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Abstract

Social insect colonies tend to have numerous members which function together like a

single organism in such harmony that the term “super-organism” is often used. In this

analogy the reproductive caste is analogous to the primordial germ cells of a metazoan,

while the sterile worker caste corresponds to somatic cells. The worker castes, like

tissues, are in charge of all functions of a living being, besides reproduction. The

establishment of new super-organismal units (i.e. new colonies) is accomplished by

the co-dependent castes. The term oftentimes goes beyond a metaphor. We invoke it

when we speak about the metabolic rate, thermoregulation, nutrient regulation and gas

exchange of a social insect colony. Furthermore, we assert that the super-organism

has an immune system, and benefits from “social immunity”.

Social immunity was first summoned by evolutionary biologists to resolve the appar-

ent discrepancy between the expected high frequency of disease outbreak amongst

numerous, closely related tightly-interacting hosts, living in stable and microbially-rich

environments, against the exceptionally scarce epidemic accounts in natural popula-

tions. Social immunity comprises a multi-layer assembly of behaviours which have

evolved to effectively keep the pathogenic enemies of a colony at bay. The field of

social immunity has drawn interest, as it becomes increasingly urgent to stop the col-

lapse of pollinator species and curb the growth of invasive pests. In the past decade,

several mechanisms of social immune responses have been dissected, but many more

questions remain open.

I present my work in two experimental chapters. In the first, I use invasive garden

ants (Lasius neglectus) to study how pathogen load and its distribution among nest-

mates affect the grooming response of the group. Any given group of ants will carry

out the same total grooming work, but will direct their grooming effort towards individu-

als carrying a relatively higher spore load. Contrary to expectation, the highest risk of
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transmission does not stem from grooming highly contaminated ants, but instead, we

suggest that the grooming response likely minimizes spore loss to the environment,

reducing contamination from inadvertent pickup from the substrate.

The second is a comparative developmental approach. I follow black garden ant

queens (Lasius niger ) and their colonies from mating flight, through hibernation for a

year. Colonies which grow fast from the start, have a lower chance of survival through

hibernation, and those which survive grow at a lower pace later. This is true for colonies

of naı̈ve and challenged queens. Early pathogen exposure of the queens changes

colony dynamics in an unexpected way: colonies from exposed queens are more likely

to grow slowly and recover in numbers only after they survive hibernation.

In addition to the two experimental chapters, this thesis includes a co-authored pub-

lished review on organisational immunity, where we enlist the experimental evidence

and theoretical framework on which this hypothesis is built, identify the caveats and

underline how the field is ripe to overcome them. In a final chapter, I describe my part

in two collaborative efforts, one to develop an image-based tracker, and the second to

develop a classifier for ant behaviour.
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1

1 Background

1.1 Collective disease defenses and social immunity

Group living is a strategy with many benefits, and some costs [Krause and Ruxton,

2002]. One of the costs associated to group living is an increased susceptibility to

disease. This is because the transmission opportunities of a pathogen grow with the

number of potentially infectious interactions among the members of the group. Also,

a large density of susceptible individuals would ensure that the pathogen finds an op-

portunity for infection. Moreover, a population of group-living individuals, often family

groups with a shared genetic background, can have a relatively uniform susceptibil-

ity, further increasing the chance that a pathogen prevails. Indeed, group size and

genetic homogeneity correlate with pathogen prevalence and intensity in a number of

study organisms [Schmid-Hempel, 2017]. However, there can be considerable devi-

ation from the expectation, for instance, when there is structure in the social interac-

tions (e.g. resulting from dominance hierarchies in mammals or division of labour in

social insects) which can impede pathogens from reaching all parts of the population

[Schmid-Hempel, 2017; Nunn et al., 2015]. Group-living animals have evolved a variety

of adaptations that offset the costs of pathogens [Schmid-Hempel, 2017].

Social insects represent a peculiar case, as they live in particularly dense popu-

lations with high genetic relatedness, maintaining a stable homeostatic environment

which should favour microbial invasion [Schmid-Hempel, 1998], but instead exhibit a

barrage of individual and collective anti-pathogenic defenses [Cremer et al., 2007].

These defenses have evolved to limit the uptake of pathogens from the environment

and into the nest, to avoid the contamination of colony members or the replication of the
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pathogens inside them [Cremer et al., 2007]. The strategies have also been broadly

categorized into avoidance, resistance and tolerance strategies based on their effect.

Avoidance strategies prevent the acquisition of a parasite altogether. Resistance refers

to strategies that limit pathogen replication, whereas tolerance strategies do not affect

the pathogen but merely compensate for its effects [Cremer et al., 2018]. Finally, they

can be classified according to when they happen, as prophylactic (happening inher-

ently, constantly), as pathogen-induced (happening only upon pathogen exposure) or

both (present always, but intensified with a pathogen trigger). For examples of collect-

ive strategies against disease see Table 1.1.

Avoidance of possibly contaminated areas, food or individuals reduces overall ex-

posure to pathogens (e.g territoriality, aversion, nest guards) [Cremer et al., 2007].

Given the ubiquity of pathogens, complete avoidance seems unachievable, and this

possibly explains the scarcity of avoidance examples in social insects [Cremer et al.,

2018]. The actions of colony members tend be located in space and restricted to cer-

tain tasks (e.g. spatial fidelity [Mersch et al., 2013], task-allocation [Hart and Ratnieks,

2001; Schmid-Hempel and Schmid-Hempel, 1993b]) and this substructuring of the in-

teraction network can protect the queen and vulnerable brood from pathogens carried

inside the nest by foragers (e.g. organisational immunity, see Chapter 2). The isolation

of sick individuals (self actuated [Bos et al., 2012] or socially enforced [Baracchi et al.,

2012; Leclerc and Detrain, 2016]) has also been observed.

Resistance strategies can remove pathogens from the nest or from individuals

and/or neutralize them. Preventively, the nest can be kept clear by removing sources of

contamination (e.g. removing corpses and placing them down-stream so they are not

washed in with the next rain [Howard and Tschinkel, 1975]) and applying disinfectants

to the nest walls (e.g. resin collection, fecal pellets) [Cremer et al., 2007]. Triggered

by the presence of a heat-sensitive pathogen, honeybees are known to increase the

comb temperature, a feat known as collective fever [Starks et al., 2000].

Tolerance is the capacity of a colony to cope with the damage directly caused by

the pathogen or caused by the measures taken against the pathogen. A colony can

increase worker production to replace losses after an infection, and it is also hypothes-

ized that it produces a buffer worker force before it incurs a major loss (e.g. inactive

“lazy” workers) [Cremer et al., 2018]. Colony-level tolerance is starting to gain atten-
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COLLECTIVE STRATEGIES

STAGE AVOIDANCE RESISTANCE TOLERANCE

UPTAKE
territoriality

aversion

NEST

CONTAMINATION

nest guards

nest architecture

resin collection

fecal pellets

nechrophoresis

spatial-fidelity

task allocation

mechanical removal

(allogrooming)

TRANSMISSION

AND INFECTION
self-removal

or isolation

chemical disinfection

(antimicrobial glandular

compounds)

REPLICATION
collective fever

destructive disinfection

changes in colony pace

or composition

Table 1.1: Examples of collective disease defenses. The strategies can be broadly

categorized based on the stage of the pathogen which they prevent or on the effect

they have over the pathogen. They can also be presented prophylactically (blue), be

pathogen-induced defenses (pink), or both (purple). This is by no means an exhaustive

list.
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tion in the field, and it should gain momentum as it becomes easier to experimentally

monitor colonies long-term (see Chapter 4).

Collective defenses, can be complex and dynamic. To illustrate these properties,

take destructive disinfection [Pull et al., 2018], which targets the replication of a fungal

pathogen once it has successfully invaded an individual in the ant colony (an immobile

and vulnerable pupae) . The individual can no longer be helped by the colony and it

relies only on its immune system to fight the pathogen. If it were to fail, it poses an

imminent threat to the colony, as the pathogen will complete its cycle and produce an

overwhelming amount of new infectious propagules to release into the colony. The

brood tending ants sense a chemical cue emitted by the infected pupae, which triggers

unpacking, biting and spraying, killing both the pupae and the fungus inside. The

group moves from prophylactic brood-care to pathogen-triggered intensified grooming,

to destructive disinfection, in a thrilling race against the pathogen.

Because of their reliance on interactions among individuals, collective strategies

can have, both, a beneficial and a detrimental outcome. For example, the effects of

allogrooming on fungal spore transmission depend on at least two parameters: (i) the

ability of spores to transmit and (ii) the ability of ants to remove the spores. Depending

on these parameters, allogrooming can have opposing effects, that is, allogrooming

can lead both to the propagation or containment of the pathogen. When the spores are

highly transmissible (infectious) or the ants are inefficient at removing them, the best

strategy to contain the pathogen is to avoid allogrooming and rely on self-grooming.

When the spores are not so transmissible (infectious), or the ants are very efficient at

removing them, allogrooming becomes advantageous [Theis et al., 2015].

Epidemic parameters are not necessarily fixed in time. For example, in the ant-

fungus host-pathogen system, transmissibility decreases as the spores attach and

penetrate the cuticle of the contaminated ant. For the same reason, grooming effi-

ciency is also expected to decrease. Given a certain pathogen-host system, we may

start at a fixed point in the parameter space and move away from it, as time goes by.

Correspondingly, the host response should be adjusted dynamically.

This dependency on time does not end when one pathogen invasion is eliminated.

