and the amplified LFP and multiple-unit activity were continuously digitized at             

24 kHz using a 128-channel data acquisition system (Axona Ltd). Two red LED bundles             

mounted on each side of the preamplifier head-stage were used to track the location of the                

animal. Every day before recording, tetrodes were moved optimizing the yield of recorded             

cells. Additionally, mPFC were lowered every day by ~30-50 µm to ensure recording of a               

new population of cells. 
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Spike sorting and unit classification 

Clustering of neuronal spikes and unit isolation procedures were described previously           

(Csicsvari et al., 1998). Briefly, the raw data was resampled to 20 kHz and the power in the                 

800-9000 Hz range was computed for sliding windows (12.8 ms). Action potentials with a              

power of > 4 SD from the baseline mean were selected and with principal component               

analysis their spike features extracted. Based on their spike features, action potentials were             

then clustered into multiple putative units using an automatic clustering software           

(​http://klustakwik.sourceforge.net (Harris et al., 2000)). The generated clusters were then          

manually refined using a graphical cluster-cutting program and only units with clear            

refractory periods in their autocorrelation, well-defined cluster boundaries and stability over           

time were used for further analysis (​Figure 5​). An isolation distance (based on Mahalanobis              

distance) was calculated to ensure that spike clusters did not overlap (Harris et al., 2000).               

Putative excitatory pyramidal cells and putative inhibitory interneurons were discriminated          

using their auto-correlograms, firing rates and waveforms. In the present analysis 1025 HPC             

and 817 mPFC pyramidal cells (of which 368 right and 449 left hemisphere mPFC) were               

included. No analysis was performed on putative inhibitory neurons. 

 

 

Figure 5: Example of spike clustering performed on a HPC tetrode. 
(​a​) Separation of spikes into three well-defined clusters using principal component analysis.            

The three clusters are colour-labelled (white, magenta and orange). 

(​b​) Waveforms of the three clusters recorded from the four channels of a tetrode. A broad                

waveform and non-linear repolarization are indicative of putative pyramidal cells. 

(​c​) Auto-correlograms of the same three clusters showing burst firing typical of HPC             

pyramidal cells. 
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Linearized position 

To linearize the behavior of the animal, we calculated the distance from the center from the                

2D spatial position of the animal. This way a “V-shaped” positive function for each trial was                

obtained. For each position before the center (i.e., before the global minimum) we subtracted              

the minimum and then changed the sign. Then, 100 was added to every position to obtain a                 

positive measure of the relative position of the animal between start (0 cm) and goal (200                

cm). The center corresponded to 100 cm. 

 

Theta coherence 

LFP data from one channel of each tetrode was divided into 2000 ms time windows with an                 

overlap of 1600 ms. The spectral coherence between all possible HPC and mPFC channel              

pairs was computed for each window of a trial using the multitaper function from Matlab’s               

chronux toolbox (Matlab version 2017, http://chronux.org). Coherence values for each time           

window of a trial were allocated to their respective 5 cm spatial bin of the linearized maze                 

and an average coherence for each frequency between 1 and 475 Hz was computed for               

each spatial bin of a trial. The theta frequency coherence (6-10 Hz) was extracted for each                

spatial bin of a trial. Error trials were excluded. Separately for every session, the mean theta                

coherence over all the trials was calculated for every spatial bin. Finally, a theta coherence               

mean and SEM was computed over all the session means. To quantify theta coherence at               

different parts of the maze, the average theta coherence was calculated for three linearized              

maze sections that were determined upon visual inspection of ​Figure 8c (20-50 cm, 90-120              

cm, 130-160 cm, ​Figure 8d​). 
 

Theta and gamma phase locking  

HPC LFP data was Fourier transformed and filtered between 5-28 Hz and 40-100 Hz for               

theta and gamma oscillations, respectively. The filtered signal was Hilbert transformed to            

extract the theta and gamma phases. For every cell, the phases of HPC theta or gamma at                 

which spikes occurred were extracted. The preferred firing phase ( ), mean vector length         a     

(MVL, r) and Rayleigh’s statistic were computed (Zar, 2010). 

The rectangular coordinates of the preferred phase (X,Y) and the MVL were calculated with              

the equations below, where ​a​i ​ denotes each phase and ​n​ the phase sample size: 
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 (2) 

 

 r =  √ X 2 + Y 2  

(3) 

 
Cartesian coordinates were converted back into polar coordinates: 

 

 atan2 (Y , )a =  X  

(4) 

 

Finally, phases were wrapped onto 0 to 360 degrees. To test whether a cell is significantly 

locked to theta, the Rayleigh’s test for circular uniformity was computed: 

 

 n rR =  *   

(5) 

 

 p =  e√1+4 n+4 (n ) − (1+2 n)* * 2−R2
*

 

 

(6) 

 

A cell with a p value of < 0.05 was considered as significantly locked. 

 

For mean MVL analysis in the different parts of the maze, the linearized maze was divided                

into start (10-50 cm), center (70-110 cm) and goal (130-170 cm). For a cell to get included in                  

mean MVL calculation of a certain maze section, it had to fire a total of at least 30 spikes in                    

that section over all trials in the respective block. The mean MVL was then computed as the                 

mean of all the included cells’ MVLs. 

 

Analysis comparing the MVL of cells separately for pre-switch, switching and post-switch            

was performed for the maze center and for only those light rule trials with trajectories as                

during the spatial rule. The MVL of a cell for each of these three blocks was calculated with                  

the same number of spikes (min_val). For a cell to be included in this analysis it had to have                   

a total of at least 15 spikes in the center during the trials comprising each block. The block                  

with the smallest number of spikes provided us with min_val. The MVL of a cell during a                 
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block was computed 100 times with min_val randomly selected number of spikes occurring             

in that block. The MVL of a cell in a specific block was the median of these 100                  

computations. 

To compare the MVL during correct and error trials during the rule-switching block, like              

above, only same trajectories were considered and the same number of spikes (i.e., 15) was               

used to calculate a cell’s MVL during correct and error trials.  

 

Linearized firing rate maps 

The linearized 1D maze was divided into 20 spatial bins of 10 cm. Using the linearized                

position, an occupancy map was created by computing the amount of time the animal spent               

in each spatial bin during mobility periods (speed > 5 cm/s) (Dupret et al., 2010). For each                 

cell the number of spikes fired in each spatial bin during mobility periods was counted, which                

was then divided by the occupancy time. These linearized vectors were then smoothed with              

a Gaussian filter with a SD of 1 bin. 

 

Cofiring similarity 

Spiking data of each cell was binned into 512 ms windows and only those periods were                

considered when the animal was in the center and had a speed of > 5 cm/s. Cofiring                 

matrices (number of cells x number of cells) were generated by computing the scalar product               

of the binned spiking data of all possible cell pairs. The cofiring matrices of the following                

conditions were Pearson correlated: entirety of Rule 1 with Rule 2, first with last 12 trials of                 

Rule1, first 12 trials of pre-switch with last 12 trials of post-switch, first with last 12 trials of                  

Rule 2.  

 

Cofiring flickering 

Spiking data of each cell was binned into 512 ms windows and only those periods were                

considered where the animal was in the goal arm and had a speed of > 3 cm/s. Furthermore,                  

for a given session only trajectory-matching trials were included. Cofiring matrices were            

computed for Rule 1 and Rule 2. Additionally, a cofiring matrix was generated for every trial                

(again, only taking trajectory-matching trials) of the pre-switch, switching and post-switch           

blocks. A trial’s cofiring matrix was then Pearson correlated with that of Rule 1 and Rule 2,                 

and the two correlation coefficients were subtracted from each other (correlation coefficient            
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Rule 2 minus correlation coefficient Rule 1). This value was then plotted as a vertical line in                 

Figure 13a,b​. 
 

Place field similarity 

A rate map is generated for every cell from all trials of a certain behavioral condition and the                  

rate maps of all cells are stacked along the z-axis. The simultaneous activity of all cells in a                  

particular spatial bin is the population vector for that particular set of coordinates. For every               

spatial bin, its population vector from one behavioral condition is correlated with the             

population vector of the other behavioral condition. 

 

Bayesian decoding 

The position of the animal was decoded using a Bayesian decoding algorithm on the spiking               

vectors of cells and their expected firing rate given by the rate maps (Zhang et al., 1998).                 

Spiking neurons were assumed to follow a Poissonian law and act independently of each              

other. The position of the animal in a given time window of length is denoted as . The             τ    x   

number of spikes of one particular cell is denoted as , and the activity of all the cells          σi         

considered in the given time window as . For each cell and position ,       {σ , σ , ... }σ ˉ =  1  2      i    x  

we obtain the measured firing rate from the rate maps. Using the assumptions and the      λxi          

introduced notation we have: 

(σ | x ) (σ  | x ) Poiss (σ  | λ  τ  )  P ˉ = ∏
 

i
P i = ∏

 

i
 i x

i  

(7) 

And, using the Bayesian rule: 

(x |  σ ) P (σ | x ) P (x) / P (σ)P ˉ =  ˉ  

(8) 

 

For our computations we used a flat prior (i.e.,  is uniform). The term  does not(x)P (σ)P  

need to be computed because one can enforce . The decoded position will(x | σ) 1∑
 

x
P ˉ =   

then be: 

D( σ ) rgmax  P (x |  σ ) argmax Poiss (σ  | λ  τ  )   B ˉ = a x ˉ =  x ∏
 

i
 i x

i  

(9) 
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Cross-validation 

The decoding quality of each ensemble was tested on rate maps constructed from data that               

was not used to train the model. For spatial coding analysis two thirds of the trials were used                  

to compute the rate maps and the remaining third was used to decode the position of the                 

animal during running periods. For analysis on non-local replay, rate maps were constructed             

from running (speed >5 cm/s) and immobility (speed <5 cm/s) periods and using all trials               

except for the one on which positional decoding was performed. For trajectory replay             

analysis during immobility periods, rate maps were constructed from running periods. The            

decoding error was the absolute value of the difference between recorded and decoded             

position.  

