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Abstract

Single cells are constantly interacting with their environment and each other, more im-
portantly, the accurate perception of environmental cues is crucial for growth, survival,
and reproduction. This communication between cells and their environment can be
formalized in mathematical terms and be quantified as the information flow between
them, as prescribed by information theory.

The recent availability of real-time dynamical patterns of signaling molecules in sin-
gle cells has allowed us to identify encoding about the identity of the environment in
the time—series. However, efficient estimation of the information transmitted by these
signals has been a data—analysis challenge due to the high dimensionality of the tra-
jectories and the limited number of samples. In the first part of this thesis, we develop
and evaluate decoding-based estimation methods to lower bound the mutual infor-
mation and derive model-based precise information estimates for biological reaction
networks governed by the chemical master equation. This is followed by applying
the decoding-based methods to study the intracellular representation of extracellular
changes in budding yeast, by observing the transient dynamics of nuclear transloca-
tion of 10 transcription factors in response to 3 stress conditions. Additionally, we apply
these estimators to previously published data on ERK and Ca?* signaling and yeast
stress response. We argue that this single cell decoding-based measure of information
provides an unbiased, quantitative and interpretable measure for the fidelity of biologi-
cal signaling processes.

Finally, in the last section, we deal with gene regulation which is primarily controlled
by transcription factors (TFs) that bind to the DNA to activate gene expression. The
possibility that non-cognate TFs activate transcription diminishes the accuracy of regu-
lation with potentially disastrous effects for the cell. This ‘crosstalk’ acts as a previously

unexplored source of noise in biochemical networks and puts a strong constraint on
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their performance. To mitigate erroneous initiation we propose an out of equilibrium
scheme that implements kinetic proofreading. We show that such architectures are

favored over their equilibrium counterparts for complex organisms despite introducing

noise in gene expression.



vii

Acknowledgments

To my parents Mabel and Felix: because | owe it all to both of you. Many thanks!

My friend Felix, the idealist, | miss going with you to the mountains, you have definitely
taught me more with silence and contemplation than with words, thanks for creating
a different world around me so that | could become a different person. My strength
Mabel, you have done a great job 24/7 during my entire life, always present with the
appropriate advice and permanently connected to my feelings and emotions, thanks
for all your daily sacrifices and support.

| am grateful to my siblings and grandmother: Marihe, Abraham and Teresa, for their
moral and emotional support during my life. | am also thankful to Jose Hernandez, my
life-coach and friend, who has been by my side at every step of my life during the last
15 years, his wisdom and knowledge bring light and clarity to my life.

A very special gratitude to my supervisor Gasper Tkacik: who has been patient,
inspiring, encouraging and positive. To my external supervisor and collaborator Peter
Swain, to the other members of my Ph.D. committee: Edouard Hannezo and Caroline
Uhler.
| am also grateful to my colleagues in the group, especially to Roshan Prizak, Thomas
Sokolowsky, Jakob Ruess, Georg Ryeckh and Michal Hledik. To my collaborators:
Alejandro Granados, Abraham Martin del Campo and Julian Pietsch.

Finally, last but by no means least, thanks to IST Austria: the group leaders, the grad
school and all my colleagues and friends, it has been great sharing the interdisciplinary

atmosphere at the institute during the last years.



vii

About the Author

Sarah Cepeda-Humerez completed BSc in Physics at the University UATF in Potosi-
Bolivia and MSc in Statistical and Condensed Matter physics at the Abdus Salam in-
ternational center for theoretical physics (ICTP) in Trieste-Italy, before joining IST Aus-
tria in September 2013. Her main research interests include information transmission
through dynamical signals in single cells signaling and gene regulation. During her
PhD studies she worked on the research project “Distributed and dynamic intracellular
organization of extracellular information” with the group of Peter Swain at the University
of Edinburgh, and has developed the estimation methodology used in the collaborative
project with Swain et al. During her PhD studies, Sarah has also presented her re-
search results in the EMBO conference in Heidelberg in 2017.



List of Publications

. Sarah A. Cepeda-Humerez, Georg Rieckh, and Gasper Tkacik. 2015. Stochas-
tic proofreading mechanism alleviates crosstalk in transcriptional regulation. Phys.
Rev. Lett., 115:248101.

. Abraham Martn del Campo, Sarah Cepeda, Caroline Uhler. 2017. Exact good-

nessoffit testing for the ising model. Scandinavian Journal of Statistics.

. Alejandro A Granados, Julian M J Pietsch, Sarah A. Cepeda-Humerez, Iseabalil
L Farquhar, Gasper Tkacik, and Peter S Swain. 2018. Distributed and dynamic
intracellular organization of extracellular information. Proceedings of the Na-
tional Academy of Sciences of the United States of America, 115(23):6088
6093.

. Sarah A. Cepeda-Humerez, Jakob Ruess and Gasper Tkacik. 2019. Estimating

information in time-varying signals (preprint on the arXiv g-bio).



Table of Contents

Abstract

Acknowledgments

About the Author

List of Publications

List of Figures

1

Introduction
1.1 Motivation . . . . . . . . . .. e e e

1.2 A framework to study communication in living systems . . . . . ... ..

Background
2.1 Mathematical theory of communication . . . . ... ... .........

2.2 Geneticregulatorynetworks . . . . . . . ... ... ... L.

Estimating information in time-varying signals

3.1 Introduction . . . . . .. ..
3.2 ModelsandMethods . . . . . . ... .. ... ... ... ...
33 Results .. ... .. . ...

34 Conclusions . . . . . . . . . . e

vii

viii

xii

Xiv

15

24



Xi

4 Application of decoding-based information estimates to single cell dy-

namical data 60
4.1 Dynamical signalsinsingle-cells . ... ... ... ... ......... 62
4.2 Internal representation of environmental signals inyeast . . . . ... .. 66
4.3 Decoding-based information estimators on experimental data . . . . . . 70
44 Conclusions . . . . . . . ... 73
5 Crosstalk and Kinetic proofreading in transcriptional regulation 80
51 lIntroduction . . . . . . . ... L 82
52 Results . ... .. . ... 86
6 Conclusions and future directions 97

Bibliography 101



Xii

List of Figures

21 Entropyofabinarysource . . . ... .. ... ... ... ... 11
2.2 Communicationsystem . . ... ... ... ... .. ... .. ..., 13
23 Cellsignaling . . . ... ... .. ... 17
2.4 Central Dogma and Gene Regulation . . .. ... ... ......... 19

3.1 Information transmission between discrete inputs and response trajec-

tories in biochemical networks. . . . . . . ... .. ... ... ... 32
3.2 Example biochemical reaction networks and their behavior. . . . . . .. 46

3.3 Information about inputs encoded by complete response trajectories of

the example biochemical reaction networks. . . . . . .. ... ... ... 48
3.4 Information loss due to temporal sampling. . ... ... ......... 50

3.5 Performance of decoding-based estimators depends on the dimension-
ality of the response trajectories. . . . . ... ... ... ......... 51

3.6 Convergence of decoding-based estimator performance with increasing

number of response trajectory samples. . . . ... ... ... ..., .. 53
3.7 Information estimation for multilevel inputs. . . . . . ... ... ... .. 54
3.8 Comparison of decoding-based and knn information estimators. . . .. 56

3.9 Effects of covariance matrix regularization and signal smoothing on Gaussian-
decoder-based estimation. . . . .. .. ... ... L L., 57

3.10 Gaussian approximation to the information can lead to an uncontrolled

overestimation of the true information. . . . . .. . . ... ... ..... 58

3.11 Behavior of the knn information estimator. . . . . . . . ... ... .. .. 59



xii

4.1 Dynamicresponsesinsinglecells. . . . .. ... .. ... ........ 62
4.2 Dynamic signaling encodes input identity and leads to different response. 63
4.3 Nuclear localization. . . . .. ... ... ... .. ... ... ... 64
4.4 Prevalence of pulsatile regulatory dynamics across species. . . . . . . . 65
4.5 Mutual information encoded in the nuclear translocation dynamics of 10

yeast transcription factors in four environmental conditions. . . . . . . . 68
4.6 Complex environments can be encoded collectively by several transcrip-

tionfactors. . . . . . . ... 75
4.7 Two-level mutual information estimates from single-cell time-series data

for nuclear translocation of yeast transcription factors. . . . . ... ... 76
4.8 Multilevel mutual information estimates from single-cell time-series data

for mammalian intracellular signaling. . . . . . ... ... ... ..... 77
4.9 Estimator behavior for longer trajectory data for Dot6. . . . .. ... .. 78
4.10 Assessing information estimation bias due to small sample size. . ... 79

4.11 Information estimates for mammalian signaling networks as a function

5.1

5.2

5.3

of the trajectory duration. . . . . ... ... .. ... ... ... .. 79

Crosstalk problem, Proofreading scheme and comparison of mRNA dis-

tributions for proofreading and the two state problem . . . . . . ... .. 88

Maximal information transmission, error fraction and noise in gene ex-

Pression. . . . . . . L e e e e e e e e e e e 90

Information advantage of optimal proofreading over optimal two-state

architectures, as a function of crosstalk severity . . . . . . ... ... .. 93



Xiv



1 Introduction

1.1 Motivation

The major challenge in the field of biophysics during the last decade has been to find bi-
ological principles (similar to the laws of physics), that could provide a unified theory for
living systems, in a way addressing the fundamental definition of life itself [Schrodinger
and Penrose, 1992]. Along these lines, the recent availability of large and highly re-
producible experimental data has enabled some theorists to think about such unifying
principles. It is unclear what form such unifying principles could take, but most of the
suggested ones take the form of “optimization principles”, some of which try to cap-
ture the notion of “biological function” mathematically. For example, minimizing the
expended energy, maximizing growth, etc. Amongst them, it has been proposed that
biological systems are operating near an optimum of information transmission given
biophysical constraints [Bialek, 2012; Tkacik and Bialek, 2016], and similar ideas pro-
pose that an essential characteristic of life is robustness ensuring that the essential
function of the system is carried out precisely despite natural variations [Alon, 2006].
However, the task of describing and understanding the vast variety of life using a hand-
ful set of “laws” is just at the beginning [Bialek, 2018].

According to the systemic definition of life: [Maturana R and J. Varela, 1973; Varela
et al., 1974] living systems are autopoietic, where auto, means ‘self’ and poiesis,
means ‘creation or production’. Thus autopoiesis refers to self-generating or self-
making systems. To carry out this task, they use, assimilate, and embody the elements

available in the environment: nutrients, heat, light, and other forms of energy. Such



permanent exchange with the environment, and the ability to react to environmental
changes accordingly, allows organisms to survive, find food and reproduce. Therefore,
communication of living systems, which inherently requires mechanisms of information
exchange with the environment, is relevant for survival. In some respect, this intuitive
idea of information flow being crucial for life —that arises from the systemic definition
of life itself— is reflected in the theoretical principle proposed by William Bialek [Bialek,
2018] and is grounded in experimental evidence [Bialek, 2012] [Bialek, 2012]. Our
visual system can count single photons [Rieke and Baylor, 1998], bacteria follow the
attractive chemical gradients with a reliability so high that they essentially detect every
single molecule that arrives to their surface [Berg and Purcell, 1977], while during early
development of Drosophila, single cells distinguish their position in the embryo with
~ 1% error (consistent with the statistically optimal use of the available information)
[Dubuis et al., 2013b; Dubuis et al., 2013a).

It is important to mention that such claims about optimality can only emerge from appro-
priate experimental measurements, data analysis, and a theoretical framework based

on physical laws.

The promising results about biological systems operating close to the optimum in-
formation transmission performance and the perspectives towards a unified theory of
biological systems motivates this thesis to i) provide tools for data analysis of recently
available single cell dynamic signals and ii) contribute to the understanding of mecha-
nisms that biological systems may use for increasing their response accuracy to exter-

nal signals.

1.2 A framework to study communication in living sys-

tems

The large variety of organisms in nature have evolved an enormous number of commu-
nication systems. We are primarily familiar with: language, sounds, images, smells and
taste, and tactile perception. It is remarkable that all those signals are simultaneously

integrated by our nervous system. Understanding how these signals are transmitted,



combined and how they eventually influence our behaviour, is one of the most chal-
lenging questions of our time. |t would be out of the scope of a single work to study of
a system of such complexity. Therefore, here we focus on single-cell organisms which
can be studied experimentally and are also capable of: sensing their environment, per-
forming computations, sending out signals and making decisions.

Many intriguing examples for such mechanisms can be found in different bacteria
species: although their size is limited to a few microns, magnetotactic bacteria can use
the earth’s magnetic field to find the optimum concentration of oxygen in their habitat
[S., 1963; Blakemore, 1975], E. coli can anticipate changes in the carbon sources of
the environment, by observing subsequent changes of temperature and oxygen in its
surroundings [Tagkopoulos et al., 2008; Mitchell et al., 2009]. In addition, apart from
detection and prediction they perform several other functions that involve complex com-

putations.

While single-cell organisms can respond to a large variety of signal types, as por-
trayed above, their primary way of environment perception is through biochemical sig-
nals. Namely, the receptors on the surface of a cell interact with extracellular signals
and propagate the information towards the inside of the cell, e.g., to the nucleus. Such
sequences of biochemical interactions are called signaling cascades; their main task
consists of triggering gene regulatory networks further downstream which activate the
production of biomolecules, called proteins, required by the cell to adequately respond
to input signals. Although life scientists have classified gene regulatory networks as
separate from signaling cascades according to our understanding of their functions,
in nature they are not essentially different and share fundamental characteristics. For
instance, the stochastic nature of the interactions is reflected by the fact that signal-
ing molecules are randomly diffusing in the cell in order to find their cognate receptor
to propagate the signals. This search process could be reasonably fast and reliable,
if the copy number of each molecule would be large. However, this is often not the
case since many molecules are present at very low copy numbers (i.e. as low as 10
molecules of some chemical species per bacterial cell), representing a major obstacle

for efficient information transmission in cells.



The fluctuations in genetic and signaling networks is subject to the central limit the-
orem, with a consequence that the relative size of fluctuations decreases as the mean
response grows large. In turn this means that for low copy numbers the fluctuations
around the mean are relevant. By now, the noise in gene expression has been stud-
ied extensively both in theory and in the experiment. For the first time in the early
2000’s direct measurements of noise in gene expression [Elowitz et al., 2002; Blake
et al., 2003; Ozbudak et al., 2002] and cell-to-cell variability [Feinerman et al., 2008;
Spencer et al., 2009] became possible. The notion of efficient and reliable informa-
tion transmission, discussed in the motivation, is obviously in stark contrast to the fact
that the information transduction signals inside cells are highly stochastic. How it is
possible for optimal performance and high precision to arises from individual stochas-
tic components? To answer this question, we first need to know how noise limits the
transmission of information through the system. In 1948, Claude Shannon introduced
the appropriate mathematical formalism to address this question in his seminal paper:
"The mathematical theory of communication” [Shannon and Weaver, 1949]. In this
work, which lay the foundation of information theory, he presented a measure of infor-

mation transmission through a noisy channel, called mutual information’.

Shortly after the introduction of information theory, the ideas of efficient information
transmission where adopted in biology, explicitly in the field of neuroscience [MacKay
and McCulloch, 1952; Barlow, 1959]. Theoretical questions about efficient coding and
signal’s redundancy reduction were addressed already in these original studies. During
the early 1990’s, neural activity measurements of entropies and mutual information in
response to complex, dynamic stimuli were carried out [Bialek et al., 1991] followed by
initial analysis tools for direct and unbiased estimates of information transmission from
limited experimental data [Strong et al., 1998; Borst and Theunissen, 1999].

Thanks to the availability of highly accurate data [Gregor et al., 2007a; Gregor et al.,
2007b], in the late 2000's, similarly motivated studies explored genetic networks by fo-
cusing on the Bicoid/Hunchback system in the early Drosophila embryo [Tkacik et al.,
2008].

"The concept and formal definition of Mutual information will be further extended in section 2.1.3



Gene regulation — the ability of cells to modulate the expression levels of genes
to match their current needs — is fundamental to normal growth, development and
survival of an organism. Regulation of gene expression is primarily achieved through
transcriptional regulation, where special regulatory proteins known as transcription fac-
tors (TFs) bind to specific sites on the DNA to either enhance or inhibit transcription of
nearby genes. Because TF molecules are often present at low concentrations [Milo and
Philips, 2016; Li et al., 2014], transcriptional regulation is highly stochastic; this mani-
fests itself as temporally variable gene expression even when the environmental condi-
tions are held fixed. The stochasticity in gene expression has been extensively studied
experimentally [Elowitz et al., 2002; Blake et al., 2003; Ozbudak et al., 2002], with var-
ious theoretical and data-analysis frameworks suggesting how the total observed vari-
ability could be apportioned to different mechanistic noise sources [Swain et al., 2002;
Paulsson, 2004].

High-precision measurements of noise in gene expression coupled with the applica-
tion of information-theoretic analyses have quantified the role of noise in gene regula-
tion. In the simplest setup, we consider gene regulation as a control process that maps
certain input transcription factor concentrations into the expression level of the regu-
lated gene. Such input/output relations have a limited dynamic range due to biophysical
constraints on gene expression (e.g, the maximal rate of transcriptional initiation), and
given that they are noisy as experimentally demonstrated, their “power” to transmit in-
formation must be limited [Tkacik et al., 2008]. Starting with precise measurements
of noisy input/output relationships, it is possible to use Shannon’s information theory
to quantify the regulatory power by computing the information flow through transcrip-
tional regulatory elements, or even ask about the capacity, i.e., the maximal achievable
flow given the measured noise [Shannon and Weaver, 1949]. Information-theoretic
measures of regulatory power are not arbitrary: they are well-founded, theoretically
unique measures satisfying certain basic expectations, for example, that information
from independent sources is additive. Furthermore, there have been promising in-
dications that it is possible to use information theory not only to analyze data, but
also to generate de-novo predictions about how biological networks should be wired
together, by postulating that the networks have evolved to maximize information trans-

mission given irreducible sources of noise in biological signaling [Tkacik et al., 2008b;



Tkacik et al., 2008). Recent evidence for such signatures of optimality has been pro-
vided in the system of gap genes in fruit fly (Drosophila melanogaster) development
[Tkacik et al., 2015].

Two essential limitations to the application of information theory to biochemical sig-

naling are addressed in this thesis:

« Restriction to treatment of either the steady state of nonlinear networks,
or dynamic linearized networks with Gaussian signals. In terms of the-
ory, biological signaling has been analyzed in the limit of temporal signals with
jointly Gaussian statistics [Tostevin and ten Wolde, 2009]; or in the limit of steady
state, where the input/output relations can be nonlinear and the distributions non-
gaussian [Tkacik and Walczak, 2011]. For toy models of discrete systems, these
restrictions have recently been partly lifted, allowing the calculation of informa-
tion rate in a nonlinear noisy system [Barato et al., 2013]. In terms of applications
to data, however, the methods proposed to estimate the information between
environmental signals and the resulting full gene activity trajectories have been
limited to large number of samples [Selimkhanov et al., 2014]. Here, we first de-
velop and evaluate estimation methods for the mutual information: i) for biological
reaction networks governed by the chemical master equation, we derive model
based information estimates and ii) decoding-based estimators that lower bound
the mutual information between a finite set of inputs and the single cell time series
data. Then we apply the methods to single cell data: i) on previously published
data of Erk and Ca®* and ii) on nuclear translocation of transcription factors in

yeast.

« Restriction to theoretical models of biochemical processes in equilibrium.
Most models of cellular signaling to which information theory has been applied
are considered to be in thermodynamic equilibrium. For example, gene regulation
through binding of TFs to their regulatory sites is almost exclusively considered
as an equilibrium process. In the field of biochemical signaling (in particular,
detection of ligand concentrations), the equilibrium results of Berg and Purcell
[Berg and Purcell, 1977; Bialek and Setayeshgar, 2005; Kaizu et al., 2014] have

recently been generalized to out-of-equilibrium situations, with interesting and



universal results about how the sensing precision of biochemical sensors can be
enhanced by energy expenditure [Lang et al, 2014]. For gene regulation, no
such systematic generalization exits, although the first steps have been taken
[Rieckh and Tkacik, 2014]. Here we focus on transcriptional regulation, where
crosstalk —the possibility that non-cognate TFs could initiate transcription — has
been neglected in previous models. We study how an out of equilibrium process
could help reduce erroneous initiation, due to crosstalk, and the conditions when

it is advantageous.






2 Background

2.1 Mathematical theory of communication

2.1.1 Introduction

When Shannon and Weaver first introduced their theory [Shannon and Weaver, 1949],
they were referring specifically to human and electronic communication, and had to

deal with three levels of communications problems:

» The technical problem: How accurately can the communication symbols be trans-
mitted.

e The semantic problem: How precisely they convey the desired meaning.

» The effectiveness problem: How effectively meaning influence desirable func-

tions.

They limited the theory to the first question and shortly discussed possible relations
between the three problems.

Throughout its 80 years of existence, the theory was shown to be generally applicable
to several areas of science. In particular, in this study, when we talk about single
cells, we might not need to contemplate the three levels of communication. In fact, we
can consider the semantic and effectiveness problems to be embedded in the internal
circuitry that leads to behaviour. Thus, the technical approach becomes sufficient for

the analysis of cellular communication in a broad sense.

