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Mean-Field Dynamics for the Nelson Model
with Fermions

Nikolai Leopold and Sören Petrat

Abstract. We consider the Nelson model with ultraviolet cutoff, which
describes the interaction between non-relativistic particles and a positive
or zero mass quantized scalar field. We take the non-relativistic particles
to obey Fermi statistics and discuss the time evolution in a mean-field
limit of many fermions. In this case, the limit is known to be also a semi-
classical limit. We prove convergence in terms of reduced density matrices
of the many-body state to a tensor product of a Slater determinant with
semiclassical structure and a coherent state, which evolve according to a
fermionic version of the Schrödinger–Klein–Gordon equations.
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1. Introduction

Interacting many-body systems are very difficult to analyze, and analytic or
numerical solutions are usually not feasible. Therefore, simpler effective equa-
tions are used to analyze these systems throughout the sciences. These approx-
imations work very well in many settings and can be derived with heuristic
arguments and good intuition. In mathematical physics, the question of a rig-
orous justification of such effective equations is an active field of research,
starting in the 1970s with works such as [12,24,25,27,29,46] (see [45] for an
excellent overview). Sparked by the 2001 Nobel Prize for the experimental
realization of a Bose–Einstein condensate, there has been great interest in
the derivation of effective equations for bosonic systems. (We refer to [10,33]
for references and an overview of the topic.) More recently, there has been
an increasing interest in the evolution of many fermion systems. This started
already in the 1980s with the works [34,46], which introduce the mean-field
limit for fermions and prove convergence to the classical Vlasov equation. Con-
vergence to the Hartree–Fock equations was proved in 2004 in [17], where the
authors consider short times and analytic interaction potentials, and in partic-
ular highlight the importance of the semiclassical structure in the derivation.
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The generalization to arbitrary times and a larger class of bounded interac-
tion potentials was achieved in [8,9]; see also [37] for a slightly different proof.
The more recent work [40] extended the results to Coulomb interaction (see
also [43] for weaker singularities), assuming a property of the Hartree–Fock
dynamics that the authors only prove for the special situation of translation
invariant initial data. The article [6] covers mixed initial states. Several other
results for different timescales (without semiclassical structure) were obtained
in [3–5] for a coupling constant N−1, in [22] for a coupling constant N−1 and
Coulomb interaction, and in [2,37,38] for a coupling constant N−2/3 and sin-
gular interactions potentials. In particular, in [38] convergence to the fermionic
Hartree equations is proved for Coulomb interaction with a convergence rate
that distinguishes the mean-field equation from the free equation. Let us also
mention the article [11], where the authors discuss the Bogoliubov–de Gennes
equations for fermions, which is an approximation more precise than Hartree–
Fock theory. In particular, they derive these equations assuming that the states
are quasifree for all times. These works show that many aspects of the mean-
field regime of weakly correlated bosons and fermions that interact via a pair
potential are well understood by now. However, less attention has been paid to
systems in which the interaction between the particles is mediated by a second
quantized radiation field. Also here effective equations are of great importance
because quantized radiation fields are described on Fock space, i.e., a Hilbert
space for an arbitrary number of particles. The complexity of such systems
is reduced tremendously when the quantized field is approximated by a pair
potential or a classical radiation field. The articles [16,28,49] show that the
quantized radiation field can sometimes be replaced by a two-particle inter-
action if the particles are much slower than the bosons of the radiation field.
Moreover, it is possible to derive classical field equations from second quan-
tized models [1,14,15,19–21,23,26,31,32]. While these works focus on bosonic
systems or systems with a small number of fermions, the present paper seems
to be the first that considers a many-particle limit of fermions which interact
by means of a quantized radiation field. The scaling, which will be explained in
the following, can been seen as a fermionic mean-field limit because it is chosen
such that the source term of the radiation field can effectively be replaced by
its mean value. Moreover, it can be viewed as a second quantized analogue of
the fermionic mean-field model of [9].

We consider N identical fermions that interact by means of a quantized
scalar field. The state of the radiation field is represented by elements of the
bosonic Fock space Fs :=

⊕
n≥0 L2(R3)⊗sn, where the subscript s indicates

symmetry under interchange of variables. The Hilbert space of the whole sys-
tem is

H(N) := L2
as

(
R

3N
) ⊗ Fs. (1)

Here the subscript “as” indicates antisymmetry under exchange of variables.
An element ΨN ∈ H(N) is a vector

(
Ψ(n)

N

)
n∈N0

with Ψ(n)
N ∈ L2

as(R
3N )⊗L2

s (R
3n)

and
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‖ΨN‖2 =
∞∑

n=0

∫

d3Nx d3nk
∣
∣
∣Ψ(n)

N (XN ,Kn)
∣
∣
∣
2

< ∞, (2)

where we use the shorthand notation XN = (x1, . . . , xN ) and Kn = (k1, . . . kn).
We define the annihilation and creation operators by

(a(k)ΨN )(n) (XN ,Kn) = (n + 1)1/2Ψ(n+1)
N (XN , k,Kn),

(a∗(k)ΨN )(n) (XN ,Kn) = n−1/2
n∑

j=1

δ(k − kj)Ψ
(n−1)
N (XN , k1, . . . , k̂j , . . . , kn),

(3)

where k̂j means that kj is left out in the argument of the function. They satisfy
the commutation relations

[a(k), a∗(l)] = δ(k − l), [a(k), a(l)] = [a∗(k), a∗(l)] = 0. (4)

We choose units such that � = 1 = c. The dispersion relation is then given
by ω(k) = (|k|2 + m2)1/2 with mass m ≥ 0. We define the form factor of the
radiation field by

η̃(k) =
(2π)−3/2

√
2ω(k)

1|k|≤Λ(k), with 1|k|≤Λ(k) =

{
1 if |k| ≤ Λ,

0 otherwise.
(5)

Here, Λ is a momentum cutoff and we assume Λ ≥ 1. The field operator is
given by

Φ̂Λ(x) =
∫

d3k η̃(k)
(
eikxa(k) + e−ikxa∗(k)

)
, (6)

and the free Hamiltonian of the scalar field is the self-adjoint operator

Hf =
∫

d3k ω(k)a∗(k)a(k) (7)

with

D(Hf ) =

⎧
⎨

⎩
ΨN ∈ H(N):

∞∑

n=1

∫

d3Nx d3nk

∣
∣
∣
∣
∣

n∑

j=1

ω(kj)Ψ
(n)
N (XN ,Kn)

∣
∣
∣
∣
∣

2

< ∞
⎫
⎬

⎭
.

(8)

The full system is described by the Nelson Hamiltonian

HN =
N∑

j=1

(
−Δj + Φ̂Λ(xj)

)
+ δNHf . (9)

The factor δN is an arbitrary particle number-dependent scaling parameter
that allows to scale the field energy. The Nelson Hamiltonian is self-adjoint on
the domain D (HN ) =

(
H2(R3N )⊗Fs

)∩D(Hf ), where H2 denotes the second
Sobolev space. This can be shown by applying Kato’s theorem as in [35,47].
The time evolution of the wave function ΨN,t is governed by the Schrödinger
equation

i∂tΨN,t = N−1/3HNΨN,t. (10)
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The appearance of N−1/3 in (10) stems from the fact that we are interested
in initial conditions which are localized in a volume of order one. Then, due
to the Fermi statistics, the average kinetic energy per fermion is of order N2/3

and the average momentum per fermion of order N1/3. Therefore, we rescale
time so we track the particles only, while they move in the volume of order
one, i.e., we go to timescales N−1/3. This gives rise to a factor N1/3 in front
of the time derivative.

If we use the Schrödinger equation (10) to compute the Ehrenfest equa-
tion for the field operator, we obtain

[
∂2

t + N−2/3δ2
N (−Δx + m2)

] 〈
ΨN,t, Φ̂Λ(x)ΨN,t

〉

= −N1/3δN (2π)−3

∫

d3ke−ikx1|k|≤Λ(k)
1
N

〈

ΨN,t,

N∑

j=1

eikxj ΨN,t

〉

, (11)

where 〈·, ·〉 is the scalar product on H(N) and the xj ’s on the right-hand side
refer to the variables in L2

as

(
R

3N
)

that are integrated. Note that the integral
on the right-hand side is proportional to N−1 times the smeared out electron
density (i.e., for Λ → ∞ the electron density). Thus, for our initial conditions,
the integral is a function of order one in a volume of order one. Equation (11)
also shows that not only the coupling constant in front of the radiation field
(which we set equal to one) but also δN determines the variation of the mean
of the field operator. While our main result Theorem 2.3 holds for arbitrary
δN , we believe that two choices are of particular interest.

1. For δN = N1/3, the velocities of the electrons and the bosons scale
equally. Moreover, it ensures that the right-hand side of (11) and hence
the variation of the mean of the field operator are of order N2/3. This
gives rise to the interesting effective evolution equations (16) which cap-
ture the effect of the interaction.

2. If we set δN = 1, our model corresponds to an unscaled system whose
dynamics is studied for timescales of order N−1/3. This is interesting be-
cause usually mean-field results for systems with two-particle interaction
require a scaling of the coupling constant. It should be noted that most
of the electrons travel on a distance of order one and hence could interact
with the other electrons. However, a look at (11) shows that the group
velocity of the bosons is too slow to mediate an interaction between the
electrons. This implies (see Theorem 2.7) that the electrons effectively
evolve like free particles in an external potential.
Further insight concerning the scaling can be gained if we set εN = N−1/3

and multiply (10) by εN . This gives

iεN∂tΨN,t =

[
N∑

j=1

(
− ε2

NΔj + N−1/2ε
1/2
N Φ̂Λ(xj)

)
+ εNN−1/3δNHf

]

ΨN,t.

(12)

Here, the factor εN appears exactly where the physical constant � appears
in the Schrödinger equation. Thus, for δN = N1/3, our limit can be viewed
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as a combined weak coupling (the N−1/2 in front of the interaction term)
and semiclassical limit. Moreover, it displays a connection to the fermionic
mean-field scaling considered in [9], i.e., to the model

iεN∂tχN,t =

[

−
N∑

j=1

ε2
NΔj +

1
N

N∑

i<j

V (xi − xj)

]

χN,t (13)

with χN,t ∈ L2
as(R

3N ) and some V : R3 → R. Like in [9], it will be crucial for us
to consider initial data with a semiclassical structure, meaning that the kernel
of the one-particle reduced density matrix is concentrated along its diagonal
(see Remark 2.5 for more details).

We assume the initial states to be approximately of product form

N∧

j=1

ϕ0
j ⊗ W (N2/3α0)Ω. (14)

Here, α0 ∈ L2(R3),
∧N

j=1 ϕ0
j denotes the antisymmetrized tensor product

(wedge product) of orthonormal ϕ0
1, . . . , ϕ

0
N ∈ L2(R3), Ω denotes the vacuum

in Fs and W is the Weyl operator

W (f) := exp
(∫

d3k
(
f(k)a∗(k) − f(k)a(k)

))

(15)

for all f ∈ L2(R3) (f(k) denotes the complex conjugate of f(k)). In such
a state, the only correlations are due to the antisymmetry of the electron
wave function. During the time evolution, correlations emerge, but the prod-
uct structure (as will be shown) is preserved in the limit N → ∞ on the
level of reduced density matrices. This suggests to approximate the action
of the scaled field operator N−2/3Φ̂Λ on ΨN,t by a classical radiation field
ΦΛ(x, t) and replace the right-hand side of (11) by a coupling to the mean
electron density. In fact, Theorem 2.3 says that ΨN,t can be approximated by
∧N

j=1 ϕt
j ⊗W (N2/3αt)Ω, where (ϕt

1, . . . , ϕ
t
N , αt) solves the Schrödinger–Klein–

Gordon equations

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

N−1/3i∂tϕ
t
j(x) =

(
−N−2/3Δ + ΦΛ(x, t)

)
ϕt

j(x), for j = 1, . . . , N,

i∂tα
t(k) = N−1/3δNω(k)αt(k) + N−1(2π)3/2η̃(k)F [

ρt
]
(k),

ΦΛ(x, t) =
∫

d3k η̃(k)
(
eikxαt(k) + e−ikxαt(k)

)
,

(16)

with ρt =
∑N

i=1 |ϕt
i|2, (ϕ0

1, . . . , ϕ
0
N , α0) ∈ (L2(R3))N+1, ϕ0

1, . . . , ϕ
0
N orthonor-

mal, and where F [f ](k) := (2π)−3/2
∫

d3xe−ikxf(x) denotes the Fourier trans-
form of f ∈ L2(R3). This system of equations is formally equivalent to
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iN−1/3∂tϕ
t
j(x) =

[
−N−2/3Δ + ΦΛ(x, t)

]
ϕt

j(x), for j = 1, . . . , N,
[
∂2

t + N−2/3δ2
N (−Δ + m2)

]
ΦΛ(x, t)

= −N−1/3δN (2π)−3/2

∫

d3k eikx1|k|≤Λ(k)
1
N

F [ρt](k). (17)

Its solutions have nice regularity properties because of the ultraviolet cutoff
in the radiation field. For m ∈ N, let Hm(R3) denote the Sobolev space of
order m and L2

m(R3) a weighted L2-space with norm ‖α‖L2
m(R3) =

∥
∥(1 +

|·|2)m/2α
∥
∥

L2(R3)
. Throughout this paper, we use

Proposition 1.1. Let (ϕ0
1, . . . , ϕ

0
N , α0) ∈ ⊕N

n=1 H2(R3)⊕L2
1(R

3). Then there is
a strongly differentiable

⊕N
n=1 H2(R3) ⊕ L2

1(R
3)-valued function (ϕt

1, . . . , ϕ
t
N ,

αt) on [0,∞) that satisfies (16). Moreover, if ϕ0
1, . . . , ϕ

0
N are orthonormal,

then so are ϕt
1, . . . , ϕ

t
N for all t ∈ [0,∞).