 

Spiking window used for decoding 

The spiking vector on which positional decoding is performed can be chosen in several              

ways. The standard way is to take spiking vectors with fixed time lengths. Another approach               

is to not fix the time, but instead select spiking vectors containing a minimum amount of                

spikes or a minimum number of spiking cells. We binned the spiking activity of each cell into                 

time bins of 25.6 ms, thereby aligning it with the behavior tracking. The 25.6 ms spiking                

vectors were then summed up until the request of a certain time window length, number of                

spikes or number of cells participating was met. Unless otherwise stated, we used windows              

containing a fixed number of spikes (‘Spiking-window’). Since the number and spatial            

properties of recorded cells differed for every recording session, the number of spikes             

contained in a window was selected for every session separately. This was done by              

computing the average decoding error during mobility (using the cross-validation method as            

described above) and determining the minimum number of spikes that allow positional            

decoding with a decoding error of less than 30 cm. 

 

Confusion Matrix 

The confusion matrix was computed as follows: given a vector of real positions and a             pr    

vector of decoded positions with same length , both binned into bins of 10 cm size, we    pd     N           

initialized a 20 x 20 matrix ( ) to zero where rows corresponded to the real position and      MC            

columns to the decoded position and filled it: 
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M [i, ] (rp = ) and (dp = )C j = ∑
N
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k = i k = j  

(10) 

  

Each row was then normalized so the sum of its elements equals 1. 

 

Trajectory score 

To ensure that the trajectories we observed during immobility were not only statistical noise              

of neurons, we computed a trajectory score, that consisted of a decoding probability and              

smoothness score. Each immobility period was divided into spiking-windows and, using the            

Bayesian algorithm, we obtained a probability density function on the binned linearized            

positions (i.e., decoding likelihood = vector with 20 entries with a sum of 1) for each                

spiking-window. Every 4 consecutive spiking-windows (i.e., the first three windows of a 4             

spiking-window event will be the same as the last three windows of the previous event) that                

passed the continuity (no jumps > 6 bins) and speed (absolute speed > 20 cm/s) criteria                

were analyzed and forward and backward replaying trajectories were detected separately.           

The decoding probability score is a measure based on Xu et al., 2019. Starting from the first                 

window of a 4-window event, we computed the probability of transitioning to the next with a                

velocity given by the slope of a line fitted on the four decoded positions. We multiplied the                 

likelihood with a Gaussian kernel that moved by the corresponding amount of spatial bins to               

the left (backward) or to the right (forward). If the limit was reached (<0 or >20) the kernel                  

was set to zero. We computed this measure for all windows of a 4-window event and                

averaged the result to obtain the decoding probability score that ranges between 0 (least              

optimal) and 1 (most optimal). The smoothness score measures how probable it is to find a                

permutation of the given event that has a distance between neighboring windows smaller             

than the original event. In the case of 4 or 5 windows, 24 or 120 permutations are possible.                  

The number of permutations that had an average distance between neighboring events            

smaller than the real event, was divided by the total number of permutations, yielding a               

number from 0 (most optimal) to 1 (least optimal). For events longer than 5 windows, since it                 

becomes computationally prohibitive to compute all the permutations, we randomly sampled           

100 permutations and computed the score in the same way on those 100 samples. The               

smoothness score was then subtracted from the decoding probability score to obtain our             

final trajectory score, yielding a real number between -1 (least optimal) to 1 (most optimal)               

This way we penalized events that showed non-sequential activity.  
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Shuffling procedure 

The probability that a 4-window (or longer) immobility period replays a trajectory was tested              

for significance by comparing it to trajectory scores obtained from a shuffled distribution.             

Trajectory scores were computed for every 4-window event like above, but this time 200              

times using 200 shuffled rate maps. We employed a place field rotation shuffling, which,              

since we are using 1D rate maps, involves drawing a random integer between 3 and 17, and                 

wrapping the rate map of each single neuron by that amount of bins around the origin.  

 

Trajectory selection and concatenation 

We selected all 4-window immobility events that had a unified trajectory score above the              

95th percentile of their own shuffled distribution. Since replayed trajectories must not be             

limited to 4 windows but can be longer we incrementally extended significant 4-window             

events. A significant 4-window event was extended by the next 4-window event (which             

overlap by three windows), if the following conditions were met: the next 4-window event had               

to also have a significant trajectory score, the speed and jump sizes matched our criteria and                

the newly calculated trajectory score still passed the 95th percentile of its own shuffled              

distribution. The same procedure was then performed with the extended event.  

 

Cross-correlation 

Cross-correlation on HPC and mPFC trajectory replay events was performed to investigate            

their temporal alignment. For each brain area we considered a time series, aligned with              

behavior (25.6 ms), filled with zeros in case of immobility, ones for significant trajectory              

replay, and NaNs otherwise. The HPC time series was incrementally shifted to the left or               

right relative to the mPFC time series until a maximum of 20 bins. For each shift, a                 

correlation between the two time series was computed excluding the NaNs (and thus             

mobility and non-task periods). To compare the cross-correlation to shuffled data, trajectory            

events were randomly shifted forward or backward within their immobility period 100 times,             

and each time a cross-correlation computed. 
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Trajectory replay and behavioral correlates 

The immobility time in a trial or experimental block can vary slightly, depending on how long                

it takes for the animal to reach and consume the reward or to make a decision. We therefore                  

computed a trajectory rate for every trial (i.e., number of trajectory replay events divided by               

the immobility time) instead of counting the number of trajectories per trial. We computed a               

trajectory rate separately for the center and goal area (i.e., at a linearized position of <110                

cm or >110cm, respectively). For the center trajectory replay events were also divided into              

ahead and behind replaying trajectories. Depending on the analysis, an average rate was             

computed for every session from trials within the switching or within the switching and the               

post-switch block. When correlating the trajectory rate with the number of trials needed to              

switch to the new rule, we employed a logarithmic transformation of the trajectory rate. Insets               

in correlation figures show boxplots of 100 r-values computed from 100 correlations of             

randomly sampled data points from 80% of the data. 

 

Statistics  

Analyses were performed using custom written Python scripts. Non-parametric and          

two-tailed tests were used throughout. For paired comparisons Wilcoxon signed-rank test           

was used, whilst Mann-Whitney U test was used for unpaired data. For the analysis on               

trajectory replay in error and correct trials, the Wilcoxon signed-rank test was used and the               

multiple comparisons Bonferroni-Holm corrected. Correlations were performed by calculating         

the linear least-squares regression and the significance was determined using the Wald Test             

with t-distribution of the test statistic. For other multiple group testing the Kruskal-Wallis test              

was used. The 2-sample Kolmogorov-Smirnov test was used to compare distributions. A            

parametric 1-sample ​t​-test tested for changes in firing rates. 
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RESULTS 

Histology 

We verified correct positioning of the recording tetrodes with cresyl violet-stained brain            

sections. ​Figure 6 shows representative sections for the mPFC and HPC for each of the four                

rats. Tetrodes spanned the inner and outer cortical layers and thus data presented here              

included the activity from cells of all cortical layers. 

 

 
 
Figure 6: Histological verification of tetrode positioning in the mPFC and HPC.  
Cresyl violet-stained coronal sections showing the tetrode tracks in the left and right Prl of               
the mPFC (​a​) and the right CA1 of the hippocampus (​b​). (​i​) rat jc189, (​ii​) rat jc190, (​iii​) rat                   
jc196, (​iv​) rat jc200. Red arrows indicate tetrode tips. Scale bar denotes 1 mm. 
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Behavior  
On each recording day the animal underwent behavioral blocks as follows: rest, remote rule              

1 (remote recall), rest, pre-switch, switching, post-switch, rest, rule 2 (recent recall), and rest              

(​Figure 4a). During rule 1 (remote recall) the last rule of the previous day applied. During                

pre-switch the animal had to again collect reward based on rule 1. Then the rule changed                

and reward had to be collected based on rule 2. Trials performed after the rule change, but                 

before the animal reached good performance comprised the switching block. The beginning            

of good performance ​was ​defined as the center index after rule change where the error rate                

over five consecutive trials dropped to zero and marked the beginning of the post-switch              

block. Finally, during rule 2 (recent recall), the newly learnt rule applied. The animal had to                

perform cross-modal switches, i.e., switches from spatial to light or light to spatial rule, never               

between the two spatial rules (​Figure 4b​). 
 

The unannounced change in rule lead to animals performing significantly more errors (n = 13               

sessions; first 15 trials pre-switch vs. first 15 trials after rule change: P = 0.0014, Wilcoxon                

signed-rank test; ​Figure 7​), but animals successfully updated to the new strategy in later              

trials (first 15 trials after rule change vs. last 15 trials of post-switch: P = 0.0014; ​Figure 7​). 
 

 
 
Figure 7: Increased errors after the rule change. The unannounced rule change lead             
animals to perform significantly more error trials, but animals eventually switched to the new              
strategy (**P <0.01, Kruskal Wallis Test). 
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Theta and gamma oscillations 

Theta coherence 

To investigate periods of increased information transfer between the HPC and mPFC, their             

theta coherence was computed. Since lesion studies demonstrated that the hippocampus           

and mPFC communicate ipsilaterally (Barker et al., 2017; Floresco et al., 1997; Navawongse             

and Eichenbaum, 2013), only right-hemisphere mPFC tetrodes were used for this analysis.            