In this study, communication has a particular sense, different from ordinary usage:

it refers to the information flow between the source of information and the destination.
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For instance, if the correlation between some extracellular signal (the source) and the
behaviour of cells (the destination) is greater than zero, that implies the presence of
information flow and hence communication between the environment and the cell. On
the other hand, it should be pointed out that in this case communication does not refer
to a single event, but rather it considers all possible input messages from the source, all
possible outcomes and their frequency of occurrence. Overall, it's providing a macro-
scopic', general and statistical measure for communication systems, that is valid for

the complete set of input messages and outcomes.

To clarify these ideas and frame the definitions in mathematical terms we first in-

troduce the concept of information, then information transmission and lastly channel

capacity.

2.1.2 Information and entropy (H)

The information provided by a source is intuitively equivalent to the amount of choice
that it offers. If the source emits a discrete set of possible values, with probabilities:

p(uy), p(ug), ..., p(u.), then the information of the source u is defined as:

H(u) = _ki plu:) logy (F'[ﬂv:})-.
i=1

where k is a positive number. Notice that the equation has the same form as the
Boltzmann entropy for k = kgT.

To avoid ambiguity, we will refer to this measure as entropy, but one should keep in
mind that it alludes to a measure of information and choice offered by the source, as
Shannon originally established it.

Before we continue, we will define the notation and parameters: let's set the scaling
parameter k = 1 for simplicity, use the short notation p(u) = p(u;) inside the summation,
which always runs over all possible values of u (unless specified), and use the logarithm
base 2 (log,), so that the entropy is measured in bits and has an intuitive interpretation?.
Two intuitive ideas that illustrate why the entropy is a sensible measure of information

dre:

'In the statistical physics sense.
28uch interpretation is further explained in section 2.1.3
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e When all possible values of u have the same probability 1, we expect that the
entropy grows with the number of possible choices, therefore, any monotonic in-
creasing function of z does the job. Our measure, becomes a logarithmic function
of 2.

H(u) = logy(2).

» Regarding the occurrence frequency of u: if only one message u* shows up, we
expect the information of the source to be zero (there is no choice offered by the
source). In that case p(u*) = 1 and then H(u) = 0. In fact, H(u) is maximal when

p(u) is uniform.

As an example, the entropy of a binary source, where the probabilities of the two pos-

sible values of u are p(u;) and p(u;) = 1 — p(u;), is plotted in Fig 2.1 as a function of

p(u)-
Erl'ltrnpy olf a binalry source
0.8 - =
206- I
@,
S04 |
-I-ﬂ.4
0.2 - =
ﬂ T T T T
0 0.2 0.4 0.6 0.8 1

plu,)

Figure 2.1: Entropy of a binary source, where the probabilities are p(u;) and p(u;) =

1 —p(uy).

The entropy is maximal at the uniform distribution (p(u1) = p(u2) = 0.5), correspond-
ing to the highest uncertainty.
The notion of entropy generalizes to continuous distributions and to functions of several

variables, such as a set of source signals ii:

H(@) =~ [ p@ log,(o(@)d.

As appreciated for a long time [Cover and Thomas, 2005], there are technical chal-

lenges in defining entropy for continuous state spaces, much like issues with the ab-
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solute offset for entropy in statistical physics. For example, as illustrated in [Tkacik
and Walczak, 2011] with a Gaussian distribution, the entropy of a continuous variable
depends on the choice of units: if the units change, the value of the entropy changes
as well. Therefore, the (discrete) number of possibilities must depend on how finely u
is measured; nominally, if u were known with arbitrary precision, the number of states
would be infinite. However, we will find that the relevant quantity that measures in-
formation transmission is defined as a difference of entropies, solving the unit/offset
problem. On the other hand if we specify the measurement precision and discretize u

by binning, no practical problems arise [Cover and Thomas, 2005].

We have defined here the information of a source as the entropy or uncertainty of
the source’s distribution, but we are interested in how the information is transmitted

from the source to the receiver; as Shannon initially formulated:

“The fundamental problem of communication is that of reproducing at one point either

exactly or aproximately a message selected at an other point.”

For that purpose, he proposed the mutual information or information transmission,
which measures the information flow between two “points”.

2.1.3 Mutual information (MI)

Let's consider a communication system that has several components: first the infor-
mation source (u), then the transmitter (responsible for encoding the message), the
channel, the receiver (responsible for decoding the signal) and at the end, the informa-

tion recipient that receives the final signals (z) (see Fig 2.2).

To measure the information flow through the communication system, we consider
the discrete random variables u (input signal) and = (output signal), with probability
distributions p(u) and p(z) correspondingly. At the source, we know that the information
is measured with the entropy H(u). However, if the channel is noisy, in general, the
information transmitted to the recipient will be lower. In fact, we can measure the

uncertainty introduced by the noise, by measuring the conditional entropy of u knowing
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Communication system

Information| Message - Transmitted Received - Message | Destination
——== |Transmitter| —————= | Channel| ———————=| Receiver | ——
source (U) - 5|g nal 5|g nal - (x)

—————————————

____________

Figure 2.2: Communication system, based on the scheme proposed by Shannon in
[Shannon and Weaver, 1949]

the output signal z, that is H(u|z). Following this idea, the information transmitted is

obtained by subtracting from the source entropy the average conditional entropy:
I(w;z) = H(u) — (H(ul2)),, (2.1)

where (.}, represent the average over the distribution p(x), for a short notation we
will ignore the brackets and refer to the average conditional entropy as (H(u|z)),, =
H(u|z).

If we write the conditional distributions in terms of the joint distribution p(u, ) using
p(u, ) = p(u)p(z|u) = p(z)p(z|u), it can be shown that the information transmission is
symmetric in u and z:

I(w5) = 3 plus, 2,) og, (%) , 2.2)

hence, it is called “mutual information”. Consequently, Eq 2.1 can likewise be written
as:

I(u;7) = H(z) — (H(z[u)),. (2.3)

If the two variables are independent P(u,z) = P(u)P(z), then the conditional entropy
H(u|x) = H(u), and no information is transmitted I (u; z) = 0. From this, we clearly see
that when there is no statistical dependency there is no mutual information. Therefore,
I is an appropriate measure of statistical dependency between two random variables.
As such, | is free of assumptions about the nature of dependency, and encompasses
both linear and nonlinear correlations. This quantity has convenient properties to serve
as a proper measure of information transmission as enlisted in [Tkacik and Walczak,
2011].
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« |t is always a positive quantity, and zero when no information is transmitted.

|t is well defined for continuous or discrete quantities. The variables « and = can

be either continuous, discrete or a mixture thereof.

o |t is reparametrization invariant. Mutual information between u and z is the same
as mutual information between any invertible transformation of the variables, that
is I(u;z) = I(f(u);h(z)). This is very convenient in the context of biological
data analysis, where where experiments often report, e.g. raw intensities or log-
transformed intensities on the microarray chips or in fluorescence activated cell

sorting.

« |t obeys data processing inequality. Suppose that = depends on u and y depends
on z (but not directly on u). In other words, one can imagine a Markov process,
u — = — y, where arrows denote a noisy mapping from one value to the next.
Then I(u; x) = I(u;y), that is, information necessarily either gets lost or stays the

same in the transmission process, but it is never spontaneously created.

» |t has a clear interpretation and units. For the logarithm base 2 used in Eq 2.2 the
mutual information is measured in bits (binary units). If there are I bits of mutual
information between input ¢ and output g, we can interpret that on average 2/(+=)

distinguishable levels of = can be reached by modulating the values of u.

Continuous representation

The corresponding continuous version for mutual information is:

I(u;z) = .[._- fu p(z,u)log, (pﬁ;}?ﬂ)) dudz, (2.4)

which can also be expressed in terms of the entropy as in equations 2.1 and 2.3, where

the corresponding continuous version of the average conditional entropy H(z|u) is
Hezlu) = [ Hislwp(u)du
=— L‘/;p{z,u) log, (p(z|u))dzdu. (2.5)
The H{(z) (similarly to H(u)), the differential entropy of = is defined as

H(z) = — f p(x) logy(p(x))dz. (2.6)
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Channel capacity

The mutual information defined over the joint probability distribution p(u,z) is not an
intrinsic property of the channel. If we examine Eq 2.1, the first term (H(u)) is totally
independent of it, while the second term (H(z|u)) measures the signal distortion due
to the noise through the channel. To maximize the information transmission through
a specific channel, we could think that a uniform probability distribution of the source
would maximize H(u) and therefore the mutual information. However, the uncertainty
of z (introduced by the channel) for each value of u is not necessarily the same. There-
fore, to find the maximum information transmission we need to find the probability dis-
tribution of inputs p(u) that maximizes I(u; z) through a specific channel.
In information theory this quantity is known as channel capacity C'(u;z) and is mathe-
matically defined as

C = IE:?‘.;'((H(I} — H(z|u)). (2.7)

In other words, the channel capacity is the mutual information maximized over all pos-
sible distributions of the signal which is an intrinsic property of the channel itself.
Finally, if the channel is noiseless then H(z|u) = 0. However the majority of real-world
communication channels are noisy, thus the noisy channel coding theorem becomes
relevant. This theorem states that if the entropy of the source is lower than the channel
capacity, despite some degree of noise, with an adequate coding, the information can
be transmitted with arbitrarily low error. For an information source with entropy greater
than the channel capacity, no coding could transmit all the information that the source
provides.

Therefore, the capacity is a very useful quantity, because it provides with a hard upper

bound to how accurately data can be transmitted through a channel.

2.2 Genetic regulatory networks

Single-cell organisms respond to multiple environmental changes and cells in multicel-
lular organisms communicate with each other to achieve collective responses. How
fast cells can respond to external stimuli is limited by the speed at which internal mech-

anisms transmit and process the information. In fact, there is a wide range of response
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timescales, from milliseconds in synaptic signaling to hours or days in embryonic de-
velopment. This reveals the large variety of mechanisms used to transmit and process
information and generate responses.

Cells have developed an elaborate machinery that allows them to communicate with
the environment as well as each other and it involves nearly half of the protein abun-
dances across organisms. In human (Hela) cells around 40% of the proteome is in-
volved in genetic and environmental information processing, while for E. coli the value
exceeds 50% when cells grow in minimal medium [Milo and Philips, 2016]. In this sec-
tion, we will provide a biological description of signaling and gene regulatory networks.
These primary systems are in charge of transmitting and processing information that

leads to cell response.

2.2.1 Caell signaling

The main communication channel used by cells to integrate environmental informa-
tion is represented by signaling networks. These networks comprise sequences of
chemical reactions and allosteric modifications that start at the cell surface. When an
extracellular signal (ligand) binds typically to a transmembrane receptor, it changes its
state from susceptible to active, which in turn activates one or more intracellular sig-
naling pathways (see Fig 2.3). The pathways are composed of intracellular signaling
proteins, which process the signal and distribute it to the appropriate targets. The tar-
gets are generally called effector proteins and implement the change in cell behaviour.
Normally they are transcriptional regulators (also called transcription factors), ion chan-
nels, components of a metabolic pathway, or parts of the cytoskeleton.

The ligands bind to specific receptor proteins and in humans there are 1500 genes en-
coding different types of receptors. However, cells continuously develop mechanisms
to improve specificity, e.g. the signaling complexes formed at activated receptors. Such
complexes mainly recruit signaling molecules that will be part of the signaling pathway
thus improving the accuracy of the signal delivery.

Through a series of downstream phosphorylation and dephosphorylation processes,

the signaling proteins induce changes inside the cell: they can amplify signals when
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Figure 2.3: Cell signaling. The scheme represents the information flow from envi-

ronmental signals, via the interaction of ligands (yellow) with the receptor (in green),
activating intracellular signaling cascades in the cytoplasm and latter modifying gene

regulation in the nucleus.

they are poor and frequently integrate certain extracellular signals for an appropriate
response. For example, cell proliferation often depends on a combination of signals
that promote cell division, survival, and growth [Alberts et al., 2015].

For cell responses that require only covalent modifications of pre-existing downstream
proteins, like the effector proteins interacting with the cytoskeleton, the speed of re-
sponse is on the order of seconds to minutes, allowing a rapid spatial and temporal
control of cell behaviour.

Ultimately, the most common destination of effector proteins is the nucleus, where they
influence the activity of transcription factors. Consequently, these factors modify their
binding properties to specific regulatory regions of the DNA leading to changes in gene
regulatory networks which eventually are responsible for a behavioural response (see

Fig 2.3).

Mathematical models used to describe cell signaling are various and diverse in
complexity. The basic model for chemical kinetics are Rate Equations (REs), a set of
ordinary differential equations, whose solution for a given set of initial concentrations
report the concentration levels of the relevant molecules through time. The limitation of
this modeling approach is the assumption that diffusion rates are close to infinity, and

that the copy number of molecules is very large, so that concentrations can be treated
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as continuous. However, that is not always the case in cell signaling. For instance,
the budding yeast in the MAPK phosphatase pathway, contains approx. 40 copies
of the Msg5 signaling protein while the most abundant proteins have up to 2 x 10*
copies. The low copy numbers reveal the stochasticity of the process as mentioned
in the introduction. For this reason, the appropriate formalism to describe signaling
networks uses probability distributions instead of concentrations. One such method
is the Chemical Master Equation (CME) [Van Kampen, 2007], while other methods,
like the Reaction-Diffusion Master Equation or the Brownian Dynamics, use the spatial
distribution of the molecules [Smith and Grima, 2018].

2.2.2 Gene regulation

The genetic code contains hereditary information that represents the blueprint for the
organism as a whole. It includes certain species characteristics as well as particular
traits inherited from its ancestors. The DNA molecule consists of two polynucleotide
chains made up of 4 nucleotide subunits (bases). The bases attached to the sugar-
phosphate backbone can alternate between A, C, G, T, corresponding to adenine, cy-
tosine, guanine and thymine respectively. The cell can use the information encoded
in the DNA through gene transcription and subsequent translation of protein coding
genes. For transcription, the RNA polymerase can copy a section of the DNA into a
single-stranded nucleotide RNA sequence. The chemical structure of the RNAs is sim-
ilar to the DNA, with the difference that it contains uracil (U) instead of thymine, and the
sugar that forms the backbone is ribose instead of deoxyribose.

A small fraction of RNAs are non-coding and are not translated into proteins since they
have specific functions, like being part of the ribosomes. On the other hand, the ma-
jority of RNAs, callled messenger RNAs (mRNAs), are translated into proteins. The
translation process is orchestrated by the ribosomes which make use of transporter
RNAs (tRNAs) in order to match a nucleotide triplet on the mRBNA (i.e. codon) with a
corresponding amino acid, thus forming a polypeptide chain that will fold into a func-

tional protein.

Multicellular organisms have a vast variety of cell types (200-400 in a healthy hu-
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man). Nevertheless, every single cell shares the same genome. What is then different
between cells types if their genetic code is identical? In humans, the DNA is about 10°
nucleotides long, and it encodes ~ 10! proteins, but no single cell needs to synthesize
all these proteins at once. Actually, only 30 — 60% of coding genes are transcribed into
RNAs in a typical human cell. Hence, an essential difference between cell types is the
amount of expressed protein concentrations that they posses of each type, in particu-
lar, which genes are silenced (i.e., not transcribed at all).
The process of extracting information from the DNA to synthesize proteins is called
gene expression, while the cellular processes controlling which genes are expressed
is called gene regulation.

The central dogma proposed by Francis Crick, [Crick, 1970] (see Fig 2.4 A) argues

A B
Central dogma Gene regulation

()
\ o ]:,T.'.'-'.:.":.'T-Z-""'"'

transcription ‘/ ®)

translation

protein (k._Q.,..f“-

Figure 2.4: Central dogma and gene regulation. A The central dogma scheme
as introduced in the original paper of Francis Crick. B A simplified representation of
the elements involved in transcriptional regulation. The binding site is a short DNA
sequence where the transcription factor binds and make it more or less likely that the

RNA polymerase initiates transcription of the gene.

that the information flow to generate proteins follows the path from DNA to RNA to
protein. In his original work, he suggests that in extraordinary circumstances the in-
formation might flow from DNA to proteins and from mRBNA into DNA, but never from
proteins to DNA, mRNA or back to proteins. Nevertheless, in 1961 Monod and Jacob
[Jacob and Monod, 1961] , showed experimentally the existence of regulatory proteins
that interacted with the DNA to induce or repress gene expression. Thus, the central

dogma is restricted to the information flow regarding the constitutive elements of the
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proteins, while the specific proteins called transcription factors (TFs) convey informa-
tion to the DNA and activate the gene expression machinery. The TFs control which
proteins should be synthesized, when are they required and how many of them are
necessary.

In principle, regulation of gene expression can occur at several stages of protein syn-
thesis: selecting when and which genes are transcribed by the RNA polymerase during
transcription, choosing which mRNA molecules are translated by the ribosome during
translation or after translation, controlling splicing and splice variants or the proper fold-
ing of the proteins and their degradation. Nonetheless, for most genes, transcriptional
regulation is the most important aspect of regulation, and for most organisms, approx-
imately 10% of the protein-coding genes correspond to transcription factor proteins.
Transcriptional regulation begins with transcription factors identifying specific sequences
along the DNA-those sequences are called cis-regulatory regions or binding sites (see
Fig 2.4 B). The recognition of the regulatory domains is possible mainly because of the
complementary surface of the protein that matches the cis segment in the DNA. Addi-
tionally, TFs can operate as repressors or activators; activators promote transcription
of a gene while repressors prevent the process. For example, in E. coli, the tryptophan
repressor switches the gene off, while the cAMP binds to CRP, an activator that pro-
motes the usage of alternative carbon sources when glucose is not available. But for
eukaryotes the regulation process is much more complicated. Namely, compared to
prokaryotes, the binding sites are shorter, the DNA is longer, there are several types
of regulators, the transcription factor-binding site specificity is substantially decreased
and the the binding affinities are also reduced. Typical binding sites are ~ 10— 15 base
pairs (bp) long for prokaryotes, and ~ 5 — 10 base pairs long for eukaryotes. The DNA
of E. coliis in the order of 10° bp and in humans on the order of 10? bp. Therefore, it is
more likely that a sequence of 6 bp appears randomly in a human genome. Similarly,
a large variety of TFs in eukaryotes lead to lower specificity because of binding site
similarities due to decreased length. Hence, transcriptional regulation in eukaryotes
involves several transcription factors, the specific interactions between them and vari-

ous cis-regulatory regions.

Turning back to the description of cell signaling and gene regulation we thus rec-
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ognize that the processes can be complex and specific to each system, making the
networks very diverse. At the same time, the formalism described at the beginning of
this chapter is only concerned with the input and output probability distributions. De-
spite the detalils of the network the correlation between the two random variables can
be quantified and measured in bits. Consequently, we can frame the function of bio-
chemical networks in those terms. For cell signaling, the concentration of ligands can
be considered the input while any observable change in cell behavior the output (e.g.
concentration of TFs, cell growth, motion speed of motion, etc.). Similarly, for gene
regulation, the concentration of TFs can be regarded as input while the mRNA or pro-
tein levels the output. The initial studies of biological networks following this framework
started in the field of neuroscience during the early 50’s. After the seminal papers of
[MacKay and McCulloch, 1952] many studies have followed, both experimentally and
theoretically. In other areas of biology, however, it's been only since the late 2000's
that this framework became a popular formalism to study biological systems. We list
relevant studies where mutual information has been used to investigate the properties
and functions of biological systems in table 2.2.2. The relevant reviews are considered
first, followed by the studies which experimentally measured information transmission

in specific biological systems and eventually the theoretical approaches.

Information theory applied to biology
Reference system details
Perspectives on theory at the interface of | - (Review) Provides prospects towards a unified theoretical
physics and biclogy [Bialek, 2018] physics of biological systems.
Information processing in living systems | - (Review) Presents an exhaustive analysis of information theory-
[Tkacik and Bialek, 2016] based studies, both: data-based and theory studies.
Environmental sensing, information trans- | - (Review) Establishes the achievements and limitation of informa-
fer, and cellular decision-making [Bowsher tion theory applications into biclogy.
and Swain, 2014]
Biophysics: searching for principles | - Book.
[Bialek, 2012]
Information transmission in genetic regula- | - (Review) Summarizes the applications of information theory to
tory networks: a review [Tkacik and Wal- gene regulatory networks.
czak, 2011]
The application of information theory | - (Review) Describes in detail the bases of information theory and
to biochemical signaling systems [Rhee three successful application in biology.
at al, 2012]
How information theory handles cell signal- | - (Review) Motivates the use of information theory in cell signaling.
ing and uncertainty [Brennan ot al, 2012]
Information theory and neural coding | neural system (Review) Shows the varety of applications that information the-
[Borst and Theunissen, 1993] ory has in neuroscience.
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Information flow and optimization in tran-
scriptional regulation [Tkack et al., 2008]

Drosophila embryo

Estimates, for the first time, the mutual information in gene ex-
prassion, where [ = 1.5 £ 0.15 [bits] are found to be ~ 90% of
the optimal theoretical value: I, = 1.7 [bits].

Estimating mutual information and multi-
informaticn in large networks [Slonim of &,
2005]

yeast Saccha-
romyces cerevisias

Estimates the information relations that characterize large net-
works and find more than 1 [bit] of mutual information between
pairs of gene expression levels.

Information transduction capacity of noisy
biochemical signaling networks [Cheong
at al, 2011]

mouse (Tumor Mecro-
sis Factor)

Estimates I' = 1.8 [bits] of mutual information, from a dusters of
14 cells, suggesting that collective cellular response can increase
information transfer.