Proof. The proposition can be shown by a standard fixed point argument
because of the ultraviolet cutoff. A proof is given in “Appendix B”. �

For global well-posedness results of the Schrödinger–Klein–Gordon sys-
tem without UV cutoff, i.e., (17) with j = 1, m = 1 and Λ = ∞, we refer to
[13,36].

In order to see that the effective equations are indeed non-trivial and to
make the connection to the Coulomb potential, it is instructive to write them
explicitly with physical constants. For m = 0, fermion mass mF > 0 and for
Λ = ∞, (17) is

i(N−1/3
�)∂tϕ

t
j(x) =

[

− (N−1/3
�)2

2mF
Δ + Φ(x, t)

]

ϕt
j(x),

[
1
c2

∂2
t − (N−1/3δN )2Δ

]

Φ(x, t) = −(N−1/3δN )
e2

ε0
N−1ρt(x).

(18)

For δN = N1/3 and in the limit c → ∞, this becomes the Poisson equation
with solution Φ(x, t) = −N−1 e2

4πε0
(| · |−1 ∗ρt)(x). Finally, note that in (16) one

can write the equation for αt(k) in integral form and plug it into the equations
for the electrons. For m = 0, mF > 0 and Λ = ∞, this yields

i(N
−1/3

�)∂tϕ
t
j(x) =

[

− (N−1/3
�)2

2mF
Δ +

c�e
√

ε0
Φ

free
Λ (x, t)

− N
−2/3

δ
−1
N

e2

4πε0

∫

d
3
y

1

|x − y| ρ
t−c−1δ−1

N
N1/3|x−y|

(y)1c−1δ−1
N N1/3|x−y|≤t

]

ϕ
t
j(x),

(19)

where Φfree
Λ (x, t) = e−icδN N−1/3|∇|tΦΛ(x, 0). For ΦΛ(x, 0) = 0, δN = N1/3 and

in the formal limit c → ∞, this becomes the Hartree equation with attractive
mean-field Coulomb potential.
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2. Main Result

As mentioned above, our goal is to show that ΨN,t ≈ ∧N
j=1 ϕt

j ⊗ W (N2/3αt)Ω
holds during the time evolution. In the following, this will be proved in the
trace norm distance of reduced density matrices. Let us introduce the number
operator

N :=
∫

d3k a∗(k)a(k) (20)

with domain

D(N ) =

{

ΨN ∈ H(N):
∞∑

n=1

n2

∫

d3Nx d3nk
∣
∣
∣Ψ(n)

N (XN ,Kn)
∣
∣
∣
2

< ∞
}

. (21)

Moreover, we choose ‖ΨN,0‖ = 1 and ΨN,0 ∈ H(N) ∩ D(N ) ∩ D(NHN ). (Note
that for the definition of the reduced density matrix below we only need ΨN,0 ∈
H(N)∩D(N 1/2).) By unitarity, also ‖ΨN,t‖ = 1 and the following lemma holds.

Lemma 2.1. Let ΨN,0 ∈ H(N) ∩ D(N ) ∩ D(NHN ) and let ΨN,t be the solution
to (10) with initial condition ΨN,0. Then also ΨN,t ∈ H(N) ∩D(N )∩D(NHN )
for all t ∈ [0,∞).

Proof. A proof has been given before in [18,19] and [30, Appendix 2.11]. �

For k ∈ N, we define the k-particle reduced density matrices of the
fermions (as operators on L2(R3k)) by

γ
(k,0)
N,t := Trk+1,...,NTrFs |ΨN,t〉〈ΨN,t|, (22)

where Trk+1,...,N denotes the partial trace over the coordinates xk+1, . . . , xN

and TrFs the trace over Fock space. Additionally, we consider on L2(R3) the
one-particle reduced density matrix of the bosons with kernel

γ
(0,1)
N,t (k, k′) := N−4/3 〈ΨN,t, a

∗(k′)a(k)ΨN,t〉 . (23)

The operator γ
(0,1)
N,t is trace class with Tr γ

(0,1)
N,t = N−4/3 〈ΨN,t,NΨN,t〉. It is

worth noting that (23) differs from the usual definition
〈ΨN,t,NΨN,t〉−1 〈ΨN,t, a

∗(k′)a(k)ΨN,t〉, which has trace one. In our choice,
we only measure deviations from the classical mode function that are at least
of order N4/3. This is important if one starts initially with no bosons and
examines the one-particle reduced density matrix after short times when only
a few bosons have been created. Then, the state of the bosons might not be
coherent and the usual definition of the one-particle reduced density matrix
may not converge to the classical mode function. However, such mismatches
are not important for the dynamics (and hence neglected in our definition)
because the field operator is rescaled by a factor of N−2/3; see (12).

Let us now state the main result of this article. We summarize the con-
ditions on our initial data in the following assumption. We denote the trace
norm of an operator A by ‖A‖Tr := Tr |A|.
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Assumption 2.2. We have α0 ∈ L2
1(R

3) and ϕ0
1, . . . , ϕ

0
N ∈ H2(R3) orthonor-

mal and such that
∥
∥p0eikxq0

∥
∥

Tr
≤ C(1 + |k|)N2/3 ∀k ∈ R

3 and
∥
∥p0∇q0

∥
∥

Tr
≤ CN (24)

for some C > 0, where pt =
∑N

j=1 |ϕt
j〉〈ϕt

j | and qt = 1 − pt for any t ∈ R

(see also Definition 3.1). Moreover, ΨN,0 ∈ H(N) ∩ D(N ) ∩ D(NHN ) with
‖ΨN,0‖ = 1.

Our main theorem is the following.

Theorem 2.3. Let Assumption 2.2 hold, and let ΨN,t be the solution to (10)
with initial condition ΨN,0 and ϕt

1, . . . , ϕ
t
N , αt the solution to (16) with initial

condition ϕ0
1, . . . , ϕ

0
N , α0. We define

aN =
∥
∥
∥γ

(1,0)
N,0 − N−1p0

∥
∥
∥

Tr
, (25)

bN = N1/3 Tr
(
γ

(2,0)
N,0 q0 ⊗ q0

)
, (26)

cN = N−1
〈
W−1(N2/3α0)ΨN,0,NW−1(N2/3α0)ΨN,0

〉
. (27)

Then there exists C > 0 (independent of N , δN , Λ and t) such that for any
t ≥ 0,

∥
∥
∥γ

(1,0)
N,t − N−1pt

∥
∥
∥

Tr
≤

√
aN + bN + cN + N−1 eeCΛ4(1+‖α0‖2)(1+t2)

. (28)

If additionally cN ≤ C̃N1/3 for some C̃ > 0, then
∥
∥
∥γ

(0,1)
N,t − |αt〉〈αt|

∥
∥
∥

Tr
≤

√
N−1/3(aN + bN + cN ) + N−4/3 eeCΛ4(1+‖α0‖2)(1+t2)

.

(29)

In particular, for ΨN,0 =
∧N

j=1 ϕ0
j ⊗W (N2/3α0)Ω we have aN = bN = cN = 0

and one obtains
∥
∥
∥γ

(1,0)
N,t − N−1pt

∥
∥
∥

Tr
≤ N−1/2eeCΛ4(1+‖α0‖2)(1+t2)

, (30)
∥
∥
∥γ

(0,1)
N,t − |αt〉〈αt|

∥
∥
∥

Tr
≤ N−2/3eeCΛ4(1+‖α0‖2)(1+t2)

. (31)

The theorem is proved in Sect. 6.

Remark 2.4. In [9,17], a similar limit was considered for fermions that interact
by means of a pair potential. From these works, we learned the importance of
the semiclassical structure. The most related works from a technical point of
view are [19,31,32,37].

Remark 2.5. For initial states without semiclassical structure, i.e., without
assuming (24), the result only holds true for times of order N−1/3. More
precisely, Equations (28)–(31) hold with the double exponential replaced by
eC(Λ,‖α0‖)N1/3t.

The first inequality in (24) means that the kernel p0(x, y) is localized
around a distance smaller than of order N−1/3 around the diagonal x = y.
The second inequality means that the density varies on scales of order one.
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In fact, these conditions should imply that the time evolution of p0 (or, say,
its Wigner transform) is close to a classical evolution equation, which here is
the Vlasov equation. This has indeed been shown in the two-body interaction
case; let us refer to [7] and references therein. Note also that for simple cases
like plane waves in a box of volume of order one, (24) indeed holds; see [40].
For a more thorough discussion of these conditions, we refer to [9,40].

Remark 2.6. Let us give a bit more intuition about cN . We first note that
the Weyl operator, defined in (15), is unitary, and thus, W−1(f) = W ∗(f) =
W (−f). One of its well-known properties (see, e.g., [42] for a nice exposition)
is

W ∗(f)a(k)W (f) = a(k) + f(k), W ∗(f)a∗(k)W (f) = a∗(k) + f(k). (32)

With that in hand, we can write cN as

cN = N1/3

∫

d3k
∥
∥
∥N−2/3a(k)W−1(N2/3α0)ΨN,0

∥
∥
∥

2

= N1/3

∫

d3k
∥
∥
∥
(
N−2/3a(k) − α0(k)

)
ΨN,0

∥
∥
∥

2

, (33)

from which it might become more clear that cN measures the initial deviations
around the classical radiation field α0.

In the case of δN = N1/3−ε with ε > 0, the group velocity of the bosons
is of lower order than the average speed of the electrons. This implies that the
electrons effectively experience a stationary scalar field and evolve according
to

N−1/3i∂tϕ
t
j(x) =

(
−N−2/3Δ + ΦΛ(x, 0)

)
ϕt

j(x) for j = 1, . . . , N. (34)

The precise statement is the following.

Theorem 2.7. Let Assumption 2.2 hold, let (ϕt
1, . . . , ϕ

t
N , αt) be the solution to

(16) with initial condition (ϕ0
1, . . . , ϕ

0
N , α0) and let (ϕ̃t

1, . . . , ϕ̃
t
N ) be the solution

to (34) with initial condition (ϕ0
1, . . . , ϕ

0
N ). We define p̃t =

∑N
j=1 |ϕ̃t

j〉〈ϕ̃t
j | and

pt as in Assumption 2.2. Then there exists C > 0 (independent of N , δN , Λ
and t) such that

N−1
∥
∥pt − p̃t

∥
∥

Tr
≤ N−1/3δNeCΛ4(1+‖α0‖2

)(1+t2). (35)

Furthermore, let ΨN,t be the solution to (10) with initial condition ΨN,0, and
let aN , bN and cN be defined as in Theorem 2.3. Then there exists C > 0
(independent of N , δN , Λ and t) such that for all t ≥ 0,
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∥
∥
∥γ

(1,0)
N,t −N−1p̃t

∥
∥
∥

Tr
≤

(
N−1/3δN+

√
aN + bN + cN + N−1

)
eeCΛ4(1+‖α0‖2)(1+t2)

.

(36)

The theorem is proved in “Appendix A”.

3. Structure of the Proof

In order to prove Theorem 2.3, it is important to define and control the right
macroscopic variables. For that, we adapt techniques that are based on the
method from [39] and that were further developed in [31,32,37]. In addition,
it is crucial to find the right measure for the correlations between the electrons
and to consider only initial states with semiclassical structure. The key idea
of the proof is to define a suitable functional β(ΨN , ϕ1, . . . , ϕN , α) which mea-
sures if the fermions are close to an antisymmetrized product state

∧N
j=1 ϕj

with ϕ1, . . . , ϕN orthonormal and if the state of the radiation field is approxi-
mately coherent. To this end, we introduce the following operators.