Rather, the outcome of a given strategy can influence the response to subsequent

challenges. For example, while a low-level infection can lower susceptibility to the
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same pathogen in a second challenge [Ugelvig and Cremer, 2007; Konrad et al., 2012],

it can increase susceptibility to a different pathogen [Konrad et al., 2018]. Interestingly,

ants adjust their sanitary care to their infection history and the presented challenge.

Specifically, ants allogroom when presented to a homologous threat and use poison

spraying when presented to a heterologous threat, to which they are more susceptible

[Konrad et al., 2018].

Despite the wealth of studies on mechanical removal and chemical disinfection, the

behavior dynamics of sanitary care are not entirely understood. Points above illus-

trate the complexity of the phenomenon and from these examples stem new ques-

tions. To name a few, how are contaminated individuals detected? Is the information

of contaminated-status broadcast to the group? How do contaminated individuals take

part? Ants constantly encounter soil-borne fungal pathogens and at any point in time

it is likely that more than a single ant is contaminated. Given that infection risk is dose-

dependent, can ants (individually or collectively) assess the risk to the colony (overall

spore load) based on the number of individuals contaminated or their loads? And do

they adjust sanitary care according to this risk? It is thus worth revisiting the most pop-

ular strategy against pathogen transmission and infection, sanitary care. We do this in

Chapter 3.

1.2 Study system

In this work, two different host-pathogen systems were used for study of fungal infec-

tions in ants. The first consists of the ant Lasius neglectus as host, and Metarhizium

robertsii as a fungal pathogen; the second, of the ant Lasius niger and the fungus

Metarhizium brunneum. In general terms, both fungi are prevalent in plants and soil,

and their spores are known to attach to the foraging ants, whereby they penetrate their

cuticle, eventually sporulating from the dead body. Each of this organisms is described

in more detail below.
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1.2.1 Ant hosts

Lasius neglectus is an invasive garden ant which is found in most continental Europe

[Seifert, 2000; Chultz and Eifert, 2005] after being, most likely, accidentally introduced

from Asia Minor [Chultz and Eifert, 2005; Ugelvig et al., 2008]. Its wide distribution is

due in part to its ability to survive extended periods of frost [Seifert, 2000]. Populations

dwell in networks of several cooperating nests, each containing several queens that

mate within the nests, and can thus be considered super-colonies [Helanterä et al.,

2009]. The workers of L. neglectus are specially proficient at collecting honeydew from

aphids, which allows them to out-compete other local species, but causing a damage

to vegetation [Cremer et al., 2006]. The species has become a very common model or-

ganism for the study of social immunity [Cremer et al., 2018; Ugelvig and Cremer, 2007;

Konrad et al., 2012], for four main reasons: their role as an urban pest [Konrad et al.,

2012], its interaction with fungal pathogens, the ease with which they are collected and

the ease of maintenance in laboratory environments over several years.

Lasius niger , also known as the black garden ant, is a species distributed through-

out the Holarctic region. They live in colonies with a single queen (i.e. monogynic)

and several thousand workers, which are aggressive to other colonies [Sommer et al.,

1995]. Colonies are founded after a nuptial flight in which queens and males from sev-

eral colonies in the same region, emerge simultaneously to the surface [Aron et al.,

2009], after sensing environmental cues [Bourke et al., 1995]. After mid-air mating, the

queen lands, sheds its wings, finds a suitable place to dig and buries itself never to

emerge again. Inside its chamber, the L. niger queen must survive without foraging,

metabolizing parts of its own body and fat reserves [Janet, 1907], as well as raising

the first batch of workers. During this period, the incipient colonies are especially vul-

nerable to predators and pathogens and in the case where queens share a nest a fight

to death imminently takes place [Bourke et al., 1995]. In the surviving colonies, work-

ers take over brood care and start to forage, allowing the colony to survive for years

or decades [Kramer et al., 2016; Fowler et al., 1986]. Fertilized L. niger queens can

be captured during nuptial flight in large numbers and let to initiate colonies in labor-

atory conditions, which makes them a good model organism for the study of colony

development.
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1.2.2 Fungal pathogens

Metarhizium is a genus of Ascomycete which is present in all continents except Ant-

arctica [Roberts and St. Leger, 2004], dwelling in the roots of plants and surrounding

soil, with a very high prevalence [Keller et al., 2003]. Most of the species are generalist

pathogens of insects, with some species being able to infect hosts of seven different

orders, which has led to its use as a biological insecticide [Deacon, 2013]. In this work,

we use two different species of the genus: M. robertsii and M. brunneum, which were

until recently considered a single species M. anisopliae [Bischoff et al., 2009]. Apart

from their genetically-derived phylogeny, their differences are most evident in habitat,

with M. brunneum found in forested habitats and M. robertsii more in open or agricul-

tural fields [Wyrebek et al., 2011].

Both species have a similar interaction cycle with their insect host. The sexual

spores of the fungus (i.e. conidiospores) are acquired from the environment, attach-

ing loosely to the insect cuticle. Under the right humidity conditions, these germinate

and attach firmly, producing a specialized infection structure called an “appressorium”,

which penetrates into the body by enzymatically breaking down the insect’s cuticle

[Deacon, 2013]. Inside the host, the conidiospores produce sexual spores (i.e. blasto-

spores) which spread through the insect’s hemolymph, consuming sugars and produ-

cing toxins, which kill cells and suppress the immune system of insect[Pedras et al.,

2002]. The host dies because its organs are colonized. The fungus produces filaments

(i.e. mycelia) that grow out of the corpse and in their tips produce new conidiospores

[Deacon, 2013].

In this work we had access to a strain of M. robertsii which had been genetically

modified to include one of two molecular labels, either an eGFP or an mRFP1 gene.

These were used in the experiments described in Chapter 3, to distinguish their transit

through a group of ants. For the experiment described in Chapter 4, M. brunneum was

used.
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1.3 Thesis aims and outline

This thesis has the aim of advancing our understanding of two processes. First, the

changes in the behaviour of ants upon contact with individuals that have been ex-

posed to pathogens, and how these changes mediate the transmission of the patho-

gen. Second, the development of colonies when the queen has been exposed after

mating, in particular, the effect on overwintering survival. These two processes have

repercussions on the survival of the colony, and so the studies lead to a better under-

standing of the mechanisms that insects have evolved to cope with disease. Further-

more, the refinement of the techniques, both theoretical and experimental, necessary

for these studies, firmly establish them in a field that has seen much technical trans-

formation.

The second chapter presents the basis of the organizational immunity hypothesis.

The hypothesis refers to properties of interaction networks of insect societies which in-

hibit disease transmission. The hypothesis is presented and supported with theoretical

and empirical evidence. The chapter was published as a review in 2014 in the Journal

Current Opinions in Insect Science, and written with N. Stroeymeyt and S. Cremer.

This chapter also puts the study of disease defenses in insect societies into context,

mentioning the important findings and major challenges of this field.

In the third chapter, an experiment in which the behaviour of small groups of ants

upon contact with a pathogen-exposed individual, is described. The experiment, com-

bining molecular techniques for spore quantification, behavioural observations and

mathematical models, sheds light on the effect that pathogen doses and infestation

level have on the behaviour of both exposed and unexposed individuals, and on how

this behaviour affects the transmission of pathogens. The study presents several nov-

elties: the sheer amount of data which was manually generated gives unprecedented

statistical power to make inferences, behaviours which had not been studied in de-

tail are observed, and molecular quantification on two labelled spores simultaneously

add significant resolution to the tracing of infection pathways. This work was done in

collaboration with A. V. Grasse, G. Tkačik and S. Cremer. Furthermore, it serves as

the basis for a theoretical exploration of individual ant behaviour being undertaken in

collaboration with G. Tkačik and K. Boďová.
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The fourth chapter reports an experiment in which the effect of pathogens on the

development of newly founded colonies is studied, with particular attention to its over-

wintering survival. The experiment monitored queens exposed to a pathogenic fungus

immediately after mating, and followed them throughout a year, observing periodic-

ally both their demographics and their behaviour. Of special interest is the description

of different strategies that colonies follow to optimize their resources and allow them

to survive the winter, independently of their exposure to pathogens. Importantly, this

experiment introduced the use of an image-based tracking software (developed in a

collaboration described in the next chapter), which allows for quantitative assessment

of behaviour in unprecedented scales, both in terms of number of colonies, and of total

observation time. The experimental work described in this chapter was carried out with

C. Pull. Additional experimental measurements are carried out with help from Elisabeth

Näderlinger.

In the fifth and final chapter, the previously mentioned image-based tracking soft-

ware is described in detail. After a review of the state of the art in automated behavi-

oural observation, its successes and potentialities, as well as detailed analysis of one

of the most prominent solutions, the need for the development of new software, called

Ferda, is motivated. Ferda is capable of following individuals of different sizes, recor-

ded in videos of diverse quality and of very large sizes. This last property is essential

for the experiment described in the previous chapter, and required the use of parallel al-

gorithms and a high performance computing environment. The development of Ferda

was done in close collaboration with F. Naiser and J. Matas, is still in progress and

expected to lead to a publication (F. Naiser, B. Casillas-Pérez, S. Cremer, J. Matas).

