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Abstract. It is well known that many problems in image recovery, signal
processing, and machine learning can be modeled as finding zeros of the
sum of maximal monotone and Lipschitz continuous monotone operators.
Many papers have studied forward-backward splitting methods for find-
ing zeros of the sum of two monotone operators in Hilbert spaces. Most
of the proposed splitting methods in the literature have been proposed
for the sum of maximal monotone and inverse-strongly monotone oper-
ators in Hilbert spaces. In this paper, we consider splitting methods for
finding zeros of the sum of maximal monotone operators and Lipschitz
continuous monotone operators in Banach spaces. We obtain weak and
strong convergence results for the zeros of the sum of maximal monotone
and Lipschitz continuous monotone operators in Banach spaces. Many
already studied problems in the literature can be considered as special
cases of this paper.

Mathematics Subject Classification. 47H05, 47J20, 47J25, 65K15, 90C25.

Keywords. Inclusion problem, 2-uniformly convex Banach space, forward-
backward algorithm, weak convergence, strong convergence.

1. Introduction

Let E be a real Banach space with norm ‖.‖, we denote by E∗ the dual of
E and 〈f, x〉 the value of f ∈ E∗ at x ∈ E. Let B : E → 2E∗

be a maximal
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monotone operator and A : E → E∗ be a Lipschitz continuous monotone
operator. We consider the following inclusion problem: find x ∈ E such that

0 ∈ (A + B)x. (1)

Throughout this paper, we denote the solution set of the inclusion problem
(1) by (A + B)−1(0).

The inclusion problem (1) contains, as special cases, convexly constrained
linear inverse problem, split feasibility problem, convexly constrained mini-
mization problem, fixed point problems, variational inequalities, Nash equi-
librium problem in noncooperative games, and many more. See, for instance,
[11,15,28,33,35,36] and the references therein.

A popular method for solving problem (1) in real Hilbert spaces, is the
well-known forward-backward splitting method introduced by Passty [35] and
Lions and Mercier [28]. The method is formulated as

xn+1 = (I + λnB)−1(I − λnA)xn, λn > 0, (2)

under the condition that Dom(B) ⊂ Dom(A). It was shown, see for example
[11], that weak convergence of (2) requires quite restrictive assumptions on
A and B, such that the inverse of A is strongly monotone or B is Lipschitz
continuous and monotone and the operator A + B is strongly monotone on
Dom(B). Tseng in [48], weakened these assumptions and included an extra
step per each step of (2) (called Tseng’s splitting algorithm) and obtained weak
convergence result in real Hilbert spaces. Quite recently, Gibali and Thong
[18] have obtained strong convergence result by modifying Tseng’s splitting
algorithm in real Hilbert spaces.

In this paper, we extend Tseng’s result [48] to a Banach space. We first
prove the weak convergence of the sequence generated by our proposed method,
assuming that the duality mapping is weakly sequentially continuous. This
weak convergence is a generalization of Theorem 3.4 given in [48]. We next
prove the strong convergence result for problem (1) under some mild assump-
tions and this extends Theorems 1 and 2 in [18] to Banach spaces. Finally, we
apply our convergence results to the composite convex minimization problem
in Banach spaces.

2. Preliminaries

In this section, we define some concepts and state few basic results that we
will use in our subsequent analysis. Let SE be the unit sphere of E, and BE

the closed unit ball of E.
Let ρE : [0,∞) → [0,∞) be the modulus of smoothness of E defined by

ρE(t) := sup
{

1
2
(‖x + y‖ + ‖x − y‖) − 1 : x ∈ SE , ‖y‖ ≤ t

}
.
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A Banach space E is said to be 2-uniformly smooth, if there exists a fixed
constant c > 0 such that ρE(t) ≤ ct2. The space E is said to be smooth if

lim
t→0

‖x + ty‖ − ‖x‖
t

(3)

exists for all x, y ∈ SE . The space E is also said to be uniformly smooth if
(3) converges uniformly in x, y ∈ SE . It is well known that if E is 2-uniformly
smooth, then E is uniformly smooth. It is said to be strictly convex if ‖(x +
y)/2‖ < 1 whenever x, y ∈ SE and x 
= y. It is said to be uniformly convex if
δE(ε) > 0 for all ε ∈ (0, 2], where δE is the modulus of convexity of E defined
by

δE(ε) := inf
{

1 −
∣∣∣
∣∣∣x + y

2

∣∣∣
∣∣∣ | x, y ∈ BE , ‖x − y‖ ≥ ε

}
(4)

for all ε ∈ [0, 2]. The space E is said to be 2-uniformly convex if there exists
c > 0 such that δE(ε) ≥ cε2 for all ε ∈ [0, 2]. It is obvious that every 2-uniformly
convex Banach space is uniformly convex. It is known that all Hilbert spaces
are uniformly smooth and 2-uniformly convex. It is also known that all the
Lebesgue spaces Lp are uniformly smooth and 2-uniformly convex whenever
1 < p ≤ 2 (see [7]).

The normalized duality mapping of E into E∗ is defined by

Jx := {x∗ ∈ E∗ | 〈x∗, x〉 = ‖x∗‖2 = ‖x‖2}
for all x ∈ E. The normalized duality mapping J has the following properties
(see, e.g., [47]):

• if E is reflexive and strictly convex with the strictly convex dual space
E∗, then J is single-valued, one-to-one and onto mapping. In this case,
we can define the single-valued mapping J−1 : E∗ → E and we have
J−1 = J∗, where J∗ is the normalized duality mapping on E∗;

• if E is uniformly smooth, then J is uniformly norm-to-norm continuous
on each bounded subset of E.

Let us recall from [1,13] some examples for the normalized duality mapping J
in the uniformly convex and uniformly smooth Banach spaces �p and Lp, 1 <
p < ∞.

• For �p : Jx = ‖x‖2−p
�p

y ∈ �q, where x = (xj)j≥1 and y = (xj |xj |p−2)j≥1,
1
p + 1

q = 1.
• For Lp : Jx = ‖x‖2−p

Lp
|x|p−2x ∈ Lq, 1

p + 1
q = 1.

