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Abstract

Nearby grid cells have been observed to express a remarkable degree of long-range

order, which is often idealized as extending potentially to infinity. Yet their strict peri-

odic firing and ensemble coherence are theoretically possible only in flat environ-

ments, much unlike the burrows which rodents usually live in. Are the symmetrical,

coherent grid maps inferred in the lab relevant to chart their way in their natural hab-

itat? We consider spheres as simple models of curved environments and waiting for

the appropriate experiments to be performed, we use our adaptation model to pre-

dict what grid maps would emerge in a network with the same type of recurrent con-

nections, which on the plane produce coherence among the units. We find that on

the sphere such connections distort the maps that single grid units would express on

their own, and aggregate them into clusters. When remapping to a different spherical

environment, units in each cluster maintain only partial coherence, similar to what is

observed in disordered materials, such as spin glasses.
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1 | INTRODUCTION

What are the defining properties of grid cells? In the 15 years since their

discovery in the medial entorhinal cortex (mEC) (Fyhn, Molden, Witter,

Moser, & Moser, 2004), two organizational principles appear to have

emerged as the cornerstones of the phenomenon. The first one is, of

course, the positioning of the fields of each individual cell at the vertices

of a regular hexagonal tessellation of the environment (Hafting, Fyhn,

Molden, Moser, & Moser, 2005). The second, a strong propensity of local

ensembles of these cells to maintain their co-activation patterns across

conditions and environments (Fyhn, Hafting, Treves, Moser, & Moser,

2007); in striking contrast to the behavior expressed by neighboring

place cells, which make the swapping of activation partners

(“remapping”) one of their defining features (Bostock, Muller, & Kubie,

1991). These two properties, the former expressed at the single-cell

level, the latter constraining collective states of activity, have come to be

regarded as quintessential to grid cells. They are often yoked together

when discussing the “grid cell code” (Burak, 2014; Stemmler, Mathis, &

Herz, 2015; Yoon et al., 2013), thus leaving it unclear whether such code

is expressed more in the regularity of field arrangements or in the con-

stancy of spatial phase relations, or in a necessary combination of both.

It should not be forgotten, however, that grid cells have been first

described and mostly studied in flat, empty, bounded environments.

Their entanglement could be possibly related to the Euclidean geome-

try of this very specific sort of environment, rather than being intrinsic

to the cells. The question, then, is to what extent would single-cell

and population properties still co-occur, when such a specific setting

is abandoned, to reach for more naturalistic settings of complex,
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curved, partially open environments, such as the burrows where rats

live in the wild (Calhoun, 1963).

In two previous modeling studies, we argued that the notion of

the hexagonal grid may need to be generalized in order to predict the

behavior of such cells in environments of constant positive or nega-

tive curvature. With sufficient exposure to these environments, our

model indicates how single grid cells may adapt by producing regular

tessellations consistent with the underlying curvature (Stella, Si,

Kropff, & Treves, 2013; Urdapilleta, Troiani, Stella, & Treves, 2015):

tessellations with fivefold or lower symmetry for positive curvature;

sevenfold or higher symmetry for negative curvature. An analysis

based on Calhoun's (1963) study leads to the conclusion that the stan-

dard sixfold grid symmetry would arise at the single-cell level only

when the curvature is near zero; while the actual range of curvature

values of the natural Norway rat habitat extends further, both at the

negative and at the positive ends of the spectrum (Figure 1).

What about the effect of interactions between grid cells? What was

shown in (Stella et al., 2013) is only how a population of noninteracting

grid-like units can self-organize a representation of the spherical surface,

where each unit ends up displaying an independently “oriented,” often

quasi-regular grid. There, grid patterns emerged due to the progressive,

unsupervised sculpting of the feed-forward connections through

Hebbian plasticity induced by navigation-related activity. Contrary to

continuous attractor models (Burak & Fiete, 2009), interactions between

mEC units were not needed for the emergence of individual grid maps—

possibly, only for their coordination at the population level. Indeed, stud-

ies of the same model on planar environments have made clear how the

introduction of lateral connectivity in the mEC population can induce an

alignment among units, resulting in a common orientation of the fields

emerging from the feed-forward self-organization process, while also

reinforcing their symmetric arrangement (Si, Kropff, & Treves, 2012; Si &

Treves, 2013). Urdapilleta et al. (2015) have observed that also in envi-

ronments with constant negative curvature, the lateral interactions tend

to favor a coherent arrangement of the fields across units, but such envi-

ronments are dominated by their boundaries, which leads to arbitrary

modeling choices, that in turn prevent reaching firm conclusions. A com-

plete sphere, on the other hand, has no boundaries, and thus offers a

conveniently simple model of a curved environment. Moreover, it has

been effective as an experimental set-up, both on the outside (Harvey,

Collman, Dombeck, & Tank, 2009) and on the inside (Kruge, 2016;

