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Abstract

In order to guarantee that each method of a data structure updates the logical state exactly once, al-
most all non-blocking implementations employ Compare-And-Swap (CAS) based synchronization. For
FIFO queue implementations this translates into concurrent enqueue or dequeue methods competing
among themselves to update the same variable, the tail or the head, respectively, leading to high con-
tention and poor scalability. Recent non-blocking queue implementations try to alleviate high contention
by increasing the number of contention points, all the while using CAS-based synchronization. Further-
more, obtaining a wait-free implementation with competition is achieved by additional synchronization
which leads to further degradation of performance.

In this paper we formalize the notion of competitiveness of a synchronizing statement which can be
used as a measure for the scalability of concurrent implementations. We present a new queue imple-
mentation, the Speculative Pairing (SP) queue, which, as we show, decreases competitiveness by using
Fetch-And-Increment (FAI) instead of CAS. We prove that the SP queue is linearizable and lock-free.
We also show that replacing CAS with FAI leads to wait-freedom for dequeue methods without an ad-
verse effect on performance. In fact, our experiments suggest that the SP queue can perform and scale
better than the state-of-the-art queue implementations.
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1 Introduction

Getting the right synchronization scheme in a concurrent data structure implementation so that it is correct
(linearizable) and scalable is far from being systematic. For a typical data structure, such as FIFO queue
(henceforth, queue), stack, priority queue, or set, one has to decide among other things what kind of low-
level representation is to be used, what kind of synchronization primitives are to be employed, and how
contention is to be handled.

The choice of the synchronization primitive depends on the data structure being implemented. If a shared
counter is in question, then it is much better to use the Fetch-And-Increment primitive (FAI) instead of the
Compare-And-Swap primitive (CAS), assuming both are provided by the underlying architecture. For many
other data structure implementations with strong progress guarantees, like wait-freedom or lock-freedom,
CAS, or slight variations thereof, seems to be the de-facto standard. We question whether the use of CAS in
queue implementations is inevitable or other synchronization primitives can also yield comparable or better
scalability.

In non-blocking implementations of data structures whose methods update a single field of the data
structure, CAS seems to be the perfect tool. A queue, for instance, contains two fields: head and tail.
Elements are enqueued to the tail and are dequeued from the head. Then, whenever a thread wants to
dequeue an element, it has to atomically change the head from the current oldest element in the queue to the
second oldest element which can be simply done with a CAS.

The existing CAS-based implementations of a queue have a well-known problem [1]. Among all the
concurrent threads trying to perform the same operation there is always one winner. That is, if k dequeue
operations are all trying to update the head concurrently, only the first thread to execute its CAS will succeed
while all the other k ´ 1 will fail. Since failure in CAS takes a thread back to the beginning of trying to
dequeue, losers are as good as never having executed at all which implies poor scalability. Furthermore, in
order to guarantee wait-freedom instead of obstruction or lock-freedom, such implementations have to have
an additional helping protocol to prevent threads from starving; that is, a thread should not be forced to fail
for an unbounded number of times. Designing scalable CAS-based implementations with strong progress
properties is thus a formidable task.

We observe the following about concurrent queues: It is correct to remove the kth-oldest element from
the queue if there are at least k concurrent dequeueing threads and k ´ 1 of those threads are guaranteed
to dequeue the older k ´ 1 elements. In other words, a thread should not be forced to wait to dequeue the
kth element until k ´ 1 winners are determined in sequential order. With this weaker constraint, it becomes
just a matter of counting the number of concurrent dequeueing threads and pairing up these threads to the
contents of the queue.

In this paper we formalize the notion of competitiveness for synchronization. Intuitively, a synchronizing
statement in a method is competitive if its outcome depends on the interference due to other concurrent
threads and this outcome determines whether the same statement is going to be executed once more or not.
The CAS statement to update the head or the tail in existing queue implementations (see related work below)
is a prime example of a competitive synchronizing statement.

We then present our queue implementation, called the Speculative Pairing (SP) queue. The SP queue, to
capitalize on the above observation, uses FAI in the common path of its dequeue methods. With this modi-
fication, the dequeue operations do not wait for the oldest element to be removed to proceed. Furthermore,
replacing CAS with FAI provides wait-free dequeue methods. The dequeue methods of the SP queue are not
competitive among each other (they are cooperative), unlike all the other existing queue implementations.
This means that if during a run of the SP queue, all the running threads are executing dequeue methods, then
each thread performs exactly one synchronizing statement, namely an FAI. Similarly, the dequeue methods
are competitive with enqueue methods within a limit. This means that regardless of what the other threads
do, a thread executing a dequeue method always terminates, and hence satisfies wait-freedom. Overall, the
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SP queue is lock-free because the enqueue methods are lock-free. We also prove the correctness of the SP
queue by showing that it is linearizable [6].

For various workloads, we show that the SP queue can scale and perform better (up to fifty percent more
than the second best) than the other implementations we compare: a lock-based queue, the Michael-Scott
queue and the flat combining queue of [3].

To summarize, our two main contributions are:

• the formalization of competitiveness which can serve as a conceptual tool to analyze the potential for
scalability and progress properties of concurrent implementations, and

• the Speculative Pairing queue implementation which can scale better than the current state-of-the-art
queue implementations under various workloads while guaranteeing a stronger progress property.

Related Work. Over the last decade, several alternative implementations to the Michael-Scott queue have
been proposed, e.g. [3, 7, 8, 9, 13]. With the exception of [8] which improves the progress condition of the
Michael-Scott queue from lock-free to wait-free [5], all the recent work aim at achieving scalable behavior.
This can be by using a secondary container like the elimination array as in [13], relaxing the strict ordering
of insertions as in [7], using a different low-level structure leading to less synchronization as in [9], or, at
the expense of non-blocking, that is down-grading to a weaker progress condition, serializing updates to the
queue as in [3]. It is worth noting that even though it was not mentioned explicitly, all these implementations
try to remedy for the competitiveness of the CAS statements. The elimination queue of [13] pairs concurrent
enqueue and dequeues provided that the queue is logically empty, which leads to less competitive enqueue
and dequeue methods only when the queue is empty. Similarly, the baskets queue of [7] distributes the
point of entry for enqueue methods by relaxing the constraint that each node has to be inserted at the tail.
Finally, the flat-combining queue of [3] bounds the competitiveness of both enqueue and dequeue methods
by limiting the number of possible failures the CAS statements can have. None of these implementations
use FAI as a synchronization primitive nor attempt to relax the synchronization among dequeues only. We
compare the performance of the SP queue with i) a lock-based queue implementation, representing locking
algorithms, ii) the Michael-Scott queue since almost of all the subsequently published queues seem to derive
from it and it is still one of the best performing queue implementations, and iii) the flat-combining queue
because it is one of the most recent queue implementations representing the state-of-the-art in terms of
performance. In fact, for similar workloads that we use in this paper, in [3], the flat-combining queue
has been shown to out-perform the baskets queue which in turn has been shown in [7] to out-perform the
optimistic queue of [9]. The elimination technique of [13] is an orthogonal approach and in principle can be
applied to any queue implementation including ours.