Theta coherence between the HPC and ipsilateral mPFC was computed for each block,             

separately for recording sessions with a spatial-to-light and light-to-spatial rule switch. Mean            

theta coherence increased at the maze center for all blocks for both, spatial-to-light and              

light-to-spatial recording sessions (​Figure 8a,b​). Similarly, theta coherence was also          

increased at the goal compared to the start area. Since theta coherence in the two types of                 

rule switches followed similar trends in the different blocks, coherence analysis was            

repeated over all the sessions, not separating by type of rule switch. This decreased the               

standard error, making the increase in theta coherence at the maze center to become more               

pronounced (​Figure 8c​). To quantify coherence values in different blocks and maze            

locations, the average theta coherence was computed for three 30 cm maze sections             

(​Figure 8d,e​). For all, but the pre-switch and rule 2 block, theta coherence in the center was                 

significantly higher than that of the start (P (rule 1) = 0.022, P (pre-switch) = 0.22, P                 

(switching) = 0.002, P (post-switch) = 0.002, P (rule 2) = 0.07, Mann-Whitney U test,               

Bonferroni-Holm correction). Similarly, for all but the pre-switch and rule 2 block, theta             

coherence was significantly higher in the goal than in the start (P (rule 1) = 0.016, P                 

(pre-switch) = 0.34, P (switching) = 0.012, P (post-switch) = 0.016, P (rule 2) = 0.11,                

Mann-Whitney U test, Bonferroni-Holm correction). Although ​Figure 8c suggests that the           

increase in theta coherence at the center was highest during post-switch compared to blocks              

where the rule has not recently changed (rule 1, pre-switch, rule 2), maze center coherences               

were not significantly different (P = (rule 1 vs. post-switch) = 0.08, P (pre-switch vs.               

post-switch) = 0.09, P (post-switch vs. rule 2) = 0.07, Mann-Whitney U test, Bonferroni-Holm              

correction). However, the percentage increase in theta coherence in the center relative to             

the start was significantly higher in the post-switch than pre-switch block (P (post-switch vs.              

pre-switch) = 0.04, Mann-Whitney U test). In summary, theta coherence between the HPC             

and mPFC increases at maze locations associated with decision-making (center) and           

evaluation (goal). This was only seen for blocks associated with remote recall (rule 1) or               
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rule-switching (switching and post-switch blocks), suggesting that as cognitive demand          

increases so does HPC-mPFC theta interaction. 

 

 

 
 
Figure 8: Increased HPC-mPFC theta coherence at maze center and goal. 
(​a​) HPC-mPFC theta coherence computed over spatial-to-light rule sessions. 
(​b​) HPC-mPFC theta coherence computed over light-to-spatial rule sessions. 
(​c​) HPC-mPFC theta coherence computed over all sessions. 
(​d​) Schematic of which parts of the linearized maze were taken to compute average              
coherence values for (e). 
(​e​) Quantification of HPC-mPFC theta coherence computed over all sessions and separated            
for the start, center and goal of the maze. For all but the pre-switch and rule 2 block, theta                   
coherence in the center and goal was significantly higher than in the start (*P <0.05, **P                
<0.01, ns - not significant, Mann-Whitney U test, Bonferroni-Holm correction).  
 

Theta phase locking 

To investigate phase locking to HPC theta oscillations, the mean phase, mean vector length              

(MVL) and Rayleigh’s statistic were calculated for each cell. Similarly to the coherence             

analysis, mPFC phase-locking results were performed only on right-hemisphere mPFC cells.           
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Only putative pyramidal cells were used in the theta locking analysis (HPC: n = 1025 cells,                

right mPFC: n = 368 cells). A preferred phase histogram of significantly locked (Rayleigh’s              

statistic P < 0.05) cells shows that HPC cells preferentially locked to the ascending phase of                

HPC theta, whilst mPFC cells preferentially locked to the descending phase (​Figure 9a​).             

Based on Rayleigh’s statistic, 72% of HPC and 56% of mPFC cells were significantly locked.               

Next we calculated the MVL, a measure of how reliable a cell fires at one specific phase.                 

Since the theta coherence results indicated that different parts of the maze are associated              

with different strengths of HPC-mPFC communication, the maze was divided into three            

sections, start, center and goal. Combining spatial-to-light and light-to-spatial sessions, the           

mean MVL was computed over all cells (not just significantly locked) for all task blocks               

(​Figure 9b​). In all task blocks HPC cells more strongly locked to HPC theta in the center (c)                  

and goal (g) compared to the start (s) of the maze (rule 1: P(s vs. c) = 1.35e-10, P(s vs. g) =                      

2.18e-13; pre-switch: P(s vs. c) = 1.52e-13, P(s vs. g) = 2.00e-9; switching: P(s vs. c) =                 

8.00e-10, P(s vs. g) = 2.06e-7; post-switch: P(s vs. c) = 2.81e-11, P(s vs. g) = 1.67e-11; rule                  

2: P(s vs. c) = 1.71e-11, P(s vs. g) = 1.52e-9; Mann-Whitney U test, Bonferroni-Holm               

correction). mPFC cells showed smaller average MVL values than the HPC, but also phase              

locked most strongly to HPC theta in the center and goal area (rule 1: P(s vs. c) = 0.003, P(s                    

vs. g) = 0.0003; pre-switch: P(s vs. c) = 0.0003, P(s vs. g) = 0.007; switching: P(s vs. c) =                    

0.001, P(s vs. g) = 0.0003; post-switch: P(s vs. c) = 1.92e-5, P(s vs. g) = 4.71e-5; rule 2: P(s                    

vs. c) = 2.34e-6, P(s vs. g) = 1.62e-6, Mann-Whitney U test, Bonferroni-Holm correction).  

 

We then investigated whether phase-locking strength differed with performance. For all trials            

of the rule-switch block (i.e., pre-switch, switching and post-switch), we calculated the MVL             

in the maze center during correct and error trials. For every cell, we ensured that the same                 

number of spikes was used to calculate the MVL during correct and error trials (see               

Methods). We did not observe any differences in mPFC or HPC phase-locking strength to              

HPC theta oscillations between correct and error trials (HPC: P = 0.48; mPFC: P = 0.27,                

Mann-Whitney U test;​ Figure 9c​). 
 

To test for potential differences between the two rule types, MVL analysis was performed for               

the maze center during rule 1 (remote recall), separately for the spatial and light rule. Both,                

HPC and mPFC cells showed no differences in theta phase-locking strength between the             

two rules (HPC: P = 0.35; mPFC: P = 0.19, Mann-Whitney U test; ​Figure 9d​). Similar results                 

were obtained for the other blocks. 
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Figure 9: Increased theta phase locking strength of HPC and mPFC pyramidal cells at              
the maze center and goal. 
(​a​) Preferred HPC theta oscillation phase of significantly locked HPC (top) and mPFC             
(bottom) cells. Black line illustrates two theta cycles. 
(​b​) MVL of HPC (top) and mPFC (bottom) cells calculated over all sessions. The MVL of                
HPC and mPFC cells was higher in the center and goal, compared to the start of the maze.  
(​c​) MVL did not differ between correct and error trials. 
(​d​) MVL did not differ for the two different rule types. Here computed for the maze center                 
during rule 1 (remote recall). 
(*P <0.05, **P <0.01, ***P <0.001, ns - not significant, Mann-Whitney U test,             
Bonferroni-Holm correction). 
 
Finally, to investigate whether mPFC theta phase-locking strength changes as a function of             

rule-switching, the MVL of mPFC cells was calculated separately for trials during pre-switch,             

switching and post-switch. This was done for the maze center and separately for sessions              

with a space-to-light and light-to-space rule switch. To compare activity during similar            

behaviors in the two rules, only those light rule trials that had trajectories matching those of                

that day’s spatial rule were used for MVL calculation. Since MVL calculation is sensitive to               

the number of spike phases available, we ensured that the same number of spikes was used                

for calculating a cell’s MVL for the three different blocks (see Methods). For ​Figure 10a ​, cells                

were first grouped into three groups, depending on whether their maximum MVL was during              

pre-switch, switching or post-switch, and then the cells were sorted within each group in              

descending order. Different groups of mPFC cells were maximally phase-locked during           
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different blocks. To quantify whether the type of rule switch (space-to-light or light-to-space)             

had an effect on the change in phase-locking strength between pre- and post-switch, we              

computed the absolute difference of pre- and post-switch MVL (i.e., |MVL(pre-switch) -            

MVL(post-switch)|), separately for the two types of rule switches. The average difference in             

phase-locking strength between pre- and post-switch did not differ for the two types of rule               

switches (P = 0.36, Mann-Whitney U test; ​Figure 10c​). To investigate whether differences in              

MVL resulted from rule-switching or if MVL values also fluctuate during stable performance,             

we plotted the MVL of cells for the first and second half of rule 1 (remote recall) (​Figure                  
10b​). For ​Figure 10b cells were first grouped into two groups, depending on whether their               

maximum MVL was during the first or second half of the rule 1 (remote recall) block, and                 

then the cells were sorted within each group in descending order. This also resulted in two                

groups of cells, each group showing stronger phase-locking for one half of the rule 1 (remote                

recall) block (​Figure 10b​). We then compared the mean MVL difference between pre- and              

post-switch (not separating for space-to-light and light-to-space rule switches) with that           

between the first and second half of rule 1 (remote recall). Unexpectedly, cells exhibited a               

greater phase-locking difference between first and second half of rule 1 (remote recall) than              

between pre-switch and post-switch (P = 0.0005, Mann-Whitney U test; ​Figure 10d​). These             

results therefore do not suggest that mPFC cells code for rules with hippocampal theta              

phase. 
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Figure 10: The theta MVL of mPFC cells does not code for rules. 
(​a​) The MVL of mPFC cells during the pre-switch, switching and post-switch blocks,             
separately for sessions with a spatial-to-light (left) and light-to-spatial rule switch (right). The             
MVL is color-coded, warmer colors representing higher MVL. The left (space-to-light) and            
right (light-to-space) constitute different recording days and therefore the cell populations in            
these two figures are different. Sorting was done in the following way: Cells were grouped               
into three groups, depending on whether their highest MVL occurred during pre-switch,            
switching or post-switch. Cells in each group were then sorted in descending order of their               
MVL. 
(​b​) The MVL of mPFC cells during the first and second half of rule 1 (remote recall) block. All                   
sessions, and thereby rule types, are considered here. Cells were assigned into two groups,              
depending on whether their highest MVL occurred during the first or second half of rule 1                
(remote recall). Cells in each group were then sorted in descending order of their MVL. 
(​c​) The mean absolute difference between pre-switch and post-switch MVL, separately for            
space-to-light and light-to-space rule switch sessions. There was no significant difference,           
indicating that the MVL changes to a similar degree from pre- to post-switch, irrespective of               
the type of rule switch. 
(​d​) The mean absolute difference between first and second half of rule 1 (remote recall) MVL                
and between pre- and post-switch MVL. All rule switch types are pooled together here. The               
MVL changed more between first and second half of rule 1 (remote recall) than between pre-                
and post-switch.  
(***P <0.001, ns - not significant, Mann-Whitney U test). 
 