Kruge, Wernle, Moser, & Moser, 2013), giving hope that once comple-

mented with the appropriate sensory surround, it will allow developmen-

tal studies to investigate the formation of spherical representations in

rodents. In the meantime, here we use the adaptation model to study

the effect of collateral interactions among grid-like units self-organizing

on a spherical world. We also briefly comment on the additional effects

F IGURE 1 Natural Norway rat environments span limited stretches with negligible curvature. Main graph: the symmetry expected at the single-
unit level for different values of constant Gaussian curvature, measured by the ratio between grid spacing s and the radius of curvature λ. Blue curve:
theoretical relation between the angle α = 2π/n of the n-fold symmetry and the ratio s/λ, cosh(s/λ) = cos(α)/[1 − cos(α)] (negative curvature) and
cos(s/λ) = cos(α)/[1 − cos(α)] (positive curvature). Symmetric arrangements for n = 4, 5 (on a sphere, right), 6 (on the plane, center), and 7, 8, and 9 (on a
pseudo-sphere, left) are indicated, with possible curved environments to be used in the laboratory at the top of the left and right column. Green arrows
from the flat sixfold grid example indicate the range where it may be relevant, |s/λ| ≤ 1, before other symmetries prevail. Superimposed on the graph is
a drawing of a Norway rat den, from Calhoun (1963). He estimated the inner radius of the tunnels, r, to be below 5 cm, which implies that for the radius
of Gaussian curvature λ of a curved tunnel to be of order the grid spacing s, even for a small s = 40 cm, the outer radius R of the den has to be several
meters. This means that the sixfold symmetry is relevant only to roughly straight tunnel segments, approximately indicated in green, while most of the
den (example tunnel in red) does not admit symmetric grids. The chambers are too small to reveal spherical arrangements, and their representation may
be more akin to that of the turning points in the hairpin maze (Derdikman et al., 2009) [Color figure can be viewed at wileyonlinelibrary.com]
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expected of gravity, and of boundaries, when extending the analysis

from our artificial spherical environment to ecologically plausible ones—

an extension that we leave for future studies.

2 | THE MODEL

The basic details of the model are identical to (Stella et al., 2013), and

are described in Appendix A, with the critical addition of a set of

recurrent collaterals connecting units of the EC layer.

Time is discretized in steps of length t = 0.01 s. The total length of a

simulation is of 100 million steps (corresponding to nearly 12 days of

continuous running, a very long time, to ensure that the self-organization

process has approached its asymptote). The virtual rat moves on the

surface of a sphere of radius 52.6 cm with a constant speed of

v = 40 cm/s. To obtain smooth random trajectories, resembling those

observed in experiments, running direction changes gradually after each

step, resulting in an extended correlation over time. For simplicity, the

change in running direction between two consecutive steps of the virtual

rat is sampled from a Gaussian distribution with zero mean and standard

deviation h = 0.2 rad. The virtual rat always runs along the great circle

determined by its running direction. Our model is comprised of two

layers. The input array represents, for example, the CA1 region of the

hippocampus and includes Nhipp = 1,400 units with their fields regularly

arranged to evenly tile the spherical surface. The output network is com-

prised of a population of NmEC = 250 would-be grid units, all with the

same adaptation parameters—hence they represent a single mEC mod-

ule, in relation to the modules discovered by Stensola et al. (2012).

In a limited set of simulations intended to explore the effects of

boundaries, and of gravity, we used hemispheres instead of full spheres.

The effects of a boundary, corresponding to the equator, was assessed

both with isolated hemispheres, in which case the boundary was

reflecting the trajectory of the virtual rat, and with hemispheres embed-

ded in a flat surround, where the boundary amounted only to a sudden

change of intrinsic curvature. Without gravity, whether the hemisphere

is concave or convex makes no difference. We also simulated trajectories

on concave and convex hemispheres with gravity, and the latter was

modeled by an additional force dragging the trajectory toward the equa-

tor (in the convex hemisphere) or the bottom of the bowl (in the concave

one). This force was parametrized by the change in speed when moving

downward and the strength of the downward pull applied to the vector

expressing the current direction of motion (see Appendix A).

Similarly to the planar case, we introduce collateral weights between

mEC units to induce the coordinated development of their firing maps.

The weights are set in the following way: each unit is temporarily assigned

a preferred position, an “auxiliary field” at coordinates (ϕ, θ) on the sphere,

and a “preferred direction” (angle relative to the meridian, with 0 pointing

toward the North Pole). The coordinates as well as the angle are randomly

chosen. These auxiliary fields are introduced solely to define the collateral

weights, and not to position the subsequently developing grid fields, nor

do they play any role in other parts of the simulations. They are only used,

in other words, to induce a notion of similarity among output units. The

collateral weight between unit i and unit k is then calculated as

Jik = fθi ωikð Þfθk ωikð Þexp −
d2ki
2σ2f

 !
−κ

" #+

ð1Þ

where [] + denotes the Heaviside step function, κ = 0.05 is an inhibition

factor to favor sparse weights, f is a tuning function described in the

Appendix A and ωik is the direction, with respect to the North Pole, of the

line connecting the auxiliary fields of unit i and k, along the great circle.

σf = 10 cm denotes how broad the connectivity is, and dki is defined as

dki =Rcos
−1 xixexp + yiyexp + zizexp
� � ð2Þ

that is, it is the distance between the coordinates of the auxiliary field

(xi, yi, zi) and the expected position of a virtual rat that had started at

the auxiliary field of unit k and had moved 10 cm along the geodesics

joining both fields, corresponding to 250 ms of reverberatory delayed

activity of movement along this direction. The definition of the

weights leads to a localized connectivity pattern, such that strong pos-

itive interactions are only generated between units with similar pre-

ferred head direction and activation fields appropriately shifted along

the same head direction (Kropff & Treves, 2008; Si et al., 2012). The

resulting connectivity is rather sparse, with only about 8% of the

possible pairs sharing a nonzero weight. As with the feed-forward

connectivity, normalization on this set of connections is performed by

setting a unitary L2 norm on the presynaptic strengths for each mEC

unit. Moreover, the relative strength of the recurrent input with

respect to the feed-forward input was reduced to 0.2 for most of the

simulations (see Appendix A). Notice that our model does not include

plasticity on the recurrent set of connections: their value is defined

once, at the beginning of each simulation, and then kept unmodified

throughout. Note also that with a radius R = 52.6 cm and the adapta-

tion parameters we use, most units tend to have 12 fields in the simu-

lations with recurrent connections, but 13 or 14 fields without (see

Figure S1, top). Still, we choose to use the same value of R in the two

cases for ease of comparison. When separately varying R in order to

optimize the proportion of units evolving 12 fields in each condition,

and taking into account all units, the simulation without collaterals

yields maps much closer to the “soccer ball” ideal (Figure S1, bottom).