Implementation overview. In the remainder of this section, we will give a high-level description of the
Speculative Pairing queue. The main container for the contents of the queue is an array, called the pairing
array. A pairing array can be in one of two states: valid or invalid. Intuitively, a pairing array is initially
valid and remains valid until at least one dequeue instance observes an empty slot. Once a pairing array
is invalidated, it is the responsibility of the enqueue instances to create a new pairing array and replace the
invalid with the new (valid) one.

When the pairing array is in the valid state, each enqueue instance tries to insert its data item into the
next available slot of this pairing array. Each dequeue tries either to remove a data item or to invalidate
the current pairing array. In Fig. 1, we give the flowcharts for the dequeue and enqueue methods. Some
branching boxes are tagged with one or two stars, the use of which will be explained below.

Let us begin with the explanation of the dequeue method, deq (left side of Fig. 1). A deq instance
starts by obtaining the unique ticket that will point to the slot whose contents it is required to remove. This
operation is synchronized with other concurrent deq instances to guarantee uniqueness of the ticket per
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Figure 1: High-level description of the SP algorithm.

instance. The deq instance then checks whether the slot to which the ticket points to is empty or not. If the
slot is not empty, it returns the data item contained in the slot and terminates. Otherwise, it tries to invalidate
the current pairing array. If the attempt to invalidate is successful, it returns empty. If the attempt fails, it
returns the contents of the slot which should now contain a data item. The slot definitely contains a data
item because the only way an invalidation attempt fails is if a concurrent enq instance inserts an element
into the same slot.

The operation of the enq instance (right side of Fig. 1) starts by checking whether the current pairing
array is valid or not. If the pairing array is not valid, the enq instance tries to replace the current invalid
pairing array with a local array it creates which only contains the element the instance is trying to insert. If
the attempt to replace the invalid pairing array with the local copy is successful, it terminates. However, if
the attempt fails, which can only be due to another enq instance successfully setting its local copy as the
new pairing array, control goes back to the beginning stage.

If the pairing array is valid, the enq instance gets the index of the next available slot in the pairing array
and tries to insert its item into this slot. If the insertion is successful, it terminates. If the insertion fails, this
can be due to two possibilities. One possibility is that a concurrent enq instance inserted its item into the
same slot. The other possibility is that a concurrent deq invalidated the pairing array by marking the current
slot with a tag denoting empty return. In either case, it goes back to the beginning stage.

The marked branching boxes represent statements which need synchronization. In particular, the two
branching boxes marked with two stars (attempt to invalidate of deq, and attempt to insert of enq) imply
that these synchronizing statements are conflicting. That is, when there are concurrent enq and deq in-
stances about to commit the changes they want to make, only one of them will succeed. An invalidation of a
pairing array, which consists of inserting a special symbol into an empty slot, will conflict with the insertion
of a valid data item into the same slot. Similarly, the replacement of the pairing array is conflicting for all
enq instances trying to replace the array with their local copies.

Observe that while failed attempts in the enq method results in a new iteration of its main loop, the
failure in the deq method does not lead to a similar loop. Unfortunately, low-level implementation details
make this impossible. However, as shown in App. B, for each deq instance, the maximum number of failed
attempts to invalidate a pairing array is bounded by the number of times an enq instance can insert a new
item into the same linked list. In practice, it is very unlikely that a deq instance loses more than once to
some enq instance.

Let us end this section by emphasizing that the novelty of our algorithm comes from the way we handle
dequeues. As opposed to having deq instances compete for every slot, dual to enq instances, we instead
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assign tickets to each instance. If the common path is the one in which deq instance finds an element in the
slot it was assigned, then the execution path is short and contains only a single FAI executed to acquire the
ticket.

2 Competitive vs. Cooperative Synchronization

The underlying operational semantics for each data structure implementation is given by a labeled transition
system (LTS). An LTS is a tuple pQ,Ñ, Lq, where Q is the set of states,Ñ is the transition relation, and L
is the set of transition labels. Each label l P L is of the form pt,m, jq, where t P N is a thread identifier, m
is a method instance (a method whose input parameters have values), and j P N is the statement identifier.
We assume that each method has a unique entry and exit statements. The entry statement has identifier 1,
the exit statement of m has identifier exitm. Entry and exit statements of any method instance are executed
exactly once, the former marking the beginning and the latter marking the completion of the execution of
the method instance. The transition pt,m, 1q is the invocation of m by t, and pt,m, exitmq is the response
of m by t.

Each state q P Q is assumed to hold all the necessary information about the concurrent execution,
including the control flow information about each thread. At any state q, the local state of thread t will
be denoted by qptq, which contains thread local control flow information, and the valuation of all variables
accessable by t; that is, the value of all thread-local variables visible to t and the value of all shared variables.
Two states q and q1 are t-equivalent if qptq “ q1ptq. We will write q

l
ÝÑ q1 to denote pq, l, q1q PÑ. A label l

is enabled at state q, written q
l
ÝÑ, if there is a state q1 such that q l

ÝÑ q1.
The run of an implementation I “ pQ,Ñ, Lq is an alternating sequence q0l1q1 . . . lnqn of states and

labels such that for all 0 ă i ď n, we have qi´1
li
ÝÑ qi. Note that, any segment qili`1 . . . ljqj , for 0 ď i ď

j ď n is a run of I . The sequence of labels generated by a run is a behavior of I .
Let r “ q0l1q1 . . . lnqn be a run. A thread t is idle at qi, if for all pt,m, jq enable at qi, j “ 1. The run r

is initial if all threads are idle at q0. A state q is reachable in I , if I has an initial run that ends at q.
A thread t is invisible during r if none of the labels li in r is of the form pt,m, jq, for some m and j. A

thread t is executing (m) at state qi if a transition pt,m, jq for some j ą 0 is enabled at qi. The thread t is
pending during r if t is invisible and executing at q0. The environment signature for the run r is the tuple
pT,Mq, where T Ă N is the set of all identifiers of threads that are not invisible during r, and M Ď xM is
the set of all method names at least one instance of which is executed by some thread in T at some state qj
for 0 ď j ă n.

An execution for pt,mq is the run ept,mq “ qi´1li . . . lkqk such that li is the invocation of m by t, lk
is the response m by t, and at any state between qi and qk´1, t is executing m. The execution segment
qh . . . qj , for i´ 1 ď h ď j ď k is isolated for pt,mq if all threads u ‰ t are invisible during that segment.

Let s be some statement of m, and js be the identifier of s. Let q and q1 be two t-equivalent reachable
states of I such that the transition l “ pt,m, jsq is enabled at both q and q1. Then, s at qptq is competitive if
there is a run starting at q with the transition l and ending with the first response for pt,mq in which l occurs
at least twice, and there is no run starting at q1 with l and ending with the first response of pt,mq in which l
occurs more than once. Informally, the statement s is competitive at the local state qptq, if whether s is going
to be executed more than once or not depends on the state of the other threads. The state q represents the
possibility of repetition; we do not require inevitable repetition since depending on the program, there could
be more than one statement having the same effect. The state q1 represents the impossibility of repetition;
no matter what the global state will be, the statement s will not be executed again by t until it completes the
execution of m.

The number of times a state at which a statement s of method m is competitive occurs during an exe-
cution ept,mq is called the degree of competitiveness of s in ept,mq. The statement s of m is absolutely
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competitive if there is an execution ept,mq in which whenever a reachable state q with s competitive at qptq
occurs in ept,mq, there exists another state q1 coming after q in ept,mq such that s is competitive at q1ptq.
In other words, s is absolutely competitive if there is an (infinite) execution in which s has infinite degree of
competitiveness.