Finally, the chapter ends with a report on preliminary results of automated behaviour

classification, which consist of machine learning algorithms being trained to recognize

different behaviours. Essential to this project was the data produced by Ferda, as well

as human annotation of data. These final experiments were performed in collaboration

with C. Sommer and expected to be included in future experiments by the Cremer Lab.
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2 Organisational Immunity in Social Insects

The work presented in this chapter was published as a review article, with the same

title, in Current Opinions in Insect Science [Stroeymeyt et al., 2014], and reproduced

here with minimal changes. The manuscript was written together with the principal

author, Nathalie Stroeymeyt and corresponding author, Sylvia Cremer. All authors

contributed to the literature search, concept development, discussions and manuscript

drafting. The review collects the work which has been relevant to formulate the “or-

ganisational immunity” hypothesis. In brief, the hypothesis states that eusocial insect

networks should possess properties which hinder disease spread. The literature was

roughly split into theoretical work and the empirical evidence which support the hypo-

thesis. I was mainly responsible for compiling, selecting and condensing the theoretical

studies on the propagation-inhibiting properties of networks, as well as, the modeling

approaches which predict the emergence of such properties and which are used in

combination with empirical studies. My work is best illustrated in items Box1 and Fig-

ure B1. A recent study [Stroeymeyt et al., 2018] demonstrated the existence of both

constitutive and induced transmission-inhibiting properties in the interaction networks

of ant colonies, providing the hypothesis with strong empirical support.

2.1 Abstract

Selection for disease control is believed to have contributed to shape the organisation

of insect societies – leading to interaction patterns that mitigate disease transmission

risk within colonies, conferring them “organisational immunity”. Recent studies combin-

ing epidemiological models with social network analysis have identified general prop-
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erties of interaction networks that may hinder propagation of infection within groups.

These can be prophylactic and/or induced upon pathogen exposure. Here we review

empirical evidence for these two types of organisational immunity in social insects and

describe the individual-level behaviours that underlie it. We highlight areas requiring

further investigation, and emphasise the need for tighter links between theory and em-

pirical research and between individual- and collective-level analyses.

2.2 Introduction

Disease transmission in animal societies is believed to depend greatly on the structure

and dynamics of their social interaction networks, which represent pathways over which

infectious propagules can be transmitted [Newman, 2010; Mersch et al., 2013; Char-

bonneau et al., 2013; Keeling, 2005; Barthelemy et al., 2005; Pei and Makse, 2013;

House and Keeling, 2011; Miller, 2009; Newman and Girvan, 2004; Salathe and Jones,

2010; Shao and Jiang, 2012; Bisset and Marathe, 2009; Bansal et al., 2010; Cremer

et al., 2007; Naug and Camazine, 2002; Naug and Smith, 2007; Schmid-Hempel, 1998;

Schmid-Hempel and Schmid-Hempel, 1993a]. The effects of interaction patterns on

epidemic dynamics have been thoroughly investigated in theoretical studies (Fig. B1).

However, empirical validation of their predictions has been scarce due to the difficulty

of obtaining comprehensive datasets on interactions and disease transmission in large

animal groups. Studying experimentally amenable model systems such as colonies

of social insects (social bees and wasps, all ants and termites) may help overcome

this constraint and gain new insights on how social organisation influences disease

dynamics and epidemic outcomes in social groups (Fig. B1).

Social insects are particularly vulnerable to disease because the frequent and close

interactions among genetically related colony members favour pathogen transmission.

In addition to their individual immune system, they have evolved collective disease de-

fences known as “social immunity” [Cremer et al., 2007]. Social immunity is expressed

through a variety of sanitary behaviours and the use of antimicrobials, which reduce the

infection risk and pathogen load of exposed individuals [Cremer et al., 2007; de Roode

and Lefèvre, 2012; Evans and Spivak, 2010; Wilson-Rich et al., 2009]. Moreover, the

organisation of insect societies may also contribute to social immunity[Cremer et al.,
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2007; Naug and Camazine, 2002; Naug and Smith, 2007; Schmid-Hempel, 1998;

Schmid-Hempel and Schmid-Hempel, 1993a]. In particular, certain patterns of inter-

actions among group members have been claimed to limit pathogen spread at the

colony-level and decrease the infection risk of valuable individuals, such as the queen,

brood or young workers, providing a form of “organisational immunity” [Naug and Smith,

2007]. Interaction patterns that reduce disease risk may be constitutively expressed in

healthy colonies and play a preventative or prophylactic role, or be induced upon con-

tact with pathogens, through behavioural changes that further reduce transmission risk

from infectious to healthy individuals [Cremer et al., 2007].

Testing the organisational immunity hypothesis in social insects has been facilitated

by the recent development of data collection techniques and analytical approaches,

such as high-throughput automated tracking of individuals within colonies (reviewed

in [Charbonneau et al., 2013; Pinter-Wollman et al., 2014]) and the application of so-

cial network theory to epidemiology and behavioural ecology [Keeling, 2005; Krause

et al., 2009]. However, unequivocal testing remains challenging because it is experi-

mentally difficult to: (i) manipulate colony-level interaction patterns without modifying

other potentially epidemic-relevant parameters such as colony size, hunger levels or

health status; (ii) track the propagation of pathogens and/or non-pathogenic proxies in

real time and thus (iii) establish a clear causal relationship between the structure of

interaction networks and transmission dynamics; and (iv) understand how individual

behaviour influences collective dynamics. Empirical work has therefore often been lim-

ited to partially addressing different aspects of organisational immunity (Table 1). Here

we present an overview of the existing empirical support for organisational immunity in

social insects and the individual behavioural rules that are believed to underlie it. We

attempt to elucidate general concepts of organisational immunity and highlight areas

deserving further investigation.
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2.3 Evidence for organisational immunity in social in-

sects

2.3.1 Interaction patterns and colony-level disease spread

Explicit simulations of disease spread over simulated interaction networks have proven

a powerful approach to formally investigate the role of social organisation in disease

dynamics. These analyses revealed that the structural properties of interaction net-

works (e.g., degree distribution, clustering coefficient, and community structure) have

a crucial influence on transmission dynamics and final epidemic size ([Keeling, 2005;

House and Keeling, 2011; Salathe and Jones, 2010; Hock and Fefferman, 2012];

detailed in Box 1). Similarly, the extent to which disease spreads within groups de-

pends on the temporal dynamics of interactions among individuals, such as the time

ordering and temporal overlap of interactions, or the existence of repeated contacts

[Bansal et al., 2010; Read et al., 2008]. Empirical studies that combined social net-

work analysis with the physical tracking of non-pathogenic proxies spreading through

colonies (e.g., microbeads [Naug and Smith, 2007; Naug, 2008] or food [Feigenbaum

and Naug, 2010; Sendova-Franks et al., 2010]; Table 1) confirmed that social network

properties influence transmission in social insects. Indeed, changes in network struc-

ture induced by experimentally manipulating food quality or foraging motivation led to

predicted changes in transmission patterns in the honeybee Apis mellifera [Naug and

Smith, 2007; Naug, 2008; Feigenbaum and Naug, 2010] and the ant Temnothorax al-

bipennis [Sendova-Franks et al., 2010]. In particular, non-pathogenic proxies spread

less broadly and less evenly over networks of lower density [Naug and Smith, 2007;

Naug, 2008; Feigenbaum and Naug, 2010; Sendova-Franks et al., 2010] and/or in-

creased clustering [Naug and Smith, 2007; Naug, 2008], and spread faster and more

uniformly in groups with higher spatial mixing among individuals and higher temporal

overlap of interactions [Sendova-Franks et al., 2010].

It remains unproven, however, whether the structure of interaction networks natur-

ally observed in social insects really contributes to limit disease spread through the

colony (i.e. whether it provides prophylactic organisational immunity). Most support for

this hypothesis comes from agent-based models showing that social heterogeneities,
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arising for example from division of labour or differences in life history and disease

susceptibility among different types individuals, help contain disease in social insect

colonies [Naug and Camazine, 2002; Schmid-Hempel, 1998; Fefferman et al., 2007].

Social heterogeneities result in interaction heterogeneities, i.e. interactions are not dis-

tributed uniformly within the colony, but some pairs of workers interact more frequently

than others. This leads to the formation of partially isolated groups of individuals,

or communities, with reduced transmission rates across groups [Cremer et al., 2007;

Naug and Camazine, 2002; Fefferman et al., 2007]. Empirical evidence that social net-

works do contribute to mitigate disease risk is however still scarce. Testing the effect of

interaction heterogeneities on disease spread can be achieved by comparing the trans-

mission properties of real social insect networks with appropriate null models (Table

1). So far, most such studies have focused on information flow over networks [Mer-

sch et al., 2013; Blonder and Dornhaus, 2011; Pinter-Wollman et al., 2011]; however,

their outcome can be reinterpreted in terms of disease transmission because they use

similar modelling approaches to those investigating pathogen spread [Quevillon et al.,

2015]. Analysis of time-ordered contact networks in the ant Temnothorax rugatulus

revealed slower colony-level propagation compared to a diffusion null model [Blonder

and Dornhaus, 2011], which could lend support to the organisational immunity hypo-

thesis. By contrast, the interaction skew observed among Pogonomyrmex barbatus

ant workers near the nest entrance was shown to enhance information flow compared

to uniform interaction null models[Pinter-Wollman et al., 2011]. These examples illus-

trate the difficulty of determining the adaptive value of interaction patterns observed

in social insect colonies. These have indeed evolved under conflicting selection pres-

sures and likely represent a compromise between the need to reduce disease spread

on one hand, and to ensure high work output, fast information flow, and colony re-

silience on the other hand [Charbonneau et al., 2013; Naug and Camazine, 2002;

Pinter-Wollman et al., 2011]. Studies that explicitly address the differences in trans-

mission properties between information and pathogens will be crucial to better under-

stand the significance of interaction networks in terms of disease control and colony

efficiency.