Now, we recall some fundamental and useful results.

Lemma 2.1. The space E is 2-uniformly convex if and only if there exists μE ≥
1 such that

‖x + y‖2 + ‖x − y‖2
2

≥ ‖x‖2 + ‖μ−1
E y‖2 (5)

for all x, y ∈ E.
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The minimum value of the set of all μE ≥ 1 satisfying (5) for all x, y ∈ E
is denoted by μ and is called the 2-uniform convexity constant of E; see [5]. It
is obvious that μ = 1 whenever E is a Hilbert space.

Lemma 2.2 ([4]). Let
1
p

+
1
q

= 1, p, q > 1. The space E is q-uniformly smooth

if and only if its dual E∗ is p-uniformly convex.

Lemma 2.3 ([51]). Let E be a real Banach space. The following are equivalent:
(1) E is 2-uniformly smooth
(2) There exists a constant κ > 0 such that ∀ x, y ∈ E,

‖x + y‖2 ≤ ‖x‖2 + 2〈y, J(x)〉 + 2κ2‖y‖2,
where κ is the 2-uniform smoothness constant. In Hilbert spaces, κ = 1√

2
.

Definition 2.4. Let X ⊆ E be a nonempty subset. Then a mapping A : X →
E∗ is called
(a) strongly monotone with modulus γ > 0 on X if

〈Ax − Ay, x − y〉 ≥ γ‖x − y‖2,∀x, y ∈ X.

In this case, we say that A is γ-strongly monotone;
(b) monotone on X if

〈Ax − Ay, x − y〉 ≥ 0,∀x, y ∈ X;

(c) Lipschitz continuous on X if there exists a constant L > 0 such that
‖Ax − Ay‖ ≤ L‖x − y‖ for all x, y ∈ X.

We give some examples of monotone operator in Banach spaces as given
in [2].

Example 2.5. Let G ⊂ R
n be a bounded measurable domain. Define the oper-

ator A : Lp(G) → Lq(G), 1
p + 1

q = 1, p > 1, by the formula

Ay(x) := ϕ(x, |y(x)|p−1)|y(x)|p−2y(x), x ∈ G,

where the function ϕ(x, s) is measurable as a function of x for every s ∈ [0,∞)
and continuous for almost all x ∈ G as a function on s, |ϕ(x, s)| ≤ M for all
s ∈ [0,∞) and for almost all x ∈ G. Observe that the operator A really maps
Lp(G) to Lq(G) because of the inequality |Ay| ≤ M |y|p−1. Then it can be
shown that A is a monotone map on Lp(G).

Let us consider another example from quantum mechanics.

Example 2.6. Define the operator

Au := −a2�u + (g(x) + b)u(x) + u(x)
∫
R3

u2(y)
|x − y|dy,

where � :=
∑3

i=1
∂2

∂x2
i

is the Laplacian in R
3, a and b are constants, g(x) =

g0(x) + g1(x), g0(x) ∈ L∞(R3), g1(x) ∈ L2(R3). Let A := L + B, where the
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operator L is the linear part of A (it is the Schrödinger operator) and B is
defined by the last term. It is known that B is a monotone operator on L2(R3)
(see p. 23 of [2]) and this implies that A : L2(R3) → L2(R3) is also a monotone
operator.

Example 2.7. This example gives one of the perhaps most famous example of
monotone operators, viz. the p-Laplacian −div(|∇u|p−2∇u) : W 1

0 (Lp(Ω)) →(
W 1

0 (Lp(Ω))
)∗

, where u : Ω → R is a real function defined on a domain
Ω ⊂ R

n. The p-Laplacian operator is a monotone operator for 1 < p < ∞ (in
fact, it is strongly monotone for p ≥ 2, and strictly monotone for 1 < p < 2).
The p-Laplacian operator is an extremely important model in many topical
applications and certainly played an important role in the development of the
theory of monotone operators.

Definition 2.8. A multi-valued operator B : E → 2E∗
with graph G(T ) =

{(x, x∗) : x∗ ∈ Tx} is said to be monotone if for any x, y ∈ D(T ), x∗ ∈ Tx and
y∗ ∈ Ty

〈x − y, x∗ − y∗〉 ≥ 0.

A monotone operator B is said to be maximal if B = S whenever S : E → 2E∗

is monotone and G(B) ⊂ G(S).

Let E be a reflexive, strictly convex and smooth Banach space and let
B : E → 2E∗

be a maximal monotone operator. Then for each r > 0 and
x ∈ E, there corresponds a unique element xr ∈ E such that

Jx ∈ Jxr + rBxr.

We define this unique element xr, the resolvent of B, denoted by JB
r x. In other

words, JB
r = (J + rB)−1J for all r > 0. It is easy to show that B−10 = F (JB

r )
for all r > 0, where F (JB

r ) denotes the set of all fixed points of JB
r . We can

also define, for each r > 0, the Yosida approximation of B by Ar = J−JJB
r

r .
For more details, see, for instance [6].

Suppose E is a smooth Banach space. We introduce the functional studied
in [1,25,38]: φ : E × E → R defined by:

φ(x, y) := ‖x‖2 − 2〈x, Jy〉 + ‖y‖2. (6)

Clearly,

φ(x, y) ≥ (‖x‖ − ‖y‖)2 ≥ 0.

The following lemma gives some identities of functional φ defined in (6).

Lemma 2.9 (See [1,3]). Let E be a real uniformly convex, smooth Banach
space. Then, the following identities hold:

(i) φ(x, y) = φ(x, z) + φ(z, y) + 2〈x − z, Jz − Jy〉, ∀x, y, z ∈ E.
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(ii) φ(x, y) + φ(y, x) = 2〈x − y, Jx − Jy〉, ∀x, y ∈ E.

Let C ⊆ E be a nonempty, closed and convex subset of a real, uniformly convex
Banach space E. Let us introduce the functional V (x, y) : E × E∗ → R by the
formula:

V (x, y) := ‖x‖2E − 2〈x, y〉 + ‖y‖2E∗ . (7)
Then, it is easy to see that

V (y, x) = φ(y, J−1x), ∀x ∈ E∗, y ∈ E.