3 | RESULTS

Simulations produce units with different number of fields, as shown in

Figure S1. In the following, we set the radius to the same value

R = 52.6 cm and consider only units which have developed 12 fields.

We compare simulations with and without lateral connections.

For each simulation, the same set of grids are left to self-organize

in two distinct, independent environments.

3.1 | Grid map distortion

At the single-map level, the introduction of lateral connections has the

immediate result of interfering with the development of a regular grid

structure. We can quantify this phenomenon by computing the spherical

correlation (as the best match over any possible rotation) of the activity
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map developed by each unit with the template of a perfect 12-field “soc-

cer ball” rate map (Stella et al., 2013). One sees a marked effect of

recurrent interactions as a general increase in the distance from the

best-matching template, even though the radius of the sphere can be

adjusted so that even with the recurrent collaterals most units produce

12 fields (Figures 2c,d and S1). The simulations without collaterals pro-

duce fairly good exemplars of an ideal spherical grid. This is not the case

when recurrent collaterals are introduced: the interactions among EC

units lead to a disruption of the regular arrangement of their fields (see

the examples in Figure 2a,b; and the quantitative measures in Figure S2).

This illustrates how quickly the spherical case departs from what is

observed on a planar surface. There, it has been shown (Si et al., 2012; Si &

Treves, 2013), the presence of lateral connections has the crucial role of

inducing a common orientation in the grid population and does not hinder,

in fact enhances, the quality of the grids developed by the system. The same

process does not occur here, where a similar attempt to induce coordination

in grid-evolving units appears at odds with the regularity of the grids.

3.2 | Grid units tend to cluster

One can then ask, what are the effects of connections on the whole

ensemble of grid units, and what does the “common orientation” that

they should induce look like, on the sphere? We answer these ques-

tions by analyzing the spatial (spherical) similarity in the structure of

the maps developed by different units. To do so, for each unit, we

computed the activity autocorrelation after 373,248 different rota-

tions. Rotations were randomly drawn to evenly span the space of

possible Euler rotations (2π × π × 2π, considering also the cosine fac-

tor). We then sorted the rotations according to their autocorrelation

score, from highest to lowest. We used the first 5,000 best rotations

to compute their distribution density in the three-dimensional space

of Euler rotations Γi(ϕ, θ, ψ ) (where i denotes the unit). For each pair

of units (i, j) we then computed the overlap between Γi(ϕ, θ, ψ ) and

Γj(ϕ, θ, ψ ) (as a correlation). This correlation (or effectively, distance)

matrix was used to identify clusters of units sharing a similar rotation

distribution. The clustering was performed with the “ward” algorithm

and the number of clusters was optimized over the range (4–15).

The outcome of this clustering algorithm shows how the popula-

tion effectively breaks down into subgroups of segregated units, each

developing an internal degree of coherence that is higher than that

shared by the entire population. In Figure 3, the spatial position (on a

2D projection of the sphere) of the field centers of all units with

12 fields in the population are shown colored according to their clus-

ter membership. To a large extent, each of these clusters expresses a

F IGURE 2 Collateral interaction distorts the grid pattern on a sphere. (a) Two representative examples of activity developed by grid units on
the sphere. Top: unit from a simulation without collateral connectivity. Bottom: unit from a simulation in which units interact through collaterals.
(b) Distribution of the position of all the fields from a population after the rate map of each unit has been rotated to maximize its overlap with a
common “soccer ball” template (the field centers of this perfect grid are shown in black). Top: fields of a population of noninteracting units (mean
distance from perfect center: 3.52�); Bottom: fields of a population of interacting units (mean distance from perfect center: 7.96�). (c) Distribution
across the population of the number of fields developed by units, with R = 52.6 cm. Left: no collaterals; right: with collaterals. Sample sessions.
Values across sessions: mean fraction with 12 fields, for no interaction 0.13, with interactions 0.68. (d) Correlation of all units with 12 fields with
a best-rotated “soccer ball.” Aggregate from all sessions [Color figure can be viewed at wileyonlinelibrary.com]
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common orientation, meaning that each of the 12 fields of a unit

tends to appear grouped with those of every other unit in the cluster.

Different clusters appear instead unrelated, roughly to the same

extent that individual units are in the nonconnected simulations

(Figure 3b).

Crucially, the membership to one cluster is a feature that is carried

over to new environments almost entirely unaltered (we describe the

remapping procedure in the next paragraph). In Figure 3c we show a

similar plot of the field centers, this time for only two of the clusters,

to highlight their correspondence in two different environments. The

grouping is conserved, as is the mutual avoidance of the fields in the

two clusters.

Thus we observe how on the sphere, the interaction between

units results into a break-down of the population, with different sub-

sets acquiring a coordinated arrangement, while at the same time it

forces each unit to distort its firing pattern away from that of an ideal

grid. These features are consistently reproduced across environments.

