
Simple Verifiable Delay Functions
Krzysztof Pietrzak1

Institute of Science and Technology Austria, Austria
pietrzak@ist.ac.at

Abstract
We construct a verifiable delay function (VDF) by showing how the Rivest-Shamir-Wagner time-
lock puzzle can be made publicly verifiable.

Concretely, we give a statistically sound public-coin protocol to prove that a tuple (N, x, T, y)
satisfies y = x2T (mod N) where the prover doesn’t know the factorization of N and its running
time is dominated by solving the puzzle, that is, compute x2T , which is conjectured to require T
sequential squarings. To get a VDF we make this protocol non-interactive using the Fiat-Shamir
heuristic.

The motivation for this work comes from the Chia blockchain design, which uses a VDF as a
key ingredient. For typical parameters (T ≤ 240, N = 2048), our proofs are of size around 10KB,
verification cost around three RSA exponentiations and computing the proof is 8000 times faster
than solving the puzzle even without any parallelism.

2012 ACM Subject Classification Theory of computation → Cryptographic primitives, Theory
of computation → Interactive proof systems

Keywords and phrases Verifiable delay functions, Time-lock puzzles

Digital Object Identifier 10.4230/LIPIcs.ITCS.2019.60

Related Version https://eprint.iacr.org/2018/627.pdf

1 Introduction

1.1 The RSW time-lock puzzle

Rivest, Shamir and Wagner [10] introduced the concept of a time-lock puzzle, and proposed
the following elegant construction
The puzzle is a tuple (N, x, T) where N = p · q is an RSA modulus, x ∈ Z∗N is random and

T ∈ N is a time parameter.
The solution of the puzzle is y = x2T mod N . It can be computed making two expo-

nentiations by the party who generates the puzzle (and thus knows the group order
φ(N) = (p− 1)(q − 1)) as

e := 2T mod φ(N) , y := xe mod N (1)

but is conjectured to require T sequential squarings if the group order (or equivalently,
the factorization of N) is not known

x→ x2 → x22
→ x23

→ . . .→ x2T mod N (2)

1 This project has received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement No 682815/TOCNeT).

© Krzysztof Pietrzak;
licensed under Creative Commons License CC-BY

10th Innovations in Theoretical Computer Science (ITCS 2019).
Editor: Avrim Blum; Article No. 60; pp. 60:1–60:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pietrzak@ist.ac.at
https://doi.org/10.4230/LIPIcs.ITCS.2019.60
https://eprint.iacr.org/2018/627.pdf
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

60:2 Simple Verifiable Delay Functions

To be more precise, the conjecture here is that T sequential steps are necessary to compute
x2T (mod N) even if one can use large parallelism.

As an application, [10] show how to “encrypt to the future”: sample a puzzle (N, x, T)
together with its solution y, then derive a key ky from y and encrypt a message m into a
ciphertext c = ENC(ky,m). Given (N, x, T) and c one can recover the message m in time
required to compute T squarings sequentially, but (under the above conjecture) not faster.

1.2 Proofs of sequential work (PoSW)
Proofs of sequential work (PoSW) are closely related to time-lock puzzles. PoSW were
introduced in [9], and informally are proof systems where on input a random challenge x
and time parameter T one can compute a publicly verifiable proof making T sequential
computations, but it’s hard to come up with an accepting proof in significantly less than T
sequential steps, even given access to massive parallelism.

The PoSW constructed in [9] is not very practical (at least for large T) as the prover needs
not only T time, but also linear in T space to compute a proof. Recently [5] constructed a
very simple and practical PoSW in the random oracle model. They were interested in PoSW
as they serve as a key ingredient in the Chia blockchain design (chia.net).

The main open problem left open in [5] was to construct PoSW that is unique, in the sense
that one cannot compute two accepting proofs on the same challenge. The existing PoSW
all allow to generate many accepting proofs at basically the same cost as honestly computing
the proof. Unfortunately such PoSW cannot be used for the blockchain application just
mentioned, as this would allow for so called grinding attacks. More precisely, the output of
the PoSW is used to compute a challenge for generating the next block. If the PoSW is not
unique, a malicious miner could compute many proofs, and then pick the one which results
in a challenge that is most favourable for him.

1.3 Verifable delay functions (VDF)
Boneh, Bonneau, Bünz and Fisch [3] recently introduced the notion of a verifiable delay
function (VDF). A VDF can be seen as a relaxation of unique PoSW which still suffices for
all known applications of unique PoSW. We refer the reader to [3] for a thorough discussion
on VDFs including many interesting applications. In a VDF the proof on challenge (x, T)
has two parts (y, π), where y is a deterministic function of x that needs T sequential time to
compute, and π is a proof that y was correctly computed (the reason this is not necessarily a
unique PoSW is the fact that this π does not need to be unique). It must be possible to
compute π with low parallelism and such that π can be output almost at the same time as y.
In [3] this is achieved using incrementally verifiable computation [12]. The (very high level)
idea is to compute a hash chain

y = h(h(. . . h(x) . . .))︸ ︷︷ ︸
T times

and at the same time use incrementally verifiable computation to compute the proof π, so
the proof will be ready shortly after y is computed. To make this generic approach actually
practical the h used in [3] is a particular algebraic function (a permutation polynomial)
which has the property that one can invert it significantly faster than compute in forward
direction (so instead of verifying the evaluation of h(·), one can just verify the the much
simpler computation of h−1(·)), and also the proof system used to compute π is tailored so
it can exploit the algebraic structure of h.

chia.net

K. Z. Pietrzak 60:3

1.4 A VDF from RSW

The RSW time-lock puzzle looks like a promising starting point for constructing a VDF.
The main difficulty one needs to solve is achieving public verifiability: to efficiently verify
y

?= x2T (mod N) one needs the group order of Z∗N (or equivalently, the factorization of N).
But the factorization cannot be public as otherwise also computing y becomes easy.