Definition 3.1. For N ∈ N, m, j ∈ {1, 2, . . . , N} and ϕ1, . . . , ϕN ∈ L2(R3)
orthonormal, we define the projectors p

ϕj
m : L2(R3N ) → L2(R3N ) by

pϕj
m f(x1, . . . , xN ) := ϕj(xm)

∫

d3xm ϕj(xm)f(x1, . . . , xN ) ∀ f ∈ L2(R3N ).

(37)

Moreover, we define the projectors pϕ1,...,ϕN
m : L2(R3N ) → L2(R3N ) and

qϕ1,...,ϕN
m : L2(R3N ) → L2(R3N ) by

pϕ1,...,ϕN
m :=

N∑

j=1

pϕj
m and qϕ1,...,ϕN

m := 1 − pϕ1,...,ϕN
m . (38)

The correlations between the electrons are controlled by means of two func-
tionals.

Definition 3.2. Let N ∈ N, ϕ1, . . . , ϕN ∈ L2(R3) orthonormal and ΨN ∈ H(N).
Then, βa,1: H(N) × L2(R3)N → [0,∞) and βa,2: H(N) × L2(R3)N → [0,∞) are
given by

βa,1(ΨN , ϕ1, . . . , ϕN ) := 〈ΨN , qϕ1,...,ϕN

1 ⊗ 1FsΨN,t〉 and (39)

βa,2(ΨN , ϕ1, . . . , ϕN ) := N1/3 〈ΨN , qϕ1,...,ϕN

1 qϕ1,...,ϕN

2 ⊗ 1FsΨN 〉 . (40)

We note that βa,1(ΨN , ϕ1, . . . , ϕN ) corresponds to the expectation value
of the relative number of fermions outside the antisymmetric product

∧N
j=1 ϕj

(i.e., the number of excitations around the state
∧N

j=1 ϕj divided by N). The
functional N−1/3βa,2(ΨN , ϕ1, . . . , ϕN ) corresponds (up to a small error) to
the expectation value of the square of this number. More details about the
technical relevance of βa,2 are given at the beginning of Sect. 5.
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In order to determine whether the state of the radiation field is coherent,
we define βb, which measures the fluctuations of the field modes around the
complex function α.

Definition 3.3. Let α ∈ L2(R3) and ΨN ∈ H(N) ∩ D (N ). Then βb: H(N) ∩
D (N ) × L2(R3) → [0,∞) is given by

βb (ΨN , α) := N1/3

∫

d3k
〈(

N−2/3a(k) − α(k)
)

ΨN ,
(
N−2/3a(k) − α(k)

)
ΨN

〉
.

(41)

Note that βb(ΨN,0, α
0) = cN as we showed in (33). Let us also remark

that when ΨN,t is a solution to (10) and ϕt
1, . . . , ϕ

t
N , αt a solution to (16), then

the functional βb (ΨN,t, α
t) coincides (up to scaling) with the one used in the

coherent states approach; see, e.g., [10, Chapter 3]. Finally, the functional β is
defined by

Definition 3.4. Let N ∈ N, ϕ1, . . . , ϕN ∈ L2(R3) orthonormal, α ∈ L2(R3)
and ΨN ∈ H(N) ∩D (N ). Then β: H(N) ∩D (N )×L2(R3)N ×L2(R3) → [0,∞)
is defined by

β (ΨN , ϕ1, . . . , ϕN , α) := βa,1(ΨN , ϕ1, . . . , ϕN )

+ βa,2(ΨN , ϕ1, . . . , ϕN ) + βb (ΨN , α) . (42)

In the following, we are interested in the value of β (ΨN,t, ϕ
t
1, . . . , ϕ

t
N , αt),

where (ϕt
1, . . . , ϕ

t
N , αt) is a solution to the Schrödinger–Klein–Gordon equa-

tions (16) and ΨN,t evolves according to the Schrödinger equation (10). In
this case, we apply the shorthand notations β(t), βa,1(t), βa,2(t) and βb(t).
Moreover, we use the abbreviations p

ϕt
1,...,ϕt

N
m = pt

m, q
ϕt

1,...,ϕt
N

m = qt
m and write

p
ϕt

j
m occasionally as |ϕt

j〉〈ϕt
j |m.

For the proof of Theorem 2.3, we pursue the following strategy.

(A) We choose initial data (ϕ0
1, . . . , ϕ

0
N , α0) of the Schrödinger–Klein–Gordon

system (16) and a many-body wave function ΨN,0 that satisfy our As-
sumption 2.2. Proposition 1.1 and Lemma 2.1 make sure that the solu-
tions at any time t ≥ 0 are regular enough, and in Sect. 4, we show that
the solutions still have the semiclassical structure.

(B) After that, we control the change of β(t) in time. For this, we use the semi-
classical structure to estimate

∣
∣ d
dtβ(t)

∣
∣ ≤ eCt(β(t)+N−1) for some C > 0

at each time t ≥ 0. Gronwall’s lemma then yields β(t)≤eeCt (
β(0) + N−1

)
.

(C) Finally, we relate the initial states of Theorem 2.3 and the trace norm
convergence of the reduced density matrices to β(t).

Notation 3.5. In the rest of this article, the letter C denotes a generic positive
constant and its value might change from line to line for notational conve-
nience.
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4. Semiclassical Structure

We first prove that the semiclassical structure from Eq. (24) can be propagated
in time. The Hilbert–Schmidt norm of an operator A is denoted by ‖A‖HS :=√

Tr A∗A.

Lemma 4.1. Let (ϕ0
1, . . . , ϕ

0
N , α0) ∈ H2(R3)N × L2

1(R
3) with orthonormal

ϕ0
1, . . . , ϕ

0
N and let (ϕt

1, . . . , ϕ
t
N , αt) be solutions of (16). We assume that

∥
∥p0eikxq0

∥
∥

Tr
≤ C̃(1 + |k|)N2/3 (43)

for all k ∈ R
3 and

∥
∥p0∇q0

∥
∥

Tr
≤ C̃N (44)

for some C̃ > 0. Then there exists some C > 0 (independent of N , Λ and t)
such that

∥
∥pteikxqt

∥
∥2

HS
≤ ∥

∥pteikxqt
∥
∥

Tr
≤ 2C̃(1 + |k|)N2/3eCΛ4(1+‖α0‖2

)(1+t2) (45)

for all k ∈ R
3 and

∥
∥pt∇qt

∥
∥

Tr
≤ 2C̃NeCΛ4(1+‖α0‖2

)(1+t2) (46)

for all t ∈ R.

Remark 4.2. We could formulate Lemma 4.1 likewise in terms of
∥
∥
[
pt, eikx

]∥
∥

Tr

and ‖[pt,∇]‖Tr as it was done in [9], because
∥
∥pteikxqt

∥
∥

Tr
=

∥
∥
[
pt, eikx

]
qt
∥
∥

Tr

≤ ∥
∥
[
pt, eikx

]∥
∥

Tr
≤ ∥

∥pteikxqt
∥
∥

Tr
+

∥
∥pte−ikxqt

∥
∥

Tr
,

∥
∥pt∇qt

∥
∥

Tr
=

∥
∥
[
pt,∇]

qt
∥
∥

Tr
≤ ∥

∥
[
pt,∇]∥

∥
Tr

≤ 2
∥
∥pt∇qt

∥
∥

Tr
.

(47)

These inequalities hold since ptqt = 0, ‖AB‖Tr ≤ ‖A‖ ‖B‖Tr and ‖BA‖Tr ≤
‖A‖ ‖B‖Tr for A bounded and B trace class, ‖qt‖ = 1, and ‖B‖Tr = ‖B∗‖Tr

for B trace class.

Proof of Lemma 4.1. The propagation of the semiclassical structure is shown
in a similar way as in [9, Section 5]. Recall that due to Proposition 1.1 the
solution (ϕt

1, . . . , ϕ
t
N , αt) is in

⊕N
n=1 H2(R3)⊕L2

1(R
3) and strongly continuous.

If we define ht = −Δ + N2/3ΦΛ(·, t), the time derivative of the projector
iN1/3∂tp

t = [ht, pt]. Then1

iN1/3∂t

(
qteikxpt

)
= [ht, qt]eikxpt + qteikx[ht, pt]

= [ht, qteikxpt] − qt[ht, eikx]pt. (48)

From

[ht, eikx] = [−Δ, eikx] = −ik
(
∇eikx + eikx∇

)
(49)

1Note that with an operator like pt∇ we mean the trace class operator
∑N

j=1 |ϕt
j〉〈−∇ϕt

j |,
which is well defined due to Proposition 1.1.
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and using pt + qt = 1, we conclude

iN1/3∂t

(
qteikxpt

)
= [ht, qteikxpt] + ikqt

(
∇eikx + eikx∇

)
pt

= [ht, qteikxpt] + ik∇qteikxpt + ikqteikxpt∇
+ ik

(
qt∇pteikxpt − pt∇qteikxpt

− qteikxpt∇qt + qteikxqt∇pt
)

=
(
ht + ik∇

)
qteikxpt − qteikxpt

(
ht − ik∇

)

+ ik
((

qt∇pt − pt∇qt
)
eikxpt + qteikx

(
qt∇pt − pt∇qt

))
.

(50)

Next, we define the time-dependent self-adjoint operators

A+k(t) = ht + ik∇ and A−k(t) = ht − ik∇ (51)

and their respective unitary propagators U+k(t; s) and U−k(t; s). These are
indeed well defined, which follows from [41, Theorem X.71] adapted to H0 =
−Δ ± i∇k, or, more conveniently, from [44, Theorem 2.5] and the fact that
ΦΛ(·, t) is continuously differentiable in L∞(R3), a direct consequence of Propo-
sition 1.1. The unitary propagators (with rescaled time) satisfy

iN1/3∂tU+k(t; s)ϕ = A+k(t)U+k(t; s)ϕ and

iN1/3∂tU−k(t; s)ϕ = A−k(t)U−k(t; s)ϕ (52)

for all ϕ ∈ H2(R3), with initial conditions U+k(s; s) = U−k(s; s) = 1. This
gives

iN1/3∂t

(
U∗

+k(t; 0)qteikxptU−k(t; 0)
)

= U∗
+k(t; 0)

(
− A+k(t)qteikxpt+qteikxptA−k+iN1/3∂t

(
qteikxpt

))
U−k(t; 0)

= ikU∗
+k(t; 0)

((
qt∇pt − pt∇qt

)
eikxpt + qteikx

(
qt∇ptpt∇qt

))
U−k(t; 0),

(53)

which leads to

U∗
+k(t; 0)qteikxptU−k(t; 0)

= q0eikxp0 + N−1/3k

∫ t

0

ds U∗
+k(s; 0)

(
(
qs∇ps − ps∇qs

)
eikxps

− qseikx
(
ps∇qs − qs∇ps

)
)

U−k(s; 0), (54)
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and thus,

qteikxpt = U+k(t; 0)q0eikxp0U∗
−k(t; 0)

+ N−1/3k

∫ t

0

ds U+k(t; s)
(
(
qs∇ps − ps∇qs

)
eikxps

− qseikx
(
ps∇qs − qs∇ps

)
)

U−k(s; t). (55)

For the trace norm, we then obtain the estimate

∥
∥qteikxpt

∥
∥

Tr
≤ ∥

∥q0eikxp0
∥
∥

Tr
+ 4N−1/3(1 + |k|)

∫ t

0

ds ‖qs∇ps‖Tr , (56)

where we used that ‖AB‖Tr ≤ ‖A‖ ‖B‖Tr and ‖BA‖Tr ≤ ‖A‖ ‖B‖Tr for A
bounded and B trace class. Thus,

sup
k∈R3

(
(1 + |k|)−1

∥
∥qteikxpt

∥
∥

Tr

) ≤ sup
k∈R3

(
(1 + |k|)−1

∥
∥q0eikxp0

∥
∥

Tr

)

+ 4
∫ t

0

ds N−1/3 ‖qs∇ps‖Tr . (57)

In order to control the latter term, we calculate the time derivative of qt∇pt.
We find

iN1/3∂t

(
qt∇pt

)
= [ht, qt]∇pt + qt∇[ht, pt]

= [ht, qt∇pt] − qt[ht,∇]pt

= [ht, qt∇pt] + N2/3qt(∇ΦΛ)(t)pt. (58)

In analogy to the previous calculation, we define the two-parameter group
Uh(t; s) satisfying

iN1/3∂tUh(t; s)ϕ = htUh(t; s)ϕ (59)

for all ϕ ∈ H2(R3) and Uh(s; s) = 1. Then, we calculate

iN1/3∂t

(
U∗

h(t; 0)qt∇ptUh(t; 0)
)

= U∗
h(t; 0)

(

− htqt∇pt + qt∇ptht + iN1/3∂t

(
qt∇pt

)
)

Uh(t; 0)

= N2/3U∗
h(t; 0)qt(∇ΦΛ)(t)ptUh(t; 0), (60)

which implies

qt∇pt = Uh(t; 0)q0∇p0U∗
h(t; 0) − iN1/3

∫ t

0

ds Uh(t; s)
(
qs(∇ΦΛ)(s)ps

)
Uh(s, t).

