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Abstract

The effective large-scale properties ofmaterials with randomheterogeneities on
a small scale are typically determined by the method of representative volumes: a
sample of the randommaterial is chosen—the representative volume—and its effec-
tive properties are computed by the cell formula. Intuitively, for a fixed sample size
it should be possible to increase the accuracy of the method by choosing a material
sample which captures the statistical properties of thematerial particularly well; for
example, for a composite material consisting of two constituents, one would select
a representative volume in which the volume fraction of the constituents matches
closely with their volume fraction in the overall material. Inspired by similar at-
tempts inmaterials science, Le Bris, Legoll andMinvielle have designed a selection
approach for representative volumes which performs remarkably well in numerical
examples of linear materials with moderate contrast. In the present work, we pro-
vide a rigorous analysis of this selection approach for representative volumes in the
context of stochastic homogenization of linear elliptic equations. In particular, we
prove that the method essentially never performs worse than a random selection of
the material sample and may perform much better if the selection criterion for the
material samples is chosen suitably.

1. Introduction

The most widely employed method for determining the effective large-scale
properties of a material with random heterogeneities on a small scale is the method
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of representative volumes. It basically proceeds by taking a small sample of the
material—a “representative volume element” (RVE)—and determining the proper-
ties of the sample by the cell formula. The criteria for the choice of the representative
volume have been the subject of an ongoing debate; while in principle increasing
the size of the material sample increases the accuracy of the approximation of the
material properties, this comes at a correspondingly larger computational cost. It
has been conjectured that for a fixed size of thematerial sample, selecting amaterial
sample which captures certain statistical properties of the material in a particularly
good way may be beneficial; for example, for a composite material consisting of
two constituent materials, one would try to select a material sample for which the
volume fraction of each constituent material within the sample matches the over-
all volume fraction of this constituent in the composite as closely as possible (see
Fig. 1). Alternatively, for linear materials one might try to match the averaged ma-
terial coefficient in the sample with the average taken over the full material. There
have been efforts in materials science and mechanics towards replicating further
statistical properties of the material in a representative volume, an approach called
“special quasirandom structures” [82,83,86] or “statistically similar representative
volume elements” [15–18,28,81]. A particularly successful approach in this direc-
tion has been developed for linear materials by Le Bris et al. [64]; their method
proceeds by considering a large number ofmaterial samples, evaluating one ormore
cheaply computable statistical quantities of the samples (like, for example, the spa-
tial average of the coefficient), and then choosing the sample as the representative
volume that is most representative for the material as measured by these quantities.
In the present work, in the context of stochastic homogenization of linear elliptic
PDEs we provide the first rigorous justification of these approaches.1

For materials with random heterogeneities on small scales, the approximation
of the effective material coefficient by the method of representative volumes is a
random quantity itself, as the outcome depends on the sample of the material. In the
setting of linear elliptic PDEs with random coefficient fields—which corresponds
to the setting of heat conduction, electrical currents, or electrostatics in a material
with random microstructure—Gloria and Otto [48,53,54] have investigated the
structure of the error of the approximation of the effectivematerial coefficient by the
method of representative volumes: the leading-order contribution to the error (with
respect to the size of the RVE) consists of random fluctuations; in expectation the
approximation of effective coefficients by the method of representative volumes is
accurate to higher order, that is the systematic error of the RVEmethod is of higher
order.2 For a given size of the RVE—which corresponds to a fixed computational
effort—the accuracy of the RVE method may therefore be increased significantly
by reducing the variance of the approximations of the effective coefficient. It is

1 Note that for one-dimensional linear elliptic PDEs—a case in which homogenization is
linear in the inverse of the coefficient and thus independent of the geometry of the material—
an analysis has directly been provided in [64].
2 At least if a suitable periodization of the probability distribution of the coefficient field

is available, see below for an explanation of this concept.
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Fig. 1. Among the six depicted material samples, the method of Le Bris, Legoll, and Min-
vielle in its simplest realization would choose either the first sample or the fifth sample
as the representative volume element and discard the others, as the volume fraction of the
inclusions in the first and the fifth sample is closest to the overall material average. Note
that in the depicted material samples the volume fraction of the inclusions is proportional
to the number of inclusions, as all inclusions are of equal size. For a better illustration of
the method, both the size and the number of the depicted samples have been chosen much
smaller than in actual computations

precisely such a reduction of the variance by which the selection approach for
representative volumes of Le Bris et al. [64] achieves its gain in accuracy.

For linear elliptic PDEs with random coefficients and moderate ellipticity con-
trast, the reduction of the variance by the ansatz of Le Bris et al. [64] is particularly
remarkable; by selecting the representative volume according to the criterion that
the averaged coefficient in the RVE should be particularly close to the averaged
coefficient in the overall material, in numerical examples with ellipticity contrast
∼ 5 they observed a variance reduction by a factor of ∼ 10. Going beyond this
simple selection criterion, they devised a criterion based on an expansion of the
effective coefficient in the regime of small ellipticity contrast, which numerically
achieves a remarkable variance reduction factor of ∼ 60 even for a moderate el-
lipticity contrast ∼ 5. Note that this basically corresponds to the gain of about one
order of magnitude in accuracy for a negligible additional computational cost and
implementation effort.

However, the analysis of the selection approach for representative volumes has
been restricted to the one-dimensional setting [64], in which the homogenization
of linear elliptic PDEs is linear in the inverse coefficient and therefore independent
of the geometry of the material. Besides the highly nonlinear dependence of the
effective coefficient on the heterogeneous coefficient field in dimensions d � 2,
one of the main challenges in the analysis of the selection method for representative
volumes is the fact that it is only expected to increase the accuracy by a (though
often very large) constant factor, at least for a fixed set of statistical quantities by
which the selection is performed. At the same time, the available error estimates for
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the representative volume element method in stochastic homogenization are only
optimal up to constant factors. For this reason, the analysis of the selection approach
for representative volumes necessitates a fine-grained analysis of the structure of
fluctuations in stochastic homogenization.

1.1. Stochastic Homogenization of Linear Elliptic PDEs: A Brief Outline

The subject of the present contribution is the rigorous justification of the se-
lection method for representative volumes by Le Bris et al. [64] in the context of
linear elliptic equations

−∇ · (a∇u) = f (1)

with random coefficient fields a on R
d for arbitrary spatial dimension d. Note

that this setting describes, for example, heat conduction or electrostatics in a ran-
dom material. Our assumptions on the probability distribution of the coefficient
field a are standard in the theory of stochastic homogenization; we assume just
uniform ellipticity and boundedness, stationarity, and finite range of dependence
(see conditions (A1)–(A3) below). In particular, our analysis includes the case of
a two-material composite with random non-overlapping inclusions as depicted in
Fig. 1.

The theory of stochastic homogenization of linear elliptic PDEs predicts that for
coefficient fields with only short-range correlations on a scale ε � 1 the solution
u to the equation with random coefficient field (1) may be approximated by the
solution uhom of an effective equation of the form

−∇ · (ahom∇uhom) = f, (2)

where ahom ∈ R
d×d is a constant effective coefficient which describes the effec-

tive behavior of the material. In this context of linear materials, the method of
representative volumes is employed to compute the effective coefficient ahom.

Let us describe the method of representative volumes for the approximation of
the effective material coefficient ahom in more detail. It proceeds by choosing a
sample of the material, say, a cube with side length Lε for some L � 1, uniformly
at random. Roughly speaking—for the moment passing silently over the question
of boundary conditions—by solving the equation for the homogenization corrector
φi associated with the i-th coordinate direction on the representative volume

−∇ · (a(ei + ∇φi )) = 0 on [0, Lε]d (3)

(ei ∈ R
d denoting the i-th vector of the standard basis) one may obtain an approx-

imation aRVE for the effective coefficient ahom in terms of the averaged fluxes

aRVEei := −
∫

[0,Lε]d
a(ei + ∇φi ) dx . (4)

This expression is also known in homogenization as the cell formula. As already
mentioned before, the approximation aRVE for the effective material coefficient
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ahom is a random variable itself, as it depends on the realization of the random
coefficient field a on the sample volume [0, Lε]d . It has been proven by Gloria
and Otto [54,55] and also observed in numerical computations that the main
contribution to the error of the RVEmethod is caused by the random fluctuations of
the approximation aRVE, while the systematic error is of higher order: For spatial
dimensions d � 1 one has

√
Var aRVE � L−d/2, (5)

but
∣∣E[aRVE] − ahom

∣∣ � L−d | log L|d . (6)

As a consequence, a reduction of the fluctuations of the approximations aRVE would
lead to an increase in accuracy of the approximation for the effective coefficient
ahom. It has been observed numerically by Le Bris et al. [64], and shall be proven
below rigorously, that the selection approach for representative volumes achieves
its gain in accuracy precisely by reducing the fluctuations of the approximations
for the effective coefficients.

1.2. Informal Summary of Our Main Results

In the present work, we prove that in the setting of stochastic homogenization
of linear elliptic equations the selection approach for representative volumes by Le
Bris et al. [64]

• essentially never performsworse than a completely random selection of the rep-
resentative volume element, but may performmuch better for suitable selection
criteria,

• basically maintains the order of the systematic error of the approximation for
the effective coefficient, and

• reduces also the error in the approximation for the effective coefficient that
may occur with a given low probability, that is reduces also the “outliers” of
the approximation for the effective coefficient.

As mentioned before, in the setting of linear elliptic PDEs the method of repre-
sentative volumes is employed to obtain an approximation aRVE for the effective
(homogenized) coefficient ahom. The role of “material samples” is assumed by
realizations of the random coefficient field a : [0, Lε]d → R

d×d , on which the
computation of the approximations aRVE is based.

The selection approach for representative volumes proposed in [64] then pro-
ceeds as follows: at first, one or more statistical quantities F are chosen which
assign a real number F(a) ∈ R to any realization a : [0, Lε]d → R

d×d . Note
that the simplest statistical quantity proposed in [64] is the spatial averageF(a) :=
−
∫
[0,Lε]d a dx . Next, one considers a sequence of independent samples of the random
coefficient field until a sample meets the selection criterion

∣∣F(a) − E[F(a)]∣∣ � δ
√
Var F(a) (7)
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for some chosen parameter δ with CL−d/2| log L|C � δ � 1. Finally, the approx-
imation for the effective coefficient is computed by solving the equation for the
homogenization corrector (3) and using the cell formula (4) for this sample of the
random coefficient field.

To give a flavor of our main result, let us formulate it informally in the case of a
single statistical quantity F(a). We denote the approximation for the effective co-
efficient by the standard representative volume element method (without selection
of material samples) by aRVE and the approximation for the effective coefficient
by the selection approach for representative volumes by asel-RVE. In this case, our
main theorems Theorems 2 and 3 may be summarized as follows:

• The systematic error of the approximation asel-RVE is essentially (up to powers
of log L and some prefactors) of the same order as the systematic error of the
standard representative volume element method aRVE: We have

∣∣E[asel-RVE]− ahom
∣∣ � Cκ3/2

δ
L−d | log L|C .

The quantity κ will be discussed below.
• The fluctuations of the approximation asel-RVE are reduced by the fraction of
the variance of aRVE that is explained by F(a). More precisely, we derive the
estimate

Var asel-RVE

Var aRVE
�1 − (1 − δ2)|ρF(a),aRVE |2 + Cκ3/2rVar

δ
L−d/2| log L|C

where ρF(a),aRVE ∈ [−1, 1] denotes the correlation coefficient of F(a) and
aRVE, given by

ρF(a),aRVE := Cov[aRVE,F(a)]√
Var F(a)Var aRVE

,

and where rVar := L−d

Var aRVE
denotes the ratio between the expected order of

fluctuations of aRVE and the actual magnitude of fluctuations. Note that the
last term in the estimate on Var asel-RVE converges to zero as the size L of the
representative volume increases.

• Theprobability of “outliers” is reducedby the selectionmethod just as suggested
by the variance reduction, at least in an “intermediate” region between the
“bulk” and the “outer tail” of the probability distribution: One has a moderate-
deviations-type estimate of the form

P

[ ∣∣asel-RVEi j − ahom,i j
∣∣

√(
1 − |ρF(a),aRVE |2 + δ2

)
Var aRVEi j + L−d/2−β

� s

]

�
(
1 + Cδ√

1 − |ρ|2s + C

δLβ

)
P
[|N1| � s

]+ C

δ
exp(−L2β)

for any s � C max{(1−|ρ|2)1/2δ−1, δ(1−|ρ|2)−1/2} and some β = β(d) > 0,
where N1 denotes the centered normal distribution with unit variance.
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• In the above bounds, κ := (1− |ρF(a),aRVE |2)−1 denotes (essentially) the con-
dition number of the covariance matrix Var (aRVE,F(a)). For the case that the
correlation |ρF(a),aRVE | is close to one, we derive boundswhich are independent
of κ but come at the cost of a lower rate of convergence in L , namely

∣∣E[asel-RVE]− ahom
∣∣ � C

δ
L−d/2−d/8| log L|C

and

Var asel-RVE

Var aRVE
�1 − (1 − δ2)

∣∣ρF(a),aRVE
∣∣2 + CrVar

δ
L−d/8| log L|C .

Our estimate on the variance reduction achieved by the selection approach for
representative volumes is implicit in the sense that it is determined by the correlation
coefficient

ρF(a),aRVE := Cov[aRVE,F(a)]√
Var F(a)Var aRVE

.

In fact, the failure of the correlation coefficientρF(a),aRVE to be nonzero also implies
the failure of gaining accuracy by the selection approach for the representative
volumes (see Theorem 4): In such a case of vanishing correlation, the method of
Le Bris et al. [64] is not superior (but essentially also not inferior) to the standard
method of choosing a representative volume randomly.

This raises the question whether such a degeneracy of the correlation coefficient
can occur for “natural” choices of the statistical quantity F(a). In Theorem 4, we
shall prove that even for a “natural” choice like F(a) := −

∫
[0,εL]d a dx there is

a priori no guarantee that there is a nonzero correlation between aRVE and F(a):
We construct an example of a probability distribution of a for which the covariance
of aRVE and the average of the coefficient field −

∫
a in fact vanishes, while the

variances Var −
∫
[0,εL]d a dx and Var aRVE are nondegenerate.

However, the failure of the variance reduction approaches to effectively reduce
the variance is presumably limited to rather artificial examples: we prove that the
covariance of aRVE and the average of the coefficient field −

∫
a is positive for coeffi-

cient fieldswhich are obtained from iid randomvariables by applying a “monotone”
function, see Proposition 5.

1.3. Outline of Our Strategy

The basic idea underlying our analysis of the selection approach for repre-
sentative volumes is the observation that the joint probability distribution of the
approximation for the effective coefficient aRVE and one or more statistical quan-
tities F(a) like the average of the coefficient field F(a) := −

∫
[0,Lε]d a is close

to a multivariate Gaussian, up to an error of the order L−d | log L|C in a suit-
able notion of distance between probability measures. The selection of represen-
tative volumes by the criterion (7)—which amounts to conditioning on the event
|F(a) − E[F(a)]| � δ

√
Var F(a)—then reduces the variance of the probability
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Fig. 2. For a multivariate Gaussian probability distribution, conditioning on the event of one
variable being close to its expectation reduces the variance of the other variable, provided
that the two random variables are nontrivially correlated. In our setting, conditioning on the
event “spatial average of coefficient field is close to its expectation” reduces the variance
of the random variable “approximation for the effective conductivity” aRVE, as their joint
probability distribution is close to a multivariate Gaussian

distribution of aRVE by the variance explained by the statistical quantity F(a), up
to error terms due to the deviation of the probability distribution from a multivari-
ate Gaussian and the non-perfectness of the conditioning δ > 0, see Fig. 2. Note
that for an ideal multivariate Gaussian distribution, the expected value of the ap-
proximation aRVE would be left unchanged under conditioning since the criterion
(7) is symmetric around E[F(a)], that is the conditioning would not introduce a
bias. As a consequence, for our approximate multivariate Gaussian (aRVE,F(a))

the expectation of aRVE is changed under conditioning only by the distance of our
probability distribution to a multivariate Gaussian, which is a higher-order term.
Note that both the reduction of the variance by conditioning and the estimate on the
bias introduced by the conditioning rely crucially on the fact that our probability
distribution is close to a multivariate Gaussian (and not another probability distri-
bution); it is obvious from the picture in Fig. 2 that a probability distribution other
than a multivariate Gaussian could introduce a large bias under conditioning and
even an increase in variance. Our analysis of the selection approach for represen-
tative volumes by Le Bris et al. [64] is a first practical application of the beautiful
theory of fluctuations in stochastic homogenization, which has been developed in
recent years and which our work both draws ideas from and contributes to.

The underlying reason for the convergence of the joint probability distribution
of aRVE and one or more functionalsF(a) towards a multivariate Gaussian is a cen-
tral limit theorem for suitable collections of vector-valued random variables. We
show that the approximation aRVE for the effective coefficient ahom—and also the
functionalsF(a) that are used in the work of Le Bris et al. [64]—may be written as
a sum of random variables with a local dependence structure with multiple levels,
seeDefinition 6 andProposition 7. For such sums of vector-valued randomvariables
with multilevel local dependence, a proof of quantitative normal approximation is
provided in the companion article [43] (see alsoTheorem9below). To the best of our
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knowledge such quantitative normal approximation results were previously known
only for sums of random variables with local dependence structure [33,34,80] (cor-
respondingmore or less to just the lowest level of random variables in Fig. 4 below),
a framework into which the approximation for the effective coefficient aRVE does
not fit. Note that the sharp boundaries of the region defined by the selection criterion
(7) (see also the sharp boundaries in Fig. 2) necessitate the use of a rather strong
(though standard) distance between probability measures for our quantitative nor-
mal approximation result (see Definition 8); in particular, a stronger notion of dis-
tance between probability measures than the 1-Wasserstein distance must be used.

As a by-product, our work also provides a proof of quantitative normal approx-
imation for aRVE in a different setting than available in the literature so far. To the
best of our knowledge, the results on quantitative normal approximation for aRVE in
the literature always rely on an assumption that the coefficient field a is obtained as
a function of iid random variables [39,52,77] or that the probability distribution of
a is subject to a second-order Poincaré inequality like in [38]. In contrast, our result
holds under the assumption of finite range of dependence, in which to the best of
our knowledge only a qualitative normal approximation result had been known [6].

The companion article [43] also provides a result on moderate deviations in the
sense of Kramers for sums of random variables with multilevel local dependence
structure, see Theorem 10. Our result on the reduction of the error by the selection
approach for representative volumes in the case of unlikely events (Theorem 3) is
based on this moderate deviations theorem.

Our counterexample for the variance reduction—which shows that even “nat-
ural” statistical quantities like the spatial average F(a) := −

∫
[0,Lε]d a dx do not

necessarily explain a positive fraction of the variance of aRVE—is based on the
nonlinear dependence of the effective coefficient in periodic homogenization on
the underlying coefficient field. More precisely, our counterexample consists of an
interpolation between a standard random checkerboard and a random checkerboard
with two types of tiles, one tile type being a constant coefficient field and one tile
type being a second-order laminate microstructure; see Section 6 for details of the
construction.

1.4. Computation of Effective Properties of Random Materials: A More Detailed
Look

In the homogenization of periodic linear materials—that is in the homogeniza-
tion of the linear elliptic PDE (1) with periodic coefficient field a in the sense
a(x) = a(x +εk) for all k ∈ Z

d—it is possible to compute the effective coefficient
ahom by exploiting the periodicity of the coefficient field, basically reducing the
problem to solving a PDE—the PDE for the homogenization corrector—on a single
periodicity cell: for a period of length ε, the effective coefficient is given by the cell
formula

ahomei · e j := −
∫

[0,ε]d
a(ei + ∇φi ) · e j dx,

with the homogenization corrector φi defined as the unique ε-periodic solutionwith
zero average to the PDE
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−∇ · (a(ei + ∇φi )) = 0.

As a consequence, in periodic homogenization the numerical computation of the
effective coefficient ahom typically requires only modest effort.

In contrast, in stochastic homogenization this simplification is no longer pos-
sible due to the absence of a periodic structure in the random coefficient field
aR

d : R
d → R

d×d and the computation of the effective coefficient becomes a
computationally costly problem. The effective coefficient in stochastic homoge-
nization is given by the infinite volume limit cell formula3

ahomei · e j := lim
L→∞ −

∫
[0,Lε]d

aR
d
(ei + ∇φ

L,Dir
i ) · e j dx

with φ
L,Dir
i denoting the solution to the corrector problem with Dirichlet boundary

conditions

−∇ · (aR
d
(ei + ∇φ

L,Dir
i )) = 0 in [0, Lε]d ,
φ
L,Dir
i ≡ 0 on ∂[0, Lε]d .

In practice, in order to approximate the effective coefficient ahom a representative
volume [0, Lε]d of finite size must be chosen. However, the approximation of the
effective coefficient by the standard cell formulawithDirichlet boundary conditions
for the corrector

ahomei · e j ≈ aRVEDir ei · e j := −
∫

[0,Lε]d
aR

d
(ei + ∇φ

L,Dir
i ) · e j dx

is only of first-order accuracyE[|aRVEDir −ahom|2]1/2 � L−1 due to the presence of a
boundary layer: the artificial Dirichlet boundary condition leads to the creation of a
boundary layer in an O(ε)-neighborhood of the boundary ∂[0, Lε]d . The limitation
to first-order accuracy is present even in the systematic error E[aRVE] − ahom.
Note that while replacing the volume average in the cell formula by an average
taken strictly in the interior of the representative volume typically increases the
accuracy [84], for general probability distributions it does not increase the order of
convergence due to global effects of the boundary layer. To achieve the convergence
rates |E[aRVE] − ahom| � L−d | log L|d and E[|aRVE − ahom|2]1/2 � L−d/2 stated
in (6) and (5), the boundary layer phenomenon must necessarily be addressed by
the use of a more careful approximation technique than the method of correctors
with Dirichlet boundary data.

One possibility of avoiding the creation of boundary layers is the use of a so-
called “periodization” of the probability distribution: Given a probability distribu-
tion of coefficient fields aR

d
, one first fixes the size Lε of the desired representative

volume and then attempts to construct a probability distribution of Lε-periodic
coefficient fields a such that the law of a|x+[0, 12 Lε]d (i. e the law of a restricted

3 This limit is to be read in an almost sure sense: By ergodicity, for almost every realization
of a this limit exists and is equal to a matrix which is independent of the realization.
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to some box of half the size of the representative volume) coincides with the law
of aR

d |x+[0, 12 Lε]d for any x ∈ R
d . For one realization of the periodized probabil-

ity distribution of coefficient fields a one may then solve the corrector equation
−∇ ·(a(ei +∇φi )) = 0 with periodic boundary conditions on ∂[0, Lε]d and define
the approximation aRVE for the effective coefficient ahom as

aRVEei := −
∫

[0,Lε]d
a(ei + ∇φi ) dx . (8)

This approximation aRVE then has the desired approximation properties (5) and (6).
Note that this construction requires the knowledge of the probability distribution
of aR

d
and must be done in a case-by-case basis; it is therefore not feasible in all

practical situations.
To give an example, random non-overlapping inclusions like in Fig. 1 may be

constructed by considering a Poisson point process on R
d × [0, 1], ordering the

points (xk, yk) ∈ R
d × [0, 1] with respect to their last coordinate yk , and then

successively placing inclusions in Rd centered at the xk and with diameter ε if the
“previous” points xl , l < k, have a distance of at least ε from xk (that is |xl−xk | � ε).
The result of such a construction is shown inFig. 3a. For this probability distribution,
one may define a periodization in a natural way by considering a Poisson point
process on [0, Lε)d × [0, 1] and defining an Lε-periodic coefficient field with
non-overlapping inclusions in the obvious way, replacing the Euclidean distance
|xl −xk | by the periodicity-adjusted distance |xl −xk |per := inf z∈Zd |xl −xk+Lεz|.
A sample from the periodized probability distribution is shown in Fig. 3b.

If no periodization of the probability distribution is available—for example if
only samples from the probability distribution are available and the underlying
probability distribution is not known, like in applications where one has access to
samples of the materials—, one has to resort to an alternative means of increasing
the rate of convergence of the method of representative volumes. One feasible
option is to “screen” the effect of the boundary by introducing a “massive” term in

(a) (b)

Fig. 3. a An example of random spherical inclusions distributed according to a Poisson
point process, with overlapping inclusions removed. b A sample from the corresponding
periodization of the probability distribution (rescaled); the periodicity cell is indicated by
black lines
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the PDE for the homogenization corrector [24,47,54]: Fixing a scale
√
T ∼ L

log L ,
one replaces the equation for the homogenization corrector by the PDE

−∇ · (aR
d
(ei + ∇φ

L ,T
i )) + 1

T
φ
L ,T
i = 0 in [0, Lε]d ,

φ
L ,T
i ≡ 0 on ∂[0, Lε]d

and approximates the effective coefficient ahom by

ahomei ≈ aRVEei := 1∫
[0,Lε]d η dx

∫
[0,Lε]d

η aR
d
(ei + ∇φ

L ,T
i ) dx,

where η is a smooth nonnegative weight supported in the slightly smaller box
[ 18 Lε, (1− 1

8 )Lε]d . In up to four spatial dimensions d � 4, this approximation also
admits error estimates of the form√

Var aRVE � L−d/2

and
∣∣E[aRVE] − ahom

∣∣ � L−d(log L)C .

Due to the already substantial length of the present paper, we shall limit our-
selves to the analysis of the selection approach for representative volumes in the
context of periodizations of the probability distribution and defer the analysis of
the screening approach to a future work.

Generally speaking, in themethodof representative volumes the equation for the
homogenization correctormay be solved by any numerical algorithm that is feasible
for the given size of the representative volume; for example, standard finite element
methods may be employed for representative volumes of moderate size, while for
very large representative volumes one may use appropriate instances of modern
computational homogenization methods like the multiscale finite element method,
heterogeneous multiscale methods, and related approaches (see for example [1,14,
29,40,60,61,71]) or the local orthogonal decomposition method byMålqvist and
Peterseim [70].

Note that besides the modern numerical homogenization methods—which are
in principle applicable to any elliptic PDE involving a heterogeneous coefficient
field—there have been numerous numerical works on the more specific problem
of the approximation of effective coefficients in stochastic homogenization, see for
example [13,32,41,42,62,72,79].