A statement with 0 degree of competitiveness is called cooperative. A statement can be cooperative
within a constrained environment signature. The statement s in m is M -cooperative if it is cooperative in
every execution for pt,mq with environment signature pT,M 1q such that M 1 ĎM Y tpmu.

Finally, we would like to classify competitive statements according to the bound on the number of
occurrences of the competitive statement as a function of the state at which they are first executed. Let
ept,mq “ q0l1q1 . . . lnqn, with q0 reachable, be an execution for pt,mq and let li be the first occurrence of
the competitive statement s executed by t. Then, s is bounded-competitive at qiptq if there exists a bound ks
such that in any execution for pt,mq with the prefix q0l1q1 . . . liqi, pt,m, sjq occurs at most ks times after
qi. The following is implied by the definitions.

Fact 2.1 A method containing an absolutely competitive statement cannot be wait-free. An obstruction-free
method containing only bounded-competitive statements is wait-free.

Example. To illustrate these concepts, we consider the Michael-Scott queue [12] whose dequeue and
enqueue method implementations are given below (complete listings are in Fig. 3 and Fig. 4).

1 i n t deq ( ) {
2 whi le ( t r u e )

12 i f (CAS(&Head , h , c ) )
13 break ; / / e x i t l oop
14 }

1 enq ( i n t x ) {
2 whi le ( t r u e )

8 i f (CAS(& t . nex t , n , c ) )
9 e x i t ;

11 CAS(& T a i l , t , c ) ;
12 CAS(& T a i l , t , c ) ;
13 }

Consider the CAS statement sdeq at line 12 of the deq procedure. As a convention, each statement has
its line number as its identifier; e.g., the identifier of sdeq is 12. First, let us consider all executions for
pt, deqq with environment signature pT, tdequq. That is, we only consider those run segments during which
no thread is trying to execute an enqueue method. In this case, there exist runs in which sdeq is competitive.
Let T “ tt, uu. Let us choose a run which starts at a state which there are three nodes reachable from Head,
Tail is pointing to the last node, and all threads are idle. Let q denote this state. Start executing pt, deqq in
isolation until pt, deq, sdeqq is enabled. Call the reached state q1. Then, execute pu, deqq in isolation from q1

until it becomes idle at some state q2. Since t has not modified any shared data, u has successfully updated
Head. Now, resume the execution of pt, deqq, again in isolation. Since the value of Head is different from
t’s local variable h, we will have the following execution segment for pt, deqq:

ept, deqq “ q2pt, deq, 12qq1pt, deq, 2qq2 . . . q9pt, deq, 12qq10pt, deq, 13q

Thus, sdeq occurs twice in ept, deqq. Alternatively, if we let t execute its CAS statement at q1, then no matter
what other threads do afterwards, sdeq will not occur again. This shows that sdeq at q1ptq is competitive. In
fact, sdeq has infinite degree of competitiveness and is absolutely competitive. However, sdeq is bounded-
competitive for tdequ. Going back to the previous example, we see that if we were to execute pu, deqq in
isolation starting at q9, after pu, deqq becomes idle, the next execution of sdeq will again take the control
back to the beginning of the loop. This failure can only happen as long as there is something in the queue;
that is, there are nodes reachable from Head. This means that if pt, deqq starts executing at some state
q, the number of occurrences of sdeq is bounded by the nodes reachable from Head at q. Therefore, sdeq
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is actually bounded-competitive for deq. Note that, sdeq is tenqu-cooperative since the synchronization
primitives of enq and deq methods update different shared variables.

Now let us consider the synchronization primitive senq at line 8 of enq (see Fig. 4). With a simi-
lar analysis, we can show that senq is tenqu-competitive. However, unlike the dequeue case, senq is not
bounded-competitive for enq. This is because, we can construct a run with environment ptt, uu, tenquq
where pt, enqpxqq does not terminate. In the constructed run, each isolated execution segment of pt, enqpxqq
delimited by pt, enqpxq, 3q and pt, enqpxq, 8q is followed by the full execution of pu, enqpyqq. This way, the
queue will grow unboundedly, all elements are inserted by some execution of pu, enqpyqq, and pt, enqpxqq
will never perform a successful CAS statement. Finally, it is easy to show that the CAS statements of lines
11 and 12 are both tenq, dequ-cooperative. For the former, this is because it is impossible to be at a state
from which the statement can never be executed again (q1 of the definition does not exist). For the latter, this
is because it is impossible to extend any run in which it is executed again (q of the definition does not exist).
Intuitively, this is because the outcome of these statements do not affect the control flow at all.

3 Implementation

In this section, details on the low level representation, the enqueue and the dequeue method implementations
will be given and the main correctness result will be stated. We will also describe how explicit memory
management can be incorporated into the implementation of the SP queue.

Low-level representation. The low-level representation of the queue uses the three data types given
in Fig. 5. The QueueType is the main structure holding the contents of the queue. The flag Invalid
notifies whether the current pairing array is valid or not. The two array indices Cnt deq and Tail are
used by the dequeue and enqueue methods, respectively. The value of Cnt deq is used to exclusively own
a particular entry, whereas the entry denoted by the value of Tail is not exclusively assigned to an enqueue
instance. Each element of the array pair is a linked-list. The size of pair is set to SIZE.

Each linked list of type SlotType has three pointers. The head pointer denotes the first element of
the list. The last and removed are helpers for the enqueue and dequeue methods, respectively. In a
sequential execution, last will always point to the last node of the linked list, whereas removed will
point to the most recent removed entry among those located in the same slot. However, these pointers are
used as best-effort indicators where a dequeue or enqueue should operate.

Finally, each node in the linked list has type NodeType. Nodes have a value field and a next pointer,
val and next, respectively. Additionally, we will also use a counter ver. Each element of the queue
acquires a unique entry value and nodes store this entry value. These values are used to pair each dequeue
instance with a unique node in some slot of the pair array.

A schematic view of how the low level data structures are being used is given in Fig. 6. The top row of
slanted boxes represent the pair array. The head pointer of each slot is denoted by the solid circle in each
box. The nodes of each linked list are tagged with the values of their ver fields. The nodes in each linked
list are strictly increasing in ver values (difference between each consecutive node is equal to SIZE).

Each node can be in one of three possible states. One is to have the value logically removed by a
dequeue. These nodes are shaded, e.g. pair[1].head->next, the node with ver=SIZE+1. Another
possibility is to have a dequeue assigned to that node, but the value has not been removed yet. These nodes
have dashed contours, e.g. pair[2].head, the node with ver=2. A third option is to have a valid entry
with no dequeue assigned to it. These have solid contours. In the figure, the only such node is the one
with ver=2SIZE+1. Finally, all concurrent enqueues compete to insert the next entry into the queue. This
would replace the fictitious place-holder node with jagged contour.