One idea to solve this issue is to somehow obfuscate the group order so it can only be
used to efficiently verify if a given solution is correct, but not to speed up its computation.
There currently is no known instantiation to this approach.

In this work we give a different solution. We construct a protocol where a prover P can
convince a verifier V it computed the correct solution y = x2T (mod N) without either party
knowing the factorization (or any other hard to compute function) of N . Our interactive
protocol is public-coin, but can be made non-interactive – and thus give a VDF – by the Fiat-
Shamir transformation. Here the prover’s messages are replaced by simply applying a random
function to the transcript. The Fiat-Shamir transformation applied to any constant-round
public-coin interactive proof systems results in a sound non-interactive proof system in the
random oracle model. Although our proof is not constant-round, we can still show that this
transformation works, i.e., gives a sound non-interactive proof system relative to a random
function (i.e., in the random oracle model). In practice the random function is instantiated
with an actual hash-function like SHA256, as then soundness only holds computationally,
such systems are called arguments, not proofs.

Our protocol is inspired by the sumcheck protocol [8, 11]. The key idea of the proof
is very simple. Assume P wants to convince V that a tuple (x, y) satisfies y = x2T . For
this, P first sends µ = x2T/2 to V. Now µ = x2T/2 together with y = µ2T/2 imply y = x2T .
The only thing we have achieved at this point is to reduce the time parameter from T to
T/2 at the cost of having two instead just one statement to verify. We then show that
the verifier can merge those two statements in a randomized way into a single statement
(x′, y′) = (xr · µ, µr · y) that satisfies y′ = x′

2T/2 if the original statement y = x2T was true
(and P sends the correct µ), but is almost certainly wrong (over the choice of the random
exponent r) if the original statement was wrong, no matter what µ the malicious prover did
send. This subprotocol is repeated log(T) times – each time halving the time parameter T –
until T = 1, at which point V can efficiently verify correctness of the claim itself.

The VDF we get has short proofs and is efficiently verifiable. For typical parameters
(2048 bit modulus and log(T) ≤ 40) a proof is about 10KB large and the cost for verification
is around three full exponentiations (for comparison, a standard RSA decryption or RSA
signature computation requires one full exponentiation).

The algebraic setting of our proof systems differs a bit from RSW, as we’ll discuss in §2.
In a nutshell, to prove statistical soundness, we need to assume that N is the product of
two safe primes, i.e., N = p · q where p′ = (p− 1)/2 and q′ = (q − 1)/2 are prime, as then a
random quadratic residue x ∈ QRN almost certainly is a generator of QRN . We’ll actually
preform all computations in the group of signed quadratic residues QR+

N , as unlike for QRN ,
one can efficiently decide if an element is in QR+

N , which will make the protocol slightly
simpler and more efficient. Using QR+

N instead of QRN will also make the proof unique, so
our VDF is a unique PoSW.

ITCS 2019

60:4 Simple Verifiable Delay Functions

1.5 Wesolowski’s VDF
A closely related result to our VDF is a concurrent paper by Wesolowski [14]. A recent
survey [4] compares his construction with the one presented in this paper.

Wesolowski also constructs a VDF by making the RSW time-lock puzzle publicly verifiable.
The prover, who claims y = x2T , receives as challenge a large prime B, and must respond
with the proof π = xb

2T
B c. To verify this proof one checks πB ·x2T mod B ?= y.2 To get a VDF

one makes this protocol non-interactive using the Fiat-Shamir heuristic, i.e., B = hash(y) is
computed as a hash of the first message.

To prove soundness (i.e., that it’s hard to come up with a z 6= x2T together with a π
that passes verification) one needs a computational hardness assumption which basically
states that for any z 6= 1 it is hard to compute the B’th root of z (i.e. a y s.t. zB = y) in
the underlying group when B is a large random prime (whereas soundness of our proof is
unconditional).

The main advantage of Wesolowski’s construction over ours is that his proof is just a single
group element, and thus about a log(T) factor smaller than in our VDF, also verification
time is about this factor smaller. A drawback of his construction is that the overhead for
computing the proof π is larger, though it improved significantly in the latest writeup. It’s
currently at O(T/ log(T)) multiplications (our construction just needs O(

√
T · log(T)). The

computation of the proof can be parallelized to some extent in both constructions.
Another potential advantage (communicated to us by Dan Boneh) of our proof system is

that it can be applied for any underlying endomorphism, not just the squaring operation.
This could be useful to construct new VDFs, potentially achieving post-quantum security,
though currently we don’t know of any such instantiations.

In summary, Wesolowski’s proof system has shorter proofs and faster verification time.
Our proof system allows for more efficient computation of the proof, does not require any
computational assumptions and seems to apply in a more general setting.

Weselowski and the survey [4] also discuss how to instantiate those proof systems in other
groups than Z∗N , including groups that will not require trusted setup. We’ll discuss this in
more detail in §6.1, for now let us just mention that if instantiated in such groups the proof
systems will rely on a computational assumption (for Wesolowski’s construction, in addition
the root assumption), which basically states that it must be hard to find group elements of
small order.

1.6 Outline
In §2 we discuss the slightly different algebraic setting used here as compared to [10]. We
then present the protocol in §3 and the security proof in §4. In §5 we define VDFs, and in §6
we discuss how the protocol is turned into a VDF and discuss several efficiency and security
issues.

