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Abstract

The first part of the thesis considers the computational aspects of the homotopy
groups πd(X) of a topological space X. It is well known that there is no algorithm to
decide whether the fundamental group π1(X) of a given finite simplicial complex X
is trivial. On the other hand, there are several algorithms that, given a finite simpli-
cial complex X that is simply connected (i.e., with π1(X) trivial), compute the higher
homotopy group πd(X) for any given d ≥ 2.

However, these algorithms come with a caveat: They compute the isomorphism
type of πd(X), d ≥ 2 as an abstract finitely generated abelian group given by generators
and relations, but they work with very implicit representations of the elements of πd(X).
We present an algorithm that, given a simply connected space X, computes πd(X) and
represents its elements as simplicial maps from suitable triangulations of the d-sphere
Sd to X. For fixed d, the algorithm runs in time exponential in size(X), the number
of simplices of X. Moreover, we prove that this is optimal: For every fixed d ≥ 2,
we construct a family of simply connected spaces X such that for any simplicial map
representing a generator of πd(X), the size of the triangulation of Sd on which the map
is defined, is exponential in size(X).

In the second part of the thesis, we prove that the following question is algorithmi-
cally undecidable for d < ⌊3(k+1)/2⌋, k ≥ 5 and (k, d) ̸= (5, 7), which covers essentially
everything outside the meta-stable range: Given a finite simplicial complex K of dimen-
sion k, decide whether there exists a piecewise-linear (i.e., linear on an arbitrarily fine
subdivision of K) embedding f : K ↪→ Rd of K into a d-dimensional Euclidean space.
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1 Introduction

Given a finite graph G, a natural question one could ask is whether G is planar, i.e.
whether it embeds in the plane R2. A criterion for planarity was provided by Kura-
towski [44], which asserts that G is planar if and only if it does not contain K5, the
complete graph on five vertices or K3,3, the complete bipartite graph as topological mi-
nors.1 In other words, G is planar if and only if it does not contain a subdivided copy
of K5 or K3,3. It is important to notice that Kuratowski’s theorem considers continuous
embeddings. However, Fáry [21] proved that if the graph G embeds continuously in
the plane, it also embeds linearly, i.e. all the edges of G are drawn as straight line
segments. Considering the computational aspect of the question, there exist many
algorithms for planarity testing. One particular algorithm, devised by Robertson and
Seymour, utilises a generalisation of Kuratowski’s criterion due to Wagner [76] and
runs in polynomial time on the size of G (for details, we refer to [17]). In a celebrated
result, Hopcroft and Tarjan [35] devised a linear-time algorithm for testing graph pla-
narity.2 Finally, in the case when G is planar, under mild conditions, Tutte’s embedding
theorem [73] provides an algorithm that produces an embedding of G in R2.

The well rounded picture for graphs changes completely when we replace (G,R2)
by (K,Rd), where K is a finite simplicial complex of dimension k ≥ 2. The first thing to
notice is that Fáry’s theorem is not valid any longer, e.g. for k ≥ 2 there are contractible
and even collapsible complexes, which do not embed linearly into R2k (see [1]), but
on the other hand, every contractible k-complex admits a piecewise-linear embedding3

into R2k (see [78]).

The difference between topological and PL embeddability is more subtle. Bryant [9]
proved that they coincide in codimension three, namely when d − k ≥ 3. The same
is true also for (k, d) = (2, 3), which follows from a combination of a result by Bing [7]
and the classical Hauptvermutung for 2-dimensional polyhedra,4 proved by Papakyri-
akopoulos [56]. Since we are mostly interested in the computational aspect, we are
going to restrict our attention to PL embeddings. For the sake of simplicity of the expo-
sition, we introduce the following notation.

1A graph H is called a topological minor of a graph G if G contains a subgraph, which is isomorphic
to a subdivision of H.

2In fact, this algorithm was devised earlier than the algorithm by Robertson and Seymour. There are
several other earlier and less efficient algorithms.

3A map f : |K| → |L| between the polyhedra of simplicial complexes is called picewise-linear (or PL),
if there exist subdivisions K ′ and L′, so that the induced map f : |K ′| → |L′| is linear on every simplex.

4The Hauptvermutung in dimension 2 asserts that any two 2-dimensional polyhedra, which are home-
omorphic, are also PL homeomorphic.
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Definition 1.1. For a fixed pair of integers 1 ≤ k ≤ d, EMBEDk→d is the following
algorithmic decision problem: Given a finite k-dimensional simplicial complex K, does
there exists a piecewise-linear embedding f : K ↪→ Rd.

The question EMBEDk→d strongly depends on k and d. For instance, when d ≥
2k+1, K always embeds into Rd by general position and when d < k, K never embeds
for dimensional reasons. Thus, the interesting range of dimensions is k ≤ d ≤ 2k,
which is divided into two main subranges.

1.1 Deleted products and the meta-stable range

Let K be a simplicial complex, or more generally a topological space. We define the
deleted product ofK asK2

∆ := (K×K)\{(x, x) : x ∈ K}. Every embedding f : K ↪→ Rd

induces a continuous map f̃ : K2
∆ → Sd−1, given by

f̃(x, y) :=
f(x)− f(y)

||f(x)− f(y)||

The map f̃ is well-defined because f is an embedding. Moreover, it has the property
f̃(y, x) = −f̃(x, y), i.e. it is equivariant with respect to the Z2-action on K2

∆, given by
(x, y) ↦→ (y, x) and the antipodal action of Z2 on Sd−1. This implies that the existence of
such an equivariant map is a necessary condition for embeddability. When K is a finite
simplicial complex of dimension k and 3

2
(k + 1) ≤ d, the famous theorem of Haefliger

and Weber [78; 32] implies that this condition is also sufficient.

Theorem 1.2 (Haefliger–Weber). Let K be a finite simplicial complex with dimK = k.
When 3

2
(k + 1) ≤ d, there exists a PL embedding K ↪→ Rd , if and only if there exists a

Z2-equivariant map F : K2
∆ → Sd−1.

Notice that the question of embeddability, which is geometric in its nature, reduces
to the question of existence of a particular type of symmetry preserving continuous
functions, which is homotopy theoretic.

Algorithmic aspects of embeddings On the algorithmic side, following Theorem 1.2,
in order to decide whether a finite simplicial complex K embeds into Rd when the pair
(k, d) is in the meta-stable range, it suffices to devise an algorithm, which decides
whether the set [K2

∆, S
d−1]Z2 of homotopy classes of Z2-equivariant maps is empty or

not. In fact, when (k, d) are in the meta-stable range, this set is either empty or has the
structure of a finitely generated abelian group (see [14]) and in a series of papers [13;
11; 14], Čadek et al have devised an algorithm, which computes the isomorphism type
of [K2

∆, S
d−1]Z2 (see Theorem 1.4). The algorithm is the product of a build-up of three

separate but related results, which we shortly outline.

Computing [X, Y ] Given a topological space Y , we can obtain a lot of information
about it by studying the sets [X, Y ] of homotopy classes of continuous maps from a
space X into Y , for different for X. For general spaces X, Y , the set [X, Y ] does not
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have any particular structure, nor it is finite. However, if in addition we ask that Y is
d-connected (d ≥ 1) and dimX ≤ 2d, we obtain a group structure on [X, Y ] (see [11]).
Furthermore, whenX and Y are both finite simplicial complexes, then [X, Y ] is a finitely
generated abelian group, so it’s isomorphism type can be presented by a finite set of
generators and relations between them. In [11] the authors prove the following—:

Theorem 1.3 (Čadek et al.). Let X, Y be finite simplicial complexes, such that Y is
(d − 1)-connected and dimX ≤ 2d − 2 for some integer d ≥ 2. Then, there exists
an algorithm, which computes the isomorphism type of the finitely generated abelian
group [X, Y ]. When d is fixed, the algorithm runs in polynomial time in size(X)+size(Y ).

Here, by definition, the size of a finite simplicial complexX, or size(X), is the number
of simplices of X.

Computing [X, Y ]G A natural generalisation of Theorem 1.3 is to introduce a free
action of a finite group G on X and Y . The computational side of this question also fits
into the context of Theorem 1.2. If we apply the same conditions as in Theorem 1.3
and as long as the action of G on X and Y is free, the set of G-equivariant homotopy
classes of maps [X, Y ]G is either empty or has the structure of a finitely generated
abelian group (see [14] for details). In [14], the authors devise an algorithm, which
computes the isomorphism type of this group.

Theorem 1.4 (Čadek et al.). Let X, Y be finite simplicial complexes, such that Y is
(d− 1)-connected and dimX ≤ 2d− 2 for some integer d ≥ 2. Let G be a finite group,
which acts freely on X and Y . Then, there exists an algorithm, which computes the
isomorphism type [X, Y ]G. When d and G are fixed, the algorithm runs in polynomial
time in size(X) + size(Y ).

Combining this theorem with Theorem 1.2, the authors obtain the following corollary,
which ensures that embedadbility is decidable in the meta-stable range.

Corollary 1.5 (Čadek et al.). Let (k, d) be a pair with 3
2
(k + 1) ≤ d, then EMBEDk→d is

decidable. If d is fixed, the algorithm runs in polynomial time in size(K).

Computing homotopy groups The d-th homotopy group πd(X) of a pointed topo-
logical space X is defined as the set of pointed homotopy classes of basepoint pre-
serving continuous maps from Sd into X. Similar to the homology groups Hd(X),
the homotopy groups πd(X) provide a mathematically precise way of measuring the
“d-dimensional holes” in X, but the latter are significantly more subtle and compu-
tationally much less tractable than the former. Computing and understanding ho-
motopy groups has been one of the driving forces of algebraic topology in the last
century with only partial results so far despite an enormous effort (see, e.g., [60;
42]); the amazing complexity of the problem is illustrated by the fact that even for the
2-dimensional sphere S2, the higher homotopy groups πd(S2) are nontrivial for infinitely
many d and known only for a few dozen values of d.

The first algorithm that computes the homotopy groups of simply connected finite
simplicial complexes, was given by Brown [8] in the late 50’s. The algorithm is very inef-
ficient and relies on exhaustive searches, but it has focused attention on the algorithmic
point of view on homotopy groups.



4

The condition of simple connectivity is essential, since triviality of the fundamental
group π1(Y ), when Y is a finite simplicial complex, is undecidable. This follows via a
standard reduction from a result of Adjan[2] and Rabin [59] on the algorithmic unsolv-
ability of the triviality problem of a group given in terms of generators and relations.
The undecidability result is true even if we restrict Y to be 2-dimensional.

Several more refined algorithms computing homotopy groups of simply connected
finite simplicial complexes have been obtained as a part of general computational
frameworks in algebraic topology; in particular, an algorithm based on the methods of
Sergeraert et al. [71; 65] was described by Real [61]. More recently, Čadek et al. [13]
proved that, for any fixed d, the homotopy group πd(X) of a given 1-connected finite
simplicial complex can be computed in polynomial time on the number of simplices of
X.

Theorem 1.6 (Čadek et al.). Let Y be a simply connected finite simplicial complex and
d ≥ 2 be an integer. Then, there exists an algorithm, which computes the isomorphism
type of πd(Y ). When d is fixed, the algorithm runs in polynomial time in size(Y ).

On the negative side, computing πd(X) is #P-hard if d is part of the input [4; 12]
(and, moreover, W[1]-hard with respect to the parameter d [51]), even if X is restricted
to be 4-dimensional.

Constructing explicit maps Having algorithms that compute πd(X), [X, Y ] and [X, Y ]G,
a natural question is to devise algorithms, which represent their elements as simplicial
maps. For instance, in the case of πd(X), that would mean an algorithm, which repre-
sents a set of generators g1, . . . , gk of πd(X) as simplicial maps Σd

j → X from suitable
triangulations Σd

j of the d-sphere Sd. Further motivation to study those problems is
provided by the algorithmic study of embeddability, where the goal would be, given a
complex K, which we know embeds into Rd, to algorithmically construct an embedding
K̃ ↪→ Rd from a suitable subdivision of K̃ of K. Unlike the case for graphs, little is
known about this question in higher dimensions.

Computing representatives for homotopy group elements Let X be a simply con-
nected finite simplicial complex. Theorem 1.6 provides an algorithm, which computes
the isomorphism type of πd(X) for a fixed d ≥ 2. The output of this algorithm is
a string of the form (0, . . . , 0, c1, . . . , cp), where ci ∈ N , 1 ≤ i ≤ p and πd(X) ∼=
Z ⊕ . . . ⊕ Z ⊕ Zc1 ⊕ . . . ⊕ Zcp, where the number of copies of the integers is equal
to the number of zeros in the string. In fact, the algorithm would also output a set of
generators α1, . . . , αl, but each of them given with some algebraic representation. In
Chapter 2 we prove the following theorem.

Theorem 1.7. There exists an algorithm that, given d ≥ 2 and a 1-connected finite
simplicial complex X, provided with a certificate for simple connectivity as described
in Section 2.2.2, computes a set of generators g1, . . . , gk of πd(X) as simplicial maps
Σd

j → X. Here Σd
j (j = 1, . . . , k) are suitable triangulations of Sd.

For fixed d, the time complexity is exponential in the size (number of simplices) of
X; more precisely, it is O(2P (size(X))) where P = Pd is a polynomial depending only on
d.

In addition, we also prove that the exponential-time complexity is optimal. That
means that any other algorithm, which computes a set of generators of πd(X) as sim-
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plicial maps from suitably subdivided spheres, must have at least an exponential-time
complexity. The details are given in Section 2.4.

1.2 Outside the meta-stable range

When we are outside the meta-stable range, namely when k ≤ d < 3
2
(k + 1), the

situation becomes more complicated and most of the questions remain unanswered.
A first difference is that Theorem 1.2 does not provide a sufficient condition for em-
beddability anymore and in general, there is no known criterion for embeddability. As
a result, except for the cases EMBED1→2 and EMBED2→2, outside the meta-stable
range there are no known algorithms for deciding embeddability. Moreover, in con-
trast with the polynomial-time algorithm in the meta-stable range, according to [50;
18], EMBEDk→d is NP-hard outside the stable range. In addition, in [50] it is also
proved that EMBED(d−1)→d and EMBEDd→d are undecidable for d ≥ 5. We visualise
these results in Figure 1.1.
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Figure 1.1: P polynomial-time decidable; H NP-hard; UD undecidable.

Immersibility is partially undecidable In related work, Manin and Weinberger [47]
have shown that immersibility, a question related to embeddability, is undecidable for
a large portion of what lies outside the meta-stable range. A PL map f : K → Rd is
said to be a PL immersion if it is locally an embedding, i.e. if every point x ∈ K has a
neighbourhood x ∈ U ⊂ K, such that f |U : U → Rd is a PL embedding. Observe that,
in general, an immersion is not an embedding, since it allows the images under f of
distant parts of K to intersect. Moreover, if we assume K to be a smooth manifold and
replace PL by smooth, we obtain the definition of a smooth immersion. Focusing on
PL5 and smooth manifolds, in [47] the authors obtain the following result.

Theorem 1.8 (Manin–Weinberger). Let (k, d) be positive integers.

• If 4
5
d ≤ k ≤ d− 3, smooth immersibility is undecidable when (d− k) is even.

5PL manifolds are a class of topological spaces, which admit particularly nice triangulations as sim-
plicial complexes. We postpone the proper definition of a PL manifold untill Section 3.4
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• If (d − k) = 2 and d ≥ 10, both smooth immersibility and PL immersibility are
undecidable.

For more details about the specific finite encoding for smooth manifolds, as well as
the details of the proof, we refer the reader to [47]. In codimension two, there are two
different types of immersions of PL manifolds and the theorem considers the locally flat
immersions. For the definition and details about why in codimension more than 2 those
two types coincide, we refer to Chapter 8 in [79].

As a corollary to the Theorem 1.8, the authors also prove that for a narrow range,
smooth embeddability is also undecidable.

Theorem 1.9 (Manin–Weinberger). When 10
11
d < k < d − 2 and d − k is even, smooth

embeddability of a smooth k-manifold with boundary in Rd is undecidable.

The question EXTEMBEDk→d In Section 3 we consider the following question closely
related to embeddability.

Definition 1.10. EXTEMBEDk→d is the question, given a k-dimensional simplicial
complex K, a subcomplex L and an embedding f : L ↪→ Rd, does there exist an em-
bedding F : K ↪→ Rd, such that F |L = f .

Observe that EMBEDk→d is a special case of EXTEMBEDk→d, namely, when we
set L = ∅.

There are several instances of the problem, which have already been studied.
EXTEMBED1→2 corresponds to the question whether a planar embedding of a sub-
graph can be extended to a planar embedding of the entire graph. In [3] it is shown
that this can be solved in linear time, which is in accordance with the linear-time de-
cision algorithm for graph planarity [35]. More generally, in higher dimensions, the
problem EXTEMBEDk→d can be solved in polynomial-time for every fixed pair (k, d) of
integers in the meta-stable range. This follows from Theorem 1.2 (Haefliger–Weber),
together with results of Čadek et al. in [14].

On the other hand, since the problem EMBEDk→d is a special case of
EXTEMBEDk→d, the result by Matoušek et al. [50], which we discussed above, that
EMBED(d−1)→d and EMBEDd→d are undecidable for d ≥ 5, also implies that EXTEMBED(d−1)→d

and EXTEMBEDd→d are undecidable for d ≥ 5. The undecidability of EXTEMBED(d−1)→d

for d ≥ 5 follows also from the following result by Nabutovsky and Weinberger [55].

Theorem 1.11 (Theorem 1 in [55]). For any fixed d > 3 there is no algorithm deciding
whether or not a given knot f: Sd ↪→ Rd+2 is trivial. Here f is a PL-embedding of the
boundary of the standard (d+ 1)-simplex into Rd+2.

To see how this implies the undecidability of EXTEMBED(d−1)→d, we need to make
use of the following theorem.

Theorem 1.12 (Theorem 1 in [80]). A knot f : Sd−2 ↪→ Sd is a trivial knot if and only if f
extends to an embedding F : Dd−1 ↪→ Sd, such that the following diagram commutes:



7

Dd−1 Sd

Sd−2

where i : Sd−2 ↪→ Dd−1 is the inclusion of Sd−2 = ∂Dd−1.

Combining those two theorems, we obtain the following corollary, which ensures
that EXTEMBED(d−1)→d is algorithmically undecidable for d ≥ 5.

Theorem 1.13. There is no algorithm, which decides whether a given embedding f :
Sd ↪→ Sd+2 extends to an embedding F : Dd+1 ↪→ Sd+2.

Undecidability of EMBEDk→d and EXTEMBEDk→d In Chapter 3 we prove that
both EMBEDk→d and EXTEMBEDk→d are undecidable for most pairs (k, d) outside the
meta-stable range.

Theorem 1.14. EXTEMBEDk→d is undecidable for k ≤ d <
⌊
3(k+1)

2

⌋
, k ≥ 5 and

(k, d) ̸= (5, 7).

Theorem 1.15. EMBEDk→d is undecidable for k ≤ d <
⌊
3(k+1)

2

⌋
, k ≥ 5 and

(k, d) ̸= (5, 7).

Since EMBEDk→d is a special case of EXTEMBEDk→d, Theorem 1.15 trivially im-
plies Theorem 1.14. However, we state them separately because in our approach, we
first prove the former and then use it as the base for the proof of the latter.

Following the discussion above, we only prove the theorems for the case d− k ≥ 2,
since the codimension 0 and codimension 1 cases have already been proved. Our
methods are insufficient when considering some sporadic pairs (k, d), which remain
open. We postpone the technical discussion of this issue until Chapter 3. We illustrate
the results of Theorem 1.14 and Theorem 1.15 on Figure 1.2.

Remark 1.15.1. In essence, the undecidability in Theorem 1.14 follows from the unde-
cidability of the halting problem, but the reduction from the halting problem takes differ-
ent paths in different cases. More precisely, the undecidability of EXTEMBED(d−1)→d

and EXTEMBEDd→d (d ≥ 5), as proven in [38], follows from the celebrated result of
Novikov [75] on the algorithmic unsolvability of recognizing the 5-sphere, which is re-
lated to the algorithmic unsolvability of the word problem. In a similar manner, the
alternative proof of the undecidability of EXTEMBED(d−1)→d (d ≥ 5) follows from the
algorithmic unsolvability of the word problem (see [55]). On the other hand, as will be
shown in Chapter 3, the undecidability of EXTEMBEDk→d (k ≤ d − 2 , d <

⌊
3(k+1)

2

⌋
,

(k, d) ̸= (5, 7)) follows from Matiyasevich’s result implying the undecidability of Hilbert’s
tenth problem [48] (algorithmically deciding the solvability of Diophantine equations).
6

6We briefly discuss Hilbert’s tenth problem in Chapter 3.
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Figure 1.2: The question is still open for the encircled pairs.

1.3 Related work and open problems

The results in the present thesis fall into the broader area of computational topology,
a field lying within the intersection of topology and computer science. A primary goal
of computational topology is to study the algorithmic properties of various invariants,
such as homology groups and homotopy groups, of topological spaces admitting some
finite presentation. Typical problems often are devising efficient algorithms for comput-
ing invariants or studying the computational complexity of the problem of computing
invariants. For reference to different flavours of computational topology, we refer the
reader to [19; 81; 52].

Computational homotopy theory and applications.
The problem, considered in Chapter 2 forms part of a general effort to understand

the computational complexity of problems in homotopy theory, both because of the
intrinsic importance of these problems in topology and because of applications in
other areas, such as the algorithmic study of embeddability of simplicial complexes.
This is the central topic of the present thesis and its connection to computational
homotopy theory has been pointed out above (for further reading we refer to [50;
27]). Other interesting and fruitful applications of computational homotopy theory are
to questions in topological combinatorics (see, e.g., [46]), to the robust satisfiability of
equations [26], or to quantitative questions in homotopy theory [31].

Homotopy-theoretic questions have been at the heart of the development of al-
gebraic topology since the 1940’s. In the 1990s, three independent groups of re-
searchers proposed general frameworks to make various more advanced methods of
algebraic topology (such as spectral sequences) effective (algorithmic): Schön [69],
Smith [72], and Sergeraert, Rubio, Dousson, Romero, and coworkers (e.g., [71; 65; 62;
66]; also see [67] for an exposition). These frameworks yielded general computability
results for homotopy-theoretic questions (including new algorithms for the computation
of higher homotopy groups [61]), and in the case of Sergeraert et al., also a practical
implementation in form of the Kenzo software package [34].

Building on the framework of objects with effective homology by Sergeraert et al.,
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in recent years a variety of new results in computational homotopy theory were ob-
tained [43; 12; 74; 24; 63; 64]. Here we can also include the results in [11; 13;
14], which we already discussed above in Theorems 1.3 1.4 1.6. They provide the
first polynomial-time algorithms for the considered problems, by using a refined frame-
work of objects with polynomial-time homology [43; 13] that allows for a computational
complexity analysis. For an introduction to this area from a theoretical computer sci-
ence perspective and an overview of some of these results, see, e.g., [10] and the
references therein.

Explicit maps. The above algorithms often work with rather implicit representations
of the homotopy classes in πd(X) (or, more generally, in [X, Y ]) but do not yield explicit
maps representing these homotopy classes.

For instance, the algorithm in [61] computes πd(X) as the homology group Hd(F ) of
an auxiliary space F = Fd(X) constructed from X in such a way that πd(X) and Hd(F )
are isomorphic as groups.7

More recently, Romero and Sergeraert [64] devised an algorithm that, given a 1-
reduced (and hence simply connected) simplicial set8 X and d ≥ 2, computes the
homotopy group πd(X) as the homotopy group πd(K) of an auxiliary simplicial set K
(a so-called Kan completion of X) with πd(X) ∼= πd(K). Moreover, given an element
of this group, the algorithm can compute an explicit simplicial map Σd → K from a
suitable triangulation of Sd to K representing the given homotopy class. In this way,
homotopy classes are represented by explicit maps, but as maps to the auxiliary space
K, which is homotopy equivalent to but not homeomorphic to the given space X.

By contrast, our general goal in Chapter 2 is to is represent the elements of πd(X)
by maps into the given space.

Quantitative homotopy theory. Another motivation for the result in Chapter 2, namely
representing homotopy classes by simplicial maps and complexity bounds for such al-
gorithms, is the connection to quantitative questions in homotopy theory [31; 22] and
in the theory of embeddings [27]. Given a suitable measure of complexity for the maps
in question, typical questions are: What is the relation between the complexity of a
given null-homotopic map f : X → Y and the minimum complexity of a nullhomo-
topy witnessing this? What is the minimum complexity of an embedding of a simplicial
complex K into Rd? In quantitative homotopy theory, complexity is often quantified by
assuming that the spaces are metric spaces and by considering Lipschitz constants
(which are closely related to the sizes of the simplicial representatives of maps and
homotopies [22]). For embeddings, the connection is even more direct: a typical mea-
sure is the smallest number of simplices in a subdivision K̃ or K such that there exists
a simplexwise linear-embedding K̃ ↪→ Rd.

Constructing simplicial representatives of elements of [X,Y ] As we mentioned
above, a natural continuation of the result in Chapter 2 would be a constructive version
of Theorem 1.3. Let X and Y be spaces, satisfying the conditions of Theorem 1.3, so
the set [X, Y ] of homotopy classes of maps has the structure of a finitely generated

7Similarly, the algorithm in [13] constructs an auxiliary chain complex C such that πd(X) is isomorphic
to the homology group Hd+1(C) and computes the latter.

8Simplicial sets are topological spaces, which admit a combinatorial structure very similar to simplicial
complexes but more flexible. We introduce them formally in Chapter 2.2
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abelian group, therefore admitting a finite presentation. We would like to obtain an
efficient algorithm, which for an element α ∈ [X, Y ], i.d. a homotopy class, constructs
a suitable subdivision X̃ of X and a simplicial map f : X̃ → Y , which represents α.
More precisely, since the geometric realisations |X| and |X̃| are homeomorphic, there
is an isomorphism ϕ : [X, Y ] ∼= [X̃, Y ] and we require that ϕ(α) = [f ]. In this section we
briefly outline our partial progress on this problem.

Along with the isomorphism type of the abelian group [X, Y ], for any given element
α ∈ [X, Y ], Theorem 1.3 also outputs an implicit algebraic representation. For the
sake of presentation, we assume that dimX = 2d, where d is the connectivity of Y ,
i.e. that X is of the maximal permitted dimension. In fact, the element α ∈ [X, Y ] will
be represented as a map into an auxiliary space P2d(Y ), called the (2d)-th Postnikov
stage of Y , which approximates Y homotopically up to dimension 2d. Because of the
model of P2d used by the authors, a map X → P2d can be represented in the form
(0, . . . , 0, cd+1, . . . , c2d), where ci ∈ Ci(X; πi(Y )). We refer to [11] for further details.

Starting with an element α ∈ [X, Y ] with a representation (0, . . . , 0, cd+1, . . . , c2d), our
strategy for constructing a map X̃ → Y , representing α is to use this data and define
the map by induction on the skeleta of X. We briefly outline the steps without details.

1. Define α : Xd → Y to be the constant map, sending the whole d-skeleton of X to
the basepoint ∗ ∈ Y .

2. Every (d + 1)-simplex σ ∈ X is labelled by an element cd+1(σ) ∈ πd+1(Y ). Since
α(∂σ) ↦→ ∗ ∈ Y , the desired map α : X(d+1) → Y can be factored through a map
α̃ :

⋁
Sd+1 → Y , where we have one copy of Sd+1 for each (d + 1)-simplex of

X. Moreover, if Sd+1
σ is the sphere corresponding to σ, then [α̃|

S
(d+1)
σ

] = cd+1(σ) ∈
πd+1(Y ).9 Next, we use a slightly modified version of Theorem 1.7 to represent the
homotopy class cd+1(σ) as a map fσ : σ̃ → Y from a subdivision of σ. Performing

this for every (d+ 1)-simplex of X yields a map X̃(d+1) → Y from a subdivision of
the (d+ 1)-skeleton of X.

3. Let τ ∈ X(d+2) be a (d + 2)-simplex. In the previous step we constructed a map
∂̃τ → Y , from a subdivision of the boundary of τ . By construction, we know that
this map is nullhomotopic, so we construct a map τ̃ → Y from a subdibision of
τ , extending the map from the boundary. Performing this procedure for every
(d+ 2)-simplex of X produces a map X̃(d+2) → Y .

4. The extension in the previous step is arbitrary and in general, we would not obtain
a map from the correct homotopy class α ∈ [X, Y ]. In this step, we use the data
given by cd+2(σ) ∈ πd+2(Y ) in order to correct the map obtained in the previous
step.

5. We repeat Step 3 and Step 4 inductively for d+ 2, d+ 3, . . . , 2d.

The first step is trivial and Step 2 is just an iterated application of the results in
Chapter 2. Step 4 can be made precise and can be achieved using mostly the tech-
niques developed in [11]. The bottleneck of the approach is Step 3, i.e. constructing

9This follows from the construction in [11], but it is also intuitively clear.
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explicit nullhomotopies for nullhomotopic maps from a sphere, which is related to the
following question in quantitative topology, posed by Gromov (see [31]):

Question 1.15.1. Let X, Y be metric spaces and f : X → Y be an L-Lipschitz function,
which is nullhomotopic. What is the minimal Lipschitz constant for a nullhomotopy
F : X × [0, 1] → Y for f . More generally, given L-Lipschitz functions f, g : X → Y , what
is the minimal Lipschitz constant for a homotopy H : X × [0, 1] → Y between f and g.