In Fig. 6, the nodes that are pointed to by the slot’s removed and last pointers are tagged with r and
l, respectively. Note that, if only sequential executions were allowed, only the linked list of slot 0 would be
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possible. The configuration in slot 1 would not be possible because both removed and last should point
to the next of what they are currently pointing to. The configuration in slot 2 would not be possible because
nodes in the linked list would have to be removed in order. The configuration in slot SIZE-1 would not be
possible because last should always point to the last element of the linked list. Both removed and last
are used as heuristics to access the proper node for both enqueue and dequeue methods. This imprecision in
the concurrent case does not affect the correctness (linearizability) of the implementation.

The code of the two routines used in the implementation are given in Fig. 7. CreateNewQueue
allocates memory for and initializes the fields of a new QueueType variable. It also inserts a single node
containing x into the queue. The dual routine CloseQueue invalidates the current queue pointed to by the
parameter q. Invalidation is done by setting the Invalid to true, and making the removed pointer of
the slot with index idx point to a special static node called PICKET. The ver field of the PICKET node is
set to -1, a value which can never be given to any enqueue or dequeue instance.

1 void enq ( i n t x ) {
2 whi le ( t r u e ) {
3 queue = Queue ;
4 i f ( queue >́I n v a l i d ) {
5 new queue = CreateNewQueue ( x ) ;
6 i f (CAS(&Queue , queue , new queue ) )
7 e x i t ;
8 c o n t in u e ;
9 }

10 t a i l = queue >́T a i l ;
11 i d x = t a i l % SIZE ;
12 node = queue >́p a i r [ i d x ] . l a s t ;

// 13-43 skipped

44 whi le ( node >́n e x t != NULL &&
45 node >́v e r < t a i l )
46 node = node >́n e x t ;
47 i f ( node >́v e r >= t a i l ) {
48 CAS(&queue >́T a i l , t a i l , t a i l + 1 ) ;
49 c o n t i nu e ;
50 }
51 i f ( node != PICKET ) {
52 new node = Node ( x , t a i l ) ;
53 i f (CAS(&node >́next ,
54 NULL, new node ) ) {
55 queue >́p a i r [ i d x ] . l a s t = new node ;
56 break ;
57 }
58 } e l s e {
59 queue >́I n v a l i d = t r u e ;
60 }
61 }
62 CAS(&queue >́T a i l , t a i l , t a i l + 1 ) ;
63 }

The enqueue method. The code of the enqueue method is given above. It has one main loop (lines
2-61) which ends only when enq logically inserts its parameter x into the queue. Due to space constraints,
we omit some part of the code which handles the insertion of the first SIZE elements. The code in its
entirety is given in App. A.1.

Each iteration starts by reading the current state of the queue, Queue. If the pairing array is invalid
(line 4), enq tries to atomically replace the current queue with a new queue (line 6). If the replacement
is successful, the method completes execution since as the new queue is created, the element x is already
inserted into the first position (line 6 of CreateNewQueue, Fig. 7). If the replacement fails, then enq
starts a new iteration.

If the pairing array was valid at the time line 3 was executed, enq proceeds to read the current enqueue
counter, stored in Tail (line 10). Using this counter, the correct slot index idx is determined (line 11). As
a first guess where the end of the linked list of pair[idx] can be, the helper pointer last is read and
assigned to the local variable node (line 12).

If the node is not the last node of the linked list, a loop for reaching the end of the linked list is executed
(lines 44-46). The loop goes on until either the end of the list is reached or the ver value of the current node
is greater than or equal to the local enqueueing ticket, tail. If the end of the list is not reached because
a node with a ver greater than or equal to tail exists, it means that a concurrent enq has succeeded in
inserting a node with the same enqueue counter. This case is taken care of by making sure that the global
enqueue counter Tail is at least one more than the local enqueue counter and aborting the current iteration
(lines 47-50). Otherwise, node was pointing to the end of the list when it was last accessed (line 44). This
last node is either the node with ver equal to tail-SIZE or is the PICKET. Note that no other possibility
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exists; ver cannot be less than tail-SIZE. So, if the node is not the PICKET, the enq method tries to
append the new node new node to the linked list (lines 53-54). If successful, the last pointer is set to
point to this new node and the loop terminates. Otherwise, the next iteration starts. As usual, if the last node
is the PICKET, the queue is marked invalid and the next iteration starts (lines 58-59).

Finally, when the loop terminates, the enq method ensures that the global enqueue counter Tail is at
least one more than the local enqueue counter tail (line 62). Note that, the local enqueue counter tail
is equal to the ver field of the node inserted by this enq method.

Observe that each enq instance competes with both other enq instances, much like in the Michael-Scott
queue, and occasionally with deq instances if the number of deq instance invocations are greater than or
equal to the number of completed enq instances after the most recent invalidation. Whether this occurs
frequently or not depends on the workload and the temporal distribution of method calls.

1 i n t deq ( ) {
2 queue = Queue ;
3 i f ( queue >́I n v a l i d )
4 re turn EMPTY;
5 t i c k e t = FAI ( queue >́Cnt deq ) ;
6 i d x = t i c k e t % SIZE ;

// 7-23 skipped

24 i f ( node >́v e r > t i c k e t )
25 node = queue >́p a i r [ i d x ] . head ;
26 whi le ( node >́v e r < t i c k e t ) {
27 i f ( node >́n e x t == NULL) {
28 i f (CAS(&node >́next ,
29 NULL, PICKET ) ) {
30 Close ( queue , i d x ) ;
31 re turn EMPTY;
32 }
33 }
34 node = node >́n e x t ;
35 i f ( node == PICKET ) {
36 Close ( queue , i d x ) ;
37 re turn EMPTY;
38 }
39 }
40 x = node >́v a l ;
41 queue >́p a i r [ i d x ] . removed = node ;
42 re turn x ;
43 }

The dequeue method. The code of the dequeue method is given above.We had to omit again some part
of the code which handles the removal of the first SIZE elements. The full deq code is given in App. A.2.
Similar to enq, deq starts by copying the current state, Queue, into its local variable queue (line 2). If
the queue has already been invalidated, deq ends by returning EMPTY.

If the queue was valid at the time line 2 was executed, deq receives its unique removal ticket. This is
done by atomically reading the current value of the global dequeue counter Cnt deq and incrementing it
by one (line 5). The correct slot index is the ticket modulo the size of the array (line 6).

Once node is properly set, the node to remove is searched in such a way that if it is there, it is found;
if not, the queue is invalidated (lines 24-37). At each iteration, first the enqueue counter of the current node
is checked (line 24). If that value is not less than the local dequeue counter ticket, the only possibility
(that they are equal) implies that the correct node has been found and the loop terminates. Otherwise, deq
checks whether this is the last node in the linked list (line 25). If it is, it implies that the node that deq is
supposed to removed has not been inserted into the queue yet. Thus, deq tries to invalidate the queue by
appending the PICKET to the current linked list (lines 26-27). If successful, after completing invalidation
deq terminates by returning EMPTY (lines 28-29). If the appending fails, there are two possibilities. Either
a concurrent enq instance successfully inserted its element, or a concurrent deq instance invalidated this
pairing array. If the latter, deq tries to help the other deq instance by completing invalidation and returns
EMPTY (lines 33-36). If the former, deq tries again by advancing to the next (non-NULL) node (line 32).

Finally, if deq exits the loop, it means that it has found the node that it was required to remove. It reads
the value stored in the node (line 38), sets the removed pointer point to the node it is about to logically
remove (line 39), and completes by returning the desired value (line 40).