Positional information, in bits [Dubuis of &,
2013b]

Drosophila embryo

Estimates I' = 4.14 [bits] in the four gap genes, which define the
position of a cell's position with ~ 1% error.

Robustness and compensation of infor-
mation transmission of signaling pathways
[Uda et al., 2013]

PC12 Cells

Calculates ~- 1 [bit] of mutual information between growth factor
and gene expression.

Limits on information transduction through
amplitude and frequency regulation of
transcription factor activity [Hamsen and
O'Shea, 2015]

yeast Saccha-
romyces cerovisiag

Finds that two genes can transduce more information than a sin-
gle one and that the amplitude transmits more information than
the frequency in the system.

Information transfer by leaky, heteroge-
necus, protein kinase signaling systems
[Volictis at al, 2014]

Human (Hel a calls)

Estimates about 1 [bif] of information on the ERK signaling path-
way, using the knn method.

Accurate information transmission through
dynamic biochemical signaling networks
[Selimkhanov ef al, 2014]

ERK, calcium and
MNF-<B

Measures ~ 1.5 [bits] of mutual information encoded in dynami-
cal signals, using the knn method.

Information Transfer in  Gonadotropin-
releasing Hormone (GnRH) Signaling
[Garner of &, 2016; Garner ot al, 2017;
Voliotis et al, 2018]

L5T2 and Hela cells

Finds that out of 3 bits of input entropy, less than 1 [bif] of in-
formation is transmitted through both systems, estimations used
= 10, 000 individual cells and the knn method.

Dynamic sampling and information encod- | Fibroblast cells Uses mone than 10.000 cells to estimate ~- 1 [bit] of informa-
ing in biochemical networks [Potter of al, tion encoded in ATP-induced calcium response, using the knn
2017] method.

Information processing in the NF-<B path- | MEF cells mouse Estimates less than 1 [bit] of information at several time points,
way [Tudelska et al, 2017] using the knn method.

Distributed and dynamic intracellular | Saccharomyces cere- | Estimates up to ~ 2.5 [bits] of information from dynamic re-
organization of extracellular information | wsiae sponses of multiple transcription factors.

[Granados of &, 2018]

Information capacity of genetic regulatory
elements [Tkacik ot al, 2008a]

Genaral method with

examples on yeast
and Drosophila

Calculates the channel capacity of simple gene regulation ele-
ments. Finding that for realistic nolse levels more than 1 bit of
information should be achievable.

Mutual information between in- and out-
put trajectories of biochemical networks
[Tostevin and ten Wolde, 2009]

E cofl

Assumes a Gaussian model to estimate the Ml between temporal
signals, with the application to the chemotaxis network of bacte-

ria.

Optimizing information flow in small ge-
netic networks. |, II, Ill, IV [Tkatik of al.,
2009a; Walczak ot al, 2010b; Tkatik ot al.,
2012; Sokolowski and Tkacik, 2015a]

Develops general
methods with some
applications on
Drosophila

A series of optimal information transmission studies in small ge-
netic networks, considering: a single transcription factor control-
ling one or mone genes, the role of feed forward interactions be-
tween genes, a single, self-interacting gene and spatially coupled
gene regulatory networks at the steady state.




23

Identifying sources of variation and the
flow of information in biochemical networks
[Bowsher and Swain, 2012]

General theory with
application in yeast

Introduces a variance decomposition method and shows that
80% of the response in the osmosensing system in yeast is in-
duced by the input stress.

Time-dependent information transmission
in a model regulatory circuit [Mancini et al,
2013]

Studies the architecture of biochemical two-state modal networks
that maximize the information transmission, when the time de-
pendent response is delayed respect to the dynamical input.

Efficiency of cellular information process-
ing [Barato et al., 2014]

Proposes an entropic rate that is bounded by the thermodynamic
entropy production and characterizes how much the internal pro-
cess learns about the external process.

Optimal prediction by cellular signaling net- | E. coff Studies how accurately linear signaling networks can predict fu-
works [Becker of al, 2015] ture signals.

The Impact of Different Sources of Fluctua- | synthetic circuit Suggests that single cell circults can transmit higher information
tions on Mutual Information in Biochemical than the computed by the population. Where cell to cell variability
Metworks [Chevalier et al., 2015] can lower the information transmission estimations.

Information processing by simple molecu- | - (uantifies how extrinsic and intrinsic noise affects the transmis-
lar motifs and susceptibility to noise [Mc sion of simple signals along simple motifs of molecular interaction
Mahon ot al, 2015] networks via estimating information transmission.
Thermodynamics of computational copy- | - Studies the optimality and efficiency of a canonical biochemical
ing in biochemical systems [Ouldridge readout network.

at al, 2017]

Multidimensional biochemical informa- | - Studies how biochemical systems can process multidimensional
tion processing of dynamical patterns information embedded in dynamical patterns.

[Hasegawa, 2018]

Statistics of optimal information flow in | - Computes the statistics of the maximal mutual information trans-
ensembles of megulatory motifs [Crisanti mitted in an ensemble of regulatory motifs.

at al, 2018]

Information content of dowmwelling sky- | Opsin Quantifies circalunar and circadian regularities in the spectrum of

light for non-imaging visual systems [Thier-
mann et al., 2018]

dowrmwelling radiance salient to non-imaging opsins.
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3 Estimating information in time-varying

signals

The work presented in this chapter was conducted jointly with and Gasper Tkacik and
Jakob Russ, it corresponds to the theoretical section of the paper submitted for publi-
cation to PLOS Biology (see pre-print in [Cepeda-Humerez et al., 2019]) and is repro-

duced here with minimal changes.

Abstract

Across diverse biological systems—ranging from neural networks to intracellular sig-
naling and genetic regulatory networks—the information about changes in the envi-
ronment is frequently encoded in the full temporal dynamics of the network nodes.
A pressing data-analysis challenge has thus been to efficiently estimate the amount
of information that these dynamics convey from experimental data. Here we develop
and evaluate decoding-based estimation methods to lower bound the mutual infor-
mation about a finite set of inputs, encoded in single-cell high-dimensional time se-
ries data. For biological reaction networks governed by the chemical Master equa-
tion, we derive model-based information approximations and analytical upper bounds,
against which we benchmark our proposed model-free decoding estimators. In con-
trast to the frequently-used k-nearest-neighbor estimator, decoding-based estimators
robustly extract a large fraction of the available information from high-dimensional tra-
jectories with a realistic number of data samples. We apply these estimators to pre-
viously published data on Erk and Ca?* signaling in mammalian cells and to yeast

stress-response, and find that substantial amount of information about environmen-
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tal state can be encoded by non-trivial response statistics even in stationary signals.
We argue that these single-cell, decoding-based information estimates, rather than the
commonly-used tests for significant differences between selected population response
statistics, provide a proper and unbiased measure for the performance of biological

signaling networks.

3.1 Introduction

For their survival, reproduction, and differentiation, cells depend on their ability to re-
spond and adapt to continually changing environmental conditions. Environmental in-
formation must be sensed and often transduced to the nucleus, where an appropriate
response is initiated, usually by selectively up- or down-regulating the expression levels
of target genes. This information flow is mediated by biochemical reaction networks, in
which concentrations of various signaling molecules encode for different environmental
states or different response programs. This map between environmental input or re-
sponse output and the internal chemical state is, however, highly stochastic, because
typical networks operate with small absolute copy numbers of signaling molecules [EI-
dar and Elowitz, 2010]; moreover, different environments can be encoded by the same
signaling molecule, by differentially regulating the dynamics of its concentration [Purvis
and Lahav, 2013]. This raises two fundamental questions: first, how much information
the cells could, even in principle, encode in the combinatorial and possibly time-varying
concentrations of multiple signaling molecules and how such information could be plau-
sibly read out during “downstream” processing; and second, how can we quantify, in
an unbiased and model-free fashion, the amount of information available to the cells

from limited experimental data.

Information theory provides a framework within which the theoretical study of limits
to communication as well as the empirical study of actual information flows can be ad-
dressed [Shannon and Weaver, 1949]. Applications of information theory to questions
in biology and, in particular, neuroscience started already in the 1950s and continue to
this day, with the main focus to understand how—and with what accuracy—neural ac-
tivity encodes information about the environment [Paninski, 2003; Strong et al., 1998;

Quiroga and Panzeri, 2009]. Applications of analogous techniques to biochemical sig-
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naling only started recently and represent an active area of research at the interface of
physics, biology, statistics, and engineering [Bowsher and Swain, 2014; Bialek, 2012;
Tkacik and Bialek, 2016; Tkacik and Walczak, 2011].

Recent theoretical work analyzed the reliability of information transmission through
specific reaction systems in the presence of molecular noise, e.g., during ligand bind-
ing [Thomas and Eckford, 2016], in chemotaxis [Tostevin and ten Wolde, 2009], gene
regulation [Tkacik et al., 2008a; Sokolowski and Tkacik, 2015b; Sokolowski et al., 2016;
Tkacik ef al., 2012; Walczak et al., 2010a; Tkacik et al., 2009b; Rieckh and Tkacik,
2014], biochemical signaling networks [Cheong et al., 2011], etc., and asked how such
transmission can be maximized by tuning the reaction rates. Generally, these studies
focused on steady state, by considering the information encoded in a single tempo-
ral snapshot of the reaction network at equilibrium given the input signals. Rigorous
extensions to dynamical signals have been either rare and only possible for simple
cases, like the BIND channel [Thomas and Eckford, 2016], or required specific oper-
ating regimes that permitted linearization and Gaussianity assumptions [Tostevin and
ten Wolde, 2009; Tostevin and Ten Wolde, 2010; de Ronde et al., 2011]. At its core, the
analysis of signal transduction through nonlinear noisy chemical systems requires one
to have control over the distribution of concentration trajectories given the (possibly)
time-varying inputs; even if it were possible to calculate this distribution in principle, the
curse of dimensionality puts strong limits to the manipulations required to compute the
information transmission. Consequently, problems of this kind are currently considered

intractable in their full generality.

Empirical estimates of information transmission in biochemical networks similarly
focused on the steady state [Dubuis et al., 2013b; Voliotis et al., 2014], or consid-
ered only specific, hand-picked dynamical features, such as the amplitude or the fre-
quency of the response, as information carriers [Hansen and O'Shea, 2015]. Recent
developments of fluorescent reporters and microfluidics have enabled the characteri-
zation of dynamical responses at a single cell resolution using large (> 10*) numbers
of sampled response trajectories, thereby permitting direct information estimates us-
ing generic estimators like the k-nearest-neighbors (knn) [Selimkhanov et al, 2014].
Existing approaches, however, suffer from severe limitations: they still require a pro-

hibitive number of samples, especially when the response is distributed over multiple
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chemical species; or they necessitate uncontrolled assumptions about trajectory fea-
tures that are supposed to be “relevant”. We recently proposed and applied decoding-
based information estimators [Granados et al., 2018] as an alternative that draws on
the past experiences in neuroscience [Borst and Theunissen, 1999; Marre et al., 2015;
Rieke et al., 1993] to dissect the yeast stress-response network. In this study we
provide a detailed account of the new methodology, show that it alleviates the most
pressing problems of existing approaches, and benchmark it against synthetic and real

data.

3.2 Models and Methods

3.2.1 Biochemical reaction networks

At their core, cellular processes consist of networks of chemical reactions. A chemical
reaction network consists of a set of m molecular species {X;, Xs,. .., X} that interact

through K coupled reactions of the form:

WX+ K —2 s K+ K, k=1,... K (3.1)

where v4,,..., v/ . and v, ..., ", are coefficients that determine how many molecules
of each species are consumed and produced in the k-th reaction. #; ...8, € R* deter-
mine the rates at which the reactions occur and depend on binding affinities of chemical

species, temperature and possibly the external conditions.

If we assume that the system is well-stirred, in thermal equilibrium and the reaction
volume is constant, it can be shown that the probability that a reaction of type k takes
place in an infinitesimal time interval [t,f + dt] can be written as a.(Z, 8, )dt = 8,.g,(%)dt,
where & = [Z4,..., Zn|T € NI contains the amounts of molecules of the m species

that are present in the system at time ¢, and g,.(%) = [[; {;J counts all possibilities
of choosing the required reaction molecules out of all available molecules [Gillespie,
1992; Van Kampen, 2007]. &, is a constant that depends on the physical characteristics

of the cell but also on the environmental conditions.

Let us denote the probability that # molecules of the m species are present in the
system at time ¢t € R* by p(Z,t) and define the stoichiometric change vectors v, =
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[Vigs . )T € Z™, k = 1,..., K, as the net changes in the amount of molecules in

the reactions, i.e. v = v/, — v}, i=1,...,m, k=1,..., K. Then it can be shown [Van

Kampen, 2007] that the chemical master equation (CME) can be written as:

K K
P(E,1) = —p(%,0) Y ay(%,60,) + ) p(F — vie, 1)y (& — v, 0p), (3.2)
k=1 k=1
or in a more compact form [Van Kampen, 2007]

p(t) = Mp(t), (3.3)

where p(t) is a vector with components p(%,t), which is, in principle, infinite dimen-
sional, and M contains the transition rates between all possible states, e.g. the transi-

tion rate from state &}, = # — v;. to state % is given by
M;z = ai(®}, 0) — 835, Y a,(,6,), (3.4)
q

where 4 is the Kronecker delta, which is 1 when # = #|, and 0 otherwise.

The CME given in Eq (3.3) is an instance of a continuous-time discrete-state-space
Markov Chain for a random process X that can be solved exactly only for a few simple
cases. It is nevertheless possible to efficiently generate samples = of the random
process X, which we will refer to as “trajectories” or “paths”, for a selected time interval,
t € [0, T], according to the correct probability distribution p, by the Stochastic Simulation
Algorithm (SSA, or the Gillespie algorithm) [Gillespie, 1977].

To study information transmission through the biochemical networks described by
the CME, we need to define the input and output signals. In the simplest setup consid-
ered here, the input U is a discrete random variable that can take on one of the ¢ = 2
possible values, U € {uY, u® ... u@}. Each input in general corresponds to a dis-
tinct set of reaction rate constants #, but in models of real biological networks, changing
input often modulates only one or a few rates in the system, e.g., by representing the
change in a key external ligand concentration, receptor activity, etc. Changes in the in-
put are reflected in changes in the resulting trajectories of chemical species amounts,
z. Typically, only a subset of chemical species could be considered as biologically-
relevant “outputs” that encode the information about the environmental change: this

would correspond to marginalizing p in Eq (3.3) over the unobserved (non-output)
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chemical species for the purposes of information transmission. While this is an interest-
ing theoretical problem in its own right, here we work with simple toy examples where
the output will be the trajectory, z, over the complete state space, i.e., we assume that
all chemical species in the reaction network can be fully and perfectly observed. As we
explain below, this allows us to define and compute the mutual information between a
discrete input, U, and the output random process X given by the CME in a straightfor-
ward fashion. We later show that this computation can be carried out also when the
continuous-time process X is sampled at uniform discrete times, as would be the case

with experimental measurements.

3.2.2 Mutual information between discrete inputs and response

trajectories

Information theory introduces the mutual information as the measure of fidelity by which
changes in one random variable, e.g., the input U, can effect changes in another ran-
dom variable, e.g., X. In this sense, mutual information is simply a measure of statis-
tical dependency (i.e., any correlation, be it linear or not) between U and X, and can
thus be written as a functional of the joint probability density function p(z, u):

p(z,u)
I(X;U) = f[p{a: u) log, (px(x}p{,{u}) dudz (3.5)

where py and px are the marginal density functions for U and X, respectively, and we
have generically written » and = as continuous variables; if they are discrete, integral
signs are replaced by summations over the support for the corresponding probability

distributions, as appropriate.

Mutual information is a non-negative symmetric quantity that is measured in bits,
and is zero only if X and U are statistically independent. When studying information
transmission through a channel ' — X specified by p(z|u), for which U serve as inputs

drawn from an input distribution p;(u), it is common to rewrite Eq. (3.5) as

I(X;U) = HU) - H(U|X) = H(X) — H(X|U), (3.6)
where H(X) is the differential entropy of X (and analogously for H(l/)), defined as

H(X)=— L px (z) log, px () dz. (3.7)



31

and the conditional entropy, H(X|U), is
H(X|U) = fU H(X|u)po(u) du = — fU [x pu(w)p(zlu) log, p(zlu) dzdu.  (3.8)

Equations (3.6) can be interpreted in two ways: information is either the differ-
ence between the total variability in the repertoire of responses X that the biochemical
network can generate (measured by the response entropy, H(X)) and the average
variability at fixed input that is due to noise in the network (measured by the noise
entropy, H(X|U)); alternatively, information is also the entropy of the inputs, H (L), mi-
nus equivocation H(U|X), or the average uncertainty in what input was sent given that
a particular response was observed. These interpretations make explicit the depen-
dence of information both on the properties of the channel (the biochemical reaction
network), as well as on the distribution of signals p;; that the network receives. In
this work, we will consider discrete inputs and will assume uniform p;;. It is, however,
also possible to compute the channel capacity C' by maximizing the information flow at

given p(z|u) over all possible input distributions,
C =max I(X;U); (3.9)
U

Shannon’s classic work then proves that error-free transmission at rates higher than
those given by capacity is impossible, while error-free transmission at rates below ca-
pacity can be achieved with the optimal use of the channel. Contrary to engineering,
where the focus is on finding encoding and decoding schemes that best utilize a given
channel, in biophysics and systems biology mutual information is used as a tool to
quantify the limits to biological signal processing due to noise without needing to make

assumptions about possible biochemical encoding and decoding mechanisms.

The setup we consider here is one in which inputs U are iid drawn from a uni-
form distribution and change rarely, i.e., at a rate that is much lower than the (inverse)
timescale on which the reaction network in Eq (3.1) relaxes to its steady state. We
assume that after an input change, we observe a fixed-time segment of the complete
network dynamics, z, which is a sample path in m-dimensional discrete space, making
direct calculation of information, I(X'; U), by integrating / summing over all possible tra-
jectories as implied by Eq (3.5) intractable. We will nevertheless show that estimates

of exact information are possible if the reaction network is known, by explicitly using
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the transition matrix M of the Markov Chain from Eq (3.3) and generating exact sample
paths, that is, realizations of X, using SSA. We call this model-based approach exact
Monte Carlo approximation and contrast it to uncontrolled model-free estimations such
as those obtained by using Gaussian approximations or k-nearest-neighbors methodol-
ogy. We then introduce various decoding estimators and establish a hierarchy through

which these estimates upper and lower-bound the true information, as shown in Fig 3.1.

Information tranamizsion
Decoding f bower bound Approximations Decoding / upper bound
Model-free Model-based Model-based Model-free Model-based
Support Vector Machine
VM) Maximum A Bxact
Posterior (MAF} Monte Carlo

Neural Metworks [MN)

Figure 3.1: Information transmission between discrete inputs and response tra-
jectories in biochemical networks. For fully-observed reaction networks whose dy-
namics are governed by a known chemical Master equation, information can be approx-
imated to an arbitrary accuracy via Monte Carlo integration for either continuous-time
or discrete-time response trajectories (model-based exact Monte Carlo, Section 3.2.3).
Since full knowledge of the reaction system is used, these approximations are tractable
deep in the regimes where model-free estimations break down with uncontrolled er-
rors (Section 3.2.4). True information estimates are lower-bounded by model-based
maximum a posteriori (MAP) or Bayes optimal decoding (Section 3.2.5). This decod-
ing gives the lowest average probability of error and the corresponding information
lower bound can be used as a benchmark for information estimates derived from other
model-free decoding approaches (that have at least the error probability of the MAP
decoder); in Section 3.2.6 we compare Support Vector Machine (SVM), Gaussian De-
coding (GD) and Neural Network (NN) decoding approaches. Upper bounds like the
Feder-Merhav bound [Feder and Merhav, 1994] and our improvement on it [Hledik
et al., 2018] complete the picture by estimating the gap between optimal decoding-

derived and exact information values (Section 3.2.5).
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3.2.3 Exact information calculations for fully observed reaction

networks

Responses in continuous time. Given the specification of the biochemical reac-
tion network in Eq (3.1), we sample N trajectories, x, using the Gillespie (SSA) algo-
rithm. Each trajectory x can be represented as the sequence of consecutive states
representing molecular species counts, s = [s, s5,..., 5,|, where s; = #(t = 0), etc.,
and s, = #(t = Y1, t;)), and the sequence of time intervals spent in each state,
t=[t1,....0.), 0<t; <T,i=1,...,rand T = > [ t;. Then the likelihood of = for a

given input u is:

p(z|u) = p(s1) exp(Maya,t1) 1—[ Mis;_, eXp(Mys;t:) (3.10)
i=2

where p(si) is given by the initial conditions of the process, and the transition matrix
M depends on the input u. To get the marginal distribution, px(z), we sum over all

possible input values:

px(z) =) _ pllu®)po(u?). (3.11)

i=1

Since we are able to compute the exact likelihood for each path generated by the
stochastic process, entropic quantities can be approximated without significant biases
using Monte Carlo integration, where the integral over states in Eq (3.7) is replaced by
an average over N sampled trajectories:
A = 23 logypx ). (3.12)
N &
Similarly, we can approximate H(X|U):

q N
HXIU) ==Y pu(u?) (% Zluggp(mu{ﬂ}) . (3.13)

j=1 i=1

The exact Monte Carlo information approximation is finally obtained using Eq (3.6):
seact = H(X) — H(X|U), (3.14)

where * reminds us that the paths are represented in continuous time.