1.5. The Selection Approach for Representative Volumes by Le Bris, Legoll and
Minvielle

Let us describe the selection approach for representative volumes by Le Bris et
al. [64] in more detail. The selection approach for representative volumes achieves
its gain in accuracy of approximations aRVE for the effective coefficient ahom (as
compared to the standard representative volume element method with completely
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random choice of the material sample) by selecting only those realizations of the
random coefficient field a|[0,Lε]d which capture some important statistical prop-
erties of the coefficient field a in an exceptionally good way. For example, in the
simplest setting Le Bris et al. [64] propose to restrict one’s attention to realizations
of the coefficient field a for which the average on [0, Lε]d is exceptionally close
to its expected value in the sense that

∣∣∣∣−
∫

[0,Lε]d
a dx − E

[
−
∫

[0,Lε]d
a dx

]∣∣∣∣ � δL−d/2 (9)

for some δ � 1. Note that for generic realizations of a only

∣∣∣∣−
∫

[0,Lε]d
a dx − E

[
−
∫

[0,Lε]d
a dx

]∣∣∣∣ ∼ L−d/2

is true by the central limit theorem for the averages −
∫
[0,Lε]d a dx and the finite range

of dependence ε.
On a numerical level, such a selection approach typically provides an increase

in computational efficiency if the accuracy is indeed increased by conditioning on
the event (9): usually, the most expensive step in the computation of the approxi-
mations aRVE is the computation of the homogenization corrector as the solution
to the PDE (3). In contrast, the generation of random coefficient fields a and the
evaluation of the average of a is typically cheap. Therefore it is often worth gener-
ating about 1

δ
independent realizations of a to obtain on average one realization of

a which satisfies (9); for this single realization, the corrector equation (3) is solved
numerically and the approximation aRVE for the effective coefficient is computed.
This strategy is also applicable to situations in which the probability distribution
of the coefficient field is not known, but one has only access to a large number of
samples of the coefficient field, like in applications in which one has access to data
from actual material samples.

The selection criterion (9) based on the average of the coefficient field in the
material sample is the first out of two selection criteria proposed by Le Bris et
al. [64]. In order to reduce the variance of aRVE further, they propose to consider
several such statistical quantities at the same time, for example in addition to the
spatial average

Favg(a) := −
∫

[0,Lε]d
a(x) dx,

the quantities

(F2−point)i, j (a) := −
∫

[0,Lε]d
a∇vi · e j dx dy (10)

for some (approximation of the) solution vi to the constant-coefficient equation

−
vi = ∇ · (aei ),



Julian Fischer

require that all of these statistical quantities be close to their expectation at the same
time. The quantities (10) arise as a second-order correction to the effective conduc-
tivity aRVE in the expansion in the regime of small ellipticity contrast: Expanding
the homogenization corrector φi and the approximate effective conductivity aRVE

as a power series in ν for the family of coefficient fields

a = Id+νâ,

we deduce

φi = φ0
i + νφ1

i + ν2φ2
i + O(ν3)

with φ0
i ≡ 0, φ1

i = vi , and φ2
i defined as the solution to another PDE. As a

consequence, for the approximation of the effective conductivity we obtain

aRVEei = −
∫

[0,Lε]d
aei + νa∇vi + ν2 Id∇φ2

i + O(ν3) dx

= −
∫

[0,Lε]d
aei + νa∇vi dx + O(ν3)

where in the last step we have used the periodicity of φ2
i . To see that the contribution

of vi is actually of second order in ν, one uses again a = Id+νâ and the periodicity
of vi .

By selecting the representative volumes by the two criteria (9) and
∣∣∣F2−point − E

[
F2−point

]∣∣∣ � δ̃L−d/2 (11)

at the same time, in themodel problem of the random checkerboard with an elliptic-
ity ratio of 5 Le Bris, Legoll, and Minvielle were able to reduce the variance of the
approximations asel-RVE for the effective conductivity by a factor of 60, compared
to the approximations aRVE by the standard representative volume element method.

Another remarkable feature of the selection approach for representative vol-
umes by Le Bris, Legoll, and Minvielle is its compatibility with the vast majority
of numerical homogenization methods: As the selection approach for representa-
tive volumes operates at the level of the choice of the coefficient field a, it may
be combined with essentially any numerical discretization method for the correc-
tor problem (59). Note that there exist many numerical homogenization methods
that are particularly well-adapted to certain geometries of the microstructure; the
selection approach for representative volumes may be employed in most of these
methods to achieve a further speedup.

The selection approach for representative volumes is only one out of several
variance reduction concepts in the context of stochastic homogenization: Blanc et
al. [22,23,25] have succeeded in reducing the variance by the method of antithetic
variables; note that however for this approach the achievable variance reduction
factor is much more limited. The method of control variates has also been demon-
strated to be successful in the context of the computation of effective coefficients
in stochastic homogenization [25,65].
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1.6. A Brief Overview of Quantitative Stochastic Homogenization

For the sake of completeness, let us give a short overview of the tremendous
progress that has been achieved in the quantitative theory of stochastic homogeniza-
tion in recent years. The earliest (non-optimal) quantitative homogenization results
for linear elliptic equations are due to Yurinski [85]. A decade later, Naddaf and
Spencer [76] introduced the use of spectral gap inequalities in stochastic homog-
enization and derived optimal fluctuation estimates in the regime of small ellip-
ticity contrast ||a − Id ||L∞ � 1, that is in a perturbative setting. Another decade
later, Caffarelli and Souganidis derived the first—though only logarithmic—rates
of convergence for nonlinear stochastic homogenization problems [31]. Gloria
and Otto [53,54] and Gloria et al. [49] succeeded in the derivation of optimal
homogenization rates for discrete linear elliptic equations with i. i. d. random con-
ductances. Subsequently, these results were generalized to elliptic equations onRd

and correlated probability distributions by Gloria et al. [50,51]. For coefficient
fields a whose correlations decay quickly on scales larger than ε > 0, these quan-
titative estimates for the homogenization error—that is, for the difference between
the solutions to the PDE with the random coefficient field (1) and its homogenized
approximation (2)—read

||u − uhom||L p �
{
C(a)|| f ||L2ε

√| log ε| for d = 2,

C(a)|| f ||L2ε for d � 3,
(12)

with C(a) satisfying stretched exponential moment bounds and for suitable p =
p(d). Armstrong and Smart [9] were the first to obtain power-law rates of con-
vergence for nonlinear equations, deriving and employing an Avellanda–Lin type
regularity estimate [12]; see also Armstrong and Mourrat [8]. Their estimates
also come with optimal—almost Gaussian—stochastic moment bounds. Recently,
the progress in stochastic homogenization culminated in the derivation of the opti-
mal homogenization rates with optimal stochastic moment bounds byArmstrong,
et al. [5] andGloria andOtto [55]: For finite range of dependence ε, a quantitative
error bound for the homogenization error of the form (12) holds true with a random
constant C(a) with almost Gaussian moments E[exp(C(a)2−δ/C(δ))] � 2 for any
δ > 0.

Higher-order approximation results in terms of homogenized problems have
been derived in [19–21,56,69], relying on the concept of higher-order correctors
which was first used in the stochastic homogenization context in [44] to establish
Liouville principles of arbitrary order in the spirit of Avellaneda and Lin’s result
in periodic homogenization [11]. Further works in quantitative stochastic homog-
enization include the analysis of nondivergence form equations [7], a regularity
theory up to the boundary [45], degenerate elliptic equations [2,46], and the ho-
mogenization of parabolic equations [3,66]. Recently, Armstrong and Dario [4]
and Dario [36] succeeded in establishing quantitative homogenization for super-
critical Bernoulli bond percolation on the standard lattice.

The fluctuations of the mathematical objects arising in the stochastic homog-
enization of linear elliptic PDEs have been the subject of a beautiful series of
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works, starting with the work of Nolen [77] and a subsequent work of Gloria
and Nolen [52] on quantitative normal approximation for (a single component of)
the approximation of the effective conductivity aRVE and a work ofMourrat and
Otto [74] on the correlation structure of fluctuations in the homogenization correc-
tor φi .Mourrat andNolen [73] have shown a quantitative normal approximation
result for the fluctuations of the corrector.Gu andMourrat [57] have derived a de-
scription of fluctuations in the solutions to the equationwith randomcoefficient field
(1). Recently, a pathwise description of fluctuations of the solutions to the equation
with random coefficient field (1)—namely, in terms of deterministic linear func-
tionals of the so-called homogenization commutator � := (a − ahom)(Id+∇φ),
a random field converging (for ε → 0) towards white noise—was developed by
Duerinckx et al. [39]. The scaling limit of certain energetic quantities—related
to the homogenization commutator—as well as the scaling limit of the homoge-
nization corrector has been identified in the setting of finite range of dependence
by Armstrong et al. [5]. As far as quantitative normal approximation results are
concerned, all of these works work under the assumption of i.i.d. coefficients (in the
discrete setting) or second-order Poincaré inequalities. To the best of our knowl-
edge, the present work provides the first quantitative description of fluctuations
(though so far limited to the approximation of the effective conductivity aRVE)
when the decorrelation in the coefficient field is quantified by the assumption of
finite range of dependence instead of functional inequalities.

Note that despite its longhistory [35,63,67,78], the qualitative theoryof stochas-
tic homogenization has also been a very active area of research in the past years, see
for example [10,27,58,59]; however, due to the substantial length of the present
manuscript we shall not provide a more detailed discussion and refer the reader to
these references instead.

Notation Throughout the paper, we shall use standard notation for Sobolev
spaces and weak derivatives; for a space-time function v(x, s), we denote by ∇v

its spatial gradient (in the weak sense) and by ∂sv its (weak) time derivative.

The notation −
∫
B f dx :=

∫
B f dx∫
B 1 dx

is used for the average integral over a set B

of positive but finite Lebesgue measure. The space of measurable functions f with
|| f ||L p := (

∫
Rd | f |p dx)1/p < ∞ will be denoted by L p. By L p

loc we denote the
space of functions f with f χ{|x |�R} ∈ L p for all R < ∞. We shall also use the

weighted space L p
h of functions with || f ||L p

h
:= (

∫
Rd | f (x)|ph(x) dx)1/p < ∞ for

a nonnegative measurable weight function h. By H1(Rd) we denote as usual the
Sobolev space of functions v ∈ L2(Rd) with ∇v ∈ L2(Rd); similarly, H1

loc(R
d)

is the space of functions v with v ∈ L2
loc(R

d) and ∇v ∈ L2
loc(R

d). For a Banach
space X we denote by L p([0, T ]; X) the usual Lebesgue–Bochner space.

As usual, we shall denote by C and c constants whose value may change from
occurrence to occurrence. We are going to use the notation C(a) and similar ex-
pressions to denote a random constant subject to suitable moment bounds; again,
the precise value of C(a) may change from occurrence to occurrence.

For a vector v ∈ R
m we denote by |v| its Euclidean norm. We denote the

identity matrix in RN×N by Id or IdN . For a matrix A ∈ R
m×m we shall denote by

|A| its natural norm |A| := maxv,w∈Rm ,|v|=|w|=1 |v · Aw| and by A∗ its transpose
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(as all our matrices are real). For x ∈ R
d we denote by |x |∞ = maxi |xi | its

supremum norm. By |x − y|per respectively (for sets) distper(U, V ), we denote the
periodicity-adjusted distance (in the context of the torus [0, Lε]d ). By |x− y|per∞ and
distper∞ (x, y), we denote the corresponding distances associated with the maximum
norm. For a positive definite matrix A, we denote by κ(A) its condition number.

Given a positive definite symmetric matrix� ∈ R
N×N , we denote the Gaussian

with covariance matrix � by

N�(x) := 1

(2π)N/2
√
det�

exp

(
− 1

2
�−1x · x

)
.

For γ > 0, we equip the space of random variables X with stretched exponential
momentE[exp(|X |γ /a)] < ∞ for some a = a(X) > 0 with the norm ||X ||expγ :=
supp�1 p

−1/γ
E[|X |p]1/p. For a discussion of this choice of norm, see Appendix B.

For a map f : RN → V into a normed vector space V , we denote for any
r > 0 by oscr f (x0) := supx,y∈{|x−x0|�r} | f (x) − f (y)|V its oscillation in the ball
of radius r around x0.

The conditional expectation of a random variable X given Y is denoted by
E[X |Y ].

2. Main Results

In the present work, we establish a rigorous justification of the selection ap-
proach for representative volumes by Le Bris et al. [64] in the context of stochastic
homogenization of linear elliptic PDEs for quite general probability distributions
of the coefficient field aR

d
. Our only assumptions on the probability distribution

of the coefficient field aR
d : Rd → R

d×d are uniform ellipticity and boundedness,
stationarity, and finite range of dependence, which is a standard set of assumptions
in stochastic homogenization [9,55] (note that we equip the space of uniformly
elliptic and bounded coefficient fields with the topology of Murat and Tartar’s H -
convergence [75]). Let us remark that all of our results and proofs are also valid
in the case of strongly elliptic systems, upon adapting the notation in the obvious
way:

(A1) Uniform ellipticity of a coefficient field a as usual means that there exists a
positive real number λ > 0 such that almost surely we have a(x)v ·v � λ|v|2
for almost every x ∈ R

d and every v ∈ R
d . Furthermore we assume uniform

boundedness in the sense that almost surely |a(x)v| � 1
λ
|v| holds for almost

every x ∈ R
d and every v ∈ R

d .
(A2) Stationarity means that the law of the shifted coefficient field a(· + x) must

coincide with the law of a(·) for every x ∈ R
d . On a heuristic level, this

means that “the probability distribution of a is everywhere the same” or, in
other words, that the material is spatially statistically homogeneous.

(A3) Finite range of dependence ε means that for any two Borel sets A, B ⊂ R
d

with dist(A, B) � ε the restrictions a|A and a|B must be stochastically
independent. In particular, this assumption restricts the correlations in the
coefficient field to the scale ε � 1.



Julian Fischer

Note that these assumptions include for example the case of a two-material compos-
ite with random (either overlapping or non-overlapping) inclusions of diameter ε,
the centers distributed according to a Poisson point process (up to removal in case of
overlap); see Fig. 3a. Further examples include coefficient fields aR

d
(x) := ξ(ã(x))

that arise by pointwise application of a nonlinear function ξ : Rd×d → R
d×d to a

(tensor-valued) stationary Gaussian random field ã with finite range of dependence
ε and integrable correlations, provided that the function ξ is Lipschitz and takes
values in the set of uniformly elliptic and bounded matrices.

For the approximation of the effective coefficient ahom, it is of advantage to
workwith a so-calledperiodization of the stationary ensemble of randomcoefficient
fields aR

d
(employing terminology from statistical mechanics, a probability mea-

sure on the space of coefficient fields shall also be called an ensemble of coefficient
fields). By a periodization of an ensemble of coefficient fields aR

d
we understand

an ensemble of coefficient fields a which are almost surely LεZd -periodic for some
L � 1 and for which the probability distribution of a on each cube of size of half
the period Lε

2 coincides with the probability distribution of the original coefficient

field aR
d
, that is for which the probability distribution of a|x+[0,Lε/2]d coincides

with the distribution of aR
d |x+[0,Lε/2]d for all x ∈ R

d . For such a periodization,
the condition (A3) is replaced by the following conditions (A3a), (A3b), (A3c):

(A3a) The coefficient field a is almost surely LεZd -periodic.
(A3b) There exists a finite range of dependence ε > 0 such that for any
two measurable LεZd -periodic sets A, B ⊂ R

d with dist(A, B) � ε the
restrictions a|A and a|B are stochastically independent.
(A3c) For any x0 ∈ R

d the law of the restriction a|x0+[− Lε
4 , Lε

4 ]d coincides
with the corresponding law for some (non-periodic) ensemble of coefficient
fields aR

d
satisfying (A1)–(A3).

Furthermore, to include examples like the random checkerboard in our analysis,
we need the following notion of discrete stationarity:

(A2’) We say that our probability distribution of coefficient fields a satisfies dis-
crete stationarity if the law of the shifted coefficient field a(·+ x) coincides
with the law of a(·) for every shift x ∈ εZd .

Our main assumptions stated in Assumption 1 below consist of two parts. First,
we assume that the probability distribution of coefficient fields aR

d
satisfies the

standard assumptions from stochastic homogenization and that there exists a suit-
able periodization a of the probability distribution. Second,we require the statistical
quantities F(a) to admit a “multilevel local dependence structure decomposition”
as introduced in Definition 6 below. Let us remark that both the spatial average

Favg(a) := −
∫

[0,Lε]d
a dx

and the higher-order quantity F2−point(a) considered by Le Bris et al. [64] as
defined in (10) satisfy the conditions in Definition 6; a proof of this fact is provided
in Proposition 7 below. As a consequence, both the spatial average Favg(a) and
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the higher-order quantity F2−point(a) may be chosen as the statistical quantities by
which the selection of representative volumes is performed in our main theorems
Theorem 2 and Theorem 3.

Assumption 1. (Assumptions and Notation) Consider a probability distribution of
random coefficient fields aR

d
on R

d , d � 1, which satisfies the conditions of
ellipticity, stationarity, and finite range of dependence (A1)–(A3). Let L � 2 and
suppose that there exists an Lε-periodization a of the probability distribution of
aR

d
subject to (A1), (A2), (A3a)–(A3c). Denote by aRVE the approximation for the

effective coefficient ahom by the standard representative volume element method
with a material sample of size [0, Lε]d , that is set

aRVEei := −
∫

[0,Lε]d
a(ei + ∇φi ) dx

with φi being the unique Lε-periodic solution with vanishing average to the cor-
rector equation

−∇ · (a(ei + ∇φi )) = 0.

Let F(a) = (F1(a), . . . ,FN (a)) be a collection of statistical quantities of the
coefficient field a which are subject to the conditions of Definition 6 with K � C0,
B � C0| log L|C0 , and γ � c0 for some 0 < c0,C0 < ∞. Suppose that the
covariance matrix of F(a) is nondegenerate and bounded in the natural scaling in
the sense

L−d Id � Var F(a) � C0L
−d Id . (13)

For any 1 � i, j � d introduce the condition number κi j of the covariance matrix
of (aRVEi j ,F(a))

κi j := κ
(
Var (aRVEi j ,F(a))

)

and the ratio rVar,i j between the expected order of fluctuations and the actual fluc-
tuations of the approximation aRVEi j

rVar,i j := L−d

Var aRVEi j

.

Denote by C a constant depending on d, λ, γ , N , and C0.

Under the above assumptions, the selection approach for representative vol-
umes to capture certain statistical properties of the material in the representative
volume particularly well—as proposed by Le Bris et al. [64]—leads to the follow-
ing increase in accuracy of the computed material coefficients:
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Theorem 2. (Justification of the Selection Approach for Representative Volumes)
Let the assumptions and notations of Assumption 1 be in place. Denote by asel-RVE

the approximation for the effective coefficient ahom by the selection approach for
representative volumes introduced by Le Bris et al. [64] in the case of a repre-
sentative volume of size Lε. Suppose that the representative volumes a|[0,Lε]d are
selected from the periodized probability distribution according to the criterion

∣∣F(a) − E
[
F(a)

]∣∣ � δL−d/2 (14)

for some δ ∈ (0, 1]. Let the selection criterion be chosen not too strict in the sense
that δN � CL−d/2| log L|C(d,γ,C0). Then the selection approach for representative
volumes is subject to the following error analysis:

(a) The systematic error of the approximation asel-RVE satisfies the estimate

∣∣E[asel-RVE]− ahom
∣∣ �

Cκ
3/2
i j

δN
L−d | log L|C(d,γ ). (15)

(b) The variance of the approximation asel-RVE is estimated from above by

Var asel-RVEi j

Var aRVEi j

� 1 − (1 − δ2)|ρ|2 + Cκ
3/2
i j rVar,i j

δN
L−d/2| log L|C(d,γ ), (16)

where |ρ|2 is the fraction of the variance of aRVEi j explained by theF(a), that is,

|ρ|2 is the maximum of the squared correlation coefficient between aRVEi j and
any linear combination of the Fn(a). The explained fraction of the variance is
given by the formula

|ρ|2 := Cov[aRVEi j ,F(a)] · (Var F(a))−1 Cov[F(a), aRVEi j ]
Var aRVEi j

. (17)

(c) The probability that a randomly chosen coefficient field a satisfies the selection
criterion (14) is at least

P
[|F(a) − E

[
F(a)

]| � δL−d/2] � c(N )δN . (18)

(d) The systematic error and the variance of asel-RVE may be estimated indepen-
dently of κi j at the price of lower rate of convergence in L

∣∣E[asel-RVE]− ahom
∣∣ � C

δN
L−d/2−d/8| log L|C(d,γ ) (19)

and

Var asel-RVEi j

Var aRVEi j

� 1 − (1 − δ2)|ρ|2 + CrVar,i j
δN

L−d/8| log L|C(d,γ ). (20)
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The previous theorem states that the approximation of effective coefficients by
the selection approach for representative volumes is essentially at least as accurate as
a random selection of samples (except for a possible additional relative error of the
orderCL−d/2| log L|C , which however converges to zero quickly as L increases), at
least whenmeasuring the mean-square error. If the selection is based on a statistical
quantity F(a) which is capable of explaining a large part of the variance of aRVEi j ,
the selection approach achieves a much better accuracy than a random selection of
samples (namely, by a factor of about

√
1 − |ρ|2).

However, the previous theorem only provides a statement about the reduction
of the mean-square error by the selection approach for representative volumes. A
natural question is whether this reduction of the error also applies to rare events:
More precisely, if we fix a small probability p > 0, is the bound on the error
|asel-RVEi j −ahom,i j |which holds with probability 1− p also improved as suggested
by the variance reduction estimate (16)? The following theorem shows that this is in
fact true for “moderate deviations”, that is basically for probabilities p � exp(−Lβ)

for some β > 0. More precisely, the theorem is to be read as follows: up to error
terms that converge to zero as L → ∞ and s → ∞, the probability of asel-RVEi j
deviating from ahom,i j by more than s times the ideally reduced standard deviation√

(1 − |ρ|2)Var aRVEi j behaves like the probability of a normal distribution devi-

ating from its mean by more than s standard deviations, at least in some regime
s � Lβ/3.

Theorem 3. Let the assumptions and notations of Theorem 2 be in place. Suppose
in addition L � C. Then the selection approach for representative volumes leads to
a reduction of the “outliers” of the probability distribution of asel-RVE in the sense
of the moderate-deviations-type bound

P

⎡
⎢⎢⎣

∣∣asel-RVEi j − ahom,i j
∣∣

√
(1 + Cδ√

1−|ρ|2s )(1 − |ρ|2)Var aRVEi j + CL−d−β

� s

⎤
⎥⎥⎦ (21)

�
(
1 + C

δN Lβ
+ Cδ√

1 − |ρ|2s
)
P
[|N1| � s

]+ C

δN
exp

(− Lβ
)

for any s � max
{
1, δ√

1−|ρ|2
}
and some β = β(d) > 0.

We have shown in the preceding two theorems that the selection approach for
representative volumes by Le Bris et al. essentially does not increase the error; it
succeeds in reducing the fluctuations of the approximations as soon as the func-
tionals F(a) and the approximation aRVE have a nonzero covariance.

However, as we shall show in the next theorem there exist cases in which the
selection approach for representative volumes in fact fails to reduce the variance
significantly, even for a “natural” statistical quantity like the average of the coeffi-
cient field

F(a) := −
∫

[0,Lε]d
a dx .



Julian Fischer

Theorem 4. (Possible Failure of the Reduction of the Variance) Suppose that the
assumptions of Theorem 2 hold. Then the estimate (16) on the reduction of the
variance is sharp in the sense

Var asel-RVEi j

Var aRVEi j

� 1 − |ρ|2 − Cκ
3/2
i j rVar,i j

δN
L−d/2| log L|C(d,γ ). (22)

Furthermore, for d � 2 there exist Lε-periodic probability distributions of coef-
ficient fields a which satisfy the conditions of ellipticity, discrete stationarity, and
finite range of dependence (A1), (A2’), (A3a)–(A3c) with the following property:
the covariance of aRVE and the spatial average −

∫
a vanishes

Cov

[
aRVE , −

∫
[0,Lε]d

a dx

]
= 0, (23)

while the fluctuations of aRVE and −
∫
[0,Lε]d a are nondegenerate in the sense that

Var aRVE � cL−d Id⊗ Id,

Var −
∫

[0,Lε]d
a dx � cL−d Id⊗ Id,

for some universal constant c. These coefficient fields may be chosen to be of the
form a(x) = ã(x) Id for some scalar random field ã.

As a consequence, for these probability distributions of coefficient fields the
selection approach for representative volumes based on the spatial average −

∫
a

fails to efficiently reduce the variance in the sense that

Var asel-RVEi j

Var aRVEi j

� 1 − Cκ
3/2
i j rVar,i j

δN
L−d/2| log L|C(d,γ ). (24)

Let us note that it is presumably not too difficult to replace the random checker-
board in our construction of the counterexample featuring (23) by random spherical
inclusions distributed according to a Poisson point process (with overlaps of the in-
clusions). This would yield a counterexample subject to the continuous stationarity
(A2).

The next theorem suggests that the failure of effective variance reduction is
atypical andmay be limited to rather artificial examples. For a large class of random
coefficient fields—namely for coefficient fields that are obtained from a collection
of iid random variables ξk , k ∈ εZd , by applying a stationary monotone map
with finite range of dependence—the correlation coefficient between aRVE and the
average F(a) := −

∫
a is bounded from below by a positive number. Therefore,

for such (ensembles of) coefficient fields both the method of special quasirandom
structures and the method of control variates in fact reduce the variance by some
factor τ < 1 when applied with the choice F(a) := −

∫
a.
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Proposition 5. (Reduction of the Variance for a Large Class of Coefficient Fields)
Let ε > 0 and let L � 2 be an integer and let V denote some measure space. Let
(�k), k ∈ εZd ∩ [0, Lε)d , be a collection of independent identically distributed
V -valued random variables, and denote by (�̃k) an independent copy. Extend �k to
k ∈ εZd by Lε-periodicity. For k ∈ εZd and z ∈ V , denote by
k,z� the collection
(�̃k) obtained by setting �̃k := z and �̃ j = � j for all j �= k.

Let a = a(x, �) be a measurable map into the uniformly elliptic Lε-periodic
symmetric coefficient fields with the property that a(x, �) depends only on the �k

with |x − k|per � K ε for some K � 1 (in a measurable way). Suppose that the
map is stationary in the sense that a(x + y, �) = a(x, �·+y) for any y ∈ εZd .