It is worth mentioning again that in the common case that the element that a deq instance is going to
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remove is in the queue, the only syncrhonization primitive that is going to be used will be a Fetch-And-
Increment (FAI in the code). If this primitive is supported by the architecture, it is not only usually faster
than Compare-And-Swap, but also leads to a cooperative behavior.

Correctness. We state the main properties of the SP queue implementation. The proof is given in the
Appendix.

Theorem 3.1 The SP queue is linearizable and lock-free. The deq method is wait-free.

Managing memory. As is true with all the other implementations with which we compare the SP queue,
our code does not explicitly manage memory. Instrumenting the code so that unused memory is recycled
while guaranteeing wait-freedom is known to be a difficult and open research problem [14]. In order to put
a bound on the size of unused memory by our implementation, we have instrumented the code with hazard
pointers [11] which satisfy lock-freedom.

Due to space constraints, we will only highlight the main design ideas. Our hazard pointers can either
be a queue pointer or a node pointer. Each method keeps track of all the pointers it needs for safe access in
its hazard pointer list. There are at most 4 simultaneous nodes and at most 1 queue that are kept safe at any
point during the execution of each method. A deq instance which invalidates a queue retires its pointer.

Each deq (resp. enq) instance, after a successful removal (resp. insertion), marks a node as removed
(inserted). A node n is called stale if n is marked as inserted and removed, is either pointed to by head or
is pointed to by a stale node and last and removed are reachable from n. With probability pstale, each
deq instance before starting its operation tries to update the head pointer of the slot such that head points
to the last stale node. If a deq instance succeeds in updating the head pointer, it retires all the stale nodes
that head does not point to anymore.

Let the bound on the number of retired nodes be knode, the number of retired queues be kqueue, and
the number of threads be N . Then, under the assumption that no thread crashes, the maximum amount of
unusable memory during the execution of the SP queue with hazard pointers will have an expected value of
OpN ¨ pknode ` kqueue ¨ SIZE{pstaleqq. Intuitively, each thread can have at most knode many retired nodes
and each slot reachable from a retired queue pointer will have an expected maximum size of 1{pstale.

4 Experiments

We run experiments on an AMD-based server machine with four 6-core 2.1GHz AMD Opteron processors
(24 cores), 6MB shared L3-cache, and 48GB of memory running Linux 2.6.32. All queues are implemented
in C and compiled using gcc 4.3.3 with -O3 optimizations.

We compare the SP queue in several benchmarks with the following queue implementations. The lock-
based queue implementation (LB) acquires a single global lock before every queueing operation. The
Michael-Scott queue [12] (MS) is a lock-free queue implementation that reads the state of the queue and
then tries to add or remove an element with a CAS operation. The Flat Combining queue [3] (FC) is also a
lock-based queue where threads first announce their desired operation in a shared list and then try to commit
all the announced operations sequentially by acquiring a global lock.

We experimented on various workloads. Two workloads had an (expected or strictly) equal number
of 106 enqueue and dequeue calls per thread. Three other workloads were based on a producer-consumer
partitioning with a variety of producer to consumer ratios: 1 producer to 1 consumer, 1 producer to 3
consumers, and 3 producers to 1 consumer. The common observation is that in all cases the SP queue scales
up to 24 threads, which is also the number of cores in the machine we used in our experiments (figs. 8 to 9).
The other implementations scale up to 8 threads, the MS queue scales up to 12 threads and perform worse
than the SP queue beyond 12 threads. There are two exceptions for this general tendency. In the case where
the number of enqueue and dequeue operations are on the average equal, but not enforced strictly, the MS
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Figure 2: Benchmarks on a 24-core server for various workloads.

queue scales slightly better than the SP queue up to 12 threads, but degrades beyond 12 threads performing
worse than the SP queue. In the case where there is 1 producer to 3 consumers, the MS queue scales as well
as the SP queue. These two exceptions are most likely due to the overhead of invalidating and creating a
new queue in the SP implementation.

We also checked the effect of using FAI instead of using CAS in the implementation of a shared counter
(Fig. 10(a)). We observed that when contention increases among threads competing for the counter, the
CAS-based implementation performs worse than the FAI-based implementation. As the amount of con-
tention decreases, the performance of the CAS-based implementation approaches that of the FAI-based
implementation. Recall that a CAS-based implementation is expected to perform worse when the number
of failed attempts is significant. The similarity in performance hints that the underlying cache coherence
protocol minimizes the number of failed CAS attempts which would make FAI cheaper than CAS. Even
though this implies that the scalability in the SP queue is not only due to the use of FAI, we still maintain
the potential benefits of using FAI instead of CAS for scalability and for stronger progress guarantees.

Finally, the effect of using hazard pointers to explicitly manage memory seems to be in line with what
is reported in [11] (Fig. 10(b)). We checked the performance of the instrumented code in which recycling
was limited to visiting the nodes, i.e., without the actual system call, and the performance was essentially
identical with the uninstrumented code. This suggests that the SP queue with hazard pointers will continue
to perform better than the other implementations with hazard pointers. We leave a more detailed analysis of
the effect of using memory management as future work.

5 Conclusion

In this paper, we presented a new concurrent queue implementation, the Speculative Pairing queue. The SP
queue uses FAI in dequeue methods, as opposed to the more common CAS. We argued from a theoretical
point of view, by introducing the concept of competitive synchronization, why such a switch in synchro-
nization primitives, besides paving the way for stronger progress guarantees, can improve performance and
supported this claim by empirical evidence.

We are not advocating the replacement of CAS with FAI in every implementation, if for nothing else, but
for the simple reason that CAS with infinite consensus number is provably more expressive than FAI with
consensus number equal to 2 [4]. However, following similar observations, e.g. [2, 10], we would like to
highlight the potential for scalability by considering different (weaker) kinds of synchronization primitives.
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A The SP Queue Implementation in Detail
In this section, we explain the enq and deq methods, including the parts omitted in Sec. 3.

A.1 The enq Method

1 void enq ( i n t x ) {
2 whi le ( t r u e ) {
3 queue = Queue ;
4 i f ( queue >́I n v a l i d ) {
5 new queue = CreateNewQueue ( x ) ;
6 i f (CAS(&Queue , queue , new queue ) )
7 e x i t ;
8 c o n t in u e ;
9 }

10 t a i l = queue >́T a i l ;
11 i d x = t a i l % SIZE ;
12 node = queue >́p a i r [ i d x ] . l a s t ;
13 i f ( t a i l == i d x ) {
14 i f ( node == NULL) {
15 new node = Node ( x , t a i l ) ;
16 i f (CAS(&queue >́p a i r [ i d x ] . head ,
17 NULL, new node ) ) {
18 queue >́p a i r [ i d x ] . l a s t = new node ;
19 break ;
20 } e l s e {
21 i f ( queue >́p a i r [ i d x ] . head == PICKET )
22 queue >́I n v a l i d = t r u e ;
23 e l s e
24 CAS(&queue >́T a i l , t a i l , t a i l + 1 ) ;
25 c o n t in u e ;
26 }
27 } e l s e {
28 i f ( node == PICKET )
29 queue >́I n v a l i d = t r u e ;
30 e l s e
31 CAS(&queue >́T a i l , t a i l , t a i l + 1 ) ;
32 c o n t in u e ;
33 }
34 }