Responses in discrete time. We can resample the continuous trajectories X on a

grid of uniformly spaced time points to obtain a new discrete random variable, X =
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[X(t = At),...,X(t = iAt)...., X(t = dAt)] € N7*?, where At is the discretization
step, d = T/At is the length of X. For convenient notation we denote this random

variable as X = [X?,..., X9, and its realizations, the discrete trajectories, as x.

In the discrete case, the likelihood of x for a given input u can be computed using

the general solution to Eq (3.3):
p(t) = e"p(0), (3.15)

where p(t) is the probability distribution of states after time ¢, with the initial probability
distribution p(t = 0) = p(0). Using this formal solution we compute the transition matrix

between discrete timesteps separated by At to get:
W = MAL (3.16)

where M and thus W again depend on u. The likelihood of any discrete path can then
be obtained by multiplying the transition probabilities between all the d consecutive
states in the path for a given input u:

d
p(x[u) = p(x") [ [ Wit (3.17)

i=2

We can now approximate the information between input U/ and a discretely sampled
trajectory X, I...., as in the continuous case: we get the marginal py (x) with Eq (3.11)
and use Eqgs (3.12, 3.13) in Eq (3.14). In general, temporal discretization loses infor-
mation relative to the full (continuous-time) trajectory, where reaction events in the tra-
jectory z are recorded with infinite temporal precision, so the information in discretely-
sampled trajectories, I, must be bounded from above by the information in continuous-
time trajectories, I*:

Texact (X5 U) < 17 o (X5 U), (3.18)

where equality is approached in the limit of ever finer temporal discretization, At — 0.

3.2.4 Model-free information estimators

In the absence of a full stochastic model for the biochemical reaction network, mutual
information estimation is tractable only if we make assumptions about the distribution

of response trajectories given the input. We briefly summarize two approaches below:
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in the first, k-nearest-neighbor procedure, the space in which the response trajectories
are embedded is assumed to have a particular metric; in the second, Gaussian ap-

proximation, we assume a particularly tractable functional form for the channel, p(x|u).

K-nearest-neighbors (knn) estimator. The idea of using the nearest neighbour statis-
tics to estimates entropies is at least 70 years old [Dobrushin, 1958; Vasicek, 1973],
while estimators for mutual information have been developed during the early 2000s [Kaiser
and Schreiber, 2002; Kraskov et al., 2004]. The cornerstone of the approach is to
compute the estimate from the distances of d-dimensional real valued data points to
their k-th nearest neighbour. Hence, the estimator depends on the metric chosen to
define this distance. Furthermore, its performance is known to depend on the value
of £ (number of nearest neighbours), where small k£ increase the variance and de-
crease the bias [Khan et al, 2007]. This method has been used in several stud-
ies that estimated mutual information from single cell time series [Potter et al., 2017;
Selimkhanov et al., 2014; Voliotis et al., 2014]. These studies used large numbers of
response trajectories to provide the first evidence that the information available from
the full timeseries of the response could be substantially higher than the information

available from any response snapshot.

Gaussian approximation. A simplifying assumption in the Gaussian approximation
is that the distribution of trajectories sampled at discrete times given input is approxi-
mately Gaussian, with the mean p € B¢ and covariance matrix ¥ € R4 that may both

depend on the input, u:

p(x|u) = N(x; p(u), X(u)) = (3.19)

1 1 Ter—1 )
S — ——x—p)TE  x—p) ).
e (-3 —w= - )
The entropy of the multivariate distribution in Eq (3.19) has an analytical expression
that only depends on X:

He(X|u) = %lug{det{i"ﬂeﬂ{u})], (3.20)

which can be averaged over pi;(u) to get the conditional entropy, Hz(X|U). To estimate
the information, we further need H(X) from Eq (3.6). This entropy of a Gaussian mix-

ture has no closed form solution, but can be computed by Monte Carlo integration as
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in the previous section, following discrete analogs of Egs (3.11,3.12): we draw random
samples from each of the ¢ different multivariate Gaussian distributions, Eq (3.19), one

for each possible input u, and assign the marginal probabilities to each sample x as

px(x) =Y pu)N(x; p(u?), B(u)), (3.21)

i=1
permitting us to use Eq (3.12) to approximate the total entropy of output trajectories in
the Gaussian approximation, H(X), and thus to obtain the Gaussian estimate for the
information, Io(X; ) = Hg(X) — He(X|U).

To apply this estimator, one must use real (or simulated) data to estimate the condi-
tional mean, u(u), and conditional covariance, ¥(u) for every possible u, from a limited
number of samples. While general caveats for such estimations have been detailed in
many textbooks [Anderson et al., 1958], we emphasize that information estimation is
particularly sensitive due to the computation of the determinant in Eq (3.20) which can
easily lead to ill-posed numerics when the number of samples is small. This can be mit-
igated by various regularization methods (one of which, the diagonal regularization, we
demonstrate later) that impose a prior structure on the estimated covariance. Yet even
in the case of significant oversampling that we can explore using simulated data, the
Gaussian approximation introduced here—in contrast to Gaussian decoding estimator
introduced in the next section—can provide information values that deviate significantly
from the true value and are not guaranteed to bound the true value from either above
or below. This is because the true solutions of the CME live in the positive quadrant
of the discrete space, and are thus essentially different from the Gaussian distributions
assumed here. We nevertheless present this estimator because (i) it forms the basis
for the Gaussian decoding estimator, introduced below, and (ii) real data itself often de-
viates from stochastic trajectories sampled from the CME in that it is continuous (since
we measure, e.g., fluorescence proxy for a concentration of a protein of interest) and

contains extra noise, making Gaussian approximation potentially applicable.

3.2.5 Decoding-based information bounds

Here and in the next section we introduce a class of decoding-based calculations that

lower-bound the exact information, I(X;U), and can tractably be used as information
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estimators over realistically-sized data sets. Let D consist of a set of V labeled paths,
typically represented in discretely sampled time, D = {(uy,x;), (u3,X3), ..., (Un, Xx)},
where u; andx;, fori = 1,..., N, are realizations of the random variables U/ € {u"), ... u@}
and X € B™*? respectively. Here, D can represent either real data (typically contain-
ing N ~ 10? — 10° trajectories) in case of model-free information estimates, or trajec-
tories generated by exact simulation algorithms (in which case the sample size, N, is
not limiting) from the full specification of the biochemical reaction network in case of

model-based approximations.

The procedure of estimating the input i from x, such that the estimated i is “as
close as possible” to true u for a given trajectory x, is known as decoding in information
theory and neuroscience, and can equivalently be viewed as a classification task in
machine learning or as an inference task in statistics. This procedure is implemented
by a decoding function,

it = F,(x); (3.22)

F is typically parametrized by parameters w that need to be learned from data for
model-free approaches, or derived from biochemical reaction network specification in
case of model-based approaches. F assigns to every x; in the dataset a corresponding
“decode” ii; from the same space over which the random variable U is defined; formally,
these decodes are instances of a new random variable [7. The key idea of using

decoding for information estimation starts with the observation that random variables
U— X x5 (3.23)

where T; represents time discretization, form a Markov chain. In other words, the
distribution of I is conditionally independent of I/ and only depends on X, p(ii|x, u) =
p(itjx), and so

p(ii, x, u) = pu (u)p(xju)p(ilx). (3.24)
The data processing inequality [Cover and Thomas, 2005] can be used to further ex-
tend the bounds in Eq (3.18):

I(U;U) < Lxact(U; X) < T2 (U3 X), (3.25)

where equality between the fist two terms holds only if I(I; X|{7) = 0. Consequently,
I(U;U) is a lower bound to the information between trajectories X and the input
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U [Brunel and Nadal, 1998]. Note that analogous reasoning holds for decoding di-
rectly from continuous-time trajectories X. Better decoders which increase the corre-
spondence between the true inputs and the corresponding decoded inputs will typically

provide a tighter lower bound on the information.

To compute the information lower bound, we apply the decoding function to each
trajectory in D in model-based approximations or to each trajectory in the testing
dataset for model-free estimators that need to be learned over training data first. We
subsequently construct a g x g confusion matrix, also known as an error matrix, where
each element ¢,; counts the fraction of realizations of x generated by an input u = u®
that decode into it = u). This matrix provides an empirical estimate of the probability

distribution p(ii, u), which can thus be used to compute the information estimate:

I(0:U) = 3" (it u) log, — 2 p(d, u) Z Z e,; log, (3.26)

€4
pu(u)pp (i) 4 =1 (k €ns) (o €a)

Crucially, in this estimation O(N) data points are used to empirically estimate the ele-
ments of a ¢ x g matrix ¢, and information estimation involves a tractable summation
over these matrix elements; in contrast, direct estimates of I(I/; X) would involve an
intractable summation over (vastly undersampled) space for X. For typical applications
where ¢ is small, decoding thus provides an essential dimensionality reduction prior to
information estimation: in a simple but biologically relevant case of two distinct stimuli
(g = 2), information estimation only requires us to empirically construct a 2 x 2 con-
fusion matrix. If required, one can apply well-known debiasing techniques for larger
q [Strong et al., 1998].

Maximum a posteriori (MAP) lower bound. In MAP lower bound, the decoding func-
tion F,, is given by Bayesian inference of the most likely input u given that a response
trajectory x was observed, under the exact probabilistic model for the biochemical reac-
tion network. MAP decoder is optimal in that it provides the lowest average probability
of error, Pr([/ # U7), among all decoders. Typically, this will lead to a high mutual in-
formation value I(U'; /) compared to other (sub-optimal) decoders whose probability
of error will likely be higher, making the information lower bound from MAP decoder
a good benchmark for other decoder-based information estimates. We remind the

reader, however, that even though MAP decoder achieves minimal error and typically
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high I(U; 1) values, this does not mathematically guarantee that its information will
always be higher or equal to the information of any other possible decoder, a fact that

can be demonstrated explicitly using toy examples.

The MAP inference consists of finding the input that maximizes the posterior distri-

bution [Murphy, 2012]
p(x,u)  p(x|u)py(u)

= = 3.27
PP ="t = px) 827

This corresponds to the following decoding function:
i = F,(x) = argmax, [log p(x|u) + log po ()] (3.28)

where w represents the specification of the biochemical reaction network which deter-
mines p(x|u). Here, py(u) is assumed to be known, and the likelihood p(x|u) can be
calculated using Egs. (3.10) or (3.17), for the continuous or discrete time representa-
tions, respectively.

One can apply the MAP-decoding based calculation of Iyap(U;U) in two ways.
First, when applied over real data D, one can think of the procedure as a proper statis-
tical estimation assuming that the biochemical network model is the correct generative
model of the data (with estimation bias arising if it is not). Second, when applied, as
we will do in the Results section, over trajectories D generated using exact stochastic
simulation from the biochemical network model in the large N limit, this procedure is a

Monte Carlo approximation to the information lower bound.

Note that even though the MAP decoder is optimal, it does not follow that I p(I7; U)
I(X;U). This is because optimal channel use that realizes I(X; U') may need to employ
block codes, where a sequence of inputs is encoded jointly into a sequence of trajec-
torles, which is later also jointly decoded. In contrast, the decoding bound I p(U; U)
relies on one-shot use of the channel: a single input u is transduced into x which can
immediately be decoded back into the estimate of the input, ii, on the basis of which the
cell might make a decision. For many biological situations, this decoding setup should
be more appropriate than the exact information calculation, as cells often need to react
to stimuli as rapidly as possible in order to gain a selective advantage. Furthermore, it
is difficult to conceive of biologically realistic encoders that would transform inputs into

a block code in order to use the biochemical network channels optimally.
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Maximum a posteriori upper bound (UB). Given that the optimal MAP decoding
does not necessarily reach the exact mutual information, it is reasonable to ask how
large the gap is between these two quantities. For discrete inputs, classic work in
information theory proved a number of upper bounds on this gap when the channel
is known [Samengo, 2002], with the Feder-Merhav bound perhaps being the most
well known [Feder and Merhav, 1994]; Feder-Merhav provides an upper bound on the
channel capacity given the overall probability of error in MAP decoding. In a separate
work [Hledik et al., 2018], we computed a new upper bound on information Iye(I/; X)
that is consistent with not just the overall probability of error as in Feder-Merhav bound,
but with the full confusion matrix ¢ obtained from optimal MAP decoding, and showed
that the new bound is tight.

Our self-contained derivation [Hledik et al., 2018] gives the following result
I(U;X) < Iyg = HU) = ) _ pg(@)é(a), (3.29)

where m; = Pr(U # Ulii) = 1 — Pr(U = i|U = @) and functions ¢ and o can be

expressed with the help of the floor and ceiling functions as:

- WJ + (1 — a(m)) log, [1 i ﬂ] (3.30)

a(r) = Li?rJ ({1 — ) [ﬁ] - 1). (3.31)

This bound applies irrespectively of how the response trajectory space is represented

6(r) = a(m) g, | =

(continuous or discrete, possibly of dimensionality much larger than that of the random
variable U), since it is stated solely in terms of the input variable U and its MAP decode,

.

U.

3.2.6 Decoding-based information estimators

Support Vector Machine (SVM) lower bound estimator. The first model-free de-
coding approach we consider is based on classifiers called Support Vector Machines
(SVMs). To begin we consider two possible inputs, ¢ = 2. We define a decoding func-
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tion F,, by means of a helper function f,(x), such that F, (x) = u" if signf,(x) = —
and F,(x) = u'® otherwise. Here,
Ny
fulx) = ask(xi,x) +b (3.32)
i=1

where k : B? x R — R is the so-called “kernel function” to be defined below, b is the
bias constant, N, is the number of samples in D,.;, and «y,...,ay, are obtained by

solving standard SVM equations:

o HE;E&RZ&& k(zx;, $}+WEE‘ (3.33)
E1,-onbny, €RF PI=T
subject to
mEjak LX) >1—§&, fori=1,...,N,. (3.34)
j=1
y; = —1 whenever the input corresponding to the i-th trajectory in the training set, x;,

is u'l, i.e., u; = uV); similarly y; = +1 whenever the corresponding input is u?, i.e.,
u; = u'®. C is a positive regularization constant. Together, the parameters of the
decoding function are w = {b, ., £, C'}.

To prevent overfitting and set the regularization parameter C' using cross-validation,
we split the full dataset D into training data, D;..i,, that consists of N, (here ~ 70% of the
total, V) of labeled sample trajectories, chosen randomly but balanced across different
inputs u; the remaining 30% of the data constitutes the testing data, D,... Parameters
w are estimated only over D,..in, after which the error matrix ¢ and the correspond-
ing information estimate Isyw(I/;U) of Eq (3.26) are evaluated solely over Dy.:. The
test/train split procedure can be repeated multiple times to compute the mean and the
bootstrapped error bar estimate for the information estimator, Iy, [Granados et al.,
2018].

When we apply SVM decoding, we are still free to choose the kernel function. Here,

we focus on two possibilities:

e Linear kernel, k(z,z') = z7z’. The information estimate is based on a linear
classifier that can learn to distinguish responses that differ in their conditional
means, u(u), but will result in close to chance performance if they don't. This is
the simplest model-free decoding estimator and is thus a useful benchmark for

more complex, non-linear decoders.
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« Radial basis functions kernel, k(z,z') = exp{—u%f}”f}. This model-free de-
coder can be sensitive both to difference in the conditional means as well as
higher-order statistics, e.g., the covariance matrix. Parameter o is set via cross-

validation to maximize the performance.

For multiclass classification we use a decision-tree SVM classification method [Ben-
abdeslem, Khalid and Bennani, 2006], also called Dendrogram-SVM (DSVM) [Lajnef
et al., 2015]. To translate the multi-class classification into the canonical binary clas-
sification problem, this method uses hierarchical bottom-up clustering to define the
structure of the graph, on which a binary classification is performed using SVMs at

each graph node.

Gaussian decoder (GD) lower bound estimator. In this model-free estimation, we
revisit the assumption that the (discretely sampled) output trajectories x given input u
can be approximated with a multivariate Gaussian distribution, Eq. (3.19). The decod-

ing function is then
@t = F,(x) = argmax, [log N (x; ps(u), £(u)) + log prr(u)] (3.35)

Here, parameters w consist of conditional means and (possibly regularized) covariance
matrices of the Gaussian distributions that need to be estimated from data, following

the test/train procedure analogous to SVM decoding.

This method can be used with different parametric multivariate probability density
functions replacing the multivariate Gaussian in Eq (3.35), with choices that approxi-
mate the statistics of the data (and thus the CME-derived distribution) better providing
tighter lower bound estimates, Icn(U; U), of the exact information. By analogy with
the exact MAP decoding using CME-derived response distribution, this method can
also be understood as maximum a posteriori decoder but using approximate response
distributions that need to be estimated from data. Here we decided to use the Gaus-
sian distributions because they are the most unstructured (random) distributions based
on measured first- and second-order statistics of the data. GD decoder thus should be
able to discriminate various inputs if their responses differs either in the response mean

or response covariance.
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Neural Network (NN) lower bound estimator.

Artificial neural networks, first introduced by the neurophysiologist Waren McCul-
loch and the mathematician Walter Pitts in 1943 [McCulloch and Pitts, 1943], are
nowadays the method of choice for classification that generally outperforms alterna-
tive machine learning techniques on very large and complex problems. Here we use
one of the simplest neural networks, called the multi-layer perceptron (MLP). MLP is
composed of layers of linear-threshold units (or LTUs), where each LTU computes a
weighted sum of its inputs 2z = w"x, then applies an activation function to that sum and
outputs the result y = h(2) = h(w'x +wy). Using a single LTU amounts to training a bi-
nary linear classifier by learning the weights w. As with linear SVM, such classifier only
has a limited expressive power [Rosenblatt, 1957], which can, however, be extended
by stacking layers of LTUs so that outputs of the first layer are inputs to the second

layer etc.

For illustrative purposes we choose for our decoding function F,,(x) a fully con-
nected neural network with two hidden layers (with 300 and 200 LTUs, respectively)

that uses the exponential activation function with o = 1:

() — alexp(z)—1) fz<0

z ifz=0

For training, we used He-initialization, which initializes the weights with a random
number from a normal distribution with zero mean and standard deviation o = 2/, /n;,,
where n;, is the number of inputs to units in a particular layer [Geron, 2017], and Adam
optimization with batch normalization and drop-out regularization [Abadi et al., 2015;
Geron, 2017). As before, we trained the neural network on Di..i., followed by the eval-
uation of the error matrix ¢ and of the corresponding information estimate, Inx (I U7),
from Eq (3.26), over Di.... We emphasize that the detailed architecture of the neural
network we selected here is not relevant for other estimation cases; in general, the
architecture is completely adjustable to the problem at hand and should be selected
depending on the size of the training dataset. The only selection criterion is the net-
work performance on test data, with better performing networks for a given dataset

typically providing tighter information estimates.
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3.3 Results

3.3.1 Model-based estimation on simulated data

We start by considering three simple chemical reaction networks for which we can
obtain exact information values using the model-based approach outlined in Methods
Section 3.2.3. This will allow us to precisely assess the performance of decoding-
based model-free estimates, and systematically study the effects of time discretization,

the number of sample trajectories, and the number of distinct discrete inputs, g.

The three examples are all instances of a simple molecular birth-death process,
where molecules of X are created and destroyed with rates o and 3, respectively:

LN N (3.36)

The reaction rates, o and 3, will depend in various ways on the input, U, and possibly
time, as specified below. Given an initial condition, z(t = 0), the production and degra-
dation reactions generate continuous-time stochastic trajectories, z(t), recording the
number of molecules of X at every time ¢t € [0, T], according to the Chemical Master
Equation (3.3). These trajectories, or their discretized representations, are considered
as the “outputs” of the example reaction networks, defining the mutual information
I(X;U) that we wish to compute. In all three examples we start with the simplest case,
where the random variable [/ can only take on two possible values, u") and u'®, with

equal probability, p;(u')) = py(u®) = 0.5.

« Example 1. In this case, z(t = 0) = 0, § = 0.01, independent of the input
U, and the production rate depends on the input as a(u'!) = 0.1, a(u®) =
0.07. Here, the steady state is given by Poisson distribution with mean number of
molecules (z(t — o)) = a/5. Steady-state is approached exponentially with the
timescale that is the inverse of the degradation rate, 5. These dynamics stylize
a class of frequently observed biochemical responses where the steady-state
mean expression level encodes the relevant input value. Even if the stochastic
trajectories for the two possible inputs are noisy as shown in Fig 3.2A, we expect
that the mutual information will climb quickly with the duration of the trajectory,
T, since (especially in steady state) more samples provide direct evidence about

the relevant input already at the level of the mean trajectories.
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« Example 2. In this case, z(t = 0) = 0, § = 0.01, independent of the input U, and
the production rate depends on the input as a(u'Y,t) = 0.1, a(u®,t) = 0.05 for
all t < 1000, while for ¢ = 1000 the production rate is very small and independent
of input, a(u,t) = 5-10~%. In the early period, this network approaches input-
dependent steady state with means whose differences are larger than in Example
1, but the difference decays away for t > 1000 as the network setiles towards
vanishingly small activity for both inputs, as shown in Fig 3.2B. These dynamics
stylize a class of transient biochemical responses that are adapted away even if
the input state persists. In this case, lengthening the observation window T" will

not provide significant increases in information.