(61)

Using the same inequalities as for (56), this leads to

∥
∥qt∇pt

∥
∥

Tr
≤ ∥

∥q0∇p0
∥
∥

Tr
+ N1/3

∫ t

0

ds ‖qs(∇ΦΛ)(s)ps‖Tr . (62)

By Lemma B.2, which says that ‖αt‖2 ≤ ∥
∥α0

∥
∥

2
+ ‖η̃‖2 |t|, we can estimate
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‖qs(∇ΦΛ)(s)ps‖Tr

=

∥
∥
∥
∥

∫

d3k η̃(k)k
(
αs(k)qseikxps − αs(k)qse−ikxps)

∥
∥
∥
∥

Tr

≤
∫

d3k η̃(k) |k|
(
|αs(k)|

∥
∥
∥qseikxps

∥
∥
∥

Tr
+ |αs(k)|

∥
∥
∥qse−ikxps

∥
∥
∥

Tr

)

≤ 2
∥
∥(1 + |·|)2η̃∥∥

2
‖αs‖2 sup

k∈R3

(
(1 + |k|)−1

∥
∥
∥qseikxps

∥
∥
∥

Tr

)

≤ 2
∥
∥(1 + |·|)2η̃∥∥

2

(∥
∥α0

∥
∥

2
+ ‖η̃‖2 |s|

)
sup
k∈R3

(
(1 + |k|)−1

∥
∥
∥qseikxps

∥
∥
∥

Tr

)
(63)

and obtain

N−1/3
∥
∥qt∇pt

∥
∥

Tr

≤ N−1/3
∥
∥q0∇p0

∥
∥

Tr
+ 2

∥
∥(1 + |·|)2η̃∥∥

2

∫ t

0

ds
(∥
∥α0

∥
∥

2
+ ‖η̃‖2 |s|

)

× sup
k∈R3

(
(1 + |k|)−1

∥
∥qseikxps

∥
∥

Tr

)
. (64)

Together with the estimate (57), this gives

sup
k∈R3

(
(1 + |k|)−1

∥
∥qteikxpt

∥
∥

Tr

)
+ N−1/3

∥
∥qt∇pt

∥
∥

Tr

≤ sup
k∈R3

(
(1 + |k|)−1

∥
∥q0eikxp0

∥
∥

Tr

)
+ N−1/3

∥
∥q0∇p0

∥
∥

Tr

+
∫ t

0

ds C(Λ, s,
∥
∥α0

∥
∥

2
)
(

sup
k∈R3

(
(1 + |k|)−1

∥
∥qseikxps

∥
∥

Tr

)

+N−1/3 ‖qs∇ps‖Tr

)

, (65)

where C(Λ, s,
∥
∥α0

∥
∥

2
) := 4 + 2

∥
∥(1 + |·|)2η̃∥∥

2

( ∥
∥α0

∥
∥

2
+ ‖η̃‖2 |s| ). By means of

Gronwall’s lemma and the chosen initial conditions, we obtain

sup
k∈R3

(
(1 + |k|)−1

∥
∥qteikxpt

∥
∥

Tr

)
+ N−1/3

∥
∥qt∇pt

∥
∥

Tr

≤ 2C̃N2/3 exp
[
4 |t| (1 +

∥
∥
∥(1 + |·|2)η̃

∥
∥
∥

2

( ∥
∥α0

∥
∥

2
+ ‖η̃‖2 |t| )

]

≤ 2C̃N2/3 exp
[
CΛ4

(
1 +

∥
∥α0

∥
∥

2

)(
1 + t2

)]
. (66)

Finally, note that
∥
∥pteikxqt

∥
∥2

HS
=

∥
∥qte−ikxpteikxqt

∥
∥

Tr
≤ ∥

∥pteikxqt
∥
∥

Tr
. (67)

�

5. Estimates on the Time Derivative

In this section, we control the change of β(t) in time by separately estimating
the time derivatives of βa,1(t), βa,2(t) and βb(t). Note that the time derivative
of βa,1(t) can be controlled in terms of βa,1(t) itself, βb(t) and an error of
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order N−1. The time derivative of βb(t), however, is controlled in terms of
βa,1(t), βa,2(t), βb(t) itself and an error of order N−1. This is why, we also
introduced βa,2(t). It allows us to close the Gronwall argument, since its time
derivative can be bounded in terms of βa,1(t), βa,2(t) itself, βb(t) and an error
of order N−5/3. We first compute the corresponding time derivatives. Then,
in the following subsections, we bound these expressions as explained above.

Lemma 5.1. Let α0 ∈ L2
1(R

3), ϕ0
1, . . . , ϕ

0
N ∈ H2(R3) orthonormal and ΨN,0 ∈

H(N) ∩ D(N ) ∩ D(NHN ) with ‖ΨN,0‖ = 1. Let ΨN,t be the solution to (10)
with initial condition ΨN,0 and ϕt

1, . . . , ϕ
t
N , αt the solution to (16) with initial

condition ϕ0
1, . . . , ϕ

0
N , α0. Then

d

dt
βa,1(t) = −2N1/3Im

〈
ΨN,t,p

t
1

(
N−2/3Φ̂Λ(x1) − ΦΛ(x1, t)

)
qt
1ΨN,t

〉
, (68)

d

dt
βa,2(t) = −4N2/3Im

〈
ΨN,t,p

t
1

(
N−2/3Φ̂Λ(x1) − ΦΛ(x1, t)

)
qt
1qt

2ΨN,t

〉
, (69)

d

dt
βb(t) = 2N−2/3

∫

d3k η̃(k)Im
〈(

N−2/3a(k) − αt(k)
)
ΨN,t,Ne−ikx1ΨN,t

〉

− 2N−2/3
∫

d3k η̃(k)Im
〈(

N−2/3a(k) − αt(k)
)
ΨN,t,(2π)3/2F [ρt](k)ΨN,t

〉
.

(70)

Proof. The functional βa,1(t) is time-dependent, because ΨN,t and
(ϕt

1, . . . , ϕ
t
N , αt) evolve according to (10) and (16), respectively. The time de-

rivative of the projector qt
m := q

ϕt
1,...,ϕt

N
m with m ∈ {1, . . . , N} is given by

d
dt

qt
m = −iN−1/3

[
ht

m, qt
m

]
, (71)

where ht
m = −Δm + N2/3ΦΛ(xm, t) is the effective Hamiltonian acting on the

mth variable. This leads to

d
dt

βa,1(t) =
d
dt

〈
ΨN,t, q

t
1ΨN,t

〉

= iN−1/3
〈
ΨN,t,

[
HN − ht

1, q
t
1

]
ΨN,t

〉

= iN−1/3
〈
ΨN,t,

[
− Δ1 + Φ̂Λ(x1) − ht

1, q
t
1

]
ΨN,t

〉

= iN−1/3
〈
ΨN,t,

[
Φ̂Λ(x1) − N2/3ΦΛ(x1, t), qt

1

]
ΨN,t

〉

= −2N1/3Im
〈
ΨN,t,

(
N−2/3Φ̂Λ(x1) − ΦΛ(x1, t)

)
qt
1ΨN,t

〉
, (72)

where we used the self-adjointness of Φ̂Λ, ΦΛ and qt
1 in the last step. Inserting

1 = pt
1 + qt

1, we find

(72) = −2N1/3Im
〈
ΨN,t, (pt

1 + qt
1)
(
N−2/3Φ̂Λ(x1) − ΦΛ(x1, t)

)
qt
1ΨN,t

〉

= −2N1/3Im
〈
ΨN,t, p

t
1

(
N−2/3Φ̂Λ(x1) − ΦΛ(x1, t)

)
qt
1ΨN,t

〉
, (73)
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since the scalar product with the two qt
1 projectors is real. Analogously, one

derives
d
dt

βa,2(t) = N1/3 d
dt

〈
ΨN,t, q

t
1q

t
2ΨN,t

〉

= −4Im
〈
ΨN,t, p

t
1

(
Φ̂Λ(x1) − N2/3ΦΛ(x1, t)

)
qt
1q

t
2ΨN,t

〉
. (74)

The time derivative of βb(t) is obtained by the following calculations. Note that
the expressions in the calculations are all indeed well defined, since the domain
D (N )∩D (NHN ) is invariant under the time evolution; see Lemma 2.1. Then

d

dt
βb(t)

= N1/3

∫

d3k
d

dt

〈(
N−2/3a(k) − αt(k)

)
ΨN,t,

(
N−2/3a(k) − αt(k)

)
ΨN,t

〉

= −2

∫

d3k Im
〈(

N−2/3a(k) − αt(k)
)
ΨN,t,

[
HN ,

(
N−2/3a(k) − αt(k)

)]
ΨN,t

〉

− 2

∫

d3k Im
〈(

N−2/3a(k) − αt(k)
)
ΨN,t, iN

1/3(∂tα
t(k))ΨN,t

〉
. (75)

For the commutator, we find

[
HN ,

(
N−2/3a(k) − αt(k)

)]
=N−2/3δN

[
Hf , a(k)

]
+ N−2/3

⎡

⎣
N∑

j=1

Φ̂Λ(xj), a(k)

⎤

⎦

= −N−2/3

⎛

⎝δNω(k)a(k) + η̃(k)
N∑

j=1

e−ikxj

⎞

⎠ .

(76)

Using (16), it follows that
d

dt
β

b
(t)

= 2

∫

d
3
k Im

[
〈(

N
−2/3

a(k) − α
t
(k)

)
ΨN,t, δNω(k)

(
N

−2/3
a(k) − α

t
(k)

)
ΨN,t

〉

+

〈
(
N

−2/3
a(k)−α

t
(k)

)
ΨN,t, η̃(k)N

−2/3

⎛

⎝
N∑

j=1

e
−ikxj −(2π)

3/2F
[
ρ

t
]
(k)

⎞

⎠ΨN,t

〉]

= 2N
−2/3

∫

d
3
k η̃(k)Im

〈(
N

−2/3
a(k) − α

t
(k)

)
ΨN,t, Ne

−ikx1ΨN,t

〉

− 2N
−2/3

∫

d
3
k η̃(k)Im

〈(
N

−2/3
a(k) − α

t
(k)

)
ΨN,t, (2π)

3/2F
[
ρ

t
]
(k)ΨN,t

〉
,

(77)

since the scalar product in the first line is real. �

Before we prove appropriate estimates for the time derivative of β(t), let
us state a technical lemma which was already proved, e.g., in [2,37]; we give
a proof here for convenience. Note that this is an important point where the
antisymmetry of the wave function is used.
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Lemma 5.2. Let A1 = A ⊗ 1L2(R3(N−1)) ⊗ 1Fs with A: L2(R3) → L2(R3) trace
class and ΨN ,Ψ′

N ∈ L2(R3N ) ⊗ Fs antisymmetric in x1 and all other electron
variables except xl1 , . . . , xlj . Then

|〈ΨN , A1Ψ′
N 〉| ≤ (N − j)−1 ‖A‖Tr

∥
∥ΨN

∥
∥
∥
∥Ψ′

N

∥
∥. (78)

Proof. In order to prove the inequality, it is convenient to use the singular
value decomposition A =

∑
i∈N

μi|χ′
i〉〈χi| with (χ′

i)i∈N, (χi)i∈N orthonormal
bases in L2(R3) and μi ≥ 0∀i ∈ N. Using Cauchy–Schwarz, this allows us to
estimate

|〈ΨN , A1Ψ′
N 〉|

=

∣
∣
∣
∣
∣

∑

i∈N

μi 〈ΨN , |χ′
i〉〈χi|1Ψ′

N 〉
∣
∣
∣
∣
∣

≤
∑

i∈N

μi 〈ΨN , |χ′
i〉〈χ′

i|1ΨN 〉1/2 〈Ψ′
N , |χi〉〈χi|1Ψ′

N 〉1/2

= (N−j)−1
∑

i∈N

μi

〈

ΨN ,
N∑

k=1
k �=l1,...,lj

|χ′
i〉〈χ′

i|kΨN

〉1/2 〈

Ψ′
N ,

N∑

l=1
l�=l1,...,lj

|χi〉〈χi|lΨ′
N

〉1/2

.