For details about the relation between the two problems and results for particular
classes of metric spaces we refer the reader to [22; 15].

While we were unable to find a general solution for the problem of constructing
explicit nullhomotopies, by making use of particular combinatorial properties of the
spheres produced by Theorem 2.1, we managed to solve it for a sufficiently large class
of triangulations of spheres. We obtained the following theorem.

Theorem 1.16. Let d ≥ 2 be a fixed integer. Let X and Y be finite simplicial complexes
such that Y is d-connected and dimX ≤ 2d. Assume also that Y has a certificate for
simple connectivity as described in Section 2.2.2. Then there exists an algorithm that,
computes the generators g1, . . . , gk of [X, Y ] as simplicial maps X̃j → Y , for suitable
triangulations X̃j of X, j = 1, . . . , k.

The time complexity of the algorithm provided by this theorem is a tower of expo-
nentials of hight at least d. To a large extent this is due to the way we are solving the
problem of constructing explicit nullhomotopies. This complexity is also in contrast with
the singly exponential time complexity of the algorithm in Theorem 2.1, as well as the
general belief that the problem should be solvable in singly exponential time. We were
also not able to produce any convincing evidence against this expectation. That is the
reason why we do not consider our solution to be satisfactory and continue working on
the problem.

Constructing explicit embeddings In a subsequent step, we hope to generalize this
further to the equivariant setting [X, Y ]G of [14], in which a finite group G of symme-
tries acts freely on the spaces X, Y and all maps and homotopies are required to be
equivariant, i.e., to preserve the symmetries. That would be a crucial step in a strategy
to construct explicit embeddings in the meta-stable range. Given a finite k-dimensional
simplicial complex, for d ≥ 3(k+1)

2
, Theorem 1.2 (Haefliger–Weber) provides a neces-

sary and sufficient condition for the existence of an embedding K ↪→ Rd. Namely, an
embedding exists if and only if there exists a Z2-equivariant map F : K2

∆ → Sd−1. The
proof of the theorem is, in principle, constructive, but in order to turn it into an algorithm
that computes an embedding, it would be necessary to have a map F given explic-
itly. A constructive version of Theorem 1.4, similar to Theorem 1.7, would compute
F : K̃2

∆ → Sd−1 as a simplicial map from a suitable subdivision of K2
∆. The next step

would be, starting with map f : K → Rd, which is not an embedding, to use the argu-
ments in the proof of Theorem 1.2 and the map F , to resolve the self-intersections of
f , thus constructing an embedding g : K̃ → Rd from a suitable subdivision K̃ of K.

Such an algorithm is still a far reaching goal, which poses hard questions to be
answered. While it provides a strong motivation for obtaining constructive versions of
Theorem 1.6, 1.3 and 1.4, those generalisations are interesting in their own right.
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2 Constructing simplicial representatives of homotopy group
elements

This chapter is a joint work with Marek Filakovský, Peter Franek and Uli Wagner and
has appeared as [25].

In this chapter, we provide a complete proof of Theorem 1.7. For computational pur-
poses, we consider spaces that have a combinatorial description as simplicial sets and
maps between them as simplicial maps. These are very similar to simplicial complexes
and in particular have a combinatorial description, but are much more flexible. Every
ordered simplicial complex naturally gives rise to a unique simplicial set. We introduce
simplicial sets formally in Section 2.2. We assume such an object to be encoded as
a list of its nondegenerate simplices and boundary operators given via finite tables.
Similar to the definition for a simplicial complex, we define the size of a finite simplicial
set X to be the number of its non-degenerate simplices.

Since our input space X is simply connected, i.e., that it is connected and has triv-
ial fundamental group π1(X), we will further assume that X is given as a 1-reduced
simplicial set. That means that it has only one vertex and no edges, which the addi-
tional flexibility of simplicial sets allows. This will significantly simplify the presentation
of the proofs. In Section 2.3 we outline the additional steps needed when the input is a
simplicial complex, as in the statement of Theorem 1.7.

Theorem 2.1. There exists an algorithm that, given d ≥ 2 and a finite 1-reduced sim-
plicial set X, computes the generators g1, . . . , gk of πd(X) as simplicial maps Σd

j → X,
for suitable triangulations Σd

j of Sd, j = 1, . . . , k.

For fixed d, the time complexity is exponential in the size (number of simplices) of
X; more precisely, it is O(2P (size(X))) where P = Pd is a polynomial depending only on
d.

Any element of πd(X) can be expressed as a sum of generators, and expressing
the sum of two explicit maps from spheres into X as another explicit map is a simple
operation. Hence, the algorithm in Theorem 2.1 can convert any element of πd(X) into
an explicit simplicial map.

Theorem 2.1 also has the following quantitative consequence: Fix some standard
triangulation Σ of the sphere Sd, e.g., as the boundary of a (d + 1)-simplex. By the
classical Simplicial Approximation Theorem [33, 2.C], for any continuous map f : Sd →
X, there is a subdivision Σ′ of Σ and a simplicial map f ′ : Σ′ → X that is homotopic to
f . Theorem 2.1 implies that if f represents a generator of πd(X), then the size of Σ′

can be bounded by an exponential function of the number of simplices of X.

Furthermore, we can show that the exponential dependence on the number of sim-
plices in X is inevitable:



14

Theorem 2.2. Let d ≥ 2 be fixed. Then there is an infinite family of d-dimensional
0-reduced 1-connected simplicial sets X such that for any simplicial map Σ → X rep-
resenting a generator of πd(X), the triangulation Σ of Sd on which f is defined has size
at least 2Ω(size(X)). If d ≥ 3, we may even assume that X are 1-reduced.

Consequently, any algorithm for computing simplicial representatives of the gener-
ators of πd(X) for 1-reduced simplicial set X has time complexity at least 2Ω(size(X)).

In the boundary case of 1-reduced simplicial sets for d = 2, we don’t know whether
the lower complexity bound is sub-exponential or not. However, we can show that
the algorithm from Theorem 2.1 is optimal in that case as well, see a discussion in
Section 2.4, page 30.

In Section 2.3 and 2.4, we state and prove generalizations of Theorem 2.1 and 2.2
denoted as Theorem 2.11 and 2.17. They remove the 1-reduceness assumption and
replace it by a more flexible certificate of simple connectivity, allowing the input space
X to be a more flexible simplicial set or simplicial complex.

Structure of the chapter. In Section 2.1, we give a high-level description of the main
ingredients of the algorithm from Theorem 2.1. In Section 2.2, we review a number of
necessary technical definitions regarding simplicial sets and the frameworks of effec-
tive and polynomial-time homology, in particular Kan’s simplicial version of loop spaces
and polynomial-time loop contractions for infinite simplicial sets. In Section 2.3, we for-
mally describe the algorithm from Theorem 2.1 and give a high level proof based on
a number of lemmas which are proved in subsequent chapters. Section 2.4 contains
the proof of Theorem 2.2. The rest of the paper contains several technical parts needed
for the proof of Theorem 2.1: in Section 2.5, we describe Berger’s effective Hurewicz
inverse and analyze its running time (Theorem 2.13), in Section 2.6, we prove that the
stages of the Whitehead tower have polynomial-time contractible loops (Lemma 2.14).
Finally, in Section 2.7, we show how to reduce the case when the input is a simplicial
complex Xsc, as presented in the formulation of Theorem 1.7, to the case of an asso-
ciated simplicial set X and convert a map Σ → X into a map from a subdivision Sd(Σ)
into Xsc (Lemma 2.16).

2.1 Outline of the Algorithm

In this section we present a high-level description of the main steps and ingredients
involved in the algorithm from Theorem 2.1.

The algorithm in a nutshell.

1. In the simplest case when the space X is (d − 1)-connected (i.e., πi(X) = 0 for
all i ≤ d − 1.), the classical Hurewicz Theorem [33, Sec. 4.2] yields an isomor-
phism πd(X) ∼= Hd(X) between the dth homotopy group and the dth homology
group of X. Computing generators of the homology group is known to be a com-
putationally easy task (it amounts to solving a linear system of equations over
the integers). The key is then converting the homology generators into the cor-
responding homotopy generators, i.e., to compute an inverse of the Hurewicz
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isomorphism. This was described in the work of Berger [5; 6]. We analyze the
complexity of Berger’s algorithm in detail and show that it runs in exponential time
in the size of X (assuming that the dimension d is fixed).

2. For the general case, we construct an auxiliary simplicial set Fd together with
a simplicial map ψd : Fd → X that has the following properties:

• Fd is a simplicial set that is d− 1 connected, and

• ψd : Fd → X induces an isomorphism ψd∗ : πd(Fd) → πd(X).

Our construction of Fd is based on computing stages of the Whitehead tower
of X [33, p. 356]; this is similar to Real’s algorithm, which computes πd(X) as
Hd(Fd) as an abstract abelian group.

The overall strategy is to use Berger’s algorithm on the space Fd and compute
generators of πd(Fd) as simplicial maps. Then we use the simplicial map ψd to
convert each generator of πd(Fd) into a map Σd → X, and these maps generate
πd(X). The main technical task for this step is to show that Berger’s algorithm
can be applied to Fd. For this, we need to construct a polynomial algorithm for
explicit contractions of loops in Fd (this space is 1-connected but not 1-reduced in
general).

Our contributions. The main ingredients of the algorithm outlined above are the com-
putability of stages of the Whitehead tower [61] as simplicial sets with polynomial-
time homology and Berger’s algorithmization of the inverse Hurewicz isomorphism [5;
6].

The idea that these two tools can be combined to compute explicit representatives
of πd(X) is rather natural and is also mentioned, for the special case of 1-reduced sim-
plicial sets, in [64, p. 3]; however, there are a number of technical challenges to over-
come in order to carry out this program (as remarked in [64, p. 3]: “Clemens Berger’s
algorithm, quite complex, has never been implemented, severely limiting the current
scope of this approach, same comment with respect to the theoretical complexity of
such an algorithm.”). On a technical level, our main contributions are as follows:

• We give a complexity analysis of Berger’s algorithm to compute the inverse of the
Hurewicz isomorphism (Theorem 2.13).

• We show that the homology generators of the Whitehead stage Fd can be com-
puted in polynomial time (Lemma 2.12).

• Berger’s algorithm requires an explicit algorithm for loop contraction—a certifi-
cate of 1-connectedness of the space Fd. While Fd is not 1-reduced in general,
we describe an explicit algorithm for contracting its loop and show that Berger’s
algorithm can be applied.

We remark that the Whitehead tower stages are simplicial sets with infinitely many
simplices, and we need the machinery of objects with polynomial-time homology to
carry out the last two steps.
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2.2 Definitions and Preliminaries

In this section, we give the necessary technical definitions that will be used throughout
this chapter. In the first part, we recall the standard definitions for simplicial sets and
the toolbox of effective homology.

Afterwards, we present Kan’s definiton of a loop space and further formalize our
definition of (polynomial-time) loop contractions.

2.2.1 Simplicial Sets and Polynomial-Time Effective Homology

Simplicial sets and their computer representation. A simplicial set X is a graded
set X indexed by the non-negative integers together with a collection of mappings
di : Xn → Xn−1 and si : Xn → Xn+1, 0 ≤ i ≤ n called the face and degeneracy opera-
tors. They satisfy the following identities:

didj = dj−1di for i < j,
disi = di+1si = id for 0 ≤ i < n,
disj = sjdi−1 for i > j + 1,
disj = sj−1di for i < j,
sisj = sj+1si for i ≤ j.

More details on simplicial sets and the motivation behind these formulas can be found
in [53; 30].

Simplicial maps between simplicial sets are maps of graded sets which commute
with the face and degeneracy operators. The elements of Xn are called n-simplices.
We say that a simplex x ∈ Xn is (non-)degenerate if it can(not) be expressed as x = siy
for some y ∈ Xn−1. If a simplicial set X is also a graded (Abelian) group and face
and degeneracy operators are group homomorphisms, we say that X is a simplicial
(Abelian) group.

A simplicial set is called k-reduced for k ≥ 0, if it has a single i-simplex for each
i ≤ k.

For a simplicial set X, we define the chain complex C∗(X) to be a free Abelian
group enerated by the elements of Xn with differential

∂(c) =
n∑

i=0

(−1)idi(c).

A simplicial set is locally effective, if its simplices have a specified finite encoding
and algorithms are given that compute the face and degeneracy operators. A simpli-
cial map f between locally effective simplicial sets X and Y is locally effective, if an
algorithm is given that for the encoding of any given x ∈ X computes the encoding of
f(x) ∈ Y .

We define a simplicial set to be finite if it has finitely many non-degenerate sim-
plices. Such simplicial set can be algorithmically represented in the following way. The
encoding of non-degenerate simplices can be given via a finite list and the encoding
of a degenerate simplex sik . . . si1y for i1 < i2 < . . . < ik and a non-degenerate y can
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be assumed to be a pair consisting of the sequence (i1, . . . , ik) and the encoding of
y. The face operators are fully described by their action on non-degenerate simplices
and can be given via finite tables. In this way, any simplicial set with finitely many non-
degenerate simplices is naturally locally effective. Any choice of an implementation of
the encoding and face operators is called a representation of the simplicial set. The
size of a representation is the overall memory space one needs to store the data which
represent the simplicial set.

Geometric realization. To each simplicial set X we assign a topological space |X|
called its geometric realization. The construction is similar to that of simplicial com-
plexes. Let ∆j be the geometric realization of a standard j-simplex for each j ≥ 0. For
each k, we define Di : ∆k−1 ↪→ ∆k to be the inclusion of a (k − 1)-simplex into the i’th
face of a k-simplex and Si : ∆k → ∆k−1 be the geometric realization of a simplicial map
that sends the vertices (0, 1, . . . , k) of ∆k to the vertices (0, 1, . . . , i, i, i + 1, . . . , k − 1).
The geometric realization |X| is then defined to be a disjoint union of all simplices X
factored by the relation ∼

|X| := (
∞⨆
n=0

Xn ×∆n)/ ∼

where ∼ is the equivalence relation generated by the relations (x,Di(p)) ∼ (di(x), p)
for x ∈ Xn+1, p ∈ ∆n and the relations (x, Si(p)) ∼ (si(x), p) for x ∈ Xn−1, p ∈ ∆n.

Similarly, a simplicial map between simplicial complexes naturally induces a contin-
uous map between their geometric realizations.

Simplicial complexes and simplicial sets. In any simplicial complex Xsc, we can
choose an ordering of vertices and define a simplicial sets Xss that consists of all non-
decrasing sequences of points in Xsc: the dimension of (V0, . . . , Vd) equals d. The
face operator is di omits the i’th coordinate and the degeneracy sj doubles the j’th
coordinate. Moreover, choosing a maximal tree T in the 1-skeleton of X enables us
to construct a simplicial set X := Xss/T in which all vertices and edges in the tree,
as well as their degeneracies, are considered to be a base-point (or its degeneracies).
The geometric realizations of Xsc and X are homotopy equivalent and X is 0-reduced,
i.e. it has one vertex only.

Homotopy groups. Let (X, x0) be a pointed topological space. The k-th homotopy
group πk(X, x0) of (X, x0) is defined as the set of pointed homotopy1 classes of pointed
continuous maps (Sk, ∗) → (X, x0), where ∗ ∈ Sk is a distinguished point. In particular,
the 0-th homotopy group has one element for each path connected component of X.
For k = 1, π1(X, x0) is the fundamental group of X, once we endow it with the group
operation that concatenates loops starting and ending in x0. The group operation on
πk(X, x0) for k > 1 assigns to [f ], [g] the homotopy class of the composition Sk π→
Sk ∨ Sk f∨g→ X where π factors an equatorial (k − 1)-sphere containing x0 into a point.
Homotopy groups πk are commutative for k > 1.

If the choice of base-points is understood from the context or unimportant, we will
use the shorter notation πk(X). For a simplicial set X, we will use the notation πk(X)
for the k’th homotopy group of its geometric realization |X|.

1A homotopy F : Sk × I → X is pointed if F (∗, t) = x0 for all t ∈ I.
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An important tool for computing homotopy groups is the Hurewicz theorem. It says
that whenever X is (d − 1)-connected, then there is an isomorphism πd(X) → Hd(X).
Moreover, if the element of πd(X) is represented by a simplicial map f : Σd → X and∑

j kjσj represents a homology generator of Hd(Σ
d), then the Hurewicz isomorphism

maps [f ] to the homology class of the formal sum
∑

j kjf(σj) of d-simplices in X.

Effective homology. We call a chain complex C∗ locally effective if the elements c ∈ C∗
have finite (agreed upon) encoding and there are algorithms computing the addition,
zero, inverse and differential for the elements of C∗.

A locally effective chain complex C∗ is called effective if there is an algorithm that
for given n ∈ N generates a finite basis cα ∈ Cn and an algorithm that for every c ∈ C∗
outputs the unique decomposition of c into a linear combination of cα’s.

Let C∗ and D∗ be chain complexes. A reduction C∗ ⇒⇒ D∗ is a triple (f, g, h) of maps
such that f : C∗ → D∗ and g : D∗ → C∗ are chain homomorphisms, h : C∗ → C∗ has
degree 1, fg = id and fg − id = h∂ + ∂h, and further hh = hg = fh = 0.

A locally effective chain complex C∗ has effective homology (C∗ is a chain complex
with effective homology) if there is a locally effective chain complex C̃∗, reductions
C∗ ⇐⇐ C̃∗ ⇒⇒ Cef

∗ where Cef
∗ is an effective chain complex, and all the reduction maps

are computable.

Eilenberg-MacLane spaces. Let d ≥ 1 and π be an Abelian group. An Eilenberg-
MacLane space K(π, d) is a topological space with the properties πd(K(π, d)) ≃ π
and πj(K(π, d)) = 0 for 0 < j ̸= d. It can be shown that such space K(π, d) exists and,
under certain natural restrictions, has a unique homotopy type. If π is finitely generated,
then K(π, d) has a locally effective simplicial model [43].

Globally polynomial-time homology and related notions. In many auxiliary steps of
the algorithm, we will construct various spaces and maps. To analyse the overall time
complexity, we need to parametrize all these objects by the very initial input, which is in
our case an encoding of a finite 1-reduced simplicial set (or, in Theorem 2.11, a more
general space endowed with certain explicit certificate of 1-connectedness).

More generally, let I be a parameter set so that for each I ∈ I an integer size(I) is
defined. We say that F is a parametrized simplicial set (group, chain group, . . . ), if for
each I ∈ I, a locally effective simplicial set (group, chain group, . . . ) F (I) is given. The
simplicial set F is locally polynomial-time, if there exists a locally effective model of F (I)
such that for each k ∈ N and an encoding of a k-simplex x ∈ F (I), the encoding of di(x)
and sj(x) can be computed in time polynomial in size(enc(x))+size(I). The polynomial,
however, may depend on k. A polynomial-time map between parametrized simplicial
sets F andG is an algorithm that for each k ∈ N, I ∈ I and an encoding of an k-simplex
x in F (I) computes the encoding of f(x) in time polynomial in size(enc(x)) + size(I):
again, the polynomial may depend on k.

Similarly, a locally polynomial-time (parametrized) chain complex is an assignment
of a computer representation C∗(I) of a chain complex with a distinguished basis in
each gradation, such that all these basis elements have some agreed-upon encoding.
A chain

∑
j kjσj is assumed to be represented as a list of pairs (kj,enc(σj))j and has

size
∑

j(size(kj) + size(enc(σj))), where we assume that the size of an integer kj is
its bit-size. Further, an algorithm is given that computes the differential of a chain
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z ∈ Ck(I) in time polynomial in size(z) + size(I), the polynomial depending on k. The
notion of a polynomial-time chain map is straight-forward.

A globally polynomial-time chain complex is a locally polynomial-time chain com-
plex EC that in addition has all chain groups EC(I)k finitely generated and an ad-
ditional algorithm is given that for each k computes the encoding of the generators
of EC(I)k in time polynomial in size(I). Finally, we define a simplicial set with globally
polynomial-time homology to be a locally polynomial-time parametrized simplicial set F
together with reductions C∗(F ) ⇐⇐ C̃ ⇒⇒ EC where C̃, EC are locally polynomial-time
chain complexes, EC is a globally polynomial-time chain complex and the reduction
data are all polynomial-time maps, as usual the polynomials depending on the grading
k.

The name “polynomial-time homology” is motivated by the following:

Lemma 2.3. Let F be a parametrized simplicial set with polynomial-time homology and
k ≥ 0 be fixed. Then all generators of Hk(F (I)) can be computed in time polynomial in
size(I).

Proof. For the globally polynomial-time chain complex EF and each fixed j, we can
compute the matrix of the differentials dj : EF (I)j → EF (I)j−1 with respect to the
distinguished bases in time polynomial in size(I): we just evaluate dk on each element
of the distinguished basis of EF (I)k. Then the homology generators of Hk(EC) can
be computed using a Smith normal form algorithm applied to the matrices of dk and
dk+1, as is explained in standard textbooks (such as [54]). Polynomial-time algorithms
for the Smith normal form are nontrivial but known [41].

Let x1, . . . , xm be the cycles generating Hk(EF (I)). We assume that reductions

C∗(F )
(f,g,h)⇐⇐ F̃

(f ′,g′,h′)⇒⇒ EF

are given and all the reduction maps are polynomial. Thus we can compute the chains

fg′(x1), fg
′(x2), . . . , fg

′(xm)

in polynomial time and it is a matter of elementary computation to verify that they
constitute a set of homology generators for Hk(F (I)).

2.2.2 Loop Spaces and Polynomial-Time Loop Contraction

Principal bundles and loop group complexes. In the text we will frequently deal with
principal twisted Cartesian products: these are simplicial analogues of principal fiber
bundles. The definitions in this section come from Kan’s article [40].

We first define the Cartesian product X × Y of simplicial sets X, Y : The set of
n-simplices (X × Y )n consists of tuples (x, y), where x ∈ Xn, x ∈ Yn. The face and
degeneracy operators on X × Y are given by di(x, y) = (dix, diy), si(x, y) = (six, siy).

Definition 2.4 (Principal Twisted Cartesian product). Let B be a simplicial set with a
basepoint b0 ∈ B0 and G be a simplicial group. We call a graded map (of degree -1)
τ : Bn+1 → Gn, n ≥ 0 a twisting operator if the following conditions are satisfied:



20

• dnτ(β) = τ(dn+1b)
−1τ(dnb)

• diτ(β) = τ(dib) for 0 ≤ i < n

• siτ(b) = τ(sib), i < n, and

• τ(snb) = 1n for all b ∈ Bn where 1n is the unit element of Gn.

Let B, G, τ be as above. We will define a twisted Cartesian product B ×τ G to be
a simplicial set E with En = Bn ×Gn, and the face and degeneracy operators are also
as in the Cartesian product, i.e. di(b, g) = (dib, dig) , with the sole exception of dn,
which is given by

dn(b, g) := (dnb, τ(b)dn(g)), (b, g) ∈ Bn ×Gn.

It is not trivial to see why this should be the right way of representing fiber bundles
simplicially, but for us, it is only important that it works, and we will have explicit formulas
available for the twisting operator for all the specific applications.

We remark that in the literature one can find multiple definitions of twisted operator
and twisted product [53; 40; 5] and that they, in essence differ from each other based
on the decision whether the twisting “compresses” the first two or the last two face
operators. Here, we follow the same notation as in [5].

Definition 2.5. Let X be a 0-reduced simplicial set. Then we define GX to be a (non-
commutative) simplicial group such that

• GXn has a generator σ for each (n+ 1)-simplex σ ∈ X and a relation sny = 1 for
each simplex in the image of the last degeneracy sn.

• The face operators are given by diσ := diσ for i < n and dnσ := (dn+1σ)
−1dnσ

• The degeneracy operators are siσ := siσ.

We use the multiplicative notation, with 1 being the neutral element. It is shown
in [40] that GX is a discrete simplicial analog of the loop space of X.

For algorithmic puroposes, we assume that an elements
∏

j σ
kj
j of GX is repre-

sented as a list of pairs (σj, kj) and has size
∑

j size(σj) + size(kj).

Definition 2.6. LetX be a 0-reduced simplicial set. We say that a map c0 : GX0 → GX1

is a contraction of loops in X, if d0c0(x) = x and d1c0(x) = 1 for each x ∈ GX0.
In case where X has finitely many nondegenerate 1-simplices, we define the size

size(c0) to be the sum ∑
γ∈X1

size(c0(γ)).

Loop contraction for simplicial complexes. Let Xsc be a simplicial complex. Let T
be a spanning tree in the 1-skeleton of Xsc and R a chosen vertex. For each oriented
edge e = (v1v2) we define a formal inverse to be e−1 := (v2v1) and we also consider
degenerate edges (v, v). A loop is defined as a sequence e1, . . . , ek of oriented edges
in Xsc such that
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• The end vertex of ei equals the initial vertex of ei+1, and

• The initial vertex of e1 and the end vertex of ek equal R.

Every edge e that is not contained in T gives rise to a unique loop le. Further, every loop
in Xsc is either a concatenation of such le’s, or can be derived from such concatenation
by inserting and deleting consecutive pairs (e, e−1) and degenerate edges. Before we
formally define our combinatorial version of loop contraction, we need the following
definition.

Definition 2.7. Let S be a set, U ⊆ S, F (S) and F (U) be free groups generated by S,
U , respectively.2 Let hU : F (S) → F (S) be a homomorphism that sends each u ∈ U to
1 and each s ∈ S \ U to itself. We say that an element x of F (S) equals y modulo U , if
hU(x) = y.

An example of an element that is trivial modulo U is the word s u s−1, where s ∈ S
and u ∈ U .

Definition 2.8. Let S be the set of all oriented edges and oriented degenerate edges
in Xsc and assume that a spanning tree T is chosen. Let U be the set of all oriented
edges in T , including all degenerate edges. A contraction of an edge α is a sequence
of vertices A0, A1, . . . , As and B1, . . . , Bs such that

• for each i, {Ai, Ai+1, Bi+1} is a simplex of Xsc, and

• the element of F (S)

(A0B1)(B1A1)(A1B2)(B2A2) . . . (BsAs)(AsAs−1)(As−1As−2) . . . (A1A0) (2.1)

equals α modulo U .

A loop contraction in a simplicial complex is the choice of a contraction of α for
each edge α ∈ Xsc \ T .

The size of the contraction of α is defined to be the number of vertices in (2.1) and the
size size(c) of the loop contraction on Xsc is the sum of the sizes over all α ∈ Xsc \ T .

A0

B1

A1

B2

A2

B3

A3

α

Figure 2.1: The loop ranging over the boundary of this geometric shape equals α, after
ignoring edges in the maximal tree and canceling pairs (e, e−1). The interior of the
triangles gives rise to a contraction.

2Formally, elements of F (S) are sequences of symbols sϵ for ϵ ∈ {1,−1} and s ∈ S with the relation
s1s−1 = 1, where 1 represents the empty sequence. The group operation is concatenation.
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The geometry behind this definition is displayed in Figure 2.1. The sequence of
Ai’s and Bj ’s gives rise to a map from the sequence of (full) triangles into Xsc. The
big loop around the boundary is combinatorially described by (2.1). We can continu-
ously contract all of its parts that are in the tree T to a chosen basepoint, as the tree is
contractible. Further, we can continuously contract all pairs of edges (e, e−1) and what
remains is the original edge α: with all the tree contracted to a point, it will be trans-
formed into a loop that geometrically corresponds to lα. The interior of the full triangles
then constitutes its “filler”, hence a certificate of the contractibility of lα.

A loop contraction in the sense of Definition 2.1 exists if and only if the space Xsc

is simply connected. One could choose different notions of loop contraction. For in-
stance, we could provide, for each α, a simplicial map from a triangulated 2-disc into
Xsc such that the oriented boundary of the disc would be mapped exactly to lα. The
description from Definition 2.8 could easily be converted into such map. We chose
the current definition because of its canonical and algebraic nature. The connection
between Definitions 2.6 and 2.8 is the content of the following lemma.

Lemma 2.9. Let Xsc be a 1-connected simplicial complex with a chosen orientation
of all simplices, Xss the induced simplicial set, T a maximal tree in Xsc, and X :=
Xss/T the corresponding 0-reduced simplicial set. Assume that a loop contraction in
the simplicial complex Xsc is given, such as described in Definition 2.8. Then we can
algorithmically compute c0(α) ∈ GX1 such that d0c0(α) = α and d1c0(α) = 1, for every
generator α of GX0. Moreover, the computation of c0(α) is linear in the size of Xsc and
the size of the simplicial complex contraction data.

Proof. For each i, the triangle {Ai, Ai+1, Bi+1} from Def. 2.8 is in the simplicial com-
plex Xsc. There is a unique oriented 2-simplex in Xss of the form (V0, V1, V2) (possibly
degenerate) such that {V0, V1, V2} = {Ai, Ai+1, Bi+1}. Let us denote such oriented sim-
plex by σi, and its image in GX1 by σi. We will define an element gi ∈ GX1 such that it
satisfies

d0gi ≃ (Ai, Ai+1) and d1gi ≃ (Ai, Bi+1) (Bi+1, Ai+1) (2.2)

where ≃ is an equivalence relation that identifies any element (U, V ) ∈ GX1 with
(V, U)

−1
(note that only one of the symbols (U, V ) and (V, U) is well defined in Xss,

resp. X.) Explicitly, we can define gi with these properties as follows:

• If σ = (Bi+1, Ai, Ai+1), then gi := σi,

• If σ = (Ai, Ai+1, Bi+1), then gi := s0(d2σ)σi s0d0(σi)
−1

• If σ = (Ai+1, Bi+1, Ai), then gi = s0d0σi
−1 σi s0(d1σi)

−1

• If σ = (Bi+1, Ai+1, Ai), then gi := σi
−1

• If σ = (Ai+1, Ai, Bi+1), then gi := s0d0σi σi
−1 s0(d2σi)

−1

• If σ = (Ai, Bi+1, Ai+1), then gi := s0(d1σi)σi
−1s0d0σi.