Suppose that the dependence of a on � is monotone in the sense that for every
k ∈ εZd and every pair z1, z2 ∈ V , either for all x the inequality

a(x,
k,z1�) � a(x,
k,z2�)

holds, or for all x the reverse inequality

a(x,
k,z1�) � a(x,
k,z2�)

holds. Suppose furthermore that there exists ν > 0 such that we have the quantified
monotonicity

E

[ ∑
k∈εZd∩[0,Lε)d

√
ε−d

∫
[0,Lε]d

∣∣(a − a(
k,�̃k
�))ξ · ξ

∣∣ dx(a(x, �) − a(x,
k,�̃k
�)
)1/2
+

∣∣∣∣ �
]

� ν Id (25)

for all x ∈ [0, Lε)d and all �, where
(
a(x, �) − a(x,
k,�̃k

�)
)1/2
+ denotes the

matrix square root and where �̃ denotes an independent copy of �.
Then the probability distribution of a = a(x, �) satisfies the conditions of

ellipticity, periodicity, and finite range of dependence (A1), (A3a), and (A3b) (with
ε replaced by 4K ε), as well as the discrete stationarity (A2’). Furthermore, for
such coefficient fields a the correlation between ξ · aRVEξ (where ξ ∈ R

d is any
nonzero vector) and the average

Favg(a) := −
∫

[0,Lε]d
ξ · aξ dx

is bounded from below by a positive number in the sense

ρ = Cov[aRVEi j ,Favg(a)]√
Var aRVEi j Var Favg(a)

� ν2

C(d, λ, K )
.

In the statements of our main theorems, we have made use of the following
notion of “multilevel local dependence decomposition”; this structure will also be
at the heart of the proof of our main results (an illustration of this decomposition
is provided in Fig. 4):
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Fig. 4. An illustration of the “multilevel local dependence structure” introduced in Defi-
nition 6 (in a one-dimensional setting). At the bottom, a sample of the random coefficient
field a is depicted; the Xk

y may depend not only on the values of the coefficient field directly
below their box, but on the coefficient field in a region that is wider by a factor of K log L

Definition 6. (Sums of RandomVariables withMultilevel Local Dependence Struc-
ture) Let d � 1, N ∈ N, ε > 0, and L � 2. Consider a probability distribution
of coefficient fields a on R

d subject to the assumptions of ellipticity and bound-
edness, stationarity, and finite range of dependence ε (A1), (A2), and (A3), or
the periodization of such an ensemble subject to the conditions (A1), (A2), and
(A3a) - (A3c). Let X = X (a) be an RN -valued random variable.

We then say that X is a sum of random variables with multilevel local depen-
dence if there exist random variables Xm

y = Xm
y (a), 0 � m ≤ 1 + log2 L and

y ∈ 2mεZd ∩ [0, Lε)d , and constants K � 1, γ ∈ (0, 2], and B � 1 with the
following properties:

• The random variable Xm
y (a) only depends on a|y+K log L [−2mε,2mε]d . More pre-

cisely, Xm
y (a) is a measurable function of a|y+K log L [−2mε,2mε]d equipped with

the topology of H -convergence.
• We have

X =
1+log2 L∑
m=0

∑
y∈2mεZd∩[0,Lε)d

Xm
y .

• The random variables Xm
y satisfy the bound

||Xm
y ||expγ � BL−d . (26)

The next proposition shows that the approximation aRVE of the effective coef-
ficient by the method of representative volumes may indeed be rewritten as a sum
of random variables with a multilevel local dependence structure. We establish the
same result for the spatial average of the coefficient field Favg(a) := −

∫
[0,Lε]d a dx

and the second-order term F2−point(a) in the low ellipticity contrast expansion of
aRVE given by (10).
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Furthermore, the last result of the next proposition shows that the fraction of
the variance of aRVE that is explained by the statistical quantities Favg(a) and
F2−point(a)—that is, the gain in accuracy achieved by the selection approach for
representative volumes when employing these statistical quantities—stabilizes as
the size L of the representative volume increases; more precisely, it converges to
some limit with rate L−d/2| log L|C .

Proposition 7. Let the assumptions (A1), (A2), (A3a)–(A3c) be satisfied, that is
consider the periodization of a stationary ensemble of random coefficient fields.
For any coefficient field a, denote by φi the unique (up to additions of constants)
periodic solution to the corrector equation

−∇ · (a(ei + ∇φi )) = 0.

Then the approximation aRVE of the effective coefficient ahom by the representative
volume element method, given by

aRVEei := −
∫

[0,Lε]d
a(ei + ∇φi ) dx,

is a sum of a family of random variables with multilevel local dependence. More
precisely, aRVE satisfies the criteria ofDefinition6 for anyγ < 1with K := C(d, λ)

and B := C(d, γ, λ)| log L|C(d,γ ).
Furthermore, the spatial average

Favg(a) := −
∫

[0,Lε]d
a dx

is also a sum of a family of random variables with multilevel local dependence. The
criteria of Definition 6 are satisfied by Favg(a) for any γ < ∞ with K := C(d)

and B := C(d, γ ).
Additionally, the second-order correction to the effective conductivity in the

setting of small ellipticity contrast F2−point, given by

F2−point(a) := −−
∫

[0,Lε]d
a∇vi · e j dx, (27)

with vi denoting the solution to

−
vi = ∇ · (a∇ei ), (28)

is a sumof randomvariableswithmultilevel local dependence structure: the random
variable F2−point(a) satisfies the criteria of Definition 6 for any γ < 1 with K :=
C(d, λ) and B := C(d, γ, λ)| log L|C(d,γ ).

Finally, the rescaled variances and covariances of aRVE and the statistical
quantities Favg(a) and F2−point(a) converge as L → ∞. There exist positive



Julian Fischer

semidefinite matrices VRVE, Vavg, V2−point and matrices Vc,RVE,avg, Vc,RVE,2−point,
Vc,avg,2−point independent of L such that the estimates

|LdVar aRVE − VRVE| � CL−d/2(log L)C ,

|LdVar Favg(a) − Vavg| � CL−d/2(log L)C ,

|LdVar F2−point(a) − V2−point| � CL−d/2(log L)C ,

and

|Ld Cov[aRVE,Favg(a)] − Vc,RVE,avg| � CL−d/2(log L)C ,

|Ld Cov[aRVE,F2−point(a)] − Vc,RVE,2−point| � CL−d/2(log L)C ,

|Ld Cov[Favg(a),F2−point(a)] − Vc,avg,2−point| � CL−d/2(log L)C ,

hold true.

It is interesting to compare our approach on quantitative normal approximation
of aRVE with concepts employed in the derivation of optimal error estimates in
stochastic homogenization [5,6,55]. A central theme in [5] is the approximate
additivity of certain energetic quantities: the energy quantity on a certain scale
may approximately be written as a sum of the energy quantities on smaller scales,
allowing for an application of the central limit theorem. In [55], the application of the
central limit theorem is facilitated by the homogenization of the flux propagation in
the parabolic semigroup associatedwith the randomelliptic operator. In our context,
while we also introduce an additive decomposition of aRVE, we do not require the
summands to be of the same structure as aRVE and allow for a multilevel structure.
This enables us to derive an optimal-order normal approximation result for the
fluctuations.

Note that in [5,6] a certain localization property of the considered energy quan-
tity has been established. In principle, sufficiently strong localization properties of
a random field allow for a multilevel decomposition of (linear functionals of) the
random field in the sense of Definition 6 and therefore for an application of our
quantitative normal approximation result in Theorem 9; see, in particular, the proof
of [43, Theorem 2] for such a construction. However, the locality of the energy
quantity established in [5,6] is non-optimal and in general not sufficient for our
purposes. In the forthcoming work [37], an optimal-order localization result for
(linear functionals of) the homogenization commutator � := (a−ahom)(Id+∇φ)

will be provided, implying an optimal-order normal approximation result.

3. Strategy of the Proof and Intermediate Results

Our main result relies on a quantitative normal approximation result for the
joint probability distribution of the approximation of the effective conductivity
aRVE and auxiliary randomvariablesF(a) like the spatial average−

∫
[0,Lε]d a dx . The

distance of the probability distribution to a multivariate Gaussian will be quantified
through the following notion of distance between probability measures. Note that
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this distance is a standard choice in the theory ofmultivariate normal approximation,
see for example [33] and the references therein.

Definition 8. Given a symmetric positive definite matrix � ∈ R
N×N and some

L̄ < ∞, we consider the classes �L̄
� of functions φ : R

N → R subject to the
following properties:

• φ is smooth and its first derivative is bounded in the sense |∇φ(x)| � L̄ for all
x ∈ R

N .
• For any r > 0 and any x0 ∈ R

N , we have
∫
RN

oscrφ(x) N�(x − x0) dx � r, (29)

where oscrφ(x) is the oscillation of φ defined as

oscrφ(x) := sup
|z|�r

φ(x + z) − inf
|z|�r

φ(x + z)

and where

N�(x) := 1

(2π)N/2
√
det�

exp

(
− 1

2
�−1x · x

)
.

The class �� is defined as

�� :=
⋃
L̄>0

�L̄
�.

Furthermore, we introduce the distanceD between the law of anRN -valued random
variable X and the N -variate Gaussian N� as

D(X,N�) := sup
φ∈��

(
E[φ(X)] −

∫
RN

φ(x)N�(x) dx

)
. (30)

Note that defining the distanceD with the class of functions �1
� instead of ��

would lead to the 1-Wasserstein distance. The distance D is a stronger distance
than the 1-Wasserstein distance. The 1-Wasserstein distance is defined by taking
the supremum in (30) only over all functions φ which are 1-Lipschitz. In contrast,
the condition (29) corresponds more or less to a slightly stronger condition than an
L1
loc-type bound for ∇φ: It in particular implies by letting r → 0

∫
RN

|∇φ|(x)N�(x − x0) dx � 1 (31)

for any x0 ∈ R
N .

It is well-known that Stein’s method of normal approximation allows one to es-
tablish a quantitative result on normal approximation for sums of random variables
with local dependence structure, see for example [33,34,80] and the references
therein. However, the approximation of the effective coefficient aRVE—that is, the
random variable aRVE as defined by (4)—features global dependencies. It is shown
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in Proposition 7 that aRVE may nevertheless be approximated by a sum of random
variables with amultilevel local dependence structure. We then employ the follow-
ing quantitative central limit theorem for sums of vector-valued random variables
with a multilevel local dependence structure, which is not covered by the normal
approximation results for sums of random variables with a given dependency graph
in the literature and which is established in the companion article [43]:

Theorem 9. ([43, Theorem 4]) Consider a probability distribution of uniformly
elliptic and bounded coefficient fields a on R

d or a periodization of such a proba-
bility distribution, and suppose that assumptions (A1)–(A3) respectively (A1), (A2),
(A3a)–(A3c) are satisfied. Let X = X (a) be a random variable that is a sum of
random variables with multilevel local dependence in the sense of Definition 6.
Then the law of the random variable X is close to a multivariate Gaussian in the
sense that

D(X − E[X ],N�) � C(d, γ, N , K )B3(log L)C(d,γ )
(
L−d |�1/2||�−1/2|3)L−d ,

(32)

where� := Var X and where the constant C(d, γ, N , K ) depends in a polynomial
way on d, N , and K .

Furthermore, we have, for any symmetric positive definite � ∈ R
N×N with

� � Var X and |� − Var X | � L−d ,

D(X − E[X ],N�) �C(d, γ, N , K )B3(log L)C(d,γ )
(
L−d |�1/2||�−1/2|3)L−d

(33)

+ C(d, N )(log L)C(d,γ )|� − Var X |1/2,

providing a better bound in the case of degenerate covariance matrices Var X.

Our result on moderate deviations of the probability distribution of asel-RVE

is based on the following simple general moderate deviations result for sums of
random variables with multilevel local dependence structure:

Theorem 10. ([43, Theorem 5]) Consider an ensemble of coefficient fields a on
R
d , d � 1, or its periodization for some L � 1, subject to the conditions (A1)–(A3)

respectively (A1), (A2), and (A3a)–(A3c). Let X = X (a) be a random variable
that may be written as a sum of random variables with multilevel local dependence

structure X = ∑1+log2 L
m=0

∑
i∈2mεZd∩[0,Lε)d X

m
i in the sense of Definition 6.

Then there exists β = β(d, γ ) > 0 and a positive definite symmetric matrix
� ∈ R

N×N with |� − Var X | � C(d, γ, N , K )B2L−2βL−d such that for any
measurable A ⊂ R

N we have the estimate

P
[
X ∈ A

]
�
∫

{x∈RN :dist(x,A)�L−β L−d/2}
N�(x) dx

+ C(d, γ, N , K ) exp
(

− c

BC
L2β

)
.
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4. Justification of the Selection Approach for Representative Volumes

We now provide the proof of our main result—the error estimates for the selec-
tion approach for representative volumes by Le Bris et al. [64]—which is stated in
Theorems 2 and 3.

The idea for the proof of all statements of Theorem 2 is that Theorem 9 enables
us in conjunction with Proposition 7 to approximate the joint probability distri-
bution of aRVE and F(a) by a multivariate Gaussian with the same covariance
matrix. The probability distribution of asel-RVE arises as the probability distribution
of aRVE conditioned on the event (14). As a consequence, the probability distribu-
tion of asel-RVE may be approximated by the marginal of the conditional probability
distribution of an idealmultivariate Gaussian. The results of Theorem 2 on the prob-
ability distribution of asel-RVE are then a consequence of corresponding properties
of multivariate normal distributions.

Proof of Theorem 2. For the proof of the theorem we may assume without loss
of generality that E[F(a)] = 0. Throughout the proof, the constants c and C may
depend on d, λ, N , γ , c0, and C0, if not otherwise stated.

Recall that the probability distribution of asel-RVE is given by the probability
distribution of aRVE conditioned on the event (14). Theorem 9 and Proposition 7
entail that the joint probability distribution of any component aRVEi j of aRVE and

F(a) is close to a multivariate GaussianNVar (aRVEi j ,F(a))(· −E[aRVEi j ], ·). As a con-
sequence of this result, the probability distribution of asel-RVEi j may be approximated
in a quantitative sense by the first-variable marginal of the conditional distribution
ofNVar (aRVEi j ,F(a))(· − E[aRVEi j ], ·) given the event |F(a)| � δL−d/2. As we shall

show below, the latter marginal probability distribution has the density

Mδ(x) := 1

p

∫
RN

NVar aRVEi j |unexpl
(
x − Cov[aRVEi j ,F(a)](Var F(a))−1y − E[aRVEi j ])

(34)

× χ{|y|�δL−d/2}NVar F(a)(y) dy,

where the renormalization factor p is given by

p =
∫
R

∫
RN

χ{|y|�δL−d/2}(y)NVar (aRVEi j ,F(a))(x, y) dy dx,

and where the unexplained variance Var aRVEi j |unexpl (that is the variance of aRVEi j
which is not explained by the Fn(a)) is given by

Var aRVEi j |unexpl = Var aRVEi j − Cov[aRVEi j ,F(a)](Var F(a))−1 Cov[F(a), aRVEi j ].
The assertions (15) and (16) on the systematic error and the variance reduction in
Theorem 2 will be a consequence of the lower bound (18) on the probability of a
random coefficient field satisfying the selection criterion, the related lower bound∫

RN

∫
R

χ{|y|�δL−d/2}NVar (aRVEi j ,F(a))(x, y) dx dy � c(N )C−N/2
0 δN , (35)
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the stretched exponential moment bounds for any γ < 1/2,

||aRVE − E[aRVE]||expγ � C(d, λ, γ )L−d/2| log L|C , (36a)

||NVar (aRVE,F(a))||expγ � C(d, λ, γ,C0)L
−d/2| log L|C , (36b)

and the approximation result of the distribution of asel-RVEi j by Mδ

∣∣∣∣E
[
φ̃(asel-RVEi j )

]−
∫
R

φ̃(x)Mδ(x) dx

∣∣∣∣ �
Cκ

3/2
i j

δN
L−d | log L|C(d,γ ) (37)

for any continuous φ̃ : R → R satisfying

|φ̃| � L−d/2 (38a)

and
∫
R

oscr φ̃(x)NVar aRVEi j |unexpl(x − x0) dx � r (38b)

for all r > 0 and all x0 ∈ R. To obtain the κ-independent estimates (19) and (20),
the bound (37) is replaced by

∣∣∣∣E
[
φ̃(asel-RVEi j )

]−
∫
R

φ̃(x)Mδ(x) dx

∣∣∣∣ � C

δN
L−d/2−d/8| log L|C(d,γ ). (39)

We defer the proof of (18) and (37) (as well as (39)) to the last step and first
demonstrate that these estimates entail the assertions (15) and (16) of our theorem.

Step 1: Estimate on the systematic error. In order to derive the estimate on the
systematic error (15), we first use the formula (34) and Fubini’s theorem to see that

∫
x Mδ(x) dx (40)

= 1

p

∫
RN

(
E[aRVEi j ] + Cov[aRVEi j ,F(a)](Var F(a))−1y

)

× χ{|y|�δL−d/2}NVar F(a)(y) dy

= E[aRVEi j ],

where in the second step we have used the symmetry of the Gaussian NVar F(a).
In other words, if the probability distribution of (aRVE,F(a)) were an ideal multi-
variate Gaussian, we would have the perfect equality E[asel-RVE] = E[aRVE].

We would now like to transfer the property (40) (up to an error) fromMδ to our
actual probability distribution asel-RVE by choosing φ̃(x) := x in the estimate (37).
However, this choice is not possible due to the upper bound on φ̃ in (38a). Instead,
for some cutoff factor Bc � 1 we consider the function φ̃(x) = min{max{x −
E[aRVEi j ],−BcL−d/2}, BcL−d/2}. Note that for this choice of φ̃ we have |∇φ̃| � 1
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and |φ̃| � BcL−d/2.As a consequence, 1
Bc

φ̃ satisfies (38) andhence is an admissible
choice in (37), which gives, by (40),

∣∣E[asel-RVEi j ] − E[aRVEi j ]∣∣
=
∣∣∣∣E[asel-RVEi j − E[aRVEi j ]] −

∫
R

(x − E[aRVEi j ]) Mδ(x) dx

∣∣∣∣
� E

[∣∣(asel-RVEi j − E[aRVEi j ]) − φ̃(asel-RVEi j )
∣∣]

+
∫
R

|(x − E[aRVEi j ]) − φ̃(x)| Mδ(x) dx

+
∣∣∣∣E[φ̃(asel-RVEi j )] −

∫
R

φ̃(x) Mδ(x) dx

∣∣∣∣
(37)
� E

[(|asel-RVEi j − E[aRVEi j ]| − BcL
−d/2)

+
]

+
∫
R

(|x − E[aRVEi j ]| − BcL
−d/2)

+ Mδ(x) dx

+ Bc
Cκ

3/2
i j

δN
L−d | log L|C(d,γ ).

Using first the lower bounds (18) and (35) and the representation (44) and then in
the next step Hölder’s inequality, the previous estimate implies

∣∣E[asel-RVEi j ] − E[aRVEi j ]∣∣
� C

δN
E
[(|aRVEi j − E[aRVEi j ]| − BcL

−d/2)
+
]

+ C(N )

δN

∫
R

∫
RN

(|x − E[aRVEi j ]| − BcL
−d/2)

+

× NVar (aRVEi j ,F(a))(x − E[aRVEi j ], y) dy dx

+ Bc
Cκ

3/2
i j

δN
L−d | log L|C(d,γ )

� C

δN
E
[|aRVEi j − E[aRVEi j ]|2]1/2P[|aRVEi j − E[aRVEi j ]| � BcL

−d/2]1/2

+ C(N )

δN
E
[|NVar aRVEi j

|2]1/2P[|NVar aRVEi j
| � BcL

−d/2]1/2

+ Bc
Cκ

3/2
i j

δN
L−d | log L|C(d,γ ).

This yields, by Lemma 19b and the bounds (36a) and (36b),

∣∣E[asel-RVEi j ] − E[aRVEi j ]∣∣

� C(N )

δN
exp

(
− c

(
Bc

| log L|C
)γ)

+ Bc
Cκ

3/2
i j

δN
L−d | log L|C(d,γ ).
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Choosing Bc := C | log L|C(γ ), we deduce

∣∣E[asel-RVEi j ] − E[aRVEi j ]∣∣ �
Cκ

3/2
i j

δN
L−d | log L|C(d,γ ). (41)

Plugging in the bound for the systematic error of the standard representative volume
element method |E[aRVE] − ahom| � CL−d | log L|C from [55] (note that this
estimate for the systematic error of the standard representative volume element
method may also be derived by slightly modifying the proof of our Proposition 7),
we obtain (15). Repeating the previous proof but replacing the use of the estimate
(37) by (39), we obtain (19).

Step 2: Proof of the variance reduction estimate. To prove the variance estimate
(16), we proceed similarly and define for a cutoff factor Bc � 1 the function
φ(x) := min{(x − E[aRVEi j ])2, B2

c L
−d}. Note that this function satisfies the global

bounds |∇φ| � 2BcL−d/2 and |φ| � B2
c L

−d . Thus, 1
2B2

c L
−d/2 φ satisfies (38) and

is therefore an admissible choice in (37), yielding∣∣∣∣E
[
min{(asel-RVEi j − E[aRVEi j ])2, B2

c L
−d}] (42)

−
∫
R

min{(x − E[aRVEi j ])2, B2
c L

−d}Mδ(x) dx

∣∣∣∣

� 2B2
c L

−d/2 · Cκ
3/2
i j

δN
L−d | log L|C(d,γ ).

The tails (subject to truncation in our choice of φ) can be estimated by

E
[∣∣(asel-RVEi j − E[aRVEi j ])2 − φ(asel-RVEi j )

∣∣]

+
∫
R

|(x − E[aRVEi j ])2 − φ(x)| Mδ(x) dx

� E
[(|asel-RVEi j − E[aRVEi j ]|2 − B2

c L
−d)

+
]

+
∫
R

(|x − E[aRVEi j ]|2 − B2
c L

−d)
+ Mδ(x) dx

� C

δN
E
[(|aRVEi j − E[aRVEi j ]|2 − B2

c L
−d)

+
]

+ C

δN

∫
R

∫
RN

(|x − E[aRVEi j ]|2 − B2
c L

−d)
+ NVar (aRVEi j ,F(a))(x, y) dy dx,

where in the last step we have used (18), (35), and (44). Applying Hölder’s inequal-
ity, we obtain

E
[∣∣(asel-RVEi j − E[aRVEi j ])2 − φ(asel-RVEi j )

∣∣]

+
∫
R

|(x − E[aRVEi j ])2 − φ(x)| Mδ(x) dx

� C

δN
E
[|aRVEi j − E[aRVEi j ]|4]1/2P[|aRVEi j − E[aRVEi j ]| � BcL

−d/2]1/2
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+ C

δN
E[|NVar aRVEi j

|4]1/2 · P[|NVar aRVEi j
| � BcL

−d/2]1/2

� C

δN
exp

(
− c

(
Bc

| log L|C
)γ)

,

where in the last step we have used Lemma 19b and the bounds (36a) and (36b).
Combining this estimate with (42) and choosing Bc := C | log L|C(d,γ ), we

infer ∣∣∣∣E
[
(asel-RVEi j − E[aRVEi j ])2]−

∫
(x − E[aRVEi j ])2Mδ(x) dx

∣∣∣∣ (43)

�
Cκ

3/2
i j

δN
L−3d/2| log L|C(d,γ ).

In other words, the variance of asel-RVEi j is determined up to an error by the vari-

ance of the probability distribution Mδ . To estimate the latter, a straightforward
computation yields
∫

(x − E[aRVEi j ])2Mδ(x) dx

(34)= 1

p

∫
RN

∫
R

NVar aRVEi j |unexpl
(
x − Cov[aRVEi j ,F(a)](Var F(a))−1y − E[aRVEi j ])

× χ{|y|�δL−d/2}NVar F(a)(y) · (x − E[aRVEi j ])2 dx dy
= 1

p

∫
RN

∫
R

(
x̃ + Cov[aRVEi j ,F(a)](Var F(a))−1y

)2NVar aRVEi j |unexpl(x̃) dx̃

× χ{|y|�δL−d/2}NVar F(a)(y) dy.

By the symmetry of the set {|y| � δL−d/2} and the probability densityNVar F(a)(y)
we have

∫
RN yχ{|y|�δL−d/2}NVar F(a)(y) dy = 0. As a consequence, we get

∫
(x − E[aRVEi j ])2Mδ(x) dx

= 1

p

∫
RN

(
Var aRVEi j |unexpl +

(
Cov[aRVEi j ,F(a)](Var F(a))−1y

)2)

× χ{|y|�δL−d/2}NVar F(a)(y) dy

(13)
�
(
Var aRVEi j |unexpl + δ2 Cov[aRVEi j ,F(a)](Var F(a))−1 Cov[F(a), aRVEi j ]

)

× 1

p

∫
RN

χ{|y|�δL−d/2}NVar F(a)(y) dy

=
(
Var aRVEi j |unexpl + δ2 Cov[aRVEi j ,F(a)](Var F(a))−1 Cov[F(a), aRVEi j ]

)

= (
1 − (1 − δ2)|ρ|2)Var aRVEi j .

Together with (43), this entails (16). To prove (20), we repeat the proof of (43) and
just replace the use of (37) in the proof of (43) by (39).
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Note that the lower bound (22) on the variance given in Theorem 4 follows also
from the estimates (43) and (15) and the lower bound

∫
(x−E[aRVEi j ])2Mδ(x) dx �

(1 − |ρ|2)Var aRVEi j , the latter of which is derived analogously to the upper bound∫
(x − E[aRVEi j ])2Mδ(x) dx � (1 − (1 − δ2)|ρ|2)Var aRVEi j .
Step 3: The probability density of the reference distribution. For the purpose of

this subsection, introduce the abbreviation for the covariance matrix

� := Var (aRVEi j ,F(a)) =
(

Var aRVEi j Cov[aRVEi j ,F(a)]
Cov[F(a), aRVEi j ] Var F(a)

)
.

The probability density Mδ of the first-variable marginal of the corresponding
multivariate Gaussian conditioned on |F(a)| � δL−d/2, which is the probability
distribution by which we approximate the distribution of asel-RVEi j , is given by

Mδ(x) = 1∫
R

∫
RN χ{|y|�δL−d/2}N�(x̃, y) dy dx̃

∫
RN

χ{|y|�δL−d/2} (44)

× N�(x − E[aRVEi j ], y) dy.
Our goal is to show that this probability density Mδ may be rewritten in the form
(34). To this end, we recall some basic linear algebra. The Schur complement of
the symmetric block matrix

M :=
(

A B
BT D

)

(with AT = A and DT = D) is given by T := A − BD−1BT , and the inverse of
the matrix may be written as

(
A B
BT D

)−1

=
(

T−1 −T−1BD−1

−D−1BT T−1 D−1 + D−1BT T−1BD−1

)
.