(79)

Note that
∑

k∈K |χi〉〈χi|k is for all i ∈ N and K ⊂ {1, . . . , N} a projector on
functions antisymmetric in all K-variables, since
(
∑

k∈K

|χi〉〈χi|k
)2

ΨN =
∑

k∈K

∑

l∈K

|χi〉〈χi|k |χi〉〈χi|lΨN =
∑

k∈K

|χi〉〈χi|kΨN ,

(80)

where the last step is true because the non-diagonal terms vanish due to the
antisymmetry. It follows that

|〈ΨN , A1Ψ′
N 〉| ≤ (N − j)−1

∑

i∈N

μi ‖ΨN‖ ‖Ψ′
N‖

= (N − j)−1 ‖A‖Tr ‖ΨN‖ ‖Ψ′
N‖ . (81)

�

5.1. Estimate on the Time Derivative of βa,1(t)

Lemma 5.3. Let Assumption 2.2 hold, and let ΨN,t be the solution to (10)
with initial condition ΨN,0 and ϕt

1, . . . , ϕ
t
N , αt the solution to (16) with initial

condition ϕ0
1, . . . , ϕ

0
N , α0. Then there is a C > 0 (independent of N , δN , Λ and

t) such that for all t > 0,
∣
∣
∣
∣
d
dt

βa,1(t)
∣
∣
∣
∣ ≤ eCΛ4(1+‖α0‖2)(1+t2)

(
β(t) + N−1

)
. (82)



Mean-Field Dynamics for the Nelson Model

Proof. Using the Fourier expansion of the radiation field, we write

d

dt
βa,1(t) = 2N1/3

∫

d3k η̃(k)Im
〈(

N−2/3a(k) − αt(k)
)
ΨN,t, q

t
1e

−ikx1pt
1ΨN,t

〉

(83a)

− 2N1/3

∫

d3k η̃(k)Im
〈(

N−2/3a(k) − αt(k)
)
ΨN,t, p

t
1e

−ikx1qt
1ΨN,t

〉
.

(83b)

Since ΨN,t is antisymmetric in the x variables, we find for the first summand

|(83a)|

≤ 2N1/3

∫

d3k |η̃(k)|
∣
∣
∣
∣
∣

〈
(
N−2/3a(k) − αt(k)

)
ΨN,t, N

−1
N∑

m=1

qme−ikxmpmΨN,t

〉∣
∣
∣
∣
∣

≤ 2

[

N1/3

∫

d3k
∥
∥
∥
(
N−2/3a(k) − αt(k)

)
ΨN,t

∥
∥
∥

2

]1/2

×
[

N1/3

∫

d3k |η̃(k)|2 N−2

∥
∥
∥
∥
∥

N∑

m=1

qme−ikxmpmΨN,t

∥
∥
∥
∥
∥

2 ]1/2

. (84)

We now use that by Lemma 5.2, ‖A1B2ΨN‖2 ≤ (N−1)−1 ‖A‖2
HS ‖B2ΨN‖2 and

‖A1ΨN‖2 ≤ N−1 ‖A‖2
HS ‖ΨN‖2 for all antisymmetric ΨN , Hilbert–Schmidt

operators A and bounded operators B. In the end, we use the semiclassical
structure, i.e., Lemma 4.1, and find

N−2

∥
∥
∥
∥
∥

N∑

m=1

qt
me−ikxmpt

mΨN,t

∥
∥
∥
∥
∥

2

= N−2

(

N(N − 1)
〈
ΨN,t, p

t
1e

ikx1qt
1q

t
2e

−ikx2pt
2ΨN,t

〉

+ N
〈
ΨN,t, p

t
1e

ikx1qt
1e

−ikx1pt
1ΨN,t

〉
)

= N−1(N − 1)
〈
qt
1e

−ikx1pt
1q

t
2ΨN,t, q

t
2e

−ikx2pt
2q

t
1ΨN,t

〉

+ N−1
∥
∥qt

1e
−ikx1pt

1ΨN,t

∥
∥2

≤ N−1(N − 1)
∥
∥qt

1e
−ikx1pt

1q
t
2ΨN,t

∥
∥2

+ N−1
∥
∥qt

1e
−ikx1pt

1ΨN,t

∥
∥2

≤ N−1
∥
∥qte−ikxpt

∥
∥2

HS

∥
∥qt

2ΨN,t

∥
∥2 + N−2

∥
∥qte−ikxpt

∥
∥2

HS
‖ΨN,t‖2

≤ N−1/3C(1 + |k|)eCΛ4(1+‖α0‖2
)(1+t2) (βa,1(t) + N−1

)
. (85)

Thus,

|(83a)|≤2
√

βb(t)
(

CeCΛ4(1+‖α0‖2
)(1+t2) (βa,1(t) + N−1

) ∥∥
∥η̃(1+ |·|)1/2

∥
∥
∥

2

2

)1/2

= CeCΛ4(1+‖α0‖2
)(1+t2)

∥
∥
∥(1 + |·|)1/2η̃

∥
∥
∥

2

√
βb(t)

√
βa,1(t) + N−1. (86)
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For (83b), we can directly use Cauchy–Schwarz. We use again ‖A1ΨN‖2 ≤
N−1 ‖A‖2

HS ‖ΨN‖2 and Lemma 4.1 in the end and find

|(83b)|

≤ 2N1/3

∫

d3k |η̃(k)|
∣
∣
∣
〈
qt
1e

ikx1pt
1

(
N−2/3a(k) − αt(k)

)
ΨN,t, q

t
1ΨN,t

〉∣
∣
∣

≤ 2N−1/6

∫

d3k |η̃(k)| ∥∥qteikxpt
∥
∥

HS

∥
∥
∥
(
N−2/3a(k) − αt(k)

)
ΨN,t

∥
∥
∥
∥
∥qt

1ΨN,t

∥
∥

≤ CeCΛ4(1+‖α0‖2
)(1+t2)

∥
∥
∥(1 + |·|)1/2η̃

∥
∥
∥

2

√
βb(t)

√
βa,1(t). (87)

To summarize, we have
∣
∣
∣
∣
d
dt

βa,1(t)
∣
∣
∣
∣ ≤ CeCΛ4(1+‖α0‖2

)(1+t2)
∥
∥
∥(1 + |·|)1/2η̃

∥
∥
∥

2

(
βa,1(t) + βb(t) + N−1

)
.

(88)

Since
∥
∥(1 + |·|)1/2η̃

∥
∥

2
≤ CΛ3/2 and using for ease of notation |x| ≤ exp(|x|),

this gives
∣
∣
∣
∣
d
dt

βa,1(t)
∣
∣
∣
∣ ≤ eCΛ4(1+‖α0‖2

)(1+t2) (βa,1(t) + βb(t) + N−1
)
. (89)

�

5.2. Estimate on the Time Derivative of βa,2(t)

Lemma 5.4. Let Assumption 2.2 hold, and let ΨN,t be the solution to (10)
with initial condition ΨN,0 and ϕt

1, . . . , ϕ
t
N , αt the solution to (16) with initial

condition ϕ0
1, . . . , ϕ

0
N , α0. Then there is a C > 0 (independent of N , δN , Λ and

t) such that for all t > 0,
∣
∣
∣
∣
d
dt

βa,2(t)
∣
∣
∣
∣ ≤ eCΛ4(1+‖α0‖2)(1+t2)

(
β(t) + N−1

)
. (90)

Proof. We write the time derivative of βa,2(t) as

d

dt
βa,2(t)

= −4N2/3
∫

d3k η̃(k)Im
〈
ΨN,t,

(
N−2/3a(k) − αt(k)

)(
pt
1eikx1qt

1 − qt
1eikx1pt

1

)
qt
2ΨN,t

〉

= −4N2/3
∫

d3k η̃(k)Im
〈
qt
2ΨN,t,

[
pt
1, eikx1

](
N−2/3a(k) − αt(k)

)
ΨN,t

〉

= −4N2/3(N−1)−1
∫

d3k η̃(k)Im

〈
N∑

m=1

qt
mΨN,t,

[
pt
1, eikx1

](
N−2/3a(k)−αt(k)

)
ΨN,t

〉

+ 4N2/3(N − 1)−1
∫

d3k η̃(k)Im
〈
ΨN,t, q

t
1

[
pt
1, eikx1

](
N−2/3a(k) − αt(k)

)
ΨN,t

〉
.

(91)
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Here, we have symmetrized the qt
2 so that we can bound the time derivative

appropriately in terms of βa,2(t). Note that
∥
∥
∥
∥
∥

N∑

m=1

qt
mΨN,t

∥
∥
∥
∥
∥

2

≤ N
〈
ΨN,t, q

t
1ΨN,t

〉
+ N2

〈
ΨN,t, q

t
1q

t
2ΨN,t

〉

≤ Nβa,1(t) + N5/3βa,2(t). (92)

We can then use Lemma 5.2 as well as
∥
∥qt

[
pt, eikx

]∥
∥

Tr
≤ ∥

∥
[
pt, eikx

]∥
∥

Tr
≤ ∥

∥pteikxqt
∥
∥

Tr
+

∥
∥pte−ikxqt

∥
∥

Tr
(93)

together with Lemma 4.1 and find
∣
∣
∣
∣
d

dt
βa,2(t)

∣
∣
∣
∣

≤ CN−4/3

∫

d3k |η̃(k)|
∥
∥
∥
[
pt, eikx

]∥
∥
∥
Tr

∥
∥
∥
(
N−2/3a(k)−αt(k)

)
ΨN,t

∥
∥
∥

(∥
∥
∥
∥

N∑

j=1

qt
jΨN,t

∥
∥
∥
∥ + 1

)

≤ CeC(t)N−2/3

∫

d3k (1 + |k|) |η̃(k)|
∥
∥
∥
(
N−2/3a(k) − αt(k)

)
ΨN,t

∥
∥
∥

(∥
∥
∥
∥

N∑

j=1

qt
jΨN,t

∥
∥
∥
∥ + 1

)

≤ CeC(t)N−5/6 ‖(1 + |·|)η̃‖2

√
βb(t)

(√
N

√
βa,1(t) + N5/6

√
βa,2(t) + 1

)

≤ CeC(t) ‖(1 + |·|)η̃‖2

(

βb(t) + βa,1(t) + βa,2(t) + N−5/3

)

, (94)

where we abbreviated C(t) := CΛ4(1 +
∥
∥α0

∥
∥

2
)(1 + t2). Since ‖(1 + |·|)η̃‖2 ≤

CΛ2, we arrive at
∣
∣
∣
∣
d
dt

βa,2(t)
∣
∣
∣
∣ ≤ eCΛ4(1+‖α0‖2)(1+t2)

(
β(t) + N−5/3

)
. (95)

�

5.3. Estimate on the Time Derivative of βb(t)

The crucial terms in the time derivative of βb(t) can be estimated with a
diagonalization trick similar to the one used in [37]. For the following estimates,
we introduce the operators

Pϕ =
N∑

m=1

|ϕ〉〈ϕ|m =
N∑

m=1

pϕ
m and Qϕ = 1 − Pϕ, (96)

where ϕ ∈ L2(R3). They have the following properties.

Lemma 5.5. The operators Pϕ and Qϕ as defined in (96) are projectors on
H(N) for all ϕ ∈ L2(R3). Moreover, let χ1, . . . , χN ∈ L2(R3) and ϕ1, . . . , ϕN ∈
L2(R3) each be orthonormal, such that span{χ1, . . . , χN} = span{ϕ1, . . . , ϕN}.
Then

[
Qχj , Qχk

]
= 0 ∀j, k = 1, . . . , N and

N∑

j=1

Qχj =
N∑

m=1

qϕ1,...,ϕN
m . (97)
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Proof. The lemma follows from a direct computation using the antisymmetry
in the fermion variables. �

Lemma 5.6. Let Assumption 2.2 hold, and let ΨN,t be the solution to (10)
with initial condition ΨN,0 and ϕt

1, . . . , ϕ
t
N , αt the solution to (16) with initial

condition ϕ0
1, . . . , ϕ

0
N , α0. Then there is a C > 0 (independent of N , δN , Λ and

t) such that for all t > 0,
∣
∣
∣
∣
d
dt

βb(t)
∣
∣
∣
∣ ≤ eCΛ4(1+‖α0‖2)(1+t2)

(
β(t) + N−1

)
. (98)

Proof. If we insert the identity pt
1 + qt

1 = 1 twice, (70) can be written as

d
dt

βb(t) = pp−Term + qp−Term + pq−Term + qq−Term (99)

with

pp−Term

= 2N−2/3

∫

d3k η̃(k)Im

〈
(
N−2/3a(k) − αt(k)

)
ΨN,t,

N∑

i=1

pt
ie

−ikxipt
iΨN,t

〉

− 2N−2/3

∫

d3k η̃(k)Im

〈(
N−2/3a(k)−αt(k)

)
ΨN,t,

∫

d3y e−ikyρt(y)ΨN,t

〉

,

(100)

qp−Term = 2N1/3

∫

d3k η̃(k)Im
〈(

N−2/3a(k) − αt(k)
)
ΨN,t, q

t
1e

−ikx1pt
1ΨN,t

〉
,

(101)

pq−Term = 2N1/3

∫

d3k η̃(k)Im
〈(

N−2/3a(k) − αt(k)
)
ΨN,t, p

t
1e

−ikx1qt
1ΨN,t

〉
,

(102)

qq−Term = 2N1/3

∫

d3k η̃(k)Im
〈(

N−2/3a(k) − αt(k)
)
ΨN,t, q

t
1e

−ikx1qt
1ΨN,t

〉
.