1.7 Notation
For a set X , x $← X means x is assigned a random value from X . For a randomized algorithm
alg we denote with x $← alg that x is assigned the output of alg on fresh random coins, if alg
is deterministic we just write x← alg.

2 This construction appears in the 2nd version of the eprint paper [14] from July 1st and improves over
the construction in the first posting.

K. Z. Pietrzak 60:5

2 The algebraic setting

The exact algebraic setting for our proof system differs slightly from the setting of the original
RSW time-lock puzzle [10]. First, we require that N = p · q is the product of safe primes (a
prime p is safe if (p− 1)/2 is also prime), and moreover we perform the computation in the
group of signed quadratic residues QR+

N . In an earlier version of this paper we used “normal”
quadratic residues QRN . QR+

N is isomorphic to QRN , but makes the protocol slightly
simpler as unlike for QRN , one can efficiently decide if an element is in QR+

N . Moreover
using QR+

N instead of QRN will make the proof unique, i.e., it’s hard to come up with any
proof other than the one generated by the honest prover, so we even get a unique PoSW. As
working with QRN instead of QR+

N is more intuitive, in the proof we’ll assume the proof is
over QRN .

As we’ll outline below, if computing x2T is hard in the original RSW setting, it will
remain hard in our setting (the other direction is not clear, it might be that our setting is
more secure).

2.1 Signed quadratic residues

For two safe primes p and q, and N := p · q we denote the quadratic residues with QRN
def=

{z2 mod N : z ∈ Z∗N} , and the signed quadratic residues [6, 7] are defined as the group

QR+
N

def= {|x| : x ∈ QRN},

where |x| is the absolute value when representing the elements of Z∗N as {−(N−1)/2, . . . , (N−
1)/2}. Since −1 ∈ Z∗N is a quadratic non-residue with Jacobi symbol +1, the map | · | acts as
an (efficiently-computable) isomorphism3 from QRN to QR+

N , and as a result QR+
N is also a

cyclic group, with the group operation defined as

a ◦ b def= |a · b mod N |.

However, unlike for QRN , membership in QR+
N can be efficiently tested since QR+

N = J+
N

where JN is the group of elements with Jacobi symbol +1 and

J+
N

def= {|x| : x ∈ JN} = JN/{±1}.

In other words, to test whether a given x ∈ Z∗N (represented as {−(N −1)/2, . . . , (N −1)/2})
belongs also to QRN+, ensure that x ≥ 0 and that its Jacobi symbol is +1.

2.2 Using (QR+
N , ◦) instead (Z∗N , ·)

Recall that the assumption underlying the security of the RSW time-lock puzzle [10] states
that computing x2T is hard in (Z∗N , ·). We note that using (QR+

N , ◦) instead (i.e., when
x ∈ QR+

N and squaring is defined as x2 def= x ◦ x), as we require for our protocol, will not
make this assumption any weaker. By the two reductions below, we’ll lose at most a factor
4 · 2 = 8 in advantage.

First, let us observe that using (QRN , ·) instead of (Z∗N , ·) can only make the problem
harder: Because |QRN | = |Z∗N |/4, a random element in Z∗N also belongs to QRN with
probability 1/4. So if one can break the assumption with probability ε over QRN , we still
can break it with probability ε/4 over Z∗N .

3 Note, however, that the inverse of this isomorphism is hard to compute under the quadratic residuosity
assumption.

ITCS 2019

60:6 Simple Verifiable Delay Functions

Second, we observe that using (QR+
N , ◦) instead of (QRN , ·) will not make computing

x2T significantly easier: Consider any x ∈ QRN and let y := x2T mod N in (QRN , ·), and
let x′ = |x| and y′ := x′2

T in (QR+
N , ◦), as the groups are isomorphic, y′=|y|, so y = |y′|−1,

which means y ∈ {y′, N − y′}. Although we can’t efficiently decide if y = y′ or y = N − y′
(as it would contradict the quadratic residuosity assumption), we can pick one of the two
values at random and will get the right one with probability 1/2. This shows that given an
algorithm that finds x2T in QR+

N in time t with probability δ , we get an algorithm that
computes x2T in QR+

N in basically the same time t and probability δ/2.

2.3 On using safe primes
Another difference to the setting of [10] is that we assume that N = p · q is the product of
random safe primes, whereas [10] just assume random primes. We do this to make sure that
QRN (and thus also QR+

N) contains no sub-group of small order, this property is required to
prove statistical soundness.

It is conjectured that for some constant c, there are c · 2λ/n2 safe λ-bit primes (cf. [13]),
so a random n bit prime is safe with probability ≈ c/n. Under this assumption, the product
of two random n-bit primes will be the product of two safe primes with probability c2/n2.

3 The protocol

Our protocol, where P convinces V it solved an RSW puzzle, goes as follows:
The verifier V and prover P have as common input an RSW puzzle (N, x, T) and a
statistical security parameter λ. Here T ∈ N, N = p · q is the product of safe primes and
x ∈ QR+

N .
P solves the puzzle by computing y = x2T (making T sequential squarings in (QR+

N , ◦)),
and sends y to V.
Now P and V iterate the “halving protocol” below. In this subprotocol, on common input
(N, x, T, y) the output is either of the form (N, x′, dT/2e, y′), in which case it is used as
input to the next iteration of the halving subprotocol, or the protocol has stopped with
verifier output in {reject, accept}.

3.1 The halving subprotocol
On common input (N, x, T, y)
1. If T = 1 then V outputs accept if y = x2T = x2 and reject otherwise. If T > 1 go to the

next step.
2. The prover P sends µ = x2T/2 to V.
3. If µ 6∈ QR+

N then V outputs reject, otherwise V samples a random r
$← Z2λ and sends it

to P.
4. If T/2 is even, P and V output

(N, x′, T/2, y′)

where
x′ := xr · µ

(
= xr+2T/2

)
y′ := µr · y

(
= xr·2

T/2+2T
)

(note that if y = x2T then y′ = x′
2T/2). If T/2 is odd, output

(N, x′, (T + 1)/2, y′2) .