The determinantmay be expressed as det M = det T ·det D. The Schur complement
allows us to rewrite the quadratic form defined by M−1 as

M−1(x, y) · (x, y) = T−1(x − BD−1y) · (x − BD−1y) + D−1y · y.
As a consequence, we get for M := � that

T = Var aRVEi j − Cov[aRVEi j ,F(a)](Var F(a))−1 Cov[F(a), aRVEi j ]
= Var aRVEi j |unexpl

and

N�(x, y) = 1

(2π)(N+1)/2
√
det�

exp

(
− 1

2
�−1(x, y) · (x, y)

)
(45)

= NVar aRVEi j |unexpl
(
x − Cov[aRVEi j ,F(a)](Var F(a))−1y

)
NVar F(a)(y).

Now, (34) and (44) are seen to be equivalent.
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Step 4: Proof of the normal approximation estimate and the lower bound on the
probability of the event |F(a)| � δL−d/2. First, let us show the lower bound (35).
We have ∫

RN

∫
R

χ{|y|�δL−d/2}NVar (aRVEi j ,F(a))(x, y) dx dy

=
∫
RN

χ{|y|�δL−d/2}NVar F(a)(y) dy

(13)
�
∫
RN

χ{|y|�δL−d/2}NC0L−d (y) dy

�
∫
RN

χ{|y|�δL−d/2}
1

(2πC0L−d)N/2 exp(−δ2) dy

� c(N )C−N/2
0 δN ,

establishing (35).
The estimate (36b) is a consequence of the estimate onVar (aRVE,F(a))which

follows from (36a), (13), and the exponential moment bounds for Gaussians. The
bound (36a) is a consequence of Lemma 12 (note that by Proposition 7, Lemma 12
is indeed applicable).

Our next goal is to show (37) and (39). Let φ̃ : R → R satisfy (38) and suppose
that we would like to estimate the error

E
[
φ̃
(
asel-RVEi j

)]−
∫
R

φ̃(x)Mδ(x) dx .

As the distribution of asel-RVEi j is obtained from the distribution of aRVEi j by condi-

tioning on the event |F(a)| � δL−d/2, by (34) and (44) this error expression is
equal to

E
[
φ̃
(
asel-RVEi j

)]−
∫
R

φ̃(x)Mδ(x) dx

= 1

P[|F(a)| � δL−d/2]
(
E
[
χ{|F(a)|�δL−d/2}φ̃

(
aRVEi j

)]

−
∫
R×RN

φ̃(x)χ{|y|�δL−d/2}N�(x − E[aRVEi j ], y) d(x, y)
)

+
∫
R

φ̃(x)Mδ(x) dx

(∫
R×RN χ{|y|�δL−d/2}N�(x, y) d(x, y)

P[|F(a)| � δL−d/2] − 1

)
. (46)

Up to the normalizing factor 1/P
[|F(a)| � δL−d/2

]
, the first termon the right-hand

side is given by

E
[
φ
(
aRVE − E[aRVEi j ])]−

∫
R×RN

φ(x, y)N�(x, y) d(x, y),

where φ : R × R
N → R is defined as

φ(x, y) :=
{

φ̃(x + E[aRVEi j ]) for |y| � δL−d/2,

0 for |y| > δL−d/2.
(47)
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Wewould now like to show that (a suitable multiple of) the function φ is admissible
in the error bound (33). By the estimate

oscrφ(x, y) �χ{|y|�δL−d/2+r}oscr φ̃(x + E[aRVEi j ])
+ χ|y|∈[δL−d/2−r,δL−d/2+r ]|φ̃(x + E[aRVEi j ])|,

we obtain, for any z0 = (x0 − E[aRVEi j ], y0) ∈ R × R
N , also making use of the

abbreviation Q := Cov[aRVE,F(a)](Var F(a))−1,∫
R×RN

oscrφ(z)N�(z − z0) dz

�
∫
RN

∫
R

(oscr φ̃)(x)χ{|y|�δL−d/2+r}N�(x − x0, y − y0) dx dy

+
∫
RN

∫
R

|φ̃|(x)χ|y|∈[δL−d/2−r,δL−d/2+r ]N�(x − x0, y − y0) dx dy

(45)
�
∫
RN

χ{|y|�δL−d/2+r}NVar F(a)(y − y0)

×
∫
R

(oscr φ̃)(x)NVar aRVEi j |unexpl(x − x0 − Q(y − y0)) dx dy

+
∫
RN

χ|y|∈[δL−d/2−r,δL−d/2+r ]NVar F(a)(y − y0)

×
∫
R

|φ̃|(x)NVar aRVEi j |unexpl(x − x0 − Q(y − y0)) dx dy

(38)
�
∫
RN

χ{|y|�δL−d/2+r}NVar F(a)(y − y0) · r dy

+
∫
RN

χ|y|∈[δL−d/2−r,δL−d/2+r ]NVar F(a)(y − y0) · L−d/2 dy,

and therefore

∫
R×RN

oscrφ(z)N�(z − z0) dz

� r + L−d/2
∫
RN

χ|y+y0|∈[δL−d/2−r,δL−d/2+r ]NVar F(a)(y) dy

� r + L−d/2 sup
|W |�|BN

1 |
(
(δL−d/2+r)N−(δL−d/2−r)N+

)
∫
W
NVar F(a)(y) dy

� r + L−d/2 min

{
1, |BN

1 | · (δL−d/2 + r)N − (δL−d/2 − r)N+
(2π)N/2

√
det Var F(a)

}

� r + L−d/2 min

{
1, |BN

1 |N (δL−d/2 + r)N−1 · 2r
(2π)N/2

√
det Var F(a)

}

� r + L−d/2 min

{
1,

C(N )r N + C(N )(δL−d/2)N−1r√
det Var F(a)

}
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(13)
� r + C(N )L−d/2

√
det Var F(a)

1/N r + C(N )δN−1L−d/2

√
det Var F(a)

1/N r.

By our assumption (13), this yields, for any z0 ∈ R × R
N ,

∫
R×RN

oscrφ(z)N�(z − z0) dz � Cr.

Looking at Definition 8, we would have 1
C φ ∈ �� if it were not for the qualitative

Lipschitz continuity condition for functions in ��. However, for a standard family
of mollifiers ρε supported in {|x |2 + |y|2 � ε} the approximations φε(x, y) :=
(ρε ∗ φ)(x, (1 − 2δ−1Ld/2ε)y) satisfy 1

C φε ∈ �� for any ε ∈ (0, 1
4δL

−d/2] (see
Definition 8) for some constant C . Furthermore, the φε converge poinwise to φ for
ε → 0 (by (47) and the continuity assumption on φ̃; it is here that we need the
dilation factor (1 − 2δ−1Ld/2ε) in the second variable due to the discontinuity in
the definition (47)) and satisfy a uniform bound of the form |φε(x, y)| � L−d/2

(by (47) and (38a)). Choosing the functions 1
C φε in the definition of the distance

D and passing to the limit ε → 0, we infer
∣∣∣∣E
[
χ{|F(a)|�δL−d/2}φ̃

(
aRVEi j

)]

−
∫
R×RN

φ̃(x)χ{|y|�δL−d/2}N�(x − E[aRVEi j ], y) d(x, y)
∣∣∣∣

(47),(30)
� CD((aRVEi j − E[aRVEi j ],F(a)),N�).

Theorem 9 is applicable to the random variable X := (aRVEi j ,F(a)) by our assump-

tions on F(a) (see Assumption 1) and by the multilevel decomposition of aRVEi j

provided by Proposition 7. In total, with the notation � := Var (aRVEi j ,F(a)) the

application of Theorem 9 to (aRVEi j ,F(a)) yields

∣∣∣∣E
[
χ{|F(a)|�δL−d/2}φ̃

(
aRVEi j

)]

−
∫
R×RN

φ̃(x)χ{|y|�δL−d/2}N�(x − E[aRVEi j ], y) d(x, y)
∣∣∣∣ (48)

� C(d, γ, N , K )B3| log L|C(d,γ )(L−d |�|1/2|�−1/2|3)L−d

� C(d, λ, γ, N ,C0)κ
3/2
i j L−d | log L|C(d,γ ),

where in the last step we have used (13) (which entails L−d � |�1/2|2) and the
definition of κi j .

Applying a similar line of argument to the random variable F(a) and the func-
tion

φ(y) :=
{
1 for |y| � δL−d/2,

0 for |y| > δL−d/2,
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we obtain ∣∣∣∣E
[
χ{|F(a)|�δL−d/2}

]−
∫
RN

χ{|y|�δL−d/2}NVar F(a)(y) dy

∣∣∣∣ (49)

� C(d, γ, N ,C0)C
3N/2
0 L−d/2| log L|C(d,γ,C0),

where we have estimated κ(Var F(a)) by (13). Together with the lower bound (35)
and our assumption δN � CL−d/2| log L|C(d,γ,C0), this estimate implies (18).

Plugging in the estimate (48), the lower bound (18), and the estimate (49) as
well as the assumption (38a) into (46), we deduce (37). The estimate (39) follows by
repeating the above steps, but appealing in the proof of (48) to the bound (33) instead
of (32) and choosing � := Var (aRVEi j ,F(a)) + L−d/2−d/8 Id (which ensures by

(13) that κ(�) � CLd/8). ��
Wenow turn to the proof of themoderate-deviations-type result for the selection

approach for representative volumes stated in Theorem 3.

Proof of Theorem 3. Fix S̃ � CL−d/2−β/2. Our goal is to estimate the probability

P
[|asel-RVEi j − E[aRVEi j ]| � S̃

]

= P

[
|aRVEi j − E[aRVEi j ]| � S̃

∣∣∣ |F(a)| � δL−d/2
]

= P
[|aRVEi j − E[aRVEi j ]| � S̃ and |F(a)| � δL−d/2

]
P[|F(a)| � δL−d/2] . (50)

The main task is the derivation of a suitable estimate for the numerator. To this
aim, we apply the moderate deviations estimate from Theorem 10 to the random
variable (aRVEi j − E[aRVEi j ],F(a)) and the set A := A1 × A2 with

A1 := {
x ∈ R : |x | � S̃ + CL−d/2−β

}
,

A2 := {
y ∈ R

N : |y| � δL−d/2}.
By Proposition 7 and our assumptions, the application of Theorem 10 is possible,
resulting in the estimate

P
[
(aRVEi j − E[aRVEi j ],F(a)) ∈ A

]

�
∫

{(x,y)∈R×RN :dist((x,y),A)�CL−β L−d/2}
N�̃(x, y) d(x, y)

+ C exp(−cL2β | log L|−C )

�
∫
RN

χ{|y|�(δ+CL−β)L−d/2}
∫
R\[−S̃,S̃]

N�̃(x, y) dx dy + C exp(−Lβ) (51)

for some positive definite matrix �̃ with

|�̃ − Var (aRVEi j ,F(a))| � C(d, γ, N , K )| log L|C L−2βL−d . (52)
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We intend to apply the factorization property (45) to the matrix �̃with the notation

�̃ =
(

Ã B̃
B̃T D̃

)
.

By (52) and the bounds L−d Id � Var F(a) � CL−d Id (see (13)) andVar aRVEi j �
CL−d | log L|d (see (36a)), we deduce

|D̃−1 − (Var F(a))−1| � CLd L−2β (53)

and

|B̃ D̃−1 − Cov[aRVEi j ,F(a)](Var F(a))−1| � CL−2β | log L|d . (54)

As a consequence of these estimates and (52), the formula (17) for |ρ|2 implies for
T̃ := Ã − B̃ D̃−1 B̃T that

∣∣T̃ − (1 − |ρ|2)Var aRVEi j

∣∣ � CL−d−2β | log L|d . (55)

Using the bounds Var aRVEi j � CL−d | log L|d and |ρ| � 1 as well as (54), (17),

and (13), we obtain for any |y| � (δ + CL−β)L−d/2 that

|B̃ D̃−1y| � Cδ|ρ|
√
Var aRVEi j + CL−d/2−β. (56)

Applying the factorization property (45) to the first term on the right-hand side of
(51), we obtain

∫
RN

χ{|y|�(δ+CL−β)L−d/2}
∫
R\[−S̃,S̃]

N�̃(x, y) dx dy

=
∫
RN

∫
R\[−S̃,S̃]

NT̃

(
x − B̃ D̃−1y

)
χ{|y|�(δ+CL−β)L−d/2}ND̃(y) dx dy

�
∫
RN

∫
R\[−S̃,S̃]

NT̃

(
x
) · exp (T̃−1x · B̃ D̃−1y

)

× χ{|y|�(δ+CL−β)L−d/2}ND̃(y) dx dy

(56)
�
∫
RN

∫
R\[−S̃,S̃]

1√
2π T̃

exp

(−x2 + Cδ|ρ|
√
Var aRVEi j |x | + C |x |L−d/2−β

2T̃

)

× χ{|y|�(δ+CL−β)L−d/2}ND̃(y) dx dy.
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Assuming that S̃ � CL−d/2−β/2, we deduce

∫
RN

χ{|y|�(δ+CL−β)L−d/2}
∫
R\[−S̃,S̃]

N�̃(x, y) dx dy

�
∫
RN

∫
R\[−S̃,S̃]

1√
2π T̃

exp

(−(1 − Cδ|ρ|
√
Var aRVEi j

S̃
− L−β/2

)
x2

2T̃

)

× χ{|y|�(δ+CL−β)L−d/2}ND̃(y) dx dy

�
∫
R\[−S̃,S̃]

1

1 − Cδ|ρ|
√
Var aRVEi j

S̃
− L−β/2

NV (x) dx

×
∫
RN

χ{|y|�(δ+CL−β)L−d/2}ND̃(y) dy,

with

V := T̃

1 − Cδ|ρ|
√
Var aRVEi j S̃−1 − L−β/2

. (57)

Using (53) to estimate the last factor in this estimate and assuming for the moment

S̃ � Cδ|ρ|
√
Var aRVEi j as well as L � C(β) to estimate the quotient in the first

factor, we get

∫
RN

χ{|y|�(δ+CL−β)L−d/2}
∫
R\[−S̃,S̃]

N�̃(x, y) dx dy

�
(
1 +

Cδ|ρ|
√
Var aRVEi j

S̃
+ L−β/2

)∫
R\[−S̃,S̃]

NV (x) dx

×
∫
RN

χ{|y|�(δ+CL−β)L−d/2}NVar F(a)−CL−d−2β Id(y) dy.

Using the bound L−d Id � Var F(a) from (13) and assuming L−2β � c, we get

∫
RN

χ{|y|�(δ+CL−β)L−d/2}
∫
R\[−S̃,S̃]

N�̃(x, y) dx dy

�
(
1 +

Cδ|ρ|
√
Var aRVEi j

S̃
+ L−β/2

)∫
R\[−S̃,S̃]

NV (x) dx

×
∫
RN

χ{|y|�(δ+2CL−β)L−d/2}NVar F(a)(y) dy,
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and therefore by the upper bound |NVar F(a)| � C(L−d/2)−d and the estimate on
the volume |{δL−d/2 � |y| � (δ + 2CL−β)L−d/2}| � C(L−d/2)d−1L−d/2−β ,

∫
RN

χ{|y|�(δ+CL−β)L−d/2}
∫
R\[−S̃,S̃]

N�̃(x, y) dx dy

�
(
1 +

Cδ|ρ|
√
Var aRVEi j

S̃
+ L−β/2

)∫
R\[−S̃,S̃]

NV (x) dx

×
(∫

RN
χ{|y|�δL−d/2}NVar F(a)(y) dy + CL−β

)
.

By T̃ � (1 − |ρ|2)Var aRVEi j + CL−d−β Id (which follows from (55)) and

Var aRVEi j � CL−d Id, we deduce from (57) under the assumptions

S̃ � Cδ|ρ|
√
Var aRVEi j and L � C(β)

V � Ṽ :=
(
1 +

Cδ|ρ|
√
Var aRVEi j

S̃

)
(1 − |ρ|2)Var aRVEi j + CL−d−β/2. (58)

As a consequence, we obtain
∫
RN

χ{|y|�(δ+CL−β)L−d/2}
∫
R\[−S̃,S̃]

N�̃(x, y) dx dy

�
(
1 +

Cδ|ρ|
√
Var aRVEi j

S̃
+ L−β/2

)∫
R\[−S̃,S̃]

NṼ (x) dx

×
(∫

RN
χ{|y|�δL−d/2}NVar F(a)(y) dy + CL−β

)
.

Plugging this bound into (51), we obtain

P
[|aRVEi j − E[aRVEi j ]| � S̃ + CL−d/2−β and |F(a)| � δL−d/2]

�
(
1 +

Cδ|ρ|
√
Var aRVEi j

S̃
+ L−β/2

)∫
R\[−S̃,S̃]

NṼ (x) dx

×
(∫

RN
χ{|y|�δL−d/2}NVar F(a)(y) dy + CL−β

)

+ C exp(−Lβ).

Inserting the previous estimate into (50) and using (49), (35), and (18) as well as
the assumption δN � CL−d/2 to estimate the denominator, we get

P
[|asel-RVEi j − E[aRVEi j ]| � S̃ + CL−d/2−β

]

�
(
1 +

Cδ
√
Var aRVEi j

S̃
+ C

δN
L−β/2

)∫
R\[−S̃,S̃]

NṼ (x) dx + C

δN
exp(−Lβ).
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Note thatwehave the estimate |E[aRVEi j ]−ahom,i j | � CL−d | log L|C . By redefining
S̃ (and possibly increasing the constant in (58); recall that S̃ � L−d/2−β/2), we
obtain

P
[|asel-RVEi j − ahom,i j | � S̃

]

�
(
1 +

Cδ
√
Var aRVEi j

S̃
+ C

δN
L−β/2

)∫
R\[−S̃,S̃]

NṼ (x) dx + C

δN
exp(−Lβ).

Finally, we set S̃ :=
√

(1 + Cδ√
1−|ρ|2s )(1 − |ρ|2)Var aRVEi j + L−d−β/2 · s. Upon

redefining β, this yields the desired estimate (21). ��

5. The Multilevel Local Dependence Structure of the Approximation for the
Effective Conductivity

We now prove that the approximation aRVE for the effective conductivity ob-
tained by the representative volume elementmethodmay indeed bewritten as a sum
of a family of random variables with multilevel local dependence structure in the
sense of Definition 6. Furthermore, we show that the same is true for the spatial av-
erage of the coefficient fieldFavg(a) := −

∫
[0,Lε]d a dx and also for the second-order

correction F2−point(a) to aRVE in the setting of small ellipticity contrast.

Proof of Proposition 7. Part 1: The spatial average of the coefficient. First, let us
show that the averageFavg(a) := −

∫
[0,Lε]d a dx is approximately the sumof a family

of random variables with multilevel local dependence structure. Decomposing

Favg(a) = −
∫

[0,Lε]d
a dx =

∑
y∈εZd∩[0,Lε)d

1

Ld
−
∫
y+[0,ε]d

a dx

︸ ︷︷ ︸
=:X0

y

,

defining the X0
y as indicated in this formula, and setting Xm

y := 0 for m � 1, we
immediately observe that the average Favg(a) is the sum of a family of random
variables with multilevel local dependence structure with K := 1. The bound (26)
follows immediately from the uniform bound on a (with B := ||a||L∞ and arbitrary
γ > 0).

Part 2: The approximation aRVE for the effective coefficient. Next, let us show
that aRVE is approximately the sum of a family of random variables with multilevel
local dependence structure. For simplicity of notation, let us assume that ε = 1.

Recall that the corrector φi associated with the periodized ensemble is the
unique L-periodic solution to the equation

∇ · (a(ei + ∇φi )) = 0 (59)
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with vanishing average −
∫
[0,L]d φi dx = 0. We shall use the decomposition of the

(L-periodic) corrector φi according to

φi (·) =
∫ ∞

0
ui (·, s) ds, (60)

where ui = ui (x, s) is the (L-periodic) solution to the parabolic PDE

d

ds
ui = ∇ · (a∇ui ) in [0, L]d × [0,∞),

ui (·, 0) = ∇ · (aei ) in [0, L]d .
Observe that the parabolic PDE directly entails

∇ ·
(
a

(
ei + ∇

∫ t

0
ui (·, s) ds

))
= ui (·, t). (61)

Thus, decay of ui for t → ∞ implies that φi may indeed be decomposed as∫∞
0 ui (·, s) ds. Note that exponential decay of ui (with an L-dependent constant)
is immediate by the standard energy estimate, the vanishing average of ui (·, s) for
any s � 0 (as the average of the initial conditions on [0, L]d vanishes), and the
Poincaré inequality.

Recall the key result from [55] which states that under the assumptions of
ellipticity, stationarity, and finite range of dependence (A1)–(A3) the full-space
variant uR

d

i (·, s)—that is, the solution to the equation

d

ds
uR

d

i = ∇ · (aR
d∇uR

d

i ) in Rd × [0,∞),

uR
d

i (·, 0) = ∇ · (aR
d
ei ) in Rd ,

with aR
d
denoting a coefficient field from the original (non-periodic) ensemble of

coefficient fields—actually decays like s−(1+d/2)/2 in suitable norms.

Theorem 11. ([55], Corollary 4)Consider an ensemble of random coefficient fields
aR

d
subject to the assumptions (A1)–(A3) with range of dependence ε := 1. Then

for any T > 0 we have the estimate

(
−
∫

{|x |�√
T }

|∇uR
d

i (·, T )|2 dx
)1/2

� C(aR
d
, T ) T−1−d/4, (62a)

(
−
∫

{|x |�√
T }

|uRd

i (·, T )|2 dx
)1/2

� C(aR
d
, T ) T−1/2−d/4, (62b)

where the random constant C(aR
d
, T ) satisfies for any δ > 0 a bound of the form

E

[
exp

(C(aR
d
, T )2−δ

C(d, λ, δ)

)]
� 2.



Julian Fischer

Note that the second inequality (62b) is actually not contained in [55, Corol-
lary 4]. However, it is an easy consequence of (62a) (the proof is provided below).

By φ∗
j and u∗

j we shall denote the corresponding quantities for the adjoint

coefficient field a∗, that is φ∗
j (·) := ∫∞

0 u∗
j (·, s) ds with u∗

j being the L-periodic
solution to

d

ds
u∗
j = ∇ · (a∗∇u∗

j ) in [0, L]d × [0,∞),

u∗
j (·, 0) = ∇ · (a∗e j ) in [0, L]d .

The full space variants u∗,Rd

j satisfy also estimates of the form (62a)–(62b), as the
conditions (A1)–(A3) are invariant under passing to the adjoint coefficient fields.

We introduce a “cutoff scale” LK as the largest integer power of 2 not larger
than L

16K log L for some constant K � 1 that remains to be chosen. Defining TL :=
(LK )2, we now compute, using the properties (59), (60) and (61), that

aRVEei · e j = −
∫

[0,L]d
a(ei + ∇φi ) · e j dx

(59)= −
∫

[0,L]d
a(ei + ∇φi ) · (e j + ∇φ∗

j ) dx

(60)= −
∫

[0,L]d
a

(
ei + ∇

∫ 1

0
ui (·, s) ds

)
·
(
e j + ∇

∫ 1

0
u∗
j (·, s) ds

)
dx

+
log2 LK∑
k=0

−
∫

[0,L]d
a∇

∫ 4k+1

4k
ui (·, s) ds ·

(
e j + ∇

∫ 4k

0
u∗
j (·, s) ds

)
dx

+
log2 LK∑
k=0

−
∫

[0,L]d
a

(
ei + ∇

∫ 4k

0
ui (·, s) ds

)
· ∇

∫ 4k+1

4k
u∗
j (·, s) ds dx

+
log2 LK∑
k=0

−
∫

[0,L]d
a∇

∫ 4k+1

4k
ui (·, s) ds · ∇

∫ 4k+1

4k
u∗
j (·, s) ds dx

+ −
∫

[0,L]d
a∇

∫ ∞

4TL
ui (·, s) ds ·

(
e j + ∇

∫ 4TL

0
u∗
j (·, s) ds

)
dx

+ −
∫

[0,L]d
a

(
ei + ∇

∫ 4TL

0
ui (·, s) ds

)
· ∇

∫ ∞

4TL
u∗
j (·, s) ds dx

+ −
∫

[0,L]d
a∇

∫ ∞

4TL
ui (·, s) ds · ∇

∫ ∞

4TL
u∗
j (·, s) ds

(61)= −
∫

[0,L]d
a

(
ei + ∇

∫ 1

0
ui (·, s) ds

)
·
(
e j + ∇

∫ 1

0
u∗
j (·, s) ds

)
dx

−
log2 LK∑
k=0

−
∫

[0,L]d

∫ 4k+1

4k
ui (·, s) ds u∗

j (·, 4k) dx
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−
log2 LK∑
k=0

−
∫

[0,L]d
ui (·, 4k)

∫ 4k+1

4k
u∗
j (·, s) ds dx

+
log2 LK∑
k=0

−
∫

[0,L]d
a∇

∫ 4k+1

4k
ui (·, s) ds · ∇

∫ 4k+1

4k
u∗
j (·, s) ds dx

− −
∫

[0,L]d

∫ ∞

4TL
ui (·, s) ds u∗

j (·, 4TL) dx

− −
∫

[0,L]d
ui (·, 4TL)

∫ ∞

4TL
u∗
j (·, s) ds dx

+ −
∫

[0,L]d
a∇

∫ ∞

4TL
ui (·, s) ds · ∇

∫ ∞

4TL
u∗
j (·, s) ds dx .

We now decompose the integrals into integrals over cubes with side length ∼ 2k ,
resulting in

aRVEei · e j (63)

=
∑
x0∈Zd

1

Ld
−
∫

(x0+[0,1]d )∩[0,L]d
a

(
ei + ∇

∫ 1

0
ui (·, s) ds

)

·
(
e j + ∇

∫ 1

0
u∗
j (·, s) ds

)
dx

−
log2 LK∑
k=0

∑
x0∈2kZd

1

Ld

∫
(x0+[0,2k ]d )∩[0,L]d

∫ 4k+1

4k
ui (·, s) ds u∗

j (·, 4k) dx

−
log2 LK∑
k=0

∑
x0∈2kZd

1

Ld

∫
(x0+[0,2k ]d )∩[0,L]d

ui (·, 4k)
∫ 4k+1

4k
u∗
j (·, s) ds dx

+
log2 LK∑
k=0

∑
x0∈2kZd

1

Ld

∫
(x0+[0,2k ]d )∩[0,L]d

a∇
∫ 4k+1

4k
ui (·, s) ds

· ∇
∫ 4k+1

4k
u∗
j (·, s) ds dx

− −
∫

[0,L]d

∫ ∞

4TL
ui (·, s) ds u∗

j (·, 4TL) dx

− −
∫

[0,L]d
ui (·, 4TL)

∫ ∞

4TL
u∗
j (·, s) ds dx

+ −
∫

[0,L]d
a∇

∫ ∞

4TL
ui (·, s) ds · ∇

∫ ∞

4TL
u∗
j (·, s) ds dx .