3.3 | Remapping

In order to gain a better understanding of the mechanisms underlying

grid formation and of the spatial code they can generate, we need to

address the properties of remapping. To that end, maps were devel-

oped independently in two environments: the set of place cell inputs

and the associated feed-forward connectivity was randomly initialized

in each of the two environments. Only the strength of the recurrent

collaterals (when present), and thus of the grid cell interactions, was

maintained after remapping. For each unit, we compare the maps

developed in the two environments, maps A and B. Taking map A, we

again apply a large random set of rotations spanning the entire Euler

rotations range, and for each rotated version of map A we compute

the resulting overlap (correlation) with map B. We first consider only

the rotation associated with the highest similarity score—the “best”

rotation—and its associated rotated version of the map, A0.

Results are shown in Figure 4a: in red one can see the distribu-

tion of correlation values between B and A0, and for comparison the

results for the best rotation of a perfect grid (in light brown). The

two distributions lie in the same range of high correlation, although

the perfect grid can usually be rotated to achieve a higher correlation

with the map in B, suggesting that the distortion observed in A is

independent of that in B. We can compare both distributions with

that obtained by correlating for each unit the best-rotated map A0

with the map of each other unit in the same cluster, in B (magenta).

In this case, correlation values are somewhat lower but, consistent

with the partially coherent behavior expressed by units in the same

clusters, they are still significantly higher than those obtained using

either the maps in B of units in other clusters (yellow) or of all the

other units (not shown).

F IGURE 3 Interacting grid units tend to
cluster. (a) Spatial distribution of the fields of a
population of grid units over the surface of a
sphere. Each field center of each unit is assigned
a color according to which cluster the unit
belongs to. Sample session. Average number of
clusters across sessions: 7.6. (b) Measure of
clustering quality: distribution of pairwise unit
correlations between the 3D density of their
5,000 best rotations in the space of Euler angles
(the measure used to define clusters). Sample
session. (c) Example of the arrangement of the
fields from the units of two clusters (green and
yellow, as in a). The positions of their fields are
shown in two different spherical environments.
Clusters were defined solely in the first
environment [Color figure can be viewed at
wileyonlinelibrary.com]
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Next, we observe that, if the two maps were perfect soccer balls,

there would be 12 × 5 = 60 equivalent ways to rotate one into the

other. Because of the distortions from the most symmetric configura-

tion, the degeneracy is only approximate, but still massive: there are

many different rotations, spanning a diverse set of Euler angle triplets,

that lead to almost the same correlation values as the best rotation, for

each unit. In fact, if we take for each unit its NBest rotations of the map

in A, we see that their average correlation with the corresponding map

in B is a smooth function of NBest, which averaged over the population

shows a significant decrease only when NBest reaches into the thou-

sands (among an arbitrarily set range of 373,248 randomly chosen trip-

lets (ϕ, θ, ψ ) of Euler angles; Figure 4b).

Remarkably, the clusters of units defined on sphere A maintain a

partial coherence once remapped onto sphere B, as already suggested

by the example in Figure 3c. If we randomly choose five sample units

per cluster, and consider their NBest = 500 individually most correlated

rotations, we find that they cluster into distinct “islands” in Euler space,

with each cluster contributing 60 regularly arranged islands, as shown

in Figure 4c. Inside each island, however, chaos prevails. Some single

units contribute many more of their best rotations to particular islands,

and the shape of each island appears randomly distorted.

After failing to observe any further geometrical structure within

the islands, we resorted to a quantitative measure of the extent to

which the best rotations are concentrated across units. We define a

clustering coefficient, CC (Cerasti & Treves, 2013), that measures,

starting from the 373,248 randomly chosen Euler triplets and taking

the NBest distinct rotations for each of N units, the probability that

two such triplets coincide (see Appendix A for the definition). For a

F IGURE 4 Remapping preserves the clusters. (a) Distribution of overlaps after the best rotation (out of 373,248 randomly drawn rotations).
All sessions. Mean overlap: with the map in B of the same unit, 0.615; with those of other units in the cluster, 0.455; with those of units not in
the same cluster, −0.050; with those of all units, 0.006 (not shown). Mean overlap of the best rotated perfect grid with the maps in B, 0.659.
(b) Correlation-NBest dependence. Average value of the correlation between the map in B and the map of the same unit in A rotated NBest times
(bars denote SDs). (c) Example of the spatial density distribution of best rotations for cells belonging to different clusters. Each color represents
the distribution of the NBest = 500 angles for five random units for each cluster. Sample session. (d) NBest scaling and partial coherence. Different
scaling CC = 1/NBest

β of the Clustering Coefficient (computed over distributions like the one in c) for different types of remapping. Logarithmic
scales. For clarity, the quantity on the y-axis is CC�NBest