K. Z. Pietrzak 60:7

3.2 Security statement
I Theorem 1. If the input (N, x, T) to the protocol satisfies
1. N = p · q is the product of safe primes, i.e., p = 2p′ + 1, q = 2q′ + 1 for primes p′, q′.
2. 〈x〉 = QR+

N .4
3. 2λ ≤ min{p′, q′}
Then for any malicious prover P̃ who sends as first message y anything else than the solution
to the RSW time-lock puzzle, i.e.,

y 6= x2T

V will finally output accept with probability at most

3 log(T)
2λ .

4 Security proof

4.1 Usage of QRN instead QR+
N in the proof

We’ll prove Theorem 1 where the signed quadratic residues (QR+
N , ◦) are replaced with

regular quadratic residues (QRN , ·) throughout. This will make the proof a bit more intuitive
as multiplication modulo N as in QRN is a more familiar and simpler operation than the ◦
operation in QR+

N (which additionally requires the | · | mapping after each multiplication).
As discussed in §2, those two groups are isomorphic, so the proof for (QRN , ·) implies the
same security for (QR+

N , ◦).
The main reason we don’t use (QRN , ·) in the actual protocol is only because in step 3.

of the halving subprotocol V needs to check if µ ∈ QR+
N , which would not be efficient if we

used QRN (in an earlier version of the protocol we did use QRN , and P had to send µ′ s.t.
µ′2 = µ, the verifier would then compute µ := µ′2 can thus could be sure that µ ∈ QRN . As
here P can send any of the 4 roots of µ, this protocol was not unique).

4.2 The language L
It will be convenient to define the language

L = {(N, x, T, y) : y 6= x2T mod N and 〈x〉 = QRN}

We’ll establish the following lemma.

I Lemma 2. For N,λ as in Thm. 1, and any malicious prover P̃ the following holds. If the
input to the halving protocol in §3.1 satisfies

(N, x, T, y) ∈ L

then with probability ≥ 1− 3/2λ (over the choice of r) V’s output is either reject or satisfies

(N, x′, dT/2e, y′) ∈ L

Before we prove the lemma, let’s see how it implies Theorem 1.

4 That is, x generates QR+
N , the quadratic residues modulo N . For our choice of N we have |QR+

N | =
|QRN | = p′q′, so 〈x〉 def= {x, x2, . . . , xp′q′} = QR+

N .

ITCS 2019

60:8 Simple Verifiable Delay Functions

Proof of Theorem 1. In every iteration of the halving protocol the time parameter decreases
from T to dT/2e and it stops once T = 1, this means we iterate for at most dlog(T)e rounds.
By assumption, the input (N, x, T, y) to the first iteration is in L, and by construction, the
only case where V outputs accept is on an input (N, x, 1, y) where y = x2T = x2 mod N , in
particular, this input is not in L.

So, if V outputs accept, there must be one iteration of the halving protocol where the
input is in L but the output is not. By Lemma 2, for any particular iteration this happens
with probability ≤ 3/2λ. By the union bound, the probability of this happening in any of
the dlog(T)e − 1 rounds can be upper bounded by 3 log(T)/2λ as claimed. J

Proof of Lemma 2. We just consider the case where T is even, the odd T case is almost
identical.

Assuming the input to the halving protocol satisfies (N, x, T, y) ∈ L, we must bound the
probability that V outputs reject or the output (N, x′, T/2, y′) 6∈ L.

If T = 1 then V outputs reject and we’re done. Otherwise, if P̃ sends a µ 6∈ QRN in step
2. then V outputs reject in step 3. and we’re done. So from now we assume µ ∈ QRN . We
must bound

Pr
r

[(y′ = x′
2T/2) ∨ (〈x′〉 6= QRN)] ≤ 3/2λ

using Pr[a ∨ b] = Pr[a ∧ b] + Pr[b] we rewrite this as

Pr
r

[y′ = x′
2T/2 ∧ 〈x′〉 = QRN] + Pr

r
[〈x′〉 6= QRN] ≤ 3/2λ (3)

Eq. (3) follows by the two claims below.

I Claim 1. Prr[〈x′〉 6= QRN] ≤ 2/2λ .

Proof of Claim. We’ll denote with eµ the unique value in Zp′q′ satisfying xeµ = µ (it’s
unique as µ ∈ 〈x〉 = QRN and |QRN | = p′q′). As x, µ ∈ QRN , also x′ = xr · µ = xr+eµ is in
QRN , and 〈x′〉 = QRN holds if ord(x′) = p′q′, which is the case except if (r+eµ) = 0 mod p′
or (r + eµ) = 0 mod q′ or equivalently (using that 2λ < min(p′, q′)) if

r ∈ B def= {Z2λ ∩ {(−eµ mod p′), (−eµ mod q′)}} . (4)

Clearly |B| ≤ 2 and the claim follows. J

I Claim 2. Prr[y′ = x′
2T/2 mod N ∧ 〈x′〉 = QRN] ≤ 1/2λ .