We now intend to replace ui and u∗
j in each of these expressions by a proxy with

localized dependence. To this end, for any k ∈ N0 and any x0 ∈ 2kZd , define the
coefficient field ak,x0 on the full space Rd as
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ak,x0(x) :=
{
a(x) for |x − x0| � √

K | log L| 2k−1,

Id otherwise.
(64)

Define a corresponding ui,k,x0 as the solution to the equation

d

dt
ui,k,x0 = ∇ · (ak,x0∇ui,k,x0), (65a)

ui,k,x0(·, 0) = ∇ · (ak,x0ei ), (65b)

and introduce, analogously, the function u∗
i,k,x0

as the solution to the equation

with ak,x0 replaced by a∗
k,x0

. Note that while ui and a are defined on [0, L]d and

extended toRd by periodicity, both ak,x0 and ui,k,x0 are defined onR
d and lack any

periodicity.
By Lemma 15—applied with M := 1

2

√
K | log L| and r := 2k—we have

−
∫

{|x−x0|�2d·2k }
|ui (·, t) − ui,k,x0(·, t)|2 dx (66)

� C
√
K log L

d/2
exp(−cK | log L|) � C(d, λ, K )L−cK

for any t � 4k+1 and

∫ 4k+1

0
−
∫

{|x−x0|�d·2k }
|∇ui − ∇ui,k,x0 |2 dx dt (67)

� C exp(−cK | log L|) � C(d, λ, K )L−cK ,

and analogous estimates for the difference u∗
j − u∗

j,k,x9
.

As our probability distribution of coefficient fields a on [0, L]d is the periodiza-
tion of a probability distribution of coefficient fields aR

d
on R

d , by definition of a
periodization (see (A3c)) for each x0 ∈ [0, L)d and any k � log2 LK the law of

a|x0+K log L[−2k ,2k ]d coincides with the law of aR
d |x0+K log L[−2k ,2k ]d . As a conse-

quence, the law of ui,k,x0 coincides with the law of uR
d

i,k,x0
, where uR

d

i,k,x0
is defined

analogously to ui,k,x0 (replacing a in the definition by a
R
d
). Therefore, anymoment

bound on uR
d

i,k,x0
carries over to ui,k,x0 . Applying Lemma 15 to uR

d

i,k,x0
, we obtain

estimates analogous to (66) and (67). The estimates from Theorem 11 therefore
carry over to uR

d

i,k,x0
, provided that we choose K � C ; we have for t ∈ [4k, 4k+1]

and T = 4k with 2k � L that

(
−
∫

{|x−x0|�d·2k }
|uRd

i,k,x0(t)|2 dx
)1/2

� C(aR
d
, t) t−1/2−d/4,

(
−
∫ 4T

T
−
∫

{|x−x0|� d·2k }
|∇uR

d

i,k,x0(T )|2 dx dt
)1/2

� C(aR
d
, T ) T−1−d/4,
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for some random constants C(aR
d
, t), C(aR

d
, T ), with

||C(aR
d
, t)||exp2−δ � C(d, λ, K , δ),

||C(aR
d
, T )||exp2−δ � C(d, λ, K , δ)

for any δ > 0. By the coincidence of laws, we get, for t ∈ [4k, 4k+1] and T = 4k ,

(
−
∫

{|x−x0|�d·2k }
|ui,k,x0(t)|2 dx

)1/2

� C(a, t) t−1/2−d/4, (68a)

(
−
∫ 4T

T
−
∫

{|x−x0|�d·2k }
|∇ui,k,x0(T )|2 dx dt

)1/2

� C(a, T ) T−1−d/4, (68b)

for random constants C satisfying

||C(a, t)||exp2−δ � C(d, λ, K , δ),

||C(a, T )||exp2−δ � C(d, λ, K , δ)

for any δ > 0. Furthermore, the bound (102) yields an estimate of the form

(
−
∫

{|x−x0|�d}

∣∣∣∣ei + ∇
∫ 1

0
ui,0,x0 ds

∣∣∣∣
2

dx

)1/2

� C(d, λ). (69)

By (61), its analogue for ui,0,x0 , and the definition of a0,x0 , we have in {|x − x0| �
2d} that −∇ · (a∇(

∫ 1
0 ui (·, s) − ui,0,x0(·, s) ds)) = ui (·, 1) − ui,0,x0(·, 1), which

implies, by the Caccioppoli inequality,

−
∫

{|x−x0|�d}

∣∣∣∣ei + ∇
∫ 1

0
ui ds −

(
ei + ∇

∫ 1

0
ui,0,x0 ds

)∣∣∣∣
2

dx

� C−
∫

{|x−x0|�2d}
|ui (·, 1) − ui,0,x0(·, 1)|2 dx

+ C−
∫

{|x−x0|�2d}

∣∣∣∣
∫ 1

0
ui (·, s) − ui,0,x0(·, s) ds

∣∣∣∣
2

dx

� C−
∫

{|x−x0|�2d}
|ui (·, 1) − ui,0,x0(·, 1)|2 dx

+ C−
∫

{|x−x0|�2d}

∫ 1

0
|ui (·, s) − ui,0,x0(·, s)|2 ds dx

(66)
� C(K )L−cK . (70)
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As a consequence of our definition of ui,k,x0 , for the choice

X0
x0 := 1

Ld

∫
(x0+[0,1]d )∩[0,L]d

a

(
ei + ∇

∫ 1

0
ui,0,x0(·, s) ds

)
(71a)

·
(
e j + ∇

∫ 1

0
u∗
j,0,x0(·, s) ds

)
dx,

Xk+1
x0 := − 1

Ld

∫
(x0+[0,2k ]d )∩[0,L]d

∫ 4k+1

4k
ui,k,x0(·, s) ds u∗

j,k,x0(·, 4k) dx (71b)

− 1

Ld

∫
(x0+[0,2k ]d )∩[0,L]d

ui,k,x0(·, 4k)
∫ 4k+1

4k
u∗
j,k,x0(·, s) ds dx

+ 1

Ld

∫
(x0+[0,2k ]d )∩[0,L]d

a∇
∫ 4k+1

4k
ui,k,x0(·, s) ds

· ∇
∫ 4k+1

4k
u∗
j,k,x0(·, s) ds dx

for 0 � k ≤ log2 LK , we see, by (64) and (65) and
√
K log L � 1, that Xk

x0
is a random variable which depends only on a|x0+K log L[−2k ,2k ]d , that is the first
condition of Definition 6 is satisfied. Furthermore, by (68) and (69), we obtain, for
any 0 < γ < 1, an estimate of the form

||Xk
y ||expγ � C(d, λ, γ, K )L−d . (72)

We now intend to replace the terms in the first five terms on the right-hand side of
(63) by the Xk

x0 with 0 � k ≤ log2 LK + 1, using the estimates (66), (67), (70),
and Hölder’s inequality to bound the arising error. For example, we may estimate

∣∣∣∣− 1

Ld

∫
(x0+[0,2k ]d )∩[0,L]d

ui (·, 4k)
∫ 4k+1

4k
u∗
j (·, s) ds dx

−
(

− 1

Ld

∫
(x0+[0,2k ]d )∩[0,L]d

∫ 4k+1

4k
ui,k,x0(·, s) ds u∗

j,k,x0(·, 4k) dx
)∣∣∣∣

� 4(k+1)/2

Ld

(∫
(x0+[0,2k ]d )∩[0,L]d

|ui (·, 4k)|2 dx
)1/2

×
(∫

(x0+[0,2k ]d )∩[0,L]d

∫ 4k+1

4k
|u∗

j (·, s) − u∗
j,k,x0(·, s)|2 ds dx

)1/2

+ 4(k+1)/2

Ld

(∫
(x0+[0,2k ]d )∩[0,L]d

|ui (·, 4k) − ui,k,x0(·, 4k)|2 dx

)1/2

×
(∫

(x0+[0,2k ]d )∩[0,L]d

∫ 4k+1

4k
|u∗

j,k,x0(·, s)|2 ds dx

)1/2

(66)
� C(d, λ, K )

Ld

(∫
(x0+[0,2k ]d )∩[0,L]d

|ui,k,x0(·, 4k)|2 dx + L−cK
)1/2
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× (2k)d/2L−cK

+ C(d, λ, K )

Ld
· (2k)d/2L−cK

×
(∫

(x0+[0,2k ]d )∩[0,L]d

∫ 4k+1

4k
|u∗

j,k,x0(·, s)|2 ds dx
)1/2

,

where in the last step we have used 4k � CL2 and (2k)d/2 � CLd/2, absorbing
these factors in the factor L−cK (possible for cK � 4+2d). Proceeding analogously
for the other terms in (63), we deduce

∣∣∣∣aRVEei · e j −
∑

x0∈Zd∩[0,L)d

X0
x0 −

1+log2 LK∑
k=1

∑
x0∈2kZd∩[0,L)d

Xk
x0

∣∣∣∣

� C
∑

x0∈Zd∩[0,L)d

1

Ld

(∫
x0+[0,1]d

∣∣∣∣ei + ∇
∫ 1

0
ui,0,x0(·, s) ds

∣∣∣∣
2

+
∣∣∣∣e j + ∇

∫ 1

0
u∗
j,0,x0(·, s) ds

∣∣∣∣
2

dx + L−cK
)1/2

L−cK

+ C
log2 LK∑
k=0

∑
x0∈2kZd∩[0,L)d

1

Ld

(∫
x0+[0,2k ]d

|ui,k,x0(·, 4k)|2

+ |u∗
j,k,x0(·, 4k)|2 dx + L−cK

)1/2

× (2k)d/2L−cK

+ C
log2 LK∑
k=0

∑
x0∈2kZd∩[0,L)d

1

Ld

(∫
x0+[0,2k ]d

∫ 4k+1

4k
|ui,k,x0(·, s)|2

+ |u∗
j,k,x0(·, s)|2 ds dx

)1/2

× (2k)d/2L−cK

+ C
log2 LK∑
k=0

∑
x0∈2kZd∩[0,L)d

1

Ld

(∫
x0+[0,2k ]d

∫ 4k+1

4k
|∇ui,k,x0(·, s)|2

+ |∇u∗
j,k,x0(·, s)|2 ds dx + L−cK

)1/2

L−cK

+ −
∫

[0,L]d

∣∣∣∣
∫ ∞

4TL
ui (·, s) ds

∣∣∣∣ |u∗
j (·, 4TL)| dx

+ −
∫

[0,L]d
|ui (·, 4TL)|

∣∣∣∣
∫ ∞

4TL
u∗
j (·, s) ds

∣∣∣∣ dx

+ C−
∫

[0,L]d

∣∣∣∣∇
∫ ∞

4TL
ui (·, s) ds

∣∣∣∣
∣∣∣∣∇
∫ ∞

4TL
u∗
j (·, s) ds

∣∣∣∣ dx .
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Inserting the estimates (68) and (69), we get, for some C(a) with ||C(a)||expγ �
C(d, λ, K , γ ) for any γ ∈ (0, 1),

∣∣∣∣aRVEei · e j −
∑

x0∈Zd∩[0,L)d

X0
x0 −

1+log2 LK∑
k=1

∑
x0∈2kZd∩[0,L)d

Xk
x0

∣∣∣∣ (73)

� CL−cK + C(a)

log2 LK∑
k=0

L−cK + C(a)

log2 LK∑
k=0

√
4k L−cK + C(a)

log2 LK∑
k=0

L−cK

+ −
∫

[0,L]d

∣∣∣∣
∫ ∞

4TL
ui (·, s) ds

∣∣∣∣ |u∗
j (·, 4TL)| dx

+ −
∫

[0,L]d
|ui (·, 4TL)|

∣∣∣∣
∫ ∞

4TL
u∗
j (·, s) ds

∣∣∣∣ dx

+ C−
∫

[0,L]d

∣∣∣∣∇
∫ ∞

4TL
ui (·, s) ds

∣∣∣∣
∣∣∣∣∇
∫ ∞

4TL
u∗
j (·, s) ds

∣∣∣∣ dx .

The bound (66) and its equivalent for uR
d

i and uR
d

i,k,x0
enable us to transfer the

bounds in Theorem 11 from uR
d

i to ui . Recalling that TL = (LK )2, we obtain

−
∫

[0,L]d
|ui (·, TL)|2 dx =

∑
x0∈LKZ

d

L−d
∫
x0+[0,LK ]d∩[0,L]d

|ui (·, TL)|2 dx (74)

(66)
� C

∑
x0∈LKZ

d

L−d
(
L−cK +

∫
y+[0,LK ]d∩[0,L]d

|ui,log2 LK ,x0(·, TL)|2 dx
)

and ∫
y+[0,LK ]d∩[0,L]d

|uRd

i,log2 LK ,x0(·, TL)|2 dx

� 2
∫
y+[0,LK ]d∩[0,L]d

|uRd

i (·, TL)|2 dx + 2CL−cK/2.

The latter estimate entails, in view of Theorem 11 (choosing K � C and recalling
that

√
TL = LK � L

4K log L ), that

(
−
∫
y+[0,LK ]d∩[0,L]d

|uRd

i,log2 LK ,x0(·, TL)|2 dx
)1/2

� C(aR
d
, y, TL )T−1/2−d/4

L ,

where again ||C(aR
d
, y, TL)||exp2−δ � C(d, λ, K , δ). By coincidence of the laws

of a|x0+K log L[−LK ,LK ]d and aR
d |x0+K log L[−LK ,LK ]d , we get, for K � C from the

previous estimate and (74),

−
∫

[0,L]d
|ui (·, TL)|2 dx � C(a, TL)T−1−d/2

L (75)
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where ||C(a, TL)||expγ � C(d, λ, K , γ ) for any γ < 1. An analogous bound holds
for u∗

j . Finally, the energy estimate for ui implies

d

dt
−
∫

[0,L]d
|ui |2 dx � −c−

∫
[0,L]d

|∇ui |2 dx .

As the average of ui over [0, L]d vanishes, the Poincaré inequality implies, for
T � TL ,

d

dt
−
∫

[0,L]d
|ui |2 dx � − c

2
−
∫

[0,L]d
|∇ui |2 dx − c

2CL2−
∫

[0,L]d
|ui |2 dx,

and as a consequence,

−
∫

[0,L]d
|ui (·, T )|2 dx +

∫ T

max{TL ,T/2}
−
∫

[0,L]d
|∇ui |2 dx dt

� C(d, λ) exp
(

− T − TL
C(d, λ)L2

)
−
∫

[0,L]d
|ui (·, TL)|2 dx .

Note that this estimate yields, in particular, that

−
∫

[0,L]d

∣∣∣∣
∫ ∞

TL
∇ui dt

∣∣∣∣
2

dx � 2
∞∑

l=− log2
L2
TL

−
∫

[0,L]d

∣∣∣∣2l
∫ 2l+1L2

2l L2
∇ui dt

∣∣∣∣
2

dx

� 2
∞∑

l=− log2
L2
TL

−
∫

[0,L]d
2l(2l L2)

∫ 2l+1L2

2l L2
|∇ui |2 dt dx

� C
∞∑

l=− log2
L2
TL

22l L2 exp(−c2l)−
∫

[0,L]d
|ui (·, TL)|2 dx

(75)
� C(a, TL)

L2

TL
T−d/2
L � C(a, TL)(K | log L|)d+2L−d/2,

where in the last step we have used that
√
TL = LK is the largest power of 2 with

LK � L
4K log L .

Plugging these bounds and (75) into (73), we get, for K � C ,

∣∣∣∣aRVEei · e j −
1+log2 LK∑

k=0

∑
x0∈2kZd∩[0,L)d

Xk
x0

∣∣∣∣ (76)

� CL−2d + C(a, TL)(K | log L|)2d+4L−d ,

with ||C(a, TL)||expγ � C(d, λ, K , γ ) for any γ < 1. Choosing γ ∈ (0, 1) and

B := C(d, λ, K , γ )(4K log L)2+d in Definition 6, defining the variable X
log2 L+1
0

(which may depend on a on the full volume [0, L]d ) to account for the remaining
difference aRVEei ·e j −∑1+log2 LK

k=0

∑
x0∈2kZd∩[0,L)d X

k
x0 , and setting the remaining
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Xk
i := 0 for log2 LK +1 < k < log2 L +1, establishes that aRVE may be rewritten

as a sum of a family of random variables with multilevel local dependence.
Part 3: The higher-order statistical quantity Next, we derive the multilevel

decomposition of the higher-order quantity in the small ellipticity contrast setting
F2−point. To do this, we decompose the solution vi to (28) as

vi (·) =
∫ ∞

0
wi (·, s) ds, (77)

where wi is defined as the solution to the parabolic PDE

d

dt
wi = 
wi ,

wi (·, 0) = ∇ · (aei ).

As before, the representation (77) follows from the exponential decay of wi , as we
have −


∫ T
0 wi (·, t) dt = ∇ · (aei ) − wi (·, T ).

We introduce analogous definitions for v∗
j . Again, we may assume without loss

of generality that ε = 1.We then observe, following an argument ofMourrat [72],
that by formula (78) below, we have

F2−point(a) = −
∫

[0,L]d
a∇vi · e j dx

= −
∫

[0,L]d
−∇vi · ∇v∗

j dx

= −
∫

[0,L]d

∫ ∞

0

∫ ∞

0
−∇wi (·, s1) · ∇w∗

j (·, s2) ds1 ds2 dx
(78)= −
∫

[0,L]d

∫ ∞

0

∫ ∞

0
−∇wi

(
·, s1 + s2

2

)
· ∇w∗

j

(
·, s1 + s2

2

)
ds1 ds2 dx .

Next, we deduce

F2−point(a) = −−
∫

[0,L]d

∫ ∞

0
4s ∇wi (·, s) · ∇w∗

j (·, s) ds dx

= −
∑
x0∈Zd

1

Ld

∫ 1

0

∫
(x0+[0,1]d )∩[0,L]d

4s ∇wi (·, s) · ∇w∗
j (·, s) dx ds

−
log2 LK∑
k=1

∑
x0∈Zd

1

Ld

∫ 4k

4k−1
−
∫

[0,L]d
4s ∇wi (·, s) · ∇w∗

j (·, s) dx ds

− 1

Ld

∫ ∞

TL
−
∫

[0,L]d
4s ∇wi (·, s) · ∇w∗

j (·, s) dx ds.

We may now proceed to argue just as in the case of aRVE. The required decay
estimates for the semigroup of the form

(
−
∫

{|x−x0|�
√
T }

|∇wi (·, T )|2 dx
)1/2

� C(a, T, x0)T
−1−d/4
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(with ||C(a, T, x0)||exp2 � C(d, λ)) are now a consequence of the explicit heat
kernel representation of the solution wi (as we are now dealing with a constant-
coefficient parabolic equation), the finite range of dependence ε = 1 of the ini-
tial data wi (·, 0) = ∇ · (aei ), and standard Gaussian concentration estimates (or,
alternatively—though then with a less strong stretched exponential bound—the
concentration estimates of Lemma 20).

In the computation above we have used the simple fact that

−
∫
[0,L]d

∇wi (·, s1) ⊗ ∇w∗
j (·, s2) dx

= −
∫
[0,L]d

∇wi

(
·, s1 + s2

2

)
⊗ ∇w∗

j

(
·, s1 + s2

2

)
dx

−
∫ 1

0

d

dρ
−
∫
[0,L]d

∇wi

(
·, (2 − ρ)s1 + ρs2

2

)
⊗ ∇w∗

j

(
·, ρs1 + (2 − ρ)s2

2

)
dx dρ

= −
∫
[0,L]d

∇wi

(
·, s1 + s2

2

)
⊗ ∇w∗

j

(
·, s1 + s2

2

)
dx . (78)

Part 4: Convergence of the variance Finally, we prove that the rescaled vari-
ances LdVar aRVE, LdVar Favg(a), and LdVar F2−point(a) and the covariances
Ld Cov[aRVE,Favg(a)], Ld Cov[aRVE,F2−point(a)], and Ld Cov[Favg(a),

F2−point(a)] converge for L → ∞. We limit ourselves to proving the conver-
gence of the rescaled variance LdVar aRVE; the proofs for the convergence of the
other variances and the covariances are analogous. Furthermore, to simplify nota-
tion, we limit ourselves to proving the convergence of the variance for L = 2n for
some n ∈ N; the proof in the general case is similar.

By Lemma 12, we obtain Var aRVE � C(d, λ, K )L−d | log L|C(d). Using (76)
and this estimate, we deduce

∣∣∣∣Var aRVE −
1+log2 LK∑

k=0

1+log2 LK∑
k̃=0

∑
y∈2kZd∩[0,L)d

∑
ỹ∈2k̃Zd∩[0,L)d

Cov[Xk
y, X

k̃
ỹ]
∣∣∣∣

� C(d, λ, K )| log L|C L−3d/2.

Expanding the sum and using stochastic independence of many of these terms, we
may write

∣∣∣∣Var aRVE −
1+log2 LK∑

k=0

∑
y∈2kZd∩[0,L)d

∑
ỹ∈2kZd∩[0,L)d :

|y−ỹ|per�CK log L·2k

Cov[Xk
y, X

k
ỹ]

−
1+log2 LK∑

k̃=0

1+log2 LK∑
k=k̃+1

∑
y∈2kZd∩[0,L)d

∑
ỹ∈2k̃Zd∩[0,L)d :

|y−ỹ|per�CK log L·2k

(Cov[Xk
y , X

k̃
ỹ] + Cov[Xk̃

ỹ, X
k
y])
∣∣∣∣

� C(d, λ, K )| log L|C L−3d/2.
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Denote by Xk,Rd

y the quantities defined as in (71) butwith ui,k,x0 and u
∗
j,k,x0

replaced

by uR
d

i and u∗,Rd

j , that is for example, for k � 0 and y ∈ 2kZd ,

Xk,Rd

y := − 1

Ld

∫
(y+[0,2k ]d )

∫ 4k+1

4k
uR

d

i (·, s) ds u∗,Rd

j (·, 4k) dx

− 1

Ld

∫
(y+[0,2k ]d )

uR
d

i (·, 4k)
∫ 4k+1

4k
u∗,Rd

j (·, s) ds dx

+ 1

Ld

∫
(y+[0,2k ]d )

a∇
∫ 4k+1

4k
uR

d

i (·, s) ds · ∇
∫ 4k+1

4k
u∗,Rd

j (·, s) ds dx .

Set Xk,∞
y := Ld Xk,Rd

y . Note that Cov[Xk,∞
y , Xk̃,∞

ỹ ] does not depend on L (by

definition of Xk,Rd

y ). By the full-space variants of the estimates (66), (67), and (70)

(that is the estimates for the differences uR
d

i − uR
d

i,k,x0
etc., which are derived in

exactly the same way) and (72) as well as the equality of laws of (products of the)
ui,k,x0 etc. and (products of the) uR

d

i,k,x0
etc. , we get for k, k̃ � 1 + log2 LK that

∣∣Cov[Xk̃
ỹ, X

k
y] − Cov[Xk̃,Rd

ỹ , Xk,Rd

y ]∣∣ � C(d, λ, K )L−cK . (79)

By the definition of the Xk
y (see (71)), the definition of the ui,k,x0 , and the stationarity

of the probability distribution of aR
d
, the covariance Cov[Xk,Rd

y , Xk̃,Rd

ỹ ] depends
only on k, k̃, y− ỹ, L , and the law of aR

d
(but not on y for fixed y− ỹ). Furthermore,

by (72) we have |Cov[Xk̃
ỹ, X

k
y]| � CL−2d . This implies, by (79),

∣∣∣∣Var aRVE −
1+log2 LK∑

k=0

(
L

2k

)d ∑
ỹ∈2kZd∩[−L/2,L/2)d :

|ỹ−0|�CK log L·2k

Cov[Xk,Rd

0 , Xk,Rd

ỹ ]

−
1+log2 LK∑

k̃=0

1+log2 LK∑
k=k̃+1

(
L

2k

)d

×
∑

ỹ∈2k̃Zd∩[−L/2,L/2)d :
|ỹ−0|�CK log L·2k

(Cov[Xk,Rd

0 , Xk̃,Rd

ỹ ] + Cov[Xk̃,Rd

ỹ , Xk,Rd

0 ])
∣∣∣∣

� C(d, λ, K )| log L|C L−3d/2 +
1+log2 LK∑

k̃=0

1+log2 LK∑
k=k̃

(
L

2k

)d

· C(d, λ, K )L−cK

� C(d, λ, K )| log L|C L−3d/2

for K chosen large enough.

The fact that (by stochastic independence) we have Cov[Ld Xk̃
ỹ, L

d Xk
y] = 0

for |y − ỹ|per � C(d)2k K log L and k � k̃ implies together with (79) and the
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definition of Xk,∞
y that (by selecting K large enough and by choosing L to be just

small enough for |y− ỹ| � C(d)2k K log L to hold in case |y− ỹ| � C(d)K2k , and
otherwise—that is for |y − ỹ| � C(d)K2k—appealing to the upper bound (72))

∣∣Cov[Xk̃,∞
ỹ , Xk,∞

y ]∣∣ � C(d, λ, K ) exp
(

− |y − ỹ|
C(d, λ)2k

)
. (80)

As a consequence, we obtain

∣∣∣∣LdVar aRVE −
1+log2 LK∑

k=0

(2k)−d
∑

ỹ∈2kZd

Cov[Xk,∞
0 , Xk,∞

ỹ ]

−
1+log2 LK∑

k̃=0

1+log2 LK∑
k=k̃+1

(2k)−d
∑

ỹ∈2k̃Zd

(Cov[Xk,∞
0 , Xk̃,∞

ỹ ] + Cov[Xk̃,∞
ỹ , Xk,∞

0 ])
∣∣∣∣

� C(d, λ, K )| log L|C L−d/2

+
1+log2 LK∑

k̃=0

1+log2 LK∑
k=k̃

(2k)−d
∑

ỹ∈2k̃Zd :
|ỹ−0|>CK log L·2k

C(d, λ, K ) exp

(
− |ỹ − 0|

C2k

)

� C(d, λ, K )| log L|C L−d/2

+
1+log2 LK∑

k̃=0

1+log2 LK∑
k=k̃

(2k)−d ·
(
2k

2k̃

)d

C(d, λ, K ) exp(−cK log L)

� C(d, λ, K )| log L|C L−d/2.