It also remains unproven whether social insects can alter their interaction patterns

upon encountering pathogens to further reduce disease propagation (i.e. whether they
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show induced organisational immunity). So far there has been only one investigation

of group-level transmission dynamics in pathogen-exposed colonies[Otterstatter and

Thomson, 2007], and this study lacked comparison with non-exposed control colonies

(Table 1). Theory may help generate testable predictions for future empirical studies of

induced organisational immunity (Box 1).

2.3.2 Interaction patterns and individual probability of infection

The fitness consequences of infection in social insects depend not only on overall dis-

ease incidence, but also on the identity of individuals contracting the disease. For

example, losing a queen is more costly to the colony than losing workers. Similarly,

losing young workers is more costly than losing older workers, which have shorter

expected life expectancy [Woyciechowski and Moron, 2009]. Highly valuable indi-

viduals appear to be protected against disease via interaction heterogeneities, which

result in their social isolation from ’high-risk’ individuals (i.e. old workers that have a

high chance of having encountered pathogens and perform high disease-risk tasks

such as foraging [Mersch et al., 2013], waste management [Hart and Ratnieks, 2001;

Hart and Ratnieks, 2002], undertaking [Sun and Zhou, 2013] and hygienic behaviour

[Wilson-Rich et al., 2009]). There is good evidence that the queen and young workers

are protected from potentially harmful external agents. Studies tracking the propaga-

tion of non-pathogenic proxies through honeybee colonies indeed revealed lower pre-

valence and intensity in young workers [Naug and Camazine, 2002; Feigenbaum and

Naug, 2010] and the queen [Feigenbaum and Naug, 2010] than in older workers.

Moreover, time-ordered analysis of trophallaxis (i.e. social food sharing) networks

in the ant Camponotus pennsylvanicus showed that there is a long delay between

foragers introducing new food into the colony and the queen receiving it, which was

suggested to decrease the risk of transmission of external pathogens to the queen

[Quevillon et al., 2015]. In honeybees, the protection of the queen and young work-

ers was assumed to derive from the consistently observed biases towards within-age-

group interactions [Naug and Smith, 2007; Naug, 2008; Scholl and Naug, 2011; Barac-

chi and Cini, 2014], which lead to between-age-group compartmentalisation [Baracchi

and Cini, 2014]. This hypothesis is supported by a study of the social interaction net-
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works in the ant Camponotus fellah. Colonies of this species appear to be loosely

organised into three groups, or communities, showing more frequent within-group than

between-group interactions: the queen and young nurses, middle-aged workers per-

forming nest maintenance and cleaning, and old foragers [Mersch et al., 2013]. Simu-

lation of propagation over these empirical networks revealed faster information spread

within than between communities when the source originated from the foragers[Mersch

et al., 2013]. These results indicate that age-and-task interaction biases play a crucial

role in isolating the queen and young workers from the outside environment. Interac-

tion heterogeneities leading to colony compartmentalisation into groups that differ in

their value for the colony and/or in their disease exposure risk are likely to be wide-

spread in the organisation of insect societies. For example, workers performing high

disease-risk tasks are usually highly specialised and have few interactions with other

workers [Hart and Ratnieks, 2002; Hart and Ratnieks, 2001; Sun and Zhou, 2013;

Arathi et al., 2000], which leads to their social isolation.

Regardless of the identity of their interaction partners, individuals could also be at

higher or lower risk of infection depending on their position within the interaction net-

work. For example, individuals with a high number of interaction partners, or individuals

that occupy an intermediary ‘bridge’ position between communities, may be more vul-

nerable than isolated individuals. In network analysis, this can be formally quantified

via measures of node centrality (e.g., degree or betweenness; Box 1). The only em-

pirical study that specifically tested for a correlation between the degree centrality of

individuals and their infection rate did not find evidence for this hypothesis [Otterstatter

and Thomson, 2007], but that study involved very small, incipient colonies. Because

colony size limits the complexity of colony organisation [Anderson and McShea, 2001],

these may have been too small for organisational immunity to develop.
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Box 1. Modelling social interactions and disease transmission

Most epidemic models classify individuals in a group according to their disease state (e.g.

susceptible-infectious in the simplest SI model). This type of models traditionally assume

random mixing of individuals, i.e. every individual interacts with any other with the same

probability [Newman, 2010]. Yet, the contact patterns observed in social groups, in particu-

lar social insect societies [Salathe and Jones, 2010], deviate widely from the assumption of

random mixing. Recent studies have therefore focused on simulating epidemic spread over

networks, which explicitly describe all interactions. In such an approach, an edge between two

nodes represents an interaction between two individuals (e.g. grooming, trophallaxis), poten-

tially leading to disease transmission. At every time-step, disease may ’travel’ – with a given

probability – from an infectious node to a neighbouring susceptible node, making it infectious.

Other studies have defined networks in different ways (e.g. nodes as areas and weighted

edges as the number of individuals moving across them [Charbonneau et al., 2013]).

Compared to a ’random mixing’ model, an individual in a network has a relatively small number

of susceptible contacts, which quickly become infected. This local depletion of susceptible

contacts is present in all networks and, to different extents, leads to reduced early growth

rate and smaller final epidemic sizes [Keeling, 2005]. The following network features further

influence epidemic outcome.

Density. Proportion of all possible edges that are actually present (Fig. B1a). In the simplest

scenario, a random network where all nodes have the same number of edges (i.e. they have

the same degree), an increased density will ensure faster spread [Barthelemy et al., 2005].

This trend can be countered by other structural features of a network.

Degree heterogeneity (D).Variance in degree of nodes(Fig. B1a,b). In a random network

where nodes have different numbers of edges, diffusion (e.g. of a pathogen) accelerates

with increasing heterogeneity. In these networks, disease cascades from high-degree nodes

(“hubs”) to low-degree nodes, which is why hubs have been a target for vaccination efforts

[Mersch et al., 2013], although, influential nodes or “super-spreaders” (i.e. individuals that

have a disproportionately high likelihood of spreading the disease to others) are not neces-

sarily high-degree nodes [Pei and Makse, 2013].
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Clustering.Propensity of two neighbours of a given node to also be directly linked to each

other (Fig. B1a,b). Clustering coefficient (C) is a common measure to describe cluster-

ing. Epidemic simulations over networks with a large C show reduced initial growth rate and

smaller epidemic sizes, given a fixed global transmission rate [House and Keeling, 2011;

Miller, 2009]. Nevertheless, the hampering effect of clustering on initial growth rate can be

counterbalanced by increasing the transmission rate parameter, in which case, larger C res-

ults in larger final epidemic sizes[Lentz et al., 2012].

Community structure.A network is said to show community structure if it is a loosely connec-

ted set of tightly connected nodes (Fig. B1a,b). Modularity (Q) is a commonly used measure

of community structure. Greater Q can lead to a smaller final epidemic size and peak preval-

ence[Newman and Girvan, 2004]. Interestingly, it can also increase the total duration of the

epidemic [Barthelemy et al., 2005]. In contrast, in traffic-driven epidemic models, community

structure accelerates the speed of epidemic propagation [Shao and Jiang, 2012].

Characterising social insect interaction networks for the above-mentioned structural features,

and measuring their effect on disease spread over networks will lay a strong basis for the

organisational immunity hypothesis (Fig. B1c,d). It will be particularly interesting to determine

the effect of the network structure on the “vulnerability” (i.e. the probability that a node is

reached by a pathogen, if the outbreak starts from a random node) and “criticality” (i.e. the

reduction in epidemic size if a given node is removed from the network by vaccination or

isolation) of particular individuals in the network [Bisset and Marathe, 2009] (Fig. B1c,d).

Static networks with undirected links have provided useful and fruitful models to understand

epidemics. However, the relaxation of both conditions has also been explored. Directed

links can be important in cases where pathogen transmission is linked to inherently non-

symmetric processes, such as food sharing. Furthermore, the field of temporal (or dynamic)

networks has emerged to include more realistic time-ordered interactions where the sequence

of interactions dictates the paths of disease. Lastly, networks that change in time can change

adaptively. The latest studies of epidemiology examine social networks in which nodes can

disconnect links as soon as they detect the infection [Bansal et al., 2010].
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Figure B1. Network properties and disease spread. a) Structural features rel-

evant in epidemic spread. (b-d) Epidemic propagation in networks showing different

structural features. Nodes coloured according to their disease state: a pathogen may

travel, stochastically, from infectious nodes (black circles) to neighbouring susceptible

nodes (white circles)(continued...).
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Figure B1. Network properties and disease spread (continued...). The network

is a time-aggregate of all interactions which could lead to transmission (interaction link),

yet at each time point, transmission events are possible only from currently infectious

to currently susceptible nodes. An explicit epidemic sequence is exemplified (orange

lines for actual, turquoise lines for potential transmission events, respectively); notice

the fluctuation in the number of possible transmission events (orange + turquoise lines).

(b) Degree heterogeneity can lead to the existence of “super-spreaders” which, once

infectious, quickly spread the pathogen to a large portion of the group. Clustering leads

to susceptible depletion, which slows down spreading. Community structure can con-

fine epidemics inside a single community. (c) Example propagation over a network

with three distinct communities and containing high-degree nodes, illustrating a pos-

sible configuration of an insect colony; the epidemic is constrained to the outer-most

community of foragers for a long time, making it unlikely that the high-valued individu-

als of the inner-most community become infectious. (d) Example propagation over the

same network later in time, illustrating adaptive edge modification, where inside-nest

workers cut their links to the community hub (dotted line), when one of their neighbours

becomes infectious. Notice that it would also make sense to target a community bridge.

In all networks, colour is according to relevance in prophylactic (blue), induced (red), or

both types of organisational immunity (purple). Shading marks different communities,

and node size signifies degree.