Let g := g0 . . . , gs. The assumption (2.1) together with equation (2.2) immediately im-
plies that d1g(d0g)−1 = α. Thus we define c0(α) := s0d1(g) g

−1. Algorithmically, to
construct g amounts to going over all the triples (Ai, Ai+1, Bi+1) from a given sequence
of A′

is and Bj ’s, checking the orientation and computing gi for every i.
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Polynomial-time loop contraction. Let F be a parametrized simplicial set such that
each F (I) is 0-reduced. Using constructions analogous to those defined above, GF
is a parametrized locally-polynomial simplicial group whereas we assume a simple
encoding of elements of GFi as follows. If x =

∏
j σj

kj ∈ GF (I)k where σj are (k + 1)-
simplices in F (I), not in the image of sk, then we assume that x is stored in the memory
as a list of pairs (kj,enc(σj)) and has size

∑
j(size(kj) + size(σj)) where some σi may

be equal to σj for i ̸= j. Face and degeneracy operators are defined in Definition (2.5)
and it is easy to see that for any locally polynomial-time simplicial set F , GF is a locally
polynomial-time simplicial group.

Definition 2.10. Let F be a locally polynomial simplicial set. We say that F has poly-
nomially contractible loops, if there exists an algorithm that for a 0-simplex x ∈ GF (I)
computes a 1-simplex c0(x) ∈ GF (I) such that d0x = x, d1x = 1 ∈ GF (I)0, and the
running-time is polynomial in size(x) + size(I).

2.3 Proof of Theorem 2.1

We will prove a stronger statement of Theorem 2.1 formulated as follows.

Theorem 2.11. There exists an algorithm that, given d ≥ 2 and a finite 0-reduced sim-
plicial set X (alternatively, a finite simplicial complex) with an explicit loop contraction
c0 (such as in Definition 2.6 or 2.8) computes the generators g1, . . . , gk of πd(X) as
simplicial maps Σd

j → X, for suitable triangulations Σd
j of Sd, j = 1, . . . , k.

For fixed d, the time complexity is exponential in the size of X and the size of
the loop contraction c0; more precisely, it is O(2P (size(X)+size(c0))) where P = Pd is a
polynomial depending only on d.

This immediately implies Theorem 2.1, as for a 1-reduced simplicial set, the con-
traction c0 is trivial, given by c0(1) = 1.

The proof of Theorem 2.11 is based on a combination of four statements presented
here as Lemma 2.12, Theorem 2.13, Lemma 2.14 and Lemma 2.16. Each of them is
relatively independent and their proofs are delegated to further sections.

First we present an algorithm that, given a 1-connected finite simplicial set X and a
positive integer d, outputs a simplicial set Fd and a simplicial map ψd such that

• the simplicial set Fd is d− 1 connected, it has polynomial-time effective homology
and polynomially contractible loops.

• the simplicial map ψd : Fd → X is polynomial-time and induces an isomorphism
ψd∗ : πd(Fd) → πd(X).

Whitehead tower. We construct simplicial sets Fd as stages of a so-called Whitehead
tower for the simplicial set X. It is a sequence of simplicial sets and maps

· · · →→ Fd
fd →→ Fd−1

fd−1
→→ · · · f4

→→ F3
f3
→→ →→ F2 = X.

where fi induces an isomorphism πj(Fi+1) → πj(Fi) for j > i and πj(Fi) = 0 for j < i.
We define ψd = fdfd−1 . . . f3. One can see that Fd, ψd satisfy the desired properties.
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Lemma 2.12. Let d ≥ 2 be a fixed integer. Then there exists a polynomial-time
algorithm that, for a given 1-connected finite simplicial set X, constructs the stages
F2, . . . , Fd of the Whitehead tower of X.

The simplicial sets Fk(X), parametrized by 1-connected finite simplicial sets X,
have polynomial-time homology and the maps fk are polynomial-time simplicial maps.

Proof. The proof is by induction. The basic step is trivial as F2 = X. We describe how
to obtain Fk+1, fk+1 assuming that we have computed Fk, 2 ≤ k < d.

1. We compute simplicial map φk : Fk → K(πk(X), k) = K(πk(Fk), k) that induces
an isomorphism φk∗ : πk(Fk) → πk(K(πk(X), k)) ∼= πk(X). This is done using the
algorithm in [13], as K(πk(X), k) is the first nontrivial stage of the Postnikov tower
for the simplicial set Fk.

For the simplicial set K(πk(X), k) and for such simplicial sets there is a classical
principal bundle (twisted Cartesian product) (see [53]):

K(πk(X), k − 1)

↓↓

E(πk(X), k − 1) = K(πk(X), k)×τ K(πk(X), k − 1)

δ
↓↓↓↓

K(πk(X), k)

2. We construct Fk+1 and fk+1 as a pullback of the twisted Cartesian product:

K(πk(X), k − 1)
∼= →→

↓↓

K(πk(X), k − 1)

↓↓

Fk+1 := Fk ×τ ′ K(πk(X), k − 1) →→

fk+1
↓↓↓↓

K(πk(X), k)×τ K(πk(X), k − 1)

δ
↓↓↓↓

Fk
φk →→ K(πk(X), k).

It can be shown that the pullback, i.e. simplicial subset of pairs (x, y) ∈ Fk×E(πk(X), k−
1) such that δ(y) = φk(x), can be identified with the twisted product as above [53],
where the twisting operator τ ′ is defined as τφk.

To show correctness of the algorithm, we assume inductively, that Fk has polynomial-
time effective homology. According to [13, Section 3.8], the simplicial setsK(πk(X), k − 1),
E(πk(X), k − 1), K(πk(X), k) have polynomial-time effective homology and maps φk, δ
are polynomial-time. Further, they are all obtained by an algorithm that runs in polyno-
mial time.

As Fk+1 is constructed as a twisted product of Fk with K(πk(X), k), Corollary 3.18
of [13] implies that Fk+1 has polynomial-time effective homology and fk+1 is a polynomial-
time map.3

3We remark that the paper [13] uses a different formalization of twised cartesian product than the
one employed by us. However, the paper [23], on which the Corollary 3.18 of [13] is based, can be
reformulated in context of the definition used here. We do not provide full details, only remark that one
has to make a choice of Eilenberg-Zilber reduction data that corresponds to the definition of twisted
cartesian product.
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The sequence of simplicial sets Fk+1

fk+1
→→ Fk

φk →→ K(πk(X), k) induces the long
exact sequence of homotopy groups

· · · →→ πi(Fk+1)
fk+1∗

→→ πi(Fk)
φk∗ →→ πi(K(πk(X), k)) →→ πi−1(Fk+1) →→ · · ·

The reason why this is the case follows from a rather technical argument that iden-
tifies the simplicial set Fk+1 with a so called homotopy fiber of the map φk : Fk →
K(πk(X), k). In more detail, the category of simplicial sets is right proper [30, II.8.6–7]
and map δ is a so-called Kan fibration [53, § 23]. This makes the pullback Fk+1 co-
incide with so-called homotopy pullback. Further, the simplicial set E(πk(X), k − 1)
is contractible, hence the homotopy pullback is a homotopy fiber. The induced exact
sequence is due to [58, chapter I.3].

The inductive assumption, together with the fact that φk induces an isomorphism
φk∗ : πk(Fk) → πk(K(πk(X), k)) imply that fk induces an isomorphism πj(Fk+1) →
πj(Fk) for j > k and πj(Fk+1) = 0 for j ≤ k.

The lemma implies that the simplicial sets Fk have polynomial-time effective ho-
mology and maps ψk = fkfk−1 . . . f3 are polynomial-time as they are defined as a
composition of polynomial-time maps fi.

The following theorem is a key ingredient of our algorithm.

Theorem 2.13 (Effective Hurewicz Inverse). Let d > 1 be fixed and F be an (d −
1)-connected 0-reduced simplicial set parametrized by a set I, with polynomial-time
homology and polynomially contractible loops.

Then there exists an algorithm that, for a given d-cycle z ∈ Zd(F (I)), outputs a sim-
plicial model Σd of the d-sphere and a simplicial map Σd → F (I) whose homotopy class
is the Hurewicz inverse of [z] ∈ Hd(F (I)).

Moreover, the time complexity is bounded by an exponential of a polynomial function
in size(I) + size(z).

The construction of an effective Hurewicz inverse is the main result of [5] and fur-
ther details are provided in Section 2.5. It exploits a combinatorial version of Hurewicz
theorem given by Kan in [39] where πd(F ) is described in terms of πd−1(G̃F ) where G̃F
is a non-commutative simplicial group that models the loop space of F . Kan showed
that the Hurewicz isomorphism can be identified with a map Hd−1(G̃F ) → Hd−1(ÃF )
induced by Abelianization. Berger then describes the inverse of the Hurewicz homo-
morphism as a composition of the maps 1, 2, 3 in the diagram

πd(F ) Hd(F )
h−1

←←

1
↓↓

Hd−1(G̃F )

3

↑↑

Hd−1(ÃF ).2
←←

Arrow 1 is induced by a chain homotopy equivalence and arrow 3 by Berger’s explicit
geometric model of the loop space. To algorithmize arrow 2, we need an algebraic ma-
chinery that includes an explicit contraction of k-loops in G̃F for all k < d−1. Those are
based partially on linear computations in the Abelian group ÃF and partially on explicit
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inductive formulas dealing with commutators. The lowest-dimensional contraction op-
eration, however, cannot be algorithmized, without some external input. The possibility
of providing it is is the content of the following claim:

Lemma 2.14. Let d ≥ 2 be a fixed integer and I be the set of all 1-connected 0-reduced
finite simplicial sets with an explicit loop contraction c0. Then the simplicial set Fd from
Lemma 2.12, parametrized by I, has polynomial-time contractible loops.

The proof is constructive, based on explicit formulas in our model of Fd: the details
are in Section 2.6.

The core of the algorithm we will describe works with simplicial sets and simplicial
maps between them. If our input is a simplicial complex, we need tools to convert them
into maps between simplicial complexes. The next two lemmas address this.

Lemma 2.15. Let Y be a finite simplicial set. Then there exists a polynomial-time algo-
rithm that computes a simplicial complex Y sc with a given orientation of each simplex,
and a map γ : Y sc → Y (still understood to be a map between simplicial sets) such that
the geometric realization of γ is homotopic to a homeomorphism.

This construction is given in [12, Appendix B].4 Explicitly, the simplicial complex Y sc

is defined to be Y sc := B∗(Sd(Y )), where Sd is the barycentric subdivision functor and
B∗ a functor introduced in [37]: Y sc can be constructed recursively by adding a vertex
vσ for each nondegenerate simplex σ ∈ Sd(Y ) and replacing σ by the cone with apex vσ
over B∗(∂σ). The subdivision Sd(Y ) is a regular simplicial set and B∗(Sd(Y )) coincides
with the flag simplicial complex of the poset of nondegenerate simplices of Sd(Y ). It
follows that the geometric realisations |Y sc| is homeomorphic5 to |Y |. Simplices of Y sc

are naturally oriented and the explicit description of γ is given in [12, p. 61] and the
references therein.

In our main algoritm, Y = Σd will be a triangulation of the d-sphere and X a sim-
plicial set derived from a simplicial complex Xsc by contracting its spanning tree into
a point. The following lemma shows that we can convert a map Σsc → X into a map
(Σsc)′ → Xsc between simplicial complexes.

Lemma 2.16. Let d > 0 be fixed. Assume that Xsc is a given simplicial complex with a
chosen ordering of vertices and a maximal spanning tree T ; we denote the underlying
simplicial set by Xss. Let p : Xss → X := Xss/T be the projection to the associated 0-
reduced simplicial set. Let Σ be a given d-dimensional simplicial complex with a chosen
orientation of each simplex, Σss the induced simplicial set, and f : Σss → X a simplicial
map.

Then there exists a subdivision Sd(Σ) and a simplicial map f ′ : Sd(Σ) → Xsc be-
tween simplicial complexes6 such that

|Σ| = |Sd(Σ)| |f ′|→ |Xsc| |p|→ |X|
4A version of this lemma is given as [12, Proposition 3.5]. However, we also need the fact that |Y sc|

is homeomorphic to |Y |, which is not explicitly mentioned in this reference, but follows easily from the
construction.

5The subdivision Sd(Y ) has geometric realisation homeomorphic to |Y | by [28, Thm 4.6.4]. The
realisation of Sd(X) is a regular CW complex and B∗(Sd(Y )) coincides with the first derived subdivision
of this regular CW complex, as defined in [29, p. 137]. The geometric realisation of the resulting
simplicial complex is still homeomorphic to |Y | and |Sd(Y )| by [29, Prop. 5.3.8].

6The constructed map f does not necessarily preserves orientations: it only maps simplices to sim-
plices.
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is homotopic to |Σss| |f |→ |X|. Moreover, f ′ can be computed in polynomial time, assum-
ing an encoding of the input f,Σ, Xsc, X and T .

Thus if Σ is a sphere and f corresponds to a homotopy generator, f ′ is the cor-
responding homotopy generator represented as a simplicial map between simplicial
complexes. We remark that the algorithm we describe works even if d is a part of
the input, but the time complexity would be exponential in general, as the number of
vertices in our subdivision Sd(Σ) would grow exponentially with d.

The proof of Lemma 2.16 is given in Section 2.7.

Proof of Theorem 2.11. First assume that a finite simplicial complex Xsc is given to-
gether with a loop contraction. Then the algorithm goes as follows.

1. We choose an ordering of vertices and convert Xsc into a simplicial set. Choosing
a spanning tree and contracting it to a point creates a 0-reduced simplicial set X
homotopy equivalent to Xsc. By Lemma 2.9, we can convert the input data into
a list c0(α) for all generators α of GX0 in polynomial time.

2. We construct the simplicial set Fd from Lemma 2.12 as simplicial set with polynomial-
time effective homology. Hence by Lemma 2.3 we can compute the generators
of Hd(Fd) in time polynomial in size(X). Due to Lemma 2.14 and Theorem 2.13,
we can convert these homology generators to homotopy generators Σd

j → Fd in
time exponential in P (size(X) + size(c0)) where P is a polynomial.

3. We compose the representatives of πd(Fd) with ψd to obtain representatives Σd
j →

X of the generators of πd(X), another polynomial-time operation. This way, we
compute explicit homotopy generators as maps into the simplicial set X.

4. We use Lemma 2.15 to compute simplicial complexes Σsc
j and maps Σsc

j → Σd

homotopic to homeomorphisms. The compositions Σsc
j → Σd

j → X still represent
a set of homotopy generators. Finally, by Lemma 2.16, we can compute, for each
j, a subdivision of the sphere Σsc

j and a simplicial map from this subdivision into
the simplicial complex Xsc, in time polynomial in the size of the representatives
Σsc

j → X.

In case when the input is a 0-reduced simplicial set X with a loop contraction c0, only
steps 2 and 3 are performed. In either case, the overall exponential complexity bound
comes from Berger’s Effective Hurewicz inverse theorem.

2.4 Proof of Theorem 2.2

Similarly as in the proof of Theorem 2.1, we prove a slightly stronger version of Theo-
rem 2.2 that also includes finite simplicial complexes.

Theorem 2.17. Let d ≥ 2 be fixed. Then

1. there is an infinite family of d-dimensional 1-connected finite simplicial complexes
X such that for any simplicial map Σ → X representing a generator of πd(X), the
triangulation Σ of Sd on which f is defined has size at least 2Ω(size(X)).
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2. there is an infinite family of d-dimensional (d− 1)-connected and (d− 2)-reduced
simplicial setsX such that for any simplicial map Σ → X representing a generator
of πd(X), the triangulation Σ of Sd on which f is defined has size at least 2Ω(size(X)).

Consequently, any algorithm for computing simplicial representatives of the generators
of πd(X) has time complexity at least 2Ω(size(X)). 7

The second item immediately implies Theorem 2.2.

In the first item, we don’t assume any certificate for 1-connectedness. However,
we suspect that any algorithm that computes representatives of πd(X) for simplicial
complexes X must necessarily use some explicit certificate of simple connectivity, but
so far we have not been able to verify this.

Lemma 2.18. Let d ≥ 2.

1. There exists a sequence {Xk}k≥1 of d-dimensional (d − 1)-connected simpli-
cial complexes, such that Hd(Xk) ≃ Z for all k and for any choice of a cycle
zk ∈ Zd(Xk) generating the homology group, the largest coefficient in zk grows
exponentially in size(Xk).

2. There exists a sequence {Xk}k≥1 of d-dimensional (d−1)-connected and (d−2)-
reduced simplicial sets, such that Hd(Xk) ≃ Z for all k and for any choice of
cycles zk ∈ Zd(Xk) generating the homology, the largest coefficient in zk grows
exponentially8 in size(Xk).

Proof of Theorem 2 based on Lemma 2.18. Let {Xk}k≥1 be the sequence of simplicial
sets or simplicial complexes from Lemma 2.18. Since they are (d − 1)-connected, by
the theorem of Hurewicz, πd(Xk) ≃ Hd(Xk) ≃ Z. For each k, let Σk be a simplicial
set or simplicial complex with |Σk| = Sd, and fk : Σk → Xk a simplicial map repre-
senting a generator of πd(Xk). The generator of Hd(Σd) contains each non-degenerate
d-simplex with a coefficient ±1 (this follows from the fact that Σk is a triangulation of the
d-sphere and the d-homology of the d-sphere is generated by its fundamental class).
The Hurewicz isomorphism πd(Xk) → Hd(Xk) maps such a representative to the formal
sum of simplices

fk ↦→
∑

σ is a d−simplex in (Σk)

±fk(σ) ∈ Cd(Xk) ,

which represents a generator of Hd(Xk). It follows from Lemma 2.18 that the number
of d-simplices in Σk grows exponentially in size(Xk). Moreover, the complexity of any
algorithm that computes fk : Σk → Xk is at least the size of Σk, which completes the
proof.

It remains to define the sequence from Lemma 2.18:

Proof of Lemma 2.18.

7We write f(x) = Ω(g(x)) if lim supx→∞ | f(x)g(x) | ≥ 0.
8With a slight abuse of language, we assume that each Xk not only a simplicial set but also its

algorithmic representation with a specified size such as explained in Section 2.2.
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Figure 2.2: The Möbius band is the mapping cylinder of a degree 2 map S1 → S1. The
triangulation has four layers because starting from the boundary, which is a triangle,
we first need to pass to a hexagon in order to cover the middle triangle twice, obtaining
the desired degree 2 map. Connecting k copies of the Möbius band creates a mapping
cylinder of a degree 2k map, using only linearly (in k) many simplices. Gluing the full
triangles A and B to the ends of this mapping cylinder finishes the construction of Xk.
The red coefficients exhibit a generator ξ of H2(X1) = Z2(X1) ≃ Z given as a formal
sum of 2-simplices.

1. We begin by constructing for every d ≥ 2, a sequence of {Xk}k≥1 of (d − 1)-
connected simplicial complexes, such thatHd(Xk) ≃ Z for all k, and for any choice
of a cycle zk ∈ Zd(Xk) generating the homology group, the largest coefficient in
zk grows exponentially in size(Xk).

We start with d = 2. The idea is to glue Xk out of k copies of a triangulated
mapping cylinders of a degree 2 map S1 → S1, i.e. k Möbius bands, and then fill
in the two open ends with one triangle each (A and B in Figure 2.2). The case
k = 1 is shown in Figure 2.2. For k ≥ 2, we take k copies of the triangulated
Möbius band and identify the middle circle of each one to the boundary of the
next one.

We observe that, up to homotopy equivalence, Xk consists of a 2-disc with an-
other 2-disc which is attached to it via the boundary map S1 → S1 of degree
2k. Therefore, Xk is simply connected and has H2(Xk) ≃ Z and any homology
generator will contain the 2-simplex A with coefficient ±1 and B with coefficient
±2k.

Similarly for d > 2, the simplicial complex Xk is obtained by glueing k copies of a
triangulated mapping cylinder of a degree 2 map Sd−1 → Sd−1, and the two open
ends are filled in with two triangulated d-balls.

2. For every k ≥ 1 we define the simplicial sets Xk to have one vertex ∗, no non-
degenerate simplices up to dimension d− 2, k non-degenerate (d− 1)-simplices
σ1, . . . , σk that are all spherical (that is, for all i, j, diσj = ∗ is the degeneracy of
the only vertex of Xk), and k + 1 d-simplices A,C1, C2, . . . , Ck−1, B such that
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• d0A = σ1, djA = ∗ for j > 0,

• d0Ci = σi, d1Ci = σi+1, d2Ci = σi and djCi = ∗ for j > 2, and

• d0B = σk, djB = ∗ for j > 0.

Xk does not have any non-degenerate simplices of dimension larger than d. The
relations of a simplicial set are satisfied, because didj is trivial in all cases.

The boundary operator in the associated normalised chain complex C∗(Xi) acts
on basis elements as

• ∂A = σ1

• ∂Ci = 2σi − σi+1, and

• ∂B = σk.

To see that Xk is (d− 1)-connected for d > 2, it is enough to prove that Hd−1(Xk)
is trivial (by 1-reduceness and Hurewicz theorem). This is true, because σ1 is the
boundary of A and for i > 1, σi is the boundary of the chain

2i−1A− 2i−2C1 − . . .− 2Ci−2 − Ci−1.

In the case d = 2, Xk is not 1-reduced, but we can show 1-connectedness simi-
larly as in the proof of the first part: up to homotopy, Xk consists of two discs with
boundaries together via a map of degree 2k−1.

There are no non-degenerate (d+1)-simplices, so Hd(Xk) ≃ Zd(Xk) and a simple
computation shows that every cycle is a multiple of

2k−1A− 2k−2C1 − 2k−3C2 − . . .− Ck−1 −B.

The computer representation of Xk has size that grows linearly with k, but the
coefficients of homology generators grow exponentially with k, so they grow ex-
ponentially with size(Xk).

Discussion on optimality. If d = 2 and X is a 1-reduced simplicial set, then gen-
erators of H2(X) can be computed via the Smith normal form of the differential ∂3 :
C3(X) → C2(X). Using canonical bases, the matrix of ∂3 = d0 − d1 + d2 − d3 satisfies
that the sum of absolute values over each column is at most 4. We were not able to
find any infinite family of such matrices so that the smallest coefficient in any set of
homology generating cycles grows exponentially with the size of X (that is, the size of
the matrix). However, if a set of homology-generating cycles with subexponential co-
efficients always exists and can be found algorithmically in polynomial time, our main
algorithm given as Theorem 2.1 is optimal in this case as well. This is because the
exponential complexity of the algorithm only appears in the geometric realisation of an
element of GXsph

1 with large (exponential) exponents (see “Arrow 3” in Section 2.5),
and the only source of such exponents is the homology H1(AX) ≃ H2(X).
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2.5 Effective Hurewicz Inverse

Here we will prove Theorem 2.13 by directly describing the algorithm proposed in [5]
and analysing its running time.

Definition 2.19. Let G be a simplicial group. Then the Moore complex G̃ is a (possi-
bly non-abelian) chain complex defined by G̃i := Gi ∩ (

⋂
j>0 ker dj) endowed with the

differential d0 : G̃i → G̃i−1.

It can be shown that d0d0 = 1 in G̃ and that Im(d0) is a normal subgroup of ker d0 so
that the homology H∗(G̃) is well defined.

Definition 2.20. Let F be a 0-reduced simplicial set, GF the associated simplicial
group from Def. 2.5, and G̃F its Moore complex. We define AF to be the Abelianiza-
tion of GF and ÃF to be the Moore complex of AF . The simplicial group AF is also
endowed with a chain group structure via ∂ =

∑
j(−1)jdj. If σ ∈ Fk, we will denote by

σ the corresponding simplex in GFi−1, resp. AFi−1.

Note that, following Def. 2.5, the “last” differential dkσ in AFk equals dkσ − dk+1σ.
Clearly, the Abelianization map p : GF → GF/[GF,GF ] = AF takes G̃F into ÃF .

Kan showed in [39] that for d > 1 and a (d − 1)-connected simplicial set F , the
Hurewicz isomorphism can be identified with the map Hd−1(G̃F ) → Hd−1(ÃF ) induced
by Abelianization, whereas these groups are naturally isomorphic to πd(F ) and Hd(F ),
respectively. Our strategy is to construct maps representing the isomorphisms 1, 2, 3 in
the commutative diagram

πd(F ) Hd(F )
h−1

←←

1
↓↓

Hd−1(G̃F )

3

↑↑

Hd−1(ÃF ).2
←←

(2.3)

Here h stands for the Hurewicz isomorphism, 1 is induced by a homotopy equivalence
of chain complexes, 2 is the inverse of Hd−1(p) where p is the Abelianization, and 3 rep-
resents an isomorphism between the (d− 1)’th homology of G̃F (that models the loop
space of F ) and πd(F ). The algorithms representing 1, 2, 3 will act on representatives,
that is, 1 and 2 will convert cycles to cycles and 3 will convert a cycle to a simplicial
map Σd → F where |Σd| = Sd. In what follows, we will explicitly describe the effective
versions of 1, 2, 3 and show that the underlying algorithms are polynomial for arrows
1,2 and exponential for arrow 3.

Arrow 1.

Let F be a 0-reduced simplicial set, C∗(F ) be the (unreduced) chain complex of F
and AF∗−1 the shifted chain complex of AF defined by (AF∗−1)i := AXi−1. As a chain
complex, AF∗−1 is a subcomplex of C∗(F ) generated by all simplices that are not in the
image of the last degeneracy. Let ÃF ∗−1 be the Moore complex of AF∗−1.
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Lemma 2.21. There exists a polynomial-time strong chain deformation retraction (f, g, h) :

C∗(F ) → ÃF ∗−1. That is, f : C∗(F ) → ÃF ∗−1, g : ÃF ∗−1 → C∗(F ) are polynomial-time
chain-maps and h : C∗(F ) → C∗+1(F ) is a polynomial map such that fg = id and
gf − id = h∂ + ∂h.

Proof. First we will define a chain deformation retraction from C∗(F ) to AF∗−1 repre-
sented by f0 : C∗(F ) → AF∗−1, g0 : AF∗−1 → C∗(F ) and h0 : C∗(F ) → C∗+1(F ).

The chain complex AF∗−1 consists of Abelian groups AFk−1 freely generated by k-
simplices in F that are not in the image of the last degeneracy sk−1. On generators, we
define f0(σ) = σ whenever σ is a k-simplex not in Im(sk−1) and f0(x) = 0 otherwise.
Deciding whether σ is in the image of sk−1 amounts to deciding σ = sk−1dkσ which can
be done in time polynomial in size(I)+size(σ), the polynomial depending on k. It follows
that f0 is a locally polynomial map.

The remaining maps are defined by g0(σ) := σ − sk−1dkσ and h0(σ) := (−1)kskσ.
These maps are locally polynomial as well and it is a matter of straight-forward compu-
tations to check that f0 and g0 are chain maps, f0g0 = id and g0f0 − id = h0∂ + ∂h0.

Further, we define another chain deformation retraction from AF to ÃF . For each
p ≥ 0, let Ap be a chain subcomplex of AF defined by

(Ap)k := {x ∈ AFk : dix = 0 for i > max{k − p, 0} }

that is, the kernel of the p last face operators, not including d0 (di refers here to the
face operators in AF ). Then Ap+1 is a chain subcomplex of Ap and we define the
maps fp+1 : (Ap)k → (Ap+1)k by fp+1(x) = x − sk−p−1dk−px whenever k − p > 0, and
fp+1(x) = x otherwise; gp+1 : A

p+1 → Ap will be an inclusion, and hp+1 : (A
p)k → (Ap)k+1

via hp+1(x) = (−1)k−psk−px if k − p > 0 and 0 otherwise. A simple calculation shows
that fp+1, gp+1 are chain maps, fp+1gp+1 = id, gp+1fp+1 − id = hp+1∂ + ∂hp+1 and it is
clear that fp+1, gp+1, hp+1 are polynomial-time maps.

By definition, the Moore complex ÃF = ∩p>0A
p. The strong chain deformation

retraction (f, g, h) from C∗(F ) to ÃF ∗−1 is then defined by the infinite compositions

f := . . . fk+1fk . . . f1f0

g := g0g1 . . . gkgk+1 . . .

and the infinite sum
h = h0 + g1h1f1 + (g1g2)h2(f2f1) + . . .

which are all well-defined, because when applying them to an element x, only finitely
many of fj, gj differ from the identity map and only finitely many hj are nonzero. These
are the maps f, g, h from the lemma and we need to show that if the degree k is fixed,
then we can evaluate f, g, h on Ck(F ) resp. ÃF k−1 in time polynomial in the input size.
However, for fixed k , the definition of f, g, h includes only fi, gi, hi for i < k. Then
f, g are composed of k polynomial-time maps and h is a sum of k polynomial-time
maps.

The polynomial-time version of arrow 1 is then induced by applying the map f from
Lemma 2.21.
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Arrow 2.

Lemma 2.22 (Boundary certificate). Let d > 1 be fixed and let F be a (d−1)-connected
simplicial set with polynomial-time homology. There is an algorithm that, for j < d − 1

and a cycle z ∈ Zj(ÃF ), computes an element cA(z) ∈ ÃF j+1 such that d0cA(z) = z.
The running time is polynomial in size(z) + size(I).