In the next lemma, we describe the property of the operator V (., .) defined in
(7).

Lemma 2.10 ([1]).

V (x, x∗) + 2〈J−1x∗ − x, y∗〉 ≤ V (x, x∗ + y∗), ∀x ∈ E, x∗, y∗ ∈ E∗.

The lemma that follows is stated and proven in [3, Lemma 2.2].

Lemma 2.11. Suppose that E is 2-uniformly convex Banach space. Then, there
exists μ ≥ 1 such that

1
μ

‖x − y‖2 ≤ φ(x, y) ∀x, y ∈ E.

The following lemma was given in [21].

Lemma 2.12. Let S be a nonempty, closed convex subset of a uniformly convex,
smooth Banach space E. Let {xn} be a sequence in E. Suppose that, for all
u ∈ S,

φ(u, xn+1) ≤ φ(u, xn), ∀n ≥ 1.

Then {ΠS(xn)} is a Cauchy sequence.

The following property of φ(., .) was given in [1, Theorem 7.5] (see also
[16,17]).

Lemma 2.13. Let E be a uniformly smooth Banach space which is also uni-
formly convex. If ‖x‖ ≤ c, ‖y‖ ≤ c, then

2L−1
1 c2δE

(‖x − y‖
4c

)
≤ φ(y, x) ≤ 4L−1

1 c2ρE

(4‖x − y‖
c

)
,

where L1(1 < L1 < 3.18) is the Figiel’s constant.

We next recall some existing results from the literature to facilitate our
proof of strong convergence. The first is taken from [31].

Lemma 2.14. Let {an} be sequence of real numbers such that there exists a
subsequence {ni} of {n} such that ani

< ani+1, for all i ∈ N. Then there exists
a nondecreasing sequence {mk} ⊂ N such that mk → ∞ and the following
properties are satisfied by all (sufficiently large) numbers k ∈ N

amk
≤ amk+1 and ak ≤ amk+1.

In fact, mk = max{j ≤ k : aj < aj+1}.
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Lemma 2.15 ([52]). Let {an} be a sequence of nonnegative real numbers satis-
fying the following relation:

an+1 ≤ (1 − αn)an + αnσn + γn, n ≥ 1,

where

(a) {αn} ⊂ [0, 1],
∑∞

n=1 αn = ∞;
(b) lim sup σn ≤ 0;
(c) γn ≥ 0 (n ≥ 1),

∑∞
n=1 γn < ∞.

Then, an → 0 as n → ∞.

The following lemma is needed in our proof to show that the weak limit
point is a solution to the inclusion problem (1).

Lemma 2.16 ([6]). Let B : E → 2E∗
be a maximal monotone mapping and

A : E → E∗ be a Lipschitz continuous and monotone mapping. Then the
mapping A + B is a maximal monotone mapping.

The following result gives an equivalence of fixed point problem and prob-
lem (1).

Lemma 2.17. Let B : E → 2E∗
be a maximal monotone mapping and A : E →

E∗ be a mapping. Define a mapping

Tλx := JB
λ oJ−1(J − λA)(x), x ∈ E, λ > 0.

Then F (Tλ) = (A + B)−1(0), where F (Tλ) denotes the set of all fixed points
of Tλ.

Proof. Let x ∈ F (Tλ). Then

x ∈ F (Tλ) ⇔ x = Tλx = JB
λ oJ−1(J − λA)(x)

⇔ x = (J + λB)−1JoJ−1(Jx − λAx)
⇔ Jx − λAx ∈ Jx + λBx

⇔ 0 ∈ λ(Ax + Bx)
⇔ 0 ∈ Ax + Bx

⇔ x ∈ (A + B)−1(0).

�

We shall adopt the following notation in this paper:

. xn → x means that xn → x strongly.

. xn ⇀ x means that xn → x weakly.
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3. Approximation Method

In this section, we propose our method and state certain conditions under
which we obtain the desired convergence for our proposed methods. First, we
give the conditions governing the cost function and the sequence of parameters
below.

Assumption 3.1. (a) Let E be a real 2-uniformly convex Banach space which
is also uniformly smooth.

(b) Let B : E → 2E∗
be a maximal monotone operator; A : E → E∗ a

monotone and L-Lipschitz continuous.
(c) The solution set (A + B)−1(0) of the inclusion problem (1) is nonempty.

Throughout this paper, we assume that the duality mapping J and the re-
solvent JB

λn
:= (J + λnB)−1J of maximal monotone operator B are easy to

compute.

Assumption 3.2. Suppose the sequence {λn}∞
n=1 of step-sizes satisfies the fol-

lowing condition:

0 < a ≤ λn ≤ b <
1√

2μκL

where
μ is the 2-uniform convexity constant of E;
κ is the 2-uniform smoothness constant of E∗;
L is the Lipschitz constant of A.

Assumption 3.2 is satisfied, e.g., for λn = a + n
n+1

(
1√

2μκL
− a

)
for all n ≥ 1.

We now give our proposed method below.

Algorithm 3.3.
Step 0 Let Assumptions 3.1 and 3.2 hold. Let x1 ∈ E be a given starting point.
Set n := 1.
Step 1 Compute yn := JB

λn
oJ−1(Jxn − λnAxn). If xn − yn = 0: STOP.

Step 2 Compute

xn+1 = J−1[Jyn − λn(Ayn − Axn)]. (8)

Step 3 Set n ← n + 1, and go to Step 1.

We observe that in real Hilbert spaces, the duality mapping J becomes the
identity mapping and our Algorithm 3.3 reduces to the algorithm proposed by
Tseng in [48].

Note that both sequences {yn} and {xn} are in E. Furthermore, by
Lemma 2.17, we have that if xn = yn, then xn is a solution of problem (1).

To the best of our knowledge, the proposed Algorithm 3.3 is the only
known algorithm which can solve monotone inclusion problem (1) without
the inverse-strongly monotonicity of A. We consider some various cases of
Algorithm 3.3.
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• When A = 0 in Algorithm 3.3, then Algorithm 3.3 reduces to the methods
proposed in [6,20,24,26–28,32,35,38,39,43]. In this case, the assumption
that E is 2-uniformly convex Banach space and uniformly smooth is not
needed. In fact, the convergence can be obtained in reflexive Banach
spaces in this case. However, we do not know if the convergence of Algo-
rithm 3.3 can be obtained in a more general reflexive Banach space for
problem (1).