« Example 3. In this case, z(t = 0) = 10. All reaction rates depend on the input,
a(u™) = 0.1,a(u®) = 0.05, F(uV)) = 0.01, 5(u®) = 0.005, and are chosen so
that the mean (z(t)) = 10 is constant across time and equal for both conditions,
as shown in Fig 3.2C. In this difficult case, inputs cannot be decoded at the level
of mean responses but require sensitivity to at least second-order statistics of the
trajectories. Specifically, signatures of the input are present in the autocorrela-
tion function for z: the timescale of fluctuations and mean-reversion is two-fold
faster for u' than 2. While this case is not frequently observed in biological sys-
tems, it represents a scenario where, by construction, no information about the
input is present at the level of single concentration values and having access
to the trajectories is essential. Because there is no difference in the mean re-
sponse, we expect linear decoding methods to provide zero bits of information
about the input. This case is also interesting because of the recent focus on
pulsatile stationary-state dynamics in biochemical networks [Dalal et al., 2014].
These pulses, reported for transcription factors such as Msn2, NF-«B, p53, efc.,
occur stochastically and, when averaged over a population of desynchronized
cells, can yield a flat and featureless mean response. Information about the stim-
ulus could, nevertheless, be encoded in either the frequency, amplitude, or other
shape parameters of the pulses. While a generative description of such pulsatile
dynamics goes beyond a birth-death process considered here, from the viewpoint
of decoding, both pulsatile signaling and our example present an analogous prob-

lem, where the mean response is not informative about the applied input.
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Figure 3.2: Example biochemical reaction networks and their behavior. Three ex-
ample birth-death processes, specified by the reactions in the top row for each of the
two possible inputs (u" in blue, u® in red), stylize simple behaviors of biochemical
signaling networks. (A) Input is encoded in both the transient approach to steady state
and the steady state value. (B) Input is encoded in the magnitude of the transient re-
sponse which is subsequently adapted away. (C) Input is encoded only at the level
of temporal correlations of the response trajectory. Bottom row shows example trajec-
tories generated using the Stochastic Simulation Algorithm for the copy number of X
molecules, t € [0,2000], for each network and the two possible inputs (light blue, light
red); while plotted as a connected line for clarity, each trajectory represents molecular
counts and is thus a step-wise function taking on only integer or zero values. Dark

blue, red lines show the conditional means over N = 1000 trajectory realizations.

Exact information approximations and bounds for continuous and discrete
trajectories. Armed with the full stochastic model for the three example reaction net-
works, we can compute the mutual information, I (X, U), between the continuous-
time stochastic trajectories and the (binary) input variable 7, following Eq (3.14). This
result depends essentially on the length of the observed trajectory, ¢t € [0, T], since
T controls the number of observed reaction events and thus the accumulation of ev-
idence for one or the other alternative input. As the approximation is implemented
by Monte-Carlo averaging of exact log probabilities for the response trajectories, its
variance will depend on the number of sample trajectories generated by the SSA. Be-

cause these information values will represent the “gold truth™ against which to evaluate
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subsequent estimators, we choose a large number of N = 1000 trajectory realizations
per input condition, and verify the tightness of the exact Monte Carlo approximation
by computing the standard deviation over 20 independent re-runs of the approximation

procedure.

Fig 3.3 shows how the exact Monte Carlo information computation depends on
the trajectory duration, T, for each of the three example cases. As expected, the
information increases monotonically with T' towards the theoretically maximal value
of 1 bit, corresponding to perfect information about two a priori equally likely input
conditions. The exact shape of the information curve depends on the shape of the
mean trajectory, as well as on its variance and higher-order statistics: for example, even
though the two inputs for Example 1 are most distinct at the level of mean responses
for later T values, the noise is higher compared to Example 2, such that at T = 2000
there is more total information in trajectories of Example 2 than Example 1. Conversely,
even though the trajectories in Example 3 do not differ at the level of the mean at all,
they still carry all information about the relevant input once sufficiently long trajectories

can be observed (and assuming full knowledge of the reaction network is available).

One can similarly compute the Bayes-optimal or MAP decoding bound using Eq (3.28)
for continuous trajectories. This quantifies the ultimate accuracy limit with which each
single observed trajectory can be decoded into the input that gave rise to it. As demon-
strated in Fig 3.3 in dashed black line and consistent with the Data Processing In-
equality requirements outlined in the Methods, I3, .(I7;U) < I%_.(X;U). Equality is
not reached because the optimal use of the channel requires block coding schemes,
in contrast to our setting where different inputs are sequentially sent through the bio-
chemical network and immediately decoded. The observed gap between the MAP
optimal decoding estimate and the true information appears to be small in each of the
three cases; one can upper-bound the gap itself by an improvement over the standard
Feder-Merhav calculation following Methods Section 3.2.5. While the resulting upper
bound on information, Iy, is not tight in this case, it nevertheless provides a control of
how far optimal decoding could be from the true information estimate, a question that
has repeatedly worried the neuroscience community facing similar problems [Borst and
Theunissen, 1999]. It is worth noting that if MAP decoder can tractably be computed,
so can the upper bound, irrespective of the dimensionality of the space of responses,
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Figure 3.3: Information about inputs encoded by complete response trajectories
of the example biochemical reaction networks. Exact Monte Carlo approximation
for the information, 1% (X;U), is shown for Example 1 (A), Example 2 (B), and Ex-
ample 3 (C) from Fig 3.2 in dashed dark gray line; error bars are standard deviations
across 20 replicate estimations, each computed over N' = 1000 independently gener-
ated sample trajectories per input condition. Information is plotted as a function of the
trajectory duration, T'; yellow vertical line indicates T' = 2000 as a representative dura-
tion used in further analyses below, at which most of the information about input is in
principle available from the response trajectories of our systems. I, »(U; U) (dashed
black line) is the optimal decoding lower bound, and I}, (dashed light gray) is the upper
bound on the information, computed by applying Eq (3.29).

Fig 3.3 summarizes the absolute limits on information transmission and optimally
decodable information, for each of our three example networks. These values are lim-
its inasmuch as they assume that every reaction event can be observed and recorded
with infinite temporal precision, and that the encoding stochastic process is perfectly
known. While it is interesting to contemplate whether biological systems themselves
could compute with or act on singular, precisely-timed reaction events and thus make
optimal use of the resulting channel capacity (mimicking the debate between spike tim-
ing code and spike rate code in neuroscience), our primary focus here is to estimate
information flows from experimental data. Typically, experiments record the state of
the system—e.g., concentration of signaling molecules—in discretely sampled time.
To explore the effects of time discretization, we first fix the observation length for our

trajectories to T' = 2000, sufficiently long that the trajectories in principle contain more
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than 90% of the theoretically maximal information for each of the three example cases.
We then resample the trajectories on a grid of d equally spaced time points, as illus-
trated in Fig 3.4A.

Figs 3.4B-D compare the exact Monte Carlo information approximation for discrete
trajectories, I.....(X;U), MAP lower bound for discrete trajectories, Iyp(U; ), and
the corresponding upper bound, I, to the theoretical limits from Fig 3.3 obtained
using continuous trajectories. In line with the chain of inequalities in Eq (3.25), in-
formation in discretely resampled trajectories is lower than the true information in
continuous trajectories, but converges to the true value as d — oc. In particular,
once the discretization timestep T'/d is much lower than the inverse of the fastest
reaction rate in the system, discretization should incur no significant loss of infor-
mation. In practice, however, high sampling rate (large d) limit has significant draw-
backs: first, it is technically difficult to take snapshots of the system at such high
rates (e.g., due to fluorophore bleaching); second, the fast dynamics of the reaction
network may be low-pass filtered by the readout process (e.g., due to fluorophore
maturation time, or slower downstream reaction kinetics); and third, for model-free
approaches high d implies that decoders need to be learned over input spaces of
high dimensionality, which could be infeasible given a limited number of experimen-
tally recorded response trajectories. In previous work [Hansen and O'Shea, 2015;
Hafner et al., 2017], trajectories were typically represented as d = 1 ~ 100 dimensional
vectors, which in our examples would capture ~ 80% or more of the theoretically avail-
able information. It is likely that this can be improved further with smart positioning
of the sampling points and that not all theoretically available information could actu-
ally be accessed by the organism itself, suggesting that typically used discretization
approaches have the potential to capture most of the relevant information in the re-
sponses. What is important for the analysis at hand is that given the dimensionality
d of the discretized response trajectories, MAP decoder is guaranteed to reach the
minimal decoding error among all possible decoders, and will turn out to be a relevant
benchmark, by yielding the highest information, Iyap(U; 1), in Figs 3.4B-D among all
decoders considered. In what follows, we will examine how various model-free de-
coding estimators approach this limit, as a function of d and the number of sample

trajectories, N.
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Figure 3.4: Information loss due to temporal sampling. (A) Schematic representa-
tion of the resampling of a continuous-time response trajectory (left) at d = 14 (middle)
or d = 41 (right) equally spaced time points. Resampled response trajectories are
represented as d-dimensional real vectors, X € R4, for the case of a single output
chemical species. (B-D) Exact Monte Carlo information approximations for discrete
trajectories, I.....(X;U) (dark solid gray), optimal decoding lower bound, Iy p(U; 1)
(dark solid black), and the upper bound, I ;5 (light solid gray) are plotted as a function
of d. Continuous-time limits from Fig 3.3 are shown as horizontal lines: I* __ (X:U)

(dashed dark gray), I;,p(U; U) (dashed black). Error bars as in Fig 3.3.

Performance of decoding-based estimators. After establishing our model-based
“gold standard” for decoding-based estimators acting on trajectories represented in
discretized time, Inap(0U'; U/), we turn our attention to the performance comparison be-
tween various model-free algorithms. The results are summarized in Fig 3.5, which
shows how estimator accuracy depends on the dimensionality of the problem, d, given
a fixed number, N = 1000, of sample trajectories per input condition. In contrast, Fig 3.6
assumes a fixed dimensionality d of trajectory vectors and explores how the estimator

performance depends on the number of samples, N.

Figs 3.5 and 3.6 lead us to the following conclusions:

« Nonlinear SVM using the radial basis functions (rbf) kernel performs best for
Examples 1 and 2. Regardless of the number of samples, N, or the number of

time bins, d, its estimates are very close to Iy;,p, especially for the relevant regime
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Figure 3.5: Performance of decoding-based estimators depends on the dimen-
sionality of the response trajectories. Performance of various model-free decoding
estimators (colored lines) for Examples 1 (A), 2 (B), 3 (C), respectively, compared to
the MAP bound, I ;,p (black line), as a function of input trajectory dimension, d. In
all cases, the number of sample trajectories per input condition is N = 1000, error
bars are std over 20 replicate estimations. Decoding estimators: linear SVM, Isyyin
(orange); radial basis functions SVM, Isvu:ur) (blue); the Gaussian decoder with diag-
onal regularization (see Fig 3.9), Icn (yellow); multi-layer perceptron neural network,
Inn (green). Dashed vertical orange line marks the d < 100 regime typical of current

experiments.

d ~ 10 — 100. Even for higher d, the estimator shows hardly any overfitting and
thus stable performance, a feature we have observed commonly in our numerical
explorations. The estimator is sample efficient, typically providing estimates with

smallest error bars.

o Linear SVM slightly underperforms kernelized SVM on Examples 1 and 2, and—
as expected—completely fails on the linearly inseparable Example 3. Interest-
ingly, even though more expressive, kernelized SVM seems to incur no general-
ization cost relative to linear SVM even at low number of samples. For all exam-
ples we tested, kernelized SVM thus appears to be a method of choice; linear
SVM, however, is still useful as a benchmark to measure what fraction of the

information is linearly decodable from the signal.

« The Gaussian decoder has the best performance on Example 3, is competi-
tive for low d for Example 1, and doesn’t perform satisfactory for Example 2. As
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shown in Fig 3.9, regularized estimation of covariance matrix appears crucial for
good performance, but smoothing of the originally discrete trajectory does not
help. Even with regularization, this estimator is not sample efficient for Example
1: the trajectories are linearly separable without a full estimate of the covariance
(as evidenced by the success of the linear SVM), yet the Gaussian decoder re-
quires one to two orders of magnitude more samples to match the linear decoder
performance. This drawback turns into a benefit for Example 3: the Gaussian
assumption can be viewed as a prior that second-order statistics are important
for decoding (which is correct in this case). Kernelized SVM and the neural net-
work, while more general, need to learn from many more training samples to
zero in on these features, and fail to reach the Gaussian decoder performance
even for N = 10'. We hypothesized that the failure of the Gaussian decoder on
Example 2 is due to the difficulty of the Gaussian approximation to capture the
period T > 1000 when the mean number of X is close to zero: here, first, the
Gaussian assumption must be strongly violated, and, second, the estimation of
(co)variance from finite number of samples is close to singular due to the small
number of reaction events in this period. Even though the T" > 1000 epoch is
not informative about the input, a badly conditioned decoder for this epoch can
actually adversely affect performance. We confirmed this hypothesis by building
the Gaussian decoder restricted to T < 1000 that reliably extracted > 0.8 bits of
information in Example 2, close to the MAP decoding bound and the performance

of SVM-based estimators.

Neural network decoder reaches a comparable performance on Examples 2
and 3 to the SVMs, but fails to be competitive for the simple Example 1. This is
most likely because this estimator is sample inefficient, as implied by its continual
increase in performance with N that did not saturate at highest V we tried. Given
their expressive power, neural network decoders should be viewed as the oppo-
site benchmark to the linear decoders: they have the ability to pick up complex
statistical structures but only with a sufficient number of samples. Indeed, as we
will see subsequently for applications to real data, neural networks can match and
exceed the performance of SVMs. We emphasize that we used a neural network

with a fixed architecture for all three examples on purpose, to make results com-



93

parable across examples; the performance can likely be improved by optimizing

the architecture separately for each estimation problem.
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Figure 3.6: Convergence of decoding-based estimator performance with increas-
ing number of response trajectory samples. Performance of various model-free
decoding estimators (colored lines) for Examples 1 (A), 2 (B), 3 (C), respectively, com-
pared to the MAP bound, Iuap (black line), as a function of the number of samples,
N, per input condition. Response trajectories are represented as d = 100 dimensional

vectors. Plotting conventions as in Fig 3.5.

Multilevel information estimation. We next asked whether our conclusions hold
also when the space of possible inputs is expanded beyond binary, assuming that U
can take on g distinct values with equal probability, i.e., py(u) = 1/q. We focused on
Example 2, and constructed cases for ¢ = 2, ..., 5 such that the production rate « for
0 < T < 1000 takes on g uniformly spaced values between 0 and the maximal rate
equal to a = 0.1 used in Fig 3.2B. In effect, this “tiles” the original, two-state-input

dynamic range uniformly with g input states, as illustrated in Fig 3.7A.

Our expectation is that with increasing g, the information should increase, but slowly
saturate as reliable distinctions between nearby input levels can no longer be made due
to the intrinsic biochemical stochasticity. This is indeed what we see in Fig 3.7B, which
shows the exact information, the MAP lower bound and the upper bound. Consistent
with our findings for two-input case, SVM using radial basis functions remains the es-
timator of choice for all values of g, followed by the linear SVM and then the neural
network decoder, as shown in Fig 3.7C.

Performance comparisons with model-free information approximations. There

exist many algorithms for estimating information directly, without making use of the de-
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Figure 3.7: Information estimation for multilevel inputs. (A) Extension of Exam-
ple 2 from Fig 3.2B to ¢ = 2,...,5 discrete inputs. We chose the inputs such that
the response for the system at T' < 1000 converges towards g equally spaced levels
with the same dynamic range as the original example; dynamics at T > 1000 remain
unchanged from the original Example 2. (B) Model-based information bounds as a
function of the number of input levels for trajectories represented as d = 100 dimen-
sional vectors: exact Monte Carlo calculation (dark gray), MAP decoding bound (black),
upper bound (light gray). (C) Performance of model-free estimators, as indicated in the
panel, compared to the MAP bound (black). Dashed lines show estimations using
N = 10° sample trajectories per condition, solid lines using N = 10* samples per con-
dition; in both cases, we show an average over 20 independent replicates, error bars

are suppressed for readability.

coding lower bound. The best known estimator for continuous signals is perhaps the
k-nearest-neighbor (knn) estimator [Kraskov et al., 2004]. We have also introduced
estimators based on parametric assumptions about the response distribution, such as
the Gaussian approximation (Methods Section 3.2.4); both belong in the family of bin-
less approximations, which act directly on real-valued response vectors. In contrast,
binning approximations first discretize the responses X. The simplest such approach
is perhaps the direct estimator of information or entropy [Strong et al., 1998], and a
good review is provided in Ref [Paninski, 2003]. We evaluated the performance of the
Gaussian approximation to find that it can systematically overshoot the true informa-
tion with a bias that is difficult to assess (Fig 3.10); this appears to happen also in the
regime where the biochemical noise should be small (relative to the mean), and the
stochastic dynamics should be describable in terms of Langevin approximations with

the resulting Gaussian response distributions. These approximations converge to the
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true solution in terms of their first and second moments, yet do not seem to lead to
unbiased estimate for the entropies and thus the mutual information. In contrast to
the Gaussian decoder, Gaussian approximation should not be used without a better

understanding of its bias and applicability.

We therefore decided to focus on the comparison of decoding estimators with knn,
which has been used previously on data from biochemical signaling networks [Se-
limkhanov et al,, 2014]. The results are shown in Fig 3.8. K-nearest-neighbors per-
forms well on the easy Example 1, and suffers drastic performance drop for Example
2, while crashing catastrophically by reporting negative values in Example 3. We rea-
soned that part of the difficulty may be the fact that synthetic trajectories for our Exam-
ples are defined over non-negative whole numbers only, whereas the knn assumes real
valued vectors. This is confirmed by Fig 3.11 which shows that the knn performance
can be substantially improved by adding a small amount of Gaussian iid noise to every
component of the response trajectory vectors, X. This restores the knn performance in
Example 2 close to that of the SVM-based estimators, but still produces close-to-zero

bits of information for Example 3.

3.4 Conclusions

Here we show a tractable Monte Carlo scheme to estimate the information transmis-
sion with arbitrary precision when the complete state of reaction network is observed
and the inputs linearly alter a set of reaction rates. We compute the exact information
for three simple biochemical reaction networks examples which provide a reference
to evaluate the performance of the family of decoding-based model-free estimators.
While in the low data regime the linear or kernelized-based estimator can closely ap-
proach the optimal decoder performance in examples 1 and 2, in the large N regime
the neural-network-based schemes can also provide good estimates.

In contrast to information approximations for which it is often impossible to assess its
precision, bias or even its sign when the dimension, d, of the trajectories is large, the
decoding approach yields a conservative estimate of the true information. Further-
more, it performs close to optimum when multiple input values are decoded. In the

final part, while comparing the decoding-based estimations with the commonly used
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Figure 3.8: Comparison of decoding-based and knn information estimators. Infor-
mation estimates for decoding-based (color bars) and knn (gray bar) algorithms (here
we set k = 1, for further details of knn estimation, see Fig 3.11). Note that knn is not
a decoding estimator and thus could exceed Iy ap(; I/) (shown as a horizontal black
line for each of the three example cases) to approach the exact l....(X;U). Here we
use trajectories discretized over d = 100 time bins, and N = 10! trajectory samples per
input. The performance of knn can be substantially improved by adding a small amount
of gaussian noise to the trajectory samples; its resulting performance as a function of
N and d is shown in Fig 3.11. Red star denotes the failure of knn on Example 3 where

substantially negative information values are returned (exact value not plotted).

knn estimator we show that in many cases they perform better, especially in Example

3, where the noise levels are high.
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Figure 3.9: Effects of covariance matrix regularization and signal smoothing on
Gaussian-decoder-based estimation. (A) At left. Diagonal covariance regularization
following Ref [Yatsenko et al., 2015]. Briefly, A times the identity matrix is added to the
empirical covariance matrix with the hyperparameter ) set so that the likelihood on test
data is maximized. Shown is the empirical (left) and regularized (right) covariance ma-
trix for Example 3, using d = 20 and N = 30 sample trajectories. At right. Information
estimates for Example 3: Inap decoding bound (black), Gaussian decoder estimate,
Icpireg), With optimal diagonal regularization for each d (yellow, as in Fig 3.5C), Gaus-
sian decoder estimate, Icp o) (brown). Without regularization, the estimate suffers
an abrupt drop as d increases and the empirically estimated covariance matrix be-
comes close to singular. N and plotting conventions are as in Fig 3.5. (B) The effects
of trajectory filtering on information estimates. At left. A raw integer-valued stochastic
trajectory for X (blue) can be filtered by a low-pass exponential decay filter with ad-
justable timescale, 7 = 1 — 10%, here 7 = 50 (red) to yield real-valued trajectory. At
right. Regularized Gaussian-decoder information estimates with (brown) and without
(yellow) filtering. Filtering does not improve but can decrease the estimation perfor-

mance, even when the filtering timescale is adjusted.
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Figure 3.10: Gaussian approximation to the information can lead to an uncon-
trolled overestimation of the true information. Gaussian approximation is evaluated
for Example 3 in Fig 3.5C, using N = 1000 per condition. Exact Monte Carlo approx-
imation of the information, I....(X;U), is shown in dark gray. Information estimates
following Methods Section 3.2.4 are shown in violet (Gaussian approximation for raw,
integer-valued response trajectories) or in cyan (Gaussian approximation for filtered
trajectories, as in Fig 3.9). In both cases the Gaussian approximation overshoots the
true information value. Further numerical analyses (not shown) indicate that the dif-
ference is hard to predict and that it persists even when the reaction rates are chosen
such that the mean expression level is ten-fold higher (and the intrinsic stochasticity
correspondingly lower). This makes direct Gaussian approximation risky to use, in

contrast to the Gaussian-decoder based estimate, which is guaranteed to stay below

Lot
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Figure 3.11: Behavior of the knn information estimator. Compared to knn results
in Fig 3.8, the results in A, B and D are estimated following the same procedure, while
adding a small amount of ID zero-mean Gaussian noise to each response trajectory at
every time bin; the noise variance must be < 1 but otherwise does not affect the results
much. This results in good estimates even at low sample number, N, and provides
nearly stable estimation as a function of the trajectory dimension, d, for Example 1
and Example 2. It, however, does not resolve the estimator failure for Example 3. (A)
Dependence of the knn estimator performance on the number of samples. Yellow plot
symbols indicate the number of samples per condition, N = 10°, used in Fig 3.8. (B)
Dependence of the knn estimator performance on the trajectory dimension. Yellow plot
symbols indicate the dimension, d = 102, used in Fig 3.8. (C, D) Dependence of the
knn estimates on the number of nearest neighbors, k, at N = 10* and d = 10?, without
the addition of noise (C) or with the addition of noise (D).
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4 Application of decoding-based information

estimates to single cell dynamical data

The work presented in this chapter contains in section 4.2 a study performed in col-
laboration with Gasper Tkacik, Alejandro Granados, Peter Swain, Julian Pietsch and
Iseabail Farquhar, and was published in PNAS (see [Granados et al., 2018]). The sec-
tion 4.3, was carried out by Sarah Cepeda, analyzing unpublished data provided by
Alejandro Granados, it corresponds to the experimental section of the paper submitted
for publication (see pre-print in [Cepeda-Humerez et al., 2019]) and is reproduced here

with minimal changes.