This implies

∣∣∣∣LdVar aRVE −
∞∑
k=0

(2k)−d
∑

ỹ∈2kZd

Cov[Xk,∞
0 , Xk,∞

ỹ ]

−
∞∑
k̃=0

∞∑
k=k̃+1

(2k)−d
∑

ỹ∈2k̃Zd

(Cov[Xk,∞
0 , Xk̃,∞

ỹ ] + Cov[Xk̃,∞
ỹ , Xk,∞

0 ])
∣∣∣∣

� C(d, λ, K )| log L|C L−d/2

+ 2
1+log2 LK∑

k̃=0

∞∑
k=2+log2 LK

(2k)−d
∣∣∣∣
∑

ỹ∈2k̃Zd

Cov[Xk,∞
0 , Xk̃,∞

y ]
∣∣∣∣

+ 2
∞∑

k̃=2+log2 LK

∞∑
k=k̃

(2k)−d
∣∣∣∣
∑

ỹ∈2k̃Zd

Cov[Xk,∞
0 , Xk̃,∞

y ]
∣∣∣∣.
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We now distinguish the cases ỹ ∈ [−Rk2k, Rk2k]d and ỹ /∈ [−Rk2k, Rk2k]d for
some Rk to be chosen. Using (80) in the latter case, we get

∣∣∣∣LdVar aRVE −
∞∑
k=0

(2k)−d
∑

ỹ∈2kZd

Cov[Xk,∞
0 , Xk,∞

ỹ ]

−
∞∑
k̃=0

∞∑
k=k̃+1

(2k)−d
∑

ỹ∈2k̃Zd

(Cov[Xk,∞
0 , Xk̃,∞

ỹ ] + Cov[Xk̃,∞
ỹ , Xk,∞

0 ])
∣∣∣∣

� C(d, λ, K )| log L|C L−d/2

+ 2
1+log2 LK∑

k̃=0

∞∑
k=2+log2 LK

(2k)−d
∣∣∣∣

∑
ỹ∈2k̃Zd∩[−Rk2k ,Rk2k ]d

Cov[Xk,∞
0 , Xk̃,∞

y ]
∣∣∣∣

+ 2
1+log2 LK∑

k̃=0

∞∑
k=2+log2 LK

(2k)−d · C(d, λ, K )

(
2k

2k̃

)d

exp
(

− Rk

C

)

+ 2
∞∑

k̃=2+log2 LK

∞∑
k=k̃

(2k)−d
∣∣∣∣

∑
ỹ∈2k̃Zd∩[−Rk2k ,Rk2k ]d

Cov[Xk,∞
0 , Xk̃,∞

y ]
∣∣∣∣

+ 2
∞∑

k̃=2+log2 LK

∞∑
k=k̃

(2k)−d · C(d, λ, K )

(
2k

2k̃

)d

exp
(

− Rk

C

)
.

For k̃ � k and R2k � LK we have, by Lemma 12 and (72),

∣∣∣∣Cov
[
Xk
y,

∑
ỹ∈2k̃Zd∩[−R2k ,R2k ]d

X k̃
ỹ

]∣∣∣∣

�
√∣∣Var Xk

y

∣∣
√√√√
∣∣∣∣Var

∑
ỹ∈2k̃Zd∩[−R2k ,R2k ]d

X k̃
ỹ

∣∣∣∣

� C(d, λ, K )L−2d
(
R2k

2k̃

)d/2∣∣∣∣ log R2k

2k̃

∣∣∣∣
d/2

,

which entails, by (79), upon choosing L1/2 = R2k ,

∣∣∣∣Cov
[
Xk,∞
y ,

∑
ỹ∈2k̃Zd∩[−R2k ,R2k ]d

X k̃,∞
ỹ

]∣∣∣∣

� C(d, λ, K )

(
R2k

2k̃

)d/2

| log(R2k)|d .
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As a consequence, choosing Rk = Sk for S � 1 large enough, we get

∣∣∣∣LdVar aRVE −
∞∑
k=0

(2k)−d
∑

ỹ∈2kZd

Cov[Xk,∞
0 , Xk,∞

ỹ ]

−
∞∑
k̃=0

∞∑
k=k̃+1

(2k)−d
∑

ỹ∈2k̃Zd

(Cov[Xk,∞
0 , Xk̃,∞

ỹ ] + Cov[Xk̃,∞
ỹ , Xk,∞

0 ])
∣∣∣∣

� C(d, λ, K )| log L|C L−d/2

+ 2
1+log2 LK∑

k̃=0

∞∑
k=2+log2 LK

(2k)−d · C(d, λ, K )

(
Rk2k

2k̃

)d/2

| log(Rk2
k)|d

+ C(d, λ, K )

∞∑
k=2+log2 LK

exp
(

− Rk

C

)

+ 2
∞∑

k̃=2+log2 LK

∞∑
k=k̃

(2k)−d · C(d, λ, K )

(
Rk2k

2k̃

)d/2

| log(Rk2
k)|d

+ C(d, λ, K )(LK )−d
∞∑
k=0

exp
(

− Rk

C

)

� C(d, λ, K )| log L|C L−d/2

+ C(d, λ, K )(LK )−d/2| log LK |C

+ C(d, λ, K ) exp
(

− S log LK

C

)

+ C(d, λ, K )(LK )−d | log LK |C
+ C(d, λ, K )(LK )−d

� C(d, λ, K )| log L|C L−d/2.

In total, we have shown convergence of the rescaled variance LdVar aRVE towards
a limit independent of L with the desired rate.

The proof of the other cases is analogous. ��

Proof of Theorem 11. The estimate (62a) is contained in [55, Corollary 4]. In
view of the Poincaré inequality the bound (62b) is a consequence of (62a) and an
estimate on a (weighted) average of uR

d

i . Hence, we only need to derive a bound
on

∫
uR

d

i (·, T )
1√
T
d
ψ
( x√

T

)
dx

for a suitably chosen smooth function ψ supported in {|x | � 1}. To this end, we
compute
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∫
uR

d

i (·, T )
1√
T
d
ψ
( x√

T

)
dx

=
∫

uR
d

i (·, 2T )
1√
T
d
ψ
( x√

T

)
dx −

∫ 2T

T

∫
1√
T
d
ψ
( x√

T

) d

dt
uR

d

i dx dt

=
∫

uR
d

i (·, 2T )
1√
2T

d
ψ
( x√

2T

)
dx

+
∫

uR
d

i (·, 2T )

(
1√
T
d
ψ
( x√

T

)
− 1√

2T
d
ψ
( x√

2T

))
dx

−
∫ 2T

T

∫
1√
T
d+1∇ψ

( x√
T

)
· a∇uR

d

i dx dt,

which yields upon applying the Poincaré inequality to the second term (note that
the second factor in the integral has vanishing average) and using the bound (62a)

∣∣∣∣
∫

uR
d

i (·, T )
1√
T
d
ψ
( x√

T

)
dx −

∫
uR

d

i (·, 2T )
1√
2T

d
ψ
( x√

2T

)
dx

∣∣∣∣

� C(d)C(a, 2T )(2T )−1/2−d/4 + C(d, λ)

∫ 2T

T
C(a, t)t−1−d/4

√
T

−1
dt

� C(d)C(a, T )T−1/2−d/4.

Summing over a dyadic sequence of times 2kT and using the fact that almost surely

lim
T→∞

∫
uR

d

i (·, T )
√
T

−d
ψ(x/

√
T ) dx = 0,

we infer (62b) (upon redefining the constant C(a, T )). ��

In the previous proofs, we have made use of the following elementary concen-
tration estimate for sums of random variables with multilevel local dependence:

Lemma 12. ([43], Lemma 9) Consider a probability distribution of uniformly el-
liptic and bounded coefficient fields a on Rd or a periodization of such a probabil-
ity distribution, and suppose that assumptions (A1)–(A3) respectively (A1), (A2),
(A3a)–(A3c) are satisfied. Let X = X (a) be a random variable that is approxi-
mately a sum of random variables with multilevel local dependence in the sense of
Definition 6. Then for γ̃ := γ /(γ + 1) the concentration estimate

||X − E[X ]||expγ̃ � C(d, γ, K )B| log L|d/2L−d/2

holds true.
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6. Failure and Success of the Variance Reduction Approaches

We now establish our theorems on the failure and the success of the variance
reduction approaches in stochastic homogenization. We start with the counterex-
ample that shows that in general there is no guarantee that the variance reduction
techniques provide an effective reduction of the variance, even for “natural” choices
of the statistical quantity F(a) like the spatial average Favg(a) := −

∫
[0,Lε]d a dx .

Proof of Theorem 4. Before turning to themain result of Theorem 4, the failure of
the spatial averageFavg(a) to explain a fraction of the variance of aRVE (inequality
(23)), let us first show (22). The estimate (22) is in fact a consequence of the estimate
(43) in the proof of Theorem 2 in combination with (41) and the lower bound for
the variance of Mδ which is a straightforward consequence of the formula (34)
and the definition of Var aRVEi j |unexpl = (1 − |ρ|2)Var aRVEi j .

Note that the derivation of (24) from (23) requires the estimate (22) under the
assumption (A2’) instead of (A2). However, the only place where the assumption
(A2) entered in our analysis is in Proposition 7, where it was used to apply the
result of [55] on the decay of the semigroup. However, the arguments of [55] may
be modified to yield the corresponding estimate under the assumption of discrete
stationarity (A2’).

Let us now turn to the construction of our counterexample featuring the degen-
erate covariance (23). The construction is based on the following ideas:

• The approximation aRVE for the effective coefficient depends in a uniformly
continuous way on a as a map L∞([0, Lε]d ;Rd×d) → R

d×d , as long as a is
uniformly elliptic and bounded.

• Consider a probability distribution of coefficient fields a for which a is almost
surely almost everywhere a multiple of the identity matrix. If in addition the
law of a is invariant under reflections of coordinate axes and invariant under
exchange of coordinate axes (that is, invariant under diagonal reflections), the
covariance

Cov

[
aRVE,−

∫
[0,Lε]d

a dx

]

is a multiple of Id⊗ Id. For a proof of this fact, see Lemma 13, below.
• Consider the “periodized random checkerboard” with the set of tiles T :=

{x0+[0, ε)d : x0 ∈ εZd∩[0, Lε)d}. On each tile T ∈ T , choose at random (and
independently from the other tiles) a(x) = Id with probability 0.5 and a(x) =
1
2 Id with probability 0.5. By Proposition 5 and the preceding considerations,
for this probability distribution the covariance

Cov

[
aRVE,−

∫
[0,Lε]d

a dx

]

is a positive multiple of Id⊗ Id; in fact, one has a lower bound of the form
� L−d Id⊗ Id.
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Fig. 5. A single tile with (second-order laminate) microstructure, as used in the proof of
Theorem 4. Blue corresponds to the regions with a(x) = λ Id, red to the regions with
a(x) = Id, and violet to the regions with a(x) = μ Id

• Wenowconsider a “periodized randomcheckerboardwithmicrostructure”with
the set of tiles T := [0, ε)d+(εZd∩[0, Lε)d): Fix some τ � 1with 1/τ ∈ 2N.
On each tile T = εk + [0, ε)d ∈ T , choose at random (and independently
from the other tiles) aτ (x) = σ Id with probability 0.5 (where σ > 0 is to
be chosen below) and aτ (x) = Aτ ((x − εk)/ε) with probability 0.5, where
Aτ : [0, 1]2 → R

2×2 is the tile described in Fig. 5, rotated and reflected at
random (with equal probability for all 8 orientations and independently on all
such tiles; see Fig. 6 for an illustration).
The probability distribution of a satisfies the same isotropy properties as

in the case of the periodized random checkerboard. Thus, by Lemma 13 the
covariance

Cov

[
aRVEτ ,−

∫
[0,Lε]d

aτ dx

]

is a multiple of Id⊗ Id.
• We shall argue below that for suitable σ, λ, μ > 0 and for τ � 1 small enough
the covariance

Cov

[
aRVEτ ,−

∫
[0,Lε]d

aτ dx

]

is negative; in fact, one has an upper bound of the form � −L−d Id⊗ Id.
• Linearly interpolating between aτ and a—that is, considering for κ ∈ [0, 1] the

coefficient field

aτ,κ := (1 − κ)a + κaτ

defined on the product probability space, that is for independent aτ and a—we
find a probability distribution of coefficient fields ã for which the covariance

Cov

[
ãRVE,−

∫
[0,Lε]d

ã dx

]
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Fig. 6. A single realization of the probability distribution of our counterexample (with an
exaggerated size of the microstructure in the tiles with microstructure). The tiles with mi-
crostructure behave almost like a homogeneous tile with an effective conductivity. Note that
the tiles with microstructure are oriented randomly in order to enforce exact isotropy of the
(co-)variances Var aRVE and Cov[aRVE, −∫ a dx]

vanishes.This is possible by the continuousdependenceofaRVE and−
∫
[0,Lε]d a dx

on a (and hence the continuous dependence on κ ∈ [0, 1] in the case of the
family aτ,κ ) and by the fact that for all κ ∈ [0, 1] the covariance

Cov

[
aRVEτ,κ ,−

∫
[0,Lε]d

aτ,κ dx

]

is amultiple of Id⊗ Id (this latter property holds again by the isotropy properties
of the probability distribution and Lemma 13, below).

• For any κ ∈ (0, 1) the variances Var −
∫
[0,Lε]d aτ,κ dx and Var aRVEτ,κ are non-

degenerate in the sense � L−d Id⊗ Id. For the spatial average −
∫
[0,Lε]d aτ,κ dx

this non-degeneracy is an easy consequence of the formula

Var −
∫

[0,Lε]d
aτ,κ dx = (1 − κ)2 Var −

∫
[0,Lε]d

a dx + κ2 Var −
∫

[0,Lε]d
aτ dx

(which follows from the definition of aτ,κ and the independence of a and aτ )
and the fact that the latter two variances satisfy such a lower bound (note that
the spatial average of the coefficient field on a tile with microstructure Aτ

does not equal σ Id). The non-degeneracy of Var aRVEτ,κ is shown as follows:



Julian Fischer

first, a new coefficient field aτ,κ,eff is introduced by letting aτ,κ,eff = aτ,κ on
each tile without microstructure but replacing the values of aτ,κ by the effec-
tive coefficient from periodic homogenization on each tile with microstructure.
Note that aτ,κ,eff corresponds to a standard random checkerboard. Denote by
aRVEτ,κ,eff the approximation for the effective coefficient associated with the co-
efficient field aτ,κ,eff (that is the result of formula (8) for the coefficient field
aτ,κ,eff ). The nondegeneracy of Var aRVEτ,κ now follows from the nondegeneracy
Var aRVEτ,κ,eff,i i � L−d and the convergence |aRVEτ,κ − aRVEτ,κ,eff | → 0 for τ → 0
(uniformly in κ , see below).
Note that aRVEτ,κ,eff corresponds to a random checkerboard with tiles (κσ +(1−

κ)) Id, κσ + (1 − κ) · 1
2 Id, κAτ + (1 − κ) Id, and κAτ + (1 − κ) · 1

2 Id, each
tile chosen with probability 1

4 (and the microscopic tiles rotated and reflected
at random). Thus the nondegeneracy of Var aRVEτ,κ,eff,i i for 1 � i ≤ d follows
from the covariance estimate of Proposition 5 and the quantitative upper bound
Var −

∫
[0,Lε]d aτ,κ,eff dx � CL−d .

To complete the proof, it only remains to establish the negativity of the covariance

Cov

[
aRVEτ ,−

∫
[0,Lε]d

aτ dx

]

for τ � 1 small enough and suitable σ , μ, λ, as well as the convergence aRVEτ,κ →
aRVEτ,κ,eff for τ → 0, uniformly in κ . The underlying idea for our choice of the tiles
in Fig. 5 is that we intend to exploit the nonlinear dependence of the effective
coefficients in periodic homogenization on the coefficient field, equipping such
a tile with an effective coefficient that is unrelated to the spatial average of the
coefficient field. Heuristically, by classical results in periodic homogenization we
expect the following to happen:

• Consider our (sub)pattern of periodic horizontal stripes of equal height (that is
the red-and-blue subpattern in Fig. 5), in which the coefficient field a alternat-
ingly takes the values Id and λ Id. Then the (large-scale) effective coefficient
for this pattern is given by

( 1+λ
2 0
0 2λ

1+λ

)
,

that is by the arithmetic mean in the horizontal direction and by the harmonic
mean in the vertical direction.

• Consider now the pattern of periodic vertical stripes of equal width, in which the
coefficient alternatingly takes the valueμ Id respectively is given by the pattern
of horizontal stripes from the previous step. The effective coefficient for this
(second-order laminate) pattern is (at least in the limit of an infinitesimally fine
horizontal pattern) given by the arithmetic mean of the effective coefficients in
the vertical direction and the harmonic mean of the effective coefficients in the
horizontal direction, that is by
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(
2μ(1+λ)
2μ+1+λ

0

0 λ
1+λ

+ μ
2 .

)
.

Choosing μ := 3λ2+(1−λ)
√
9λ2+14λ+9+2λ+3
4(λ+1) —which is positive for any λ ∈

(0, 1]—, the effective coefficient becomes a multiple of the identity matrix.
Note that the spatial average of the coefficient field on a tile is given by

μ + λ+1
2

2
Id .

• Consider the coefficient field aτ,eff that is obtained from our random checker-
board with microstructure aτ by replacing aτ on the tiles with microstructure
with the effective coefficient ( λ

1+λ
+ μ

2 ) Id. The coefficient field aτ,eff is now just
a usual random checkerboard; by Lemma 13 and Proposition 5, the covariance

Cov

[
aRVEτ,eff ,−

∫
[0,Lε]d

aτ,eff dx

]

is a positive multiple of Id⊗ Id, and we have a lower bound of the form �
cL−d Id⊗ Id for the choice of λ, μ, and τ to be made below. Note that aτ,eff—
and hence also the preceding covariance—is actually independent of τ (we
just keep the τ to emphasize that aτ,eff is the coefficient field obtained from
aτ in the homogenization limit τ → 0). We shall prove below that aRVEτ is
(quantitatively) close to aRVEτ,eff for τ � 1 small enough, which implies that

Cov

[
aRVEτ ,−

∫
[0,Lε]d

aτ,eff dx

]

is close to a positive multiple of Id⊗ Id (again with a lower bound of the form
� cL−d Id⊗ Id).

• The average −
∫
[0,Lε]d aτ dx is an affine function of −

∫
[0,Lε]d aτ,eff dx : The coef-

ficient field aτ,eff is constant on each tile and may only take the values σ Id
or ( λ

1+λ
+ μ

2 ) Id. On the tiles on which the value of aτ,eff is σ Id, aτ also
takes the constant value σ Id. However, on the tiles on which aτ,eff is given by
( λ
1+λ

+ μ
2 ) Id (that is on the tiles on which aτ features a microstructure), the

average of aτ is 2μ+λ+1
4 Id. We thus have

−
∫

[0,Lε]d
aτ dx = �microtiles

Ld
· 2μ + λ + 1

4
Id+ Ld − �microtiles

Ld
· σ Id

= σ Id+�microtiles

Ld
·
(
2μ + λ + 1

4
− σ

)
Id

and

−
∫

[0,Lε]d
aτ,eff dx = �microtiles

Ld
·
(

λ

1 + λ
+ μ

2

)
Id+ Ld − �microtiles

Ld
· σ Id

= σ Id+�microtiles

Ld
·
(

λ

1 + λ
+ μ

2
− σ

)
.
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Choosing σ such that σ > λ
1+λ

+ μ
2 but σ <

2μ+λ+1
4 —which is possible for

λ > 0 small enough—, we obtain a relation of the form

−
∫

[0,Lε]d
aτ dx = A Id−B−

∫
[0,Lε]d

aτ,eff dx

for suitable positive constants A and B. Thus, the sign of the covariance flips
upon replacing the aτ,eff by aτ in the spatial average, that is

Cov

[
aRVEτ ,−

∫
[0,Lε]d

aτ dx

]

must be a negative multiple of Id⊗ Id, with an upper bound of the form
� −cL−d Id⊗ Id.

It now only remains to prove two things:We need to show that aRVEτ is quantitatively
close to aτ,eff if we choose the width τ of the vertical stripes and the height τ 2 of the
horizontal stripes in the pattern in Fig. 5 small enough and we need to establish the
corresponding assertion for the interpolated coefficient field aτ,κ,eff . As the latter
result is shown similarly—though with two different microscopic tiles κAτ + (1−
κ) 12 Id and κAτ + (1 − κ) 12 Id, depending on whether the random checkerboard a
equals Id or 1

2 Id on the tile (and correspondingly, with two sets of homogenization
correctors and two characteristic functions χmicrotile1 and χmicrotile2, see below
for this notation)—we only provide the proof of the latter result.

For the remainder of the proof, we shall fix without loss of generality ε := 1
to avoid even more cumbersome notation. Again, to avoid even more cumbersome
notation, we only give the proof in the case that all tiles with microstructure have
the same orientation as in Fig. 5.

To see this quantitative closeness, we construct an approximate homogenization
corrector φi,appr for aRVEτ . To this end, let φi,eff be the homogenization corrector
associated with the coefficient field aτ,eff , that is let φi,eff solve

−∇ · (aτ,eff(ei + ∇φi,eff)) = 0

on [0, L]2 with periodic boundary conditions. We now intend to build the approx-
imate homogenization corrector φi,appr for aRVEτ by a nested two-scale expansion,
using the homogenization correctors for the periodic laminate microstructures.

By Meyer’s estimate, there exists p > 2 with

−
∫

[0,L]2
|∇φi,eff |p dx � C(d, λ). (81)

Furthermore, aτ,eff is constant on each tile k + [0, 1)2, which implies on each tile
T = k + [0, 1)2 (with k ∈ Z

2) for each x ∈ T by regularity theory for constant
coefficient equations

|∇2φi,eff(x)| � C

dist(x, ∂T )

(
−
∫

{|y−x |�dist(x,∂T )/2}
|ei + ∇φi,eff |2 dy

)1/2

� C

dist(x, ∂T )1+d/2

(
−
∫
T

|ei + ∇φi,eff |2 dy
)1/2

. (82)
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Let ρδ denote a standard mollifier. The L p estimate and the estimate on ∇2φi,eff
imply (for notational convenience we extend φi,eff by periodicity)

−
∫

[0,L]2
∣∣∇φi,eff − ∇(ρδ ∗ φi,eff)

∣∣(p+2)/2 dx � Cδα (83)

for some α > 0 (for a proof of this estimate, split the domain into a neighborhood
of size δ1/5 of the tile boundaries ∂T , on which one uses the Hölder inequality and
the L p bound on ∇φi,eff in (81), and the interior {x ∈ T : dist(x, ∂T ) � δ1/5},
where one applies the regularity estimate (82)).

Let φi,h denote the 2-periodic homogenization corrector for the coefficient
field ah(x, y) associated with the pattern of horizontal stripes in Fig. 5 (that is let
ah(x, y) = ah(y) take alternatingly on intervals of length 1 the values Id and λ Id).
Note that φ1,h ≡ 0 and that φ2,h is explicitly given by

φ2,h(x, y) = 1

−
∫ 2
0

1
e2·ah(x,ỹ)e2 d ỹ

∫ y

0

1

e2 · ah(x, ỹ)e2 d ỹ − y.

We shall frequently use the uniform bound on the gradient |∇φi,h | � C derived
easily from this formula.

Let φi,v denote the 2-periodic homogenization corrector associated with the
pattern of vertical stripes of width 1, in which the coefficient field av(x, y) = av(x)
alternatingly takes the values μ Id and

( 1+λ
2 0
0 2λ

1+λ

)
.

Note that we have φ2,v ≡ 0 and that φ1,v is given explicitly by

φ1,v(x, y) = 1

−
∫ 2
0

1
e1·av(x̃,y)e1

dx̃

∫ x

0

1

e1 · av(x̃, y)e1
dx̃ − x .

We shall again frequently use the uniform bound on the gradient |∇φi,v| � C .
We define the vector potential for the flux correction σh,i jk , skew-symmetric in

its last two indices, as σh,212 := 0 and

σh,112 :=
∫ y

0
(ah(ỹ) − ah,eff)e1 · e1 d ỹ. (84)

Note that with this definition σh,i jk satisfies ∇ · σh,i = ah(ei + ∇φi,h) − ah,effei ,
as one checks by a case-by-case analysis.

Similarly,wedefineσv,i jk , skew-symmetric in its last two indices, asσv,121 := 0
and

σv,221 :=
∫ x

0
(av(x̃) − av,eff)e2 · e2 dx̃, (85)

which then satisfies ∇ · σv,i = av(ei + ∇φi,v) − av,effei .
Let us denote the indicator function of the tiles with microstructure by χmicrotile

(that is χmicrotile is 1 on all tiles k +[0, 1)d ⊂ [0, L)d with microstructure and 0 on
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the other tiles). Similarly, we denote by χvmicrostripe the indicator functions of all
vertical stripes that according to Fig. 5 contain a micropattern of horizontal stripes.
We then build our approximate correctors as

φi,appr,1 := ρδ0 ∗ φi,eff

+ (ρτδ1 ∗ χmicrotile)
∑
j

(δi j + ∂ j (ρδ0 ∗ φi,eff))
(
ρδ1τ ∗ τφ j,v

( ·
τ

))

and

φi,appr,2 := φi,appr,1 + (ρτ 2δ2
∗ χvmicrostripe)

∑
k

(∂kφi,appr,1 + δik)τ
2φk,h

( ·
τ 2

)
.

We observe that φi,appr,1 satisfies the estimate

|∇φi,appr,1| �
(

C

min{1, δ1} + Cτ

δ0

)
(ρ2δ0 ∗ |∇φi,eff | + 1). (86)

We also have the bound

|∇φi,appr,2| � C

min{1, δ2} (|∇φi,appr,1| + 1) (87)

+
(
C + Cτ 2

δ0
+ Cτ

δ21
+ Cτ 3

δ20
+ Cτ

δ1

)
(ρ2δ0 ∗ |∇φi,eff | + 1).

Furthermore, if we are at least τδ1 away from the tile boundaries and the boundaries
of the vertical stripes (note that ρδ1τ ∗ ∇φ j,v(·/τ) is then equal to ∇φ j,v(·/τ) as
the latter quantity is constant in each stripe; note also that then ρτδ1 ∗ χmicrotile is
locally constant = 0 or = 1 and that we have a uniform bound on ∇φ j,v), we have
by (82) on each tile T = k + [0, 1)2, k ∈ Z

d ∩ [0, L)d ,∣∣∣∣ei + ∇φi,appr,1 −
∑
j

(e j + χmicrotile∇φ j,v(·/τ))(δi j + ∂ jφi,eff)

∣∣∣∣ (88)

� C

dist(·, ∂T )2

(
−
∫
T

|ei + ∇φi,eff |2 dx
)1/2(

δ0 + τ
)
.