1/2. Gray: random remapping of noninteracting units, β = 0. Blue: coherent remapping,
β = 1. Purple: CC computed using interacting grid units from the same cluster. Brown: CC computed using all units in an interacting population.
Dashed black: β = 0.5; dashed red: CC computed using NBest up to 100 (average over simulations: β = 0.53 all units, β = 0.52 units in same cluster);
dashed green: CC computed using 100 < NBest ≤ 700 (average over simulations: β = 0.74 all units, β = 0.71 units in same cluster); Black: computed
using numerical estimation of the analytical formulation (see Appendix B) [Color figure can be viewed at wileyonlinelibrary.com]
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perfectly coherent rotation the NBest rotations would be the very

same triplets across units, hence CC = 1/NBest. For a totally incoherent

remapping, triplets would coincide at chance level, hence

CC = 1/373,248. Figure 4d shows that, whether we take only units

within the same cluster or in the entire population, the clustering

coefficient has intermediate values, scaling approximately as 1/√NBest,

for NBest small—corresponding to a horizontal line in Figure 4d. For

larger NBest, a steeper decrease prevails, presumably because the pop-

ulation remains less than fully coherent also when allowing for looser

remapping correspondence. In Appendix B we show that an interme-

diate scaling can be expected from a simple analytical model. A direct

numerical evaluation of the mean field formulation for the clustering

coefficient (see Equation B4 in Appendix B) yields a behavior in very

good agreement with the one observed in simulations (Figure 4d,

black continuous line). Here the deflection from the 1/√NBest scaling

appears to happen for larger values of NBest (lying outside the right

margin of the plot), presumably as an effect of the mean field approxi-

mation. The model does not seem to predict, however, an exact

square root scaling, and it remains unclear to us whether the exponent

β ≈ 1/2 that we find to characterize CC ≈ 1/NBest
β (for NBest small) is

fundamental or a mere coincidence.

An extensive set of simulations with varying overall interaction

strength among the units (through a prefactor) indicates that the

absolute value of the clustering coefficient depends mildly on the pre-

factor, but its scaling exponent β ≈ 1/2 for NBest small is the same (not

shown), and the clustering coefficient is constant at 1/373,248 only

when the prefactor is strictly zero.

3.4 | Toward ecological plausibility

The full spherical environment may be approached with an appropri-

ate experimental set-up (M. Mehta, personal communication (June

2019); by using spherical virtual reality, see also Aghajan et al., 2015),

but is far from those in which rodents have evolved in the wild. The

sphere does not include several features of, for example, the systems

of burrows rodents dig as their homes. To begin considering the rele-

vance of such features to grid maps, we start here with two: the pres-

ence of boundaries and the pull of gravity. By altering exploration and

navigation behavior, both these features are expected to have at least

an indirect influence on spatial codes, also in curved environments.

The effect of a boundary can be appreciated already by simply slicing

a sphere in two halves, and running simulations of noninteracting units in

one hemisphere (Figure S4a,b). If the cut were to be randomly oriented

with respect to a perfect soccer-ball grid, one would expect definite pro-

portions of the two hemisphere patterns in Figure S4a. In particular, the

bottom arrangement with three fields around the pole should occur with

q = 28.6% of the units, as can be calculated from the exact formula

q=10 1−
3
π

� �
arctan φð Þ

� �
ð3Þ

here φ = 1.618 is the golden ratio. In simulations, however, it occurs

with about half that frequency, q = 14 ± 5% (Figure S4b), as the fields

of individual units tend to form away from the border. This also dis-

torts the “pentagonal gridness” of each map on the hemisphere. Fur-

ther, the presence of a hemispheric bump or cavity in an otherwise

flat environment distort the hexagonal gridness of the fields near the

boundary with the hemisphere. We have quantified this effect by run-

ning simulations on a flat ring which may contain either a circular hole

or a hemisphere, and measuring the standard grid score on the flat

part of would be grid units, this time interacting through recurrent col-

laterals. The presence of the (curved) hemisphere halved the average

score, with respect to simulations run around a hole, from 0.39 ± 0.16

to 0.19 ± 0.07 (Figure S4c,d).

Further grid distortions appear if gravity is present. In the adapta-

tion model, they are due to the unequal exploration of different lati-

tudes on the hemisphere, which obviously deviates in opposite

directions from an even sampling, depending on whether the hemi-

sphere is set as a hill or as a valley. In Figure S5 we show examples of

simulations run on a hill, in which trajectories were determined by

adding to the standard algorithm, generating a random movement

vector at each time step, a downward bias in speed (40% faster) and

in turn selection, to model the downward gravity pull (see Appendix A

for details). As can be seen, grid fields tend to cluster around the

equator (Figure S5a,b). Interestingly, the resulting decrease in correla-

tion with the perfect soccer ball field distribution is similar for non-

interacting grids (Figure S5c) and for interacting ones (Figure S5d),

which as discussed above already deviate more from the perfect

arrangement also in the absence of gravity.

4 | DISCUSSION

The simulation of our adaptation model, allowing for collateral interac-

tions among the units, indicates a radically different nature of the grid

code on the sphere. The same interactions which on a plane suppress

fluctuations and lead to a collapse into a smooth continuous attractor

recruiting all units with the same or similar grid spacing (Si et al.,

2012; Urdapilleta, Si, & Treves, 2017), on a sphere lead to a hierarchy

of effects on single-unit maps that

1. are distorted from the available symmetric “soccer ball” field

arrangement

2. are forced into clusters of units with approximately overlapping

fields

3. remap to a different sphere with only partial coherence, even

within clusters.

We argue that such effects are due to the unresolved conflict

between regular tessellation at the single-unit level (due to adaptation

dynamics) and global coherence at the population level (induced by

recurrent connections). Unlike the planar case, where these two

aspects can coexist in the same grid code, spherical geometry only

allows for a compromise solution, where both regular tessellation and

population coherence are only partially attained. We regard these as

predictions that could be validated or falsified by experiments which
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are doable in rodents, even though they may require ad hoc arrange-

ments to allow for the slow emergence, possibly only during a 2-week

developmental period, in rats (Langston et al., 2010), of a stable set of

2D maps.