Gamma phase locking 

We next investigated phase locking to gamma oscillations and calculated the mean phase,             

mean vector length (MVL) and Rayleigh’s statistic for each cell. Based on Rayleigh’s             
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statistic, we found that only 8% of HPC and 5% of mPFC putative principal cells were                

significantly locked to HPC gamma oscillations. Combining spatial-to-light and light-to-spatial          

sessions, the mean MVL was computed over all cells (not just significantly locked) for all task                

blocks (​Figure 11a​). For all task blocks, the phase-locking strength of HPC cells to HPC               

gamma oscillations in the start was not different compared to that in the center or the goal                 

(rule 1: P(s vs. c) = 0.25, P(s vs. g) = 0.09; pre-switch: P(s vs. c) = 0.19, P(s vs. g) = 0.056;                       

switching: P(s vs. c) = 0.34, P(s vs. g) = 0.49; post-switch: P(s vs. c) = 0.28, P(s vs. g) =                     

0.41; rule 2: P(s vs. c) = 0.056, P(s vs. g) = 0.45; Mann-Whitney U test, Bonferroni-Holm                 

correction). Similarly, for most task blocks, the phase-locking strength of mPFC cells to HPC              

gamma oscillations in the start was not different compared to that in the center or the goal                 

(rule 1: P(s vs. c) = 0.08, P(s vs. g) = 0.27; pre-switch: P(s vs. c) = 0.32, P(s vs. g) = 0.44;                       

switching: P(s vs. c) = 0.45, P(s vs. g) = 0.20; post-switch: P(s vs. c) = 0.024, P(s vs. g) =                     

0.16; rule 2: P(s vs. c) = 0.20, P(s vs. g) = 0.07; Mann-Whitney U test, Bonferroni-Holm                 

correction). Only in the post-switch block was the gamma phase-locking strength of mPFC             

neurons stronger in the start compared to the center. 

 

To investigate whether gamma phase-locking strength differed with performance, we          

calculated for all trials of the rule-switch block (i.e., pre-switch, switching and post-switch) the              

MVL in the maze center separately for correct and error trials. For every cell, we ensured                

that the same number of spikes was used to calculate the MVL during correct and error trials                 

(see Methods). We did not observe any differences in mPFC or HPC phase-locking strength              

to HPC gamma oscillations between correct and error trials (HPC: P = 0.31; mPFC: P =                

0.33, Mann-Whitney U test;​ Figure 11b​). 
 

To test for potential differences between the two rule types, gamma oscillation MVL analysis              

was performed for the maze center during rule 1 (remote recall), separately for the spatial               

and light rule. Both, HPC and mPFC cells showed no differences in gamma phase-locking              

strength between the two rules (HPC: P = 0.15; mPFC: P = 0.28, Mann-Whitney U test;                

Figure 11c​). 
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Figure 11: Gamma phase locking strength of HPC and mPFC pyramidal cells. 
(​a​) MVL of HPC (top) and mPFC (bottom) cells calculated over all sessions. The MVL of                
HPC and mPFC cells did not differ in the start relative to the center or goal of the maze. Only                    
in the post-switch block was mPFC phase-locking strength in the start higher than in the               
center or goal. 
(​b​) MVL did not differ between correct and error trials. 
(​c​) MVL did not differ for the two different rule types. Here computed for the maze center                 
during rule 1 (remote recall). 
(*P <0.05, ns - not significant, Mann-Whitney U test, Bonferroni-Holm correction). 
 

 

 
 
 

51 



 

Rule remapping 

Cofiring similarity 

To examine whether the activity of the HPC and mPFC codes for the rule, we analyzed                

cofiring dynamics between cell pairs. All putative HPC and mPFC pyramidal cells were             

included (HPC: n = 1025, mPFC: n = 817). Cofiring matrices were correlated between the               

following conditions: Rule 1 and Rule 2, first and last 12 trials of Rule 1, first 12 trials of                   

pre-switch and last 12 trials of post-switch, first and last 12 trials of Rule 2. For the HPC,                  

switching from one rule to another caused changes in cofiring dynamics as seen in the Rule                

1 vs. Rule 2 cofiring matrix correlation (​Figure 12a,b​). That cofiring in the HPC changed as a                 

result of the rule switch and not merely due to the passage of time is shown by the Pre- vs.                    

Post-switch analysis. There, the Pre- vs. Post-switch correlation was lower than correlations            

from blocks with no rule change. For the mPFC, changes in cofiring dynamics with rule were                

only observed for Spatial-to-Light rule changes (​Figure 12c,d​). 
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Figure 12: Cofiring dynamics and rule coding in the HPC and mPFC. 
(​a​) Cofiring dynamics for HPC cell pairs in Spatial-to-Light rule switch sessions. In Rule 1 vs.                
Rule 2, cofiring matrices of the Rule 1 and Rule 2 blocks were correlated. In Rule 1, cofiring                  
matrices of the first and last 12 trials of the Rule 1 block were correlated. In Pre- vs.                  
Post-switch, cofiring matrices of the first 12 trials of pre-switch and last 12 trials post-switch               
block were correlated. Finally, in Rule 2, cofiring matrices of the first and last 12 trials of the                  
Rule 2 block were correlated (Spatial-to-Light: P = 0.003, Kruskal Wallis Test; P (Rule 1 vs.                
Rule 2 - Rule 1 (first vs. last 12 trials)) = 0.02, P (Rule 1 vs. Rule 2 vs. Rule 2 (first vs. last 12                         
trials)) = 0.003, P (Pre- vs. Post-switch - Rule 1 (first vs. last 12 trials)) = 0.03, P (Pre- vs.                    
Post-switch - Rule 2 (first vs. last 12 trials)) = 0.007, Mann-Whitney U post-hoc). 
(​b​) Cofiring dynamics for HPC cell pairs in Light-to-Spatial rule switch sessions            
(Light-to-Spatial: P = 0.0007, Kruskal Wallis Test, P (Rule 1 vs. Rule 2 - Rule 1 (first vs. last                   
12 trials)) = 0.001, P (Rule 1 vs. Rule 2 - Rule 2 (first vs. last 12 trials)) = 0.001, P (Pre- vs.                       
Post-switch - Rule 1 (first vs. last 12 trials)) = 0.02., P (Pre- vs. Post-switch - Rule 2 (first vs.                    
last 12 trials)) = 0.004, Mann-Whitney U post-hoc). 
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(​c​) Cofiring dynamics for mPFC cell pairs in Spatial-to-Light rule switch sessions.            
(Spatial-to-Light: P = 0.02, Kruskal Wallis Test, P (Rule 1 vs. Rule 2 - Rule 1 (first vs. last 12                    
trials)) = 0.006, P (Rule 1 vs. Rule 2 - Rule 2 (first vs. last 12 trials)) = 0.02, (Pre- vs.                     
Post-switch - Rule 1 (first vs. last 12 trials)) = 0.03, P (Pre- vs. Post-switch - Rule 2 (first vs.                    
last 12 trials)) = 0.3, Mann-Whitney U post-hoc). 
(​d​) Cofiring dynamics for mPFC cell pairs in Light-to-Spatial rule switch sessions            
(Light-to-Spatial: P = 0.1, Kruskal Wallis (KW) Test).  
Data are expressed as mean ± s.e.m. Mann-Whitney U Test, *​P​ < 0.05, **​P​ < 0.01,          
***​P​ < 0.001.  
 
To illustrate the progression of changes in cofiring dynamics, we computed a cofiring matrix              

for every trial of the pre-switch, switching and post-switch block, but only including matching              

trajectories. A trial’s cofiring matrix was correlated with the cofiring matrix of Rule 1 and Rule                

2 (calculated for all matching trajectory trials). The correlation difference for every trial             

(correlation with Rule 2 minus correlation with Rule 1) is plotted in ​Figure 13a ​. Trials with a                 

negative and positive correlation coefficient had cofiring patterns more similar to that of Rule              

1 and Rule 2, respectively. Some trials after the rule change (vertical dashed line), HPC               

cofiring patterns become more similar to the Rule 2 block, indicating that HPC firing codes               

for rules. For the mPFC, however, cofiring similarity of trials varied without clear link to the                

rule change (​Figure 13b​).  
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Figure 13: Trial-by-trial cofiring similarity to Rule 1 and Rule 2 blocks. 
(​a​) Three example sessions illustrating how HPC cofiring changes with rule-switching. The            
cofiring matrix of a trial (within the pre-switch, switching and post-switch block) was             
correlated with that of the Rule 1 and Rule 2 block, and the two correlation coefficients were                 
subtracted from each other and plotted as a vertical line. Negative and positive Pearson              
correlation differences indicate cofiring similarity with Rule 1 and Rule 2, respectively. The             
rule change (dashed vertical line) resulted in a different HPC cell pair cofiring configuration. 
(​b​) The same three example sessions as above, but illustrating how mPFC cofiring changes              
with rule-switching. Cofiring matrix correlations were weaker than for the HPC. Furthermore,            
changes in mPFC cell pair cofiring were not related to the rule change (dashed vertical line)                
and for some sessions cofiring relationships became more similar to the Rule 1 block after               
the rule change. 
 

Together with the results above, the mPFC seems to not code for rule types with cofiring                

relationships, or only does so for sessions with a Spatial to Light rule switch. Cofiring               

relationships in the HPC, however, differ for different rules.  

 

Place field similarity 

The place fields of hippocampal place cells can globally and rate remap upon changes to the                

environment (Leutgeb et al., 2005; Muller and Kubie, 1987). We therefore tested whether the              

spatial firing of HPC and mPFC cells undergoes rule switch-related remapping. Rate maps             

were correlated between the following conditions: Rule 1 and Rule 2, first and last 12 trials of                 

Rule 1, first 12 trials of pre-switch and last 12 trials of post-switch, first and last 12 trials of                   

Rule 2. For the HPC, the two rules were associated with different firing maps as seen in the                  

Rule 1 vs. Rule 2, compared to the Rule 1 and Rule 2 rate map correlations (​Figure 14a,b​).                  
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That remapping in the HPC was a result of the rule switch and not merely due to the                  

passage of time is shown by the Pre- vs. Post-switch analysis. For Spatial-to-Light rule              

switch session, more remapping occurred between Pre- and Post-switch, than within Rule 1             

or Rule 2. However, for Light-to-Spatial rule switch sessions, Pre- and Post-switch showed             

more remapping only compared to Rule 2, but not compared to Rule 1. For the mPFC during                 

Spatial-to-Light rule switch sessions, the two rules were associated with different firing rate             

maps as seen in the Rule 1 vs. Rule 2, compared to the Rule 1 and Rule 2 rate map                    

correlations (​Figure 14c​). Also, there was more remapping in the Pre- vs. Post-switch             

analysis, compared to within Rule 1 and Rule 2 (although Rule 2 only showed minimally less                

remapping than Pre- vs. Post-switch). In Light-to-Spatial rule switch sessions, the mPFC            

exhibited more remapping within Rule 1 than compared to the Rule 1 vs. Rule 2 or Pre- vs.                  