(103)

To estimate the pp−Term, we split e−ikx = cos(kx)− i sin(kx) into its real and
imaginary parts. Subsequently we only estimate the cos terms pp−Termcos; the
sin terms are estimated in exactly the same manner. Note that for each fixed
t > 0 and k ∈ R

3, we can regard pt cos(kx)pt as a Hermitian N × N ma-
trix on span{ϕt

1, . . . , ϕ
t
N}. By the spectral theorem, we can find orthonormal

χt,k
1 , . . . , χt,k

N ∈ span{ϕt
1, . . . , ϕ

t
N} (i.e., pt =

∑N
j=1 |ϕt

j〉〈ϕt
j |=

∑N
j=1 |χt,k

j 〉〈χt,k
j |)

and real λt,k
1 , . . . , λt,k

N such that pt cos(kx1)pt =
∑N

j=1 λt,k
j |χt,k

j 〉〈χt,k
j |. In par-

ticular, this implies
∣
∣
∣λ

t,k
j

∣
∣
∣ =

∣
∣
∣
〈
χt,k

j , cos(kx)χt,k
j

〉∣
∣
∣ ≤ 1, (104)

N∑

j=1

λt,k
j = Tr

(
pt cos(kx)pt

)
=

∫

d3y cos(ky)ρt(y), (105)
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N∑

i=1

pt
i cos(kxi)pt

i =
N∑

i=1

N∑

j=1

λt,k
j |χt,k

j 〉〈χt,k
j |i =

N∑

j=1

λt,k
j Pχt,k

j . (106)

Using (105) and (106), the cos-part of the pp−Term can be written as

pp−Termcos

= 2N−2/3

∫

d3k η̃(k)Im

〈
(
N−2/3a(k) − αt(k)

)
ΨN,t,

N∑

j=1

λt,k
j

(
P χt,k

j − 1
)
ΨN,t

〉

= 2N−2/3

∫

d3k η̃(k)Im

〈
(
N−2/3a(k) − αt(k)

)
ΨN,t,

N∑

j=1

λt,k
j Qχt,k

j ΨN,t

〉

(107)

and be estimated by

|pp−Termcos|

≤ 2N−2/3

∫

d3k
∥
∥
∥
(
N−2/3a(k) − αt(k)

)
ΨN,t

∥
∥
∥ |η̃(k)|

∥
∥
∥
∥

N∑

j=1

λt,k
j Qχt,k

j ΨN,t

∥
∥
∥
∥

≤ 2
(∫

d3k N1/3
∥
∥
∥
(
N−2/3a(k) − αt(k)

)
ΨN,t

∥
∥
∥

2
)1/2

×
⎛

⎝
∫

d3k N−5/3 |η̃(k)|2
∥
∥
∥
∥

N∑

j=1

λt,k
j Qχt,k

j ΨN,t

∥
∥
∥
∥

2
⎞

⎠

1/2

= 2
√

βb(t)

⎛

⎝
∫

d3k N−5/3 |η̃(k)|2
∥
∥
∥
∥

N∑

j=1

λt,k
j Qχt,k

j ΨN,t

∥
∥
∥
∥

2
⎞

⎠

1/2

. (108)

If one makes use of (104) and Lemma 5.5, one finds

∥
∥
∥
∥

N∑

j=1

λt,k
j Qχt,k

j ΨN,t

∥
∥
∥
∥

2

=
N∑

i,j=1

λt,k
i λt,k

j

〈
Qχt,k

i ΨN,t, Q
χt,k

j ΨN,t

〉

≤
N∑

i,j=1

∣
∣
∣
〈
Qχt,k

i ΨN,t, Q
χt,k

j ΨN,t

〉∣
∣
∣

=
N∑

i,j=1

〈
Qχt,k

i ΨN,t, Q
χt,k

j ΨN,t

〉

=

〈

ΨN,t,

N∑

i=1

qt
i

N∑

j=1

qt
jΨN,t

〉

= N(N − 1)
〈
ΨN,t, q

t
1q

t
2ΨN,t

〉
+ N

〈
ΨN,t, q

t
1ΨN,t

〉

≤ Nβa,1(t) + N5/3βa,2(t) (109)
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and obtains

|pp−Termcos| ≤ 2 ‖η̃‖2

√
βb(t)

√
βa,1(t) + βa,2(t)

≤ CΛ
(
βa,1(t) + βa,2(t) + βb(t)

)
. (110)

In exactly the same manner, one estimates pp−Termsin and obtains |pp−Term|
≤ CΛβ(t). From the observation that qp−Term = (83a) and pq−Term = −
(83b), we immediately get

|qp−Term + pq−Term| ≤ eCΛ4(1+‖α0‖2
)(1+t2) (βa,1(t) + βb(t) + N−1

)
.

(111)

Similar to (108), we estimate

|qq−Term| = 2N−2/3

∣
∣
∣
∣
∣

∫

d3k η̃(k)

〈
(
N−2/3a(k) − αt(k)

)
ΨN,t,

∑

m=1

qt
me−ikxmqt

mΨN,t

〉∣
∣
∣
∣
∣

≤ 2
√

βb(t)

(∫

d3k N−5/3 |η̃(k)|2
∥
∥
∥
∥

N∑

m=1

qt
me−ikxmqt

mΨN,t

∥
∥
∥
∥

2
)1/2

. (112)

By means of
∥
∥
∥
∥

N∑

m=1

qt
me−ikxmqt

mΨN,t

∥
∥
∥
∥

2

= N(N − 1)
〈
qt
1e

−ikx1qt
1ΨN,t, q

t
2e

−ikx2qt
2ΨN,t

〉
+ N

∥
∥qt

1e
−ikx1qt

1ΨN,t

∥
∥2

≤ N2
〈
e−ikx1qt

1q
t
2ΨN,t, e

−ikx2qt
1q

t
2ΨN,t

〉
+ N

∥
∥qt

1e
−ikx1qt

1ΨN,t

∥
∥2

≤ N2
∥
∥qt

1q
t
2ΨN,t

∥
∥2 + N

∥
∥qt

1ΨN,t

∥
∥2

= Nβa,1(t) + N5/3βa,2(t), (113)

this becomes

|qq−Term| ≤ 2 ‖η̃‖2

√
βb(t)

√
βa,1(t) + βa,2(t) ≤ CΛβ(t). (114)

Summing all terms up then shows Lemma 5.6. �

5.4. The Gronwall Estimate

Lemma 5.7. Let Assumption 2.2 hold, and let ΨN,t be the solution to (10)
with initial condition ΨN,0 and ϕt

1, . . . , ϕ
t
N , αt the solution to (16) with initial

condition ϕ0
1, . . . , ϕ

0
N , α0. Then there is a C > 0 (independent of N , δN , Λ and

t) such that for all t > 0,

β(t) ≤ eeCΛ4(1+‖α0‖2)(1+t2) (
β(0) + N−1

)
. (115)

Proof. If we use Lemmas 5.3, 5.4 and 5.6, we get

d
dt

β(t) ≤
∣
∣
∣
∣
d
dt

βa,1(t)
∣
∣
∣
∣ +

∣
∣
∣
∣
d
dt

βa,2(t)
∣
∣
∣
∣ +

∣
∣
∣
∣
d
dt

βb(t)
∣
∣
∣
∣

≤ eCΛ4(1+‖α0‖2)(1+t2)
(
β(t) + N−1

)
. (116)



Mean-Field Dynamics for the Nelson Model

Applying Gronwall’s lemma, we obtain

β(t) ≤ e
∫ t
0 ds eCΛ4(1+‖α0‖2)(1+s2)

β(0) +
(
e
∫ t
0 ds eCΛ4(1+‖α0‖2)(1+s2) − 1

)
N−1

≤ e
∫ t
0 ds eCΛ4(1+‖α0‖2)(1+s2) (

β(0) + N−1
)
. (117)

Using
∫ t

0
ds eCΛ4(1+‖α0‖2)(1+s2) ≤ eC̃Λ4(1+‖α0‖2)(1+t2) for some C̃ > 0 shows

the claim. �

6. Proof of Theorem 2.3

In order to state our main result in terms of the trace norm difference of
reduced density matrices, let us add the following lemma.

Lemma 6.1. Let ϕ1, . . . , ϕN ∈ L2(R3) be orthonormal, α ∈ L2(R3) and ΨN ∈
H(N) ∩ D (N ) with ‖ΨN‖ = 1. Then

2βa,1(ΨN , ϕ1, . . . , ϕN ) ≤
∥
∥
∥γ

(1,0)
N − N−1p

∥
∥
∥

Tr
≤

√
8βa,1(ΨN , ϕ1, . . . , ϕN ),

(118)
∥
∥
∥γ

(0,1)
N − |α〉〈α|

∥
∥
∥

Tr
≤ 3N−1/3βb(ΨN , α) + 6 ‖α‖2

√
N−1/3βb(ΨN , α).

(119)

Proof. This is a standard result. For example, a proof of (118) can be found
in [37, Section 3.1] and a proof of (119) in [32, Section VII]. �

Let us now summarize all estimates and put them together for a proof of
our main result.

Proof of Theorem 2.3. Let us first note that from Lemma 2.1 we have that
ΨN,t ∈ H(N) ∩ D(N ) ∩ D(NHN ) for all t ≥ 0 and from Proposition 1.1 that
(ϕt

1, . . . , ϕ
t
N , αt) ∈ H2(R3)N ×L2

1(R
3) for all t ≥ 0. From Lemma 5.7, we obtain

the Gronwall estimate

β(t) ≤ eeCΛ4(1+‖α0‖2)(1+t2) (
β(0) + N−1

)
. (120)

Recall that β = βa,1 + βa,2 + βb. From the first inequality of Lemma 6.1 and
from (33), we get

β(0) ≤ aN + bN + cN , (121)

so that

β(t) ≤ eeCΛ4(1+‖α0‖2)(1+t2)
IN , (122)

where we abbreviated IN = aN + bN + cN + N−1. Since βa,1, βa,2 and βb are
all positive, we then get with Lemma 6.1 that

∥
∥
∥γ

(1,0)
N,t − N−1pt

∥
∥
∥

Tr
≤

√
8β(t) ≤ eeCΛ4(1+‖α0‖2)(1+t2)√

IN (123)
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for some C > 0. From Lemma B.2, we know that ‖αt‖2 ≤ ∥
∥α0

∥
∥

2
+‖η̃‖2 |t| and

thus
∥
∥
∥γ

(0,1)
N,t − |αt〉〈αt|

∥
∥
∥

Tr
≤ 3N−1/3βb(t) + 6

∥
∥αt

∥
∥

2

√
N−1/3βb(t)

≤ eeCΛ4(1+‖α0‖2)(1+t2)
(
N−1/3IN +

√
N−1/3IN

)
, (124)

which gives (29) for some C > 0, if cN ≤ C̃N1/3 for some C̃ > 0 is assumed.
In the theorem, we also provide bounds for the specific initial state

∧N
j=1 ϕ0

j ⊗ W (N2/3α0)Ω. Since for this state γ
(1,0)
N,0 = N−1p0, we have aN = 0,

bN = 0 because q1

∧N
j=1 ϕ0

j ⊗ W (N2/3α0)Ω = 0, and also,

cN = N−1
〈
W−1(N2/3α0)W (N2/3α0)Ω,NW−1(N2/3α0)W (N2/3α0)Ω

〉

= N−1 〈Ω,NΩ〉 = 0. (125)

Furthermore, we have

N∧

j=1

ϕ0
j ⊗ W (N2/3α0)Ω ∈ (

L2
as(R

3N ) ⊗ Fs

) ∩ D (N ) ∩ D (NHN ) , (126)

which can be checked by direct calculation as in [32, Section IX]. �
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A. Appendix: Convergence to the Free Evolution

In this section, we prove Theorem 2.7.

Proof of Theorem 2.7. We recall that h0 = −Δ + N2/3ΦΛ(·, 0) and define a
family of unitary operators by iN1/3∂tU(t) = h0U(t) and U(0) = 1, i.e., such
that

iN1/3∂t

(
U∗(t)p̃tU(t)

)
= −U∗(t)h0p̃tU(t)

+ U∗(t)
[
h0, p̃t

]
U(t) + U∗(t)p̃th0U(t) = 0. (127)

Similarly, we obtain

iN1/3∂t

(
U∗(t)ptU(t)

)
= U∗(t)

[
ht − h0, pt

]
U(t)

= N2/3U∗(t)
[
ΦΛ(·, t) − ΦΛ(·, 0), pt

]
U(t). (128)

With Duhamel’s formula, we conclude

pt = U(t)p0U∗(t) − iN1/3

∫ t

0

ds U(t − s)
[
ΦΛ(·, s) − ΦΛ(·, 0), ps

]
U(s − t).