Alternative models of grid map formation may lead to different pre-

dictions, but we would not know how, and are not currently aware of

attempts by others, to extend existing models, for example, the oscilla-

tor interference model (Burgess, Barry, & O'keefe, 2007) or the continu-

ous attractor model (Burak & Fiete, 2009), to work on a sphere.

Crucially, the continuous attractor model is based on the compatibility,

contingent to Euclidean (in 2D, planar) spaces, of a single-unit hexagonal

pattern, potentially extended to tile environments of any size, with con-

gruent phase-offsets in different units. While this model can account

for several grid cell properties and for their rapid manifestation, as

observed in laboratory experiments, it appears that its theoretical pre-

mises make it inapplicable to environments of nonzero curvature. The

regular phase offset that allows to project the activity from the “cell

layer” envisaged by the model onto real space is just not possible with

spherical geometry, leading to a loss of coherence in the activity of dif-

ferent units. It is also unclear to us how the oscillator interference

model could be applied to curved environments.

A sphere is of course an even more artificial rearing environment

than a flat box, but we believe that it may help capture a fundamental

trait of grid cell coding, by pointing at those properties of grid cells

often assumed to be universal but in fact stemming from the use of

flat, bounded environments. The qualitative characteristics 1, 2, and

3 may be general to any curved environment, and they can be contra-

sted with the character of grid cell activity in rodents reared in stan-

dard laboratory conditions. In this sense, a sphere may be closer than

a plane to the ecological condition of a Norway rat system of burrows

(Calhoun, 1963). Grid cell representations may be presumed to have

evolved to be relevant to rodents living in the wild.

In humans, the same fMRI hexagonal signature that has been

hypothesized to reflect grid cell activity in a virtual reality navigation

task (Doeller, Barry, & Burgess, 2010) has later been reported when

subjects “move” in a 2D space of drawings (Constantinescu, O'Reilly, &

Behrens, 2016), raising the issue of whether hexagonal symmetry may

characterize even abstract conceptual spaces, when described by

assigning two dimensions (Bellmund, Gärdenfors, Moser, & Doeller,

2018). Our model suggests that this may occur only around locations

that are either flat a priori, or where curvature has been ironed out,

perhaps by extensive training.

From a complex systems point of view, it is remarkable how curva-

ture opens up a scenario different from that of a strictly regular, peri-

odic 2D tessellation. In a separate study, we have already argued how

the extension of such 2D tessellation to a 3D crystal, a scenario

potentially relevant to bats and other animals navigating through 3D

volumes, is in fact implausible, because of the time scales involved

(Stella & Treves, 2015). Here, we make the case that also navigation

on 2D manifolds embedded in 3D Euclidean space (such as tree-

branches or multi-store buildings) might be associated with a “broken”

grid cell representation, retaining only part of the planar symmetry.

In the new scenario, a network of grid units “behaves” more like a

disordered system than like a crystal. The approximate inverse square

root scaling of the clustering coefficient of the rotations, under

remapping, reminds us of the partial coherence of a physical system

with impurities, where some interactions are perforce “frustrated”

(Mézard, Parisi, & Virasoro, 1987). When interactions are short-range,

local coherence may survive, avoiding the impurities, somewhat like

grid maps away from objects placed in a flat environment (Boccara,

Nardin, Stella, O'Neill, & Csicsvari, 2019; Hoydal, Skytoen, Moser, &

Moser, 2019). A prevailing nonzero curvature is more akin, however,

to a system with impurities and long-range interactions, where disor-

der affects even the shortest organizational scale. Such systems, not

unlike human society, can offer only partial coherence.

Partial coherence, together with the realization that a network of

grid cells may be endowed with a significant storage capacity (Spalla,

Dubreuil, Rosay, Monasson, & Treves, 2019), in a sense brings back grid

cells to the fold of memory systems, next to the place cells, with their

multiple charts (Battaglia & Treves, 1998; Samsonovich & McNaughton,

1997). For years, it has been thought that grid cells may afford long-

distance path integration (Fuhs & Touretzky, 2006; McNaughton,

Battaglia, Jensen, Moser, & Moser, 2006). Partial coherence, however,

limits accurate path integration to short distances. Together with the

emerging observation that mEC outputs to the cortex, mainly from

layer Va, include virtually no grid-cell signal (A. Egorov and D. Rowland,

personal communication), this weakens the theory that mEC operates

as a sort of spatial computer, and suggests instead that grid maps are

one input that helps set up the spatial component of hippocampal

memory representations. Alternative sets of coactivity relations stored

on the same synaptic connections, as well as curvature, act on the cur-

rently active grid representation as “quenched” disorder, and coexisting

with such spin-glass-like disorder appears to be the ultimate challenge

for memory systems in the brain (Treves, 2009).
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APPENDIX A: MODEL

Additional aspects of the model, besides those reported in the

main text:

The input to mEC unit i at time t is given by
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hi tð Þ=
X
j

Wij tð Þrj tð Þ ðA1Þ

The weight Wij connects input unit j to mEC unit i. We assume that at

the time the mEC units develop their maps, spatially modulated or

place cell-like activity is already present, either in parahippocampal

cortex or in the hippocampus. The network model works in the same

way with any kind of spatially modulated input, but the place-cell

assumption reduces the averaging necessary for learning. Each input

unit activity in space is modeled as a Gaussian place field centered at

preferred position xj0

rj tð Þ= exp − x tð Þ−xj0
�� ��2=2σ2ph i

ðA2Þ

where x(t) is the position at time t of the simulated rodent, σp = 0.05 m

is the width of the field and ||a-b|| is the great-circle distance on the

sphere.