• When B = NC , the normal cone for closed and convex subset C of E
(NC(x) := {x∗ ∈ E∗ : 〈y − x, x∗〉 ≤ 0,∀y ∈ C}), then the inclusion
problem (1) reduces to a variational inequality problem (i.e., find x ∈
C : 〈Ax, y − x〉 ≥ 0, ∀y ∈ C). It is well known that NC = ∂δC , where
δC is the indicator function of C at x, defined by δC(x) = 0 if x ∈ C
and δC(x) = +∞ if x /∈ C and ∂(.) is the subdifferential, defined by
∂f(x) := {x∗ ∈ E∗ : f(y) ≥ f(x) + 〈x∗, y − x〉, ∀y ∈ E} for a proper,
lower semicontinuous convex functional f on E. Using the theorem of
Rockafellar in [40,41], NC = ∂δC is maximal monotone. Hence,

Jz ∈ J(JB
λn

) + λn∂δC(JB
λn

), ∀z ∈ E.

This implies that

0 ∈ ∂δC(JB
λn

) +
1
λn

J(JB
λn

) − 1
λn

Jz = ∂

(
δC +

1
2λn

‖.‖2 − 1
λn

Jz

)
JB

λn
.

Therefore,

JB
λn

(z) = argmin
y∈E

{
δC(y) +

1
2λn

‖y‖2 − 1
λn

〈y, Jz〉
}

and yn in Algorithm 3.3 reduces to

yn = argmin
y∈E

{
δC(y) +

1
2λn

‖y‖2 − 1
λn

〈y, Jxn − λnAxn〉
}

.

However, in implementing our proposed Algorithm 3.3, we assume that the
resolvent (J + λnB)−1J is easy to compute and the duality mapping J is
easily computable as well. On the other hand, one has to obtain the Lipschitz
constant, L, of the monotone mapping A (or an estimate of it). In a case when
the Lipschitz constant cannot be accurately estimated or overestimated, this
might result in too small step-sizes λn. This is a drawback of our proposed
Algorithm 3.3. One way to overcome this obstacle is to introduce linesearch in
our Algorithm 3.3. This case will be considered in Algorithm 3.8.

3.1. Convergence Analysis

In this section, we give the convergence analysis of the proposed Algorithm 3.3.
First, we establish the boundedness of the sequence of iterates generated by
Algorithm 3.3.
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Lemma 3.4. Let Assumptions 3.1 and 3.2 hold. Assume that x∗ ∈ (A+B)−1(0)
and let the sequence {xn}∞

n=1 be generated by Algorithm 3.3. Then {xn} is
bounded.

Proof. By the Lyaponuv functional φ, we have

φ(x∗, xn+1) = φ(x∗, J−1(Jyn − λn(Ayn − Axn)))

= ‖x∗‖2 − 2〈x∗, JJ−1(Jyn − λn(Ayn − Axn))〉
+ ‖J−1(Jyn − λn(Ayn − Axn))‖2

= ‖x∗‖2 − 2〈x∗, Jyn − λn(Ayn − Axn)〉
+ ‖(Jyn − λn(Ayn − Axn))‖2

= ‖x∗‖2 − 2〈x∗, Jyn〉 + 2λn〈x∗, Ayn − Axn〉
+ ‖Jyn − λn(Ayn − Axn)‖2. (9)

Using Lemma 2.2, we get that E∗ is 2-uniformly smooth and so by Lemma 2.3,
we get

‖Jyn − λn(Ayn − Axn)‖2 ≤‖Jyn‖2 − 2λn〈Ayn − Axn, yn〉
+ 2κ2‖λn(Ayn − Axn)‖2. (10)

Substituting (10) into (9), we get

φ(x∗, xn+1) ≤ ‖Jyn‖2 − 2λn〈Ayn − Axn, yn〉 + 2κ2‖λn(Ayn − Axn)‖2
+ ‖x∗‖2 − 2〈x∗, Jyn〉 + 2λn〈x∗, Ayn − Axn〉

= ‖x∗‖2 − 2〈x∗, Jyn〉 + ‖yn‖2 − 2λn〈Ayn − Axn, yn − x∗〉
+ 2κ2‖λn(Ayn − Axn)‖2

= φ(x∗, yn) − 2λn〈Ayn − Axn, yn − x∗〉 + 2κ2‖λn(Ayn − Axn)‖2.
(11)

Using Lemma 2.9 (i), we get

φ(x∗, yn) =φ(x∗, xn) + φ(xn, yn) + 2〈x∗ − xn, Jxn − Jyn〉
=φ(x∗, xn) + φ(xn, yn) + 2〈xn − x∗, Jyn − Jxn〉. (12)

Putting (12) into (11), we get

φ(x∗, xn+1) = φ(x∗, xn) + φ(xn, yn) + 2〈xn − x∗, Jyn − Jxn〉
− 2λn〈Ayn − Axn, yn − x∗〉 + 2κ2‖λn(Ayn − Axn)‖2

= φ(x∗, xn) + φ(xn, yn) − 2〈yn − xn, Jyn − Jxn〉
+ 2〈yn − x∗, Jyn − Jxn〉
− 2λn〈Ayn − Axn, yn − x∗〉 + 2κ2‖λn(Ayn − Axn)‖2. (13)

Using Lemma 2.9 (ii), we get

− φ(yn, xn) + 2〈yn − xn, Jyn − Jxn〉 = φ(xn, yn). (14)
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Substituting (14) into (13), we have

φ(x∗, xn+1) ≤φ(x∗, xn) − φ(yn, xn) + 2〈yn − x∗, Jyn − Jxn〉
− 2λn〈Ayn − Axn, yn − x∗〉
+ 2κ2‖λn(Ayn − Axn)‖2

=φ(x∗, xn) − φ(yn, xn) + 2κ2‖λn(Ayn − Axn)‖2
− 2〈Jxn − Jyn − λn(Axn − Ayn), yn − x∗〉. (15)