Abstract

In this section, we show the application of i) the linear SVM decoding estimator to the
responses of 10 transcription factors in yeast and ii) the methods proposed in chapter
3, to previously published data on ERK and Ca*? signaling, and yeast stress response.
From i) we learn about the internal organization of yeast stress response signals, which
we find happens through two logical channels: the generalist and specialist channel.
For each channel, we identify characteristic features, for instance the timing of the re-
sponses. Specialists respond to specific stresses, are faster and sensitive to a wide
range of changes in stress levels, whereas generalists respond to multiple stresses
only if the stress is high. In ii) we estimate for the first time the information encoded in
random pulses of nuclear-translocating transcription factors; specifically, we establish
that environment-related information is present in the higher-order (beyond mean re-
sponse) statistical features of the steady state response. Furthermore, we report the

performance of non-model based estimators and show several results that are qualita-
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tively consistent with the estimations in synthetic signals (examples 1-3 in chapter 3).

4.1 Dynamical signals in single-cells

The development of fluorescent sensors that permit high-resolution time-lapse imaging
in living cells allows researchers to accurately track the dynamic behaviour of specific
proteins in single cells. These time sequences, describe changes in concentration and
protein localization over time [Purvis and Lahav, 2013]. However, the observables vary
over a broad range of timescales, thus it is crucial to consider both: the right duration
of the observations T and the appropriate sampling frequency T'/d (the relevant vari-
ables considered in chapter 3). Inappropriate values for these quantities can lead to
misinterpretations or inaccurate descriptions, for instance, when the observed levels of
the phosphorylated kinase ATM (ATM-P) were measured after DNA damage, the initial
observations done within one hour at high sampling rate, reported fast responses that
reached the maximum after 5 minutes [Cuadrado et al., 2006]. However, subsequent
measurements done within 10 hours at 1 hour sampling rate exhibited an oscillatory
response following DNA damage [Batchelor et al., 2008].

In theory, these oscillations or other dynamical patterns of the signal may contain

A B Singhe cell Population
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Figure 4.1: Dynamic responses in single cells. (A) Shows dynamical signals and
common features considered as information carriers. (B) Single cell response com-
pared to the response of the population in two examples. This figure is Modified
from [Purvis and Lahav, 2013].

biologically relevant information about environmental changes. Current analysis ap-

proaches hand-pick certain signal features, for instance frequency or amplitude [Behar
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and Hoffmann, 2010] (see Fig 4.1 A), without conclusive evidence that these features
best represent environmental signals. Nevertheless, information might also be en-
coded in complex characteristics of the curve that are hard or practically impossible to
distinguish by eye (this is conceptually similar to Example 3 in chapter 3).

For non-linear dynamical encoding it is essential to observe single-cell responses in or-
der to identify subtle differences given that previous observations of individual cells re-
vealed that the average dynamic response of a population often represents a distorted
version of individual patterns. For example, p53 pulses in response to DNA damage
have similar height and duration, but the loss of synchrony among individual cells gives
the appearance of damped oscillations in the mean collective response [Lahav et al.,
2004). Similarly, the “switch-like” responses of individual cells, namely cleavage of cas-
pase substrates during apoptosis, seem to occur gradually in a population of cells [Tyas
et al., 2000] (see Fig 4.1 B).

In principle, the fact that the signals change over time does not necessarily mean
that they encode information in their dynamics and trigger distinct reactions, but practi-
cal observations of single signaling factors show that in fact they do. For example, in the
extracellular signal-regulated kinase (Erk) pathway in rat neural precursors, the nerve
growth factor (NGF) induced sustained Erk activation while the epidermal growth factor

(EGF) triggers a transient response (see Fig 4.2). Furthermore, it was also known that

Response to EGF Response 1o NGF
ERK | .

Tame Time
1 |

Profiferation Ditferantiation

Figure 4.2: Dynamic signaling encodes input identity and leads to different cell
response. The extracellular signal-regulated kinase (ERK) pathway encodes in its
dynamics the identity of the growth factor and triggers different cell fates of rat neural

precursors. This figure is modified from [Purvis and Lahav, 2013].

NGF induces differentiation, whereas EGF induces proliferation [Gotoh et al., 1990;
Traverse et al., 1992; Nguyens et al,, 1993]. Similar examples involve other signaling
molecules p53, NF-xB, Ca®*, Msn2 [Hafner et al., 2017; Hao and Shea, 2012] and a
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recent study showing that pulses encode the identity of the stimuli in the Notch path-
way [Nandagopal et al., 2018].

4.1.1 Nuclear translocation

The spatiotemporal observation of regulatory proteins, especially during the 1990's [Kuge
et al., 1997], revealed that many signaling responses affect the nuclear localization of
transcription factors and of kinases [Cyert, 2001; Hao and Shea, 2012]. Recently with
the help of time-lapse microscopy and microfluidic systems it is possible to observe
dynamical changes in single cells by trapping them, then removing daughter cell with
fluid flow and allowing accurate control of the environment with the laminar flow of the
media [Crane et al., 2014]. An example of nuclear localization of Msn2 in yeast, under

carbon stress, is shown in Fig 4.3. Depending on whether TFs act as repressors or

Glucose Limitation

High Glucose

Figure 4.3: Nuclear localization. An image of a yeast cell in a microfluidic system.
The signal (Msn2) at high glucose is distributed in the cytoplasm and during glucose

limitation it is localized in the nucleus. This figure is modified from [Crane et al., 2014].

activators, they have a signature dynamic response. Some characteristics of these re-
sponse include the time spent inside the nucleus or the translocation speed. In certain
instances even though the stimulus is at a constant level the pattern of the dynamic

response could still encode information about the environment.

Pulsatile dynamics

A particular dynamical pattern observed in key transcription regulatory factors is rep-
resented by a series of on and off pulses that often appear stochastically, even when

cells are maintained at constant conditions [Cai et al., 2008]. In many cases the pulses
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are asynchronous between cells, as a result the average dynamical behaviour of the
population appears nearly constant, highlighting the importance of analyzing individual
cell's dynamic responses [Dalal et al., 2014]. Interestingly these pulsatile phenomena

are pervasive across organisms, from bacteria to mammalian cells (see Fig 4.4).
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Figure 4.4: Prevalence of pulsatile regulatory dynamics across species. A Pulsing
pattern involves transient simultaneous activation of molecules even under constant
input. B Pulsing has been observed in many types of proteins and it involves several
time scales. For each example, a schematic representation of the regulation is shown
on the left, a typical microscopy image in the middle and a representation of the typical

dynamical response on the right. This figure is reproduced from [Levine et al., 2013].

Furthermore, in certain cases the pulse frequency encodes environmental states
that consequently influence gene expression [Albeck et al., 2013; Hafner et al.,, 2017,
Cai et al., 2008]. Moreover it has been hypothesized that the pulses display certain
advantages like randomizing sequences of cellular states, which in the context of bet-
hedging may be helpful because it allows cells to dynamically control the distribution of
states within the cell population [Levine et al., 2013].
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So far we have presented examples of dynamical patterns that contain information
and how they influence cell response. In the next section we will quantify the informa-
tion contained by these patterns in order to investigate the cell's internal representation

of its environment.

4.2 Internal representation of environmental signals in

yeast

This study was performed in collaboration with Gasper Tkacik, Alejandro Granados,
Peter Swain, Julian Pietsch and Iseabail Farquhar, and was published in PNAS (see [Grana-
dos et al., 2018]).

In this section we look at the transient responses of 10 yeast TFs to 3 stress con-
ditions, all of which reduce growth (see Fig 4.5 A), and analyze their temporal pattern
of nuclear translocation (see Fig 4.5 B). Based on the responses one can identify two
groups: the generalists that respond to each stress (Dot6, Tod6, Msn2/4, Maf1 and
Sfp1) and the specialists that respond either to one or two stress conditions (Mig1/2 -
glucose depletion, Yap1 - oxidative stress and Hog1 - osmotic stress). By observing
the temporal responses we can deduce some of their characteristics, for example, the
delayed response and changed amplitude in the case of Dot6 could encode certain
information about stress, nevertheless we can not specifically determine the amount of
encoded information in a given condition. In order to understand which TFs are more
informative of a given stressor, we estimate the mutual information between the pres-

ence or absence of a stressor and the temporal responses of the cells.

In each experiment are recorded a few hundreds of single cell responses (100—300)
of 20 dimensions, corresponding to observations of 50 min. For the information esti-
mations in this study we use the linear SVM decoding method introduced in chapter

3. This involves a training process where we use 70% of the data to train a classifier,
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which is used on the remaining testing data set to classify the time series into two
groups (absence or presence of the stressor). The confusion matrix obtained from the
testing set is then used to estimate the mutual information, although formally this is a
lower bound to the real value, it is an estimate of the information that the cell could
recover from observing a single time series. Additionally, by varying the duration of the
responses (20-dimensional vectors) we can get estimates as a function of time and

identify how quickly cells accumulate information.

The transition between the rich medium into a stress condition defines, in this case,
two environmental states, therefore, the mutual information that we compute ranges
between 0 and 1 bit', here 1 bit means that cells could perfectly distinguish the environ-
mental state from the transcription factor dynamics and 0 bits correspond to the time
series being indistinguishable among conditions. Using this measure we find that the
glucose specialists Mig1/2 perform almost optimally in carbon stress (see Fig 4.5 C)
and that the specialist Mig1 is the TF that accumulates information faster (~ 5 min).
Moreover, we can rank the TFs according to their information content, interestingly the

most accurate TFs are generally the fastest.

In general, high information content does not imply fast encoding, thus the delay
in information encoding of certain TFs may arise as a consequence of the intracellular
wiring, indicating in this case that, in carbon stress, the specialist Mig1/2 are activated
through a different biochemical pathway than the other TFs.

If we define the encoding delay as the time in which half of the maximum informa-
tion estimated is reached for each TF, we observe, that the specialists are the ones
encoding the highest amount of information in the fastest manner (highlighted in blue
in Fig 4.5 D, E, F ), followed by the environmental stress response Msn2/4 (in pink),
which in turn are followed by the others. This structure repeats throughout all stress
conditions but the details are stress-specific suggesting that not only the presence but

the identity of the stress is encoded by some TFs dynamic response.

"The maximum value (1 bit) comresponds to the entropy of the source, that is the logarithm of the

number of environmental states log, 2.
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Figure 4.5: Mutual information encoded in the nuclear translocation dynamics of
10 yeast transcription factors in four environmental conditions. A The osmotic
(0.4 M NaCl), carbon (0.1% glucose) and oxidative (0.5 mM H,0,) stressors reduce cell
growth compared to the rich media (2% glucose). B Transient dynamic trajectories of
ten TFs in response to a step like change from the rich media to the stressor at time
t = 0. The solid lines correspond to the median normalized nuclear localization for
each type of stress and shaded areas are the interquartile range over few hundreds
of cells. In each panel the name of the TF is shown at the top corner and the color of
the traces corresponds to each condition: rich medium in blue, carbon stress in green,
osmotic stress in yellow and oxidative stress in red. C In response to carbon stress
information estimates as a function of time, the errorbars show the standard deviation
over two biological replicates. D TFs hierarchy regarding the information content and
the encoding delay show that specialists encode more information and faster (in blue),
they are followed by Msn2/4, the environmental stress response (in pink), and then
followed by the other TFs. This figure is reproduced from [Granados et al., 2018].

Increasing the complexity of the task, we consider four conditions instead of two

(no stress, carbon, oxidative and osmotic stress) and estimate how much information
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can provide each TF. In this case, the maximum possible mutual information is 2 bits;
although no single TF can encode that much information, we find that the time series
of Msn2/4 and Dot6 provide ~ 1.4 bits of information which is at least 30% higher than
the best estimations from a single time point. Conversely, for the specialists Hog1 and
Yap1, at least for such large stress levels, the difference between estimates from the full
series and a single time point is practically negligible [Granados et al., 2018]. However,
the relevance of the specialists’ dynamical signals is exhibited when a similar analysis

is performed with 5 levels of stress intensity [Granados et al., 2018].

So far we have extended and diversified the extracellular conditions and studied

the information encoded by single TFs; however, single cells have available the infor-
mation of multiple TFs at once. We now check whether transcription factors encode
stress conditions collectively, thus before the estimation we concatenate the signals to
be considered together and use those new vectors for estimation. For instance, in the
case of two TFs, by concatenating the time series we obtain 40-dimensional vectors
and estimate the information from the combined sequence. Furthermore, we estimate
how much information is shared between pairs of TFs by comparing the mutual in-
formation encoded in a pair of TFs vs. each individual TF in the pair and define a
measure of information redundancy r = 1 — I12/(I; + I2), where I; is the mutual in-
formation calculated individually and I 5 is the mutual information calculated from the
pair (the concatenated data).
The information redundancy matrix between all pairs, where we consider 4 extracellu-
lar conditions (no stress and the 3 stresssors), allows us to build a network, where we
expect specialists to share scarce information between them and generalists to contain
higher levels of information redundancy. This representation helps understanding the
upstream regulation of TFs, where indeed the generalists display higher redundancy
among themselves compared to the specialists, indicating that they share a common
upstream signaling (Fig 4.6 B). Additionally, this pattern overlaps with the network built
using data from kinase substrates [Sharifpoor et al., 2011] in Fig 4.6 A.

Out of the 45 possible pairs, we observe that the ones formed by a specialist and

a generalist are mainly more informative than the other pairs in encoding the identity
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of a stressor (see Fig 4.6 C). However, nothing prevents the cell to use more than two
signals to encode complex environmental conditions. In fact, we observe that as the
environment increases in complexity, more TFs are needed (Fig 4.6 D), which means

that the collective dynamical response carries stress-specific and detailed information.

In this section, we estimate information with the linear SVM decoding method, be-
cause for transient responses after the switch between conditions it performs equally
good as the SVM kernelized methods [Granados et al., 2018]. However, nonlinear dy-
namical encoding, like in pulsatile dynamics, may be estimated better with the methods
that capture higher order statistical features of dynamical signals. In section 4.3, we will
show how the family of decoding based methods perform on transient and stationary

responses and in the regime of small number of samples.

4.3 Decoding-based information estimators on experi-

mental data

In this section, we focus on the evaluation of the methods introduced in chapter 3.
While in section 4.2 we use the method based on SVM linear classification to ask bi-
ologically relevant questions about the internal representation of extracellular signals,

here we study in detail the performance of the methods using experimental data.

To illustrate the use of our estimators in a realistic context, we analyzed data from
two previously published papers. The first paper focused on the representation of en-
vironmental stress in the nuclear localization dynamics of several transcription factors
(here we focus on data for Msn2, Dot6, and Sfp1; known to exhibit pulsatile dynamics
even in the absence of stress) in budding yeast [Granados et al., 2018]. The second pa-
per studied information transmission in biochemical signaling networks in mammalian
cells (here we focus on data for ERK and Ca®t) [Selimkhanov et al., 2014]. In both
cases, single-cell trajectory data were collected in hundreds or thousands of single
cells sampled at sufficient resolution to represent the trajectories discretized at tens to

hundreds of timepoints. Similarly, both approaches estimate the information transmis-
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sion in trajectories about a discrete number of environmental conditions: Ref [Grana-
dos et al., 2018] uses the linear SVM approach presented here, while Ref [Selimkhanov
et al., 2014] uses the knn estimator. This makes the two datasets perfectly suited for
estimator comparisons. We further note that in both datasets the trajectories can be
divided into two time epochs: the early “transient” period when the external condition
changes, and the late “near steady-state” period. Typically, the transient exhibits very
clear differences in the trajectory means between various conditions, reminiscent of
our Example 1 or early Example 2 (in section 3.3.1); in contrast, in the late period
the response may have been adapted away, or the stimulus could be encoded only
in higher-order statistics of the traces, reminiscent of the late period in Example 2 or

Example 3 in section 3.3.1.

Fig 4.7 shows the raw data and summarizes our estimation results for the early
and late epochs for the three translocating factors in yeast that report on the change
from 2% glucose rich medium to 0.1% glucose poor stress medium. Fig 4.8 similarly
shows the raw data and estimation results for the early and late epochs for the signaling

molecules in mammalian cells responding to multilevel inputs.

Consistent with the published report [Granados et al., 2018], transient response in
yeast nuclear localization signal can be decoded well with the linear SVM estimator
that yields about 0.6 bits of information per gene about the external condition. Ker-
nelized SVM outperforms the linear method slightly by extracting an extra 0.1-0.2 bits
of information, while knn underperforms the linear method significantly for Msn2 and
Dot6 (but not for Sfp1). Gaussian decoder estimate shows a mixed performance and
the neural network estimate is the worst performer, most likely because the number
of samples here is only N = 100 per input condition and neural network training is

significantly impacted.

It is interesting to look at the stationary responses in yeast which haven't previously
been analyzed in detail. First, very low estimates provided by linear SVM for Msn2 and
Dot6 imply that information in the stationary regime, if present, cannot be extracted by
the linear classifier. Second, Gaussian decoder also performs poorly in the stationary
regime, potentially indicating that the relevant features are encoded in higher-than-
pairwise order statistics of the response (e.g., pulses could be “sparse” features as in

sparse coding [Olshausen and Field, 2004]); it is, however, hard to exclude small num-
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ber of training samples as the explanation for the poor performance of the Gaussian
decoder. Third, K-nearest-neighbor estimator also yields low estimates, either due to
small sample number or low signal-to-noise ratio, the regime for which knn method
has been observed to show reduced performance [Khan et al,, 2007]. A particularly
worrying feature of the knn estimates is their non-robust dependence on the length of
the trajectory T. As Fig 4.9 shows, the performance of knn peaks at T = 50 min and
then drops, even well into unrealistic negative estimates for T' = 400 min (correspond-
ing to the highest dimensionality d = 170 of discrete trajectories). While it is possible
to make an ad hoc choice to always select trajectory duration at which the estimate
peaks, the performance of kernelized SVM is, in comparison, extremely well behaved
and increases monotonically with T, as theoretically expected. Finally, nonlinear SVM
estimator extracts up to 0.4 bits of information about condition per gene, more than
half of the information in the early transient period. This is even though on average
the response trajectories for the two conditions for Msn2 and Dot6 are nearly identical.
For Sfp1 there is a notable difference in the mean response, which the linear estimator
can use to provide a ~ 0.15 bits of information, yet still significantly below ~ 0.4 bits ex-
tracted by the nonlinear SVM. For both transient and stationary responses in yeast, our
results are qualitatively in line with the expectations from the synthetic example cases
in section 3.3.1, Fig 3.2 given the small number of trajectories, tightest and most ro-
bust estimates are provided by the decoding information estimator based on nonlinear
(kernelized) SVM. Regardless of the decoding methodology and even without small
sample corrections at N = 100 trajectories per input, our estimates are not significantly
impacted by the well-known information estimation biases thanks to the dimensionality
reduction that decoding provides by mapping high dimensional trajectories X back into
the space for inputs U/ which is low dimensional; this is verified in Fig 4.10 by estimating

the (zero) information in trajectories whose input labels have been randomly assigned.