Single-unit dynamics

The firing rate Ψi(t) of mEC unit i is determined by a nonlinear transfer

function

Ψ i tð Þ= π=2ð Þarctan g tð Þ αi tð Þ−μ tð Þð Þ½ �Θ αi tð Þ−μ tð Þð Þ, ðA3Þ

which is normalized to have maximal firing rate equal to 1 (in arbitrary

units), while Θ(�) is the Heaviside function. The variable μ(t) is a thresh-

old while αi(t) represents the adaptation-mediated input to unit i. It is

related to hi(t) as follows:

αi tð Þ= αi t−1ð Þ+ b1 hi t−1ð Þ−βi t−1ð Þ−αi t−1ð Þ½ �
βi tð Þ= βi t−1ð Þ+ b2 hi t−1ð Þ−βi t−1ð Þ½ �, ðA4Þ

where βi has slower dynamics than αi, with b2 = b1/3, b1 = 0.1 (in a

continuous formulation, the b coefficients become rates, in units of

[Δt]−1). These adaptive dynamics make it more difficult for a neuron

to fire for prolonged periods of time, and correspond to the kernel

K considered in the analytical treatment (Kropff & Treves, 2008). The

gain g(t) and threshold μ(t) are iteratively adjusted at every time step

to fix the mean activity a =
P

iΨi(t)/NmEC and the sparsity

s = (
P

iΨi(t))
2/(NmEC

P
iΨi(t)

2) within a 10% relative error bound from

prespecified values, a0 = 0.1 and s0 = 0.3, respectively. If k is indexing

the iteration process:

μt k +1ð Þ= μt kð Þ+ b3 a tð Þ−a0½ �
gt k +1ð Þ= gt kð Þ+ b4 s tð Þ−s0½ �, ðA5Þ

b3 = 0.01 and b4 = 0.1 are also rates, but in terms of intermediate iter-

ation steps. ak and sk are the values of mean activity and sparsity

determined by μt(k) and gt(k) in the intermediate iteration steps. The

iteration stops once the gain and threshold have been brought within

the 10% error range, and the activity of mEC units are determined by

the final values of the gain and threshold.

Synaptic plasticity

The learning process modifies the strength of the feed-forward con-

nections according to a Hebbian rule

W0
ij tð Þ=Wij tð Þ+ ε Ψ i tð Þrj tð Þ− <Ψ i t−1ð Þ> < rj t−1ð Þ>	 
 ðA6Þ

with a rate ε = 0.002. <Ψi(t)> and <rj(t)> are estimated mean firing

rates of mEC unit i and place unit j that are adjusted at each time step

of the simulation

<Ψ i tð Þ> = <Ψ i t−1ð Þ> + η Ψ i tð Þ− <Ψ i t−1ð Þ>½ �
< rj tð Þ> = < rj t−1ð Þ> + η rj tð Þ− < rj t−1ð Þ>	 
 ðA7Þ

With η = 0.05 a time averaging factor. After each learning step, the

W'ij(t) weights are normalized into unitary norm

X
j

Wij tð Þ
� �2

= 1: ðA8Þ

Head direction input

Head direction (HD) on the sphere is defined as the angle between a

vector and the vector pointing toward the north pole. With the addi-

tion of HD modulation and collateral connections, the overall input to

unit i for the interacting case is:

hi tð Þ= fθi ω tð Þð Þ
X
j

Wij tð Þrj t−1ð Þ+ ρ
X
k

JikΨ k t−τð Þ
" #

ðA9Þ

with ρ = 0.2 a factor setting the relative strength of feed-forward

Wij(t) and collateral weights Jik, and τ = 25 steps a delay in signal trans-

mission, as discussed by Si et al. (2012). The multiplicative factor

fθi(ω(t)) is a tuning function which is maximal when the current direc-

tion of the animal movement ω(t) is along the preferred direction θi

assigned to unit i

fθ ωð Þ= c+ 1−cð Þexp ν cos θ−ωð Þ−1ð Þ½ � ðA10Þ

where c = 0.2 and ν = 0.8 are parameters determining the minimum value

and the width of the cell tuning curve. Preferred head directions are ran-

domly assigned to mEC units and they uniformly span the 2π angle.

Clustering coefficient

Given q cells and taking the first Nbest Euler rotations from each, the

clustering coefficient (CC) was defined as:

CC =
1

qNbestð Þ2−qNbest

" #X
ij

X
mn

exp −d Θi,m,Θj,n
� �

=ξ
	 
 ðA11Þ
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with i 6¼ j and where d(Θi, m, Θj, n) is the distance between two three-

dimensional rotations; and ξ is set to 5� so that only nearly coinciding

rotations contribute to the sum.

Grid field definition and properties

Individual fields for each developing unit were identified as continu-

ous portions of the spherical surface where the unit firing rate was

above two times the average firing rate computed over the entire

environment. Field size was defined as the number of bins passing the

threshold in each continuous region, field height as the maximum fir-

ing rate within the continuous region, and the field ellipticity as the

ratio between the radii of a circle circumscribed to the field and a cir-

cle inscribed in the field.

Effects of gravity on the animal trajectory

To simulate the change in movement statistics due to the presence of

gravity, we modulated the generation of random trajectories in two ways.