Since yn = (J + λnB)−1JoJ−1(Jxn − λnAxn), we have Jxn − λnAxn ∈ (J +
λnB)yn. Using the fact that B is maximal monotone, then there exists vn ∈
Byn such that Jxn − λnAxn = Jyn + λnvn. Therefore

vn =
1
λn

(Jxn − Jyn − λnAxn). (16)

On the other hand, we know that 0 ∈ (Ax∗ +Bx∗) and Ayn +vn ∈ (A+B)yn.
Since A + B is maximal monotone, we obtain

〈Ayn + vn, yn − x∗〉 ≥ 0. (17)

Putting (16) into (17), we get

〈Jxn − Jyn − λn(Axn − Ayn), yn − x∗〉 ≥ 0. (18)

Now, using (18) in (15), we get

φ(x∗, xn+1) ≤φ(x∗, xn) − φ(yn, xn) + 2κ2‖λn(Ayn − Axn)‖2
≤φ(x∗, xn) − φ(yn, xn) + 2κ2λ2

nL2μφ(yn, xn)

=φ(x∗, xn) − (1 − 2κ2λ2
nL2μ)φ(yn, xn). (19)

Using Assumption 3.2, we get

φ(x∗, xn+1) ≤ φ(x∗, xn), (20)

which shows that lim φ(x∗, xn) exists and hence, {φ(x∗, xn)} is bounded. There-
fore {xn} is bounded. �

Definition 3.5. The duality mapping J is weakly sequentially continuous if, for
any sequence {xn} ⊂ E such that xn ⇀ x as n → ∞, then Jxn ⇀∗ Jx as
n → ∞. It is known that the normalized duality map on �p spaces, 1 < p < ∞,
is weakly sequentially continuous.

We now obtain the weak convergence result of Algorithm 3.3 in the next
theorem.

Theorem 3.6. Let Assumptions 3.1 and 3.2 hold. Assume that J is weakly se-
quentially continuous on E and let the sequence {xn}∞

n=1 be generated by Al-
gorithm 3.3. Then {xn} converges weakly to z ∈ (A + B)−1(0). Moreover,
z := lim

n→∞Π(A+B)−1(0)(xn).
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Proof. Let x∗ ∈ (A + B)−1(0). From (19), we have

0 < [1 − 2κ2b2L2μ]φ(yn, xn) ≤ [1 − 2κ2λ2
nL2μ]φ(yn, xn)

≤ φ(x∗, xn) − φ(x∗, xn+1). (21)

Since limn→∞ φ(x∗, xn) exists, we obtain from (21) that

lim
n→∞φ(yn, xn) = 0.

Applying Lemma 2.11, we get

lim
n→∞‖xn − yn‖ = 0.

Since E is uniformly smooth, the duality mapping J is uniformly norm-to-norm
continuous on each bounded subset of E. Hence, we have

lim
n→∞‖Jxn − Jyn‖ = 0.

Since {xn} is bounded by Lemma 3.4, there exists a subsequence {xni
} of {xn}

and z ∈ C such that xni
⇀ z. Since limn→∞ ‖xn − yn‖ = 0, it follows that

xni+1 ⇀ z. We now show that z ∈ (A + B)−1(0).
Suppose (v, u) ∈ Graph(A + B). This implies that Ju − Av ∈ Bv. Fur-

thermore, we obtain from yni
= (J + λni

B)−1JoJ−1(Jxni
− λni

Axni
) that

(J − λni
A)xni

∈ (J + λni
B)yni

,

and thus
1

λni

(Jxni
− Jyni

− λni
Axni

) ∈ Byni
.

Using the fact that B is maximal monotone, we obtain〈
v − yni

, Ju − Av − 1
λni

(Jxni
− Jyni

− λni
Axni

)
〉

≥ 0.

Therefore,

〈v − yni
, Ju〉 ≥

〈
v − yni

, Av +
1

λni

(Jxni
− Jyni

− λni
Axni

)
〉

= 〈v − yni
, Av − Axni

〉 +
〈

v − yni
,

1
λni

(Jxni
− Jyni

)
〉

= 〈v − yni
, Av − Ayni

〉 + 〈v − yni
, Ayni

− Axni
〉

+
〈

v − yni
,

1
λni

(Jxni
− Jyni

)
〉

≥ 〈v − yni
, Ayni

− Axni
〉 +

〈
v − yni

,
1

λni

(Jxni
− Jyni

)
〉

.

By the fact that limn→∞ ‖xn − yn‖ = 0 and A is Lipschitz continuous, we
obtain lim n → ∞‖Axn − Ayn‖ = 0. Consequently, we obtain that

〈v − z, Ju〉 ≥ 0.
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By the maximal monotonicity of A + B, we have 0 ∈ (A + B)z. Hence,
z ∈ (A + B)−1(0).

Let un := Π(A+B)−1(0)(xn). By (20) and Lemma 2.12, we have that {un}
is a Cauchy sequence. Since (A+B)−1(0) is closed, we have that {un} converges
strongly to w ∈ (A + B)−1(0). By the uniform smoothness of E, we also have
limn→∞ ‖Jun − Jw‖ = 0. We then show that z = w. Using Lemma 2.10 (i),
un = Π(A+B)−1(0)(xn) and z ∈ (A + B)−1(0), we have

〈z − un, Jun − Jxn〉 ≥ 0, ∀n ≥ 1.

Therefore,

〈z − w, Jxn − Jun〉 = 〈z − un, Jxn − Jun〉 + 〈un − w, Jxn − Jun〉
≤ ‖un − w‖‖Jxn − Jun‖ ≤ M‖un − w‖, ∀n ≥ 1,

where M := supn≥1 ‖Jxn − Jun‖. Using n = ni in limn→∞ ‖un − w‖ =
0, limn→∞ ‖Jun − Jw‖ = 0 and the weakly sequential continuity of J , we
obtain

〈z − w, Jz − Jw〉 ≤ 0

as i → ∞. Therefore, 〈z −w, Jz −Jw〉 = 0. Since E is strictly convex, we have
z = w. Therefore, the sequence {xn} converges weakly to z = limn→∞ Π(A +
B)−1(0)(xn). This completes the proof. �

It is easy to see from Algorithm 3.3 above and Lemma 2.17 that xn = yn

if and only if xn ∈ (A + B)−1(0). Also, we have already established that
‖xn − yn‖ → 0 holds when (A + B)−1(0) 
= ∅. Therefore, using the ‖xn − yn‖
as a measure of convergence rate, we obtain the following non asymptotic rate
of convergence of our proposed Algorithm 3.3.