Post-switch analysis (​Figure 14d​).  
 

Taken together, the HPC seems to remap in response to a rule switch, however only for                

Spatial-to-Light rule switch sessions. Similarly for the mPFC, only in Spatial-to-Light rule            

switch sessions, did we observe rule switch-related remapping. However, there the rate            

maps within Rule 2 were only minimally more stable compared to the Pre- vs. Post-switch. 
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Figure 14: Remapping dynamics and rule coding in the HPC and mPFC. 
(​a​) HPC rate map correlations for Spatial-to-Light rule switch sessions. In Rule 1 vs. Rule 2,                
rate maps of the Rule 1 block were correlated with rate maps of the Rule 2 block. In Rule 1,                    
rate maps of the first 12 trials were correlated with rate maps of the last 12 trials of the Rule                    
1 block. In Pre- vs. Post-switch, rate maps of the first 12 trials of pre-switch were correlated                 
with rate maps of the last 12 trials of post-switch. Finally, in Rule 2, rate maps of the first 12                    
trials were correlated with rate maps of the last 12 trials of the Rule 2 block. (Spatial-to-Light:                 
P = 3e-72, Kruskal Wallis Test; P (Rule 1 vs. Rule 2 - Rule 1 (first vs. last 12 trials)) = 3e-49,                      
P (Rule 1 vs. Rule 2 vs. Rule 2 (first vs. last 12 trials)) = 7e-50, P (Pre- vs. Post-switch - Rule                      
1 (first vs. last 12 trials)) = 9e-16, P (Pre- vs. Post-switch - Rule 2 (first vs. last 12 trials)) =                     
1e-13, Mann-Whitney U post-hoc). 
(​b​) HPC rate map correlations for Light-to-Spatial rule switch sessions. (Light-to-Spatial: P =             
6e-84, Kruskal Wallis Test, P (Rule 1 vs. Rule 2 - Rule 1 (first vs. last 12 trials)) = 8e-21, P                     
(Rule 1 vs. Rule 2 - Rule 2 (first vs. last 12 trials)) = 8e-62, P (Pre- vs. Post-switch - Rule 1                      
(first vs. last 12 trials)) = 0.4, P (Pre- vs. Post-switch - Rule 2 (first vs. last 12 trials)) = 8e-40,                     
Mann-Whitney U post-hoc). 
(​c​) mPFC rate map correlations for Spatial-to-Light rule switch sessions. (Spatial-to-Light: P            
= 3e-50, Kruskal Wallis Test, P (Rule 1 vs. Rule 2 - Rule 1 (first vs. last 12 trials)) = 5e-45, P                      
(Rule 1 vs. Rule 2 - Rule 2 (first vs. last 12 trials)) = 8e-21, (Pre- vs. Post-switch - Rule 1                     
(first vs. last 12 trials)) = 0.001, P (Pre- vs. Post-switch - Rule 2 (first vs. last 12 trials)) =                    
8e-5, Mann-Whitney U post-hoc). 
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(​d​) mPFC rate map correlations for Light-to-Spatial rule switch sessions. (Light-to-Spatial: P            
= 2e-35, Kruskal Wallis Test, P (Rule 1 vs. Rule 2 - Rule 1 (first vs. last 12 trials)) = 6e-4, P                      
(Rule 1 vs. Rule 2 - Rule 2 (first vs. last 12 trials)) = 9e-24, (Pre- vs. Post-switch - Rule 1                     
(first vs. last 12 trials)) = 1e-5, P (Pre- vs. Post-switch - Rule 2 (first vs. last 12 trials)) =                    
1e-15, Mann-Whitney U post-hoc). 
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Trajectory replay 

For the following analyses, only data from the pre-switch, switching and post-switch blocks             

were taken (​Figure 4a​). Furthermore, all putative HPC and mPFC pyramidal cells were             

included (HPC: n = 1025, mPFC: n = 817). 

 

Spatial coding in the HPC and mPFC 

We investigated place coding in the HPC and mPFC. ​Figure 15 shows the firing rate of                

simultaneously recorded cells, i.e., from one recording session, along the linearized maze for             

the four different trajectories of the light-guided rule. HPC cells show spatially localized firing,              

where every part of the maze is coded for by a subset of cells. Albeit less selective, spatial                  

firing was also seen for mPFC cells.  

 

 

Figure 15: Spatial coding in the HPC and mPFC​. 
Linearized rate maps of HPC and mPFC cells for the four trajectories on the plus-maze.               
Simultaneously recorded cells from one example recording sessions are shown. Each rate            
map was normalized relative to the mean firing rate of a cell (Z-score). Cells are sorted                
based on the position of their peak firing rate. 
 

To quantify spatial coding in the two areas, we employed a Bayesian algorithm on neuronal               

population firing to decode the position of the animal whilst running. Bayesian decoding was              

performed with a cross-validation procedure where rate maps were computed using two            

thirds of the running data and positional decoding was performed on the other third. When               

decoding the 2D position of the animal using the HPC cell population, the mean decoding               

error, i.e., the difference between the decoded and real spatial position, was 14 ± 1.3 cm                

(‘2D decoding’) (​Figure 16a​). This decoding error is similar to ones reported previously             

(Zhang et al., 1998). Decoding of the 2D position from the mPFC cell population, however,               
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yielded a large mean decoding error of 46 ± 3 cm (​Figure 16a​). We then constructed rate                 

maps using the linearized position of the animal and hence decoded the animal’s relative              

position between the start and goal, without distinguishing between the different arms (‘1D             

decoding’) (​Figure 16b​, bottom). Whilst 1D positional decoding using the HPC cell            

population did not alter the decoding precision (14 ± 1.3 cm; P = 0.5, Wilcoxon signed-rank                

test), the decoding precision improved strongly for the mPFC population (16 ± 3 cm; P =                

0.0015, Wilcoxon signed-rank test). The 1D decoding performance using mPFC spiking was            

comparable to that of the HPC (P = 0.25, Wilcoxon signed-rank test). Since 1D decoding of                

mPFC and HPC spiking corresponded with the real position of the animal (​Figure 16c,d​),              

subsequent analyses were performed with linearized rate maps, where the two start and two              

goal arms are collapsed onto one map. 
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Figure 16: Spatial coding of the relative position in the mPFC​. 
(​a​) Mean decoding error for 2D and 1D positional decoding. Each black line represents one               
recording session. 1D positional decoding performed on mPFC population spiking lead to a             
strong improvement in decoding precision (**​P​ < 0.01, Wilcoxon signed-rank test).  
(​b​) Examples of mPFC rate maps exemplifying the generalized coding of mPFC cells (top).              
Schematic of positions predicted with ‘2D’ and ‘1D’ decoding (bottom). When a mPFC cell              
has two place fields, in either both start or both goal arms, decoding the relative position                
between the start and the goal (‘1D’ decoding) with that cell’s spiking information will lead to                
improved positional decoding performance. 
(​c​) Confusion matrix for HPC and mPFC cell population. The diagonal indicates that there is               
a correspondence between the decoded and real position. 
(​d​) 1D Bayesian decoding was performed on HPC (left) and mPFC (right) spiking for              
example trials. Position probabilities are plotted (black - low probability, white - high             
probability) with the rat’s real position overlaid (blue line). Decoding was performed on time              
windows of 0.512 ms.  
 

For the above analysis we binned spiking activity into time windows with a fixed length.               

However, spiking data can also be binned into windows of variable length, but containing a               
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minimum number of spikes or a minimum number of firing cells. We found that the number of                 

spikes required to decode the position with a decoding error of less than 30 cm was lower for                  

HPC cells (P = 0.0014, Wilcoxon signed-rank test; ​Figure 17a ​). The decoding error was              

plotted against windows of different number of spikes, windows with different number of             

firing cells and windows of different time lengths. Similar to the HPC, mPFC decoding error               

decreased with windows of increasing number of spikes, windows with increasing number of             

firing cells and windows of increasing time lengths, showing that the decoding performance             

improves with increasing information available (​Figure 17c​). Finally, for both the HPC and             

mPFC, the decoding errors in the pre-switch, switching and post-switch blocks did not differ              

(HPC: P = 0.16, mPFC: P = 0.66, Kruskal-Wallis-Test; ​Figure 17b​). 
 

In summary, these results suggest that, instead of coding for specific locations by             

distinguishing between the two start and goal arms, the mPFC holds information about the              

relative position between the start and the goal (​Figure 16b​), information likely required for              

goal-oriented navigation.  
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Figure 17: Positional decoding with HPC and mPFC spiking and its precision.  
(​a​) The number of spikes to reach a decoding error of less than 30 cm was larger for the                   
mPFC. Shown is the average over all sessions (**​P​ < 0.01, Wilcoxon signed-rank test). 
(​b​) Decoding performed with the HPC (left) and mPFC (right) population during the             
pre-switch, switching and post-switch block resulted in a similar decoding error (n.s. - non              
significant, Kruskal-Wallis-Test). 
(​c​) Decoding error when performing Bayesian decoding on the HPC (top) and mPFC             
(bottom) population with windows containing an increasing number of firing cells, windows            
containing an increasing number of population spikes and windows of increasing duration.            
Positional decoding performed on HPC and mPFC spiking improved with increasing amount            
of information available. 
 