(129)

Thus, if we use that p̃t = U(t)p̃0U∗(t) = U(t)p0U∗(t) we get

∥
∥pt − p̃t

∥
∥

Tr
≤ N1/3

∥
∥
∥
∥

∫ t

0

ds U(t − s)
[
ΦΛ(·, s) − ΦΛ(·, 0), ps

]
U(s − t)

∥
∥
∥
∥

Tr

≤ N1/3

∫ t

0

ds
∥
∥
∥
[
ΦΛ(·, s) − ΦΛ(·, 0), ps

]∥
∥
∥

Tr
. (130)

By means of the Duhamel expansion of Eq. (16) for αs,

αs(k) = e−iN−1/3δN ω(k)sα0(k)

− iN−1(2π)3/2η̃(k)
∫ s

0

du e−iN−1/3δN ω(k)(s−u)F [ρu](k) (131)

and F [ρu](k) = F [ρu](−k), one obtains

ΦΛ(x, s)

=

∫

d3k η̃(k)
(
eikxe−iN−1/3δN ω(k)sα0(k) + e−ikxeiN−1/3δN ω(k)sα0(k)

)

− 2N−1(2π)3/2

∫

d3k |η̃(k)|2 eikx

∫ s

0

du sin
(
N−1/3δNω(k)(s − u)

)F [ρu](k).

(132)
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We continue the previous inequality and get

∥
∥pt − p̃t

∥
∥
Tr ≤ 2N1/3

∫ t

0
ds

∥
∥
∥
∥

∫

d3k η̃(k)
(
eiN−1/3δN ω(k)s−1

)
α0(k)

[
e−ikx, ps

]
∥
∥
∥
∥
Tr

(133a)

+ CN−2/3
∫ t

0
ds

∥
∥
∥
∥

∫

d3k |η̃(k)|2
∫ s

0
du sin

(
N−1/3δNω(k)(s−u)

)F [ρu](k)
[
eikx, ps

]
∥
∥
∥
∥
Tr

.

(133b)

In the following, we use (45),
∣
∣eix − 1

∣
∣ ≤ 2 |x| and |x| ≤ e|x| to bound the first

line by

(133a) ≤ 2N1/3

∫ t

0

ds

∫

d3k η̃(k)
∣
∣
∣eiN−1/3δN ω(k)s − 1

∣
∣
∣
∣
∣α0(k)

∣
∣
∥
∥
[
e−ikx, ps

]∥
∥

Tr

≤ 4δN

∫ t

0

ds

∫

d3k |s| ω(k)η̃(k)
∣
∣α0(k)

∣
∣
∥
∥
[
e−ikx, ps

]∥
∥

Tr

≤ CN2/3δN

∫ t

0

ds |s| eC(s)

∫

d3k (1 + |k|)ω(k)η̃(k)
∣
∣α0(k)

∣
∣

≤ CN2/3δN (1 + Λ)3 ‖α0‖2

∫ t

0

ds eC(s), (134)

where C(s) = CΛ4(1 +
∥
∥α0

∥
∥

2
)(1 + s2). Then, we notice that |F [ρu](k)| ≤

(2π)−3/2 ‖ρu‖1 = (2π)−3/2N and use |sin(x)| ≤ |x| to estimate

(133b) ≤ CN−2/3

∫ t

0

ds

∫

d3k

∫ s

0

du

× |η̃(k)|2
∣
∣
∣sin

(
N−1/3δNω(k)(s − u)

)∣∣
∣ |F [ρu](k)| ∥∥[eikx, ps

]∥
∥

Tr

≤ CδN

∫ t

0

ds

∫

d3k

∫ s

0

du |s − u| ω(k) |η̃(k)|2 ∥∥[eikx, ps
]∥
∥

Tr

≤ CN2/3δN

∫ t

0

ds

∫

d3k

∫ s

0

du |s − u| eC(s)1|k|≤Λ(k)(1 + |k|)

≤ CN2/3δN (1 + Λ)4
∫ t

0

ds eC(s). (135)

Collecting the estimates and using C(1 + Λ)4
∫ t

0
ds eC(s) ≤ eC(t) proves

(35). Then (36) follows from (28) and the triangle inequality. �
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B. Appendix: The Fermionic Schrödinger–Klein–Gordon
Equations

Subsequently, we prove the existence and uniqueness of solutions of the effec-
tive equations (16). To shorten the notation, we introduce

H =
N+1⊕

n=1

L2(R3), �ϕ = (ϕ1, . . . , ϕN ), ρ �ϕ(x) =
N∑

j=1

|ϕj(x)|2 ,

Φα
Λ(x) =

∫

d3k η̃(k)
(
eikxα(k) + e−ikxα(k)

)
.

(136)

Then, we define the operator A: D(A) → H as the orthogonal sum

A=A1 ⊕ A2 ⊕ · · · ⊕ AN+1, with Aj=

{
1 − N−1/3Δ for j ∈ {1, 2, . . . , N},

1 + N−1/3δNω for j = N + 1.

(137)

Moreover, we define J : D(A) → H by

Jj [(ϕ1, . . . , ϕN , α)] =

{
−i(N1/3Φα

Λ − 1)ϕj if j ∈ {1, . . . , N},

−i(−α + N−1(2π)3/2η̃F [ρ �ϕ]) if j = N + 1.

(138)

The fermionic Schrödinger–Klein–Gordon equations (16) can then be written
as

d
dt

( �ϕ t

αt

)

= −iA

( �ϕ t

αt

)

+ J [( �ϕ t, αt)]. (139)

The goal of this section is to show

Lemma B.1. Let N ∈ N\{0},Λ ∈ [1,∞), m ∈ [0,∞) and δN ∈ (0,∞). Then

(a) A is a self-adjoint operator on H with D(A) =
(⊕N

n=1 H2(R3)
) ⊕

L2
1(R

3),
(b) J is a mapping which takes D(A) into D(A),
(c) ‖J [( �ϕ,α)] − J [( �ψ, β)]‖H

≤ CN,Λ

(‖( �ϕ,α)‖H , ‖( �ψ, β)‖H
) ‖( �ϕ,α) − ( �ψ, β)‖H ,

(d) ‖AJ [( �ϕ,α)]‖H ≤ CN,Λ,m

(‖( �ϕ,α)‖H
) ‖A( �ϕ,α)‖H ,

(e) ‖AJ [( �ϕ,α)] − AJ [( �ψ, β)]‖H
≤ CN,Λ,m,δN

(‖( �ϕ,α)‖H , ‖( �ψ, β)‖H , ‖A( �ψ, β)‖H
)‖A( �ϕ,α)−A( �ψ, β)‖H ,

where each C is a monotone increasing (everywhere finite) function of all its
variables. Moreover, let ( �ϕ 0, α0) ∈ D(A) and assume there is a T > 0 so that
(139) has a unique continuously differentiable solution for t ∈ [0, T ). Then,
‖( �ϕ t, αt)‖H is bounded from above for all t ∈ [0, T ).

We give the proof of the lemma below. In order to prove Proposition 1.1,
we use [41, Theorem X.74] with n = 1.
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Proof of Proposition 1.1. From the statements in parts (a)–(e) in Lemma B.1,
we have that all conditions of part (a) of Theorem X.73 in [41] are satisfied.
This implies the existence of a T > 0 and a unique continuously differentiable
solution to (139) for t ∈ [0, T ) and for all ( �ϕ 0, α0) ∈ D(A). By the second
part of Lemma B.1, this solution is bounded in norm for all t ∈ [0, T ). Propo-
sition 1.1 then follows from Lemma B.1 and [41, Theorem X.74] with n = 1.
The ϕt

1, . . . , ϕ
t
N are orthonormal for all t ∈ [0,∞) because −Δ + N2/3ΦΛ(·, t)

is a symmetric operator. �

Before we prove Lemma B.1, let us show that on the chosen timescale
‖αt‖2 remains of order one during the time evolution.

Lemma B.2. Let (ϕt
1, . . . , ϕ

t
N , αt) be the solution to (16) with (ϕ0

1, . . . , ϕ
0
N , α0) ∈

H2(R3) ⊕ L2
1(R

3) and orthonormal ϕ0
1, . . . , ϕ

0
N , and let η̃ be defined as in (5).

Then
∥
∥αt

∥
∥

2
≤ ∥

∥α0
∥
∥

2
+ ‖η̃‖2 |t| . (140)

Proof. We define Uω(t) = e−iN−1/3δN ω(k)t. Then the Duhamel expansion of
Eq. (16) for αt can be written as

αt = Uω(t)α0 − i

∫ t

0

ds Uω(t − s)N−1(2π)3/2 η̃ F [ρ �ϕ s ]. (141)

Then, since ‖F [ρ �ϕ s ]‖∞ ≤ (2π)−3/2 ‖ρ �ϕ s‖1 = (2π)−3/2N for all s ∈ R, we have

∥
∥αt

∥
∥

2
≤ ∥

∥Uω(t)α0
∥
∥

2
+ N−1(2π)3/2

∫ t

0

ds ‖Uω(t − s) η̃F [ρ �ϕ s ]‖2

≤ ∥
∥α0

∥
∥

2
+ N−1(2π)3/2 ‖η̃‖2

∫ t

0

ds ‖F [ρ �ϕ s ]‖∞

≤ ∥
∥α0

∥
∥

2
+ ‖η̃‖2 |t| . (142)

�

Proof of Lemma B.1.
Part (a) The operators Aj = (1 − N−1/3Δ) with D(Aj) = H2(R3) and
j ∈ {1, 2, . . . , N} as well as AN+1 = 1 + N−1/3δNω with D(AN+1) = {α ∈
L2(R3)|AN+1α ∈ L2(R3)} = L2

1(R
3) are clearly self-adjoint. The fact that

direct sums of self-adjoint operators are self-adjoint (see, e.g., [48, Theorem
2.24]) proves part (a) of Lemma B.1.

Part (b)

Let ( �ϕ,α) ∈ D(A) and j ∈ {1, 2, . . . , N}. Then,

‖ΔJj [( �ϕ,α)]‖L2(R3) = ‖Δ(N1/3Φα
Λ − 1)ϕj‖2 ≤ ‖Δϕj‖2 + N1/3 ‖ΔΦα

Λϕj‖2 .

(143)



Mean-Field Dynamics for the Nelson Model

To bound the second summand, we note that ‖η̃‖L2
2(R

3) ≤ (1 + Λ2)‖η̃‖2 ≤ Λ3

and estimate

‖Φα
Λ‖∞ ≤ 2

∫

d3k |η̃(k)| |α(k)| ≤ 2 ‖η̃‖2 ‖α‖2 ≤ 2Λ3 ‖α‖2 ,

‖∇Φα
Λ‖∞ ≤ 2

∫

d3k |k| |η̃(k)| |α(k)| ≤ 2 ‖|·| η̃‖2 ‖α‖2 ≤ 2Λ3 ‖α‖2 ,

‖ΔΦα
Λ‖∞ ≤ 2

∫

d3k |k|2 |η̃(k)| |α(k)| ≤ 2
∥
∥
∥|·|2 η̃

∥
∥
∥

2
‖α‖2 ≤ 2Λ3 ‖α‖2 .

(144)

Thus,

‖ΔΦα
Λϕj‖2 ≤ ‖Φα

Λ‖∞ ‖Δϕj‖2 + ‖ΔΦα
Λ‖∞ ‖ϕj‖2 + 2 ‖∇Φα

Λ‖∞ ‖∇ϕj‖2

≤ CΛ3 ‖α‖2 ‖ϕj‖H2(R3) (145)

and ‖ΔJj [( �ϕ,α)]‖L2(R3) ≤ (
1 + CN1/3Λ3 ‖α‖2

) ‖ϕj‖H2(R3). This shows that
Jj [( �ϕ,α)] ∈ H2(R3) for j ∈ {1, 2, . . . , N}. The last component of J is estimated
by ‖JN+1[( �ϕ,α)]‖L2

1(R
3) ≤ ‖α‖L2

1(R
3)+(2π)3/2N−1 ‖F [ρ �ϕ]‖L∞(R3) ‖η̃‖L2

1(R
3). So

if we use

‖F [ρ �ϕ]‖L∞(R3) ≤ (2π)−3/2 ‖ρ �ϕ‖L1(R3) = (2π)−3/2
N∑

j=1

‖ϕj‖2
2 (146)

and ‖η̃‖L2
1(R

3) ≤ Λ2, we get ‖JN+1[( �ϕ,α)]‖L2
1(R

3) ≤ ‖α‖L2
1(R

3) + Λ2N−1

∑N
j=1 ‖ϕj‖2

2. Hence, JN+1[( �ϕ,α)] ∈ L2
1(R

3), and thus, J [( �ϕ,α)] ∈ D(A).