2.4 From individual behaviour to interaction patterns

Interaction heterogeneities mediating prophylactic organisational immunity arise from

three main factors (Figure 1): spatial organisation of the colony, temporal activity

patterns and behavioural modulation of interactions among workers. The effects of

spatial segregation on colony compartmentalisation are particularly well established,

whereas temporal and interaction modulation effects have been less well studied.

Pathogen-induced changes in space use and pairwise interactions have usually been

interpreted as adaptive host responses that help contain disease. However, one should

note that they could also correspond to side effects of disease and/or immune re-

sponses, or even to pathogen manipulation. Whereas studies using non-pathogenic
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proxies partially bypass these difficulties [Alaux et al., 2012; Aubert and Richard, 2008;

de Souza et al., 2008; Hamilton et al., 2011; Richard et al., 2008; Richard et al., 2012],

more investigations of real pathogens attempting to discriminate between these three

potential underlying causes[Ugelvig and Cremer, 2007] are required to properly test

the induced organisational immunity hypothesis.

Spatial segregation

Spatial heterogeneities arising from division of labour in social insect colonies are a

crucial underlying factor of prophylactic organisational immunity. Space-embedded

epidemiological models involving explicit spatial constraints indeed showed that spa-

tial structuring per se can limit disease spread [Buscarino et al., 2010; Pie et al.,

2004; Hagenaars et al., 2004; Lindholm and Britton, 2007]. In addition, empirical

studies of textitTemnothorax ant networks suggested that spatial fidelity of individu-

als hinders the propagation of spreading agents through the colony, such as food

or pathogens, because it results in spatial segregation [Sendova-Franks et al., 2010;

Blonder and Dornhaus, 2011]. The effect of spatial segregation on disease spread

can be explained because space use strongly influences interaction patterns at both

individual and collective levels. For example, ants moving over small areas interact

infrequently and form long-lasting associations with a small number of social part-

ners only, whereas mobile individuals have a denser, broader and more homogen-

eous interaction spectrum [Pinter-Wollman et al., 2011; Jeanson, 2012]. Although

the implication of these findings for disease risk was not considered formally, this

suggests that the movement characteristics of individuals might affect their likelihood

of being exposed to disease. Moreover, in the ant C. fellah and in the honeybee,

within-colony interaction heterogeneities were shown to emerge solely as the con-

sequence of spatial segregation between groups of individuals [Mersch et al., 2013;

Baracchi and Cini, 2014]. Spatial segregation thus appears to be a crucial underly-

ing cause of the social compartmentalisation of the colony into communities, which is

believed to greatly contribute to prophylactic organisational immunity.

Spatial segregation is common within social insect colonies, as individuals do not

occupy space uniformly, but spend most of their time in small, distinct spatial fidelity

zones [Mersch et al., 2013; Naug, 2008; Sendova-Franks and Franks, 1995; See-
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ley, 1982; Jandt and Dornhaus, 2009; Baracchi et al., 2010]. Spatial segregation is

mainly explained by the strong division of labour characterising most insect societ-

ies combined with the existence of spatially distinct nest areas where different tasks

are performed [Mersch et al., 2013; Baracchi and Cini, 2014; Seeley, 1982; Jandt and

Dornhaus, 2009], and it can be reinforced by specific nest geometries [Pie et al., 2004].

Division of labour and nest spatial structuring contribute to prophylactic organisational

immunity in two main aspects. First, they decrease the spatial overlap between age

groups, differing both in their value for the colony and in their potential for infection.

This occurs as a direct consequence of age polyethism: as they age, workers in many

social insect species shift from inside tasks distant from the nest entrance, such as

brood and queen care, to peripheral tasks like food processing and nest maintenance,

eventually performing outside-nest tasks at the end of their lives [Mersch et al., 2013;

Scholl and Naug, 2011; Seeley, 1982]. Second, they ensure the spatial isolation of

workers performing high disease risk tasks. For example, in the leaf-cutter ant Atta

colombica, waste is kept in separate nest chambers in which waste heap workers are

confined, decreasing their rate of contacts with fungus garden workers [Hart and Rat-

nieks, 2001].

Since spatial heterogeneities can lead to prophylactic organisational immunity, in-

duced organisational immunity could be mediated by an increase in spatial segregation

between potentially infectious and healthy individuals. Such spatial changes have been

repeatedly shown to occur upon pathogen exposure, although their effect on colony-

level disease spread has not been studied formally. In many cases, pathogen exposure

leads to the complete exclusion of exposed individuals. For example, ants exposed to

an entomopathogenic fungus voluntarily leave the nest, a behaviour known as ‘self-

removal’ [Ugelvig and Cremer, 2007; Heinze and Walter, 2010; Bos et al., 2012] (see

[Heinze and Walter, 2010; Rueppell et al., 2010] for a general effect of health condi-

tion on self-removal). Moreover, diseased individuals are sometimes actively excluded

by their nestmates: in termites, nematode-infected individuals are walled in [Cremer

et al., 2007], whereas in the honeybee, infected workers are declined entrance [Cre-

mer et al., 2007] or dragged out of the hive [Baracchi et al., 2012]. Certain species have

evolved devoted communication channels to respond to pathogen threat: upon contact

with contaminated substrates, workers of the termite Zootermopsis angusticollis pro-
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duce vibrational alarm signals triggering escape behaviour in unexposed nestmates

[Rosengaus et al., 1999]. In other cases, spatial segregation is increased indirectly,

via a decrease in mobility [Aubert and Richard, 2008] or changes in the task repertoire

of exposed workers. For example, Pogonomyrmex barbatus ants are more likely to

perform waste work if they interact more frequently with waste workers [Gordon and

Mehdiabadi, 1999]. In ants and honeybees, workers subjected to pathogen exposure

or immune stimulation stop tending the queen and brood [Alaux et al., 2012; Ugelvig

and Cremer, 2007; Bos et al., 2012; Wang and Moeller, 1970] and switch to outdoors

tasks like foraging or defence against intruders [Woyciechowski and Moron, 2009;

Alaux et al., 2012; Bos et al., 2012; Wang and Moeller, 1970; Dussaubat et al., 2013;

Goblirsch et al., 2013], thereby increasing their distance to valuable individuals. In hon-

eybees infected by microsporidians of the genus Nosema, these behavioural changes

are concomitant with physiological changes, including an above normal increase in pro-

duction of Ethyl Oleate (EO) by infected workers [Dussaubat et al., 2010; Dussaubat

et al., 2013]. EO is a pheromone that inhibits the behavioural maturation of in-hive

workers [Leoncini et al., 2004]. This leads to the testable hypothesis that in addition to

becoming early foragers [Woyciechowski and Moron, 2009; Wang and Moeller, 1970;

Dussaubat et al., 2013; Goblirsch et al., 2013], Nosema-infected workers may also

delay the onset of foraging in their healthy nestmates. Such social readjustment could

be beneficial for infected colonies, because it would both decrease the spatial overlap

of healthy with infected workers and delay the draining of the nursing force induced by

Nosema infection [Khoury et al., 2013].

2.4.1 Temporal Heterogeneities

Theory shows that the temporal dynamics of interactions influence disease spread

(Section ’Interaction patterns and colony-level disease spread’). Because they contrib-

ute to shape the dynamics of interactions within social insect colonies, worker activity

rhythms might be an important factor affecting pathogen transmission and might even

underlie certain aspects of organisational immunity. Although this hypothesis has re-

ceived little attention so far, it is supported by one recent empirical study on social

networks in the ant Temnothorax albipennis (T Richardson and T Gorochowski, un-
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published). This study investigated the spread of agents with indirect transmission

mode, such as pheromones or pathogens transferred via contaminated substrates,

and showed that activity bursts at the colony level hinder agent propagation, because

they introduce heterogeneities in the temporal sequence of interactions.

2.4.2 Modulation of social contacts

Spatial and temporal aspects of worker activity determine the likelihood of individuals

meeting. Upon meeting, individuals can however decide whether or not to prolong their

interaction and to initiate closer contact, such as grooming or trophallaxis. Because the

duration and closeness of an interaction directly influence pathogen transmission risk,

these decisions are expected to have a strong impact on disease spread, although the

link between individual behaviour and colony-level disease dynamics remains to be

investigated in more detail.

It has been suggested that honeybee workers might modulate social contacts de-

pending on the age of interacting partners, thus reinforcing social segregation between

age groups and providing prophylactic organisational immunity [Scholl and Naug, 2011].

Electro-physiological recordings indeed showed that the antennae of old and middle-

aged honeybee workers are more sensitive to stimulations with the odour of workers

from their own age groups than with the odour of young bees, which could constitute

the basis for age-dependent modulation of social contacts. Disentangling the respect-

ive roles of spatial segregation and individual decisions in generating age-based inter-

action biases will be crucial in determining the importance of behavioural modulation

in mediating organisational immunity.