35 i f ( node == NULL) {
36 node = queue >́p a i r [ i d x ] . head ;
37 }
38 i f ( node == PICKET ) {
39 new queue = CreateNewQueue ( x ) ;
40 i f (CAS(&Queue , queue , new queue ) )
41 e x i t ;
42 c o n t in u e ;
43 }
44 whi le ( node >́n e x t != NULL &&
45 node >́v e r < t a i l )
46 node = node >́n e x t ;
47 i f ( node >́v e r >= t a i l ) {
48 CAS(&queue >́T a i l , t a i l , t a i l + 1 ) ;
49 c o n t in u e ;
50 }
51 i f ( node != PICKET ) {
52 new node = Node ( x , t a i l ) ;
53 i f (CAS(&node >́next ,
54 NULL, new node ) ) {
55 queue >́p a i r [ i d x ] . l a s t = new node ;
56 break ;
57 }
58 } e l s e {
59 queue >́I n v a l i d = t r u e ;
60 }
61 }
62 CAS(&queue >́T a i l , t a i l , t a i l + 1 ) ;
63 }

The code of the enqueue method is given above.It has one main loop (lines 2-61) which ends only when enq
logically inserts its parameter x into the queue.

Each iteration starts by reading the current state of the queue, Queue. If the pairing array is invalid (line 4), enq
tries to atomically replace the current queue with a new queue (line 6). If the replacement is successful, the method
completes execution since as the new queue is created, the element x is already inserted into the first position (line 6
of CreateNewQueue, Fig. 7). If the replacement fails, then enq starts a new iteration.

If the pairing array was valid at the time line 3 was executed, enq proceeds to read the current enqueue counter,
stored in Tail (line 10). Using this counter, the correct slot index idx is determined (line 11). As a first guess where
the end of the linked list of pair[idx] can be, the helper pointer last is read and assigned to the local variable
node (line 12).

Lines 13-34 take care of the special case where the node to be inserted will be the first node in the linked list (tail
and idx are equal). If node is NULL, then this can be because no node has been inserted into the list yet, or a node
has already been inserted by a concurrent enq or deq which did not yet set the last pointer. Assuming the former
case, enq method creates a new node (line 15) and attempts to insert it as the first node of the linked list by atomically
changing the value of the head pointer from the expected value NULL to the new node new node (lines 16-17). If
the replacement is successful, last is set to point to new node and the loop terminates. If the replacement fails, then
this could be either because a concurrent enq method has successfully inserted its node, or because a concurrent deq
has invalidated the pairing array. If the former, the current iteration is simply aborted after atomically incrementing
the value of the enqueue counter, Tail (line 24). Otherwise, head must point to the special node PICKET (line 21),
which means that the enq method should abort trying to insert its element to the current invalid copy. Before aborting
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the current iteration, it makes sure that the current copy is marked invalid by setting the Invalid flag. Note that the
update of the flag without synchronization is safe, because at no point can an asserted flag be reset to false. If node is
not NULL (lines 27-33), then again this is either because a node is inserted by a concurrent enq or because the queue
has been invalidated by a concurrent deq. It is treated in a similar manner as the previous paragraph.

If this was not the special first round of insertions (lines 35-60), the first check is to make sure that node is not
NULL (line 35). If so, then node is assigned to head, which cannot be NULL at this point. Then, it checks whether
the node pointed to by last is PICKET (line 38). If it is, then an attempt to create a new queue is done (line 40). If
successful, the method completes (line 41); otherwise, this iteration is aborted (line 42).

If the node is not the last node of the linked list, a loop for reaching the end of the linked list is executed (lines
44-46). The loop goes on until either the end of the list is reached or the ver value of the current node is greater than
or equal to the local enqueueing ticket, tail. If the end of the list is not reached because a node with a ver greater
than or equal to tail exists, it means that a concurrent enq has succeeded in inserting a node with the same enqueue
counter. This case is taken care of by making sure that the global enqueue counter Tail is at least one more than
the local enqueue counter and aborting the current iteration (lines 47-50). Otherwise, node was pointing to the end
of the list when it was last accessed (line 44). This last node is either the node with ver equal to tail-SIZE or is
the PICKET. Note that no other possibility exists; ver cannot be less than tail-SIZE. So, if the node is not the
PICKET, the enq method tries to append the new node new node to the linked list (lines 53-54). If successful, the
last pointer is set to point to this new node and the loop terminates. Otherwise, the next iteration starts. As usual, if
the last node is the PICKET, the queue is marked invalid and the next iteration starts (lines 58-59).

Finally, when the loop terminates, the enq method ensures that the global enqueue counter Tail is at least one
more than the local enqueue counter tail (line 62). Note that, the local enqueue counter tail is equal to the ver
field of the node inserted by this enq method.

A.2 The deq Method

1 i n t deq ( ) {
2 queue = Queue ;
3 i f ( queue >́I n v a l i d )
4 re turn EMPTY;
5 t i c k e t = FAI ( queue >́Cnt deq ) ;
6 i d x = t i c k e t % SIZE ;
7 i f ( t i c k e t >queue >́=T a i l &&
8 t i c k e t == i d x ) {
9 i f (CAS(&queue >́p a i r [ i d x ] . head ,

10 NULL, PICKET ) ) {
11 Close ( queue , i d x ) ;
12 re turn EMPTY;
13 }
14 }
15 node = queue >́p a i r [ i d x ] . removed ;
16 i f ( node == NULL)
17 node = queue >́p a i r [ i d x ] . head ;
18 i f ( node == PICKET ) {
19 Close ( queue , i d x ) ;
20 re turn EMPTY;
21 }

22 i f ( node >́v e r > t i c k e t )
23 node = queue >́p a i r [ i d x ] . head ;
24 whi le ( node >́v e r < t i c k e t ) {
25 i f ( node >́n e x t == NULL) {
26 i f (CAS(&node >́next ,
27 NULL, PICKET ) ) {
28 Close ( queue , i d x ) ;
29 re turn EMPTY;
30 }
31 }
32 node = node >́n e x t ;
33 i f ( node == PICKET ) {
34 Close ( queue , i d x ) ;
35 re turn EMPTY;
36 }
37 }
38 x = node >́v a l ;
39 queue >́p a i r [ i d x ] . removed = node ;
40 re turn x ;
41 }

The code of the dequeue method is given above.Similar to enq, deq starts by copying the current state, Queue,
into its local variable queue (line 2). If the queue has already been invalidated, deq ends by returning EMPTY.

If the queue was valid at the time line 2 was executed, deq receives its unique removal ticket. This is done by
atomically reading the current value of the global dequeue counter Cnt deq and incrementing it by one (line 5). The
correct slot index is the ticket modulo the size of the array (line 6). The deq method is paired up with the node
having its ver equal to ticket found in the slot with index idx. If such a node already is in the linked list, then
there will be no need for further (expensive) synchronization primitives.