Proof. First note that the (d − 1)-connectedness of F implies that Hj+1(F ) ≃ Hj(ÃF )
are trivial for j < d− 1, so each cycle in these dimensions is a boundary.

By assumption, F has a polynomial-time homology, which means that there exists
a globally polynomial-time chain complex E∗F , a locally polynomial-time chain complex
Y and polynomial-time reductions from Y to C∗(F ) and E∗F

E∗F
P⇐⇐ Y

P⇒⇒ C∗(F ).

Let (f ′, g′, h′) be chain homotopy equivalence of Y and ÃF ∗−1 defined as the composi-
tion of Y ⇒⇒ C∗(F ) and the chain homotopy equivalence of C∗(F ) and ÃF ∗−1 described
in Lemma 2.21. Further, let f ′′, g′′, h′′ be the maps defining the reduction Y ⇒⇒ E∗F :
all of these maps are polynomial-time.

Let j < d − 1 and z ∈ Zj(ÃF ), z =
∑

j kjyj. Then the element f ′′g′(z) is a cycle in
Ej+1F and can be computed in time polynomial in size(z) + size(I). In particular, the
size of f ′′g′(z) is bounded by such polynomial. The number of generators of Ej+2F and
Ej+1F is polynomial in size(I) and we can compute, in time polynomial in size(I), the
boundary matrix of ∂ : Ej+2F → Ej+1F with respect to the generators.

Next we want to find an element t ∈ Ej+2F such that ∂t = f ′′g′(z). Using generating
sets for Ej+2F , Ej+1F , this reduces to a linear system of Diophantine equations and
can be solved in time polynomial in the size of the ∂-matrix and the right hand side
f ′′g′(z) [41].

Finally, we claim that cA(z) := f ′g′′(t) − f ′h′′g′(z) is the desired element mapped to
z by the differential in ÃF . This follows from a direct computation

∂cA(z) :=∂f ′g′′(t)− ∂f ′h′′g′(z) =

=f ′g′′(∂t)− ∂f ′h′′g′(z) =

=f ′g′′f ′′g′(z)− ∂f ′h′′g′(z) =

=f ′(h′′∂ + ∂h′′ + id)g′(z)− ∂f ′h′′g′(z) =

=f ′h′′g′∂z + ∂f ′h′′g′(z) + f ′g′(z)− ∂f ′h′′g′(z) =

=0 + f ′g′(z) = z

The computation of t as well as all involved maps are polynomial-time, hence the com-
putation of cA(z) is polynomial too.

The next lemma will be needed as an auxiliary tool later.

Lemma 2.23. Let S be a countable set with a given encoding, G be the free (non-
abelian) group generated by S, and define size(

∏
j s

kj
j ) :=

∑
j(size(sj) + size(kj)). Let

G′ := [G,G] be its commutator subgroup.

Then there exists a polynomial-time algorithm that for an element g =
∏

j s
kj
j in

G′ ⊆ G, computes elements ai, bi ∈ G such that g =
∏

j[aj, bj].
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In other words, we can decompose commutator elements into simple commutators
in polynomial-time at most.

Proof. Let us choose a linear ordering on S and let g =
∏

j s
kj
j be in G′: that is, for each

j, the exponents {kj′ : sj′ = sj} sum up to zero. We will present a bubble-sort type
algorithm for sorting elements in g. Going from the left to right, we will always swap skjj
and sk+1

j+1 whenever sj+1 < sj. Such swap always creates a commutator, but that will
immediately be moved to the initial segment of commutators.

More precisely, assume that Init is the initial segment, x = s
kj
j and y = s

kj+1

j+1 should
be swapped, Rest represent the segment behind y, and Commutators is a final seg-
ment of commutators. The swapping will consists of these steps:

Init x y Rest Commutators
↦→ Init y x [x−1, y−1] Rest Commutators

↦→ Init y x Rest
(
[x−1, y−1] [[y−1, x−1],Rest−1] Commutators

)
where the parenthesis enclose a new segment of commutators. Before the parenthe-
sis, x and y are swapped. Each such swap requires enhancing the commutator section
by two new commutators of size at most size(g), hence each such swap has complexity
linear in size(g).

Let as call everything before the commutator section a “regular section”. Going
from left to right and performing these swaps will ensure that the largest element will
be at the end of the regular section. But no later then that, the largest element ylargest

disappears from the regular section completely, because all of its exponents add up to
0. Again, starting from the left and performing another round of swaps will ensure that
the second-largest elements disappear from the regular section; repeating this, all the
regular section will eventually disappear which will happen in at most size(g)2 swaps in
total. Each swap has complexity linear in size(g) and the overall time complexity is not
worse than cubic.

Lemma 2.24. Assume that F is a parametrized simplicial set with polynomially con-
tractible loops. Let k > 0, γ ∈ GFk be spherical and α ∈ GFk is arbitrary. There
is a polynomial-time algorithm that computes δ ∈ GF ′

k+1 such that d0δ = [α, γ] and
diδ = 1 for all i > 0.

In other words, a simple commutator of a spherical element with another element
can always be “contracted” in GF ′ in polynomial time. Our proof roughly follows the
construction in Kan [39, Sec. 8]

Proof. For x ∈ GF0, we will denote by c0x the element of G̃F 1 such that d0c0x =
x: this can be computed in polynomial-time by the assumption on polynomial loop
contractions. For the simplex α ∈ GFk, we define (k + 1)-simplices β0, . . . , βk by βk :=
sk0c0d

k
0α and inductively βj−1 := (sjdjβj) · (sjα−1) · (sj−1α) for j < k. Then the following

relations hold:9

• d0β0 = α.

9Kan uses a slightly different convention in [39] but the resulting properties are the same. The se-
quence β0, . . . , βk can be interpreted as a discrete path from α to the identity element.
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• djβj = djβj−1, 1 ≤ j ≤ k

• dk+1βk = 1.

The second and third equations are a matter of direct computation, while the first fol-
lows from the more general relation dj+1

0 βj = dj0α which can be proved by induction. If
k is fixed, then all β0, . . . , βk can be computed in polynomial time.

The desired element δ is then the alternating product

δ := [β0, s0γ] [β1, s1γ]
−1 . . . [βk, skγ]

±1.

Lemma 2.25. Under the assumptions of Theorem 2.13, there exist homomorphisms
cj : GF j → GF j+1 for 0 ≤ j < d− 1 such that

1. d0cj = id,

2. dicj = cj−1di−1, 0 < i ≤ j + 1, and

3. cjsi = si+1cj−1 for 0 < j < d− 1 and 0 ≤ i < j,

4. d1c0(x) = 1 for all x ∈ GF0.

If d is fixed and x ∈ GFj, j < d− 1, then cj(x) can be computed in polynomial time.

Proof. The homomorphism c0 can be constructed directly from the assumption on poly-
nomial contractibility of loops. We have a canonical basis of GF0 consisting of all non-
degenerate 1-simplices of F . For σ ∈ F1, we denote by σ the corresponding generator
of GF0. The we define c0(

∏
σ
kj
j ) to be

∏
b
kj
j where bj is the element of GF1 such that

d0bj = σj and d1bj = 1.

In what follows, assume that 1 ≤ k < d − 1 and ci have been defined for all i < k.
We will define ck in the following steps.

Step 1. Contractible elements.

Let x ∈ GFk. We will say that x is contractible and y ∈ GFk+1 is a contraction of x,
if d0y = x and diy = ck−1di−1x for all i > 0.

The general strategy for defining ck will be to find a contraction h for each basis
element ((k + 1)-simplex) g ∈ GFk and define ck(g) := h. This will enforce properties 1
and 2. Moreover, in case when g is degenerate, the contraction will be chosen in such
a way that property 3 holds too; otherwise it holds vacuously. Property 4 only deals with
c0 and is satisfied by the definition of loop contraction (a polynomial-time c0 is given as
an input in Theorem 2.13).

Step 2. Contraction of degenerate elements.

Let g = siy be a basis element of GFk, y ∈ GFk−1. Then g can be uniquely
expressed as sjz where j is the maximal i such that g ∈ Im(si). We then define
ck(g) := sj+1ck−1(z). Note that

d0ck(g) = d0sj+1ck−1(z) = sjd0ck−1(z) = sjz = g,
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so property 1 is satisfied. To verify property 2, first assume that i ∈ {j +1, j +2}. Then
we have

dick(g) = disj+1ck−1(z) = ck−1(z) = ck−1di−1sjz = ck−1di−1g.

This fully covers the case k = 1, because then the only possibility is j = 0 and i ∈ {1, 2}.
Further, let k > 1. If i ≤ j, then we have

dickg =dicksjz = disj+1ck−1(z) = sjdick−1(z) = sjck−2di−1z =

=ck−1sj−1di−1z = ck−1di−1sjz = ck−1di−1g

and if i > j + 2, then the computation is completely analogous, using the relation
disj+1 = sj+1di−1 instead.

So far, we have shown that ck(g) := sj+1ck−1g is a contraction of g. It remains to
show property 3. That is, we have to show that if g = sjz can also be expressed as siy,
then ck(siy) = si+1ck−1y.

The degenerate element g has a unique expression g = siu . . . si1si0v where i0 <
i1 < . . . < iu = j and is expressible as six if and only if i = ij for some j = 0, 1, . . . , u.
Choosing such i < j, we can rewrite g as g = sjsiv for some v and then g = sisj−1v, so
that y = sj−1v and z = siv. Then we again use induction to show

ck(siy) =sj+1ck−1(z) = sj+1ck−1siv = sj+1si+1ck−2v =

=si+1sjck−2v = si+1ck−1sj−1v = si+1ck−1y

as required.

Step 3. Decomposition into spherical and conical parts.

We will call an element x̂ ∈ GFk to be conical, if it is a product of elements that are
either degenerate or in the image of ck−1. Let x ∈ GFk be arbitrary. We define xk := x
and inductively xi−1 := xi(si−1dixi)

−1. In this way we obtain x0, . . . , xn such that xi is in
the kernel of dj for j > i and x = x0y where y is a product of degenerate simplices.
Further, let xs := x0(ck−1d0x0)

−1. A simple computation shows that xs is spherical, that
is, dixs = 1 for all i. We obtain an equation x = xsx̂ where x̂ = (ck−1(d0x0)y; this is a
decomposition of x into a spherical part xs and a conical element x̂.

We will define ck on non-degenerate basis elements g = σ by first decomposing
g = gS ĝ into a spherical and conical part, finding contractions h1 of gS and h2 of ĝ, and
defining ck(g) := h1h2. Then ck(g) is a contraction of g and hence satisfies properties 1
and 2: property 3 is vacuously true once g is non-degenerate.

Step 4. Contraction of the conical part.

Let x̂ := ck−1(d0x0) y be the conical part defined in the previous step. By construc-
tion, x0 ∈ G̃F k and y is a product of degenerate elements si1u1 . . . silul. We define the
contraction of ck−1(d0x0) to be

c̃k(ck−1(d0x0)) := s0ck−1(d0x0).

Note that this satisfies property 1 as d0c̃kck−1(d0x0) = ck−1(d0x0). For property 2, we
first verify

d1c̃kck−1(d0x0) = d1s0ck−1(d0x0) = ck−1(d0x0) = ck−1d0ck−1(d0x0).
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Not let i ≥ 2. If k = 1, then the remaining face operator is d2 and we have

d2c̃1c0(d0x0) = d2s0c0(d0x0) = s0d1c0(d0x0) = 1 = c0d1c0(d0x0)

using axiom 4 for c0. Finally, if i ≥ 2 and k ≥ 2, we have

dic̃kck−1(d0x0) =dis0ck−1(d0x0) = s0di−1ck−1(d0x0) = s0ck−1di−2d0x0 =

=s0ck−1d0di−1x0 = s0ck−1d01 = 1 = ck−1ck−2d0di−1x0 =

=ck−1ck−2di−2d0x0 = ck−1di−1ck−1(d0x0),

where we exploited the fact that x0 ∈ G̃F k and hence dux0 = 1 for u ≥ 2.
The contraction of degenerate elements y has already been defined in Step 2, so

we can define a contraction of ck−1(d0x0)y to be s0ck−1(d0x0) ck(y).
Step 5. Contraction of commutators.
Let g′ ∈ GF ′

k be an element of the commutator subgroup. By Lemma 2.23, we
can algorithmically decompose g′ into a product of simple commutators, so to find a
contraction of g′, it is sufficient to find a contraction of each simple commutator [x, y] in
this decomposition.

Let x = xS x̂ and y = yS ŷ be the decompositions into spherical and conical parts
described in Step 3. Using the notation ba := bab−1, we can decompose [x, y] as
follows [5, p. 60]:

[x, y] = ([x, y][ŷ, x]) ([x, ŷ][ŷ, x̂]) [x̂, ŷ] = [xyx−1,xy (y−1ŷ)] [xŷ,x (x−1x̂)] [x̂, ŷ]. (2.4)

Both x−1x̂ and y−1ŷ are spherical simplices and so are their conjugations. It follows
that equation (2.4) can be rewritten to [x, y] = [α1, γ1] [α2, γ2] [x̂, ŷ] where γ1 and γ2
are spherical. All of these decompositions are done by elementary formulas and are
polynomial-time in the size of x and y.

By Lemma 2.24 we can find an elements λi ∈ G̃F k+1 such that d0λi = [αi, γi],
i = 1, 2, in polynomial time. Further, both x̃ and ỹ are conical and they are in the form
x̃ = c0(d0x0)xdeg where x0 ∈ G̃F k and xdeg is degenerate; similar decomposition holds
for y. In Step 4 we showed how to compute elements cx and cy such that cx, cy is a
contraction of x̂, ŷ, respectively. Then [cx, cy] is a contraction of [x̂, ŷ] and λ1λ2[cx, cy] is
a contraction of [x, y].

Step 6. Contraction of spherical elements.
The last missing step is to compute a contraction of the spherical element gS where

gS is the spherical part of a basis element g ∈ GFk.
Let us denote by p the projection GF

p→ AF . The projection z := p(gS) is in the
kernel of all face operators and hence a cycle in ÃF k. By Lemma 2.22, we can compute
t := cAk (z) ∈ ÃF k+1 such that d0t = z, in polynomial time. Let h ∈ GF k+1 be any p-
preimage10 of t. Let hk := h and inductively define hj−1 := hj(sj−1djhj)

−1 for j < k.
Then h0 is in the kernel of all faces except d0, that is, h0 ∈ G̃F k+1. It follows that
p(h0) ∈ ÃF k+1 is in the kernel of all faces except d0. We claim that p(h0) = t.This can
be shown as follows: assume that p(hj) = t, then p(hj−1) = p(hj) + p(sj−1djh

−1
j ) =

t+ sj−1djt = t+ 0 = t.

10For t =
∑

j kjσj , we may choose h =
∏

j σ
kj

j (choosing any order of the simplices).
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We have the following commutative diagram:

h0
� →→ t

G̃F
′
k+1
↘ ↙ →→

d0↓↓

G̃F k+1
p
→→ →→

d0↓↓

ÃF k+1

d0↓↓

G̃F
′
k
↘ ↙ →→ G̃F k

p
→→ →→ ÃF k

gS � →→ z

Both gS and d0h0 are mapped by p to the same element z: it follows that gS(d0h0)−1 is
mapped by p to zero and hence is an element of the commutator subgroup. Let h̃ be
the contraction of gS(d0h0)−1, computed in Step 5, and finally let h := h̃h0. Then h is an
element of G̃F k+1 and a direct computation shows that d0h = gS as desired.

This completes the construction of ck: for each non-degenerate basis element g of
GFk, ck(g) is defined to be the product of the contraction of gS and the contraction11

of ĝ.
All the subroutines described in the above steps are polynomial-time. Thus we

showed that if there exists a polynomial-time algorithm for ck−1, then there also ex-
ists a polynomial-time algorithm for ck. The existence of a polynomial-time c0 follows
from the assumption on polynomial loop contractibility and d is fixed, thus there exists
a polynomial-time algorithm that for x ∈ GFj computes cj(x) for each j < d− 1.

Lemma 2.26 (Construction of arrow 2). Under the assumption of Theorem 2.13, let
z ∈ Zd−1(ÃF ) be a cycle. Then there exists a polynomial-time algorithm that computes
a cycle x ∈ Zd−1(G̃F ) such that the Abelianization of x is z.

The assignment z ↦→ x is hence an effective inverse of the isomorphism

Hd−1(G̃F ) → Hd−1(ÃF )

on the level of representatives.

Proof. Let cd−2 be the contraction from Lemma 2.25 and z ∈ Zd−1(ÃF ) be a cycle.
First choose y ∈ GFd−1 such that p(y) = z. Creating the sequence yn := y, yj−1 :=

yjsj−1djy
−1
j for decreasing j, yields an element y0 ∈ G̃F d−1 that is still mapped to z by

p, similarly as in Step 4 of Lemma 2.25. The equation pd0(y0) = d0p(y0) = d0z = 0

shows that d0y0 is in the commutator subgroup G̃F
′
d−2. We define x := y0cd−2(d0y0)

−1:
this is already a cycle in G̃F d−1 and p(x) = p(y0) = z.

Arrow 3.

The construction of map 3 is one of the main results from [6] and involves further
definitions. Here, we describe the main points of the construction only while details are
given in later sections.

11The connectivity assumption on F was exploited in the existence of the contraction cAj on the Abelian
part.
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Given a 0-reduced simplicial set F , there exists a simplicial group ΩF that is a
discrete analog of a loopspace of F i.e. πd−1(ΩF ) ∼= πd(F ). Further, there is a homo-
morphism of simplicial groups t : GF → ΩF that induces an isomorphism on the level
of homotopy groups. This is described in [6, Proposition 3.3].

The homomorphism t is given later by formula (2.6) and the simplicial set ΩF is
described in the next section. Here, we remark that the size of t(g) is exponential in
size of g.

Finally, Lemma 2.31 describes an algorithm that for a spherical element γ ∈ ΩFd−1

constructs a simplicial map γsph : Σd(γ) → F such that πd−1(ΩF ) ∋ [γ] ≃ [γsph] ∈ πd(F ).

The size of γsph is polynomial in size(γ). Hence, given a spherical g ∈ G̃F d−1, the
algorithm produces t(g)sph : Σd(t(g)) → F that is exponential with respect to size(g).

Berger’s model of the loop space.

Definition 2.27 (Oriented multigraph on Xn). Let X be a 0-reduced simplicial set. We
define a directed multigraph MXn = (Vn, En), where the set of vertices Vn = Xn and
the set of edges En is given by

En = {[x, i]ϵ | x ∈ Xn+1, 0 ≤ i ≤ n, ϵ ∈ {1,−1}}.

We define maps source , target : En → Vn by setting source [x, i] = di+1x, target [x, i] =
dix and source [x, i]−1 = target [x, i] and target [x, i]−1 = source [x, i].

An edge [x, i]ϵ ∈ En is called compressible, if x = six
′ for some x′ ∈ Xn.

Definition 2.28 (Paths). Let X ∈ sSet. A sequence of edges in MXn

γ = [x1, i1]
ϵ1 [x2, i2]

ϵ2 · · · [xk, ik]ϵk (2.5)

is called an n-path, if target [xj, ij]ϵj = source [xj+1, ij+1]
ϵj+1, 1 ≤ j < k.

Moreover, for every x ∈ Vn = Xn we define a path of length zero 1x with the property
source 1x = x = target 1x and relations a1x = a whenever target a = x and 1xb = b
whenever source b = x.

The set of paths on MXn is denoted by IXn. Let γ ∈ IXn by as in (2.5). We define
source γ = source [x1, i1]

ϵ1 and target γ = target [xk, ik]
ϵk . The inverse of γ, denoted γ−1,

is defined as
γ−1 = [xk, ik]

−ϵk · · · [x1, i1]−ϵ1 .

if γ = 1x, then γ−1 = γ. Note that each path is either equal to 1x for some x or can be
represented in a form such as (2.5), without any units.

For algorithmic purposes, we assume that a path γ = [x1, i1]
ϵ1 [x2, i2]

ϵ2 · · · [xk, ik]ϵk is
represented as a list of triples (xj, ij, ϵj) and has size

size(γ) :=
∑
j

size(xj) + size(ij) + size(ϵj),

which is bounded by a linear function in
∑

j size(xj).
Given an edge [x, i]ϵ ∈MXn, we define operators

d0, . . . dn : En → IXn−1 and s0, . . . , sn : En → IXn+1
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called face and degeneracy operators, respectively. These are given as follows

dj[x, i]
ϵ =

⎧⎨⎩
[djx, i− 1]ϵ, j < i;
1didi+1x, i = j;
[dj+1x, i]

ϵ, j > i.
sj[x, i]

ϵ =

⎧⎨⎩
[sjx, i+ 1]ϵ, j < i;
[six, i+ 1][si+1x, i])

ϵ, i = j;
[sj+1x, i]

ϵ, j > i.

One can now extend the definition of face and degeneracy operators to paths, i.e.
we define operators d0, . . . dn : IXn → IXn−1 and s0, . . . , sn : IXn → IXn+1

djγ =

{
dj([x1, i1]

ϵ1)dj([x2, i2]
ϵ2) · · · dj([xk, ik]ϵk) if γ = [x1, i1]

ϵ1 [x2, i2]
ϵ2 · · · [xk, ik]ϵk ,

1djx if γ = 1x, x ∈ Xn.

sjγ =

{
sj([x1, i1]

ϵ1)sj([x2, i2]
ϵ2) · · · sj([xk, ik]ϵk) if γ = [x1, i1]

ϵ1 [x2, i2]
ϵ2 · · · [xk, ik]ϵk

1sjx if γ = 1x, x ∈ Xn.

With the operators defined above, one can see that IX is in fact a simplicial set.
For any γ, γ′ ∈ IX such that target γ = source γ′, we define a composition γ · γ′ in an

obvious way.
If the simplicial setX is 0-reduced, we denote the unique basepoint ∗ ∈ X0. Abusing

the notation, we denote the iterated degeneracy of the basepoint s0 · · · s0∗  
k−times

∈ Xk by ∗

as well. With that in mind, we define simplicial subsets PX, ΩX of IX as follows:

PX = {γ ∈ IX | target γ = ∗} ΩX = {γ ∈ IX | source γ = ∗ = target γ}.

We remark that simplicial sets PX,ΩX intuitively capture the idea of pathspace and
loopspace in a simplicial setting.

Definition 2.29. A path γ = [x1, i1]
ϵ1 [x2, i2]

ϵ2 · · · [xk, ik]ϵk ∈ IX is called reduced, if for
every 1 ≤ j < k the following condition holds:

(xj = xj+1 & ij = ij+1) ⇒ ϵj = ϵj+1.

e.g. an edge in the path γ is never followed by its inverse.
An edge [x, i]ϵ ∈ En is called compressible, if x = six

′ for some x′ ∈ Xn. A path is
compressed if it does not contain any compressible edge.

We define relation ∼R on IX (or rather on each IXn) as a relation generated by

[x, i]ϵ[x, i]−ϵ ∼R 1source ([x,i]ϵ), n ∈ N0, [x, i]
ϵ ∈ En.

Similarly, we define ∼C on IX as a relation generated by

[x, i]ϵ ∼C 1source ([x,i]ϵ), if [x, i]ϵ ∈ En is compressible.

We finally define IX = (IX/ ∼C)/ ∼R. Similarly, one defines PX,ΩX.
For γ, γ′ ∈ IXn, we write γ ∼ γ′ if they represent the same element in IXn. The

symbol γ, denotes the (unique) compressed and reduced path such that γ ∼ γ. One
can see IX (PX,ΩX) as the set of reduced and compressed paths in IX(PX,ΩX).

In a natural way, we can extend the definition of face and degeneracy operators
di, si on sets IX(PX,ΩX) by setting diγ = diγ and siγ = siγ. One can check that this
turns IX, PX and ΩX into simplicial sets.
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Similarly, we define operation · : ΩXn × ΩXn → ΩXn by γ · γ′ ↦→ γγ′, i.e. we first
compose the loops and then assign the appropriate compressed and reduced repre-
sentative. With the operation defined as above, ΩX is a simplicial group.

Homomorphism t : GX → ΩX. We first describe how to any given x ∈ Xn assign a
path γx ∈ PXn with the property source γx = x and target γx = ∗:

For x ∈ Xn, n > 0, the 0-reducedness of X gives us di1di2 · · · dinx = ∗, here ij ∈
{0, . . . , j}, 0 < j ≤ n. In particular, d0d1 · · · dn−1x = ∗. Using this, we define

γx = [snx, n− 1][snsn−1dn−1x, n− 2] · · · [snsn−1 · · · s1d1d2 · · · dn−1x, 0].

Ignoring the degeneracies, one can see the sequence of edges as a path

x→ dn−1x→ dn−2dn−1x→ · · · → d0d1 · · · dn−1x.

We define the homomorphism t on the generators of GXn, i.e. on the elements x,
where x ∈ Xn+1 as follows:

t(x) = γ−1
dn+1x

[x, n]γdnx. (2.6)

This is an element of ΩXn.

The algorithm representing the map t has exponential time complexity due to the
fact that an element σk with size size(σ) + size(k) is mapped to

γ−1
dn+1x

[x, n]γdnx . . . γ−1
dn+1x

[x, n]γdnx  
k times

which in general can have size proportional to k. Assuming an encoding of integers
such that size(k) ≃ ln(k), this amounts to an exponential increase.

Universal preimage of a path. Intuitively, one can think of the simplicial set IX of
paths as of a discretized version of space of continuous maps |X|[0,1]. In particular,
γ ∈ IXd−1 is a walk through a sequence of d-simplices in X that connect source γ with
target γ. However, in the continuous case an element µ ∈ |X|[0,1] corresponds to a
continuous map µ : [0, 1] → |X|. We want to push the parallels further, namely, given
any nontrivial12 γ ∈ IXd−1, we aim to define a simplicial set Dom(γ) and a simplicial
map γmap : Dom(γ) → X with the following properties:

1. |Dom(γ)| = Dd.

2. γmap maps Dom(γ) to the set of simplices contained in the path γ.

We will utilize the following construction given in [6].

Definition 2.30. Let γ ∈ IXd−1 . We define Dom(γ) and γmap as follows. Suppose, that
γ = [y1, i1]

ϵ1 [y2, i2]
ϵ2 · · · [yk, ik]ϵk . For every edge [yj, ij]

ϵj , let αj be the simplicial map
∆d → yj sending the nondegenerate d simplex in ∆d to yj.

12By nontrivial we mean that γ ̸= 1x for any x ∈ Xd−1.
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We define Dom(γ) as a quotient of the disjoint union of k copies of ∆d:

Dom(γ) =
k⨆

i=1

∆d/ ∼

where each copy of ∆d corresponds to a domain of a unique αj and the relation is
given by

(αj)
−1target ([yj, ij]

ϵj) ∼ (αj+1)
−1source ([yj+1, ij+1]

ϵj+1).

The map γmap is induced by the collection of maps α1, . . . , αk:⨆k
i=1∆

d

α1,...,αk

→→
↓↓↓↓

Dom(γ)
γmap

→→ X.

We recall that simplicial set IX was defined as the set of “reduced and compressed”
paths in IX. Similarly, one introduces a reduced and compressed versions of the
construction Dom. As a final step we then get

Lemma 2.31 (Section 2.4 in [6]). Let γ ∈ ΩXd−1 such that diγ = 1 ∈ ΩX for all i. Then
the map γmap : Dom(γ) → X factorizes through a simplicial set model of the sphere
Σd(γ) as follows:

Dom(γ)
γmap

→→
↓↓↓↓

Σd(γ)
γsph

→→ X.

Further, πd−1(ΩX) ∋ [γ] ≃ [γsph] ∈ πd(X).

We will not give the proof of correctness of Lemma 2.31 (it can be found in [6]). In-
stead, in the next section, we only describe the algorithmic construction of γsph : Σd(γ) →
X and give a running time estimate.

Algorithm from Lemma 2.31.
The algorithm accepts an element γ ∈ ΩXd−1 such that diγ = 1 ∈ ΩX for all i,

a spherical element. We divide the algorithm into four steps that correspond to the four
step factorization in the following diagram:

Dom(γ)

γmap

↘↘

↓↓↓↓

Dom(γ)
γc

→→

↓↓↓↓

Dom(γ) γcr
→→

↓↓↓↓

X

Σd(γ)

γsph

→→
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Dom(γ): We interpret γ as an element in IX and construct γmap : Dom(γ) → X. This is
clearly linear in the size of γ.

Dom(γ): The algorithm checks, whether an edge [y, j]ϵ in di1di2 . . . diℓγ, where 0 ≤ i1 <
i2 < . . . < iℓ < (d− ℓ− 2) is compressible, i.e. y = sjdjy. If this is the case, add a
corresponding relation on the preimages: α−1(y) ∼ sjdjα

−1(y). Factoring out the
relations, we get a map γc : Dom(γ) → X.

Although the number of faces we have to go through is exponential in d, this is not
a problem, since d is deemed as a constant in the algorithm and so is 2d. Hence
the number of operations is again linear in the size of γ.

Dom(γ): Let k < d. We know that dkγ = 1∗, so after removing all compressible elements
from the path dkγ, it will contain a sequence of pairs ([yi, ji]ϵi , [yi, ji]−ϵi) such that,
after removing all [yu, ju]±1 for all u < v, then [yv, jv]

ϵv and [yv, jv]
−ϵv are next to

each other.13 Each such pair ([yi, ji]ϵi , [yi, ji]−ϵi) corresponds to a pair of indices
(li,mi) corresponding to the positions of those edges in dkγ. These sequences
are not unique, but can be easily found in time linear in length(γ). Then we glue
α−1
li
(yi) with α−1

mi
(yi) for all i. Performing such identifications for all k defines the

new simplicial set Dom(γ).