In ants and in the honeybee, pathogen exposure is known to trigger changes in in-

teraction frequencies among workers, although it is still unclear whether these changes

constitute the basis for induced organisational immunity. There have been multiple re-

ports of either increases [de Souza et al., 2008; Hamilton et al., 2011] or decreases

[Aubert and Richard, 2008; Bos et al., 2012; Naug and Gibbs, 2009] in the frequency of

trophallaxis involving pathogen-exposed or immune-stimulated workers (but see [Kon-

rad et al., 2012]). In honeybees, Nosema-infected workers both increase their food

intake and decrease their willingness to share food with nestmates [Naug and Gibbs,
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2009]. They may therefore turn into ’sinks’ in the trophallaxis network of the colony,

because they have higher incoming than outgoing food flow. It was hypothesised that

this may help contain disease by decreasing pathogen transmission risk from infected

to healthy workers. Moreover, grooming of treated workers has been consistently re-

ported to increase following pathogen exposure or immune stimulation in ants, termites

and honeybees [Aubert and Richard, 2008; Richard et al., 2008; Richard et al., 2012;

Bos et al., 2012; Konrad et al., 2012; Hughes et al., 2002; Walker and Hughes, 2009;

Reber et al., 2011; Rosengaus et al., 1998a] (but see [de Souza et al., 2008]). While

grooming reduces the infection risk of pathogen-exposed individuals via mechanical re-

moval of infectious particles from their body surface [Hughes et al., 2002; Rosengaus

et al., 1998a], sometimes combined with chemical disinfection [Tragust et al., 2013], it

also increases the risk of pathogen transmission to the grooming individuals [Konrad

et al., 2012; Hughes et al., 2002]. The effects of increased grooming of infectious work-

ers on colony-level epidemic size are still unknown, either because pathogen trans-

mission was not monitored or because the groups studied involved too few individuals

(Table 1). Colony-level pathogen spread could be either enhanced or hindered depend-

ing, for example, on the number, identity and degree of specialisation of the grooming

workers, and these parameters should be considered in future studies. It should be

noted that grooming workers usually show no or little increase in mortality [Konrad

et al., 2012; Hughes et al., 2002; Rosengaus et al., 1998a], and that social contact with

infectious workers can instead confer protection against later exposure to the same

pathogen via social immunisation [Hamilton et al., 2011; Ugelvig and Cremer, 2007;

Konrad et al., 2012; Traniello et al., 2002]. Transmission of low numbers of pathogenic

propagules may therefore not be harmful to the host in certain host-pathogen systems

[Konrad et al., 2012]. It would be interesting to test whether colonies show more drastic

changes in individual behaviour and collective organisation when exposed to more vir-

ulent pathogens.

2.5 Conclusions

Despite its recent formulation, the organisational immunity hypothesis has already stim-

ulated many studies (Table 1). However, study effort has been taxonomically uneven,
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with disproportionately more work on bees and ants than on wasps and termites.

In addition, group-level and individual-level approaches have not been equally ap-

plied in studies of prophylactic versus induced organisational immunity. On one hand,

many studies investigated interaction networks in healthy colonies, revealing poten-

tial baseline pathways for transmission, although these have rarely been confirmed by

the tracking of real, non-pathogenic proxies. On the other hand, behavioural changes

induced by pathogen exposure have been mostly studied in small groups, and their

effects on overall network structure and colony-level transmission dynamics are yet

unclear. Studies investigating further the interplay between individual and collective

processes, and confirming group-level dynamics by physically tracking real pathogens

or non-pathogenic proxies, are therefore called for. A particularly interesting avenue

for research would be to investigate how colony size might influence the manifestation

and effectiveness of organisational immunity.

We believe that empirical studies of organisational immunity would also benefit

from a tighter connection with theory. Epidemiology has generated many useful analyt-

ical tools and testable predictions that are usually not exploited to their full potential in

empirical work. In addition, theory may help understand the idiosyncrasies of specific

host-pathogen systems: different interaction networks underlie the spread of patho-

gens with different transmission modes, and this should influence both disease spread

dynamics and the potential for the host to express organisational immunity. Combining

empirical work with models fitted to specific host-pathogen systems is thus likely to be

informative.

Understanding the effect of organisational immunity on epidemiology of insect soci-

eties poses both technical and theoretical challenges. First, studies on whole colonies

have been rare, due to the technical difficulties of tracking a large number of indi-

viduals. However, automated approaches overcoming this constraint are becoming

increasingly available (reviewed in [Charbonneau et al., 2013]). Second, choosing ap-

propriate null models in theoretical studies can be challenging. Third, the empirical

establishment of constitutive transmission pathways in healthy colonies requires the

use of non-pathogenic proxies. Choosing an appropriate proxy, having similar trans-

mission properties as real pathogens but inducing no behavioural changes in the host,

is not trivial. Fourth, caution is required when interpreting pathogen-induced behavi-
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oural changes, since they can reflect pathogen manipulation or disease side-effects

rather than host adaptation. Finally, it should be noted that pathogen transmission per

se does not necessarily reflect disease spread, since transmission of low pathogen

levels across the network can sometimes confer reduced susceptibility to disease by

social immunisation [Konrad et al., 2012]. This highlights the necessity to study the

effects of pathogen transmission on the host in detail and to incorporate immunisation

effects into epidemiological models.
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Figure 2.1: Mechanisms of organisational immunity in insect societies. The diagram identifies collective and individual properties

influencing group-level disease spread and their mutual interdependence. Properties known to play a role in prophylactic, induced, or

both prophylactic and induced organisational immunity are shown in blue, red, and purple, respectively.
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Table 2.1: Agent-based models and empirical studies of organisational immunity in social insects. For each study,

the host species and (if relevant) the pathogen or non-pathogenic proxy considered are given, as well as the individual

behaviour(s) studied, the size of experimental groups, and a mention of whether the authors formally investigated interaction

patterns, whether they monitored the propagation of pathogens, non-pathogenic proxies, or information through the group,

and whether experimental controls and/or theoretical null models were used. For studies involving pathogen-exposure

or immune-stimulation of individuals, we provide the number of treated individuals first, followed by the number of non-

treated individuals in each experimental group (e.g. ’1 + 5 workers’ means 1 treated worker put in contact with 5 untreated

nestmates). In these studies pairs workers were inferred to be interacting if they were close to one another (spatial proximity);

if they were close to one another and facing one another (spatial configuration); or if they were observed at the same location

at the same or different times (spatial coincidence).

Prophylactic organisational immunity in insect societies

Interaction patterns and group-level transmission: cellular automata models

Naug & Smith 2002 model social insect ∅ contact <300 workers interaction bias btw. 2 worker

classes

group-level spread

modelled

homogeneous null model

Pie et al 2004 model social insect ∅ contact <1000 workers spatial heterogeneities group-level spread

modelled

null model

Fefferman et al 2007 model social insect ∅ contact ; allogrooming <1200 workers spatial heterogeneities group-level spread

modelled

null model

Interaction patterns and group-level transmission: empirical studies

Naug & Smith 2007 honeybee Apis mellifera microbeads trophallaxis observation hive (c. 4000

individuals)

frequency & duration of

trophallaxis

group-level spread

physically tracked

no

Naug 2008 honeybee Apis mellifera ∅ trophallaxis observation hive (c. 1000

individuals)

static network analysis no no

Feigenbaum & Naug 2010 honeybee Apis mellifera radioactive food food transfer observation hive (c. 5000

individuals)

no group-level spread

physically tracked

no

Scholl & Naug 2011 honeybee Apis mellifera ∅ trophallaxis ; antennal con-

tacts

observation hive (c.1500

individuals)

contact frequencies no no
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Study Host Pathogen Behaviour studied Group size Interaction patterns

investigated

Transmission monitored
Null model

/ control

Baracchi & Cini 2014 honeybee Apis mellifera ∅ spatial proximitya worker subset (n = 300) from

observation hive (c. 4000

workers)

static network analysis no no

Sendova-Franks et al 2010 ant Temnothorax

albipennis

food trophallaxis whole colony (lab)(42-95

individuals)

static network analysis group-level spread inferred

from trophallaxis duration

no

Blonder & Dornhaus 2011 ant Temnothorax rugatulus ∅ antennal contacts whole colony (lab)(6-90

individuals)

static & dynamical network

analysis

group-level spread

modelled

null model for spread

Pinter-Wollman 2011 ant Pogonomyrmex

barbatus

∅ spatial proximitya entrance chamber of whole

colony (lab) (<131 workers)

static network analysis group-level spread

modelled

null models for spread

Jeanson 2012 ant Odotonmachus

hastatus

∅ spatial proximitya worker subsets (n= 55-58)

from field colony (c. 300

individuals)

static network analysis no no

Mersch et al 2013 ant Camponotus fellah ∅ spatial configurationa whole colony (lab) (122-192

individuals)

static network analysis group-level spread

modelled

no null model for spread,

but see below

Quevillon et al 2014 ant Camponotus

pennsylvanicus

∅ trophallaxis standardised colony (1

queen+75 workers)

static & dynamical network

analysis

group-level spread

modelled

no

Richardson &

Gorochowski

(unpublished)

ant Temnothorax

albipennis

∅ spatial coincidencea subset (queen + 14

workers)from lab colonies

(47-134 workers)

dynamical network analysis group-level spread

modelled

null models for spread

Heterogeneities in space use leading to spatial segregation

Seeley 1982 honeybee Apis mellifera ∅ spatial segregation worker subset (n = 100) from

observation hive (c. 21000

workers)

no no no

Naug 2008 honeybee Apis mellifera ∅ spatial segregation observation hive (c. 1000

workers)

static network analysis no no

Baracchi & Cini 2014 honeybee Apis mellifera ∅ spatial fidelity worker subset (n = 300) from

observation hive (c. 4000

workers)

static network analysis no no

Jandt & Dornhaus 2009 bumblebee Bombus

impatiens

∅ spatial fidelity whole colony (lab) (90-154

individuals)

no no no

Sendova-Franks & Franks

1995

ant Temnothorax

unifasciatus

∅ spatial fidelity whole colony (lab) (28-165

individuals)

no no no

Sendova-Franks et al 2010 ant Temnothorax

albipennis

food spatial segregation whole colony (lab)(42-95

individuals)

static network analysis group-level spread inferred no
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Study Host Pathogen Behaviour studied Group size Interaction patterns