If we are at least τδ1 away from the tile boundaries and the boundaries of the vertical
stripes and at least τ 2δ2 away from the boundary of the horizontal stripes, we get
(note that ρδ2τ 2

∗ ∇φk,h(·/τ 2) is then equal to ∇φk,h(·/τ 2) as the latter quantity is
constant in each small horizontal stripe; note also that then ρτ 2δ2

∗ χhmicrostripe is
locally constant = 0 or = 1 and that we have a uniform bound on ∇φk,h)
∣∣∣∣ei + ∇φi,appr,2

−
∑
k

(ek + χvmicrostripe∇φk,h(·/τ 2))
∑
j

(
δ jk + χmicrotile∂kφ j,v(·/τ)

)
(δi j + ∂ jφi,eff )

∣∣∣∣
(88)
� C

∣∣∣∣ei + ∇φi,appr,1 −
∑
j

(e j + χmicrotile∇φ j,v(·/τ))(δi j + ∂ jφi,eff )

∣∣∣∣
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+ Cτ 2|∇2φi,appr,1| + C

dist(·, ∂T )2

(
−
∫
T

|ei + ∇φi,eff |2 dx
)1/2(

δ0 + τ
)

(88),(82)
� C

dist(·, ∂T )2

(
−
∫
T

|ei + ∇φi,eff |2 dx
)1/2(

δ0 + τ + τ 2 + τ 3

δ0

)
.

Using the fact that by Meyers inequality we have for some p = p(λ) > 2 that

−
∫

[0,L]2
|ei + ∇φi,eff |p dx � C(d, λ),

we obtain, by choosing δ0, δ1, and δ2 as appropriate powers of τ and using (87),

−
∫

[0,Lε]d

∣∣∣∣ei + ∇φi,appr,2 −
∑
k

(ek + χvmicrostripe∇φk,h(·/τ 2))

×
∑
j

(
δ jk + χmicrotile∂kφ j,v(·/τ)

)
(δi j + ∂ jφi,eff )

∣∣∣∣
2

dx

� C(d, λ)τη (89)

for some η > 0.
Having bounded the error in the gradient, we next estimate the error in the flux.

In an analogous fashion to the definition of aτ,eff as the effective coefficient from
periodic homogenization on each tile, we define aτ,veff as equal to aτ,eff = aτ on
the tiles without microstructure and equal to the effective coefficient from periodic
homogenization on each vertical stripe of width τ on each tile with microstructure.
Recalling the definitions (84) and (85), we may rewrite the error in the flux in a
pointwise way as

aτ

∑
k

(ek + χvmicrostripe∇φk,h(·/τ 2))
∑
j

(
δ jk + χmicrotile∂kφ j,v(·/τ)

)
(δi j + ∂ jφi,eff )

−aτ,eff (ei + ∇φi,eff )

=
∑
j

(
aτ

∑
k

(ek + χvmicrostripe∇φk,h(·/τ 2)) − aτ,veffek
)

×(δ jk + χmicrotile∂kφ j,v(·/τ)
)
(δi j + ∂ jφi,eff )

+
∑
j

(
aτ,veff

(
e j + χmicrotile∇φ j,v(·/τ)

)− aτ,effe j
)
(δi j + ∂ jφi,eff )

= χvmicrostripe

∑
k

(∇ · (τ 2σh,k(·/τ 2)))
∑
j

(
δ jk + χmicrotile∂kφ j,v(·/τ)

)
(δi j + ∂ jφi,eff )

+χmicrotile

∑
j

(∇ · (τσv, j (·/τ)))(δi j + ∂ jφi,eff ). (90)

Thus, having choosen δ0, δ1, and δ2 as suitable powers of τ , we obtain, by (89),
(82) and (81),

∣∣∣∣−
∫

[0,L]2
aτ (ei + ∇φi,appr,2) dx − −

∫
[0,L]2

aτ,eff(ei + ∇φi,eff ) dx

∣∣∣∣
� C(d, λ)τη.
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It now only remains to show that ∇φi,appr,2 is a good approximation for ∇φi . To
do so, we consider the difference φi −φi,appr,2 and observe that it satisfies the PDE

− ∇ · (aτ (∇φi − ∇φi,appr,2))

= ∇ · (aτ (ei + ∇φi,appr,2))

= ∇ · (aτ (ei + ∇φi,appr,2) − aτ,eff(ei + ∇φi,eff)).

We now replace the divergence-form right-hand side using (89)

− ∇ · (aτ (∇φi − ∇φi,appr,2)

= ∇ · g
+ ∇ ·

(
aτ

∑
k

(ek + χvmicrostripe∇φk,h(·/τ 2))

×
∑
j

(
δ jk + χmicrotile∂kφ j,v(·/τ)

)
(δi j + ∂ jφi,eff)

− aτ,eff(ei + ∇φi,eff)

)

for some g with −
∫
[0,L]2 |g|2 � Cτη (recall that δ1 and δ2 have been chosen as a

suitable small powers of τ and recall also the uniform L p bound for ∇φi,eff in
(81)). This expression in turn may be rewritten by (83) and (90) for any β > 0
small enough as

− ∇ · (aτ (∇φi − ∇φi,appr,2))

= ∇ · g̃ + ∇ ·
(

(ρτ 1+β ∗ χvmicrostripe)
∑
k

(∇ · (τ 2σh,k(·/τ 2)))

×
∑
j

(
δ jk + ρτ 1+β ∗ χmicrotile∂kφ j,v(·/τ)

)
(δi j + ρτβ ∗ ∂ jφi,eff )

+ (ρτβ ∗ χmicrotile)
∑
j

(∇ · (τσv, j (·/τ)))(δi j + ρτβ ∗ ∂ jφi,eff )

)

for some g̃ with −
∫
[0,L]2 |g̃|2 � Cτ delta(β).

Using the skew-symmetry of σv,i and σh,i , we obtain

− ∇ · (aτ (∇φi − ∇φi,appr,2))

= ∇ · g̃
+
∑
k

(∇ · (τ 2σh,k(·/τ 2)))

· ∇
∑
j

(ρτ 1+β ∗ χvmicrostripe)
(
δ jk + ρτ 1+β ∗ χmicrotile∂kφ j,v(·/τ)

)

× (δi j + ρτβ ∗ ∂ jφi,eff)

+
∑
j

(∇ · (τσv, j (·/τ))) · ∇((ρτβ ∗ χmicrotile)(δi j + ρτβ ∗ ∂ jφi,eff)
)
.
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Using again the skew-symmetry of σv,i and σh,i , we get

− ∇ · (aτ (∇φi − ∇φi,appr,2))

= ∇ · g̃
− ∇ ·

(∑
k

τ 2σh,k(·/τ 2) · ∇
∑
j

(ρτ 1+β ∗ χvmicrostripe)

× (
δ jk + ρτ 1+β ∗ χmicrotile∂kφ j,v(·/τ)

)
(δi j + ρτβ ∗ ∂ jφi,eff)

)

− ∇ ·
(∑

j

τσv, j (·/τ)∇((ρτβ ∗ χmicrotile)(δi j + ρτβ ∗ ∂ jφi,eff)
))

.

Choosing β > 0 small enough, we finally end up with

−∇ · (aτ (∇φi − ∇φi,appr,2)) = ∇ · ĝ,

with −
∫
[0,L]d |ĝ|2 � Cτ ν̃ for some ν̃ > 0. A standard energy estimate now implies

−
∫

[0,L)d
|∇φi − ∇φi,appr,2|2 dx � Cτ ν̃ .

��
Lemma 13. Consider a probability distribution of coefficient fields a subject to
the conditions (A1), (A2), and (A3a)–(A3c). Suppose in addition that a is almost
surely almost everywhere a multiple of the identity matrix. If, in addition, the law
of a is invariant under reflections of coordinate axes (that is maps of the form
x �→ (x1, . . . ,−xi , . . . , xd)) and invariant under exchange of coordinate axes (that
is maps of the form x �→ (x1, . . . , xi−1, x j , xi+1, . . . , x j−1, xi , x j+1, . . . , xd)), the
covariance

Cov

[
aRVE,−

∫
[0,Lε]d

a dx

]

is a multiple of Id⊗ Id.

Proof. For such a probability distribution of coefficient fields a, the spatial average
−
∫
[0,Lε]d a dx is almost surely a multiple of the identity matrix, which entails that

Cov

[
aRVE,−

∫
[0,Lε]d

a dx

]
= B ⊗ Id

for some B ∈ R
d×d .

The matrix B must also be a multiple of the identity matrix. Under reflec-
tion of the i-th coordinate, by the corrector equation (3) and the fact that a is
pointwise a multiple of the identity matrix we have that the i-th corrector for the
reflected coefficient field â(x) = a(x1, . . . ,−xi , . . . , xd) is given by φ̂i (x) =
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−φi (x1, . . . ,−xi , . . . , xd). Thus, the off-diagonal entries of aRVE which are given
by (for i �= j , using also that a(x) = ascalar(x) Id)

aRVEei · e j = −
∫

[0,Lε]d
a(ei + ∇φi ) · e j dx = −

∫
[0,Lε]d

ascalar (x)(e j · ∇)φi (x) dx

switch sign under such reflections, while the average−
∫
[0,Lε]d a dx remains invariant.

As our probability distribution is invariant under reflections, the off-diagonal entries
of B must be zero. Similarly, as our probability distribution is invariant under
exchange of coordinates, all diagonal entries of B must coincide; therefore the
covariance must be a multiple of Id⊗ Id. ��

We now turn to the proof of our theorem on successful variance reduction for
random coefficient fields that are obtained by applying “monotone” functions to a
collection of iid random variables.

Proof of Proposition 5. Without loss of generality (by rescaling),wemayconsider
the case ε = 1.

Given any ξ ∈ R
d , the L-periodic correctors associated with two L-periodic

coefficient fields a and ã are given as the solutions to the PDEs

−∇ · (a∇φ
L ,a
ξ ) = ∇ · (aξ) (91)

and

−∇ · (ã∇φ
L ,ã
ξ ) = ∇ · (ãξ).

Define φ
L ,(1−s)a+sã
ξ as the L-periodic solution to

−∇ · (((1 − s)a + sã)∇φ
L ,(1−s)a+sã
ξ ) = ∇ · (((1 − s)a + sã)ξ). (92)

Setting

aRVE,sξ · ξ := −
∫

[0,L]d
((1 − s)a + sã)(ξ + ∇φ

L ,(1−s)a+sã
ξ ) · ξ dx,

we then obtain

d

ds
aRVE,sξ · ξ

= d

ds
−
∫

[0,L]d
((1 − s)a + sã)(ξ + ∇φ

L ,(1−s)a+sã
ξ ) · ξ dx

(92)= d

ds
−
∫

[0,L]d
((1 − s)a + sã)(ξ + ∇φ

L ,(1−s)a+sã
ξ ) · (ξ + ∇φ

L ,(1−s)a+sã
ξ ) dx

= −
∫

[0,L]d
(ã − a)(ξ + ∇φ

L ,(1−s)a+sã
ξ ) · (ξ + ∇φ

L ,(1−s)a+sã
ξ ) dx

+ 2−
∫

[0,L]d
((1 − s)a + sã)∇ d

ds
φ
L ,(1−s)a+sã
ξ · (ξ + ∇φ

L ,(1−s)a+sã
ξ ) dx

(92)= −
∫

[0,L]d
(ã − a)(ξ + ∇φ

L ,(1−s)a+sã
ξ ) · (ξ + ∇φ

L ,(1−s)a+sã
ξ ) dx .
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Given two coefficient fields a and ã with a− ã � 0, we therefore have the estimate

aRVE,aξ · ξ − aRVE,ãξ · ξ (93)

�
∫ 1

0
−
∫

[0,L]d
(a − ã)(ξ + ∇φ

L ,(1−s)a+sã
ξ ) · (ξ + ∇φ

L ,(1−s)a+sã
ξ ) dx ds.

We now would like to derive a lower bound for the term on the right-hand side. We
have, by (91) and (92),

−∇ · (((1 − s)a + sã)(∇φ
L ,(1−s)a+sã
ξ − ∇φ

L ,a
ξ )

) = ∇ · (s(ã − a)(ξ + ∇φ
L ,a
ξ )).

Testing this PDE by the solution (note that (1 − s)a + sã is λ-uniformly elliptic)
yields

−
∫

[0,L]d
λ|∇φ

L ,a
ξ − ∇φ

L ,(1−s)a+sã
ξ |2 dx

� s−
∫

[0,L]d
(ã − a)(ξ + ∇φ

L ,a
ξ ) · (∇φ

L ,a
ξ − ∇φ

L ,(1−s)a+sã
ξ

)
dx,

and therefore by Young’s inequality (note that the matrix a − ã is symmetric and
by (A1) bounded by 1

λ
in the natural matrix norm), we have

−
∫

[0,L]d
|∇φ

L ,a
ξ − ∇φ

L ,(1−s)a+sã
ξ |2 dx

� s2

λ4
−
∫

[0,L]d
(a − ã)(ξ + ∇φ

L ,a
ξ ) · (ξ + ∇φ

L ,a
ξ ) dx .

In particular, we obtain, by (93) (and the analogous version of the previous estimate
for φ

L ,ã
ξ instead of φ

L ,a
ξ ) and a � ã,

aRVE,aξ · ξ − aRVE,ãξ · ξ

�
∫ λ2/2

0

1

2
−
∫

[0,L]d
(a − ã)(ξ + ∇φ

L ,a
ξ ) · (ξ + ∇φ

L ,a
ξ ) dx

− 2−
∫

[0,L]d
(a − ã)(∇φ

L ,a
ξ − ∇φ

L ,(1−s)a+sã
ξ ) · (∇φ

L ,a
ξ − ∇φ

L ,(1−s)a+sã
ξ ) dx ds

+
∫ 1

1−λ2/2

1

2
−
∫

[0,L]d
(a − ã)(ξ + ∇φ

L ,ã
ξ ) · (ξ + ∇φ

L ,ã
ξ ) dx

− 2−
∫

[0,L]d
(a − ã)(∇φ

L ,ã
ξ − ∇φ

L ,(1−s)a+sã
ξ ) · (∇φ

L ,ã
ξ − ∇φ

L ,(1−s)a+sã
ξ ) dx ds

�
∫ λ2/2

0

(
1

2
− 2s2

λ4

)
−
∫

[0,L]d
(a − ã)(ξ + ∇φ

L ,a
ξ ) · (ξ + ∇φ

L ,a
ξ ) dx ds

+
∫ 1

1−λ2/2

(
1

2
− 2(1 − s)2

λ4

)
−
∫

[0,L]d
(a − ã)(ξ + ∇φ

L ,ã
ξ ) · (ξ + ∇φ

L ,ã
ξ ) dx ds
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� λ2

8
−
∫

[0,L]d
(a − ã)(ξ + ∇φ

L ,a
ξ ) · (ξ + ∇φ

L ,a
ξ ) dx

+ λ2

8
−
∫

[0,L]d
(a − ã)(ξ + ∇φ

L ,ã
ξ ) · (ξ + ∇φ

L ,a
ξ ) dx .

This entails

(
aRVE,aξ · ξ − aRVE,ãξ · ξ

)(
−
∫

[0,L]d
aξ · ξ dx − −

∫
[0,L]d

ãξ · ξ dx

)

� λ2

8

(
−
∫

[0,L]d
(a − ã)ξ · ξ dx

)
−
∫

[0,L]d
(a − ã)(ξ + ∇φ

L ,a
ξ ) · (ξ + ∇φ

L ,a
ξ ) dx

+ λ2

8

(
−
∫

[0,L]d
(a − ã)ξ · ξ dx

)
−
∫

[0,L]d
(a − ã)(ξ + ∇φ

L ,ã
ξ ) · (ξ + ∇φ

L ,ã
ξ ) dx .

The estimate (95) from Lemma 14 implies

Cov

[
aRVEξ · ξ,−

∫
[0,L]d

aξ · ξ dx

]

� λ2

16
L−d

E

[ ∑
k∈Zd∩[0,L)d

√
−
∫

[0,L]d
∣∣(a(�) − a(
k,�̃k

�))ξ · ξ
∣∣ dx

×
√

−
∫

[0,L]d
∣∣(a(�) − a(
k,�̃k

�))(ξ + ∇φ
L ,a
ξ ) · (ξ + ∇φ

L ,a
ξ )

∣∣ dx
]2

� λ2

16
L−d

E

[ ∑
k∈Zd∩[0,L)d

L−d

√∫
[0,L]d

∣∣(a − a(
k,�̃k
�))ξ · ξ

∣∣ dx

× (2K )−d/2
∫

[0,L]d
∣∣(a(�) − a(
k,�̃k

�))1/2(ξ + ∇φ
L ,a
ξ )

∣∣ dx
]2

,

where in the last step we have used the Hölder inequality and the fact that a(x, �)−
a(x,
k,�̃k

�) is only nonzero for |x − k| � K .
By our assumption (25) we infer

Cov

[
aRVEξ · ξ,−

∫
[0,L]d

aξ · ξ dx

]

� λ2

16
L−d

E

[
L−d(2K )−d/2

∫
[0,L]d

ν
∣∣ξ + ∇φ

L ,a
ξ

∣∣ dx
]2

� λ2

16
L−d(2K )−dν2E

[∣∣∣∣−
∫

[0,L]d
ξ + ∇φ

L ,a
ξ dx

∣∣∣∣
]2

� λ2

16
L−d(2K )−dν2|ξ |2.
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To conclude our proof, by

ρaRVEξ ·ξ,F(a) = Cov[aRVEξ · ξ,F(a)]√
Var aRVEξ · ξ

√
Var F(a)

,

it suffices to bound Var aRVEξ · ξ and Var F(a) by C(d, λ, K )L−d |ξ |2. A cor-
responding bound for Var aRVEξ · ξ is provided for example by the methods of
Gloria andOtto [55]. To estimate Var F(a), we simply apply (96), which yields

Var F(a)

� 1

2

∑
k∈Zd∩[0,L)d

E

[(
−
∫

[0,L)d
(a(x, �) − a(x,
k,�̃(k)�))ξ · ξ dx

)2]

� 1

2

∑
k∈Zd∩[0,L)d

E

[
|ξ |2L−2d(2K )2d

]

� (2K )2d |ξ |2L−d .

��
In the previous proof, we have used the following standard estimate for covari-

ances of nonlinear functions of a finite number of independent random variables:

Lemma 14. Let f : [0, 1]N → R, g : [0, 1]N → R be two functions that are
monotonous with respect to each of their arguments. Let Xi : � → [0, 1], 1 � i ≤
N, and Yi : � → [0, 1], 1 � i ≤ N, be 2N independent identically distributed
random variables. Define

hn(X, x, y)

:= | f (X1, . . . , Xn−1, x, Xn+1, . . . , XN ) − f (X1, . . . , Xn−1, y, Xn+1, . . . , XN )|
× |g(X1, . . . , Xn−1, x, Xn+1, . . . , XN ) − g(X1, . . . , Xn−1, y, Xn+1, . . . , XN )|

and

Hn(X, x, y)

:= 1

2
| f (X1, . . . , Xn−1, x, Xn+1, . . . , XN ) − f (X1, . . . , Xn−1, y, Xn+1, . . . , XN )|2

+ 1

2
|g(X1, . . . , Xn−1, x, Xn+1, . . . , XN ) − g(X1, . . . , Xn−1, y, Xn+1, . . . , XN )|2.

Then

Cov[ f (X), g(X)] � 1

2

N∑
n=1

E

[√
hn(X, Xn,Yn)

]2
, (94)

and, by Jensen’s inequality,

Cov[ f (X), g(X)] � 1

2
N−1

E

[ N∑
n=1

√
hn(X, Xn,Yn)

]2
. (95)
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Furthermore, we have

Cov[ f (X), g(X)] � 1

2

N∑
n=1

E
[
Hn(X, Xn,Yn)

]
. (96)

Proof. The proof proceeds similarly to the proof of the standard form of this lemma
which provides the weaker assertion Cov[ f (X), g(X)] � 0; see for example [68,
page 24] or [23, Lemma 2.1].

We have by the identity of the laws of (X1, . . . , Xn−1,Yn,Y1, . . . ,Yn−1, Xn)

and (X1, . . . , Xn,Y1, . . . ,Yn) (which allow us to swap Xn and Yn in the expecta-
tions below),

E
[
f (X1, . . . , Xn−1, Xn, . . . , XN )g(Y1, . . . , Yn−1, Xn, . . . , XN )

]

= 1

2
E

[(
f (X1, . . . , Xn−1, Xn, Xn+1, . . . , XN ) − f (X1, . . . , Xn−1, Yn, Xn+1, . . . , XN )

)

× (
g(Y1, . . . , Yn−1, Xn, Xn+1, . . . , XN ) − g(Y1, . . . , Yn−1, Yn, Xn+1, . . . , XN )

)]

+ E
[
f (X1, . . . , Xn, Xn+1, . . . , XN )g(Y1, . . . , Yn, Xn+1, . . . , XN )

]
.

By the independence of the Xi and the Yi , we infer

E
[
f (X1, . . . , Xn−1, Xn, . . . , XN )g(Y1, . . . , Yn−1, Xn, . . . , XN )

]

= 1

2
E

[ ∫
[0,1]n−1

f (x, Xn, Xn+1, . . . , XN ) − f (x, Yn, Xn+1, . . . , XN ) dP(X1,...,Xn−1)(x)

×
∫

[0,1]n−1
g(y, Xn, Xn+1, . . . , XN ) − g(y, Yn, Xn+1, . . . , XN ) dP(Y1,...,Yn−1)(y)

]

+ E
[
f (X1, . . . , Xn, Xn+1, . . . , XN )g(Y1, . . . , Yn, Xn+1, . . . , XN )

]
.

As both f and g are increasing functions in each of their arguments, the integrands
in this formula are either nonnegative (for Xn � Yn) or nonpositive (for Xn � Yn).
Thus, we have

E
[
f (X1, . . . , Xn−1, Xn, . . . , XN )g(Y1, . . . , Yn−1, Xn, . . . , XN )

]

= 1

2
E

[ ∫
[0,1]n−1

| f (x, Xn, Xn+1, . . . , XN ) − f (x, Yn, Xn+1, . . . , XN )| dP(X1,...,Xn−1)(x)

×
∫

[0,1]n−1
|g(y, Xn, Xn+1, . . . , XN ) − g(y, Yn, Xn+1, . . . , XN )| dP(Y1,...,Yn−1)(y)

]

+E
[
f (X1, . . . , Xn, Xn+1, . . . , XN )g(Y1, . . . , Yn, Xn+1, . . . , XN )

]
(97)

and therefore by Hölder’s inequality we have

E
[
f (X1, . . . , Xn−1, Xn , . . . , XN )g(Y1, . . . , Yn−1, Xn , . . . , XN )

]

� 1

2
E

[√| f (X1, . . . , Xn−1, Xn , Xn+1, . . . , XN ) − f (X1, . . . , Xn−1, Yn , Xn+1, . . . , XN )|

×√|g(X1, . . . , Xn−1, Xn , Xn+1, . . . , XN ) − g(X1, . . . , Xn−1, Yn , Xn+1, . . . , XN )|
]2

+ E
[
f (X1, . . . , Xn , Xn+1, . . . , XN )g(Y1, . . . , Yn , Xn+1, . . . , XN )

]
.
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Taking the sum of these formulas for n = 1, . . . , N , we infer

E
[
f (X)g(X)

]
� 1

2

N∑
n=1

E

[√
hn(X, Xn,Yn)

]2 + E
[
f (X)g(Y )

]
,

which establishes the desired lower bound (94) for the covariance.
To obtain (96), we apply Young’s inequality and subsequently Jensen’s inequal-

ity to (97), which yields

E
[
f (X1, . . . , Xn−1, Xn, . . . , XN )g(Y1, . . . , Yn−1, Xn, . . . , XN )

]

� 1

2
E

[
1

2

∫
[0,1]n−1

| f (x, Xn, Xn+1, . . . , XN ) − f (x, Yn, Xn+1, . . . , XN )|2 dP(X1,...,Xn−1)(x)

+ 1

2

∫
[0,1]n−1

|g(y, Xn, Xn+1, . . . , XN ) − g(y, Yn, Xn+1, . . . , XN )|2 dP(Y1,...,Yn−1)(y)

]

+ E
[
f (X1, . . . , Xn, Xn+1, . . . , XN )g(Y1, . . . , Yn, Xn+1, . . . , XN )

]
.

This is equivalent to

E
[
f (X1, . . . , Xn−1, Xn, . . . , XN )g(Y1, . . . , Yn−1, Xn, . . . , XN )

]

� 1

2
E

[
1

2
| f (X1, . . . , Xn−1, Xn, Xn+1, . . . , XN ) − f (X1, . . . , Xn−1, Yn, Xn+1, . . . , XN )|2

+ 1

2
|g(X1, . . . , Xn−1, Xn, Xn+1, . . . , XN ) − g(X1, . . . , Xn−1, Yn, Xn+1, . . . , XN )|2

]

+ E
[
f (X1, . . . , Xn, Xn+1, . . . , XN )g(Y1, . . . , Yn, Xn+1, . . . , XN )

]
.

Taking the sum with respect to n entails

E
[
f (X)g(X)

]
� 1

2

N∑
n=1

E[Hn(X, Xn,Yn)] + E
[
f (X)g(Y )

]
,

which establishes the upper bound (96) for the covariance. ��
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Appendix A. Gaussian Propagation Bounds for Parabolic PDEs

We now collect some elementary energy and propagation estimates for second-
order linear parabolic equations. By a nongrowing weak solution u to the equa-
tion ∂t u = ∇ · (a∇u) with initial data u(·, 0) = g, we understand a function
u ∈ L2

loc(R
d × [0,∞)) with ∇u ∈ L2

loc(R
d × [0,∞)) satisfying the usual weak

formulation of the PDE with test functions in C∞
cpt (R

d × [0,∞)) and additionally
the estimate

sup
r�0

∫ T

0
−
∫

{|x |�r}
|u|2 dx dt < ∞

for any T > 0. Note that for initial data u(·, 0) = ∇ · b for some vector field
b ∈ L∞(Rd ;Rd), the initial data is incorporated into the weak formulation in a
weak form, that is as

−
∫ ∞

0

∫
Rd

u∂tη dx dt = −
∫
Rd

b · ∇η dx +
∫ ∞

0

∫
Rd

a∇u · ∇η dx dt.