Replay of non-local positions 

During immobility the hippocampus has been shown to replay previously visited locations            

distant from the current position of the animal. To examine whether the mPFC shows similar               
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non-local (i.e., spatial locations not bound to the current position of the animal) reactivations,              

we decoded the position of the animal with mPFC population firing not only during running               

but also immobility periods (​Figure 18a,b​). Rate maps were computed including all trials             

except for the trial on which positional decoding was performed. Also, this time rate maps               

were computed without speed filtering in order to also have neural coding information for              

maze positions that are visited by the animal mainly during immobility. This procedure             

therefore ensured that any non-local position decoded from mPFC spiking recorded during            

immobility did not result from a lack of encoding information during immobility. We found that               

the position encoded by the mPFC population can be highly non-local. The distribution of              

decoding errors during immobility periods showed two peaks, with the highest peak at zero              

and a second, smaller one, at ~150 cm away from the real location (​Figure 18b​). The                

majority of non-local events occurred during immobility (​Figure 18c​).  

 

 
 
Figure 18: During immobility the mPFC encodes non-local positions. 
(​a​) The distribution of decoding errors when positional decoding was performed on mPFC             
spiking data that was recorded during running periods. 
(​b​) The distribution of decoding errors when positional decoding was performed on mPFC             
spiking data that was recorded during immobility periods. Note the increased occurrence of             
decoding errors of ~150 cm, indicating that during immobility the mPFC increasingly            
reactivates positions distant from the animal’s actual location. 
(​c​) Distribution of the animals’ speed for local (decoding error of < 50 cm) and non-local                
(decoding error of > 150 cm) activity events in the mPFC. Note that most non-local events                
occur at low speeds when the animal is immobile.  
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Replay of trajectories in the mPFC 

The hippocampus can reactivate entire past or future trajectories serving cognitive functions            

such as memory consolidation and future planning (Csicsvari et al., 2007; Davidson et al.,              

2009; Diba and Buzsáki, 2007; Foster and Wilson, 2006). Similar temporally-organized           

replay has also been reported for the visual cortex and medial entorhinal cortex (Ji and               

Wilson, 2007; O’Neill et al., 2017). During immobility the mPFC represented locations away             

from the animal’s actual position (​Figure 18​). We therefore tested whether the mPFC links              

individual non-local positions to an ordered sequence of locations, thereby recapitulating an            

extended behavioral experience. For each session and separately for HPC and mPFC, we             

selected the number of spikes that allowed us to decode the position of the animal during                

running with an average error lower than 30 cm. Immobility periods were then divided into               

these spiking-windows that contained the same number of spikes (Stella et al., 2019). Using              

the Bayesian position-decoding algorithm and rate maps computed from spiking activity           

during running periods, a probability density function on the binned linearized positions was             

computed for each spiking-window. For every event of 4 consecutive spiking-windows a            

trajectory score was computed, based on the decoding probability between decoded           

positions (decoding probability score) and the smoothness of the trajectory (smoothness           

score). The decoding probability score represents an average of the probabilities of            

transitioning from the decoded position in one window to the next at a certain speed and                

ranges between 0 (least optimal) and 1 (most optimal). The smoothness score measures             

how many permutations of the given event show a smaller average jump between             

neighboring windows than the original event. This score ranges between 0 (most optimal)             

and 1 (least optimal) and is used as a penalization. We allowed both forward and               

reverse-replaying trajectories with a replay speed of at least 20 cm/s, and excluded             

trajectories where jumps between neighboring spiking-windows were bigger than 60 cm.           

Both scores were tested against chance using a place field rotation shuffling procedure. The              

shuffling was executed 200 times independently for each 4 spiking-window event, yielding a             

distribution of shuffled scores that we tested our results against. We observed that the              

decoding probability score distributions were significantly different, with scores closer to zero            

for shuffled events (P <0.00001, 2-sample Kolmogorov-Smirnov (KS) test; ​Figure 19a​). The            

difference remained significant when taking 4 spiking-window events that do not overlap with             

other 4 spiking-window events (P <0.00001, 2-sample KS test; ​Figure 20a​). The            

smoothness score distributions were also significantly different and were higher for the            

shuffled events (P <0.00001, 2-sample KS test; ​Figure 19b​). We unified the two measures              
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by subtracting the smoothness score from the decoding probability score, yielding the            

trajectory score, a real number ranging between -1 (least optimal) to 1 (most optimal).              

4-window events that had a unified score above the 95th percentile of their own shuffled               

distribution were then identified as significant trajectory events and selected. Since replayed            

trajectories can be longer than 4 spiking-windows, significant 4-window events were           

incrementally extended in the following way: for a significant 4-window event, if the following              

(overlapping by three windows) 4-window event was also significant, it was extended by that              

event, if the speed and jump sizes matched our criteria and the newly calculated trajectory               

score still passed the 95th percentile of its own shuffled distribution. This resulted in 58%               

and 60% of the considered 5-window events in the HPC and mPFC, respectively, to pass               

their own shuffled distribution (both P <0.00001, Binomial Test). The same procedure was             

then performed with the extended event.  
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Figure 19:  Replay of trajectories in the mPFC during immobility. 
(​a​) The cumulative distribution of decoding probability scores computed from real and place             
field-rotated shuffled data. For the HPC (top) and mPFC (bottom), the decoding probability             
scores of the real data were significantly higher than of the shuffled data (****P <0.00001,               
2-sample KS test).  
(​b​) The cumulative distribution of smoothness scores computed from real and place            
field-rotated shuffled data. For the HPC (top) and mPFC (bottom), the smoothness scores of              
the real data were significantly lower than that of the shuffled distribution (****P <0.00001,              
2-sample KS test). 
(​c​) Distribution of the speed of trajectory replay occurring in the HPC (top) and mPFC               
(bottom). One criterion for an event to replay a trajectory was a reactivation speed of above                
20 cm/s. Depending on whether an event replays a trajectory in the forward or reverse order                
it will have a positive or negative speed, respectively. 
(​d​) Examples of trajectory replay events in the HPC (left) and mPFC (right) for all rats.                
Decoding was performed on windows with a fixed number of spikes (i.e., spike-window) and              
the position probabilities plotted for all maze positions. For the HPC, the first column shows               
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forward and the second column reverse replay. For the mPFC, the first two columns show               
forward and the last two columns reverse replay. 
 
As a control, to further verify the validity of longer than 4-window events, we computed the                

decoding probability and smoothness scores for 5 and 6 spiking-window events, with            

overlapping windows as described above. We observed that the distributions of decoding            

probability and smoothness scores were still significantly different from chance (decoding           

probability score: HPC and mPFC all P <0.00001, smoothness score: HPC and mPFC all P               

<0.00001, 2-sample KS test; ​Figure 20b-e​). 
 

 

 
 
Figure 20. Alternative selection of trajectory events and their distributions of scores. 
(​a​) The distribution of decoding probability scores was still significantly different from chance             
when 4 spiking-window events were non-overlapping.  
(​b​) The distribution of decoding probability scores was still significantly different from chance             
for 5 (instead of 4) spiking-window events.  
(​c​) The distribution of decoding probability scores was still significantly different from chance             
for 6 (instead of 4) spiking-window events.  
(​d​) The distribution of smoothness scores was still significantly different from chance for 5              
(instead of 4) spiking-window events.  
(​e​) The distribution of smoothness scores was still significantly different from chance for 6              
(instead of 4) spiking-window events (****P <0.00001, 2-sample KS test). 
 

68 



 

All together, 9% of the time spent immobile showed significant mPFC trajectories. Selected             

mPFC events resembled trajectories typically seen in the HPC (​Figure 19d​). The duration of              

trajectory replay events in mPFC was longer than in the HPC (median, mPFC: 0.74 s, HPC:                

0.33 s; P < 0.00001, Mann-Whitney U test). The distribution of trajectory replay speeds was               

wider in HPC than mPFC (95th confidence intervals, cm/s: HPC: [-491, 452], mPFC: [-186,              

191]), and both showed forward and reverse-playing trajectories (​Figure 19c,d​). The           

rasterplot in ​Figure 21 illustrates that during mPFC trajectory replay events, a sudden             

change in network activity occurs, which is typically also seen for HPC replay events. 

 

 

 
Figure 21: Sudden change in mPFC network activity during a trajectory replay event.             
Spiking of spatially-selective mPFC cells (spatial information > 0.1, sparsity < 0.1) during an              
example trial. The black line denotes the real position of the rat and the grey shaded area an                  
event where trajectory replay has been detected. The dashed green box zooms into the              
trajectory replay event. Note the change in network activity (i.e., increase or decrease in              
firing rate) during the trajectory replay event. 
 

We then performed a cross-correlation between the occurrence of significant trajectory           

replay events in the HPC with those in the mPFC and found that trajectory replay in these                 

two areas was independent of each other (​Figure 22a​). However, the speed of trajectory              

replay in both areas was correlated with the population firing rate in the corresponding area               

(P < 0.00001, 1-sample ​t​-test; ​Figure 22b​).  
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Figure 22: HPC and mPFC trajectory replay events do not co-occur. 
(​a​) Cross-correlation of trajectory replay events detected in the HPC and mPFC. The             
cross-correlation did not show any peaks and overlapped with that of the shuffled data,              
indicating that trajectory replay events in these two areas generally do not co-occur.  
(​b​) For both the HPC and mPFC, the population firing rate positively correlates with the               
trajectory event replay speed (1-sample ​t​-test).  
 

Trajectory replay in the mPFC correlates with rule-switching performance  

SWR-associated awake replay in the hippocampus has been proposed to support spatial            

task performance (Jadhav et al., 2012; Singer et al., 2013). To investigate whether awake              

trajectory replay in the mPFC goes beyond a mere recapitulation of experience to possibly              

supporting the mPFC’s role in rule-switching, we studied the relationship of awake trajectory             

replay with rule-switching performance. We calculated a rate of trajectory replay by dividing             

the number of trajectory replay events in a trial by that trial’s immobility time. Then, the mean                 

trajectory rate in the switching block was plotted against the number of trials required to               

switch to the new rule. Trajectory replay rate in the maze center of neither brain area                

correlated with performance (HPC: r = 0.41, P = 0.27; mPFC: r = -0.55, P = 0.1; ​Figure 23a​).                   