Random pulses that encode stationary environmental signals have been observed
for least in 10 transcription factors in yeast [Dalal et al., 2014] and for tens of tran-
scription factors in mammalian cells [Levine et al., 2013]. Recent studies investigated
the role of the pulsatile dynamics in cellular decision-making [Albeck et al., 2013;
Hafner et al., 2017]. Nevertheless, methods for quantifying the information encoded

in stochastic pulses are still in their infancy. Our nonlinear SVM decoding estimates
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convincingly show that there is information to be learned at the single cell level from the
stationary stochastic pulsing. An interesting direction for future work is to ask whether
hand-crafted features of the response trajectories (pulse frequency, amplitude, shape,
etc) can extract as much information from the trajectories as the generic SVM classifier:
for that, one would construct for each response trajectory a “feature vector” by hand,
compute the linear SVM decoding bound information estimate from the feature vectors,
and compare that to the kernelized SVM estimate over the original trajectories. This
approach is a generic and operationally-defined path for finding “sufficient statistics” of
the response trajectories—or a compression of the original signal to the relevant set of

features—in the information-theoretic sense.

A different picture emerges from the mammalian signaling network data shown in
Fig 4.8. The key difference here is the order of magnitude larger number of sample tra-
jectories per condition compared to yeast data. Most of the information seems linearly
separable in both the early and late response periods, as evidenced by the success of
the linear SVM based estimator whose performance is not improved over by the ker-
nelized SVM (indeed, for early ERK epoch linear SVM gives a slightly higher estimate
than the nonlinear version). The big winner on this dataset is the neural-network-based
estimator that yields best performance in all conditions among the decoding-based es-
timators, likely owning to sufficient training data. As before, gaussian decoder shows
mixed performance which can get competitive with the best estimators under some
conditions. Lastly, knn appears to do very well except on the late Ca’* data (perhaps
due to low signal-to-noise ratio). It also shows counter-intuitive non-monotonic behav-
ior with trajectory duration T in Fig 4.11. Once again it is worth keeping in mind that
knn is estimating the full mutual information which could be higher than the information

decodable from individual responses.

4.4 Conclusions

In the analysis of the transient responses of transcription factors to extacellular step-like
changes, we show that the information can be linearly decodable from the transcrip-
tion factors’ nuclear translocation dynamics to almost perfectly distinguish high levels

of stress from the rich media. Multiple stressors can be identified with some degree
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of error by the transcription factors identified as generalists, and complementarily, the
specialists can better distinguish the intensity of the corresponding stress and do it
so faster. Nevertheless, no single transcription factor can accurately encode both the
identity and strength of the stressors. Furthermore, our results show that multiple dy-
namical signals of transcription factors can encode better complex stimuli.

Additionally, the study in section 4.3 shows that decoding-based estimators in many
cases perform better than the knn estimator, especially with typical problem dimen-
sions (d ~ 1 — 100) and typical number of sample trajectories (N ~ 10? — 10*). This
is especially true when we ask about the combinatorial representation of the environ-
mental state in the time trajectories of several jointly observed chemical species, as
in our initial analysis [Granados ef al., 2018], where alternative information estimation
methods usually completely fail due to the high dimensionality of the input space. For
problems in the low data regime (small N), linear or kernelized SVM approaches ap-
pear very powerful, while at larger N neural-network-based schemes can provide a
better performance and thus a tighter information lower bound. Our results show that
the pulsatile dynamics of Msn2 and Dot6 contain information about the environmental
state, this is only decoded with the kernelized SVM methods, despite the limited num-
ber of samples (~ 100) and the high similarity between the mean population responses

between conditions.
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Figure 4.6: Complex environments can be encoded collectively by several tran-
scription factors. A A representation of the intracellular signaling network, where the
edges between kinase and substrate are proportional to the evidence for that inter-
action [Sharifpoor et al., 2011]. B The information redundancy matrix for all pairs of
transcription factors; displayed as a network reflect intracellular signaling features, the
edges thickness are proportional to a pair's redundancy and the size of each node
increases with the number of edges. C Pairs formed by a specialist and a generalist
(S+G) typically encode more information with respect to all possible pairs. D Complex
environmental conditions can be encoded by several TFs. From all possible combina-
tions of concatenated signals the solid lines report the maximum estimate for a given
number of TFs. The colors illustrate the number of states: purple, two states (de-
tection of the presence or absence of the stress); blue, four states (identification of
the stressors among 4 conditions); red, five states (distinction among 5 levels of the
same stress) and orange, seven states (differentiation of the identity and levels of the
stress conditions). E Cells transduce information through two types of channels: the

generalists and the specialists. This figure is reproduced from [Granados et al., 2018].
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Figure 4.7: Two-level mutual information estimates from single-cell time-series
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data for nuclear translocation of yeast transcription factors. (A, B) Data replotted
from Ref [Granados et al., 2018] for Msn2 (top row), Dot6é (middle row), and Sfp1
(bottom row); early transient responses (A) after nutrient shift at ¢ = 0 min from glucose
rich (2%, blue traces) to glucose poor (0.1%, red traces) medium are shown in the left
column, stationary responses (B) are collected after cells are fully adapted to the new
medium. Sampling frequency is 2.5 min, d = 45, and the number of sample trajectories
per nutrient condition is N = 100. Thin lines are individual single cell traces, solid lines
are population averages. (C, D) Information estimates for the transient (left, C) and
stationary (right, D) response periods. Colored bars use model-free decoding-based
estimators as indicated in the legend, gray bar is the knn estimate; error bars computed

from estimation bootstraps by randomly splitting the data into testing and training sets.
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Figure 4.8: Multilevel mutual information estimates from single-cell time-series

data for mammalian intracellular signaling. Data replotted from Ref [Selimkhanov
et al., 2014] for ERK (top row) and Ca* (bottom row). (A) Early transient responses
after addition of 5 different levels of EGF for ERK (or 4 different levels of ATP for Ca*,
respectively) at ¢ = 0 min, as indicated in the legend. (B) In the late response most, but

not all, of the transients have decayed. Data for ERK: N = 1678 per condition, T" = 30

min (d = 30) for early response and T' = 30 min (d = 30) for late response. Data for

Ca*: N = 2995 per condition, "= 10 min (d = 200) for early response and 7' = 5 min

(d = 100) for late response. Plotting conventions as in Fig 4.7.
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Figure 4.9: Estimator behavior for longer trajectory data for Dot6. When the sam-
ples are limited, here to N = 100 samples per input glucose level condition as in
Fig 4.7A (middle), radial-basis-function SVM estimate (blue) is well-behaved with no
observable overfitting and consequent drop in information estimate as the trajectory
duration, T, is increased (maximal T corresponds to d = 170 dimensional trajectory
vectors). In contrast, knn estimate (brown) shows a collapse in the estimation perfor-
mance, even yielding strongly negative numbers, as the dimensionality of input vectors

is increased at fixed number of trajectory samples.
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Figure 4.10: Assessing information estimation bias due to small sample size.
By randomly shuffling the binary labels assigned to different response trajectories, we
break all response-input correlations leading to zero information. Here we test whether
our estimators correctly report zero information within error bars given a finite number
of samples, or are subject to positive information estimation bias. Decoding-based
estimates (linear SVM, red; kernelized SVM, blue; Gaussian decoder, yellow) and knn
(gray). First three sets of bars correspond to synthetic examples of Fig 3.3; estimations
are done with d = 100 and N = 1000 per input condition as in Figs 3.5 and 3.6,
following the same plotting conventions. Last two sets of bars are estimated with N =
100 per input condition using real data for Sfp1 yeast TF from Fig 4.7A. In all cases,
even without explicit small-sample debiasing for Eq (3.26) (which may be required for

multilevel estimation), the estimates are consistent with zero.
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Figure 4.11: Information estimates for mammalian signaling networks as a func-
tion of the trajectory duration. Shown are information estimates as a function of the
total trajectory duration, T', for the early response period for ERK (left) and Ca* (right).

Plotting conventions, procedures, and data set sizes same as in Fig 4.8.



80



81

5 Crosstalk and kinetic proofreading in

transcriptional regulation

The work presented in this chapter was conducted jointly with Gasper Tkacik and
Georg Rieckh. It has been published in the Physical Review Letters (see [Cepeda-

Humerez et al., 2015]) and is reproduced here with minimal changes.

Abstract

Gene expression is controlled primarily by interactions between transcription factor
proteins (TFs) and the regulatory DNA sequence, a process that can be captured well
by thermodynamic models of regulation. These models, however, neglect regulatory
crosstalk: the possibility that non-cognate TFs could initiate transcription, with poten-
tially disastrous effects for the cell. Here we estimate the importance of crosstalk,
suggest that its avoidance strongly constrains equilibrium models of TF binding, and
propose an alternative non-equilibrium scheme that implements kinetic proofreading
to suppress erroneous initiation. This proposal is consistent with the observed cova-
lent modifications of the transcriptional apparatus and predicts increased noise in gene
expression as a trade-off for improved specificity. Using information theory, we quan-
tify this trade-off to find when optimal proofreading architectures are favored over their
equilibrium counterparts. Such architectures exhibit significant super-Poisson noise at

low expression in steady state.
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5.1 Introduction

While noise in gene expression has been studied extensively, a question that has re-
ceived considerably less attention is that of crosstalk in gene regulation. By crosstalk
we mean the possibility that the gene may be induced (or repressed) by the erroneous
binding of a non-cognate transcription factor, and the interference of such factors with
the transcriptional machinery (e.g., RNA polymerase). This problem may be particu-
larly acute in eukaryotes. Recent studies on this topic quantify the limits that crosstalk
places on the regulatory system [Friedlander et al., 2016; Carballo-Pacheco et al.,
2018). Here, we will consider molecular mechanisms that can cope with crosstalk.
One such class of plausible mechanisms that we will propose and analyze here in-
volves coupling the initiation of transcriptional regulation to an energy source to keep
the regulatory system out-of-equilibrium and thus able to reject erroneous attempts at
initiating gene transcription, beyond what is possible by any molecular machine oper-

ating at thermodynamic equilibrium.

Transcriptional regulation in eukaryotic cells is a complex procedure involving a mul-
titude of molecular steps, the details of which are currently an active area of research
[Phatnani and Greenleaf, 2006; Saunders et al., 2006]. Binding sites of TFs in eukary-
otic cells are considerably shorter than in prokaryotes (~ 10 base pairs compared to
typical prokaryotic lengths of 15 — 20 basepairs, with mismatch penalties similar in both
kingdoms, given by the typical scale of hydrogen bonds of 2 — 3 kgT), implying that the
equilibrium occupancy ratio of a specific site for a typical TF in an eukaryote is favored
by a factor of 10* — 10! relative to a non-specific site. On the other hand, the number
of genomic locations where TFs can bind in eukaryotes exceeds that of bacteria by
roughly 10°. In addition, eukaryotes have roughly 10 times more different types of TFs,
many of which are descended from common ancestor proteins that share DNA recog-
nition sequences [Milo and Philips, 2016]. This rises the question of how eukaryotic
cells achieve high specificity [Todeschini et al., 2014]: the ability to correctly activate
the desired genes by low concentrations of the cognate TFs, and simultaneously the

ability to not activate the genes that are supposed to remain silent.

The large number of sequences nearly identical to the consensus sequence, some

of which occur in promoters or enhancers of non-cognate genes, implies that the proba-
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bility of crosstalk should be large. At first glance the mechanism of cooperative binding
would appear to solve the problem but recent studies show that variants of cooper-
ativity and combinatorial regulation are not enough to mitigate the crosstalk problem
[Friedlander et al., 2016]. While this might help where cognate and non-cognate TFs
compete for the binding site, it does not seem to help when the cognate TFs are ab-
sent, for instance, when the gene should be left un-induced; without the cognate TFs
around, the gene could easily be erroneously activated by crosstalking TFs.

A similar question has been addressed in a very different biological setting by John
Hopfield [Hopfield, 1974] and by Jacques Ninio in 1975 [Ninio, 1975]. They tried to
reconcile the observed high specificity of certain biosynthetic reactions, such as DNA
replication, protein synthesis etc, with the bounds that equilibrium thermodynamics
places on such specificity, given the known recognition energies between the cognate
vs non-cognate reactants. Their results suggested that the observations can only be
reconciled with theory if the recognition process is out-of-equilibrium. Thus they pro-
posed concrete reaction schemes that could achieve such a high specificity; these are
collectively known as kinetic proofreading models (KPMs). The basic predictions from
these schemes were later experimentally confirmed. Early proofreading models were
devised purely to maximize specificity, without considering other trade-offs that the sys-
tem might face, such as noise or reaction speed. Subsequent research has addressed
some of these trade-offs [Savir and Tlusty, 2013] but not within the context of infor-
mation theory. In particular, this has not been attempted in transcriptional regulation,
which is often cited as a textbook example of an equilibrium regulatory process that

exhibits high specificity.

5.1.1 Kinetic proofreading in transcriptional regulation and the two

state model

The simplest model for transcriptional gene regulation is the so-called two state model.
The promoter of a given gene can be in an OFF state (not transcribing the gene), or
in an ON state (transcribing the gene into messenger RNA). The promoter switches
stochastically between the two states and the rate of switching between the two states

is determined by the concentration of the relevant transcription factor. Molecularly,
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these states could be represented by a promoter with a bound activating transcription
factor and an empty promoter, although other molecular arrangements mapping into
the same ON/OFF architecture exist.

To extend such a model to handle the crosstalk due to binding of noncognate TFs,
we need to add at least one more state — that of a promoter with the noncognate
TF bound, which is consequently transcribing the gene erroneously. This yields what
we call the three-state model (TSM). In equilibrium, the two-state and the three state
models must obey detailed balance.

Finally, to extend these molecular schemes to out-of-equilibrium situations capable
of kinetic proofreading, we propose the 5-state transition diagram depicted in Fig. 5.1B.
This is the simplest model useful for theoretical study and not intended to mimic any
particular known gene regulatory element in detail; it is useful to think of this model in

terms of a promoter with a single binding site for an activating TF.

State (0) is the empty state of the promoter, (1.) and (1,.) are intermediate oc-
cupied states (with the cognate and non-cognate TF bound, respectively) and (2..,..)
are active states, from which transcription of mMBNA proceeds at rate r. Molecules of
mRBNA are decaying with rate d, the slowest timescale in the problem, and 1/d sets
the unit in which we will express all other timescales. The cognate TFs are present at
concentration ¢, have a binding-rate (to the occupied state) k., a forward-rate (to the
active state) 1/q and off-rate k= . Acting as noncognate TFs, we assume that there are
v other species of TFs present in the system, each at concentration c,,., with the rates

1/q, k., being the same as for the cognate case, and a faster off-rate k™.

The number of noncognate TF species v and the affinity ratio ¢ = k™ /k° define
the relevant parameter A = /&, which determines how important the crosstalk is: for
A < 1, crosstalk is not important, for A ~ 1, the equilibrium model would have roughly
equal occupancy of the binding site by the cognate and one of the noncognate TFs,

and for A = 1, the crosstalk constraint is dominating the problem.

The specificity of cognate vs noncognate TFs to the promoter is carried solely by
the difference in off-rates (unbinding rates), as in Hopfield's original proposal, consis-
tent with the simple picture of diffusion limited binding reactions and different binding
energy of cognate and noncognate TFs. The key characteristic of the model are the

irreversible transitions from occupied to active states: with a properly chosen forward
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transition rate, the equilibrium specificity ¢ of a two-state model can be squared in
the proofreading scenario. To realize such irreversible transitions, thermodynamics re-
quires the energy to be spent, typically by coupling the transition to another reaction
proceeding down a strong thermodynamic gradient, e.g., hydrolysis of ATP. Concretely,
the mechanism could hydrolize one molecule of ATP to put a phosphorylation tag on
the appropriate state of the transcriptional machinery (e.g., on RNA Poly CTD tail when
RNA Poly is simultaneously bound with the TF).

5.1.2 Erroneous induction as a novel noise source (semantic noise)

Traditionally, in proofreading scenarios, what has been studied is the “error fraction™:
the ratio between the number of incorporations of the erroneous substrate vs the num-
ber of incorporations of the cognate substrate. In our case, it is interesting to observe
that the “error” product and the “correct” product are the same mRNA molecule — “er-
ror” and “correct” here rather refer to whether the same molecule has been produced

in response to the correct signal or not, such that the error fraction n has the form:

_ mRNA(Erroneous Initiation)
~ mRNA(Correct Initiation)

(5.1)

Because both the correct and erroneous pathways end with the same product in our
case, crosstalk can, interestingly, be viewed as an additional noise source in tran-
scriptional regulation: binding of non-cognate TFs will induce stochastic production of
mRNA even in the absence of cognate TF signals. This is important, because to quan-
tify the regulatory power of genetic regulatory elements using information theory, one
needs to compute not only about their average response to the signal (which can be an-
alyzed using deterministic rate equations, as in Hopfield's original work), but also their
noise characteristics. Several sources of noise in gene regulation have been studied,
the most relevant and well identified are the exirinsic and intrinsic noise sources [Swain
et al., 2002], or, in an alternative classification, the output, switching and diffusion noise
[Tkacik et al., 2008b] contributions. The reaction scheme of Fig 5.1 B allows us to com-
pute the contributions from crosstalk, switching (due to stochastic transitions between
promoter states), and output (due to birth-death expression of mMRNA) noise, and ask
how much information can be transmitted from the signal, i.e., the input cognate TF

concentration c., to the mRNA expression level m.
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An interesting aspect of this problem, as compared to traditional examples of kinetic
proofreading, is that there is no need for a separate “utility” function: the erroneous
induction manifests directly as increased noise and decreased dynamic range, and
can therefore be captured directly by a decrease in information transmission, without

any further assumptions.

5.2 Results

In prokaryotes, transcription factors recognize and bind specific DNA sequences L =
10 — 20 base-pairs (bp) in length, usually located in promoter regions upstream of
the regulated genes [Ptashne and Gann, 2002]. Regulation by a single TF, or a
small number of TFs interacting cooperatively, is sufficient to quantitatively account
for the experimental measurements of gene expression [Kuhlman et al., 2007], as
well as to explain how any gene can be individually “addressed” and regulated only
by its cognate TFs [Wunderlich and Mirny, 2009], without much danger of regula-
tory crosstalk. In eukaryotes, however, TFs seem to be much less specific (L =
5 — 10 bp, perhaps due to evolvability constraints [Tugrul et al., 2015]; but the total
genome size is larger than in prokaryotes by ~ 10*) [Wunderlich and Mirny, 2009;
Sandelin et al., 2004], binding promiscuously to many genomic locations [Li et al.,
2008], including to their non-cognate binding sites [Rockel et al.,, 2013]. What are the

implications of this reduced specificity for the precision of gene regulation?

Thermodynamic models of regulation postulate that the rate of target gene expres-
sion is given by the equilibrium occupancy of various TFs on the regulatory sequence
[Shea and Ackers, 1985; Bintu et al.,, 2005], and the success of this framework in
prokaryotes [Kinney et al., 2010] has prompted its application to eukaryotic, in particu-
lar, metazoan, enhancers [Janssens et al., 2006; He et al., 2010; Fakhouri et al., 2010].
To illustrate the crosstalk problem in this setting, consider the ratio ¢ of the dissociation
constants to a nonspecific and a specific site for an eukaryotic TF; typically, ¢ ~ 10°
(corresponding to a difference in binding energy of ~ 7 kzT) [Maerkl and Quake, 2007;
Rockel et al., 2013]. Because there are v ~ 10? — 10° of different TF species in a cell,
TFs nonspecific to a given site will greatly outnumber the specific ones. For an isolated

binding site, this would imply roughly equal occupancy by cognate and noncognate
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TFs, suggesting that crosstalk could be acute. For multiple sites, cooperative binding is
known for its role in facilitating sharp and strong gene activation even with cognate TFs
of intermediate specificity—but could the same mechanism also alleviate crosstalk?
First, there exist well-studied TFs which do not bind cooperatively (e.g. [Giorgetti et al.,
2010]). Second, to reduce crosstalk, cooperativity needs to be strong and specific,
stabilizing only the binding of cognate TFs [Friedlander et al., 2016]; many proposed
mechanisms lack such specificity (e.g. [Mirny, 2010; Todeschini et al., 2014]). Third,
even when cooperative interactions are specific, crosstalk can pose a serious con-
straint. Regulating a gene implies varying the cognate TF concentration throughout
its dynamic range, and when this concentration is low and the target gene should be
uninduced, cooperativity cannot prevent the erroneous induction by noncognate TFs.
For that, the cell could either keep the genes inactive by binding of specific repressors,
or by making the whole gene unavailable for transcription. The first strategy seems
widely used in bacteria but less so in eukaryotes; the second strategy (“gene silenc-
ing”) is widespread in eukaryotes, but only happens at a slow timescale and involves a

complex series of nonequilibrium steps.

Here we propose a plausible and fast molecular mechanism which alleviates the
effects of crosstalk; a detailed account of when crosstalk poses a severe constraint for
gene regulation will be presented elsewhere [Friedlander et al., 2016]. The proposed
mechanism is consistent with the known tight control over which genes are expressed
in different conditions or tissues (e.g., during development [McGinnis and Krumlauf,
1992]) on the one hand, and on the other, explains the high levels of measured noise
in transcription initiation of active genes [Raj et al., 2006; Little et al., 2013].