Many of our computations in the next sections will be formal, but can be justified
by the appropriate standard approximation arguments. Note also that the estimates
which we shall prove ensure the existence of such nongrowing weak solutions for
merely b ∈ L∞(Rd ;Rd), as they ensure that one may construct a solution by
constructing solutions with the initial data b truncated outside of some large ball
{|x | � R} (in which case the standard existence theorems apply) and then passing
to the limit R → ∞.

Lemma 15. Let a be a uniformly elliptic and bounded coefficient field on R
d . For

r � 0 and M � 5d, define the coefficient field

ar,M (x) :=
{
a(x) for|x | � Mr,

Id otherwise.

Consider the unique nongrowing weak solutions ui and ui,r,M to the equations

d

dt
ui = ∇ · (a∇ui ),

ui (·, 0) = ∇ · (aei ),

and

d

dt
ui,r,M = ∇ · (ar,M∇ui,r,M ),

ui,r,M (·, 0) = ∇ · (ar,Mei ).

Then we have

−
∫

{|x |�2dr}
|ui (·, t) − ui,r,M (·, t)|2 dx � CMd/2

t
exp

(
− c

M2r2

t

)
(98)
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for any t � 16M2r2 and

∫ 16r2

0
−
∫

{|x |�dr}
|∇ui − ∇ui,r,M |2 dx dt � C

r2
exp(−cM2). (99)

Proof. For an arbitrary function ψ ∈ L2(Rd) supported in {|x | � 2dr} and any
T ∈ [0, 16M2r2], consider the solutions vψ and vψ,r,M to the dual equations

− d

dt
vψ = ∇ · (a∗∇vψ),

vψ(·, T ) = ψ.

and

− d

dt
vψ,r,M = ∇ · (a∗

r,M∇vψ,r,M ),

vψ,r,M (·, T ) = ψ.

We then have∫
Rd

(ui − ui,r,M )(·, T )ψ dx =
∫
Rd

ui (·, 0)vψ(·, 0) − ui,r,M (·, 0)vψ,r,M (·, 0) dx

+
∫ T

0

d

dt

∫
Rd

uivψ − ui,r,Mvψ,r,M dx dt

= −
∫
Rd

aei · ∇vψ(·, 0) − ar,Mei · ∇vψ,r,M (·, 0) dx + 0

� C
∫

{|x |� M
2 r}

|∇vψ(·, 0)| + |∇vψ,r,M (·, 0)| dx

+ C
∫

{|x |� M
2 r}

|∇(vψ(·, 0) − vψ,r,M (·, 0))| dx

� C

(∫
{|x |� M

2 r}

( |x |
Mr

)2d (|∇vψ(·, 0)|2 + |∇vψ,r,M (·, 0)|2) dx
)1/2

(Mr)d/2

+ C

(∫
{|x |� M

2 r}
|∇(vψ(·, 0) − vψ,r,M (·, 0))|2 dx

)1/2

(Mr)d/2.

The penultimate term may be estimated by Lemma 17 (applied to the backward-
in-time equations for vψ and vψ,r,M and breaking up the “initial” condition ψ

into pieces supported on scale
√
T if necessary), resulting in the bound (note that

2dr � Mr
4 )

∣∣∣∣
∫
Rd

(ui − ui,r,M )(·, T )ψ dx

∣∣∣∣
� C

∑
x0∈ 1

d

√
TZd∩{|x |�2dr}

(∫
{|x |� M

2 r}

( |x |
Mr

)2d

· √
T
d
exp

(
− |x − x0|2

CT

)
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× C(d, λ)−
∫

{|x−x0|�
√
T }

|ψ(x̃)|2 dx̃ · T−1 dx

)1/2

(Mr)d/2

+ C

(∫
{|x |� M

2 r}
|∇(vψ(·, 0) − vψ,r,M (·, 0))|2 dx

)1/2

(Mr)d/2,

and therefore by
√
T � 4Mr ,

∣∣∣∣
∫
Rd

(ui − ui,r,M )(·, T )ψ dx

∣∣∣∣
� C

(4Mr√
T

)d × exp
(

− M2r2

CT

)
T−1/2

(∫
|ψ |2 dx

)1/2

× (Mr)d/2

+ C

(∫
{|x |� M

2 r}
|∇(vψ(·, 0) − vψ,r,M (·, 0))|2 dx

)1/2

(Mr)d/2. (100)

An estimate for the last term on the right-hand side of (100) can be obtained as
follows: observe that

− d

dt
(vψ − vψ,r,M ) = ∇ · (a∗∇(vψ − vψ,r,M )) + ∇ · ((a∗ − a∗

r,M )∇vψ,r,M ),

(vψ − vψ,r,M )(·, T ) = 0.

We rewrite (vψ − vψ,r,M )(·, 0) as (vψ − vψ,r,M )(·, 0) = ∫ T
0 wt (·, 0) dt with wt0

being the solution to the equation

− d

dt
wt0 = ∇ · (a∗∇wt0),

wt0(·, t0) = ∇ · ((a∗ − a∗
r,M )∇vψ,r,M (·, t0)).

Considering the estimate (103) centered at x0 (instead of 0) and integrating over
the set {|x0| � M

2 r} and applying it to the backward-in-time equation for wt0 , we
obtain (also using the condition t0 � T ≤ CM2r2)

∫
{|x |� M

2 r}
|∇wt0 (·, 0)|2 dx

� C(d, λ)t−2
0

∫
{|x0|� M

2 r}

∫
|(a∗ − a∗

r,M )∇vψ,r,M |2(x) · t−d/2
0 exp

(
− |x − x0|2

Ct0

)
dx dx0

� C(d, λ)t−2
0

∫
{|x0|� M

2 r}

∫
{|x |�Mr}

|∇vψ,r,M (x)|2 · t−d/2
0 exp

(
− |x − x0|2

Ct0

)
dx dx0

� C(d, λ)t−2
0 exp

(
− M2r2

2Ct0

)∫
|∇vψ,r,M (x)|2 · exp

(
− |x |2

4Ct0

)
dx .
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Lemma 17 (applied to vψ,r,M ) implies by breaking up the “initial” condition ψ

into contributions supported on balls of size
√
T − t0∫

Rd
|∇vψ,r,M (x)|2 dx � C

T − t0

∫
Rd

|ψ |2 dx .

Combining the previous two estimates, we deduce∫
{|x |� M

2 r}
|∇wt0(·, 0)|2 dx

� C(d, λ)t−2
0 exp

(
− M2r2

2Ct0

)
(T − t0)

−1
∫

|ψ(x)|2 dx .

Taking the square root and integrating with respect to t0, this entails
(∫

{|x |� M
2 r}

|∇(vψ − vψ,r,M )|2 dx
)1/2

� C(d, λ)

∫ T

0
t−1
0 (T − t0)

−1/2 exp

(
− M2r2

Ct0

)
dt0 ·

(∫
|ψ(x)|2 dx

)1/2

� C(d, λ)

(
T 1/2

M2r2
+ 1

T 1/2

)
exp

(
− M2r2

CT

)(∫
|ψ(x)|2 dx

)1/2

.

Using T � CM2r2 and plugging in this bound into (100), we get, by M � 5d,
∣∣∣∣
∫
Rd

(ui − ui,r,M )(·, T )ψ dx

∣∣∣∣
� C(d, λ)T−1/2 exp

(
− M2r2

CT

)
·
(∫

|ψ |2 dx
)1/2

(Mr)d/2.

Passing to the supremum over all ψ supported in {|x | � 2dr} with ∫ |ψ |2 dx � 1,
we deduce our bound (98).

Now choose a cutoff η with η ≡ 1 in {|x | � dr} and η ≡ 0 outside of
{|x | � 2dr}. For any t � 16r2, we obtain by testing the equation for the difference
ui − ui,r,M with (ui − ui,r,M )η2

∫ 2t

t

∫
η2λ|∇(ui − ui,r,M )|2 dx dt̃

�
∫

{|x |�2dr}
η2|ui (·, t) − ui,r,M (·, t)|2 dx

+ C
∫ 2t

t

∫
|∇η|2|ui (·, t) − ui,r,M (·, t)|2 dx dt̃

�
∫

{|x |�2dr}
|ui (·, t) − ui,r,M (·, t)|2 dx

+ C
∫ 2t

t

∫
{|x |�2dr}

C

r2
|ui (·, t) − ui,r,M (·, t)|2 dx dt̃ .
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Using our bound (98) and t � 16r2, we get∫ 2t

t
−
∫

{|x |�dr}
|∇(ui − ui,r,M )|2 dx dt̃ � C(d, λ)

CMd/2

t
exp

(
− c

M2r2

t

)
.

Taking the sum over all t = 2k for 2k � T , we deduce our desired
estimate (99). ��
Lemma 16. Let a ∈ L∞(Rd ;Rd×d) be a uniformly elliptic and bounded coefficient
field in the sense of (A1). Let b ∈ L∞(Rd;Rd) be a bounded vector field. Then the
unique nongrowing weak solution w to the equation

d

dt
w = ∇ · (a∇w),

w(·, 0) = ∇ · b,
satisfies for any T > 0 the estimate(

−
∫

{|x |�√
T }

|w(·, T )|2 dx
)1/2

(101)

� C(d, λ)T−1/2
(∫

|b(x)|2 · T−d/2 exp

(
− |x |2

CT

)
dx

)1/2

.

Furthermore, we have the bounds

−
∫

{|x |�1}

∣∣∣∣∇
∫ 1

0
w(·, t) dt

∣∣∣∣
2

dx � C(d, λ)||b||2L∞ (102)

and (
−
∫

{|x |�√
T }

|∇w(·, T )|2 dx
)1/2

(103)

� C(d, λ)T−1
(∫

|b(x)|2 · T−d/2 exp

(
− |x |2

CT

)
dx

)1/2

.

Proof. Let T > 0 and let g ∈ L2(Rd) be a function supported in {|x | �
√
T }.

Introducing the solution v to the dual (backward-in-time) equation

− d

dt
v = ∇ · (a∗∇v),

v(·, T ) = g,

we see that we have∫
w(·, T )g dx

= −
∫

b · ∇v(·, 0) dx +
∫ T

0

d

dt

∫
wv dx dt

= −
∫

b · ∇v(·, 0) dx +
∫ T

0

∫
−a∇w · ∇v + ∇w · a∗∇v dx dt

= −
∫

b · ∇v(·, 0) dx .
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Introducing

�T (x) := exp

( |x |2
CT

)
,

we obtain∫
w(·, T )g dx �

(∫
|b(x)|2 1

�T (x)
dx

)1/2(∫
|∇v(·, 0)|2�T (·) dx

)1/2

.

Lemma 17 (applied to v, which solves a parabolic PDE backward in time) provides
the estimate ∫

|∇v(·, 0)|2�T (·) dx � C(d, λ)T−1
∫

|g|2 dx .
Inserting this estimate in the previous inequality and passing to the supremum over
all g ∈ L2 supported in {|x | �

√
T } with ∫{|x |�√

T } |g|2 dx � 1, we get

(∫
{|x |�√

T }
|w(·, T )|2 dx

)1/2

� CT−1/2
(∫

|b(x)|2 1

�T (x)
dx

)1/2

.

This establishes the estimate (101).
To prove the estimate (102), we first observe that we have

∇ ·
(
a∇

∫ 1

0
w(·, t) dt + b

)
= w(·, 1).

Testing this PDE with η2
∫ 1
0 w(·, t) dt where η is a standard cutoff with η ≡ 1 in

{|x | � 1} and η ≡ 0 outside of {|x | � 2}, we obtain
∫

η2
∣∣∣∣∇
∫ 1

0
w(·, t) dt

∣∣∣∣
2

dx

�
∫

C |η|2|b|2 + C(η2 + |∇η|2)
∣∣∣∣
∫ 1

0
w(·, t) dt

∣∣∣∣
2

+ C |η|2|w(·, 1)|2 dx

�
∫

C |η|2|b|2 + C(η2 + |∇η|2)
∫ 1

0

√
t |w(·, t)|2 dt + C |η|2|w(·, 1)|2 dx .

The estimate (101) entails
(

−
∫

{|x |�√
t}

|w(·, T )|2 dx
)1/2

� Ct−1/2||b||L∞ .

The previous two estimates yield (102).
Finally, to prove (103), we first deduce from (101)
(

−
∫

{|x−x0|�√
T/2}

|w(·, T/2)|2 dx
)1/2

� C(d, λ)T−1/2
(∫

|b(x)|2 · T−d/2 exp

(
− |x − x0|2

CT

)
dx

)1/2

.
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Splitting the functionw(·, T/2) into pieces each supported on a ball of size
√
T /2—

that is, splittingw(·, T/2) = ∑
l ηlw(·, T/2)with a partition of unityηl subordinate

to the set of balls {|x − x0| �
√
T/2}, x0 ∈ 1

d

√
T/2Zd—and applying Lemma 17

to the solutions of the parabolic equation with initial data ηlw(·, T/2) for all l (note
that w is equal to the sum of all of these solutions), we obtain

(
−
∫

{|x |�√
T/2}

|∇w(·, T )|2 dx
)1/2

�
∑

x0∈ 1
d

√
T/2Zd

exp

(
− |x0|2

CT/2

)(
−
∫

{|x−x0|�√
T/2}

|w(·, T/2)|2 dx
)1/2

T−1/2

�
∑

x0∈ 1
d

√
T/2Zd

T−d/2 exp

(
− |x0|2

CT/2

)

× C(d, λ)T−1
(∫

|b(x)|2 · T−d/2 exp

(
− |x − x0|2

CT

)
dx

)1/2

.

A straightforward estimate then entails (103) (with a different constant C). ��
Lemma 17. Let a ∈ L∞(Rd ;Rd×d) be a uniformly elliptic and bounded coefficient
field in the sense of (A1) and let T > 0. Let g ∈ L2(Rd) be a function supported in
{|x | �

√
T }. Then there exists C = C(d, λ) > 0 such that the unique nongrowing

weak solution w to the equation

d

dt
w = ∇ · (a∇w),

w(·, 0) = g,

satisfies the estimate

(∫
Rd

|∇w(·, T )|2 1√
T
d
exp

( |x |2
CT

)
dx

)1/2

� C(d, λ)

(
−
∫

{|x |�√
T }

|g|2 dx
)1/2

T−1/2.

Proof. As

�m
T (x, t) := exp

( |x |2
4Cm(T + t)

)

satisfies

d

dt
�m

T + Cm
|∇�m

T |2
�m

T
=
(

− |x |2
4Cm(T + t)2

+ Cm

∣∣∣ 2x

4Cm(T + t)

∣∣∣2
)

�m
T � 0,

(104)
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we have for C1 � C(d, λ)

d

dt

∫
|w|2�1

T dx

=
∫

|w|2 d

dt
�1

T + 2�1
T a∇w · ∇w + 2a∇w · w∇�1

T dx

� −λ

∫
�1

T |∇w|2 dx .

This provides the bound
∫ ∞

0

∫
|∇w|2�1

T dx dt � C
∫

|g|2 dx . (105)

We nowwould like to show (basically)∇w ∈ Cγ ([ 12T, 3
2T ]; L2

�m
T
) for some γ > 0

and some m. To this end, we abbreviate �m
T,t := �m

T (·, t) and compute

∫
|w(·, t + h) − w(·, t)|2�m

T,t dx

=
∫ ∫ t+h

t

d

ds
w(·, s) ds (w(·, t + h) − w(·, t))�m

T,t dx

= −
∫

�m
T,t

∫ t+h

t
a∇w ds · ∇(w(·, t + h) − w(·, t)) dx

−
∫

(w(·, t + h) − w(·, t))
∫ t+h

t
a∇w ds · ∇�m

T,t dx .

Applying the Hölder inequality to the first term and Young’s inequality (and ab-
sorption) to the second term, we get

∫
|w(·, t + h) − w(·, t)|2�m

T,t dx (106)

� C

(∫
�m

T,t

∣∣∣∣
∫ t+h

t
a∇w ds

∣∣∣∣
2

dx

)1/2

×
(∫

�m
T,t

∣∣∇w(·, t + h) − ∇w(·, t)∣∣2 dx
)1/2

+ C
∫ ∣∣∣∣

∫ t+h

t
a∇w ds

∣∣∣∣
2 |∇�m

T,t |2
�m

T,t
dx

� C
√
h

(∫ ∫ t+h

t
�m

T,t |∇w|2 ds dx
)1/2

×
(∫

�m
T,t

∣∣∇w(·, t + h) − ∇w(·, t)∣∣2 dx
)1/2

+ Ch
∫ ∫ t+h

t
|∇w|2 ds |∇�m

T,t |2
�m

T,t
dx .
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Choosing a weight �2
T with slower growth than in (105)—for example, setting

C2 := 4C1—, wemay ensure that
|∇�2

T (·,t)|2
�2

T (·,t) � C
T �1

T (·, t̃) and�2
T (·, t) � �1

T (·, t̃)
for any t, t̃ ∈ [0, T

3 ]. As a consequence, we may find for any h � T
10 a suitable

t ∈ [0, T
10 ] with

∫ t+h

t

∫
|∇w|2

(
�2

T,t + T
|∇�2

T,t |2
�2

T,t

)
dx dt � C

h

T

∫ T
5

0

∫
|∇w|2�1

T dx dt,

∫
�2

T,t

(∣∣∇w(·, t + h)|2 + |∇w(·, t)∣∣2) dx � C

T

∫ T
5

0

∫
|∇w|2�1

T dx dt.

Plugging in these bounds in the previous estimate and using (105), we obtain, for
this t ,

∫
|w(·, t + h) − w(·, t)|2�2

T (·, t) dx � C

(
h

T
+ h2

T 2

)∫
|g|2 dx . (107)

Abbreviating 
hw(·, t) := w(·, t + h) − w(·, t), we compute, for Cm � C(d, λ),

d

dt

∫
|
hw|2�m

T dx (108)

=
∫

2�m
T 
hw

d

dt

hw + |
hw|2 d

dt
�m

T dx

=
∫

−2�m
T a∇
hw · ∇
hw − 2
hw a∇
hw · ∇�m

T + |
hw|2 d

dt
�m

T dx

(104)
� −λ

∫
�m

T

∣∣
h∇w
∣∣2 dx .

Combining this with the existence of t ∈ [0, T
10 ] for which the bound (107) holds,

this entails, for any h � T
10 ,

∫ ∞
T
5

∫
�2

T

∣∣
h∇w
∣∣2 dx dt � C

h

T

∫
|g|2 dx .

We intend to plug back this estimate into (106). First, for any h ∈ [0, T
10 ] we infer

the existence of t ∈ [ T5 , T
3 ] which in addition to the bound

∫ t+h

t

∫
|∇w|2

(
�2

T,t + T
|∇�2

T,t |2
�2

T,t

)
dx dt � C

h

T

∫ T
3

0

∫
|∇w|2�1

T dx dt,

satisfies

∫
�2

T,t

∣∣
h∇w(·, t)∣∣2 dx � C

T

∫ T
3

T
5

∫
�2

T

∣∣
h∇w
∣∣2 dx dt.
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Plugging these three estimates and (105) back into (106), we obtain for some
t ∈ [ T5 , T

3 ] the improved bound
∫

|w(·, t + h) − w(·, t)|2�2
T,t dx � C

(
h3/2

T 3/2 + h2

T 2

)∫
|g|2 dx . (109)

By (108) we obtain, for any h ∈ [0, T
10 ],∫ ∞

T
3

∫
�2

T

∣∣
h∇w
∣∣2 dx dt � C

h3/2

T 3/2

∫
|g|2 dx .

In other words,∇w belongs to the Nikolskii space on the time interval [ T3 , 2T ]with
order of differentiability 3

4 , integrability 2, and values in L2
�2

T,2T
(Rd); furthermore,

the Nikolskii seminorm is subject to a bound of the order C
T 3/2

∫ |g|2 dx . By the
embedding theorem for Nikolskii spaces, we deduce

sup
t∈[T/3,2T ]

∫
�2

T (·, 2T )|∇w(·, t)|2 dx

� C−
∫ 2T

T/3

∫
�2

T (·, 2T )|∇w|2 dx dt

+ CT 3/2 sup
h∈[0,T ]

−
∫ 2T−h

T/3

∫
�2

T (·, 2T )|h−3/4
h∇w|2 dx dt
(105)
� C

T

∫
|g|2 dx .

This establishes our lemma. ��

Appendix B. Calculus for Random Variables with Stretched Exponential
Moments

On the space of random variables X with stretched exponential moments in the
sense that

E

[
exp

( |X |γ
C

)]
� 2,

for some γ > 0 and some C > 0, it is convenient to work with the norm

||X ||expγ := sup
p�1

1

p1/γ
E
[|X |p]1/p.

For γ � 1, this norm is equivalent to the Luxemburg norm associated with the con-
vex function exp(xγ )−1. However, this norm has two advantages: first, it simplifies
calculus when considering the integrability of products of random variables or the
concentration properties of independent random variables; secondly and more im-
portantly, it is also a well-defined norm for γ ∈ (0, 1), a parameter range which we
shall employ heavily.
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Lemma 18. Let γ > 0. Consider a random variable X on some probability space.
Define the quasinorm

||X ||expγ ,quasi := inf

{
s > 0 : E

[
exp

( |X |γ
sγ

)]
� 2

}
.

Then we have ||X ||expγ ,quasi < ∞ if and only if ||X ||expγ < ∞ and there exist
constants c(γ ),C(γ ) such that the estimate

c(γ )||X ||expγ � ||X ||expγ ,quasi � C(γ )||X ||expγ

is satisfied.

Proof. The function

fq(x) := xq exp(−x)

satisfies f ′
q(x) = (q − x)xq−1 exp(−x) and attains its maximal value

sup
x�0

fq(x) = qq exp(−q)

at x = q.Applying the resulting estimate xq � qq exp(x) to x := |X |γ /||X ||γexpγ ,quasi
we deduce

E
[|X |γ q] � qq ||X ||γ qexpγ ,quasiE[exp(|X |γ /||X ||γexpγ ,quasi)].

By definition we have E[exp(|X |γ /||X ||γexpγ ,quasi)] � 2. Setting p := γ q and
taking the p-th root, we obtain, for any p � 1,

E
[|X |p]1/p � C(γ )p1/γ ||X ||expγ ,quasi.

This proves ||X ||expγ � C(γ )||X ||expγ ,quasi.
To establish the reverse inequality, observe that for z ∈ [q, q + 1) we have

zqe−z/2 � qqe−(q+1)/2. This entails, for all z � 0,

exp(z/2) �
√
e +

∞∑
q=1

√
e

zq

(q/
√
e)q

,

and therefore for any b > 0 (by setting z = |X |γ /bγ ),

E
[
exp(|X |γ /2bγ )

]
�

√
e +

∞∑
q=1

√
e

E[|X |γ q ]
bγ q(q/

√
e)q

.

As a consequence, we obtain

E
[
exp(|X |γ /2bγ )

]
�

√
e +

∞∑
q=1

C(γ )(γ q)qγ /γ ||X ||γ qexpγ

bγ q(q/
√
e)q

.
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Setting b := a||X ||expγ , we get

E
[
exp(|X |γ /2bγ )

]
�

√
e +

∞∑
q=1

C(γ )γ q√eq

aγ q
�

√
e + C(γ )a−γ

1 − γ
√
e/aγ

.

Choosing a := C(γ ) large enough, we deduce

E

[
exp

( |X |γ
C(γ )||X ||γexpγ

)]
� 2,

which entails ||X ||expγ ,quasi � C(γ )||X ||expγ . ��
Lemma 19. (Calculus for random variables with stretched exponential moments)
Let X, Y be random variables with stretched exponential moments in the sense that
||X ||expγ < ∞ and ||Y ||expβ < ∞ for some γ, β > 0. Then:

(a) The product XY has stretched exponential moments with exponent α given by
1
α

= 1
γ

+ 1
β
and satisfies the bound

||XY ||expα � C(β, γ )||X ||expγ ||Y ||expβ .

(b) There exists constants c = c(γ ) > 0, C = C(γ ) < ∞, with the following
property: for any K � 0, we have the estimate

P
[|X | � K ||X ||expγ

]
� C exp(−cK γ ).

Proof. For the first assertion, we estimate, for any p � 1, by Hölder’s inequality,
that

1

p1/α
E
[|XY |p]1/p = 1

p1/γ+1/β E
[|XY |p]1/p

� 1

p1/γ+1/β E
[|X |2p]1/2pE[|Y |2p]1/2p

� 21/γ+1/β ||X ||expγ ||Y ||expβ .

This establishes the first assertion.
For the second assertion, we estimate, for any p � 1 and any K > 0,

P
[|X | � K ||X ||expγ ,quasi

]
�

E

[
exp

(( |X |
||X ||expγ ,quasi

)γ )]

exp(K γ )
� 2 exp(−K γ ).

Using the fact that ||X ||expγ ,quasi � C(γ )||X ||expγ , the second assertion follows
upon redefining K . ��

For independent random variables with stretched exponential moments, a stan-
dard argument via an inequality by Burkholder [30] provides a simple concen-
tration estimate. Note that the estimate is not sharp and may be improved, see for
example [26].
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Lemma 20. Let X1, . . . , XM be independent random variables with vanishing ex-
pectation and uniformly bounded stretched exponential moments

||Xm ||expγ0 � b

for some γ0 > 0 and some b > 0. Then the sum

X :=
M∑

m=1

Xm

has uniformly bounded stretched exponential moments

||X ||expγ̃ � C(γ0)
√
Mb

for γ̃ := γ0/(γ0 + 1).

Proof. The discrete-time stochastic process

m �→
m∑

m̃=1

Xm̃

is a square-integrablemartingale.Anestimate byBurkholder [30,Theorem3.2]—
applied for “timestep” m := M—yields for any k ∈ N

E
[|X |2k]1/2k � C · 2kE

[∣∣∣∣
M∑

m=1

|Xm |2
∣∣∣∣
k]1/2k

.

This entails

E
[|X |2k]1/2k � C · 2k√M

(
1

M

M∑
m=1

E
[|Xm |2k]

)1/2k

, (110)

and therefore

E
[|X |2k]1/2k � C · 2k√M

(
1

M

M∑
m=1

(2k)2k/γ0 ||Xm ||2kexpγ0

)1/2k

� C
√
M(2k)1+1/γ0b.

We infer

(2k)−1/γ0−1
E
[|X |2k]1/2k � C

√
Mb

for any k ∈ N, which, by Hölder’s inequality, entails

p−1/γ0−1
E
[|X |p]1/p � C(γ0)

√
Mb

for any p � 1. ��
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