Σd(γ): It remains to identify α−1(source γ) and α−1(target γ) with the appropriate degen-
eracy of the (unique) basepoint. The resulting space |Σd(γ)| is a d-sphere.

2.6 Polynomial-Time Loop Contraction in Fd

In this section, we show that simplicial sets Fk, 2 ≤ k ≤ d constructed algorithmically
in Section 2.3 have polynomial-time contractible loops, thus proving Lemma 2.14. We
first give the contraction on F2 and show that the contraction Fi, i > 3 follows from the
contraction on F3. The majority of the effort in this section is then concentrated on the
description of the contraction c0 on F3.

Notation. We will further use the following shorthand notation: For a 0-reduced sim-
plicial set X we will denote the iterated degeneracy s0 · · · s0∗ of its unique basepoint ∗
by ∗ and we set πi = πi(X). For any Eilenberg-Maclane space K(πi, i − 1), i ≥ 2, we
denote its basepoint and its degeneracies by 0. From the context, it will always be clear
which simplicial set we refer to.

Loop contraction on F2. Assuming that X is a 0-reduced, 1-connected simplicial set
with a given algorithm that computes the contraction on loops c0 : (GX)0 → (GX)1, the
contraction c0 on F2 is automatically defined, as X = F2.

Loop contraction on Fi, i > 3. Suppose we have defined the contraction on the
generators of G0(F3). i.e. for any (x, k) ∈ (X ×τ ′ K(π2, 1))1 we have

c0((x, k)) = (x1, k1)
ϵ1 · · · (xn, kn)

ϵn
(xj, kj) ∈ (F3)2, ϵj ∈ Z, 1 ≤ j ≤ n

13For example, [a, 1][b, 2][b, 2]−1[a, 1]−1 can be split into a sequence ([b, 2], [b, 2]−1), ([a, 1], [a, 1]−1).
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such that d0c0((x, k)) = (x, k) and d1c0((x, k)) = 1. In detail, we get the following:

(x, k) = d0c0((x, k)) = (d0x1, d0k1)
ϵ1 · · · (d0xn, d0kn)

ϵn (2.7)

1 = d1c0((x, k)) =
(
(d2x1, τ ′(x1)d2k1)

−1
· (d1x1, d1k1)

)ϵ1 · · · (2.8)(
(d2xn, τ ′(xn)d2kn)

−1
· (d1xn, d1kn)

)ϵn
We now aim to give a reduction on the generators of G0(Fi), i > 3. Simplicial set Fi is
an iterated twisted product of the form(

((X ×τ ′ K(π2, 1))×τ ′ K(π3, 2))×τ ′ · · · ×τ ′ K(πi−2, i− 3)
)
×τ ′ K(πi−1, i− 2)

As simplicial sets K(πi−1, i − 2) are 1-reduced for i > 3, we can identify elements of
(Fi)1 with vectors (x, k, 0, . . . , 0), where k ∈ K(π2, 1)1, x ∈ X1. We further shorthand
the series of i − 3 zeros in the vector with 0. Hence generators G0(Fi) are of the form
(x, k,0). The 1-reducedness also implies that τ ′(α) = 0 whenever α ∈ (Fi)2, i > 2.

Finally, we set

c0((x, k,0)) = (x1, k1,0)
ϵ1 · · · (xn, kn,0)

ϵn
(xj, kj,0) ∈ (Fi)2, ϵj ∈ Z, 1 ≤ j ≤ n

The (almost) freeness of G0(Fi), the fact that K(πi−1, i − 2) are 1-reduced for i > 3
and equations (2.7), (2.8) give that d0c0((x, k,0)) = (x, k,0) and d1c0((x, k,0)) = 1.

Before the definition of contraction on simplicial set F3, we remind the basic facts
involving the simplicial model of Eilenberg-MacLane spaces we are using.

Eilenberg–MacLane spaces. As noted in Section 2.2, given a group π and an integer
i ≥ 0 an Eilenberg–MacLane space K(π, i) is a space satisfying

πj(K(π, i)) =

{
π for j = i,
0 else.

In the rest of this section, by K(π, i) we will always mean the simplicial model which is
defined in [53, page 101]

K(π, i)q = Zi(∆q; π),

where ∆q ∈ sSet is the standard q-simplex and Zi denotes the cocycles. This means
that each q–simplex is regarded as a labeling of the i–dimensional faces of ∆q by
elements of π such that they add up to 0 ∈ π on the boundary of every (i + 1)-simplex
in ∆q, hence elements of K(π, q)q are in bijection with elements of π. The boundary
and degeneracy operators in K(π, k) are given as follows: For any σ ∈ K(π, i)q, dj(σ) ∈
K(π, k)q−1 is given by a restriction of σ ∈ K(π, i) to the j-th face of ∆q. To define the
degeneracy we first introduce mapping ηj : {0, 1, . . . , q + 1} → {0, 1, . . . , q} given by

ηj(ℓ) =

{
ℓ for ℓ ≤ j,
ℓ− 1 for ℓ > j.

Every mapping ηj defines a map C∗(ηj) : C
∗(∆q) → C∗(∆q+1).The degeneracy sjσ is

now defined to be C∗(ηj)(σ) (see [53, § 23]).
It follows from our model of Eilenberg-MacLane space, that elements of K(π2, 1)2

can be identified with labelings of 1-faces of a 2-simplex by elements of π2 that sum up
to zero.
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As π2 is an Abelian group, we use the additive notation for π2. We identify the
elements of K(π2, 1)2 with triples (k0, k1, k2), ki ∈ π2, 0 ≤ i ≤ 2, such that k0 − k1 + k2 =
0 ∈ π2.

Loop contraction on F3. Let X be a 0-reduced, 1-connected simplicial set with a
given algorithm that computes the contraction on loops c0 : (GX)0 → (GX)1.

In the rest of the section, we will assume x ∈ X1. Then by our assumptions c0x =
y1

ϵ1 · · · ynϵn, where yi ∈ X2, ϵi ∈ Z, 1 ≤ i ≤ n. Let ki = τ ′(yi).
We first show that in order to give a contraction on elements of the form (x, 0) and

(x, k), it suffices to have the contraction on elements of the form (∗, k):

Contraction on element (x, 0). Let (x, 0) ∈ G0(F3). We define

c0(x, 0) =
n∏

i=1

(
c0(∗, ki)

−1
(s1d2yi, (ki, ki, 0)) · (yi, 0)

)ϵi .
Contraction on element (x, k). Suppose (x, k) ∈ (GF3)0. The formula for the con-
traction is given using the formulae on contraction on (x, 0) and (∗, k) as follows

c0(x, k) = (s0x, (k, 0,−k)) · s0(x, 0)
−1

· s0(∗,−k) · c0((∗,−k))−1 · c0((x, 0))

Contraction on element (∗, k). We formalize the existence of the contraction as
Proposition 2.35 given at the end of this section. Due to the fact that the proof is rather
technical, we need to define and prove some preliminary results first:

Definition 2.32. Let Z = {z ∈ (GF3)1 | d0z = 1} and let W = {d1z | z ∈ Z} We
define an equivalence relation ∼ on the elements of W in the following way: We say
that w ∼ w′ if there exists z ∈ Z, α, β ∈ (GF3)1 such that d1z = w, αzβ ∈ Z and
d1(αzβ) = w′.

Lemma 2.33. Let w ∈ W such that

1. w = (x, k)
ϵ
· α, where α ∈ (GF3)1 Then w = (x, k)

ϵ
· α ∼ α · (x, k)ϵ = w′.

2. w = (∗, k)
ϵ
· α, where α ∈ (GF3)0. Then w ∼ w′ = (∗,−k)

−ϵ
· α.

3. w = (∗,−k)
−1
(x, 0) · α, where α ∈ (GF3)0. Then w ∼ w′ = (x, k) · α.

4. w = (x, 0)
−1
(x, k) · α, where α ∈ (GF3)0. Then w ∼ w′ = (∗, k) · α.

5. w = (∗,−l)
−1
(∗, k) · α, where α ∈ (GF3)0. Then w ∼ w′ = (∗, k + l) · α.

Proof. In all cases, we assume z ∈ Z such that d1z = w and we give a formula for
z′ ∈ Z with d1z′ = w′:

1. z′ = s0(x.k)
−ϵ

· z · s0(x, k)
ϵ
.

2. z′ = (∗, (k, 0,−k))
ϵ
· (s0(∗, k))−ϵ · z.
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3. z′ = (s0(x, k)) · (s0x, (k, 0,−k))
−1

· z.

4. z′ = (s0(∗, k))(s1x, (k, k, 0))
−1

· z.

5. z′ = (s0(∗, k + l))(∗, (k + l, k,−l))
−1

· z.

Lemma 2.34. Let z ∈ (GF3)1, z ∈ Z with

d1z = w = (∗,−k1)
−1

· (x1, 0)
ϵ1 · · · (∗,−kn)

−1
· (xn, 0)

ϵn

where x1
ϵ1 · · ·xnϵn = 1 in GX0, xi ∈ X, ki ∈ π2(X), ϵi ∈ {1,−1}, 1 ≤ i ≤ n. Then

w ∼ (
∑n

i=1 ki, ∗).

Proof. We achieve the proof using a sequence of equivalences given in Lemma 2.33.
Without loss of generality we can assume that x1 = x−1

2 and ϵ1, ϵ2 = 1 (If this is not the
case, we can use rule (1) and/or relabel the elements). Using (1) gives us

w =(∗,−k1)
−1

· (x2, 0)
−1

· (∗,−k2)
−1

· (x2, 0) · · · (∗,−kn)
−1

· (xn, 0)
ϵn

∼(∗,−k2)
−1

· (x2, 0) · · · (∗,−kn)
−1

· (xn, 0)
ϵn · (∗,−k1)

−1
· (x2, 0)

−1
.

Then successive use of (3),(1),(4), (1) and finally (5) gives us

w ∼(x2, k2) · · · (∗,−kn)
−1

· (xn, 0)
ϵn · (∗,−k1)

−1
· (x2, 0)

−1
.

∼(x2, 0)
−1

· (x2, k2) · · · (∗,−kn)
−1

· (xn, 0)
ϵn · (∗,−k1)

−1

∼(∗, k2) · · · (∗,−kn)
−1

· (xn, 0)
ϵn · (∗,−k1)

−1

∼(∗, k1 + k2) · (∗,−k3)
−1

· (x3, 0) · · · (∗,−kn)
−1

· (xn, 0)
ϵn

multiple use or rules (2) and (1) and gives us

w ∼(∗,−k1 − k2 − k3)
−1

· (x3, 0) · · · (∗,−kn)
−1

· (xn, 0)
ϵn

So far, we have produced some element z′ ∈ Z ⊆ (GF3)1 such that d0z′ = 1,

d1z
′ = (∗,−k1 − k2 − k3)

−1
· (x3, 0) · · · (∗,−kn)

−1
· (xn, 0)

ϵn

and further x3ϵ3 · · ·xnϵn = 1 in GX0.

It follows that the construction described above can be applied iteratively until all
elements (xi, 0) are removed and we obtain w ∼ (−

∑n
i=1 ki, ∗)

−1
∼ (

∑n
i=1 ki, ∗).

Proposition 2.35. Let k ∈ π2(X). Then there is an algorithm that computes an element
z ∈ (GF3)1 such that d0z = (∗, k) and d1z = 1.

Proof. Given an element k ∈ π2 ∼= H2(X), one can compute a cycle γ ∈ Z2(X) such
that

[γ] = k ∈ π2(X) ∼= H2(X) ∼= H2(K(π2, 2)) ∼= π2(K(π2, 2)),
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were the middle isomorphism is induced by φ2 and the other isomorphisms follow from
Hurewicz theorem.

If one considers γ ∈ ÃX1 then by Lemma 2.26 one can algorithmically compute a
spherical element γ′ = y1

ϵ1 · · · ynϵn ∈ G̃X1 where yi ∈ X2 and τ ′yi = ki ∈ π2(X), such
that d0γ′ = 1 = d1γ

′ and
∑n

i=1 ϵi · ki = k.
We define z′ ∈ (GF3)1 by

z′ = (
n∏

i=1

(s0d0yi, (ki, 0,−ki))
ϵi
) · (

n∏
i=1

(yi, (ki, 0,−ki))
ϵi
)−1.

Observe that d0(z′) = 1 and

d1z
′ =

(
(∗,−k1)

−1
· (d0y1, 0)

)ϵ1 · · · ((∗,−kn)−1
· (d0yn, 0)

)ϵn
.

We apply Lemma 2.34 on z′ and get an element z′′ ∈ (GF3)1 with the property d0z′′ = 1
and d1z′′ = (∗, k). We define z = s0(∗, k) · (z′′)−1. Thus d0z = (∗, k) and d1z = 1.

Computational complexity. We first observe that that formulas for c0 on a general
element (x, k) depend polynomially on the size of c0(x) and the size of contractions
on (∗, k). Hence it is enough to analyse the complexity of the algorithm described in
Proposition 2.35:

The computation of γ′ is obtained by the polynomial-time Smith normal form algo-
rithm presented in [41] and the polynomial-time algorithm in Lemma 2.26. The size
of z′ depends polynomially (in fact linearly) on size of γ′. The algorithm described in
Lemma 2.34 runs in a linear time in the size of z′.

To sum up, the algorithm computes the formula for contraction on the elements of
GFi in time polynomial in the input (sizeX + size c0(GX)).

2.7 Reconstructing a Map to the Original Simplicial Com-
plex

This section contains the proof of Lemma 2.16.

Edgewise subdivision of simplicial complexes. In [20], the authors present, for
k ∈ N, the edgewise subdivision Esdk(∆

m) of an m-simplex ∆m that generalizes the
two-dimensional sketch displayed in Figure 2.3. This subdivision has several nice prop-
erties: in particular, the number of simplices of Esdk(∆

m) grows polynomially with k.
Explicitly, the subdivision can be represented as follows.

• The vertices of Esdk(∆
m) are labeled by coordinates (a0, . . . , am) such that aj ≥ 0

and
∑

j aj = k.

• Two vertices (a0, . . . am) and (b0, . . . , bm) are adjacent, if there is a pair j < k such
that |bj − aj| = |bk − ak| = 1 and ai = bi for i ̸= j, k.

• Simplices of Esdk(∆
m) are given by tuples of vertices such that each vertex of

a simplex is adjacent to each other vertex.
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(4, 0, 0) (3, 1, 0) (2, 2, 0) (1, 3, 0) (0, 4, 0)

(3, 0, 1)

(2, 0, 2)

(1, 0, 3)

(0, 0, 4)

(0, 3, 1)

(0, 2, 2)

(0, 1, 3)

(2, 1, 1) (1, 2, 1)

(1, 1, 2)

Figure 2.3: Edgewise subdivision of a 2-simplex for k = 4. In this case, there exists a
copy of the 2-simplex completely in the “interior”, defined by vertices (2, 1, 1), (1, 2, 1)
and (1, 1, 2). All other vertices are at the “boundary”: more formally, their coordinatates
contain a zero.

We define the distance of two vertices to be the minimal number of edges between
them. An edgewise k-subdivision of ∆m induces an edgewise k-subdivision of all faces,
hence we may naturally define an edgewise subdivision of any simplicial complex.

Constructing the map Esdk(Σ) → Xsc. Let R be a chosen root in the tree T . We
denote the tree-distance of a vertex W from R by distT (W ). Let

l := max{distT (V ) : V is a vertex of Xsc}

be the maximal tree-distance of some vertex from R. For each vertex V of Xsc, there
is a unique path in the spanning tree that goes from R into V . Further, we define the
maps M(j) : (Xsc)(0) → (Xsc)(0) from vertices of Xsc into vertices of Xsc such that

• M(j)(V ) := V if j ≥ distT (V ), and

• M(j)(V ) is the vertex on the unique tree-path from R to V that has tree-distance
j from R, if j < distT (V ).

If, for example, R−U − V −W is a path in the tree, then M(0)(W ) = R, M(1)(W ) = U
etc. Clearly, M(l) =M(l+ 1) = . . . is the identity map, as l equals the longest possible
tree-distance of some vertex.

Assume that d is the dimension of Σ and k := l(d + 1) + 1. We will define f ′ :
Esdk(Σ) → Xsc simplexwise. Let τ ∈ Σ be an m-simplex and f(τ) = σ̃ ∈ X be its
image in the simplicial set X. If σ is the degeneracy of the base-point ∗ ∈ X, then we
define f ′(x) := R for all vertices x of Esdk(τ): in other words, f ′ will be constant on the
subdivision of τ . Otherwise, σ̃ is not the degeneracy of a point and has a unique lift
σ ∈ Xss. (Recall that X := Xss/T .) Let (V0, . . . , Vm) be the vertices of σ (order given by
orientation): these vertices are not necessarily different, as σ may be degenerate.

In the algorithm, we will need to know which faces of σ are in the tree T . We
formalize this as follows: let S ⊆ 2m be the family of all subsets of {0, 1, . . . ,m} such
that

• For each {i0, . . . , ij} ∈ S, {Vi0 , . . . , Vij} is in the tree (that is, it is either an edge or
a single vertex),
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s1

s2

E(s1)

E(s2)

1 1 1

2

1

1

Figure 2.4: Illustration of extended faces. Here S = {s1, s2} corresponds to the lower-
and left-face of a 2-simplex. The extended faces E(s1) and E(s2) are sets of vertices of
Esdk(∆

2) that are on the lower- and left- boundary. The corresponding extended tree
E(T ) is the union of all these vertices. The integers indicate edge-distances distET of
vertices in Esdk(∆

2) from E(T ).

• Each set in S is maximal wrt. inclusion.

Elements of S correspond to maximal faces of σ that are in the tree, in other words, to
faces of σ̃ that are degeneracies of the base-point.

Definition 2.36. Let ∆m be an oriented m-simplex, represented as a sequence of ver-
tices (e0, . . . , em). For any face s ⊆ {e0, . . . , em}, we define the extended face E(s) in
Esdk(∆

m) to be the set of vertices (x0, . . . , xm) in Esdk(∆
m) that have nonzero coordi-

nates only on positions i such that ei ∈ S.

The geometric meaning of this is illustrated by Figure 2.4.

Definition 2.37. For S ⊆ 2m, we define the extended tree E(T ) to be the union of the
extended faces E(s) in Esdk(∆

m) for all s ∈ S. The edge-distance of a vertex x in
Esdk(∆

m) from E(T ) will be denoted by distET (x).

In words, E(T ) it is the union of all vertices in parts of the boundary of Esdk(∆
m) that

correspond to the faces of σ that are in the tree, see Fig. 2.4. The number distET (x)
is the distance to x from those boundary parts that correspond to faces of σ that are in
the tree.

To define a simplicial map from Esdk(τ) to Xsc, we need to label vertices of Esdk(τ)
by vertices of Xsc such that the induced map takes simplices in Esdk(τ) to simplices
in Xsc. Recall that V0, . . . , Vm are the vertices of σ. For x = (x0, . . . , xm), we denote
by argmax x the smallest index of a coordinate of x among those with maximal value
(for instance, argmax (4, 2, 1, 4, 0) = 0, as the first 4 is on position 0). The geometric
meaning of Vargmaxx is illustrated by Figure 2.5.

Now we are ready to define the map f ′ : Esdk(τ) → Xsc. It is defined on vertices x
with coordinates (x0, . . . , xm) by

f ′(x0, . . . , xm) :=M(distET (x))(Vargmax x). (2.9)
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V0 V1

V2

V0

V0 V0

V0

V2 V2

V2

V1

V1

V1

V1

V0

Figure 2.5: Labelling vertices of Esdk(∆
2) by Vargmaxx.

Geometrically, most vertices x will be simply mapped to Vj for which the j’th coordinate
of x is dominant. In particular, a unique m-simplex “most in the interior of Esdk(τ)” with
coordinates⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
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for suitable j will be labeled by V0, V1, . . . , Vm; in other words, it will be mapped to σ.14

However, vertices x close to those boundary parts of Esdk(τ) that correspond to the
tree-parts of σ, will be mapped closer to the root R and all the extended tree E(T ) will
be mapped to R. One illustration is in Figure 2.6.

Computational complexity. Assuming that we have a given encoding of Σ, f,X,Xsc

and a choice of T and R, defining a simplicial map f ′ : Esdk(Σ) → Xsc is equivalent
to labeling vertices of Esdk(Σ) by vertices of Xsc. Clearly, the maximal tree-distance l
of some vertex depends only polynomially on the size of Xsc and can be computed in
polynomial time, as well as the maps M(0), . . . ,M(l). Whenever j > l, we can use the
formula M(j) = id. Further, k = l(d+ 1) + 1 is linear in l, assuming the dimension d is
fixed. If τ ∈ Σ is an m-simplex, then the number of vertices in Esdk(τ) is polynomial15

in k, and their coordinates can be computed in polynomial time. Finding the lift σ of
f(τ) = σ̃ is at most a linear operation in size(Xsc) + size(σ̃). Converting σ ∈ Xss into an
ordered sequence (V0, V1, . . . , Vm) amounts to computing its vertices d0d1 . . . d̂i . . . , dmσ,
where di is omitted. Collecting information on faces of σ that are in the tree and the
set of vertices E(T ) is straight-forward: note that assuming fixed dimensions, there are
only constantly many faces of each simplex to be checked. If s = {i0, . . . , ij} is a face,
then the edge-distance of a vertex x from E(s) equals to

∑
u xiu. Applying formula (2.9)

to x requires to compute the edge-distance of x from E(T ): this equals to the minimum
of the edge-distances of x from E(s) for all faces s of σ that are in the tree. Computing
argmaxx is a trivial operation. Finally, the number of simplices τ of Σ is bounded by

14If dim(τ) = d is maximal, then j = l and this most-middle simplex has particularly nice coordinates
(l + 1, l, . . . , l), . . . , (l, . . . , l, l + 1).

15Here the assumption on the fixed dimension d is crucial.
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R
V0

V2

V1

V0
V1

V2

V0 V0 V0 V0

V0

V0

V0

V0

V1

V1

V2

R R R R R R R R

R

R

R

R

R

R

R

V0
V0

V1

V1

V2

V2

V0

In the tree

In the tree

Tree in X

Figure 2.6: Example of the labeling induced by formula (2.9). We assume that f(τ) = σ̃
where σ is a simplex of Xsc with three different vertices V0V1V2. In this example, the tree
connects R−V0−V1 as well as R−V0−V2 and the edge V1V2 is not in the tree. On the
right, we give the induced labeling of vertices of Esdk(τ) which determines a simplicial
map to Xsc. The bottom and left faces of σ are in the tree, hence the bottom and left
extended faces in Esdk(τ) are all mapped into R. The right face of σ is the edge V1V2
that is not in the tree: the corresponding right extended face in Esdk(τ) is mapped to
a loop R− V0 − V1 − V2 − V0 −R, where V1V2 is the only part that is not in the tree. The
most interior simplex in Esdk(τ) is highlighted and is the only one mapped to σ.

the size of Σ, so applying (2.9) to each vertex of Esdk(Σ) only requires polynomially
many steps in size(Σ, f,Xsc, T,X).

Correctness. What remains is to prove that formula (2.9) defines a well-defined sim-
plicial map and that |Esdk(Σ)| → |Xsc| → |X| is homotopic to |Σ| → |X|.

Lemma 2.38. The above algorithm determines a well-defined simplicial map Esdk(Σ) →
Xsc.

Proof. First we claim that formula (2.9) defines a global labeling of vertices of Esdk(Σ)
by vertices of Xsc. For this we need to check that if τ ′ is a face of τ , then (2.9) maps
vertices of Esdk(τ

′) compatibly. This follows from the following facts, each of them
easily checkable:

• If τ ′ is spanned by vertices of τ corresponding to s ⊆ {0, . . . ,m}, then a ver-
tex x′ := (x0, . . . , xj) in Esdk(τ

′) has coordinates x in Esdk(τ) equal to zero on
positions {0 . . . ,m} \ s and to x0, . . . , xj on other positions, successively.

• If V ′
k := Vik for s = (i0, . . . , ij) are the vertices of the corresponding face of σ, then

V ′
argmaxx′ = Vargmaxx

• The extended tree E ′(T ) in Esdk(τ
′) equals the intersection of the extended tree

in Esdk(τ) with E(τ ′)

• The distance distET (x
′) in Esdk(τ

′) equals distET (x) in Esdk(τ).
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Further, we need to show that this labeling defines a well-defined simplicial map,
that is, it maps simplices to simplices. We claim that each simplex in Esdk(τ) is mapped
either to some subset of {V0, . . . , Vm} or to some edge in the tree T , or to a single vertex.

We will show the last claim by contradiction. Assume that some simplex is not
mapped to a subset of {V0, . . . , Vm}, and also it is not mapped to an edge of the tree
and not mapped to a single vertex. Then there exist two vertices x and y in this simplex
that are labeled by U and W in Xsc, such that either U or W is not in {V0, . . . , Vm}, UW
is not in the tree, and U ̸= W .

The fact that at least one of {U,W} does not belong to {V0 . . . , Vm}, implies that
distET (x) < l or distET (y) < l (as M(j) maps each Vargmaxx to itself for j ≥ l).

Without loss of generality, assume that argmaxx = 0 and argmax y = 1. Then the
coordinates of x and y are either

x = (j + 1, j, x3, . . . , xm), y = (j, j + 1, x3, . . . , xm)

such that xi ≤ j + 1 for all i ≥ 3, or

x = (j, j, x3, . . . , xm), y = (j − 1, j + 1, x3, . . . , xm)

for some j such that xi ≤ j for all i ≥ 3.
We claim that V0 ̸= V1 and that the edge V0V1 is not in the tree. This is because

there exists a tree-path from R via U to V0 and also a tree-path from R via W to V1
(and U ̸= W ): both V0 = V1 as well as a tree-edge V0V1 would create a circle in
the tree. In coordinates, this means that vertices (∗, ∗, 0, 0, . . . , 0) are not contained in
E(T ), apart of (k, 0, 0, . . . , 0) and (0, k, 0, . . . , 0). So, any vertex in E(T ) has a zero on
either the zeroth or the first coordinate. This immediately implies that distET (x) ≥ j
and distET (y) ≥ j. Keeping in mind that coordinates of x (and y) has to sum up to
k = l(d+ 1) + 1, the smallest possible value of j is j = l (if m = d is maximal), in which
case x = (l+1, l, l, . . . , l) and y = (l, l+1, . . . , l). This choice, however, would contradict
the fact that either distET (x) < l or distET (y) < l. Therefore we have a strict inequality
j > l. Finally, we derive a contradiction having either distET (x) ≥ j > l > distET (x), or
a similar inequality for y.

This completes the proof that each simplex is either mapped to a subset of
{V0, . . . , Vm} or to an edge in the tree or to a single vertex: the image is a simplex in
Xsc in either case.

Lemma 2.39. The geometric realisations of pf ′ : Esdk(Σ) → X and f : Σ → X are
homotopic.

Proof. First we reduce the general case to the case when all maximal simplices in
Σ (wrt. inclusion) have the same dimension d. If this were not the case, we could
enrich any lower-dimensional maximal simplex τ = {x0, . . . , xj} ∈ Σ by new vertices
yτj+1, . . . , y

τ
d and produce a maximal d-simplex

τ̃ = {x0, . . . , xj, yτj+1, . . . , y
τ
d}.

Thus we produce a simplicial complex Σ̃ ⊇ Σ with the required property. Whenever
f(τ) is mapped to σ̃ where σ = (V0, . . . , Vj), we define f(τ̃) to be sd−j

j σ̃, a degenerate
simplex with lift (V0, . . . , Vj, Vj, . . . , Vj). The map f ′ : Σ̃ → Xsc is constructed from
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f : Σ̃ → X as above and if we prove that |f | is homotopic to |pf ′| as maps |Σ̃| → |X|, it
immediately follows that their restrictions are homotopic as maps |Σ| → |X| as well.

Further, assume that all maximal simplices have dimension d. Let τ ∈ Σ be a d-
dimensional simplex and let τ int be the simplex in Esdk(τ) spanned by the vertices

(l + 1, l, . . . , l), . . . , (l, . . . , l, l + 1),

that is, the simplex in the interior of τ that is mapped by pf ′ to σ̃. Let Hτ (·, 1) : |τ | → |τ |
be a linear map that takes |τ | linearly to |τ int| via mapping the i’th vertex to (l, . . . , l +
1, 1 . . . , l) where the l + 1 is on position i. Further, let Hτ be a linear homotopy |τ | ×
[0, 1] → |τ | between the identity Hτ (·, 0) = id and Hτ (·, 1). The composition |pf ′|Hτ

then gives a homotopy |τ | × [0, 1] → |X| between the restrictions (|pf ′|)||τ | and (|f |)||τ |.
For a general x ∈ |Σ|, there exists a maximal d-simplex |τ | such that x ∈ |τ | and we
define a homotopy

(x, t) ↦→ |pf ′|Hτ (x, t).