Proof of Claim. If y 6∈ QRN , then also y′ = µr · y 6∈ QRN (as a ∈ QRN , b 6∈ QRN implies
a · b 6∈ QRN). As 〈x′〉 = QRN and y′ 6= x′

2T/2 can’t hold simultaneously in this case the
probability in the claim is 0. From now on we consider the case y ∈ QRN . We have

Pr
r

[y′ = x′
2T/2 ∧ 〈x′〉 = QRN] =

Pr
r

[y′ = x′
2T/2 | 〈x′〉 = QRN] · Pr

r
[〈x′〉 = QRN] (5)

For the second factor in (5) we have with B as in (4)

Pr
r

[〈x′〉 = QRN] = 2λ − |B|
2λ . (6)

K. Z. Pietrzak 60:9

Conditioned on 〈x′〉 = QRN the r is uniform in Z2λ \ B, so the first factor in (5) is

Pr
r

[y′ = x′
2T/2 | 〈x′〉 = QRN] = Pr

r∈Z2λ\B
[y′ = x′

2T/2] . (7)

Let ey ∈ Zp′q′ be the unique value such that xey = y. Using 〈x〉 = QRN in the last step
below we can rewirte

y′ = x′
2T/2 mod N ⇐⇒

µry = (xrµ)2T/2 mod N ⇐⇒

xr·eµ+ey = x(r+eµ)·2T/2 mod N ⇐⇒
r · eµ + ey = (r + eµ) · 2T/2 mod p′q′

rearranging terms

r(eµ − 2T/2) + ey − eµ2T/2 = 0 mod p′q′ . (8)

If eµ = 2T/2 this becomes

ey − 2T = 0 mod p′q′

which does not hold as by assumption we have y 6= x2T . So from now on we assume
eµ 6= 2T/2 mod p′q′. Then for a = eµ − 2T/2 6= 0 mod p′q′ (and b = ey − eµ2T/2) eq. (8)
becomes

r · a = b mod p′q′

which holds for at most one choice of r from its domain Z2λ \ B, thus

Pr
r∈Z2λ\B

[y′ = x′
2T/2] ≤ 1

2λ − |B|

and the claim follows from the above equation and (5)-(7) as

Pr
r

[y′ = x′
2T/2 ∧ 〈x′〉 = QRN] =

Pr
r∈Z2λ\B

[y′ = x′
2T/2] · Pr

r
[〈x′〉 = QRN] ≤ 1

2λ − |B| ·
2λ − |B|

2λ ≤ 1
2λ . J

J

5 Verifiable delay functions

In this section we define verifiable delay functions (VDF) mostly following the definition
from [3]. A VDF is defined by a four-tuple of algorithms:
VDF.Setup(1λ)→ pp on input a statistical security parameter 1λ outputs public paramet-

ers pp.
VDF.Gen(pp, T)→ (x, T) on input a time parameter T ∈ N, samples an input x.
VDF.Sol(pp, (x, T))→ (y, π) on input (x, T) outputs (y, π), where π is a proof that the

output y has been correctly computed.
VDF.Ver(pp, (x, T), (y, π))→ {accept/reject} given an input/output tuple (x, T), (y, π)

outputs either accept or reject.
The VDF.Setup and VDF.Gen algorithms are probabilistic, VDF.Sol and VDF.Ver are determ-
inistic. They all run in time poly(log(T), λ).

ITCS 2019

60:10 Simple Verifiable Delay Functions

5.1 The statistical security parameter
λ measures the bit-security we expect from our protocol, i.e., an adversary of complexity τ
should have advantage no more than ≈ τ/2λ in breaking the scheme. It only makes sense to
consider time parameters T that are much smaller than 2λ (say we require T ≤ 2λ/2) so the
sequential running time of the honest prover is much smaller than what is required to break
the underlying hardness assumptions.

5.2 Efficiency of solving
The VDF.Sol algorithm can compute the output y in T sequential steps (in this work a
“sequential step” is the ◦ operation, which basically is a multiplication modulo N). Moreover
we require that π can be computed with in much fewer than T steps. As we’ll discuss in §6.2,
we’ll achieve O(

√
T log(T)) sequential steps, and less if parallelism is available. In [3] the

requirement is more relaxed, they compute π in parallel with y using bounded poly(log(T), λ)
parallelism, so the π is available shortly after y is computed, but overall the computation
is much larger than T . As discussed in the introduction, Wesolowski’s VDF [14] requires
O(T/ log(T)) steps to compute π.

5.3 Completeness
The completeness property simply requires that correctly generated proofs will always accept,
that is, for any λ, T

Pr


VDF.Ver(pp, (x, T), (y, π)) = accept
where
pp $← VDF.Setup(1λ)
(x, T) $← VDF.Gen(pp, T)
(y, π)← VDF.Sol(pp, (x, T))

 = 1

5.4 Security (sequentiality)
The first security property is sequentiality. For this we consider a two part adversary
A = (A1,A2), where A1 can run a pre-computation and choose T . Then A2 gets a random
challenge for time T together with the output state of the precomputation, we require that
whenever

Pr



VDF.Ver(pp, (x, T), (ỹ, π̃)) = accept
where
pp $← VDF.Setup(1λ)
(T, state) $← A1(pp)
(x, T) $← VDF.Gen(pp, T)
(ỹ, π̃) $← A2(pp, (x, T), state)


6= negl(λ)

the A2 adversary must use almost the same sequential time T as required by an honest
execution of VDF.Sol(pp, (π, T)), and this even holds if A is allowed massive parallel compu-
tation (say we just bound the total computation to 2λ/2). This means there’s no possible
speedup to compute the VDF output by using parallelism. Let us stress that by this we
mean any parallelism that goes beyond what can be used to speed up a single sequential
step, which here is a multiplication in Z∗N , and we assume the honest prover can use such
bounded parallelism.