The simplest proofreading architecture for transcriptional gene activation that can
cope with erroneous binding is presented in Fig 5.1A,B, motivated by a scheme first
proposed by Hopfield [Hopfield, 1974]. Specificity is only conveyed by differential rates
of TF unbinding (“off-rates” k° , k™, with ¢ = k™/k°). There are v noncognate TF
species whose typical concentration we take to be c.. = 3vC, and C is the maximal
concentration for the cognate TFs ¢, c. € [0,C)]. The ratio A = v/ determines the
severity of crosstalk, which is weak for A < 1 and strong for A = 1. The response
of the promoter to the dimensionless input concentration ¢ (= k. c./d, see Fig 5.1B) of
cognate TFs is captured by the steady state distribution of mMRNA, P(m|c); the spread
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Figure 5.1: A) A schematic of cognate (green circles) and v kinds of noncognate
(various red shapes) TFs binding to a gene regulatory element on the DNA (gray
box), to control the mRNA expression level. B) Transition state diagram for the proof-
reading gene regulation. The regulatory element can cycle between an empty state
(0), state occupied by either cognate (1.) or noncognate (1,.) TF; to initiate gene
expression, a further non-equilibrium transition into “2” states (with rate 1/q) is re-
quired, driven by, e.g., hydrolysis of ATP. mRNA is expressed at rate r and degraded
with rate d, the slowest process that sets our unit for time. In this figure we use
r/d = 100, k™ /d = 2500,0 = 500,v = 50, A = v/o = 0.1; dimensionless concentration
is ¢ = kye./d. C,D) Steady-state mRNA distributions for low and high concentrations
of the cognate TF, e. As gd — 0 (C), the proofreading model reduces to the two-state
model of gene expression [Rieckh and Tkacik, 2014]; here, noncognate TFs initiate
transcription at a high rate even when ¢ is low, causing overlapping output distribu-
tions (blue; top) and small dynamic range (black line = (m(c)), blue shade = 7,,(¢);
bottom). Proofreading (D) suppresses erroneous initiation, leading to separable output

distributions (orange; top) and higher dynamic range (bottom).
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of this distribution is due to the stochasticity in gene expression, which includes random
switching between promoter states and the birth-death process of mRNA expression
[Peccoud and Ycart, 1995]. If the reaction rates are known, P(m|c) is computable from
the Chemical Master Equation corresponding to the transition diagram in Fig 5.1B;

using finite-state truncation, this becomes a linear problem that is numerically tractable.

Figs 5.1C and D each compare the steady state distributions of mRNA at low and
high concentration of cognate TF, ¢. The behavior crucially depends on the out-of-
equilibrium rate gd. When gd — 0, the scheme of Fig 5.1B becomes a normal two-
state promoter as the states 1. and 2, (likewise 1,. and 2,.) fuse into a single state.
In this limit, the effect of crosstalk is highly detrimental already at A = 0.1 used in
this example: at low ¢, the promoter repeatedly cycles through erroneous initiation
and the gene is highly expressed both at low ¢ as well as at high ¢ (where most of
the expression is indeed due to correct initiation); as a result, the distributions P(m|c)
show substantial overlap in the two input conditions shown in Fig 5.1C. In contrast, for
a non-trivial choice of g (k® < 1/g ~ k™), the model can exhibit proofreading. Even at
low cognate concentration ¢, the slow irreversible transition ensures that noncognate
TFs unbind from the promoter and that erroneous initiation is consequently rare, which
is manifested as a sharp peak of P(m|ci ) at small m in Fig 5.1D. The proofreading
architecture generates a larger output dynamic range and consequently makes the

responses distinguishable.

What are the costs to the cell of the proposed proofreading mechanism? First,
the mechanism requires an energy source, e.g., ATP, to break detailed balance, but
this metabolic burden seems negligible compared to the processive cost of transcrip-
tion and translation. Second, however, is an indirect cost in terms of gene expression
noise. While proofreading decreases erroneous induction, it takes longer to traverse
the state transition diagram from empty state 0 to expressing state 2, and since the
promoter can perform aborted erroneous initiation cycles, the fluctuations in the time-
to-induction will also increase [Bel1 et al., 2010]. This will result in additional variance
in the mRNA copy number at steady state compared to the two-state (gd — 0) scheme.
While the speed/specificity trade-off in protein synthesis has been examined before us-
ing deterministic chemical kinetics [Savir and Tlusty, 2013], this stochastic formulation

of proofreading has, to our knowledge, remained unexplored. Proofreading in gene
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Figure 5.2: A) Maximal information transmission (left axis, black) and the error fraction
(right axis, gray) as a function of the inverse irreversible reaction rate, gd. Increasing
gd suppresses the error fraction, but only at the cost of increasing the gene expression
noise, leading to a trade-off and an information-maximizing value of g*d (orange). This
maximum is reached robustly with input distributions that are close to optimal. B) Noise
in gene expression, o,,/(m), computed from the moments of P(m|c), as a function
of the dimensionless input concentration ¢, for the optimal proofreading (orange) and
the two-state (blue) architectures. Dotted lines show the Poisson limit, o2, = (m),

for comparison. In both cases, the average number of mRNA expressed if fixed to

m = 100.
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regulation is thus expected to increase the output dynamic range, which is favorable

for signaling, but also to increase the noise, which is detrimental.

How can we formalize the trade-off between noise and dynamic range for gene
regulatory schemes and find when proofreading is beneficial? In existing analyses of
proofreading the erroneous incorporation of the substrate leads to an error product
that is different from the correct one [Hopfield, 1974; Savir and Tlusty, 2013]; in con-
trast, here the gene always expresses the same mRNA. What is important for signal
transduction, however, is how well this expression correlates with the input signal, c.
To quantify the regulatory power of the proofreading architecture, we computed the
mutual information, I(c;m) [Shannon and Weaver, 1949], between the signal ¢ and
the mRNA expression level m, following previous applications of information theory to
gene regulation [Tkacik and Walczak, 2011; Rieckh and Tkacik, 2014]. The informa-
tion depends not only on P(m|c), which we compute from the Master equation, but also
on the a priori unknown distribution of input concentrations, P(c); we therefore deter-
mined the input distribution P*(¢) that maximizes information transmission, subject to
a constraint on the average number of expressed mRNA, m = [ dcP(c)Y_,, mP(m]c).
This constraint on average number of mMRNA was imposed to compare different regula-
tory architectures; otherwise, higher average expression could yield higher information
transmission for trivial reasons. Such constrained information (capacity) maximization
is a well-known problem in information theory that can be solved using the Blahut-
Arimoto algorithm [Blahut, 1972].

Fig 5.2A shows how the information transmission I(m; ¢) through the promoter de-
pends on the (inverse) reaction rate gd. We start by looking at the classic measure of
proofreading performance, the “error fraction,” i.e., the ratio of the mRNA expressed
from state 2,. due to noncognate TFs, vs mRNA expressed from state 2. due to cog-
nate TFs. As ¢d is increased, the error fraction drops, with no clear optimum. In con-
trast, there exists an optimal g*d at which the information is maximized—this is the point
where proofreading is most effective, optimally trading off erroneous induction (here,
suppressed by a factor of ~ 30 relative to no proofreading), noise in gene expression,
and dynamic range at the output. In Fig 5.2B we plot the noise in gene expression, as
a function of the input concentration ¢ for the optimal proofreading architecture and the

non-proofreading limit. In both cases the noise has super-Poisson components due
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to the switching between promoter states, but this excess is substantially higher in the

proofreading architecture, as expected.

While attractive, these results still depend on the particular rates chosen for the
model in Fig 5.1B. Surprisingly, if we choose to compare the optimal proofreading sce-
nario with the optimal non-proofreading one, the problem simplifies further. Given that
the input TF concentration ¢ varies over some limited dynamic range, ¢ € [0, Crpax =
k,C/d), there should exist also an optimal setting for k° : set too high, the cognate TFs
will be extremely unlikely to occupy the promoter for any significant fraction of the time
and induce the gene; set too low, the switching contribution to noise in gene expression
will blow up. With £° and g in the “correct initiation” pathway of Fig 5.1B set by optimiza-
tion, the remaining rates in the “erroneous initiation” pathway are fixed by the choice
of crosstalk severity A. The remaining parameters regulating mRNA expression—the
average mRBNA count m and the rate r—do not change the results qualitatively. The
mRBNA expression rate r simply sets the maximal number of mMRNA molecules at full
expression in steady state (r/d); this influences the Poisson noise at the output, but
does so equally for any regulatory architecture, proofreading or not. As long as r is
large enough so that the average mRNA constraint m is achievable, the precise choice
of these values is not crucial (we use r/d = 200, m = 100, plausible for eukaryotic
expression). In sum, we can compare how well the optimal proofreading architecture
does compared to optimal non-proofreading architecture in terms of information trans-
mission, as a function of two key parameters: the crosstalk severity, A, and the input

dynamic range, C,.,.-

Fig 5.3Ashows the advantage, in bits, of the optimal proofreading architecture rela-
tive to the optimal non-proofreading one. This “information plane,” I,.(m; ¢) — I,—o(m; ¢),
is plotted as a function of A and C,ax. In the limit A — 0, the difference in performance
goes to zero: there, optimization drives ¢*k”** = 1, but proofreading offers vanishing
advantage over the optimal two-state promoter architecture when noncognate binding
is negligible. As A increases, proofreading becomes beneficial over the two-state archi-
tecture, and more so for higher values of Cy,.... Higher input concentrations ¢ € [0, Cipax
permit faster on-rates, resulting in faster optimal off rates £~* and faster optimal 1/¢*.
Generally, faster switching of promoter states in Fig 5.1B means that promoter switch-

ing noise will be lower and thus information higher (at fixed mean mRNA expression m);
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Figure 5.3: A) Information advantage (in bits, color scale) of optimal proofreading over

optimal two-state architectures, as a function of crosstalk severity A and dynamic range

of input TF concentration, Cy... Typical values for prokaryotes, yeast, and metazoans

are marked in white. Lower inset: optimal rates, g*k"* (black line = average over Cpax,

gray shade = std), indicate a switch to the proofreading strategy. B, C, D) Cuts through

the information plane in (A) along white dashed lines showing the collapse of two-

state performance as log,,(A) — 0 and a clear proofreading advantage for metazoan

regulation.
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in particular, optimization tends to minimize promoter switching noise by selecting the
fastest 1/q that still admits error rejection, i.e., g*k™"* ~ 1. At A = v/o ~ 1, the signaling
capacity of the non-proofreading architecture collapses completely, with I__;(c;m) = 0
'. At this point optimal proofreading architectures are affected, but still generally main-
tain at least half of the capacity seen at A = 0; proofreading extends the performance

of the gene regulation well into the A > 0 region, before finally succumbing to crosstalk.

Where do different organisms lie in the information plane? Prokaryotes have on the
order of v ~ 100 types of transcription factors, whose binding site motifs typically con-
tain around 23 bits of sequence information [Wunderlich and Mirny, 2009], or 16 kgT
binding energy difference of between cognate and noncognate sites [Gerland et al.,
2002], corresponding to o ~ 107. The resulting crosstalk severity is low, A ~ 1075.
For yeast, the typical sequence information is 14 bits (10 kzT) [Wunderlich and Mirny,
2009], which gives A ~ 0.01 (for v ~ 200 [Jothi et al., 2009]). For multicellular eukary-
otes, the typical sequence information is 12 bits (8 kzT'), and the number of TF species
varies between v = 10° (C. elegans) to v = 2- 10° (human) [Milo et al., 2010], putting A
between 0.1 and 1. We can also estimate the dimensionless parameter C,,,., = k. C/d.
Assuming diffusion-limited binding of TFs to their binding sites, k. C/d =~ 3DaN/R%d,
where D ~ 1um?®/s is the typical TF diffusion constant [Milo et al., 2010], a ~ 3nm is
the binding site size, R = 3um (1pm) is the radius of an eukaryotic nucleus (prokaryotic
cell), and N is the typical copy number of TFs per nucleus (N ~ 10 for prokaryotes, 10°
for yeast, 10* — 10° for eukaryotes). Typical mRNA lifetimes are 5 — 10 min in prokary-
otes, 20 — 30 min in yeast, and > 1 hour in metazoans. This yields Cy.. of order 10
for prokaryotes, 10? for yeast cells, and > 10* for multicellular eukaryote cells. While
these are very rough estimates, different kinds of cells clearly differ substantially in their

location on the information plane of Fig 5.3A.

Taken together, these values suggest that crosstalk is acute for metazoans and
that proofreading in gene regulation could provide a vast improvement over regula-
tion at equilibrium, as in Fig 5.3B. In contrast, our proposal offers no advantage for

prokaryotes, and remains agnostic about yeast (Figs 5.3C, D). While much remains

"This is independent of whether one modulates A by changing v, as for Fig 5.3A, or by changing «;
although the optimal rates may take on different values, the information plane is essentially unchanged

irrespective of how A is modulated.
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unknown about the molecular machinery of eukaryotic gene regulation, it has been
experimentally shown that transcriptional initiation (not just elongation) involves a se-
ries of out-of-equilibrium steps. Amongst those, perhaps the most intriguing are the
covalent modifications on the eukaryotic RNA polymerase Il CTD tail [Egloff and Mur-
phy, 2008]. The tail contains tandem repeats of short peptides (from 26 repeats in
yeast to 52 in mammals), which need to get phosphorylated in order to initiate tran-
scription and subsequently cleared after completed transcription in order to reuse the
polymerase; genetic interference with this tail seems to be lethal. One can contem-
plate a scenario where a sequence of such phosphorylation steps corresponds to the
out-of-equilibrium reaction ¢ of our simple proofreading scheme, “ticking away” time
until the polymerase commits to initiation, with every tick giving the machinery another
opportunity to check if cognate TFs are still bound and, if not, abort transcription. The
existence of any such (or similar) proofreading scheme would be interesting, but is cur-
rently purely hypothetical. An alternative proofreading mechanism would make use of
histone modifications: a TF could interact with histones to mark the +1 nucleosome and
facilitate promoter escape for the RNA polymerase. More complex schemes could also
exist, and might benefit from multiple out-of-equilibrium steps both to boost specificity
and reduce promoter switching noise [Rieckh and Tkacik, 2014], which is an interest-
ing topic for future research. How could these proofreading ideas be tested? Indirect
evidence for kinetic schemes in regulation exists. Crystal structure of RNA polymerase
Il during early promoter clearance indicates that abortive initiation is a side-product
of “promoter proofreading” [Liu et al., 2011]. Experimentally documented interactions
between histone tail modifiers, chromatin remodelers, and TFs appear consistent with
kinetic proofreading [Blossey and Schiessel, 2011]. Kinetic studies of gene activa-
tion by TF binding are inconsistent with equilibrium models [Chen et al., 2014)]. Direct
evidence showing that TF specificity is boosted by proofreading to reduce erroneous
gene regulation is, however, lacking. Tests following [Hopfield et al., 1976] to measure
ATP consumption per mRNA upon initiation due to cognate vs noncognate TFs ap-
pear possible in vitro for RNA polymerase || CTD modification mechanism, but difficult
for histone-based mechanisms, which might be better tested indirectly using genetic

perturbations.

While we cannot exclude the existence of a complex equilibrium scheme that re-
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duces crosstalk in gene regulation sufficiently, this and our related work [Friedlander
et al., 2016] suggest that equilibrium solutions, if they exist, are not simple. Here we
advanced an alternative hypothetical mechanism, proofreading-based transcriptional
regulation, to mitigate the crosstalk problem. Unlike most biophysical problems where
we clearly appreciate their out-of-equilibrium nature, transcriptional regulation has re-
mained a textbook example of a non-trivial equilibrium molecular recognition process,
likely due to the success of the equilibrium assumption in prokaryotes. Crosstalk con-

siderations should motivate us to reexamine this assumption in eukaryotic regulation.



97

6 Conclusions and future directions

Increasing availability of single-cell time-resolved data should allow us to address open
questions regarding the amount of information encoded about the external world that
is available in the time-varying concentrations, activation or localization patterns, and
modification state of various biochemical molecules. Do full response trajectories pro-
vide more information than single temporal snapshots, as early studies suggest? Is
this information gain purely due to noise averaging enabled by observing multiple snap-
shots, or—more interestingly—due to the ability of these intrinsically high-dimensional
signals to provide a richer representation of the cellular environment? Can we isolate
biologically relevant features of the response trajectories, e.g., amplitude, frequency,
pulse shape, relative phase or timing, without a prion assuming what these features
are? How can cells read out the environmental state from these response trajectories

and how close to the information-theoretical bounds is this readout process?

In chapters 3 and 4, we made steps towards answering these questions by focus-
ing on the following questions: first, if we are given a full stochastic description of a
biochemical reaction network, under what conditions can we theoretically compute in-
formation transmission through this network and various related bounds; Second, if we
are given real data with no description of the network, what are tractable schemes to
estimate the information transmission and how is this formalism useful to understand

dynamical signaling networks?

We show a tractable Monte Carlo approximation scheme to estimate information
for simple biological reactions, where the complete set of reactions are observed.
Additionally, we introduce decoding-based model-free estimation methods and com-

pare their performance to the commonly-used knn estimator. Our results show that
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decoding-based estimators closely approach the optimal decoder performance and in

many cases perform better than knn.

It is necessary to emphasize the flexibility of the decoding approach: decoding-
based information estimation is based directly on the statistical problems of classifica-
tion (for discrete input variable, I7) or regression (for continuous input variable, [7), so
any classification / regression algorithm with good performance can provide the basis
for information estimation. Statistical algorithms underlying decoding-based estima-
tions have the extra advantage that: (i), we may be able to gain biological insight by
inspecting which features of the response carry the relevant stimulus information (e.g.,
by looking at the linear kernels or features that neural networks extract in their various
layers); (ii), pick a decoding algorithm based on features previously reported as rele-
vant (e.g., The Gaussian decoder for second-order statistics as in Example 3), and (jii),
estimate the information as a function of trajectory duration; and (iv), gain confidence

in our estimates by testing their performance on withheld data.

By construction, decoding-based estimators only provide a lower bound to the true
information. This, however, could turn out to be a smaller problem in practice than it
appears in theory, especially for biochemical reaction networks. First, the extension
to the Feder-Merhav bound [Hledik et al., 2018] provides an estimate of how large the
gap between the true information and the decoded estimation can be. The bound is not
tight on our examples, and can only be applied when the optimal MAP decoder can be
constructed [Tkacik et al., 2015). Second, and perhaps more importantly, information
that can be decoded after single input presentations is the quantity that is likely more bi-
ologically relevant than the true channel capacity, if the organisms are under constraint
to respond to the environmental changes quickly. Typically, organisms across the com-
plexity scale operate under speed-accuracy tradeoffs [Heitz, 2014]: faster decisions
based on noisy information lead to more errors and, conversely, with enough time to
integrate sensory information errors can be reduced. When speed is at a premium or
relevant inputs are sparse, decisions need to be taken after single input presentations.
In this case, decoding-based estimation should not be viewed as an approximate but
rather as the correct methodology for the biological problem at hand. Of course, there
is still the question of whether the model-free decoders that we use on real data can

achieve a performance that is close to the optimal MAP decoder that represents the
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absolute performance limit. While there is no general way to answer this question, it
appears that simple SVM decoding schemes work well when the response trajectories
differ in their conditional mean, and neural networks as general approximators can be
used to check for more complicated encoding features when data is plentiful. Unlike
in neuroscience, there is much less clarity about what kind of read-out or decoding
operations biochemical networks can mechanistically realize to mimic the functioning
of our in silico decoders, and it may be challenging to biochemically implement even
arbitrary linear classification of response trajectories. Until experimentally shown oth-
erwise, it thus appears reasonable to proceed with the assumption that environmental
signals can be read out from the time-dependent internal chemical state with a simple

repertoire of computations.

We emphasize a simple yet important point. The decoding-based approach that
we introduced here should also motivate us to look beyond methodological problems
of significance and estimation, to truly biological problems of cellular decision mak-
ing. Currently, data on biological regulatory processes is often analyzed by looking
for “statistically significant differences” in the network response for, say, two possible
network inputs. For example, one may report that the steady-state mean expression
level of a certain gene is significantly larger in the stimulated vs unstimulated con-
dition, with the statistical significance of the mean difference established through an
appropriate statistical test that takes into account the number of collected population
samples. While statistical significance is a necessary condition to validly report any
difference in the response, it is very different from the question of whether a single cell
could discriminate the two conditions given access only to its own expression levels.
In theory, population-level statistics tell us with what confidence we, as scientists hav-
ing access to N samples, can discriminate between conditions given some biological
readout; decoding based information estimates, on the other hand, are relevant to the
N = 1 case of individual cells. We hope that further work along the latter path can
clarify and quantify better the difficult constraints and conditions under which real cells

need to act based on individual noisy readouts of their stochastic biochemistry.

In chapter 5, our study of information transmission in single cells takes a different
perspective and focuses on transcriptional regulation. The question of how accurately

signals are transmitted when the source is noisy—in the sense introduced by Weaver
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as the “semantic noise” [Shannon and Weaver, 1949], namely crosstalk, where non-
cognate transcription factors can initiate transcription with potentially fatal effects for
the cell, leads us to examine a non-equilibrium scheme that implements proofread-
ing. This extension would mitigate the problem if it wouldn’t increase noise levels in
gene expression. That trade-off helps us to determine a regime where proofreading
is advantageous compared to the equilibrium scheme. In the case of metazoans, our
results suggest that proofreading in transcriptional regulation could significantly im-
prove the accuracy of information transmission. However, the study of this hypothetical
mechanism in the presence of crosstalk suggests to reexamine the assumption that

transcriptional initiation is an equilibrium process.

In conclusion, the results provided in this work - even though in their infancy - rep-
resent a good foundation for further studies investigating the dynamic intracellular rep-

resentation of cell’s environment and out of equilibrium transcriptional regulation.
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