It remains to show that this map is independent on the choice of τ .
Let us denote the (ordered) vertices of τ by {v0, v1, . . . , vd} and let δ ⊆ τ be one of

its faces: further, let wi be the vertex of τ int with barycentric coordinates (l, . . . , l, l +
1, l, . . . , l)/k in |τ | such that the l+1 is in position i. The homotopy Hτ sends points in |δ|
onto the span of points wi for which vi ∈ δ. For y ∈ |δ|, the j-th barycentric coordinate
of Hτ (y, t) is equal to t (l/k) for each j /∈ δ. In particular, the j-th coordinate of Hτ (y, t)
is between 0 and l/k for j /∈ δ, and hence it is not the “dominant” coordinate. It follows
that each z := Hτ (x, t) is contained in the interior of a unique simplex ∆ of Esdk(τ)
such that vargmaxx ∈ δ for all vertices x of ∆.

Let i0 < i1 . . . < ik be the indices such that vij ∈ δ and j1 < . . . < jd−k be the
remaining indices. Let τ ′ = (v′0, . . . , v

′
d) be another d-simplex containing δ as a face.

Assume, for simplicity, that the vertices of τ ′ are ordered so that vertices of δ have
orders i0, . . . , ik—such as it is in τ . Let σ, σ′ be the lift of f(τ), f(τ ′) respectively, and
Vi, V ′

i the i-th vertex of σ, σ′ respectively.
We define a “mirror” map m : |τ | → |τ ′|, which to a point with barycentric coordi-

nates (x0, . . . , xd) with respect to τ assigns a point in |τ ′| with the same barycentric
coordinates with respect to τ ′. Clearly, Hτ ′(y, t) = m(Hτ (y, t)) for y ∈ |τ | and whenever
z is in the interior of a simplex ∆ ∈ Esdk(τ), then m(z) is in the interior of m(∆), where
vertices of ∆ and m(∆) have the same barycentric coordinates with respect to τ and
τ ′, respectively. If, moreover, ∆ is such that each of its vertices r have coordinates
≤ l/k on positions j1, . . . , jd−k, then Vargmax r = V ′

argmaxm(r).

To summarize these properties, Hτ (y, t) and Hτ ′(y, t) satisfy that16

• they have the same coordinates wrt. τ , τ ′, respectively,

• they are in the interior of simplices ∆ ∈ Esdk(τ), ∆′ ∈ Esdk(τ
′) whose vertices

have the same coordinates wrt. τ , τ ′, respectively,

• the argmax labeling induces the same labeling of vertices of ∆, ∆′ by vertices of
δ, respectively.

16 In general, vertices of δ may have different order in τ and τ ′ and the assumption on compatible
ordering was chosen only to increase readability. If i′0 < . . . < i′k are such that v′i′j = vij (orders of
δ-vertices wrt. τ ′) and j′1 < . . . < j′d−k are positions of the remaining vertices in τ ′, then m is defined so
that it maps x ∈ |τ | with τ -coordinates (x0, . . . , xd) into x′ ∈ |τ ′| with coordinates x′

i′j
= xij and x′

jk
= xjk .



54

V0 V1

V2

V0 V0

V0

V0
V0

V0

V0

V1

W

yV1

V1

V1

V1

z

z′

Figure 2.7: The homotopy Hτ takes y linearly into z and Hτ ′ takes y into z′. Due to the
symmetry represented by the horizontal line, |pf ′| maps Hτ (y, t) into the same point of
X as |pf ′|Hτ ′(y, t).

The map pf ′ takes each m-simplex ∆ in Esdk(τ) with vertices tu labeled by Vargmax tu

onto p(Vargmax t0 , . . . , Vargmax tm) and it follows from the above properties that m(∆) is
mapped to the same simplex. We conclude that |pf ′|Hτ (y, t) = |pf ′|Hτ ′(y, t) for each
y ∈ |δ| and t ∈ [0, 1].
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3 Embeddability of simplicial complexes is undecidable outside
the meta-stable range

This chapter is a joint work with Marek Filakovský and Uli Wagner
In this chapter we present the complete proofs of Theorem 1.14 and Theorem 1.15.

First, we recall their statements.

Theorem 1.14. EXTEMBEDk→d is undecidable for k ≤ d <
⌊
3(k+1)

2

⌋
, k ≥ 5 and

(k, d) ̸= (5, 7).

Theorem 1.15. EMBEDk→d is undecidable for k ≤ d <
⌊
3(k+1)

2

⌋
, k ≥ 5 and

(k, d) ̸= (5, 7).

As discussed in Chapter 1, the codimension 0 and 1 cases have already been
proved [50; 55]. Thus, we will focus our attention to the case when (d− k) ≥ 2.

Structure of the Chapter We begin by introducing the extension problem as defined
in [12]. We then focus on a specific instance of this problem, which the authors prove
is undecidable and provide a family of reductions from such instances to instance of
EXTEMBEDk→d for all pairs (k, d), satisfying the conditions of Theorem 1.14 for (d −
k) ≥ 3. By extending these arguments, we provide a similar proof of Theorem 1.15
for (d − k) ≥ 3. Finally, we provide an additional construction to cover the cases
when (d − k) = 2, thus completing the two proofs. In Section 3.4 we provide all the
necessary background from PL topology and related topics and in Section 3.7, we
prove the main technical statement, which is at the heart of the proofs of Theorem 1.14
and Theorem 1.15. Once we have introduced the techniques we use, we will also
explain why our methods fail for some pairs (k, d), which lie at the boundary just outside
of the meta-stable range.

The undecidable problem EXTm

Definition 3.1 (EXTm). Given finite simplicial complexes A ⊂ X and Y , such that
dimX = 2m and Y is (m − 1)-connected, and a simplicial map f : A → Y , decide
whether there exists a continuous map X → Y extending f .

The authors of [12] provide a construction, which translates a system of Diophantine
equations into an extension problem of this type, so that an extension exists if and
only if the system has an integer solution. Thus, they reduce a version of Hilbert’s
tenth problem to an extension problem. On the other hand, Hilbert’s tenth problem
is undecidable by a celebrated result of Matiyasevich [48], building on earlier work
by Robinson, Davis and Putnam(we refer to [49] for further details), which yields the
undecidability of the extension problem.
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Theorem 3.2 (Theorem 1 (a) in [12]). Let m ≥ 2 be fixed. There is a fixed (m − 1)-
connected finite simplicial complex Y = Ym such that the following problem is algorith-
mically unsolvable: Given finite simplicial complexes A ⊆ X with dimX = 2m and a
simplicial map f : A → Y , decide whether there exists a continuous map F : X → Y
extending f . For m even, we can take Ym to be the sphere Sm.

It is important to note here, that the property of whether the map f extends or not
depends solely on the homotopy class of f .

We will outline the construction in [12] without providing any details about its un-
decidability. Let m ≥ 2 be the dimension parameter of the extension problem, as in
Theorem 3.2. Since there is a slight difference between m even and odd, we will con-
sider them separately.

m even: Following the notation in Theorem 3.2, we set A = S2m−1 ∨ . . . ∨ S2m−1,
Y = Sm and X = Cyl(ϕ) to be the mapping cylinder of a map ϕ : A → Sm ∨ . . . ∨ Sm.
We will denote by W := Sm∨ . . .∨Sm the target wedge sum . The two wedge sums are
always finite and typically consist of different number of spheres. We don’t explicitly
enumerate them, since this will not be of any importance for our further arguments.
The extension problem in this case is the following:

S2m−1 ∨ . . . ∨ S2m−1 Sm

Cyl(ϕ)

(3.1)

m odd: In the odd case we only modify the target, by changing it from Sm to Sm∨Sm.

Remark 3.2.1. In Chapter 6 in [12], the authors provide an algorithm, which for every
instance of EXTm, computes a representation of the corresponding topological spaces
and maps between them as finite simplicial complexes and simplicial maps.

Formulation using a double mapping cylinder

For our purposes, it will prove convenient to reformulate the constructions above
using double mapping cylinders, which we now introduce.

Definition 3.3. LetA, W and Y be topological spaces and let ϕ : A→ W and ψ : A→ Y
be continuous maps. Then, the double mapping cylinder of the maps (ϕ, ψ), denoted
by DCyl(ϕ, ψ), is the topological space ((A × I) ⊔ Y ⊔W )/ ∼, where (a, 0) ∼ ψ(a) and
(a, 1) ∼ ϕ(a).

Alternatively, one can see the double mapping cylinder as being obtained by glueing
the mapping cylinders of ϕ and ψ along their base, i.e. DCyl(ϕ, ψ) = Cyl(ϕ) ∪A Cyl(ψ).
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Assume that m ≥ 2 is even. Then, we can reformulate the extension problem 3.1 in
the following way.

S2m−1 ∨ . . . ∨ S2m−1

DCyl(ϕ, f) Sm

Sm

f

idSm

(3.2)

Proposition 3.4. The extensions problems 3.1 and 3.2 are equivalent, i.e. there exists
an extension in one of them if and only if there exists an extension in the other one.

Proof. We prove the two directions of the equivalence separately.

• (3.2 ⇒ 3.1) This direction is trivial, since we can consider the mapping cylinder
Cyl(ϕ) as being a subspace of the double mapping cylinder DCyl(ϕ; f).

• (3.1 ⇒ 3.2) If we think about the double mapping cylinder DCyl((ϕ; f) as being
glued out of the mapping cylinders Cyl(ϕ) and Cyl(f), then the existence of an
extension in 3.1 covers the upper half of DCyl((ϕ; f). The lower half looks in the
following way.

S2m−1 ∨ . . . ∨ S2m−1 Sm

Cyl(f)

f

Here an extension always exists, since Cyl(f) deformation retracts onto Sm. Putting
both extensions together, provides the desired one DCyl(ϕ; f) → Sm.

The same argumentation works for the case when m is odd, where we just need to
replace the target Sm with Sm ∨ Sm.

Remark 3.4.1. Following Remark 3.2.1 and using the same argumentations as in
Chapter 6 in [12], we can obtain an algorithm, which, for every instance of EXTm

with a double mapping cylinder reformulation, computes a representation of the cor-
responding topological spaces and maps between them as finite simplicial complexes
and simplicial maps.

This instance of the extension problem is going to serve as a base for our undecid-
ability results. For the sake of presentation, we introduce the following notation.
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Definition 3.5 (ẼXTm). Given finite simplicial complexes A = S2m+1 ∨ . . . ∨ S2m+1,
W = Sm ∨ . . . ∨ Sm and simplicial maps ϕ : A → W and f : A → Y , decide whether
there exists a continuous map F : DCyl(ϕ; f) → Y , which extends (f, idY ) : A ⊔ Y → Y ,
where Y ⊂ DCyl(ϕ; f) is included as the lower rim of the double mapping cylinder. Here
Y is either Sm or Sm ∨ Sm, depending on whether m is even or odd.

3.1 A reduction ẼXTm ≤ EXTEMBED2m+1→3m+2

We first prove Theorem 1.14, since it contains the main arguments required also by
Theorem 1.15.

We begin by showing how to construct a reduction ẼXTm ≤ EXTEMBED2m+1→3m+2,
for a particular instance of the extension problem with m ≥ 2. The proof of Theorem
1.14 will then consist of a systematic application of such basic reductions. There is
an inherited difference between the even and odd cases for the parameter m, so we
consider them separately.

m even: Let A = S2m−1∨ . . .∨S2m−1 , W = Sm∨ . . .∨Sm, ϕ : A→ W , f : A→ Sm be
our input extension problem. Denote by X := DCyl(ϕ; f) the double mapping cylinder
of the maps (ϕ, f). By Remark 3.4.1, we assume that those spaces and maps are
given as finite simplicial complexes and simplicial maps. For dimensional reasons, it is
apparent that we cannot embed X into Sm or even turn the map f into an embedding,
therefore we would need to introduce changes in the setting. We reinterpret the target
sphere Sm in the extension problem in the following way. Consider the spheres S3m+2

and S2m+1. By the discussion before Proposition 3.33, since (3m + 2)− (2m + 1) ≥ 3,
all embeddings of S2m+1 into S3m+2 are ambient isotopic.1 Let s : S2m+1 ↪→ S3m+2 be
the standard embedding, as defined in Section 3.4, i.e. s is the inclusion of S2m+1

into S3m+2 as the standard sphere in the first 2m + 2 coordinates. Let Sm ⊂ S3m+2 be
complementary to S2m+1, i.e. the standard sphere on the last m + 1 coordinates of
S3m+2, shifted slightly, so it does not intersect S2m+1. The easiest case to imagine is a
Hopf link in S3, consisting of two circles, lying in perpendicular planes.

Now, we can think of the map f : A → Sm ⊂ S3m+2 \ Int(N(S2m+1)), as having
S3m+2 as its target and missing a small open neighbourhood Int(N(S2m+1)) of S2m+1 ⊂
S3m+2. We put this map in general position and use Remark 3.55.2 to homotope it to
an embedding g : A ↪→ S3m+2.

Proposition 3.6. The map g : A ↪→ S3m+2 \ Int(N(S2m+1)) extends to a map
F : X = DCyl(ϕ; f) → S3m+2\Int(N(S2m+1)) if and only if the original extension problem
has a solution.

1Ambient isotopy is an equivalence relation between embeddings, which reflects their geometric
properties alongside their topological ones. We give a formal definition in Section 3.4.
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Proof. As we remarked above, the existence of a solution for the extension problem
is of homotopy theoretic nature. To prove the proposition, we need to check that we
only changed the setting up to homotopy. Indeed, by Proposition 3.33, we have the
homotopy equivalence S3m+2 \ Int(N(S2m+1)) ∼ Sm, so homotopically, our target is
nothing but Sm. On the other hand, the maps f, g : A → S3m+2 \ Int(N(S2m+1)) are
homotopic by construction. That concludes the proof.

Observe, that even if there exists an extension for the map g : A ↪→ S3m+2, we still
need to prove that we can modify it to be an embedding. This is granted by a more
technical theorem. Before we state it, we need to introduce some further notation. Let
Σ be either Sm or Sm ∨ Sm and let s : Σ ↪→ S3m+2 be the standard embeddeding, as
introduced in Section 3.4. Then, denote by Q := S3m+2 \ Int(N(Σ)), where Int(N(Σ))
is a small open neighbourhood of Σ.2

Theorem 3.7. Let A ⊂ X and Q be as introduced above, and f : A ↪→ Q be an em-
bedding of A. Then, if F : X → Q is any PL extension of f , there exists an embedding
G : X ↪→ Q, which is homotopic to F and F |A = G|A = f .

The reason why we introduce Σ is so, that the theorem also covers the case when
m is odd, which we explain below. The proof of this theorem will occupy much of the
later sections.

Finally, in order to obtain the desired EXTEMBED2m+1→3m+2 problem, we need
to change our perspective once again, which we illustrate in the following diagrams.
Observe, that dimA = 2m− 1 and dimX = 2m, so in the right diagram, the complexes
on the left side have dimension (2m+ 1).

A S3m+2 \ Int(N(S2m+1))

X

g

G

A ⊔ S2m+1 S3m+2

X ⊔ S2m+1

g⊔s

G⊔s

In other words, rather than thinking about our embeddings
g : A ↪→ S3m+2 \ Int(N(S2m+1)) and G : X ↪→ S3m+2 \ Int(N(S2m+1)) being into
S3m+2 \ Int(N(S2m+1)), we think of them as being embeddings of the disjoint unions
A⊔S2m+1 and X ⊔S2m+1 into S3m+2. By compactness, since the image of X avoids the
image of S2m+1, it also avoids a small neighbourhood N(S2m+1) of it. This concludes
the step.

m odd: In this case, the only difference is that instead of Sm, the target in the ex-
tension problem is Sm ∨ Sm. As we already mentioned, Proposition 3.33 applies here
as well, ensuring the homotopy equivalence S3m+2 \ Int(N(S2m+1∨S2m+1)) ∼ Sm∨Sm,
where Int(N(S2m+1 ∨ S2m+1)) is a small open neighbourhood of S2m+1 ∨ S2m+1 inside
S3m+2. Thus, from the initial extension problem, we can easily obtain an embedding
g : A ↪→ S3m+2 \ Int(N(S2m+1 ∨ S2m+1)), which extends to a map F : DCyl(ϕ; f) →
S3m+2 \ Int(N(S2m+1 ∨S2m+1)) if and only if the original problem has a solution. Finally,

2Recall, that we have also fixed a standard embedding of S2m+1 into S3m+2.
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if an extension exists, once again we make use of Theorem 3.7 to turn it into an em-
bedding G : DCyl(ϕ; f) ↪→ S3m+2 \ Int(N(S2m+1 ∨ S2m+1)). Switching our point of view,
we obtain the following EXTEMBED2m+1→3m+2 problem, to which the original EXTm

problem reduces.

A ⊔ (S2m+1 ∨ S2m+1) S3m+2

X ⊔ (S2m+1 ∨ S2m+1)

g⊔s

G⊔s

Proof of Theorem 1.14 for (d− k) ≥ 3. We are finally ready to show how to cover all
the pairs (k, d), which satisfy the conditions of the theorem and such that (d − k) ≥ 3.
We begin with a simple observation, which plays a key role in the proof.

Observation 3.8. A reduction ẼXTm ≤ EXTEMBEDk→d, as constructed above, yields
a family of reductions ẼXTm ≤ EXTEMBEDk+ℓ→d+ℓ , ℓ ≥ 0. Indeed, in the construction
we picked S2m+1 and S3m+2 and used the fact that S3m+2 \ N(S2m+1) ∼ Sm. However,
the same is true if we raise the dimensions of the two spheres equally, i.e. S3m+2+ℓ \
N(S2m+1+ℓ) ∼ Sm , ℓ ≥ 0. Moreover, all the tools we use for the original reduction still
work in this case.

However, in order to use Theorem 3.7, the dimensions of these additional spheres
have to be at least (2m+ 1) and (3m+ 2). To see, why, consider an instance of ẼXTm,
say for m even. This problem is represented in the following diagram.

S2m−1 ∨ . . . ∨ S2m−1 Sm

Cyl(ϕ)

In order to obtain an EXTEMBED problem, we pick S3m+1 and S2m and observe
that S3m+1 \ N(S2m) ∼ Sm. Once again, we can interpret the Sm, which is the target
in this extension problem, as the complimentary sphere to the standardly embedded
S2m inside S3m+1. We then put the map F : DCyl(ϕ; f) → Sm ⊂ S3m+1, which we
get from the extension problem, in general position, and observe that the set of self-
intersections of F has dimension dimS(F ) = 2 ∗ 2m− (3m+1) = m− 1.3 On the other
hand, S3m+1 \ N(S2m) ∼ Sm is (m − 1)-connected and in order to use Theorem 3.7,
we would need its connectivity to be at least one more than dimS(f) = m − 1, i.e. it
has to be at least m-connected. By raising the dimension of the additional spheres, we
can solve this problem, because, while not changing the connectivity of the target, we

3We will thoroughly explain how to compute the dimension of the set of self-intersections of a PL map
in general position in Section 3.4.
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decrease the dimension of S(F ) by at least one. For that reason, our methods do not
cover the cases (k, 3k

2
+ 1) for k even.

Finally, following Observation 3.8, in order to cover all the other pairs, which fall
into the assumptions of Theorem 1.14, it suffices to cover the boundary cases for k
odd. The way to do that is by considering the even cases we cannot solve and shifting
them up with one dimension. We illustrate the idea with the pair (7, 11). Starting with
the problem ẼXT3 and picking S6 and S10 as additional spheres, we would obtain
EXTEMBED6→10, which we know we cannot solve. Therefore, we raise the dimensions
of the spheres to S7 and S11. This removes the obstruction for using Theorem 3.7 and
we can obtain a reduction ẼXT3 ≤ EXTEMBED7→11. Doing the same for the boundary
case for every even k and combining it with Observation 3.8 gives us a sequence of
diagonals, which cover the whole range of pairs (k, d), that fall into the assumption of
Theorem 1.14 such that (d− k) ≥ 3. That concludes the proof.

In Section 3.3 we will prove Theorem 1.14 for the cases (d− k) = 2 , (k, d) ̸= (5, 7).
We recall Figure 1.2, which illustrates the combined result.
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Figure 3.1: Undecidability of EXTEMBEDk→d. The pairs that are not covered by our
result are encircled.

3.2 A reduction ẼXTm ≤ EMBED2m+1→3m+2

In this section, we provide a proof of Theorem 1.15 when (d − k) ≥ 3. We will con-
struct, for every pair (k, d), which falls under these assumptions, a reduction ẼXTm ≤
EMBEDk→d from a suitable instance of the extension problem. In fact, we will first use
the construction in the previous section, to obtain an instance of EXTEMBEDk→d, that
we will then turn into an instance of EMBEDk→d. According to Theorem 1.14, and
since the two theorems cover the same ranges of pairs (k, d), that will ensure the un-
decidability of the problem EMBEDk→d for the relevant pairs with (d − k) ≥ 3. We will
prove the case when (d− k) = 2 in Section 3.3. We consider the even and odd cases
separately.
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m even We begin by providing some geometric intuition for the construction. Let the
following be an embedding extension problem, as constructed in the previous section.

A = S2m−1 ∨ . . . ∨ S2m−1 ⊔ S2m+1 S3m+2

X = DCyl(ϕ; f) ⊔ S2m+1

g⊔s

G⊔s

Observation 3.9. From the way we constructed the EXTEMBED2m+1→3m+2 problem
above, the embedded copies G(Sm) and s(S2m+1) inside S3m+2 have homological link-
ing number 4 ±1. Indeed, s sends S2m+1 onto the standard (2m+1) sphere on the first
(2m + 2) coordinates of S3m+2 and Sm onto a shifted copy of the standard sphere on
the remaining (m + 1) coordinates, which might be slightly altered up to an ambient
isotopy, which does not change the linking number.

The general idea of the reduction is to take the space X ⊔ S2m+1 and turn it from a
disjoint union into a single space, by adding a scaffold that attaches S2m+1 to Sm ⊂ X,
where we regard this copy of Sm as one of the rims of the double mapping cylinder
X. This scaffold will be a finite simplicial complex, which contains a copy of Sm and
S2m+1 and has the property that no matter how we embed it into S3m+2, the embedded
spheres Sm and S2m+1 are linked with linking number ±1, depending on the chosen
orientations. More precisely, we introduce the following definition of a linking scaffold,
which we construct explicitly in Section 3.4.3.

Definition 3.10. Let k, ℓ be nonnegative integers. We call a simplicial complex L a
(k, ℓ)-linking scaffold if the following conditions hold:

• Sk ⊔ Sℓ ⊆ L.

• There exists a PL embedding L ↪→ Sk+ℓ+1.

• For any PL embedding f : L ↪→ Sk+ℓ+1, the spheres f(Sk) and f(Sℓ) are linked
with linking number ±1.

We are now ready to construct the EMBED2m+1→3m+2 problem, associated to the
given EXTEMBED2m+1→3m+2 problem. Let link(2m + 1;m) be the linking scaffold con-
structed in Section 3.4.3, which has dim(link(2m + 1;m)) = 2m + 1. Then, glueing
together the double mapping cylinder X = DCyl(ϕ; f) and link(2m + 1;m), we obtain
the connected simplicial complex

LX := link(2m+ 1;m) ∪Sm DCyl(ϕ; f). (3.3)

4For a general precise definition, we refer to Chapter 2.5 in [57]. In our situation, one way to think
about linking numbers is the following. Let f : Sp ⊔ Sq ↪→ Sp+q+1 be an embedding. We say that f(Sp)
and f(Sq) are linked inside Sp+q+1 with (homological) linking number ℓ if the map f : Sp → Sp+q+1\Sq ∼
Sp has degree deg(f) = ℓ. The linking number does not depend on the choice of the sphere we remove.
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Here the identification on the side of X, is along the lower rim Sm of X and the copy
of S2m+1, which is originally disjoint with X and on the side of the linking scaffold, it
is along the distinguished copies Sm, S2m+1 ⊂ link(2m + 1;m), which are mentioned in
Definition 3.10.

Lemma 3.11. If there exists an embedding G⊔s : X⊔S2m+1 ↪→ S3m+2, then there exists
a PL embedding h : LX ↪→ S3m+2.

Proof. Lemma 3.48 ensured that there is an embedding h : link(2m + 1;m) ↪→ S3m+2

such that h(link(2m + 1;m)) ⊂ S2m+1 × Bm+1. In other words, the image of the em-
bedding h is contained in a regular neighbourhood of S2m+1 inside S3m+2. On the other
hand, the image G(X) avoids a small regular neighbourhood of S2m+1, so by an ambi-
ent isotopy, we can obtain the desired embedding.

Proof of Theorem 1.15 for m even and (d− k) ≥ 3. Consider an instance of
EXTEMBED2m+1→3m+2 and the associated instance of EMBED2m+1→3m+2 as just con-
structed. We will prove that one has a solution if and only if the other one has a
solution.

• If EXTEMBED2m+1→3m+2 has a solution, then Lemma 3.11 guarantees that
EMBED2m+1→3m+2 also has a solution.

• If EMBED2m+1→3m+2 has a solution, then there exists an embedding h : LX ↪→
S3m+2. In particular, this give an embedding hX⊔S2m+1 : X ⊔ S2m+1 ↪→ S3m+2.
Finally, since link(2m + 1;m) is a linking scaffold, h(S2m+1) and h(Sm) are linked
in S3m+2 with linking number ±1. That means, that we can apply an ambient
isotopy and obtain an embedding G : X ⊔ S2m+1 ↪→ S3m+2, where G(S2m+1) is
standardly embedded, which implies that EXTEMBED2m+1→3m+2.

That concludes the proof.

m odd The odd case works in the same way. We only need to make use of the wedge
linking scaffold linkw(2m + 1,m), which serves the same purpose as a linking scaffold,
but for a pair (S2m+1 ∨ S2m+1, Sm ∨ Sm).

3.3 The cases (d− k) = 2 , (d, k) ̸= (5, 7)

In this section we complete the proofs of Theorem 1.14 and Theorem 1.15. More
precisely, we prove the following proposition.

Proposition 3.12. EMBEDk→k+2 is undecidable for k > 5.

From the proposition, it trivially follows that EXTEMBEDk→k+2 is undecidable for
k > 5. Our proof does not cover the case (5, 7), which is left open.

The strategy of the proof of Proposition 3.12 is to show that for every k > 5 the un-
decidability of EMBEDk→k+2 follows from the undecidability of EMBEDk−1→k+2, which
we already proved. Our proof makes use of the following technical lemma, which we
prove in Section 3.5.
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Lemma 3.13. Let K be a finite simplicial complex, τ ∈ K a maximal 5 ℓ-simplex of
K and d ≥ ℓ + 3 an integer. Let K̃ := K ∪τ ∆ℓ+1 be the complex, obtained from K
by coning over τ . Then, there is an embedding K̃ ↪→ Sd if and only if there is an
embedding K ↪→ Sd.

Proof of Proposition 3.12. Let (ℓ, ℓ+3) be a pair of integers with ℓ ≥ 5. Our main theo-
rem implies that EMBEDℓ→ℓ+3 is undecidable, by constructing a family of ℓ-dimensional
finite simplicial complexes, which encode an undecidable instance of the extension
problem. Let K be any of these complexes. By construction, K is not pure and by an
inductive application of Lemma 3.13, we can construct a complex K̃, which is (ℓ + 1)-
dimensional, pure and there exists an embedding K̃ ↪→ Sℓ+3 if and only if there exists
an embedding K ↪→ Sℓ+3. This operation translates the undecidable instance of the
problem EMBEDℓ→ℓ+3, which we constructed in our main theorem, into an instance of
the problem EMBEDℓ+1→ℓ+3 for any ℓ ≥ 5. This concludes the proof.

The rest of the exposition will be dedicated to the proof of Theorem 3.7. We begin
by outlining the necessary preliminaries from PL topology.

3.4 Preliminaries

In this section we introduce the basic notions and constructions we need for the proof
of Theorem 3.7. All topological spaces will be assumed compact unless otherwise
stated.

Definition 3.14. Let K,L be simplicial complexes. A continuous map f : |K| → |L| is a
piecewise linear (PL) map if there exist subdivisions K̃, L̃ of K and L and a simplicial
map that f̃ : K̃ → L̃ such that |f̃ | = f .

Polyhedra and PL maps Let X be a compact topological space. A triangulation of
X is a homeomorphism t : |K| → X, where |K| is the geometric realization of some
finite simplicial complex.

Definition 3.15 (Polyhedron). A compact polyhedron is a compact topological space
X, provided with a family TrX of triangulations of X, such that the following conditions
are satisfied:

1. If t : |K| → X is a triangulation from TrX and ϕ : |L| → |K| is a PL homeomor-
phism, then t ◦ ϕ : |L| → X also belongs to TrX .

2. If t1, t2 ∈ TrX , then t−1
2 ◦ t1 is a PL homeomorphism.

Polyhedra are the main objects of interest in this Chapter. They are quite flexible,
since they grant us the possibility to pick different triangulations, depending on their
requried properties.

5A simplex τ ∈ K is called maximal if τ is not a face of any other simplex σ ∈ K. The simplicial
complex K is called pure if all the maximal simplices of K have the same dimension.
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Example 3.16. The following are classical examples of polyhedra.

1. Any finite simplicial complex K with TrK consisting of all PL homeomorphisms
onto K.

2. A PL k-sphere is a polyhedron S, which admits a triangulation by the boundary
of the standard (k + 1)-simplex ∆k+1.

3. A PL (k + 1)-ball is a polyhedron B, which admits a triangulation by the standard
(k + 1)-simplex ∆k+1.

Next, we define the appropriate type of maps between polyhedra.

Definition 3.17. Let X, Y be polyhedra and f : X → Y be a continuous map. We say
that f is a PL map if there exist triangulations tX : |K| → X in TrX and tY : |L| → Y in
TrY , such that the map t−1

Y ◦f ◦ tX : |K| → |L| is a PL map as defined in Definition 3.14.