Much like the enq method, the first round of entries in the array is treated as a special case (lines 7-14). If this
is the first round, i.e., if deq is supposed to return the value of the first node of the linked list of some slot, it first
checks whether the number of completed enqueues, value of Tail, is less than or equal to the local dequeue counter
ticket. If this is the case, it tries to invalidate the current queue (lines 9-11). Note that, equality between Tail and
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ticket implies that there might be a concurrent enq which has already inserted a node waiting to update the value
of Tail. That is why deq checks whether head of the current slot is NULL, signifying no insertion so far, or not.
If the atomic insertion of the special node PICKET is successful, the current queue is invalidated by a call to Close,
which simply sets Invalid to true and sets the removed pointer point to PICKET. The deq method terminates by
returning EMPTY (line 12).

If control reaches line 15, it must mean that either this is not first round, or there is some node in the linked list
of slot with index idx. In either case, it means that the head pointer of the linked list cannot be NULL. However,
instead of starting from the very first element in the linked list, deq starts by finding the node pointed to by removed
(line 15). Recall that the removed pointer does not necessarily point to the last removed node. In order to make sure
that the node deq is pointing is not NULL, a final check is done to cover for the case removed is equal to NULL
(line 16). If so, then deq starts its search from the beginning of the list (line 17). It then checks again whether head
points to PICKET (line 18). If so, it completes the invalidation procedure and returns EMPTY (line 16-17). Another
possibility is that removed points to a node that was removed by a deq instance with a greater dequeue counter.
Note that, in such a case the other deq instance must have a dequeue counter equal to ticket ` kSIZE for some
k P N. If this is the case, there are two consequences. Firstly, the node that this deq instance is going to remove has
already been inserted into the linked list. Secondly, that node is located between head and removed. The check and
the proper adjustment to start searching is done in lines 22-23.

Once node is properly set, the node to remove is searched in such a way that if it is there, it is found; if not, the
queue is invalidated (lines 24-37). At each iteration, first the enqueue counter of the current node is checked (line 24).
If that value is not less than the local dequeue counter ticket, the only possibility (that they are equal) implies that
the correct node has been found and the loop terminates. Otherwise, deq checks whether this is the last node in the
linked list (line 25). If it is, it implies that the node that deq is supposed to removed has not been inserted into the
queue yet. Thus, deq tries to invalidate the queue by appending the PICKET to the current linked list (lines 26-27).
If successful, after completing invalidation deq terminates by returning EMPTY (lines 28-29). If the appending fails,
there are two possibilities. Either a concurrent enq instance successfully inserted its element, or a concurrent deq
instance invalidated this pairing array. If the latter, deq tries to help the other deq instance by completing invalidation
and returns EMPTY (lines 33-36). If the former, deq tries again by advancing to the next (non-NULL) node (line 32).

Finally, if deq exits the loop, it means that it has found the node that it was required to remove. It reads the value
stored in the node (line 38), sets the removed pointer point to the node it is about to logically remove (line 39), and
completes by returning the desired value (line 40).

B Proof of Correctness
In this section, we are going to prove certain properties about our implementation. We will show that the deq method
contains cooperative statements for tdequ, and a bounded competitive statement for tenqu. Since we essentially
use the same approach as the Michael-Scott queue for enqueueing elements, the enq method contains unbounded
competitive statements. We finally prove that the SP implementation is linearizable.

Proposition B.1 The FAI statement of line 5 of the deq method is cooperative.

Proof. A control flow analysis trivially shows that regardless of the interference by concurrent threads, the control
can never reach line 5 more than once. This means that in any execution of a deq instance, this statement will occur
exactly once. [\

Proposition B.2 The CAS statement of line 9 of the deq method is cooperative.

Proof. Again, control never reach line 9 more than once. Thus, in each execution of deq, line 9 occurs at most once.
[\

Proposition B.3 The CAS statement of line 26 is cooperative for tdequ.

Proof. Let us denote the CAS statement of line 26 with s26. The only time a deq instance will try to modify the
structure of the linked list is when it tries to invalidate the pairing array by inserting the PICKET node. Note that if
s26 succeeds, the method completes at line 29. In this case s26 will only appear once in the execution. Otherwise, if
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s26 fails, then since by assumption we only have deq instances, it must be due to another CAS statement. Regardless
of which CAS that actually is (of line 9 or of line 26), the end result will be the same: the next node in the linked list
will be the PICKET. Note that the next link of a node is updated only when it is pointing to NULL. In fact, this applies
to all the CAS statements in the implementation, both those of deq and those of enq instances. Thus, once the next
pointer is set to PICKET, it will remain unchanged. This implies that after executing line 32, node will be equal to
PICKET and the method will complete. [\

Before we state the bounded competitive result for the CAS statement of line 26, we have to state several invariants.

Lemma B.4 At any state, k ă queue->Tail implies that there is a node with ver equal to k in the slot Queue->pair[j],
where j “ k%SIZE.

Proof. As long as the pairing array remains valid, the value of Queue->Tail never decreases. A node with ver
is inserted only if at some state prior to the insertion Queue->Tail was equal to ver. This is easy to see since
ver always gets the value of tail whose value is only assigned to queue->Tail. Finally, Queue->Tail is
incremented exactly once between two consecutive insertions. [\

Lemma B.5 A linked list of a slot can contain at most one PICKET and if it contains one, it is the last node of the
list.

Proof. As we have already discussed above, PICKET can only replace NULL. If the invalidation occurs during the
first round (line 9 of deq), the linked list after the PICKET insertion contains only PICKET because headwas NULL.
Let us consider the case where the last node in the list is PICKET. The helper pointer removed either is NULL or
points to some node that can reach PICKET. The pointer head cannot be equal to NULL because the list contains at
least one node. Note that, the stale segment removal can never set head to NULL. Then, prior to the check at line 24,
either node is PICKET or is not the last node. If it is PICKET, then we are done. Otherwise, we enter the loop. In the
loop node can never be NULL and either it will be equal to the node with the right ticket or it will be PICKET. The
version number of PICKET is -1 so it can never be equal to ticket. In either case, no update to the list is possible.
Thus, if a linked list contains PICKET, there is exactly one PICKET and that is the last node. [\

Lemma B.6 A node n points to a node m only when n is not PICKET, and either m is PICKET or n.ver` SIZE “

m.ver.

Proof. The first part is immediate from the previous lemma. We only have to prove that n.ver` SIZE “ m.ver. It
is trivial to show that m.ver ´ n.ver is an integer multiple of SIZE. Similarly, it is easy to show that the linked list
is always in ascending order. Note that m cannot be inserted in the first round, because that requires an empty list,
contradicting the assumption that n is already in the list. Then, m must have been inserted by CAS statement in line
53 of enq. That CAS statement is only reached if node->ver is less than tail, node is the last node in the list
and is not PICKET. Furthermore, by Lemma B.4, node->ver is equal to tail-SIZE. This completes the proof.

[\

Now we are ready to state the bounded competitive property.

Proposition B.7 The CAS statement of line 26 is bounded competitive for tenqu.

Proof. Let j denote the value of the ver field of the last node of the list queue->pair[idx] immediately
following the execution of line 6 by the deq instance. Let k denote the value of ticket. Then, s26 is n “ 1` pk ´
jq{SIZE-bounded competitive. We have to show that deq can fail in setting the last node to PICKET at most n times.
First observe that, deq instance will not try to update the linked list if a node with ver equal to ticket is in the list.
If the node is not in the list, in the worst case, the first time deq fails will be against the enq instance inserting the
node with ver equal to j ` SIZE, by Lemma B.6. The second time, failure will be due to the insertion of the node
with ver equal to j` 2SIZE. Thus, PICKET insertion will fail at most n times after which the node will be in the list
and deq will not attempt another CAS. [\

As a consequence, we have the following result.
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Theorem B.8 SP queue is lock-free. In particular, the deq method is wait-free.