However, the rate of mPFC trajectory replay events at the goal negatively correlated with the               

number of trials required to switch to the new rule and hence positively correlated with               

performance (r = -0.66, P = 0.01; ​Figure 23b​). Conversely, HPC trajectory replay in the goal                

area positively correlated with number of trials to switch and hence showed a negative              

correlation with performance (r = 0.61, P = 0.04; ​Figure 23b​).  
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Figure 23: HPC and mPFC trajectory replay and rule-switching performance. 
A mean trajectory replay rate was calculated for switching block trials.  
(​a​) The trajectory replay rate in the maze center for the HPC (left) and mPFC (right) did not                  
correlate with number of trials required to switch to the new rule. Inset shows mean r-value                
obtained from 100 correlations of bootstrapped data. Each dot denotes one session and             
sessions with no trajectory replay for a condition were excluded. 
(​b​) The trajectory replay rate at the goal for the HPC (left) positively correlated with the                
number of trials required to switch (i.e., negatively correlated with performance). Conversely,            
the trajectory replay rate at the goal for the mPFC negatively correlated with the number of                
trials required to switch (i.e., positively correlated with performance). 
 
We then computed the mean trajectory rate separately for correct and error trials over all               

trials after the rule switch (i.e., trials from the switching and post-switch block). The mPFC               

trajectory replay event rate at the goal was higher in error than correct trials (P = 0.009,                 

Wilcoxon signed-rank test; ​Figure 24b​). This result, together with the positive correlation            

with performance, provides support that mPFC trajectory replay at the goal area during error              

trials might facilitate switching to the new rule. For the HPC, goal trajectory replay was               

slightly increased in error trials (P = 0.016, Wilcoxon signed-rank test; ​Figure 24b​). HPC              

trajectory replay in the center was higher during correct than in error trials, also when               

separating for decoded trajectories ending ahead and behind the animal (total: P = 0.0015,              

ahead: P = 0.006, behind: P = 0.02, Wilcoxon signed-rank test, Bonferroni-Holm correction;             
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Figure 24a,c​). This result fits with previous reports that the hippocampus shows more             

coordinated replay preceding correct than error trials (Singer et al., 2013). Separating ahead             

and behind trajectory replays in the center for the mPFC showed that whilst there were more                

ahead trajectories during error trials, there were more behind trajectories during correct trials             

(total: P = 0.05, ahead: P = 0.006, behind: P = 0.003, Wilcoxon signed-rank test,               

Bonferroni-Holm correction; ​Figure 24a,c​), suggesting that ahead and behind trajectories in           

the mPFC might serve different functions. 

 

 
 
Figure 24: Trajectory replay in correct and error trials. 
A mean trajectory replay rate was calculated for switching and post-switch block trials.  
(​a​) HPC trajectory replay rate in the center was higher during correct than error trials.  
(​b​) Trajectory replay rate at the goal was higher during error than correct trials for both the                 
HPC and mPFC. 
(​c​) Separating replay events in the center into ahead and behind replaying trajectories,             
showed that for the mPFC ahead replay was increased during error trials, whilst behind              
replay was increased during correct trials. Ahead and behind trajectory replay in the HPC did               
not seem to support different functions and were both increased at correct trials.  
(*​P​ < 0.05, **​P​ < 0.01, Wilcoxon signed-rank test). 
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DISCUSSION 

Theta and gamma oscillations 

Our results showed that theta coherence between the HPC and mPFC was increased in the               

maze center and goal relative to the start during most task blocks. Similarly, phase locking               

strength of HPC and mPFC cells to HPC theta was increased in the center and goal                

compared to the start for all task blocks. However, no difference in theta coherence or phase                

locking strength was seen for the two different rules. Furthermore, the phase locking             

strength of mPFC cells to HPC theta can change over trials and is not related to a switch in                   

strategy. Finally, phase locking strength of HPC and mPFC cells to HPC gamma oscillations              

was similar for the different parts of the maze and did not differ between the different rules. 

 

Oscillatory coherence is thought to facilitate precise temporal coordination and information           

transfer between brain regions (Buzsáki and Draguhn, 2004; Fries, 2005). Phase locking            

strength is a related measure and is also associated with increased coding fidelity. Increased              

phase locking strength of mPFC to hippocampal theta indicates increased interaction           

between these two areas. Both measures have been shown to be increased at task stages               

that have higher cognitive demand (Benchenane et al., 2010; Jones and Wilson, 2005).             

Similar to previous studies, we found increased HPC-mPFC theta coherence and mPFC            

phase locking at the maze decision point and goal area. What information might be shared               

between the hippocampus and mPFC during these moments? Before the animal makes a             

decision to turn, the current rule has to be retrieved and the appropriate response selected.               

The mPFC might hold information about the rule that aids the hippocampus to correctly              

navigate, information that might be shared via oscillatory mechanisms. Indeed, directionality           

of theta amplitude cross-correlation was directed from the hippocampus to mPFC during            

contextual retrieval and from the mPFC to hippocampus during retrieval of           

context-appropriate hippocampal memory, indicating transfer of information between these         

two areas (Place et al., 2016). At the goal the choice has to then be evaluated and the                  

memory of the reward place reinforced. These functions might be subserved by the             

hippocampus and mPFC, since mPFC is modified by errors (Narayanan and Laubach, 2008)             

and hippocampal-cortical interactions underlie memory consolidation (Maingret et al., 2016).          

Coherence has been reported to be particularly high after a rule switch (Benchenane et al.,               

2010), however, in our data the slightly larger increase in mean theta coherence and              
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decrease in variability in post- compared to pre-switch seen in ​Figure 8c ​was not significant               

(​Figure 8e​). Coherence was increased in the center and goal compared to the start for most                

task-blocks and not just during post-switch. Since all animals performed the rule-switching            

task for a maximum of five days it is possible that with increasing task familiarity, coherence                

will decrease during blocks with no rule-switching. We could also not confirm previous links              

between performance and increased oscillatory HPC-mPFC coupling (Jones and Wilson,          

2005; Myroshnychenko et al., 2017; ​Figure 9c​). 
 

It is well established that the hippocampus is required for spatial tasks (Morris et al., 1982;                

O’Keefe and Nadel, 1978) and the same studies that associated the hippocampus with             

spatial navigation often also revealed the functions that do not depend on that area. Tasks               

requiring the animal to search for a reward based on a cue-guided or response strategy did                

not require a functioning hippocampus, further corroborating the notion that the           

hippocampus was especially important for allocentric navigation in space (Packard et al.,            

1989; Stringer et al., 2005). Despite the hippocampus’ involvement in spatial processing,            

HPC cells showed similar phase locking strength to HPC theta in the spatial and light-guided               

task (​Figure 9d​). Finally, given the prominent role of the mPFC and hippocampus in              

rule-switching and spatial navigation, respectively, one might expect that during          

light-to-space rule switches the mPFC executes cognitive control over the hippocampus, and            

thereby engages it for the switch to the spatial strategy. However, measuring interregional             

communication with coherence and phase locking showed that coherence was similarly           

increased during post-switch blocks after a space-to-light and light-to-space rule switch           

(​Figure 8a,b​), as was mPFC phase locking strength during the two rules (​Figure 9d​). 
 

A study training mice over four days to find an escape hole in the Barnes maze found                 

increased HPC-mPFC coordination with spatial learning (Negrón-Oyarzo et al., 2018).          

Escape latency was large on the first day and gradually decreased, paralleled by a shift from                

a non-spatial strategy, involving visiting of all possible escape holes, to a spatial strategy,              

involving direct navigation to the escape hole. Slow gamma, but not theta, coherence             

increased over the four days and phase-locking strength of mPFC neurons to hippocampal             

theta, but not gamma, was increased for the spatial strategy. Recordings of the             

Negrón-Oyarzo et al. study were performed during learning of the task, whilst in our task the                

animal knew the procedure of the task and has experienced the light and spatial strategy at                

least once before. Therefore increased coordination between these two structures in the            

Negrón-Oyarzo et al. study might be more related to memory formation or retrieval on day               
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four. We also repeated our phase locking analysis on gamma band frequencies, however we              

did not find gamma coupling differences in the different maze parts or for the two rule types.                 

Another study did however find increased hippocampal-mPFC theta coherence and mPFC           

phase locking on a spatial working memory task, compared to the cued version of the task                

(Hallock et al., 2016). This might be specific to the mPFC’s involvement in working memory               

(Seamans et al., 1995). 

 

Since we found increased HPC-mPFC theta coordination during all blocks and both rule             

types, the mPFC and hippocampus seem to engage during this task, irrespective of whether              

there was a recent rule switch or whether it is spatially- or cue-guided. Therefore, increased               

coordination seen in this task might be necessary for keeping the current rule online, or for                

maintaining goal-directed behavior. Also, it has been shown that when an animal is trained              

for both a spatially- and cue-guided task at the same time, the previously             

hippocampus-independent cue-guided task becomes hippocampus-dependent (Ferbinteanu,      

2016). Therefore, in our study the hippocampus might cooperate with the striatal memory             

system during the light-guided rule. 

 

Finally, we investigated the dynamics of mPFC phase locking to HPC theta during the              

pre-switch, switching and post-switch blocks. We found that the phase locking strength of             

mPFC cells changed throughout these blocks (​Figure 10​). But phase locking strength also             

changed between the first and second half of the stable rule 1 (remote recall) block,               

indicating that mPFC does not code for rule via phase locking and rather dynamically              

changes its locking to HPC theta over trials. Other studies have also highlighted the fact that                

mPFC population activity systematically shifts with time and persistently changes          

irrespective of learning (Hyman et al., 2012; Singh et al., 2019). 

 

Rule remapping 

Previous studies demonstrated neural population activity changes in the mPFC during           

rule-switching tasks (Durstewitz et al., 2010; Guise and Shapiro, 2017; Karlsson et al., 2012;              

Powell and Redish, 2016). It has therefore been suggested that the mPFC either codes for               

task rules or the insight that the behavioral strategy needs to be adapted. We performed               

cofiring and rate map correlations, but did not detect a consistent switching-associated shift             

in mPFC activity (​Figure 12-14​). With reference to other studies the following discusses             
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possible explanations why such a rule-switching-related shift in mPFC activity was not            

conclusively found in our data. 