Let X be a polyhedron and A ⊂ X be a subspace. We say that A is a subpolyhe-
dron of X if the inclusion map i : A ↪→ X is a PL map.

For a PL map f : X → Y , we define its singular set of the map f as S(f) := Cl({x ∈
X|f−1(f(x)) ̸= {x}}), i.e. the closure of the set of self-intersections of f . Observe that
S(f) = ∅ if and only if the map f is an embedding. We further define, for every i ≥ 2,
Si(f) := {x ∈ X||f−1(f(x))| ≥ i}. That means that Si(f) is the set of i-fold intersection
points of f . Observe that S(f) = Cl(S2(f)) and for every i ≥ 2, Si(f) ⊇ Si+1(f).

PL manifolds Piecewise-linear (or PL) manifolds are a class of polyhedra, which,
similar to smooth manifolds, have a particularly nice structure. Before we introduce
them, we define a class of simplicial complexes that would serve as triangulations for
PL manifolds.

Definition 3.18 (Combinatorial manifold). Let K be a finite simplicial complex. We say
that K is a k-dimensional combinatorial manifold if for every vertex v ∈ K, the link
lk(v,K) is PL homeomorphic either to a PL k-sphere Sk or to a PL k-ball Bk. Vertices,
whose links are PL balls belong to the boundary of the combinatorial manifold K.

Definition 3.19 (PL manifold). LetQ be a polyhedron. We say thatQ is a k-dimensional
PL manifold if, for one, therefore for every, triangulation t : |K| → X, K is a combinato-
rial k-manifold.

Definition 3.20. Let M,Q be PL manifolds with boundary. We say that an embedding
f : M ↪→ Q is a proper embedding if f(∂M) ⊂ ∂Q. In particular, if ∂M = ∅, every
embedding M ↪→ Q is proper.

Unknotting of PL spheres and balls In this paragraph we outline several classical
results about unknotting of spheres and balls inside PL manifolds, which will be nec-
essary for our main proofs. Since we will be working a lot with embeddings, we first
define right type of equivalence between two embeddings.

Definition 3.21. Let P be a polyhedron (not necessarily a manifold). An ambient iso-
topy of P is a PL map H : P × [0, 1] → P , such that.
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1. H(•, t) is a homeomorphism for every t ∈ [0, 1].

2. H(•, 0) is the identity of P .

Definition 3.22 (Unknotting). Let X be a polyhedron and M be a PL manifold with
dimX < dimM . We say that X unknots in M if every two embeddings f, g : X ↪→ M ,
which are homotopic, are also ambient PL isotopic.

Theorem 3.23 ([79] Theorem 9). Sp unknots in Sq, provided p ≤ q − 3.

In fact, the theorem is also true for properly embedded balls, again in codimension
at least three, but we will not need that. A similar fact is proved in [77] in the discussion
after the proof of Theorem 8. We state it here, since we will make use of it later.

Proposition 3.24 (Lickorish). Br unknots in Sp, provided r ≤ p− 3.

Let Sp1 ∪Br . . . ∪Br Spl be the polyhedron, consisting of Sp1 , . . . , Spl, identified along
a copy of Br. By Proposition 3.24, Br unknots in Sp, provided r ≤ p − 3. Hence
Sp1 ∪Br . . . ∪Br Spl is well defined up to homeomorphism and does not depend on
the particular choice of the embeddings of Br into the different spheres, as long as
r ≤ pi − 3 , 1 ≤ i ≤ l.

The following proposition follows from a result by Lickorish. The original statement
was formulated for a wedge of two spheres, but the arguments apply for the wedge of
any finite number of spheres.

Proposition 3.25 (Theorems 8 and 9 in [77]). Sp1 ∨ . . . ∨ Spl unknot in Sq, given pi ≤
q−3 , 1 ≤ i ≤ l. Moreover, Sp1∪Br . . .∪BrSpl unknots in Sq, provided pi ≤ q−3 , 1 ≤ i ≤ l.

General position General position is tool, which allows one to minimize the intersec-
tion between two polyhedra inside a PL manifold. We state here some results, which
we will extensively use in our exposition. For further details we refer the reader to
Chapter 6 of [79].

Definition 3.26. Let P1, P2 ⊂ M be two polyhedra inside a PL m-manifold M . We say
that P1 is in general position with respect to P2 if dim(P1 ∩ P2) ≤ dimP1 + dimP2 −m.

Theorem 3.27. Let P1, P2 ⊂ Int(M) be two polyhedra inside the PL manifold M . Then,
there is an ambient isotopy of M , keeping ∂M fixed, such that the image of P1 is in
general position with respect the image of P2.

There is a similar notion for PL maps.

Definition 3.28. Let f : X →M be a PL map from a polyhedron X to a PL m-manifold
M . Denote by c := m − dimX. We say that f is in general position if for every
i ≥ 2 , dimSi(f) ≤ dimX − (i − 1)c, where Si(f) is the set of i-fold intersection points
of the map f .

Theorem 3.29. Let f : X → M be a PL map from a polyhedron to a PL manifold M .
Then, f is homotopic to a map g : X →M , which is in general position.

As long as we are inside an ambient PL manifold, we can always put polyhedra in
general position to each other, as well as PL maps. In what follows, we will always be
assuming that all given maps are always in general position.



67

Collapses and collapsible polyhedra Let Bq−1 ⊂ Bq be an (q − 1)-ball inside the
q-ball Bq. We say that Bq−1 is a face of the q-ball Bq and denote it by Bq−1 ≺ Bq if there
exists a triangulation t : ∆q → Bq of Bq, such that for some 0 ≤ i ≤ q , t(di∆

q) = Bq−1.
Let A ⊂ X be polyhedra. We say that there is an elementary collapse from X to A

if there exists a ball Bq and a face Bq−1 ≺ Bq of Bq, such that

X = A ∪Bq

Bq−1 = A ∩Bq

That means that we can obtain A from X by erasing a PL ball.

Definition 3.30. Let A ⊂ X be a subpolyhedron of the polyhedron X. We say that X
collapses onto A, denoted by X ↘ A, if there exists a finite sequence A ⊂ Z1 ⊂ Z2 ⊂
. . . ⊂ Zl = X, such that for every 1 ≤ i ≤ l − 1, there is an elementary collapse from
Zi+1 to Zi. In particular, if A is a point, we say that X is collapsible, denoted by X ↘ 0.

Example 3.31.

1. If B is a PL ball, then B ↘ 0.

2. Let X be a polyhedron. Then CX ↘ 0, where CX is the cone over X. Moreover,
if A ⊂ X is any subpolyhedron of X, then CX ↘ CA, i.e. a cone collapses onto
any subcone.

The mapping cylinder of a map Let f : X → Y be a continuous map between the
topological spaces X and Y . We define the mapping cylinder Cyl(f) := (X × [0, 1] ⊔
Y )/((x, 1) ∼ f(x)). If X and Y are polyhedra and f is a PL map, then the mapping
cylinder Cyl(f) is naturally a subpolyhedron of the join X ∗ Y of X and Y . For more
details, we refer the reader to Chapter 2 of [79].

Lemma 3.32. Let m ≥ 2, A = S2m−1 ∨ . . . ∨ S2m−1 and W = Sm ∨ . . . ∨ Sm. Then the
mapping cylinder of any PL map ϕ : A→ W embeds in S3m+2.

Proof. The mapping cylinder of every PL map A→ W is naturally a subset of their join
A ∗ W . We have that A embeds in R2m and W embeds in Rm+1. Therefore, A ∗ W
embeds in R3m+2, and also in S3m+2.

Removing Sp from Sq For p ≤ q, define the standard embedding of Sp into Sq as
follows. First, embed Sp ↪→ Rp+1 as the unit sphere, and then embed Rp+1 ↪→ Rq ⊂
Sq, where the first map is the inclusion of Rp+1 into Rq as the first p + 1 coordinates.
Similarly, define the standard embedding of Sp∨. . .∨Sp into Sq as follows. First, embed
Sp ∨ . . .∨Sp into Rp+1 as in Figure 3.4. Then, embed Rp+1 ↪→ Rq ⊂ Sq in the same way
as in the case a single copy of Sp.

It is well known that if we remove a standardly embedded copy of Sp from Sq (p < q),
the resulting space is homotopy equivalent to Sq−p−1. In fact, a similar statement is also
true if we replace Sp by a wedge Sp ∨ Sp.
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Sp

Sp

Sp

Sp

Rp+1

0

Figure 3.2: Standard embedding of Sp ∨ Sp ∨ Sp ∨ Sp into Rp+1

Proposition 3.33. Let f : Sp ∨ Sp ↪→ Sq (p < q) be the standard embedding. Then
Sq \ f(Sp ∨ Sp) ∼ Sq−p−1 ∨ Sq−p−1.

Proof. Throughout the proof, we will identify the sphere Sq to the one-point compactifi-
cation Rq∪{∞} of Rq. The standard embedding f is ambient isotopic to the embedding
g : Sp∨Sp ↪→ Sq, which sends Sp∨Sp to two parallel affine p-spaces Ap

1, A
p
2 ⊂ Rq, which

intersect at infinity. If we remove g(Sp∨Sp) from Sq, what remains is Rq with two parallel
affine p-spaces removed. Let Rp be the unique linear p-subspace of Rq, which is paral-
lel to A1 and A2, and let Rq−p be its complement. We construct the desired homotopy
equivalence in two steps. First, we project Rq \Ap

1 ∪A
p
2 to Rq−p. The resulting space is

Rq−p with two points removed, which is homotopy equivalent to Sq−p−1 ∨ Sq−p−1. This
completes the proof.

Observe that, since p < q, any two embeddings of Sp ∨ Sp into Sq are homotopic.
Moreover, since p ≤ q − 3, by Proposition 3.25, any two PL embeddings of Sp ∨ Sp into
Sq are also ambient isotopic. Therefore, for p ≤ q − 3, Proposition 3.33 holds for any
embedding Sp ∨ Sp ↪→ Sq.

3.4.1 Regular and relative regular neighbourhoods

In this section we we provide the necessary background on regular and relative regular
neighbourhoods. We first define them in PL manifolds and then give a generalization
to simplicial complexes due to Cohen [16]. For our purposes, all PL manifolds will be
assumed compact.

The way we will usually construct neighbourhoods is by first refining the triangula-
tion by subdivision. However, it will often be the case that the barycentric subdivision
would not be the most convenient choice. We would rather use a more flexible subdi-
vision, called the derived subdivision. We obtain it in the same way as the barycentric
subdivision, but we don’t necessarily pick the barycenters of the simplices when we
are coning over their boundaries, but rather give ourselves the freedom to choose any
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interior point instead. The barycentric subdivision is an example of a derived subdi-
vision. We can also iterated it, obtaining second, third etc. derived subdivisions. We
refer to Chapter I of [79] for a precise definition.

Definition 3.34. Let J be a simplicial complex and K be a subcomplex. We say that
K is full in J if no simplex of J \K has all its vertices in K.

Given a polyhedron P in a manifold Q, it will be important for the construction of
regular neighbourhood of P in Q that we pick a triangulation of Q, such that P is a full
subcomplex. However, this is not a problem due to the following remark.

Remark 3.34.1. Let J be a simplicial complex and K be a subcomplex. Then K ′ is a
full subcomplex of J ′, where J ′ is the first derived subdivision of J .

Remark 3.34.1 permits us to always pick triangulations, so that the polyhedra we
work with are full subcomplexes of the ambient manifold.

Let J be a simplicial complex and X a subset (not necessarily a simplicial com-
plex). The simplicial neighbourhood N(X, J) of X in J is the minimal subcomplex of J
containing all simplices of J , which have non-empty intersection with X.

Suppose P is a subpolyhedron of the polyhedron Z. Pick a triangulation J of Z and
K of P such that K is a full subcomplex of J . The polyhedron |N(K, J ′)| is called a
derived neighbourhood of P in J . From the remark above it follows, that if we pick any
triangulation J of Z and K of P , such that K is a subcomplex of J , then |N(K, J ′′)| is
a derived neighbourhood of K in J , where J ′′ is the second derived subdivision of the
triangulation of J .

Regular neighbourhoods in manifolds

Definition 3.35 (Regular neighbourhood). Let P be a polyhedron in a PL m-manifold
M. A regular neighbourhood of P in M is a polyhedron N , such that:

1. N is a closed topological neighbourhood of P in M .

2. N is a PL m-manifold.

3. N ↘ P .

The following theorem, due to Whitehead, ensures the existence and uniqueness
of regular neighbourhoods in PL manifolds.

Theorem 3.36 ([68] Theorem 1.6.4). If P is a polyhedron in the PL manifold M , then

1. (Existence) Any derived neighbourhood of P in M is a regular neighbourhood of
P in M .

2. (Uniqueness) If N1 and N2 are any two regular neighbourhoods of P in M , then
there is a PL homeomorphism h of N1 onto N2, keeping P fixed.

3. (Uniqueness) If P ⊂ Int(M), then any two regular neighbourhoods of P in Int(M)
are ambient isotopic leaving P ∪ ∂M fixed.
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An important fact about regular neighbourhoods, which we will be using extensively,
is the following.

Theorem 3.37 ([79] Theorem 5). Let P be a polyhedron in an m-manifold M , such that
P ↘ 0. Then, any derived neighbourhood of P in M is an m-ball.

It follows from Theorem 3.36 and Theorem 3.37 that any regular neighbourhood of
a collapsible polyhedron in a manifold is a ball of maximal dimension.

Relative regular neighbourhoods In this section we give an extension to the defini-
tion of a regular neighbourhood for the case when the ambient space is not a manifold.
We also introduce the notion of a relative regular neighbourhood following the exposi-
tion in [16].

Definition 3.38 (Relative regular neighbourhood). Let P,R, V be subpolyhedra of the
polyhedron Z. We say that V is a relative regular neighbourhood of P modR in Z if
there exist a triangulations of (K,L,M, J) of (P,R, V, Z), such that K,L and M are full
subcomplexes of J and M = N(K \ L, J ′) in that triangulation.

We can distinguish the following special cases of this definition:

• When J is a manifold: relative regular neighbourhood in a manifold.

• When L = ∅: regular neighbourhood in a general polyhedron.

• When J is a manifold and L = ∅: it can be shown that the definition coincides
with definition 3.35.

It is clear that relative regular neighbourhoods always exist. Indeed, given P,R ⊂ Z,
pick triangulations (K,L, J) of (P,R, Z), such that K and L are subcomplexes. Then
N(K \ L, J ′′) is a regular neighbourhood of P modR in Z. Moreover, every two regular
neighbourhoods of P modR in Z are ambient isotopic, as ensured by the following
theorem.

Theorem 3.39 ([16] Theorem 3.1). Let V and W be two regular neighbourhoods of
P modR in Z. Then, there is an ambient isotopy H : Z × [0, 1] → Z such that:

1. H(•, 0) is the identity on Z.

2. H keeps P ∪R fixed.

3. H(V, 1) = W .

Let X, Y ⊂ Z be subpolyhedra of the polyhedron Z. We introduce the following
notation

XR := Cl(X \ Y ) ; YR := Cl(X \ Y ) ∩ Y .

Similarly, if K and L are subcomplexes of simplicial complex J , we denote

KR := N(K \ L,K) ; LR := L ∩KR .

The following lemma connects the two notations.
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Lemma 3.40 ([16] lemma 2.3). If X = |K| and Y = |L| then XR = |KR| and YR = |LR|.

The next lemma ensures that if f : Z1 → Z2 is a PL map between polyhedra, and
Y ⊂ X ⊂ Z2 are subpolyhedra of Z2, then, under mild conditions on f , the preimage of
a relative regular neighbourhood of X modY in Z2 is a relative regular neighbourhood
of f−1(X)mod f−1(Y ) in Z1. The lemma is stated for simplicial complexes, but can be
applied for polyhedra simply by picking appropriate triangulations.

Lemma 3.41 ([16] lemma 2.14). Let J1, J2 be simplicial complexes and f : J1 → J2
be a simplicial map. Let J ′

1, J
′
2 be first derived subdivisions of J1 and J2, such that

f : J ′
1 → J ′

2 is also simplicial. If K and L are subcomplexes of J2, such that L ⊂ K and
f−1(LR) = (f−1(L))R. Then

1. f−1N(K \ L, J ′
2) = N(f−1(K) \ f−1(L), J ′

1)

2. f−1∂N(K \ L, J ′
2) = ∂N(f−1(K) \ f−1(L), J ′

1)

Observe that if L = ∅, i.e. when we have absolute regular neighbourhood as op-
posed to relative, the condition f−1(LR) = (f−1(L))R becomes vacuous.

3.4.2 Mapping cylinder neighbourhoods

In this section, we prove the following propositions, which will be important for the proof
of Theorem 3.7.

Proposition 3.42. Let m ≥ 2. Let A = S2m−1 ∨ . . . ∨ S2m−1, W = Sm ∨ . . . ∨ Sm,
ϕ : A → W be a PL map and Z := Cyl(ϕ) be the mapping cylinder of ϕ. Then, Z is a
regular neighbourhood of W .

From Proposition 3.42 and the uniqueness theorem for regular neighbourhoods in
polyhedra, it will follow that any regular neighbourhood N of W in Z, is PL homeomor-
phic to Z. While Z is trivially a topological neighbourhood of W , it is not clear from
definition 3.38 that it is a regular neighbourhood. In order to prove Proposition 3.42,
we need to introduce some further notions.

Definition 3.43. A closed subset U ⊂ Z is called a mapping cylinder neighbourhood
of W in Z if there exists a map f : ∂U → A 6 and a homeomorphism h : U → Cyl(f),
such that h|∂U∪W = 1.

In other words, a mapping cylinder neighbourhoods ofW is a subpolyhedron U ⊂ Z,
which is a topological neighbourhood of W and is homeomorphic to the mapping cylin-
der of some map. The following theorem ensures the uniqueness of such neighbour-
hoods.

Theorem 3.44 (Theorem 1 in [45]). Let U,W be mapping cylinder neighbourhoods of
W in Z. Then, there is a homeomorphism h : U → W , which leaves a neighbourhood
of A fixed.

6For a subset U ⊂ Z, when no confusion can occure, we will denote by ∂U the topological boundary
of U in Z.
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Proof of Proposition 3.42. Consider a regular neighbourhood M ⊂ Z of W in Z. By
definition M ↘ W , and in particular, the collapse gives us a map ψ : ∂M → W , so that
M is the mapping cylinder Cyl(ψ). By Definition 3.43, M is a mapping cylinder neigh-
bourhood of W in Z. Since Z is the mapping cylinder of a map with target W , the same
is true for Z as well. By Theorem 3.44, for any two mapping cylinder neighbourhoods
M1,M2 of W in Z, there exists a homeomorphism h : M1 → M2, which keeps a small
neighbourhood of W fixed. In particular, that means that M ∼= Z, i.e. M is smaller copy
of Cyl(ϕ) inside Z, and so is any other regular neighbourhood of W in Z.

Proposition 3.45 (Proposition 7.5 in [16]). Let M1 and M2 be regular neighbourhoods
of W in Z, such that M2 ⊂ Int(M1).7 Then M1 \ Int(M2) ∼= ∂M1 × [0, 1].

The proposition implies that if M is any regular neighbourhood of W in Z, then
Z \ Int(M) ∼= ∂M × [0, 1] ∼= A× [0, 1].

3.4.3 Linking scaffolds

In this section, we give a construction for the linking scaffolds, which we use in the
proof of Theorem 1.15. We first recall their definition.

Definition 3.10. Let k, ℓ be nonnegative integers. We call a simplicial complex L a
(k, ℓ)-linking scaffold if the following conditions hold:

• Sk ⊔ Sℓ ⊆ L.

• There exists a PL embedding L ↪→ Sk+ℓ+1.

• For any PL embedding f : L ↪→ Sk+ℓ+1, the spheres f(Sk) and f(Sℓ) are linked
with linking number ±1.

For our purposes, the difference between the positive and negative linking number
is not essential, as it amounts to a change in the orientations of the copies of Sk and
Sℓ inside L.

In [70] the authors present a simplicial complex P , which has similar properties to a
linking scaffold.

The construction in [70] Let k, ℓ ∈ Z be such that 0 ≤ ℓ < k and let m = k + ℓ + 1.
Let ∆m+1 be the (m + 1)-simplex, spanned by the vertices p0, . . . , pm+1, by ∆k+1 the
(k + 1)-simplex, spanned by the vertices p0, . . . , pk+1 and by ∆ℓ+1, the (ℓ + 1)-simplex
spanned by the vertices pk+2, . . . pm+1.

Let skk∆m+1 denote the k-skeleton of ∆m+1 and let C(skℓ∆m+1; pm+2) denote the
cone over the ℓ-skeleton of ∆m+1 with apex pm+2. We define
P (k, ℓ) := skk(∆

m+1) ∪skℓ∆m+1 C(skℓ∆
m+1; pm+2). In other words, P (k, ℓ) is the simpli-

cial complex, obtained from the k-skeleton of ∆m+1 together with the cone over the
ℓ-skeleton of ∆m+1.

Lemma 3.46 (Lemma 1.1 in [70]). There exists a PL map f : P (k, ℓ) → Rm and dis-
tinguished spheres Sk

P , S
ℓ
P ⊂ P (k, ℓ) such that fSk

P⊔Sℓ
P

is an embedding and f(Sk
P ) and

f(Sℓ
P ) are linked with linking number ±1 inside Rm.

7In the case when M1 = Z, by M2 ⊂ Int(M1) we mean that M2 ⊂ Z.
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We briefly outline the construction of the map f : P (k, ℓ) → Rm, without proving any
of its properties. Consider an m-simplex ∆m

q ⊂ Rm with vertices q1, . . . , qm+2. Let q0
be the barycenter of ∆m

q and C(skk−1(∆
m
q ); q0) be the cone in Rm with vertex q0 over

the (k − 1)-skeleton of ∆m
q . Let h1 : skk(∆m+1) → skk(∆

m
q ) ∪ C(skk−1(∆

m
q ); qo) be the

unique PL homeomorphism, which is linear on each simplex of skk(∆m+1) and such
that h1(pi) = qi , i = 0, . . . ,m+ 1.

Let b be the barycenter of (k + 1)-simplex in Rm with vertices q0, . . . , qk+1. Let
h2 : C(skℓ(∆

m+1); pm+2) → Rm be the map, which is linear on each simplex of the cone
C(skℓ(∆

m+1); pm+2) and such that h2|skℓ(∆m+1) = h1|skℓ(∆m+1) and h2(pm+2 = b. In [70] it
is shown that the map h2(C(skℓ(∆m+1)); pm+2) \ Int(∆ℓ+1)) is a PL embedding and that
h2(C(skℓ(∆

m+1); pm+2) \ Int(∆ℓ+1)) ∩ h1(skk(∆m+1)) is a subset of h1(skℓ(∆m+1)), which
implies that the following map is a PL embedding.

h1 ∪ h2 : skk(∆m+1) ∪ (C(skℓ(∆
m + 1); pm+2) \ Int(∆ℓ + 1)).

Next, denote by d the barycenter of the k-simplex in Rm with vertices q0, . . . , qk
and by ∆ℓ+1

q ⊂ Rm the (ℓ + 1)-simplex with vertices b, qk+2, . . . , qm+1. Let g : ∆ℓ+1 →
C(∂∆ℓ+1

q ; d) be the PL homeomorphism, which maps an interior point c ∈ Int(∆ℓ+1)
onto d, g(pi) = qi , i = k + 2, . . . ,m + 1 and which is linear on each simplex of the
triangulation of ∆ℓ+1 with vertices c, pm+2, pk+2, . . . , pm+1.

Finally, we define the map f : P (k, ℓ) → Rm ↪→ Sm as f = h ∪ g. For the proof that
it has the desired properties, we refer to [70].

Remark 3.46.1. One could check that g(Int(∆ℓ+1)) ∩ im(h) = g(∆ℓ+1) ∩ h(∆k) = {d}.
In fact, that is the only self-intersection of the map f , as we defined it. Therefore, the
restriction f : P (k, ℓ) \ Int(∆ℓ+1) → Sm will be an embedding. Moreover, Lemma 1.4 in
[70] states that for any embedding g : P (k, ℓ) \ Int(∆ℓ+1) → Sm, the spheres g(Sk) and
g(Sℓ) have an odd linking number inside Sm.

The linking scaffolds L(k, ℓ) and link(k, ℓ)

Consider the simplices ∆k,∆ℓ+1 ⊂ P (k, ℓ). We obtain the simplicial complex L(k, ℓ)
from P (k, ℓ) in two steps.

1. Subdivide ∆k by coning over its boundary with vertex xk, and ∆ℓ+1 by coning over
its boundary with vertex xℓ.

2. Identify the newly introduced vertices xk and xℓ.

We define the distinguished spheres Sk
L ⊂ L(k, ℓ) to be the same as the distin-

guished spheres of P (k, ℓ) with the simplex ∆k ⊂ Sk
P being subdivided. In order to

define the simplicial complex link(k, ℓ), we start with L(k, ℓ) and glue to Sℓ
L a cylinder

Sℓ × [0, 1].

link(k, ℓ) = L(k, ℓ) ∪Sℓ
L∼(Sℓ×{0}) (S

ℓ × [0, 1]).

The first main result of this section is the following lemma.

Lemma 3.47. Let k, ℓ ∈ Z, 0 ≤ ℓ < k. Then, the simplicial complexes L(k, ℓ) and
link(k, ℓ) are (k, ℓ)-linking scaffolds.
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Proof. We first prove the lemma for L(k, ℓ). Recall that we obtained it from P (k, ℓ)
by identifying the points xk and xℓ, which are interior for the simplices ∆k and ∆ℓ+1.
Starting with the restricted map f : P (k, ℓ) \ (Int(∆k) ∪ Int(∆ℓ+1)) → Sm, we define a
map g : L(k, ℓ) → Sm by setting g(xk = xl) = d, where d is the single self-intersection
point of the map f : P (k, ℓ) → Sk and extending linearly on Int(∆k) ∪ Int(∆ℓ+1). It is
easy to check, that the map g : L(k, ℓ) → Sm is an embedding. Moreover, following
Lemma 3.46, g(Sk) and g(Sℓ) are linked in Sm with linking number ±1.

What remains to be seen is that for any other embedding embedding h : L(k, ℓ) ↪→
Rm, the spheres h(Sk) and h(Sℓ) will also have linking number ±1 inside Sm. Let
Dℓ+1 ⊂ L(k, ℓ) be the disc, which bound Sℓ. By construction, Sk ∩ Dℓ+1 = {xk = xℓ},
therefore, for any embedding h ↪→ L(k, ℓ) ↪→ Rm, the images h(Sk) and h(Dℓ+1) will
intersect in a single point. Following Lemma 1.4 in [70], h(Sk) and h(Sℓ) will be linked
with an odd linking number, which means that h(Sk) and h(Dℓ+1) have to intersect
transversally, i.e. the following picture is not allowed.

h(∆k) h(∆`+1)

h(xk)

h(x`)

h(S`)

h(Sk)

On the other hand, the linking number cannot be more than 1 (in absolute value),
since h(Sk) and h(Dℓ+1) only intersect once. This concludes the proof for L(k, ℓ).

The proof that link(k, ℓ) is also a linking scaffold is a simple extension of the above
arguments.

For the proof of Theorem 1.15 we would need a stronger statement, which requires
further assumptions on k and l.

Lemma 3.48. Let ℓ ≥ 2 and k = 2ℓ+ 1. Let Sk
L, S

ℓ
L be the distinguished spheres inside

link(k, ℓ). Then, there exists an embedding f : link(k, ℓ) ↪→ T ⊂ Rk+ℓ+1, where T is
a simplicial complex, which is PL homeomorphic to Sk × ∆ℓ+1. Moreover, it has the
following properties:

• f(Sℓ
L) ⊂ ∂T

• f(link(k, ℓ)) ∩ ∂T = f(Sℓ
L)

Proof. We first construct an embedding of L(k, ℓ) into Sk × ∆ℓ+1 ⊂ Rk+ℓ+1, where
the copy of Sk is standardly embedded into Rk+ℓ+1. Let g̃ : L(k, ℓ) ↪→ Rk+ℓ+1 be any
embedding. By Theorem 3.23, there is an ambient isotopy ξ, taking g̃(Sk

L) to the stan-
dard embedding Sk ↪→ Rk+ℓ+1. Let ξ̃ be the final homeomorphism Rk+ℓ+1 of ν. Then,
ν̃ ◦ g̃ : L(k, ℓ) ↪→ Rk+ℓ+1 is an embedding of L(k, ℓ), which embeds Sk

L standardly.
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Next, by compactness, there exists a ball Bk+ℓ+1 ⊂ Rk+ℓ+1, such that ν̃ ◦ g̃(L(k, ℓ) ⊂
Int(Bk+ℓ+1). By choosing an appropriate triangulation of ∆ℓ+1, we can use the inclusion
Bk+ℓ+1 ∼= Bk × ∆ℓ+1 ⊂ Sk × ∆ℓ+1, which gives us the desired embedding, which we
denote by g : L(k, ℓ) ↪→ T .

Let h : Sℓ
L → ∂T be an embedding, so that the spheres h(Sℓ) and g(Sk

L) are linked in
Rk+ℓ+1 with the same linking number as the spheres g(Sℓ

L) and g(Sk
L). By connectivity,

the maps g|Sℓ
L
, h : Sℓ

g → T are homotopic. Let H : Sℓ
L × [0, 1] → T be a homotopy

between them, which, by general position, we may assume to be an embedding of
Sℓ
L × [0, 1] into T .