investigated

Transmission monitored
Null model

/ control

Jeanson 2012 ant Odotonmachus

hastatus

∅ mobility worker subsets (n= 55-58)

from field colony (c. 300

individuals)

static network analysis no no

Mersch et al 2013 ant Camponotus fellah ∅ spatial fidelity whole colony (lab) (122-192

individuals)

static network analysis group-level spread

modelled

null model for spatial

fidelity

Quevillon et al 2014 ant Camponotus

pennsylvanicus

∅ mobility standardised colony (1

queen+75 workers)

static & dynamical network

analysis

group-level spread

modelled

no

Baracchi et al 2010 wasp Polistes dominulus ∅ spatial fidelity lab and field colonies (9-20

individuals)

no no no

High-pathogen risk tasks: specialisation &/or spatial isolation

Arathi et al 2000 honeybee Apis mellifera freeze-killed brood hygienic behaviour observation hive (c. 3500

individuals)

no no no

Gordon & Mehdiabadi

1999

ant Pogonomyrmex

barbatus

∅ waste management whole colony (lab)(500-1500

individuals)

yes no no

Hart & Ratnieks 2001 ant Atta cephalotes ∅ waste management whole colony (lab)(1-3.104

individuals)

no no no

Hart & Ratnieks 2002 ant Atta colombica ∅ waste management whole colony (field)(103-106

individuals)

no no no

Recognition mechanisms and interaction heterogeneities

Scholl & Naug 2011 honeybee Apis mellifera ∅ responsiveness to age-

specific CHC

observation hive (c.1500

workers)

contact frequencies no no

Hart & Ratnieks 2001 ant Atta cephalotes ∅ aggression towards waste

workers

whole colony (lab)(1-3.104

individuals)

no no no

Induced organisational immunity in insect societies

Interaction patterns and group-level transmission: empirical studies

Otterstatter & Thomson

2007

bumblebee Bombus

impatiens

protozoan Crithidia bombi all contacts incipient colonies (1 queen +

4-6 workers)

static network analysis group-level spread

physically tracked

no

Modulation of interactions with pathogen-exposed individuals

Richard et al 2008 honeybee Apis mellifera immune stimulation (LPS

injection)

locomotion ; all contacts 1 + 10 workers no no sham handling ; saline

injection

Naug & Gibbs 2009 honeybee Apis mellifera microsporidian Nosema

ceranae

trophallaxis 2 workers no no sucrose control
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Study Host Pathogen Behaviour studied Group size Interaction patterns

investigated

Transmission monitored
Null model

/ control

Richard et al 2012 honeybee Apis mellifera immune stimulation

(injection of freeze-killed

bacteria Escherichia coli ;

bead injection)

locomotion ; all contacts 1 + 10 workers no no sham handling ; saline

injection

Hughes et al 2002 ant Acromyrmex

echinatior

fungus Metarhizium

anisopliae

transmission ; survival 1 worker ; 1 + 2-5 workers no transmission to nestmates Triton X application

Aubert & Richard 2008 ant Formica polyctena immune stimulation (LPS

injection)

locomotion ; all contacts 1 + 10 workers no no sham handling ; saline

injection

de Souza et al 2008 ant Camponotus fellah immune stimulation (PGN

injection)

allogrooming ; trophallaxis 2 workers ; 1 + 1 workers no no Ringer injection

Walker & Hughes 2009 ant Acromyrmex

echinatior

fungus Metarhizium

anisopliae

allogrooming 4-6 + 21 workers no transmission to nestmates Triton X application

Bos et al 2011 ant Camponotus aethiops fungus Metarhizium

brunneum

allogrooming ; trophallaxis 5 + 42-45 workers no no Triton X application

Hamilton et al 2011 ant Camponotus

pennsylvanicus

bacteria Serratia

marcescens ; immune

stimulation (LPS injection)

trophallaxis 2 workers ; 1 + 1 workers no no Ringer injection

Reber et al 2011 ant Formica selysi fungus Metarhizium

anisopliae

allogrooming 11 workers ; 1-2 + 3-28

workers

no transmission to nestmates Tween-20 application

Konrad et al 2012 ant Lasius neglectus fungus Metarhizium

anisopliae

allogrooming 1 + 5 workers no transmission to nestmates Triton X application

Rosengaus et al 1998 termite Zootermopsis

angusticollis

fungus Metarhizium

anisopliae

allogrooming 1-25 workers; 5 + 10 workers no transmission to nestmates Tween-80 application

Spatial exclusion of pathogen-exposed or moribund individuals

Rueppell et al. 2010 honeybee Apis mellifera CO2 exposure ;

hydroxyurea injection

self-removal observation hive (c.1500

individuals)

no group-level spread

modelled

null model

Baracchi et al 2012 honeybee Apis mellifera deformed wing virus enforced exclusion observation hive (c. 3000

individuals)

no no healthy control

Ugelvig et al 2007 ant Lasius neglectus fungus Metarhizium

anisopliae

self-removal 1 + 5 workers no no Triton X application ;

UV-killed conidia

Heinze & Walter 2010 ant Temnothorax

unifasciatus

fungus Metarhizium

anisopliae;CO2 exposure

self-removal 20 workers; 10 + 10 workers no no natural death

Bos et al 2011 ant Camponotus aethiops fungus Metarhizium

brunneum

self-removal 5 + 42-45 workers no no Triton X application
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Study Host Pathogen Behaviour studied Group size Interaction patterns

investigated

Transmission monitored
Null model

/ control

Rosengaus et al 1999 termite Zootermopsis

angusticollis

fungus Metarhizium

anisopliae

alarm behaviour ; escape

behaviour

10 + 10 nymphs no no no

Changes in tasks performed by pathogen-exposed individuals

Wang & Moeller 1970 honeybee Apis mellifera microsporidian Nosema

apis

foraging ; guarding ; queen

care

observation hive (c. 2500

individuals)

no no healthy control

Woyciechowski & Moron

2009

honeybee Apis mellifera microsporidian Nosema

apis;CO2 exposure

foraging observation hive (size

unknown)

no no sham handling

Alaux et al 2012 honeybee Apis mellifera immune stimulation (LPS

injection)

queen care ; foraging observation hive (size

unknown)

no no sham handling ; Ringer

injection

Dussaubat et al 2013 honeybee Apis mellifera microsporidian Nosema

ceranae

foraging ; flight activity observation hive (c. 4500

individuals)

no no healthy control

Goblirsch et al 2013 honeybee Apis mellifera microsporidian Nosema

ceranae

foraging whole colony (field)(size

unknown)

no no sucrose control

Ugelvig et al 2007 ant Lasius neglectus fungus Metarhizium

anisopliae

brood care 1 + 5 workers no no Triton X application ;

UV-killed conidia

Bos et al 2011 ant Camponotus aethiops fungus Metarhizium

brunneum

brood care ; nest defence 5 + 42-45 workers no no Triton X application
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3 Sanitary care dynamics and pathogen

transmission

The work described in this chapter was done in collaboration with Anna V. Grasse,

Gašper Tkačik and Sylvia Cremer. The study was designed jointly with SC, data in-

terpretation was performed with GT and SC. I performed the experiment and analyzed

the videos together with AVG (50% BCP, 50% AVG). AVG performed the final ddPCR

run. I performed preliminary experiments to calibrate the method and design of this

experiment (e.g. selection of exposure dose, observation period, spore quantification

method, etc), and I analyzed the data. Further analysis by Katarı́na Bod’ová (assistant

professor at Comenius University, Department of Mathematical Analysis and Numerical

Mathematics) is to be combined with these results for final submission.

3.1 Abstract

Eusocial insects show an impressive set of collective solutions to numerous problems,

such as sorting and tending brood, gathering and storing food or building and defend-

ing a nest. These complex behaviors emerge from social interactions, which often

also represent pathways for disease spread. While close and frequent associations

can promote epidemics, they can also be the key to their efficient control. Insect so-

cieties have accrued a varied repertoire of collective defenses against disease. The

mechanical removal of infectious particles via grooming, sometimes complemented by

chemical inactivation, is commonplace among eusocials. Here we look at the complete

sequence of sanitary behaviors of a small group of ants and the immediate changes

triggered by exposure of a couple of individuals with a fungal pathogen. In particular,

we investigate how the distribution of pathogen load between the pair of treated indi-
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viduals affects the dynamics of sanitary care behavior and pathogen spread among

the group. As expected, the allogrooming response is directed towards treated indi-

viduals. Moreover, the group preferentially allocates their effort towards an individual

with a higher spore load. To estimate the disease consequences of this preference,

we separately measured (i) spores acquired on body, (ii) collected in the head and

(iii) discarded as pellets, since only the first largely retain their ability to infect. At an

individual level, while the time an ant spends grooming an exposed individual and its

exposure level predict the number of spores collected in the groomers head, they do

not explain the spores acquired on its body. At the group level, while the number of

pellets produced depends on the global spore dose, it does not predict nestmate con-

tamination. However, groups with two spore-exposed individuals have a higher rate of

contamination than groups with a single exposed, independently of the global spore

dose. Concurrently, in groups with two spore-exposed individuals we estimate a higher

spore loss (i.e. difference between number applied to controls and number recovered

from experimental samples). We contend that preferential grooming of individuals with

a higher spore load may reduce the loss of spores to the environment, thus limiting

the contamination of nestmates by inadvertent pickup. Directed grooming of spore

exposed individuals implies a lower-than-expected risk for an individual, and besides

reducing the load and infection probability of exposed ants, it protects the colony by

minimizing indirect transmission.