1. We assumed that downward movement is executed at greater

speed than upward movement. Therefore the animal speed was

modulated depending on its running direction as vg = v(1 − ς cos

(θz)) where θz is the angle between the direction of motion and the

vertical axis (0 when pointing upward), and ς is a parameter regu-

lating the strength of the gravitational effect.

2. We also applied a constant, downward pull to the direction of

motion by applying a bias in the step-wise choice of a new running

direction. Downward turns were favored by implementing a

Metropolis Markov Chain that only accepted upward turns with a

certain probability. Namely, a turn was rejected when u < α where

u is a uniform random number on [0,1] and α = exp[ς(θz
t + 1 − θz

t)].

θzis the angle with respect to the z-axis (0 when pointing

completely upward), ς is a parameter regulating the strength of

the bias, taken here to numerically coincide with that of point 1).

APPENDIX B: STATISTICAL ANALYSIS

Let us consider N units that have developed grid representations on a

sphere A, and now develop also grid representations on another sphere

B. For every triplet of Euler angles (ϕ, θ, ψ ) one can define the overlap

(or spatial Pearson correlation) Ci between the representation of unit

i in A and that in B rotated by (ϕ, θ, ψ ). Assume that −1 < Ci < 1. Then

define Cmean(ϕ, θ, ψ ) as the mean Ci(ϕ, θ, ψ ) across all units, or the units

in a cluster. Of course, −1 < Cmean(ϕ, θ, ψ ) < 1 as well (in practice its

range is much more restricted, if different units do not coincide in their

“best rotations”). Now position all Euler triplets along the x-axis given by

their Cmean value, and define f(x) as their density (density of angles)

along the axis. That is, if one considers a total of Nangles, there are Nangles

f(x)dx of them between x and x + dx. In Figure S3a we show the Cmean

distribution for an entire population (dashed line) and separately for

each of eight grid unit clusters (colored lines).

Assume now that among all Nangles angles, we pick for each unit

Nbest of them, those that have the highest Ci value. How will all the

Nbest × Nunits angles be distributed, on average, in terms of f(x), the

Cmean-ordered histogram? On average, they will concentrate more at

higher Cmean values, at the very least because each unit gives a 1/N

contribution to Cmean; but possibly more concentrated than that. How

much they concentrate is critical in order to determine the clustering

coefficient CC, which measures simply how many of the Nbest angles

(what fraction) coincide among pairs of distinct units. We assume then

that, at least within a cluster,

1. one can write:

Ci =Cmean + ηi ðB1Þ

where ηi is a form of “noise,” that is, the combined effect of all other

factors independent and unrelated to Cmean. Note that this decompo-

sition is a strong assumption.

2. this “noise” is normally distributed, with a width σ(Nbest, cluster)

that is the same across units in a cluster.

If we denote with b(x; Nbest) the average fraction of Nbest angles,

among the Nangles f(x) present at a given Cmean—value x, such that,

within a cluster,

Nbest =Nangles

ð
f xð Þb x;Nbestð Þdx ðB2Þ

and with xb (Nbest,cluster) the value of x such that this average fraction

is ½, with these assumptions one has that b(x) can be expressed as the

complementary error function

b xð Þ≈ 1=2ð Þerfc xb−xð Þ=σ
ffiffiffi
2

p� 

ðB3Þ

which Figure S3b shows is not a bad approximation, if one allows xb

and hence b(x) to depend on both the cluster and Nbest.

We make now the additional, critical (mean-field) assumption that

3. the clustering coefficient, CC, at least within each cluster, is only

determined by the average density b(x; Nbest). Therefore, consider-

ing a generic pair of units,

CC = Nangles= Nbestð Þ2
h ið

f xð Þb2 x;Nbestð Þdx ðB4Þ

One may observe that CC is given by the extent of the overlap

between the two distributions f(x) and b(x) (dropping for ease of nota-

tion its argument Nbest). Equation (B2) and Figure S3 show that for

small Nbest the overlap is limited to the opposing tails of the two distri-

butions. We can evaluate the goodness of the assumptions made so

far by comparing the values of the clustering coefficient obtained
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from the last equation to those obtained from the full analysis of sim-

ulation results. Equation B4 can be numerically evaluated by making

use of the f(x) computed from simulations (Figure S3a) and of the

parameters for b(x) obtained from Gaussian fits (Figure S3b–d). The

resulting mean field approximation curve shows a remarkable similar-

ity with simulation results (Figure 4d). If we proceed and make the

final assumption that

4. f(x) has a quasi-Gaussian upper tail

f xð Þ≈kexp − x−x0ð Þ2=2ξ2
h i

ðB5Þ

with k a suitable factor and ξ the effective width of the tail, we can

obtain an analytical estimate of the CC. The result is

ln CC Nbestð Þð Þ≈ − ln Nbestð Þ− x0−xbð Þ2σ2= 2 σ2 + ξ2
� �

σ2 + 2ξ2
� �	 
 ðB6Þ

(keeping only the leading exponent). Both xb and σ may depend on

Nbest, but Figure S3 indicates that within each cluster the dependence

of σ is weak, while xb shifts leftward as Nbest increases: from Equa-

tion (B2) one can derive

ln Nbestð Þ≈ ln Nangles

� �
− x0−xbð Þ2= 2 σ2 + ξ2

� �	 
 ðB7Þ

This yields a scaling of ln(CC(Nbest)) ≈ − β ln(Nbest) with 0 < β < 1,

and the particular value β = 1/2 is obtained for σ2 ≈ 2ξ2. We have no

explanation for why this last relation appears to hold, approximately,

for Nbest small, as shown in Figure 4d.
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