K. Z. Pietrzak 60:11

5.5 Security (soundness)

The second security property is soundness, which means that one cannot come up with an
accepting proof π̃ for a wrong statement. Formally, for an adversary A = (A1,A2) we have
(unlike in the previous definition, here we don’t make any assumption about A2’s sequential
running time, just the total running time of A must be bounded to, say 2λ/2)

Pr



VDF.Ver(pp, (x, T), (ỹ, π̃)) = accept
and ỹ 6= y

where
pp $← VDF.Setup(1λ)
(T, state) $← A1(pp)
(x, T) $← VDF.Gen(pp, T)
(y, π)← VDF.Sol(pp, (x, T))
(ỹ, π̃) $← A2(pp, (x, T), state)


= negl(λ)

6 A VDF from RSW

In this section we explain the simple transformation of the protocol from §3 into a VDF and
then discuss the efficiency, security and some other issues of this construction.

To keep things simple we’ll assume that the time parameter T = 2t is a power of two.
The four algorithms from §5 are instantiated as

VDF.Setup(1λ) The statistical security parameter λ defines another security parameter
λRSA specifying the bitlength of an RSA modulus, where λRSA should be at least as
large so that an λRSA bit RSA modulus offers λ bits of security (e.g. λ = 100 and
λRSA = 2048). As hardness of factoring is subexponential, while the soundness of our
protocol is exponentially small in λ (in the random oracle model), we can without loss of
generality assume that λ ≤ λRSA/2, so point 3. in the statement of Theorem 1 is satisfied.
The setup algorithm samples two random λRSA/2 bit safe primes p, q and output as public
parameters the single λRSA bit RSA modulus N := p · q.

VDF.Gen(N, T) samples a random x ∈ QR+
N and outputs (x, T).

VDF.Sol(N, (x, T)) outputs (y, π) where y = x2T is the solution of the RSW time-lock
puzzle (but over (QR+

N , ◦) not (Z∗N , ·)) and π = {µi}i∈[t] is a proof that y has been
correctly computed. It is derived by applying the Fiat-Shamir heuristic to the protocol
in §3. Recall that in this heuristic the public-coin challenges ri ∈ Z2λ of the verifier
are replaced with a hash of the last prover message. Concretely, we fix a hash function
hash : Z× Z4

N → Z2λ , let (x1, y1) := (x, y) and for i = 1 . . . t let5

5 Note that in the Fiat-Shamir heuristic, we not just hash the first prover message µi in eq. (9),
but also the statement (xi, T/2i−1, yi) of the halving subprotocol. It has been observed that this
is necessary in a setting like ours, where the prover has some influence on the statement to be
proven [1]. There exists an easy attack (communicated to us by Benjamin Wesolowski) on uniqueness
of the VDF if the y’s are not included in the hash: for (x, T) = (x1, T1), pick µ1 at random, let
r1 = hash((x, T), µ1), y = (x2T/2/µ1)r1µ2T/2

1 , x2 = xr1
1 µ1, y2 = µr1

1 y. The above y is almost certainly
wrong, i.e., y 6= x2T , but by construction y2 = x2T/2

2 , so one can continue with the honest proof.

ITCS 2019

60:12 Simple Verifiable Delay Functions

µi := x2T/2
i

i ∈ QR+
N

ri := hash((xi, T/2i−1, yi), µi) ∈ Z2λ (9)
xi+1 := xrii ◦ µi
yi+1 := µrii ◦ yi

VDF.Ver(N, (x, T), (y, π)) parses π = {µi}i∈[t] and checks if x, y and all µi are in QR+
N ,

if this is not the case output reject. Otherwise set (x1, y1) := (x, y) and then for i = 1 . . . t
compute

ri := hash((xi, T/2i−1, yi), µi)
xi+1 := xrii ◦ µi (10)
yi+1 := µrii ◦ yi (11)

Finally check whether

yt+1
?= x2

t+1 (12)

and output accept if this holds, otherwise output reject.

6.1 Public parameters for the VDF
For the security of the VDF it’s crucial that a prover does not know the factorization of the
public parameter N , as otherwise he could compute x2T in just two exponentiations as in
eq. (1). Thus one either has to rely on a trusted party, or use multiparty-computation to
sample N . In particular, it’s possible to sample N securely as long as not all the participants
in the multiparty computation are malicious. Such an “MPC ceremony” has been done
before, e.g. to set up the common random string for Zcash.6 This is in contrast to the
random-oracle based PoSW [9, 5] which don’t require a setup procedure at all.

To avoid trusted setup, Boneh et al. [4] and Wesolowski [14] suggested to use class groups
of an imaginary quadratic field [2] instead of an RSA group. Recall that the statistical
soundness of our proof systems relies on the fact that the underlying group (the quadratic
residues of Z∗N where N is the product of safe primes) has no subgroups of small order. If
the underlying group does have groups of small order, then computational soundness holds
under the assumption that it’s hard to find elements of small order, which is conjectured to
hold for the class groups mentioned above.

6.2 Efficiency of the VDF

6.2.1 Cost of verification
The cost of running the verification VDF.Ver(N, (x, T = 2t), (y, π)) is dominated by the 2t
exponentiations (with λ bit long exponents) in eq. (10-11). As exponentiation with a random
λ bit exponent costs about 1.5λ multiplications,7 the cost of verification is around 3 · λ · t

6 https://z.cash/technology/paramgen.html
7 Exponentiation is typically done via “square and multiply”, which for a z bit exponent with hamming
weight h(z) requires z + h(z) multiplications, or about 1.5 · z multiplication for a random exponent
(where h(z) ≈ z/2).

https://z.cash/technology/paramgen.html

K. Z. Pietrzak 60:13

multiplications.8 For concreteness, consider an implementation where λ = 100, λRSA = 2048
and assume t = 40, this gives a cost of about 3 · λ · t = 12000 multiplications, which
corresponds to 12000/(2048 · 1.5) ≈ 4 full exponentiations in Z∗N .