Theorem 3.7. Let Assumptions 3.1 and 3.2 hold. Let the sequence {xn}∞
n=1 be

generated by Algorithm 3.3. Then min1≤k≤n ‖xk − yk‖ = O(1/
√

n).

Proof. We obtain from (19) that

φ(x∗, xn+1) ≤ φ(x∗, xn) − (1 − 2κ2λ2
nL2μ)φ(yn, xn).

Hence, we have from Lemma 2.11 that

1
μ

(1 − 2κ2λ2
nL2μ)‖xn − yn‖2 ≤ (1 − 2κ2λ2

nL2μ)φ(yn, xn)

≤ φ(x∗, xn) − φ(x∗, xn+1).

By Assumption 3.2, we get
n∑

k=1

‖xk − yk‖2 ≤ μ

(1 − 2κ2λ2
nL2μ)

φ(x∗, x1).
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Therefore,

min
1≤k≤n

‖xk − yk‖2 ≤ μ

n(1 − 2κ2λ2
nL2μ)

φ(x∗, x1).

This implies that

min
1≤k≤n

‖xk − yk‖ = O(1/
√

n).

�

Next, we propose another iterative method such that the sequence of
step-sizes does not depend on the Lipschitz constant of monotone operator A
in problem (1).

Algorithm 3.8.
Step 0 Let Assumption 3.1 hold. Given γ > 0, l ∈ (0, 1) and θ ∈ (0, 1√

2μκ
). Let

x1 ∈ E be a given starting point. Set n := 1.

Step 1 Compute yn := JB
λn

J−1(Jxn − λnAxn), where λn is chosen to be the
largest

λ ∈ {γ, γl, γl2, . . .}
satisfying

λ‖Axn − Ayn‖ ≤ θ‖xn − yn‖. (22)

If xn − yn = 0: STOP.
Step 2 Compute

xn+1 = J−1[Jyn − λn(Ayn − Axn)]. (23)

Step 3 Set n ← n + 1, and go to Step 1.

Before we establish the weak convergence analysis of Algorithm 3.8, we
first show that the line search rule given in (22) is well-defined in this lemma.

Lemma 3.9. The line search rule (22) in Algorithm 3.8 is well-defined and

min
{

γ,
θl

L

}
≤ λn ≤ γ.

Proof. Using the Lipschitz continuity of A on E, we obtain

‖Axn − A(JB
λn

J−1(Jxn − λnAxn))‖ ≤ L‖xn − JB
λn

J−1(Jxn − λnAxn)‖.

This implies that

θ

L
‖Axn − A(JB

λn
J−1(Jxn − λnAxn))‖ ≤ θ‖xn − JB

λn
J−1(Jxn − λnAxn)‖.

Therefore, (22) holds whenever λn ≤ θ
L . Hence, λn is well-defined.
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From the way λn is chosen, we can clearly see that λn ≤ γ. Now, suppose
λn = γ, then (22) is satisfied and the lemma is proved. Suppose λn < γ. Then
λn

l violates (22) and we get

L‖xn − JB
λn

J−1(Jxn − λnAxn)‖ ≥ ‖Axn − A(JB
λn

J−1(Jxn − λnAxn))‖
>

θ
λn

l

‖xn − JB
λn

J−1(Jxn − λnAxn)‖.

This implies that λn > θl
L . This completes the proof. �

We now give a weak convergence result using Algorithm 3.8 in the next
theorem.

Theorem 3.10. Let Assumptions 3.1. Assume that J is weakly sequentially con-
tinuous on E and let the sequence {xn}∞

n=1 be generated by Algorithm 3.8. Then
{xn} converges weakly to z ∈ (A + B)−1(0). Moreover, z :=
limn→∞ Π(A+B)−1(0)(xn).

Proof. Using the same line of arguments as in the proof of Lemma 3.4, we can
obtain from (19) that

φ(x∗, xn+1) ≤ φ(x∗, xn) − φ(yn, xn) + 2κ2‖λn(Ayn − Axn)‖2
≤ φ(x∗, xn) − φ(yn, xn) + 2κ2θ2‖yn − xn‖2
≤ φ(x∗, xn) − φ(yn, xn) + 2κ2θ2μφ(yn, xn)
= φ(x∗, xn) − (1 − 2κ2θ2μ)φ(yn, xn). (24)

Since θ2 < 1
2κ2μ , we get

φ(x∗, xn+1) ≤ φ(x∗, xn), (25)

which shows that lim φ(x∗, xn) exists and hence, {φ(x∗, xn)} is bounded. There-
fore {xn} is bounded. The rest of the proof follows by using the same arguments
as in the proof of Theorem 3.6. The completes the proof. �

Finally, we give a modification of Algorithm 3.3 and consequently obtain
the strong convergence analysis below.

Algorithm 3.11.
Step 0 Let Assumptions 3.1 and 3.2 hold. Suppose that {αn} is a real sequence
in (0,1) and let x1 ∈ E be a given starting point. Set n := 1.
Step 1 Compute yn := JB

λn
J−1(Jxn − λnAxn). If xn − yn = 0: STOP.

Step 2 Compute

wn = J−1[Jyn − λn(Ayn − Axn)] (26)

and

xn+1 = J−1[αnJx1 + (1 − αn)Jwn]. (27)

Step 3: Set n ← n + 1, and go to Step 1.



  138 Page 16 of 24 Y. Shehu Results Math

Theorem 3.12. Let Assumptions 3.1 and 3.2 hold. Suppose that limn→∞ αn =
0 and

∑∞
n=1 αn = ∞. Let the sequence {xn}∞

n=1 be generated by Algorithm 3.11.
Then {xn} converges strongly to z = Π(A+B)−1(0)(x1).