Part (c)

To show part (c) of Lemma B.1, we note that the classical radiation field Φα
Λ

is linear in α, i.e.,

Φα
Λ + Φβ

Λ = Φα+β
Λ and Φλα

Λ = λΦα
Λ ∀λ ∈ R. (147)

For j ∈ {1, . . . , N}, we can write

i
(
J [( �ϕ,α)] − J [( �ψ, β)]

)
j

= (N1/3Φα
Λ − 1)ϕj − (N1/3Φβ

Λ − 1)ψj

= −(ϕj − ψj) + N1/3Φα
Λ(ϕj − ψj) + N1/3Φα−β

Λ ψj

(148)

and estimate
∥
∥
∥
(
J [( �ϕ,α)] − J [( �ψ, β)]

)
j

∥
∥
∥

L2(R3)
≤ (1 + N1/3Λ ‖α‖2) ‖ϕj − ψj‖2

+ N1/3Λ ‖ψj‖2 ‖α − β‖2 (149)
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by means of (144) and ‖η̃‖ ≤ Λ. Hence,
N∑

j=1

∥
∥
∥
(
J [( �ϕ,α)] − J [( �ψ, β)]

)
j

∥
∥
∥

2

L2(R3)

≤ 2(1 + N1/3Λ ‖α‖2)
2

N∑

j=1

‖ϕj − ψj‖2
2 + 2N2/3Λ2

N∑

j=1

‖ψj‖2
2 ‖α − β‖2

2

≤ 4
(
1 + N2/3Λ2

(‖( �ϕ,α)‖2
H + ‖( �ψ, β)‖2

H

))‖( �ϕ,α) − ( �ψ, β)‖2
H . (150)

In order to estimate the difference of J [( �ϕ,α)]N+1 and J [( �ψ, β)]N+1, we note
that

ρ �ϕ(x) − ρ �ψ(x) =
N∑

j=1

ϕj(x)(ϕj(x) − ψj(x)) +
N∑

j=1

ψj(x)(ϕj(x) − ψj(x)).

(151)

Thus,
∥
∥
∥ρ �ϕ − ρ �ψ

∥
∥
∥

L1(R3)
≤

N∑

j=1

‖ϕj‖2 ‖ϕj − ψj‖2 +
N∑

j=1

‖ψj‖2 ‖ϕj − ψj‖2

≤
(
‖( �ϕ,α)‖H + ‖( �ψ, β)‖H

)
‖( �ϕ,α) − ( �ψ, β)‖H . (152)

So if we use the linearity of the Fourier transform, we obtain
∥
∥
∥
(
J [( �ϕ,α)] − J [( �ψ, β)]

)
N+1

∥
∥
∥

L2(R3)

≤ ‖α − β‖2 + N−1(2π)3/2
∥
∥
∥η̃

(F [ρ �ϕ] − F [ρ �ψ]
)∥∥
∥

2

≤ ‖α − β‖2 + N−1(2π)3/2 ‖η̃‖2

∥
∥
∥F [ρ �ϕ] − F [ρ �ψ]

∥
∥
∥

∞

≤ ‖α − β‖2 + N−1Λ
∥
∥
∥ρ �ϕ − ρ �ψ

∥
∥
∥

L1(R3)

≤
(
1 + N−1Λ

(
‖( �ϕ,α)‖H + ‖( �ψ, β)‖H

))
‖( �ϕ,α) − ( �ψ, β)‖H . (153)

In total, we get
∥
∥
∥J [( �ϕ,α)] − J [( �ψ, β)]

∥
∥
∥

2

H
≤ 8Λ2N2/3

(
1 + ‖( �ϕ,α)‖2

H

+ ‖( �ψ, β)‖2
H

)
‖( �ϕ,α) − ( �ψ, β)‖2

H . (154)

Part (d)

For j ∈ {1, . . . , N}, we consider

‖(AJ [( �ϕ,α)])j‖L2(R3) =
∥
∥
∥(1 − N−1/3Δ)(N1/3Φα

Λ − 1)ϕj

∥
∥
∥

2

≤
∥
∥
∥(1 − N−1/3Δ)ϕj

∥
∥
∥

2

+ CΛ3 ‖α‖2

(
N1/3 ‖ϕj‖2 + ‖ϕj‖H2(R3)

)
, (155)
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where we made use of (144) and (145). By means of

‖ϕ‖2 ≤
∥
∥
∥(1 − N−1/3Δ)ϕ

∥
∥
∥

2
, ‖Δϕ‖2 ≤ N1/3

∥
∥
∥(1 − N−1/3Δ)ϕ

∥
∥
∥

2
,

‖ϕ‖H2(R3) ≤ 2N1/3
∥
∥
∥(1 − N−1/3Δ)ϕ

∥
∥
∥

2
,

(156)

we get

‖(AJ [( �ϕ,α)])j‖L2(R3) ≤ (1 + CN1/3Λ3 ‖α‖2)
∥
∥
∥(1 − N−1/3Δ)ϕj

∥
∥
∥

2
. (157)

Similarly, we have ‖α‖2 ≤ ∥
∥
(
1 + N−1/3δNω

)
α
∥
∥

2
and obtain

‖( �ϕ,α)‖H ≤
( N∑

j=1

∥
∥
∥(1 − N−1/3Δ)ϕj

∥
∥
∥

2

2
+

∥
∥
∥(1 + N−1/3δNω)α

∥
∥
∥

2

2

)1/2

= ‖A( �ϕ,α)‖H . (158)

With (146), we estimate

‖(AJ [( �ϕ,α)])N+1‖L2(R3) ≤
∥
∥
∥(1 + N−1/3δNω)α

∥
∥
∥

2

+ N−1(2π)3/2
(
‖η̃‖2 + N−1/3δN ‖ωη̃‖2

)
‖F [ρ �ϕ]‖∞

≤ ‖AN+1α‖2 + 2N−1Λ2(1 +
√

m)
N∑

j=1

‖ϕj‖2
2

≤
(
1 + 2N−1Λ2(1 +

√
m)

)
‖A( �ϕ,α)‖H . (159)

Altogether, this yields

‖AJ [( �ϕ,α)]‖2
H ≤ CN2/3Λ6(1 +

√
m)2

(
1 + ‖(ϕ,α)‖H

)2 ‖A( �ϕ,α)‖2
H . (160)

Part (e) Note that

N∑

j=1

∥
∥
∥(AJ [( �ϕ,α)] − AJ [( �ψ, β)])j

∥
∥
∥

2

L2(R3)

=
N∑

j=1

∥
∥
∥(1 − N−1/3Δ)(J [( �ϕ,α)] − J [( �ψ, β)])j

∥
∥
∥

2

2

≤ 2
(∥
∥
∥(J [( �ϕ,α)] − J [( �ψ, β)])

∥
∥
∥

2

H

+N−2/3
N∑

j=1

∥
∥
∥(−Δ)(J [( �ϕ,α)] − J [( �ψ, β)])j

∥
∥
∥

2

2

⎞

⎠ . (161)
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So if we recall (148) and (154), we get
N∑

j=1

∥
∥
∥(AJ [( �ϕ,α)] − AJ [( �ψ, β)])j

∥
∥
∥

2

L2(R3)

≤ 8N2/3Λ2
(
1 +

(‖( �ϕ,α)‖2
H + ‖( �ψ, β)‖2

H

))‖( �ϕ,α) − ( �ψ, β)‖2
H

+ N−2/3
N∑

j=1

‖(−Δ)(ϕj − ψj)‖2
2 +

N∑

j=1

‖(−Δ)Φα
Λ(ϕj − ψj)‖2

2

+
N∑

j=1

∥
∥
∥(−Δ)Φα−β

Λ ψj

∥
∥
∥

2

2
. (162)

By means of (145), (156) and (158), we get

N−2/3
N∑

j=1

‖(−Δ)(ϕj − ψj)‖2
2 ≤

∥
∥
∥A( �ϕ,α) − A( �ψ, β)

∥
∥
∥

2

H
,

N∑

j=1

‖(−Δ)Φα
Λ(ϕj − ψj)‖2

2 ≤ CN2/3Λ6 ‖( �ϕ,α)‖2
H

∥
∥
∥A( �ϕ,α) − A( �ψ, β)

∥
∥
∥

2

H
,

N∑

j=1

∥
∥
∥(−Δ)Φα−β

Λ ψj

∥
∥
∥

2

2
≤ CN2/3Λ6

∥
∥
∥A( �ψ, β)

∥
∥
∥

2

H

∥
∥
∥A( �ϕ,α) − A( �ψ, β)

∥
∥
∥

2

H
.

(163)
Thus,

N∑

j=1

∥
∥
∥(AJ [( �ϕ,α)] − AJ [( �ψ, β)])j

∥
∥
∥

2

L2(R3)

≤ CN2/3Λ6

(

1 + ‖( �ϕ,α)‖2
H + ‖( �ψ, β)‖2

H +
∥
∥
∥A( �ψ, β)

∥
∥
∥

2

H

)

×
∥
∥
∥A( �ϕ,α) − A( �ψ, β)

∥
∥
∥

2

H
. (164)

On the other hand, we have
∥
∥
∥(AJ [( �ϕ, α)] − AJ [( �ψ, β)])N+1

∥
∥
∥

2

L2(R3)

≤ 2
∥
∥
∥(1 + N−1/3δNω)(α − β)

∥
∥
∥

2

2

+ 2N−2(2π)3
∥
∥
∥(1 + N−1/3δNω)η̃

(F [ρ �ϕ] − F [ρ �ψ]
)∥∥
∥

2

2

≤ 2
∥
∥
∥A( �ϕ, α) − A( �ψ, β)

∥
∥
∥

2

H

+ 2N−1(‖( �ϕ, α)‖H + ‖( �ψ, β)‖H

)2
∥
∥
∥(1 + N−1/3δNω)η̃

∥
∥
∥

2

2

∥
∥
∥( �ϕ, α) − ( �ψ, β)

∥
∥
∥

2

H

≤ 2
(
1 + N−1(‖( �ϕ, α)‖H + ‖( �ψ, β)‖H

)2

× (
1 + N−1/3δN

√
Λ2 + m2

)2
Λ2

)∥
∥
∥A( �ϕ, α) − A( �ψ, β)

∥
∥
∥

2

H
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≤ 8Λ4
(
1 +

(‖( �ϕ, α)‖2
H + ‖( �ψ, β)‖2

H

)

× (
1 + N−1/3δN

√
1 + m2

)2
)∥
∥
∥A( �ϕ, α) − A( �ψ, β)

∥
∥
∥

2

H
. (165)

In total, we get
∥
∥
∥AJ [( �ϕ,α)] − AJ [( �ψ, β)]

∥
∥
∥

2

H

≤ CN2/3Λ6

(

1 + ‖( �ϕ,α)‖2
H + ‖( �ψ, β)‖2

H +
∥
∥
∥A( �ψ, β)

∥
∥
∥

2

H

)

× (
1 + N−1/3δN

√
1 + m2

)2
∥
∥
∥A( �ψ, α) − A( �ψ, β)

∥
∥
∥

2

H
. (166)

Final Statement of the Lemma
Let ( �ϕ 0, α0) ∈ D(A) and assume there is a T > 0 so that (139) has a unique
continuously differentiable solution for t ∈ [0, T ). Then,

d
dt

∥
∥ϕt

j

∥
∥2

2
=

d
dt

〈
ϕt

j , ϕ
t
j

〉
= 2Im

〈
ϕt

j ,
( − N−1/3Δ + Φαt

Λ

)
ϕt

j

〉
= 0 (167)

because Φαt

Λ ∈ R. Moreover, we can apply Lemma B.2 locally and conclude
‖αt‖2 ≤ ∥

∥α0
∥
∥

2
+ CΛt ≤ ∥

∥α0
∥
∥

2
+ CΛT . For all t ∈ [0, T ), this shows

∥
∥( �ϕ t, αt)

∥
∥
H

≤ ∥
∥( �ϕ 0, α0)

∥
∥
H

+
∥
∥α0

∥
∥

2
+ CΛT. (168)

�
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[6] Benedikter, N., Jakšić, V., Porta, M., Saffirio, C., Schlein, B.: Mean-field evolu-
tion of fermionic mixed states. Commun. Pure Appl. Math. 69(12), 2250–2303
(2016)

[7] Benedikter, N., Porta, M., Saffirio, C., Schlein, B.: From the Hartree dynamics
to the Vlasov equation. Arch. Ration. Mech. Anal. 221(1), 273–334 (2016)

[8] Benedikter, N., Porta, M., Schlein, B.: Mean-field dynamics of fermions with
relativistic dispersion. J. Math. Phys. 55(2), 021901 (2014)



N. Leopold, S. Petrat Ann. Henri Poincaré
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