The reason why SP queue is not wait-free is because an enq instance might starve by failing every time it tries to
insert its item. It is lock-free, however, because there is always one CAS attempt that will be successful and thus there
will always be one enq instance that completes its execution. This argument is similar to the lock-freedom argument
for Michael-Scott queue from which the SP queue is derived.

Theorem B.9 SP queue is linearizable.

Proof. (Sketch) The commit points of methods are not fixed and depend on the ordering of certain events during their
execution. We will now explain where each method, depending on its execution, commits. The rest of the proof is
a tedious but straightforward analysis showing that a sequential execution constructed by replacing the concurrent
executions of methods with their sequential versions according to the order of their commit points is a valid queue
behavior.

Let epq, kq denote the enq instance which inserts the node with ver “ k for Queue “ q. Let re denote the
execution of an enq instance epq, kq. The commit point of epq, kq is specified as follows:

• If in re there is no creation of a new pairing array (lines 6 or 40, executed by a concurrent enq instance),
then the commit point of epq, kq is the successful execution of either line 16 (first round insertion) or line 53
(ordinary insertion).

• If epq, kq replaces the pairing array (successful execution of either line 6 or line 40), then the commit point of
epq, kq is the execution of the successful replacement.

• If k ą 0 and epq, kq inserts into a pairing array that is invalidated in re by a concurrent enq instance e1, then the
commit point of epq, kq comes after the commit point of epq, k´1q and the invocation of epq, kq. If k “ 0, then
the commit point of epq, kq is the last occurrence of the execution of the statement at line 3 (reading Queue).
Note that, in this case, the commit point of e has to precede the commit point of e1, because otherwise epq, kq
could not read the invalid pairing array.

Let dpq, k, vq denote the deq instance which executes line 5, observes q as the value of Queue, k as the value
of q->Cnt deq, and v is the non-EMPTY value it returns. Let dpq, kq denote a deq instance which executes line 5,
observes q as the value of Queue, k as the value of q->Cnt deq, and returns EMPTY. Similarly let dpqq denote the
deq instance which executes line 4, and observes q as the value of Queue.

Let rdv denote the execution of a deq instance dpq, k, vq. The commit point of dpq, k, vq is specified as follows:

• If the node with ver “ k is inserted before rdv has started and there is no pairing array replacement in rdv ,
then the commit point of dpq, k, vq is the execution of line 5.

• If the node with ver “ k is inserted in rdv and there is no pairing array replacement in rdv , then the commit
point of dpq, k, vq is immediately after the commit point of epq, kq.

• If there is a pairing array replacement in rdv by an enq instance e, then the commit point of dpq, k, vq is before
the commit point of e and after the commit points of both epq, kq and dpq, k´ 1, v1q. If k “ 0, then the commit
point of dpq, k, vq is the execution of line 2. For k ą 0, the commit point of epq, kq precedes the commit point
of e (see the commit points of enq instances above). That the commit point of dpq, k´1, v1q comes also before
that of e can be proved by induction on k.

Let rde denote the execution of a deq instance dpq, kq. The commit point of dpq, kq is specified as follows:

• If in rde there is no pairing array replacement, then the commit point of dpq, kq is the response of dpq, kq.

• If in rde there is a pairing array replacement, then the commit point of dpq, kq is immediately before the commit
point of the first epq1, 0q, for q1 ‰ q.

Let rds denote the execution of a deq instance dpqq. The commit point of dpqq is specified as follows:

• If in rds there is no pairing array replacement, then the commit point of dpqq is the execution of line 3.

• If in rds there is a pairing array replacement, then the commit point of dpqq is immediately before the commit
point of the first epq1, 0q, for q1 ‰ q.

Observe that, for empty returning deq instances, the particular linear order is not specified; any total ordering of those
instances subject to the constraints given above will give a valid linearization of a queue behavior. [\
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1 i n t deq ( )
2 whi le ( t r u e )
3 h = Head ;
4 t = T a i l ;
5 c = h . n e x t ;
6 i f ( h == Head )
7 i f ( h == t )
8 i f ( c == NULL)
9 re turn E ;

10 e l s e
11 x = c . v a l ;
12 i f (CAS(&Head , h , c ) )
13 break ;

Figure 3: The deq method of the Michael-Scott queue.

1 void enq ( i n t x )
2 n = new node ( x ) ;
3 whi le ( t r u e )
4 t = T a i l ;
5 c = t . n e x t ;
6 i f ( t == T a i l )
7 i f ( c == NULL)
8 i f (CAS(& t . nex t , c , n ) )
9 e x i t ;

10 e l s e
11 CAS(& T a i l , t , c ) ;
12 CAS(& T a i l , t , c ) ;

Figure 4: The enq method of the Michael-Scott queue.

1 t y p e d e f s t r u c t QueueType {
2 b o o l e a n I n v a l i d ;
3 i n t Cnt deq ;
4 i n t T a i l ;
5 S l o t Ty p e p a i r [ SIZE ] ;
6 } QueueType ;
7

8 t y p e d e f s t r u c t S l o t Ty p e {
9 NodeType ∗ head , l a s t , removed ;

10 } S l o t Ty p e ;
11

12 t y p e d e f s t r u c t NodeType {
13 i n t v a l ;
14 i n t v e r ;
15 NodeType ∗ n e x t ;
16 } NodeType ;

Figure 5: The main data types used in our implementation.
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Figure 6: A typical state of the low-level representation of the implementation.

1 QueueType ∗ CreateNewQueue ( i n t x ) {
2 new queue = new QueueType ( SIZE ) ;
3 new queue >́I n v a l i d = f a l s e ;
4 new queue >́Cnt deq = 0 ;
5 new queue >́T a i l = 1 ;
6 new node = new NodeType ( x , 0 ) ;
7 new queue >́p a i r [ 0 ] . head = new node ;
8 new queue >́p a i r [ 0 ] . l a s t = new node ;
9 re turn new queue ;

10 }
11

12 void CloseQueue ( QueueType ∗ q , i n t i d x ) {
13 q >́I n v a l i d = t r u e ;
14 q >́p a i r [ i d x ] . removed = PICKET ;
15 }

Figure 7: The auxiliary routines used in the implementation.
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(a) Strict Enq-Deq
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(b) Random Enq-Deq

Figure 8: Benchmarks on a 24-core server for almost equal number of enq and deq instances.
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(a) 1:1 Prod-Cons

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

4 8 12 16 20 24

o
p
e
ra

ti
o
n
s
/m

s
 (

m
o
re

 i
s
 b

e
tt
e
r)

number of threads

SP MS LB FC

(b) 1:3 Prod-Cons
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(c) 3:1 Prod-Cons

Figure 9: Benchmarks on a 24-core server for various Producer-Consumer ratios.
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(a) FAI vs. CAS.
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(b) Impact of hazard pointers on performance.

Figure 10: Additional performance figures for 24 threads. Contention decreases along x-axis.
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