The image H(Sℓ
L × [0, 1]) will intersect g(X) in a finite set of isolated points, which

will be disjoint from H(Sℓ
L × ∂[0, 1]). Let ϵ > 0 be small enough, so that H(Sℓ

L × [ϵ, 1]) ∩
g(X) = ∅. The embeddings g|Sℓ

L
, H|Sℓ

L×{ϵ} : S
ℓ → T are isotopic and by the result

of Hudson and Zeeman [36], since the codimension is at least three, they are also
ambient isotopic. Let µ be an ambient isotopy of T between g|Sℓ

L
and H|Sℓ

L×{ϵ} and let µ̃
be the final homeomorphism of µ. We define the desired embedding f : link(k, ℓ) → T
as fL(k,ℓ) := µ̃(g(L(k, ℓ))) and fSℓ×[0,1] := µ̃(H(Sℓ

L × [ϵ, 1])).

Wedge linking scaffolds

We now present a generalisation of the linking scaffolds. Let Y := Sℓ
1 ∨ Sℓ

2 and
Σ = Sk

1 ∨ Sk
2 .

Definition 3.49. Let k, ℓ be nonnegative integers. We call a simplicial complex L a
(k, ℓ)-wedge linking scaffold if the following conditions hold:

• Y ⊔ Σ ⊂ L.

• There exists a PL embedding L ↪→ Sm, where m = k + ℓ+ 1.

• If f : L ↪→ Sm is any PL embedding, then the spheres f(Sk
1 ) and f(Sℓ

1), are linked
in Sm with linking number ±1, the spheres f(Sk

2 ) and f(Sℓ
2), are linked in Sm with

linking number ±1 and f(Sk
i ) is not linked with f(Sℓ

j) if i ̸= j.

We now present an explicit construction of a wedge linking scaffold for a pair (k, ℓ),
based on the construction of a linking scaffold. In fact, we will simply take two linking
scaffolds L1(k, ℓ) and L1(k, ℓ), one for each pair (Sk

1 , S
ℓ
1) and (Sk

2 , S
ℓ
2) and glue them

together. More precisely, we define the wedge linking scaffold Lw(k, ℓ) as

Lw(k, ℓ) = L(k, ℓ)1 ∪p10=p20, p
1
m+1=p2m+1

L(k, ℓ)2 (3.4)

Here p10, p
2
0, p

1
m+1 and p2m+1 are vertices from L(k, ℓ)1 and L(k, ℓ)2 such that p10 ∈

Sk
L1
, p1m+1 ∈ Sℓ

L1
, p20 ∈ Sk

L2
, p2m+1 ∈ Sℓ

L2
. In a similar way, we define the wedge linking

scaffold linkw(k, ℓ).

linkw(k, ℓ) = Lw(k, ℓ) ∪Sℓ
L1

∨Sℓ
L2

∼(Sℓ∨Sℓ×{0}) ((S
ℓ ∨ Sℓ)× [0, 1]).

The simplicial complexes Lw(k, ℓ) and linkw(k, ℓ) have very similar properties to
L(k, ℓ) and link(k, ℓ).
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Lemma 3.50. Let k, ℓ ∈ Z, 0 ≤ ℓ < k. Then, the simplicial complex Lw(k, ℓ) is a
(k, ℓ)-wedge linking scaffolds.

Proof. The lemma follows from Lemma 3.47. More precisely, first it is clear that Lw(k, ℓ)
embeds into Sm. Moreover, observe that the only points the two copies
X1(k, ℓ), X2(k, ℓ) ⊂ Lw(k, ℓ) share, are the the base points of the two wedges Sk

1 ∨ Sk
2

and Sℓ
1, S

ℓ
2. That implies that, by construction, for any embedding f : Lw(k, ℓ) → Sm, the

sphere f(Sk
1 ) and f(Sℓ

1) are linked inside Sm with linking number ±1 and the same is
true for the spheres f(Sk

2 ) and f(Sℓ
2). On the other hand, if we consider any other pair

of spheres, say Sk
1 and Sℓ

2, if ∆k+1
1 and ∆ℓ+1

2 are the discs they bound inside Lw(k, ℓ),
then f(∆k+1

1 ) ∩ ∆ℓ+1
2 = ∅, which implies that f(Sk

1 ) and f(Sℓ
2) cannot be linked. That

concludes the proof.

As a consequence of Lemma 3.50 and Lemma 3.48, we also obtain the following.

Lemma 3.51. Let ℓ ≥ 2 and k = 2ℓ+ 1. Let (Sk ∨ Sk)L, (S
ℓ ∨ Sℓ)L be the distinguished

wedges inside linkw(k, ℓ). Then, there exists an embedding f : linkw(k, ℓ) ↪→ T ⊂
Rk+ℓ+1, where T is a simplicial complex, which is PL homeomorphic to (Sk∨Sk)×∆ℓ+1.
Moreover, it has the following properties:

• f((Sℓ ∨ Sℓ)L) ⊂ ∂T

• f(linkw(k, ℓ)) ∩ ∂T = f((Sℓ ∨ Sℓ)L)
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3.5 The proof of Lemma 3.13

In this section we prove the following technical lemma, which was crucial for the proofs
of the codimension two cases of Theorem 1.14 and Theorem 1.15.

Lemma 3.13. Let K be a finite simplicial complex, τ ∈ K a maximal ℓ-simplex of K and
d ≥ ℓ + 3 an integer. Let K̃ := K ∪τ ∆

ℓ+1 be the complex, obtained from K by coning
over τ . Then, there is an embedding K̃ ↪→ Sd if and only if there is an embedding
K ↪→ Sd.

Proof. In one direction the lemma is trivial, so we only consider the opposite direction.
Let f : K ↪→ Sd be an embedding. We are going to construct an embedding
F : K̃ ↪→ Sd. Let N = N(f(τ), Sd)modf(∂τ) be a relative regular neighbourhood of f(τ)
modulo f(∂τ) in Sd. Since, f(τ) is a PL ℓ-ball in Sd, N is a d-ball, with the property that
N∩f(K\Int(τ)) = ∂N∩f(K\Int(τ)) = f(∂τ), i.e. f(τ) is a standardly embedded ℓ-ball
inside the d-ball N . Since d ≥ ℓ+3. By Theorem 9 in Chapter 4 of [79], f(τ) unknots in
N . That implies that there is an ambient isotopy H : N × [0, 1] → N , keeping ∂N fixed,
which takes f(τ) to the cone H1(f(τ)) = C(f(∂τ)) ⊂ N . Let p ∈ Int(N) be a point,
disjoint from H1(f(τ)). Then, the cone C(H1(f(τ), p) with apex p is PL homeomorphic
to the standard (ℓ + 1)-simplex. We define the desired embedding F : K̃ ↪→ Sd by
F |K\Int(τ) := f and F (∆ℓ+1) := C(H1(f(τ), p).
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3.6 The proof of theorem 3.7

First, we remind our notation. Let A := S2m−1 ∨ . . . ∨ S2m−1, W := Sm ∨ . . . ∨ Sm and
X := DCyl(ϕ; f) be the double mapping cylinder of the maps ϕ : A→ W and f : A→ Y ,
where Y is either Sm or Sm∨Sm, depending on whether m is even or odd. All the proofs
we present work in the same way for both cases. We consider A,W and Y as being
included into X as the central section, the lower rim and the upper rim of the double
mapping cylinder. Let Σ be either S2k+1 or S2k+1 ∨ S2k+1, depending on whether m is
even or odd. Once again all the proofs will work for both cases. We are also given
a standard embedding Σ ↪→ S3k+2, as constructed in Section 3.4, so we consider Σ
as a subset of S3k+2 under this embedding. Let Q denote S3m+2 with a small open
neighbourhood Int(N(Σ)) of Σ removed.

We start with a map f : X → Q, which is an embedding on A ⊂ X, and we want
to homotope it to an embedding, such that the homotopy keeps A fixed. Moreover, by
general position we can assume f |W and f |Y to be embeddings as well.

The proof of the theorem is essentially a combination of Proposition 3.52 and Propo-
sition 3.55. The idea is to first construct small regular neighbourhoods of the W and
Y in X, and homotope f to a map g : X → Q, which embeds those neighbourhoods in
Q. Thus, we make sure that S(g) will be disjoint from the upper and lower rim of the
double mapping cylinder X. Most importantly, being away from W and Y , S(g) will be
contained in a part of X, which is homeomorphic to A × [0, 1]. Once we have that, we
can use the particularly nice structure of A× [0, 1] and resolve all the self-intersections
of the map g, thus ending up with the desired embedding.

Proof of theorem 3.7. Let MY ,MW be the regular neighbourhoods of Y and W in X,
given by proposition 3.52. Let NY , NW be regular neighbourhoods of f(Y ) and f(W ) in
Q such that MY = f−1(NY ) and MW = f−1(NW ). From the proposition, we know that f
is homotopic to a map g : X → Q, such that, g|MY

is a proper embedding into NY , and
g|MW

is a proper embedding into NW . Let X̃ := X \ (Int(MY ) ∪ Int(MW )). By remark
3.53.2, we can assume that S(g) ∩ ∂X̃ = ∅, i.e. the self-intersections of the map g are
away from ∂X̃.

Define Z := Q \ (Int(NY ) ∪ Int(NW )) and observe, that g|X̃ can be regarded as a
map g|X̃ : X̃ → Z. By Lemma 3.54, Z is a (3m + 2)-dimensional (m − 1)-connected
PL manifold. Therefore, we can apply Proposition 3.55 to the map g|X̃ and homotope
it to an embedding g1 : X̃ ↪→ Z. Observe that, by using Z as a target, we ensure that
the homotopy H : g ∼ g1 does not affect the neighbourhoods MY and MW , which were
already embedded. Finally, we define the embedding X ↪→ Q to be equal to g on
MY ∪MW and to g1 on X̃. This is consistent, since the homotopy H preserves small
neighbourhoods of ∂X̃, so g and g1 coincide on ∂X̃. We illustrate the construction on
Figure 3.6.

3.6.1 Pushing S(f) away from the boundary of X

We first show how to homotope f to a map g, which is an embedding when restricted
to small neighbourhoods of W and Y in X. Once we have that, in the next section
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W

Y

MW

MY

X̃

Q

g|MY

g|MW

g1

NW

NY

g(MY )

g(MW )
g1(X̃)

Figure 3.3: The final embedding

we carefully resolve the remaining self-intersections of g. We begin with the following
proposition.

Proposition 3.52. There exists a PL map g : X → Q and regular neighbourhoods
MW ,MY of W and Y in X, with the following properties:

• g is homotopic to f .

• g|W = f |W and g|Y = f |Y .

• g|MW
is an embedding.

• g|MY
is an embedding.

• S(g) ∩ (MY ∪MW ) = ∅.

We will construct the map g in several steps. First, we need the following lemma.

Lemma 3.53. There exist a regular neighborhood NW of f(W ) in S3m+2, which misses
Σ, a small regular neighborhood MW of W in X, and an embedding m : MW ↪→ NW

that agrees with f on W (i.e., m|W = f |W ) and such that m−1(NW ) =MW ,m
−1(∂NW ) =

∂MW .
Moreover, the restrictions m|∂MW

and f∂MW
are homotopic as maps to ∂NW .

Proof. By lemma 3.32 there is an embedding g : X ↪→ S3m+2. Moreover, by proposition
3.25, we know that g|W and f |W are ambient isotopic. Let h : S3m+2 ∼= S3m+2 be the
final homeomorphism of this isotopy; in particular g|W = h ◦ f |W .

Since f is in general position, f(W )∩f(Σ) = ∅. Therefore, g(W ) = h◦f(W ) misses
h◦f(Σ). Pick a regular neighbourhood ÑW of g(W ) in S3m+2 small enough, so it misses
h◦f(Σ). Pick triangulations of X and S3m+2, so that g is simplicial. Let M̃W = g−1(ÑW ).
By Lemma 3.41 (for L = ∅), M̃W is a regular neighbourhood of W in X.

Then NW := h−1(ÑW ) is a regular neighbourhood of h−1(g(W )) = f(W ) in S3m+2

that misses
h−1(h(f(Σ))) = f(Σ), and m̃ := h−1 ◦g|M̃W

is an embedding of M̃W into NW that agrees
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with f on W . Moreover, by construction, it satisfies m̃−1(NW ) = M̃W , m̃−1(∂NW ) =

∂M̃W .

Let M := f−1(NW ). By lemma 3.41, f−1(∂NW ) = ∂MW ,8 and both MW and M̃W

are regular neighborhoods of W in X. By the uniqueness theorem for regular neigh-
bourhoods (theorem 3.39), MW and M̃W are ambient isotopic in X, keeping W fixed.
Let ℓ : X → X be the final homeomorphism of this isotopy, i.e., ℓ(MW ) = M̃W , with the
restriction of ℓ to W being the identity. Set m := m̃ ◦ ℓ. Then m is an embedding of MW

into NW that agrees with f on W , and m−1(NW ) =MW , m−1(∂NW ) = ∂MW .

Finally, we claim that the restriction m|∂MW
is homotopic to f |∂MW

as a map into
∂NW . To see this, first note that m and f are homotopic as maps MW → NW . This is
true, since MW ↘ W , NW ↘ f(W ), and f(W ) = m(W ). Let H : MW × [0, 1] → NW

be a PL homotopy such that HW (•, t) = f , 0 ≤ t ≤ 1. Consider its restriction H|∂MW
,

which gives a homotopy f |∂MW

∼= m|∂MW
→ NW . By general position, H(∂MW × [0, 1])

misses f(W ), as well as a small regular neighbourhood N1 of it. By Corollary 2 to
Theorem 8 in [79], NW \ Int(N1) ∼= ∂NW × [0, 1]. Let r : NW \ Int(N1) → ∂NW be a
deformation retraction. Then, the composition r◦ (H|∂MW×[0,1]) of the retraction with the
original homotopy gives us the desired homotopy between m|∂MW

and f |∂MW
, as maps

to ∂NW .

Remark 3.53.1. The same argumentation also works for the lower rim Y ⊂ X. Namely,
there exist a regular neighborhood NY of f(Y ) in S3m+2, which misses Σ, a small
regular neighborhood MY of Y in X, and an embedding mY : MY ↪→ NY that agrees
with f on Y (i.e., mY |Y = f |Y ) and such that m−1(NY ) =MY , (m

Y )−1(∂NY ) = ∂MY .

Proof of Proposition 3.52. First, observe that by proposition 3.45, X̃ := X \ (Int(MY )∪
Int(MW )) ∼= A× [0, 1]. Let f̃ : X̃ → Q be the restriction of f to X̃.

In order to define g, we will separate X in several pieces, and define g on each one,
so that we can fit them all into one map with the desired properties. First, define g
on MY and MW to be equal to their embeddings into Q, as given by lemma 3.53 and
remark 3.53.1.

Next, let HW : (∂MW = A) × [0, 1] → ∂NW ⊂ Q and HY : (∂MY = A) × [0, 1] →
∂NY ⊂ Q be PL homotopies between f |∂MW

∼ g|∂MW
and f |∂MY

∼ g|∂MY
, respectively,

as provided by lemma 3.53 and remark 3.53.1.

Now, for some ϵ > 0, divide the interval [0, 1] = [0, ϵ]∪ [ϵ, 1− ϵ]∪ [1− ϵ, 1], which also
gives us a decomposition X̃ = X̃1∪X̃2∪X, where each of the three pieces is a smaller
copy of the cylinder A× [0, 1] inside X̃. In particular, each of those small cylinders is PL
homeomorphic to X̃. Denote by H : X ∼= X̃ the PL homeomorphism, which stretches
the middle segment to the whole cylinder X̃. Finally, we define g|X̃1

:= HY , g|X̃2
:= HW

and g|X := f̃ ◦H. This gives us a map g : X → Q, which, by construction, is homotopic
to f . We illustrate the map g on Figure 3.6.1.

Observe that the image of HW is contained in ∂NW , therefore it is disjoint from
Int(NW ), and the same is true for HY and ∂NY . Moreover, from the way we constructed
MY and MW , S(f̃) ∩ (Int(MW ) ∪ Int(MY )) = ∅). We thus see that g|Int(MW )∪Int(MY ) is

8Here ∂MW denotes the topological boundary of MW in X.
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f̃ ◦H

Figure 3.4: The map g

an embedding. Let MY ⊂ Int(MY ) and MW ⊂ Int(MW ) be smaller regular neigh-
bourhoods of Y and W in X. Then, g|MY ∪MW

is an embedding. Observe also that,
by construction, the property S(g) ∩ (MW ∪MY ) = ∅ is satisfied. This concludes the
proof.

Remark 3.53.2. Let MY ,MW be the regular neighbourhoods of Y and W in X, given
by Proposition 3.25, which the map g : X → Q embeds into Q. Consider smaller
regular neighbourhoods M̃Y ⊂ Int(MY ), M̃W ⊂ Int(MW ) of Y and W in X. They
will have the same properties as the original ones. In particular there will be regular
neighbourhoods ÑY ⊂ Int(NY ), ÑW ⊂ Int(NW ) of g(Y ) = f(Y ) and g(W ) = f(W ) in
Q such that M̃Y = g−1(ÑY ) and M̃W = g−1(ÑW ) and g|M̃Y ∩M̃W

will be an embedding.
Now, if we denote X̃ := X \ (Int(M̃Y ) ∪ Int(M̃W )), by removing those smaller regular
neighbourhoods, we ensure that the map g embeds also a small regular neighbourhood
of ∂X̃, namely MY \ Int(M̃Y ) and MW \ Int(M̃W ).

Lemma 3.54. Let NY and NW be regular neighbourhoods of g(Y ) = f(Y ) and g(W ) =
f(W ) in Q. Then Z := Q \ (Int(NY ) ∪ Int(NW )) is a (3m + 2)-dimensional (m − 1)-
connected PL manifold with boundary.

Proof. The fact that Z is a PL manifold is guaranteed by Lemma 17 in [79].
In order to see that Z is (m − 1)-connected, first observe that, since NY ↘ f(Y )

and NW ↘ f(W ), Z is homotopy equivalent to Z̃ := Q \ (f(Y ) ∪ f(W )). Now, let
ψ : Sm−1 → Z̃ be a map. Since Z̃ ⊂ Q, we can think about ψ as a map ψ : Sm−1 → Q.
Since Q is (m − 1)-connected, there is a map Ψ: Dm → Q such that Ψ|∂Dm = ψ.
By general position, Ψ(Dm) ⊂ Q will miss f(A) ∩ f(W ), so Ψ can also be seen as
a map Ψ: Dm → Z̃ with Ψ|∂Dm = ψ : Sm−1 → Z̃. Therefore ψ is nullhomotopic, Z̃ is
(m− 1)-connected and so is Z. That concludes the proof.

3.6.2 Resolving the singularities of g

We first prove a slightly more general statement, which contains the core arguments
we need. Following the notation we have already established, we set A = S2m−1∨ . . .∨
S2m−1.
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Proposition 3.55. Let g : A×[0, 1] → Y be a PL map, where Y is a (3m+2)-dimensional
(m − 1)-connected PL manifold and S(g) ∩ A × ∂[0, 1] = ∅. Then g is homotopic to an
embedding. Moreover, the homotopy can be chosen so, that it keepsA×([0, ϵ]∪[1−ϵ, 1])
fixed, for some sufficiently small ϵ > 0.

Observe that, since S(g)∩A×∂[0, 1] = ∅, there exists a Ĩ ⊂ I such that S(g)∩I ⊂ Ĩ.
Our strategy for the proof of Proposition 3.55 is to use the fact that A × [0, 1] has

a particularly nice structure. It consists of a finite number of cylinders S2m−1 × [0, 1],
each of which is a PL manifold, glued along a common line segment. We divide the
construction into two separate lemmas, but before we state and prove them, we begin
with the following remark.

Remark 3.55.1. Since dim(A × [0, 1]) = 2m and dimY = 3m + 2 (m ≥ 5), in general
position, the map g does not have any triple intersection points. Therefore, if we pick
triangulations of A × [0, 1] and Y , so that g is simplicial and S(g) is a subcomplex of
A × [0, 1], then S(g) consists of pairs of simplices ξ1, ξ2 ∈ A × [0, 1], such that g(ξ1) =
g(ξ2). Thus, the singular set S(g) of g decomposes into a union of the following:

• For every cylinder σ = S2m−1× [0, 1], the self-intersection set Sσ := S(g)∩σ of g|σ

• For every pair of cylinders σ, τ , the intersection set Sστ := g−1(g(σ)∩g(τ)) ⊂ σ∪τ .

Moreover, any two of those subsets can only meet on I := {∗} × [0, 1], which by
general position, we can assume to be embedded by the map g. That means that,
while for any p ∈ I , g−1(g(p)) = {p}, it is possible that there is a sequence of double
points of g, none of which belongs to I, which converges to p. Therefore, it will be
important that all the homotopies we construct would be keeping I fixed.

Remark 3.55.2. Using the same argumentation as in the proof of Proposition 3.55, we
can prove that any map g : A→ Y , where Y is a (3m+2)-dimensional (m−1)-connected
PL manifold, is homotopic to an embedding.

The first lemma, we are going to prove, deals with the self-intersection of the map
g, restricted to a single cylinder S2m−1 × [0, 1] ⊂ A× [0, 1].

Lemma 3.56. Let σ := S2m−1 × [0, 1] be one of the cylinders of A× [0, 1]. Then, we can
homotope g to a map g1 : A× [0, 1] → Y , such that g1|σ is an embedding, S(g1) ⊂ S(g).
Moreover, the homotopy between g and g1 can be chosen so that it is constant outside
σ and on I ∪S2m−1× ([0, ϵ]∪ [1− ϵ, 1]), for some sufficiently small ϵ > 0. That means we
can resolve all self-intersections of g|σ without introducing any new self-intersections
for the map g.

Proof. Pick triangulations of A × [0, 1] and Y , so that g is simplicial, and S(g) is a
subcomplex of A× [0, 1]. Since dim(Sσ ∪ Ĩ) = m− 2, and σ is (2m− 2)-connected, the
inclusion Sσ ∪ Ĩ ↪→ σ is nullhomotopic. By general position, we can embed the cone
C(Sσ∪ Ĩ) over Sσ∪ Ĩ in σ, so that C(Sσ∪ Ĩ)∩(S(g)\Sσ) ⊂ Ĩ. Consider g(C(Sσ∪ Ĩ)) ⊂ Y .
Since Y is (m−1)-connected and dim g(C(Sσ∪Ĩ)) ≤ m−1, the inclusion g(C(Sσ∪Ĩ)) ↪→
Y is nullhomotopic. By general position, we can embed the cone C := Cg(C(Sσ ∪ Ĩ))
in Y , so that C ∩ g(S(g) \ Sσ) ⊂ g(Ĩ) and C ∩ g(Cl(A× [0, 1] \ σ)) = g(Ĩ).9

9Here we also use the fact that by general position g|I is an embedding.
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LetN be a relative regular neighbourhood of Cmod g(Ĩ) in Y , which is small enough,
so that:

• N ∩ g(S(g) \ Sσ) ⊂ Ĩ

• N ∩ g(Cl((A× [0, 1]) \ σ) ⊂ g(Ĩ)

• N ∩ g(∂σ) = ∅

By the properties of relative regular neighbourhoods, g(Ĩ) ⊂ ∂N and by Theorem 5
in [79], since C is collapsible, N is a (3m+ 2)-ball.

Let M := g−1(N). Then, by lemma 3.41, M is a relative regular neighbourhood of
C(Sσ ∪ Ĩ)mod Ĩ in σ, which is a 2m-ball, since C(Sσ ∪ Ĩ) is collapsible. Moreover, by
construction M ∩ (S(g) \ Sσ) ⊂ Ĩ ⊂ ∂M , M ∩ S2m−1 × ([0, ϵ] ∪ [1 − ϵ, 1]) = ∅, for a
sufficiently small ϵ > 0 and g|∂M is an embedding of ∂M into ∂N . Finally, we modify g
inside Int(M) by extending linearly from ∂M to a proper embedding of M into N , and
denote the resulting map by g1 : A × [0, 1] → Y . Observe that, since M ∩ I ⊂ ∂M , we
do not modify g on I or outside σ. That completes the proof.

It is important that the homotopy keeps I fixed, since we want to apply it for every
cylinder separately, and the different cylinders share the line segment I.

The other ingredient in the proof of theorem 3.55 is a tool to resolve intersections
between two different cylinders σ and τ within A×[0, 1]. This is ensured by the following
lemma.

Lemma 3.57. Let σ, τ be two different copies of S2m−1 × [0, 1] in A × [0, 1], for which
g(σ)∩ g(τ) ̸= ∅. Then, we can homotope the map g to a map g1 : A× [0, 1] → Y , so that
g1(σ) ∩ g1(τ) = ∅, and S(g1) ⊂ S(g). Moreover, the homotopy between g and g1 can be
chosen so that it is constant outside σ ∪ τ and keeps I and (S2m−1 ∨ S2m−1) × ([0, ϵ] ∪
[1− ϵ, 1]) fixed, for some sufficiently small ϵ > 0.

Proof. First, by lemma 3.56, we assume that g|σ and g|τ are embeddings.

By the assumptions on the map g (see the statement of Proposition 3.55), Sστ∩∂I =
∅. We also recall that Ĩ ⊂ I was chosen such that S(g) ∩ I ⊂ Ĩ.

We have dim(Sσ ∪ Ĩ) ≤ m − 2 and σ is (2m − 2)-connected, so the inclusion map
Sσ ∪ Ĩ ↪→ σ is nullhomotopic. Let Cσ := C(Sσ ∪ Ĩ) be the cone over Sσ ∪ Ĩ. By general
position, Cσ embeds in σ, so that Cσ ∩ S(g) ⊂ Sσ ∪ Ĩ and Cσ misses the images under
g of all cylinders of A × [0, 1] other than σ and τ , except possibly at Ĩ. Let Cτ be the
embedded cone over Sτ ∪ Ĩ in τ with similar properties.

Next, consider g(Cσ ∪ Cτ ) ⊂ Y . This is a (m − 1)-dimensional polyhedron in the
(m− 1)-connected manifold Y , so the inclusion map g(Cσ ∪Cτ ) ↪→ Y is nullhomotopic.
By general position, we can embed the cone C := C(g(Cσ∪Cτ )) in Y , so that C∩g(A×
[0, 1]) = g(Cσ ∪ Cτ ).

Pick triangulations of A × [0, 1] and Y , so that Cσ and Cτ are full subcomplexes of
A× [0, 1], C is a full subcomplex of Y , and g is simplicial. Pick first derived subdivisions
(A × [0, 1])′ and Y ′ of A × [0, 1] and Y , so that g is still simplicial. Then, following
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definition 3.38, the first derived neighbourhood N := N(C \g(Ĩ), Y ′) is a relative regular
neighbourhood of Cmod g(Ĩ) in Y ′.

Let gσ, gτ be the restrictions of g to σ and τ , respectively. It is easy to see that the
pair (C, Ĩ) satisfies the conditions of lemma 3.41, which then implies that Mσ := g−1

σ (N)

and Mτ := g−1
τ (N) are relative regular neighbourhoods of Cσ mod Ĩ in σ and Cτ mod Ĩ

in τ . Moreover, again by lemma 3.41, gσ(Mσ) and gτ (Mτ ) are proper embeddings of
Mσ and Mτ into N . Since Cσ , Cτ and C are all collapsible, Mσ and Mτ are 2m-balls
and N is a (3m+ 2)-ball, so that Ĩ ⊂ ∂Mσ , Ĩ ⊂ ∂Mτ and g(Ĩ) ⊂ ∂N .

According to proposition 3.24, Ĩ ∼= B1 is unknotted in ∂Mσ and ∂Mτ . By corol-
lary 3.25, ∂Mσ ∪Ĩ ∂Mτ

10 is unknotted in ∂N , therefore we can ambient isotope the
embedding g|∂Mσ∪Ĩ

∂Mτ : ∂Mσ ∪Ĩ ∂Mτ ↪→ ∂N to the standard one,11 which we de-
note by g1 : ∂Mσ ∪Ĩ ∂Mτ ↪→ ∂N . We can now extend g1 to a proper embedding
g1 : Mσ ∪Ĩ Mτ ↪→ N .

We obtain our desired map by setting it to be equal to g on (A × [0, 1]) \ Int(Mσ) ∪
Int(Mτ ), and to g1 on Int(Mσ) ∪ Int(Mτ ). The modified map clearly has the desired
properties. In order to see that it is also homotopic to the original map g, observe,
that we only modify the original map g inside the contractible subspace Mσ ∪Ĩ Mτ of
A× [0, 1], so that the image of this contractible subspace under both g and the modified
map is contained in the ball N , which is also contractible. Therefore, the original map
g and the modified map are homotopic, which concludes the proof.

Proof of Proposition 3.55. First we apply lemma 3.56 for each of the cylinders of A ×
[0, 1]. Then, for every pair of cylinders, we apply lemma 3.57, thus obtaining the desired
embedding.

10The polyhedron ∂Mσ ∪Ĩ ∂Mτ consists of ∂Mσ and ∂Mτ , identified along Ĩ.
11We define the standard embedding of Sp∪Br Sp into Sq in the same way as we defined it for Sp∨Sp.
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[24] M. Filakovský and L. Vokřı́nek. Are two given maps homotopic? An algorithmic
viewpoint. Foundations of Computational Mathematics, May 2019.
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