 

The Durstewitz et al. study involved an operant chamber task where the animal had to               

switch from a cue- to response-guided rule. This study found that not only could the rule be                 

predicted from the firing rates of the mPFC population, but that an abrupt network transition               

occurred during the rule-switching period. Due to reports that with increasing rule familiarity             

the mPFC becomes less involved (Rich and Shapiro, 2007), recordings in their study were              

performed on rats that had never experienced the response-guided rule before. It is possible              

that mPFC network responses are more pronounced when the rule is completely novel,             

implicating the mPFC in learning. However, when they predicted the choice with mPFC             

population firing rates, the authors only selected so-called conflict trials, e.g., when the rat              

had to press the left lever according to the response-rule but the visual cue would have                

indicated the right lever. Due to their task design this meant that two different behavioral               

responses were compared, the right-lever response before the switch and the left-lever            

response after the switch. Any differences in neural population found could be attributable to              

behavioral differences and not internal shifts in strategy. Additionally, choice prediction was            

significantly higher than chance for only 7 out of 13 sessions. Finally, the Durstewitz et al.                

study reported that there were distinct points in the population firing time series that showed               

fluctuations beyond the drifts observed elsewhere during the time series. That this network             

disruption was also only observed for 5 out of 13 sessions, indicates that the neural               

subpopulation recorded from likely determines whether rule-switching related neural network          

changes in the mPFC are observed. Future analysis of the present data should therefore              

test for rule-related changes in the mPFC separately for every session, since a different              

neural population was recorded for every session.  

 

The Karlsson et al. study employed an operant lever task where one of two tones signaled                

reward in the high or low probability port. An uncued change in outcome probability for the                

ports is then introduced. Since reward outcome of the ports fluctuated before the rule switch,               

it took many trials until the rat accumulated enough evidence and recognized a rule change.               

This study reported a pronounced increase in population firing rate variability (over ten             

trials), that was not associated with improved performance, but instead the realization that             

the rule had changed and alternative strategies had to be explored. We too tested for               

increased firing rate variability in the mPFC (not included in the Results of this thesis) and                

did observe abrupt increases in variability after introducing the rule switch, but only in a               
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subset of sessions. Keeping in mind that also the Durstewitz et al. study saw their rule                

switch-related changes only in a subset of their data suggests that we perhaps too should               

focus and perform more analysis on those sessions where an increased network firing             

variability was observed. In the Karlsson et al. study the rat had to accumulate evidence over                

many trials to recognize a rule change, whilst in the present study a rule change can be                 

noticed after the first trial. A sustained attentional demand over many trials might be              

reflected in more pronounced mPFC network activity changes. Finally, their study recorded            

from AC neurons. 

 

The Guise and Shapiro study, similar to us, used a plus-maze rule-switching task and              

recorded unit activity from the mPFC and hippocampus. However, differently to us, animals             

had to perform an intradimensional switch between two spatial rules (go-east and go-west).             

The two rules in their task therefore never involved the same trajectory (see Methods -               

Trajectories). To compare identical spatial behaviors the authors only analyzed neural           

activity in the start arm and reported that the ensemble activity in the mPFC and               

hippocampus distinguished between rules. One potential confound with their finding,          

however, is that both the mPFC and hippocampus, exhibit trajectory-specific firing (Ito et al.,              

2015; Wood et al., 2000). Therefore, although the neural activity of the first and second rule                

was compared during the same behavior (i.e., during the start arm), “rule-coding” might have              

only been observed because neural populations show differences in firing rate on the same              

start arm, depending on whether the animal will do a south-to-east or south-to-west             

trajectory. Another explanation for the discrepancy between the Guise and Shapiro and our             

study is the recorded neural population. Whilst we recorded from dorsal Prl, the Guise and               

Shapiro study recorded from ventral Prl and Ifl.  

 

When analyzing changes in mPFC activity in relation to rule-switching it is important to be               

aware that mPFC network activity has been reported to systematically shift with time (Hyman              

et al., 2012). Analyzing mPFC population activity in the sleep before and after a Y-maze               

task, showed that excitability of the mPFC population always changed, irrespective of            

whether a new rule has been learnt (Singh et al., 2019). Therefore, changes of mPFC firing                

may code for the time spent on the task and can wrongly be associated with rule coding. The                  

difference between learning and non-learning on the Y-maze task was that firing rate             

changes occurring during the task were carried over to subsequent sleep only when the              

animal learnt (Singh et al., 2019).  
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Trajectory replay 

 

We confirmed previous studies and found that the mPFC displays spatially selective firing             

(Fujisawa et al., 2008; Hok et al., 2013; Zielinski et al., 2019). However, instead of coding for                 

specific locations by distinguishing between the two start and goal arms, mPFC activity             

encoded the relative position between the start and the goal (​Figure 16b​). The mPFC might,               

therefore, have a role in the generalization of places with similar meaning (Yu et al., 2018).                

In the plus-maze, this generalization might allow the mPFC to code for the overarching task               

rule, i.e., run down the start arm and then choose one of the two goal arms. 

 

We further demonstrated that non-local activity in the mPFC during immobility can be             

temporally-organized and represent entire spatial trajectories that extend in front or behind of             

the animal’s current location. Replay of behaviorally-driven firing sequences has previously           

been demonstrated for the mPFC during sleep, however the content of what was being              

replayed was not investigated (Euston et al., 2007). The finding that the mPFC can replay               

sequences with a behavioral significance makes it more likely that mPFC replay has a              

behavioral function. In addition, since mPFC trajectory replay does not only progress in the              

forward, but also in the backward order (​Figure 19c,d​), it is not a mere reiteration, but an                 

abstraction from the original experience. Furthermore, the relationship of mPFC trajectory           

replay at the goal with rule-switching performance and its increased occurrence during error             

trials, suggests that the ability to switch rules might, at least in part, underlie              

temporally-organized replay in the mPFC. 

 

What might be the role of mPFC trajectory replay during awake immobility? To address this               

question one has to keep in mind that, according to our data, the mPFC retains only part of                  

the spatial information found in HPC representations: it generates a trajectory-independent           

representation by generalizing between the two start and two goal arms. The fundamental             

elements comprising the task entail running down a start arm and, at the maze center,               

choosing one of the goal arms. An understanding of these fundamental task elements does              

not necessitate differentiation of the two start and goal arms, and therefore, the mPFC might,               

in fact, code for the overall structure of the task. It has previously been shown that the mPFC                  

holds the neurobiological basis of schemas, which are higher-level frameworks of knowledge            

onto which new related information can rapidly be assimilated (Tse et al., 2011, 2007). In the                

present task, the overall task structure may be represented in the mPFC as a schema onto                
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which the new rule can be mapped. We found that center (ahead) and goal mPFC replay                

was increased on error trials and that mPFC replay at the goal positively correlated with               

rule-switching performance. During periods before the animal adapts to the new rule, replay             

of the general task structure during immobility might therefore aid the determination of the              

specific rule currently in place. Alternatively, mPFC trajectory replay may constitute a more             

general outcome evaluation in the presence of changed reward contingencies (Passecker et            

al., 2019). Previous studies showed that firing in the mPFC is modulated by errors and that                

anticipatory firing of this brain area decreases at reward absences, indicating an evaluative             

role for the mPFC (Narayanan and Laubach, 2008; Pratt and Mizumori, 2001; Sul et al.,               

2010). 

 

Although replay in the hippocampus is being extensively studied, the functional relevance of             

hippocampal replay is not clear either. The behavioral state (i.e., sleep or awake) and              

cognitive demand likely determine the functional role of replay (Stella et al., 2019).             

Hippocampal replay during sleep is thought to underlie memory consolidation (Dupret et al.,             

2010; Girardeau et al., 2009; Wilson and McNaughton, 1994), whereas awake replay has             

been suggested to support planning of future paths (Pfeiffer and Foster, 2013; Xu et al.,               

2019). At movement initiation and during goal-directed behavior, the hippocampus mostly           

replayed trajectories that were ahead of the animal (Diba and Buzsáki, 2007; Pfeiffer and              

Foster, 2013). Furthermore, in a circular track replayed trajectories during theta oscillations            

could predict the animal’s next visited goal and reactivation during SWRs was increased             

preceding correct compared to incorrect trials (Singer et al., 2013; Wikenheiser and Redish,             

2015). However, other studies demonstrated that awake replay in the hippocampus is not             

necessarily linked to ongoing behavior or reactivates trajectories that are avoided by the             

animal (Gupta et al., 2010; Wu et al., 2017). One explanation for the opposing findings might                

be that hippocampal awake replay has different roles, depending on the task demands. For              

example, trajectory replay during a reference memory task predicted the future choice, but             

replay in the working memory version of the same task predicted the past choice (Xu et al.,                 

2019). A similar task-dependent function for mPFC replay may also exist. 

 

Our data suggests that HPC and mPFC trajectory replay in this task serve different              

functions. We found that trajectory replay in the HPC and mPFC do not co-occur and are                

oppositely correlated to rule-switching performance. Moreover, HPC replay in the center           

(both ahead and behind) is decreased on error trials, whilst (ahead) mPFC trajectory replay              

at the center is increased. That trajectory replay events in these two areas seemed to not                
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co-occur was unexpected since mPFC replay, so far, was mostly studied in            

temporal-alignment with hippocampal SWRs or hippocampal replay (Jadhav et al., 2016;           

Peyrache et al., 2009; Tang et al., 2017; Yu et al., 2018). In this task HPC replay might                  

thereby rather support plus-maze task performance when the rule is stable (Ferbinteanu,            

2016), whereas replay in the mPFC might be important when the rule has changed and a                

shift of strategy is required. 

 

That replay of trajectories has not been discovered in the mPFC before could be explained               

with several reasons. First, without the 1D decoding used here, decoding precision would be              

low and therefore also the number of sequential and smooth trajectory replay events.             

Additionally, by increasing the number of tetrodes targeting the mPFC, the activity of a larger               

population of mPFC cells could be recorded, and hence more continuous events detected.             

Finally, it is possible that by using a task that depends on mPFC function the likelihood of                 

detecting trajectory replay events in the mPFC is higher. 

 

In summary, the presence of sequential reactivation of locations in the mPFC during the              

awake state and their relevance to rule-switching performance indicate that          

temporally-organized replay is a neural computation mechanism common to different brain           

areas (Ji and Wilson, 2007; Ólafsdóttir et al., 2016; O’Neill et al., 2017). With the discovery                

that hippocampal replay can be organized, new avenues opened in which hippocampal            

mnemonic computations could be analyzed. Similarly, the discovery of awake trajectory           

replay in the mPFC and their relevance to the performance of rule-switching offers new ways               

in which mPFC function can be investigated. 
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