6.2.2 A minor efficiency improvement
There’s a simple way to save on verification time and proof size. Currently, for T = 2t we
run the halving protocol for t rounds, and then in eq. (12) check if yt+1

?= x2
t+1. For any

integer ∆ ≥ 0 we could run the protocol for just t−∆ rounds, but then the verifier must
check if yt+1−∆

?= x22∆

t+1−∆, which requires 2∆ squarings (more generally, if T is not a power
of 2 then the check becomes yt+1−∆

?= x2Tt+1−∆
t+1−∆ mod N where T1 = T, Ti = dTi−1/2e).

If we set, say ∆ = 10, this saves 10 rounds and thus reduces the proof size by 25%
from 40 to 30 elements. The verification time decreases by around 15% (we save 20 short
exponentiations as in eq. (10,11) at the price of 1024 extra squarings).

6.2.3 Cost of computing the proof
Computing the proof (y, π)← VDF.Sol(N, (x, T)) requires one to solve the underlying RSW
puzzle y = x2T , which is done by squaring x sequentially T times (the security of the RSW
puzzle and thus also our VDF relies on the assumption that there’s no shortcut to this
computation).

On top of that, for the VDF we also must compute the proof π = {µi}i∈[t] where
µi = x2T/2

i

i . But we still assume that T = 2t is a power of 2.
If naïvely implemented, computing the µi will require T/2 squarings for µ1, T/4 for µ2

etc., adding up to a total of T ≈ T/2 + T/4 + T/8 . . .+ 1 sequential steps. Fortunately we
don’t have to compute µ1 = x2T/2 as we already did so while computing y = x2T by repeated
squaring (cf. eq. (2)). This observation already saves us half the overhead. We can also
compute the remaining µ2, µ3, . . . using stored values, but it becomes increasingly costly, as
we discuss below.

In general, for some s ∈ [t] the prover can compute µ1, . . . , µs using stored values, and
then fully recompute the remaining µs+1 = x2T/2

s+1

s+1 , µs+2, . . . , µt which will only require
T/2s+1 + T/2s+2 . . . < T/2s squarings.

To see how the µi’s can be efficiently computed for small i, for z ∈ QR+
N let z denote z’s

log to basis x, i.e., xz = z. We have x1 = 1, y1 = 2T and

µi := xi · 2T/2
i

xi+1 := ri · xi + µi

yi+1 := ri · µi + yi

How those exponents concretely develop for i = 1 to 3 is illustrated in Figure 1. For example,
we can compute µ3 assuming we stored the x2T/8 , x2T3/8

, x2T5/8
, x2T7/8 values as

µ3 = (x2T/8)r1·r2 · (x2T5/8
)r2 · (x2T3/8

)r1 · x2T7/8

8 Here multiplication means the ◦ operation, which requires one multiplication modulo N , followed by
the map | · |. As the cost of this map is marginal compared to the multiplication we just ignore it.

ITCS 2019

60:14 Simple Verifiable Delay Functions

i x′i µi yi
1 1 2T/2 2T
2 r1 + 2T/2 r1 · 2T/4 + 23T/4 r1 · 2T/2 + 2T
3 r1 · r2 + r2 · 2T/2 + 2T/4 · r1 + 23T/4 r1 · r2 · 2T/8 + r2 · 2T5/8 + r1 · 2T3/8 + 2T7/8 r1 · r2 · 2T/4 + r2 · 23T/4 + r1 · 2T/2 + 2T
...

...
...

...

Figure 1 Exponents of the the values in the protocol, here z = xz.

In general, computing µ1, . . . , µs will require to store 2s values {x2T ·i/2
s

}i∈[2s], and then
compute 2s exponentiations with exponents of bitlength at most λ · (s− 1) (and half that
on average). We can’t speed this up by first taking the exponents modulo the group order
p′q′ as it is not know, but if we have bounded parallelism 2p, p ≤ (s− 2) this can be done in
2s−p · λ · (s− 1) · 3

4 sequential steps. Summing up, with sufficient space to store 2s elements
in ZN and 2p ≤ 2s parallelism the proof π can be computed in roughly

2s−p · λ · (s− 1) · 3
4 + 2t−s sequential steps and 2s · log(N) bits of storage

after y has been computed. For example with a single core p = 0 and s = t/2− log(t · λ)/2
the number of steps (i.e., ◦ operations) becomes

2t/2−log(t·λ)/2·λ·(s−1)·34+2t/2+log(t·λ)/2 = 2t/2
(
λ(s− 1)√

tλ
· 3

4 +
√
tλ

)
<
√
T ·11

8 ·
√

log(T) · λ

For our typical values t = 40, λ = 100 this is ≤ 227, and thus over 240−27 = 213 times
faster than computing y, e.g. if computing y takes 1h, computing π just takes half a
second on top. The memory required (to store intermediate values) is around 2s · logN =
2t/2−log(t·λ)/2 · 1024 ≤ 227 bits, or 8MB.

6.3 Security of the VDF
6.3.1 Soundness
If we model hash as a random oracle, then by Lemma 2 (which is used in the proof of
Theorem 1) we are guaranteed that a malicious prover will not find an accepting proof (ỹ, π̃)
for a wrong statement ỹ 6= x2T except with exponentially small probability. We can even
let the malicious prover choose the challenge (x, T) for which it must forge such a proof
itself, the only restriction being that x must be a generator 〈x〉 = QR+

N (a random x ∈ QR+
N

satisfies this almost certainly, but we can’t efficiently verify if a given x is such a generator).
The well known Fiat-Shamir heuristic states that replacing the prover’s queries with the

output of a random oracle in a sound public-coin interactive proof system results in a sound
non-interactive proof system, but this only applies for protocols with a constant number of
rounds.