Proof. By Lemma 3.4, we have that {xn} is bounded. Furthermore, using
Lemma 2.10 with (26) and (27), we have

φ(z, xn+1) = φ(z, J−1(αnJx1 + (1 − αn)Jwn))
= V (z, αnJx1 + (1 − αn)Jwn))
≤ V (z, αnJx1 + (1 − αn)Jwn − αn(Jx1 − Jz))

+2αn〈Jx1 − Jz, xn+1 − z〉
= V (z, αnJz + (1 − αn)Jwn) + 2αn〈Jx1 − Jz, xn+1 − z〉
≤ αnV (z, Jz) + (1 − αn)V (z, Jwn) + 2αn〈Jx1 − Jz, xn+1 − z〉
= (1 − αn)V (z, Jwn) + 2αn〈Jx1 − Jz, xn+1 − z〉
≤ (1 − αn)V (z, Jxn) + 2αn〈Jx1 − Jz, xn+1 − z〉
= (1 − αn)φ(z, xn) + 2αn〈Jx1 − Jz, xn+1 − z〉. (28)

Set an := φ(xn, z) and divide the rest of the proof into two parts as follows.
Case 1 Suppose that there exists n0 ∈ N such that {φ(z, xn)}∞

n=n0
is

non-increasing. Then {φ(z, xn)}∞
n=1 converges, and we therefore obtain

an − an+1 → 0, n → ∞. (29)

Using (20) in (27), we have

V (z, Jxn+1) ≤ αnV (z, Jx1) + (1 − αn)V (z, Jwn)
≤ αnV (Jx1, z) + (1 − αn)V (Jxn, z)

−(1 − αn)[1 − 2κ2θ2μ]V (yn, Jxn). (30)

This implies from (30) that

(1 − αn)[1 − 2κ2θ2μ]V (yn, Jxn) ≤ V (Jxn, z) − V (Jxn+1, z) + αnM1,

for some M1 > 0. Thus,

(1 − αn)[1 − 2κ2θ2μ]φ(yn, xn) → 0, n → ∞.

Hence,

φ(yn, xn) → 0, n → ∞.

Consequently, ‖xn − yn‖ → 0, n → ∞. By (26), we get

‖Jwn − Jyn‖ = λn‖Ayn − Axn‖
≤ b‖Ayn − Axn‖ → 0, n → ∞.

Therefore, ‖wn − yn‖ → 0, n → ∞. Moreover, we obtain from (27) that

‖Jxn+1 − Jwn‖ = αn‖Jx1 − Jwn‖ ≤ αnM2 → 0, n → ∞, (31)
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for some M2 > 0. Since J−1 is norm-to-norm uniformly continuous on bounded
subsets of E∗, we have that

‖xn+1 − wn‖ → 0, n → ∞.

Now,

‖xn+1 − xn‖ ≤ ‖xn+1 − wn‖ + ‖wn − yn‖ + ‖yn − xn‖ → 0, n → ∞.

Since {xn} is a bounded sunset of E, we can choose a subsequence {xnk
} of

{xn} such that xnk
⇀ p ∈ E and

lim sup
n→∞

〈Jx1 − Jz, xn − z〉 ≤ 2 lim
k→∞

〈Jx1 − Jz, xnk
− z〉.

Since z = ΠCx1, we get

lim sup
n→∞

〈Jx1 − Jz, xn − z〉 ≤ 2 lim
k→∞

〈Jx1 − Jz, xnk
− z〉

= 2〈Jx1 − Jz, p − z〉 ≤ 0. (32)

This implies that

lim sup
n→∞

〈Jx1 − Jz, xn − z〉 ≤ 0.

Using Lemma 2.15 and (32) in (28), we obtain limn→∞ φ(z, xn) = 0. Thus,
xn → z, n → ∞.

Case 2 Suppose that there exists a subsequence {xnj
} of {xn} such that

φ(z, xmj
) < φ(z, xmj+1), ∀j ∈ N.

From Lemma 2.14, there exists a nondecreasing sequence {nk} of N such that
limk→∞ lim nk = ∞ and the following inequalities hold for all k ∈ N:

φ(z, xnk
) ≤ φ(z, xnk+1) and φ(z, xk) ≤ φ(z, xnk+1). (33)

Observe that

φ(z, xnk
) ≤ φ(z, xnk+1) ≤ αnk

φ(z, x1) + (1 − αnk
)φ(z, wnk

)
≤ αnk

φ(z, x1) + (1 − αnk
)φ(z, xnk

).

Since limn→∞ αn = 0, we get

φ(z, xnk+1) − φ(z, xnk
) → 0, k → ∞.

Since {xnk
} is bounded, there exists a subsequence of {xnk

} still denoted by
{xnk

} which converges weakly to p ∈ E. Repeating the same arguments as in
Case 1 above, we can show that

‖xnk
− ynk

‖ → 0, k → ∞, ‖ynk
− wnk

‖ → 0, k → ∞ and ‖xnk+1 − xnk
‖

→ 0, k → ∞.

Similarly, we can conclude that

lim sup
k→∞

〈xnk+1 − z, Jx1 − Jz〉 = lim sup
k→∞

〈xnk
− z, Jx1 − Jz〉 ≤ 0. (34)
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It then follows from (28) and (33) that

φ(z, xnk+1) ≤ (1 − αnk
)φ(z, xnk

) + αnk
〈xnk+1 − z, Jx1 − Jz〉

≤ (1 − αnk
)φ(z, xnk+1) + αnk

〈xnk+1 − z, Jx1 − Jz〉.
Since αnk

> 0, we get

φ(z, xnk
) ≤ φ(z, xnk+1) ≤ 〈xnk+1 − z, Jx1 − Jz〉.

By (34), we have that

lim sup
k→∞

φ(z, xnk
) ≤ lim sup

k→∞
〈xnk+1 − z, Jx1 − Jz〉.

Therefore, xk → z, k → ∞. This concludes the proof. �

Remark 3.13. Our proposed Algorithms 3.3 and 3.11 are more applicable than
the proposed methods in [10,12,23,29,30,42,44–46,49] even in Hilbert spaces.
The methods proposed in [12,23,29,30,42,44–46,49] are only applicable for
solving problem (1) in the case when B is maximal monotone and A is inverse-
strongly monotone (co-coercive) operator in real Hilbert spaces. Our Algo-
rithms 3.3 and 3.11 are applicable for the case when B is maximal monotone
and A is monotone operator even in 2-uniformly convex and uniformly smooth
Banach spaces (e.g., Lp, 1 < p ≤ 2). Our results in this paper also complement
the results of [14,22].

4. Application

In this section, we apply our results to the minimization of composite objective
function of the type

min
x∈E

f(x) + g(x), (35)

where f : E → R ∪ {+∞} is proper, convex and lower semi-continuous func-
tional and g : E → R is convex functional.

Many optimization problems from image processing [9], statistical regres-
sion, machine learning (see, e.g., [50] and the references contained therein),
etc can be adapted into the form of (35). In this setting, we assume that g
represents the “smooth part” of the functional where f is assumed to be non-
smooth. Specifically, we assume that g is Gâteaux-differentiable with derivative
∇g which is Lipschitz-continuous with constant L. Then by [37, Theorem 3.13],
we have

〈∇g(x) − ∇g(y), x − y〉 ≥ 1
L

‖∇g(x) − ∇g(y)‖2, ∀x, y ∈ E.

Therefore, ∇g is monotone and Lipschitz continuous with Lipschitz constant
L. Observe that problem (35) is equivalent to find ∈ E such that

0 ∈ ∂f(x) + ∇g(x). (36)
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Then problem (36) is a special case of inclusion problem (1) with A := ∇g
and B := ∂f .

Next, we obtain the resolvent of ∂f . Let us fix r > 0 and z ∈ E. Suppose
J∂f

r is the resolvent of ∂f . Then

Jz ∈ J(J∂f
r ) + r∂f(J∂f

r ).

Hence we obtain

0 ∈ ∂f(J∂f
r ) +

1
r
J(J∂f

r ) − 1
r
Jz = ∂

(
f +

1
2r

‖.‖2 − 1
r
Jz

)
J∂f

r .

Therefore,

J∂f
r (z) = argmin

y∈E

{
f(y) +

1
2r

‖y‖2 − 1
r
〈y, Jz〉

}
.

We can then write yn in Algorithm 3.3 as

yn = argmin
y∈E

{
f(y) +

1
2λn

‖y‖2 − 1
λn

〈y, Jxn − λn∇g(xn)〉
}

.

We obtain the following weak and strong convergence results for problem (35).

Theorem 4.1. Let E be a real 2-uniformly convex Banach space which is also
uniformly smooth and the solution set S of problem (35) be nonempty. Suppose

{λn}∞
n=1 satisfies the condition 0 < a ≤ λn ≤ b <

1√
2μκL

. Assume that J is

weakly sequentially continuous on E and let the sequence {xn}∞
n=1 be generated

by ⎧⎪⎨
⎪⎩

x1 ∈ E,

yn = argmin
y∈E

{
f(y) + 1

2λn
‖y‖2 − 1

λn
〈y, Jxn − λn∇g(xn)〉

}

xn+1 = J−1[Jyn − λn(∇g(yn) − ∇g(xn))], n ≥ 1.

(37)

Then {xn} converges weakly to z ∈ S. Moreover, z := limn→∞ ΠS(xn).

Theorem 4.2. Let E be a real 2-uniformly convex Banach space which is also
uniformly smooth and the solution set S of problem (35) be nonempty. Suppose

{λn}∞
n=1 satisfies the condition 0 < a ≤ λn ≤ b <

1√
2μκL

. Suppose that {αn}
is a real sequence in (0, 1) with limn→∞ αn = 0 and

∑∞
n=1 αn = ∞. Let the

sequence {xn}∞
n=1 be generated by⎧⎪⎪⎪⎨

⎪⎪⎪⎩

x1 ∈ E,

yn = argmin
y∈E

{
f(y) + 1

2λn
‖y‖2 − 1

λn
〈y, Jxn − λn∇g(xn)〉

}

wn = J−1[Jyn − λn(∇g(yn) − ∇g(xn))],
xn+1 = J−1[αnJx1 + (1 − αn)Jwn], n ≥ 1.

(38)

Then {xn} converges strongly to z = ΠS(x1).
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Remark 4.3. • Our result in Theorems 4.1 and 4.2 complement the results
of Bredies [9,19]. Consequently, our results in Sect. 3.1 extend the results
of Bredies [9,19] to inclusion problem (1). In particular, we do not assume
boundedness of {xn} (which was imposed on the results of [9,19]) in our
results. Therefore, our result improves on the results of [9,19].

• The minimization problem (35) in this section extends the problem stud-
ied in [8,15,34,50] and other related papers from Hilbert spaces to Banach
spaces.

5. Conclusion

We study the Tseng-type algorithm for finding a solution to monotone inclu-
sion problem involving a sum of maximal monotone and a Lipschitz continuous
monotone mapping in 2-uniformly convex Banach space which is also uniformly
smooth. We prove both weak and strong convergence of sequences of iterates
to the solution of the inclusion problem under some appropriate conditions.
Many results on monotone inclusion problems with single maximal monotone
operator can be considered as special cases of the problem studied in this pa-
per. As far as we know, this is the first time an inclusion problem involving
sum of maximal monotone and Lipschitz continuous monotone operators will
be studied in Banach spaces. Therefore, the results of this paper open up many
forthcoming results regarding the inclusion problem studied in this paper. Our
next project involves the following.

• The results in this paper exclude Lp spaces with p > 2. Therefore, exten-
sion of the results in this paper to a more general reflexive Banach space
will be desired.

• How to effectively compute the duality mapping J and the resolvent of
maximal monotone mapping B during implementations of our proposed
algorithms will be considered further.

• The numerical implementations of problem (1) arising from signal pro-
cessing, image reconstruction, etc will be studied;

• Other ways of implementation of the step-sizes λn to give faster conver-
gence of the proposed methods in this paper will be given.
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