Even though our protocol has logarithmically many rounds, we can directly conclude
that our non-interactive proof is sound as follows: if we are given a valid proof for a wrong
statement, then, during the execution of the verification algorithm for this proof, we must
make a query hash(xi, T/2i−1, yi, µi) where (N, xi, T/2i−1, yi) ∈ L (L as defined in §4) but
for the next query made hash(xi+1, T/2i, yi+1, µi+1) we have (N, xi+1, T/2i, yi+1) 6∈ L. By
Lemma 2, every random oracle query will correspond to such a query with probability at
most 3/2λ. Thus, by the union bound, the probability that a malicious prover that makes
up to q queries to hash will find such a query (which as outlined is necessary to find an
accepting proof for a wrong statement) is at most q · 3/2λ.

K. Z. Pietrzak 60:15

6.3.2 Sequentiality
To break sequentiality means computing y faster than in T sequential computations. We rely
on the same assumption as [10], which simply states that such a shortcut does not exist. As
outlined in §2, the fact that we work over (QR+

N , ◦) not (ZN , ·) only makes the assumption
on which we rely weaker, and the fact that in our case N is the product of safe primes
doesn’t affect the assumption assuming that safe primes are not too sparse.

References
1 David Bernhard, Olivier Pereira, and Bogdan Warinschi. How Not to Prove Yourself:

Pitfalls of the Fiat-Shamir Heuristic and Applications to Helios. In Xiaoyun Wang and
Kazue Sako, editors, ASIACRYPT 2012, volume 7658 of LNCS, pages 626–643. Springer,
Heidelberg, December 2012. doi:10.1007/978-3-642-34961-4_38.

2 Ingrid Biehl, Johannes A. Buchmann, Safuat Hamdy, and Andreas Meyer. A Signa-
ture Scheme Based on the Intractability of Computing Roots. Des. Codes Cryptography,
25(3):223–236, 2002.

3 Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable Delay Functions.
In CRYPTO 2018, 2018.

4 Dan Boneh, Benedikt Bünz, and Ben Fisch. A Survey of Two Verifiable Delay Functions.
Cryptology ePrint Archive, Report 2018/712, 2018. URL: https://eprint.iacr.org/
2018/712.

5 Bram Cohen and Krzysztof Pietrzak. Simple Proofs of Sequential Work. In Jes-
per Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part II, volume
10821 of LNCS, pages 451–467. Springer, Heidelberg, April / May 2018. doi:10.1007/
978-3-319-78375-8_15.

6 Roger Fischlin and Claus-Peter Schnorr. Stronger Security Proofs for RSA and Rabin Bits.
Journal of Cryptology, 13(2):221–244, 2000.

7 Dennis Hofheinz and Eike Kiltz. The Group of Signed Quadratic Residues and Applications.
In Shai Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages 637–653. Springer,
Heidelberg, August 2009.

8 Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic Methods
for Interactive Proof Systems. In 31st FOCS, pages 2–10. IEEE Computer Society Press,
October 1990.

9 Mohammad Mahmoody, Tal Moran, and Salil P. Vadhan. Publicly verifiable proofs of
sequential work. In Robert D. Kleinberg, editor, ITCS 2013, pages 373–388. ACM, January
2013.

10 R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock Puzzles and Timed-release Crypto.
Technical report, Massachusetts Institute of Technology, Cambridge, MA, USA, 1996.

11 Adi Shamir. IP=PSPACE. In 31st FOCS, pages 11–15. IEEE Computer Society Press,
October 1990.

12 Paul Valiant. Incrementally Verifiable Computation or Proofs of Knowledge Imply
Time/Space Efficiency. In Ran Canetti, editor, TCC 2008, volume 4948 of LNCS, pages
1–18. Springer, Heidelberg, March 2008.

13 Joachim von zur Gathen and Igor E. Shparlinski. Generating safe primes. J. Mathematical
Cryptology, 7(4):333–365, 2013. doi:10.1515/jmc-2013-5011.

14 Benjamin Wesolowski. Slow-timed hash functions. Cryptology ePrint Archive, Report
2018/623, 2018. URL: https://eprint.iacr.org/2018/623.

ITCS 2019

http://dx.doi.org/10.1007/978-3-642-34961-4_38
https://eprint.iacr.org/2018/712
https://eprint.iacr.org/2018/712
http://dx.doi.org/10.1007/978-3-319-78375-8_15
http://dx.doi.org/10.1007/978-3-319-78375-8_15
http://dx.doi.org/10.1515/jmc-2013-5011
https://eprint.iacr.org/2018/623

	Introduction
	The RSW time-lock puzzle
	Proofs of sequential work (PoSW)
	Verifable delay functions (VDF)
	A VDF from RSW
	Wesolowski's VDF
	Outline
	Notation

	The algebraic setting
	Signed quadratic residues
	Using (QR_{N}^{+},o) instead (Z_{N}^{*},.)
	On using safe primes

	The protocol
	The halving subprotocol
	Security statement

	Security proof
	Usage of QR_N instead QR_{N}^{+} in the proof
	The language {L}

	Verifiable delay functions
	The statistical security parameter
	Efficiency of solving
	Completeness
	Security (sequentiality)
	Security (soundness)

	A VDF from RSW
	Public parameters for the VDF
	Efficiency of the VDF
	Cost of verification
	A minor efficiency improvement
	Cost of computing the proof

	Security of the VDF
	Soundness
	Sequentiality