3.2 Introduction

Across biological systems, one can identify complex collective behaviors which stem

from local interactions among the elements that constitute them [Sumpter, 2006]. Eu-

social insects provide numerous examples of collective animal behavior [Schmid-Hempel,

2017] which emerge from repeated interactions among members of a colony. Collect-

ive behavior is often described as a function of group size [Sumpter, 2006] when the

switch towards an output ”larger than the sum of its parts” happens above a certain

critical size. The size of a colony can reach massive proportions [Burchill and Moreau,

2016] and with a growing number of individuals comes a growing number of interac-

tions between them. Beside the benefits (e.g. division of labour [Ferguson-Gow et al.,
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2014]), numerous interactions predict increased disease transmission [Anderson and

May, 1979]. To counter this, social insects have evolved numerous collective strategies

against disease, which, on top of their individual defences confer them an added level

of protection, termed ‘social immunity’ [Cremer et al., 2007].

Grooming is commonplace inside the social insect colony. This conspicuous beha-

vior – performed by individuals to themselves (selfgrooming) or to others (allogrooming)

– has been extensively studied as a response to pathogens, since it can mechanically

remove [Mersch et al., 2013] infectious particles from the surface of an insect, redu-

cing their risk of infection and mortality [Walker and Hughes, 2009]. Individuals resort

to selfgrooming in isolation [Okuno et al., 2012; Graystock and Hughes, 2011] but also

in a social context [Bos et al., 2012; Theis et al., 2015; Yek et al., 2013] upon direct

exposure to pathogenic fungi or when it is present in the environment [Yek et al., 2013].

Allogrooming is common, as well, in the presence of a pathogen, and while it could

benefit the exposed individual, it is also assumed to come at a risk of contagion for

the groomer. This risk can never be completely avoided, as allogrooming is primary

for insect communication and for colony functioning (e.g. CHCs exchange and colony

odour establishment [van Zweden and D’Ettorre, 2010]). This conflict has drawn much

attention, leading to many interesting studies on the effects of grooming and, more

generally, of sanitary behavior in colony fitness [Theis et al., 2015; Konrad et al., 2018].

Grooming behaviors can be followed by chemical disinfection [Tragust et al., 2013;

Fernández-Marı́n et al., 2015] through the use of glandular compounds with antimi-

crobial properties. These can be directly applied (to the nest or to a colony member,

sometimes leading to its death [Pull et al., 2018]). Alternatively, they can be collected

in the mouth parts and applied via grooming in a controlled manner [Tragust et al.,

2013]. The transient deposit of these substances in the mouth parts also disinfects the

material collected in them (e.g. spores accumulate in the infrabuccal pocket, a sieve

tissue, to be discarded in compact neutralized pellets [Tragust et al., 2013]).

When the pathogen is not completely neutralized, its effects depends on many

factors. For instance, a small sub-lethal infection can activate the immune system

of an individual and provide protection in a second challenge to the same pathogen

[Konrad et al., 2012], or it can render an individual more susceptible to a different

pathogen [Konrad et al., 2018]. Eusocial insects are known to adjust their sanitary
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care according to risk, that is, according to their history of previous exposure [Konrad

et al., 2018]. More over, the effects are dose dependent [Graystock and Hughes, 2011;

Hughes et al., 2002], and insects are known to respond in a dose-dependent man-

ner (i.e. ants [Konrad et al., 2018; Okuno et al., 2012; Currie and Stuart, 2001;

Jaccoud et al., 1999] and termites [Reber et al., 2011; Yanagawa et al., 2009]).

Sanitary care can be present in a colony continuously (i.e. prophylactically) and

modulated upon pathogen presence (i.e. to dead [Ugelvig and Cremer, 2007] and live

fungal spores [Howard and Tschinkel, 1975; Chultz and Eifert, 2005; Ugelvig et al.,

2008]). The exact mechanism that triggers the allogrooming of contaminated indi-

viduals is still subject of investigation. One possibility is an active signaling by the

compromised individuals (e.g. vibratory display [Rosengaus et al., 1998b], chemical

changes in the cuticle [Pull et al., 2018]). Another is the detection of chemical cues of

pathogen origin (e.g. octenol (Ugelvig, L.V., unpublished data).

Social insects seem to sense and respond to pathogens or cues related to their

presence, rapidly [Ugelvig et al., 2010]. We do not known whether they gather cues

locally (e.g. requiring contact) or globally (e.g. volatile). Similarly, we do not know if

and how they can integrate this pathogen-related information. Insects have astounding

sensing and cognitive capabilities, at the individual and colony level underlying all sorts

of feats. It is worth examining these capabilities in the context of disease defence.

In this work, we studied the immediate sanitary response of a group of ants upon

contamination with a fungal pathogen, as well as the consequences of their behaviors,

in terms of pathogen transmission. In particular, we aimed to find out whether ants

make use of local cues (i.e. sensing their own pathogen load or that of their interacting

partner) or rather, use global information (i.e. sensing the overall pathogen load) to

mount a group response. Moreover, we wanted to explain the emerging collective

dynamics from the elementary behaviors of individual ants.

To this end we use the invasive garden ant, Lasius neglectus and the generalist

insect pathogen Metarhizium robertsii, a well-studied host-pathogen system. We ob-

tain the complete sequence of sanitary behaviors of groups of six ants, before (i.e.

baseline behavior, during thirty minutes) and after treatment (i.e pathogen induced be-

havior, during ninety minutes). The treatment consisted of taking two ants from the

group and applying a high dose (H), a low dose (L), or a pathogen-free solution (T) (i.e.
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sham control), to yield six combinations (i.e. HH, HL, HT, LL,LT and TT) or treatment

groups. The high dose contained twice the number of fungal conidiospores than the

low dose (i.e. H = 2L). In this way, we could compare two groups with the same global

dose, but evenly or unevenly distributed among the treated pair (i.e. HT vs LL).

We used conidiospores (hereafter, simply referred to as spores) of a strain of M.

robertsii, containing a plasmid with one of two genes (mRFP or eGFP), targeted for

quantification with a high resolution method, ddPCR (See Methods section). Import-

antly, in treatments with two exposed ants (HH,LL,HL), one ant carried mRFP-labelled

spores and the other eGFP-labelled spores. For each ant, we separately estimated the

number of spores in their head and on their body, to discriminate between spores col-

lected in their infrabuccal pocket – destined to be chemically inactivated and discarded

as pellets – and disease relevant spores – remaining on exposed ants or transmitted

to to others. The labeled spores allowed us to keep track of the origin of the spores

measured on the ants. In addition, we collected and measured spores on the discarded

pellets (See Figure 3.1 for a summary of the experimental plan). We lay out the results

in four parts. The first three parts present the behavioral response, each in increasing

detail. The fourth presents the outcome of the response in terms of spores.
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Pre-treatment

     30min

Post-treatment

     90min

Treatment of A and B with

A

B

N1

N2

N3

N4

H L T

high dose, low dose or sham

HH HL LL HT LT TT

to obtain six treatment combinations

Figure 3.1: Experimental plan. The sanitary behaviors of a group of ants were scored

during a 30 minute pre-treatment period to obtain a baseline. Two ants were randomly

selected for treatment (A and B) and reintroduced for a second, 90 minute, period of

observation. Treatment consisted of applying, to each of A and B, one of two pathogen

loads (high and low) or a control (sham), to yield six groups. We used eGFP-labeled

spores and mRFP-labeled spores (depicted in bright green and red) of the same fungus

(M. robertsii). By using two labels, we know from which spore-treated ant the spores

came from. We quantified spores from all ants (head and body separately), and from

a pool of pellets collected. Spores in ant head samples represent spores collected

in the infrabuccal pocket by selfgrooming – in the case of spore-treated ants (H,L)

– and allogrooming – in the case of nestmates (N) or sham treated (T), and spore-

treated ants when they collect spores from one another (H,L). These would eventually

be neutralized and discarded as pellets. On the other hand, spores on the body of ant

hold the highest potential to infect.
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3.3 Results

3.3.1 Time-aggregated response

First, we looked at the relative change in the time allocated to a given behavior during

the post-treatment period with respect to the time allocated during the pre-treatment

period. The unit employed was “effective time” which is the proportion of time spent

selfgrooming and performing grooming towards other, but for grooming received, it is

the sum allocated by different ants to the receiver (See Method for further detail). We

compared spore-contaminated (S) – at this point, disregarding individual dose and

treatment group – to sham-treated (T) and untreated nestmates (N).

(i) Allogrooming is directed and is modulated by pathogen presence

Both spore-contaminated and sham-treated ants, received more allogrooming (Fig-

ure 3.2 A; [paired-Wilcoxon Test] spore-contaminated V = 117, p < 0.001; sham-treated

V = 122, p < 0.001), while they allocated less time to grooming others (Figure 3.2 B;

[paired-Wilcoxon Test] spore-contaminated V = 7340, p < 0.001; sham-treated V =

1854, p < 0.001). Conversely, nestmates allocated more time to allogrooming oth-

ers (Figure 3.2 B; [paired-Wilcoxon Test] V = 13179, p < 0.001) while they received

less (Figure 3.2 A; [paired-Wilcoxon Test] V = 62923, p < 0.001). Moreover, spore-

contaminated ants received more grooming than sham-treated ants. (Figure 3.2 A;

[LMER]: LR χ2 = 16.57, df = 1, p < 0.001). However, spore-contaminated and sham-

treated equally reduced the allogrooming performed (Figure 3.2 B; [LMER]: LR χ2 =

0.06, df = 1, p = 0.799).

The allogrooming response of untreated nestmates was elicited by the treatment

of their group members and elevated by the presence of the pathogenic spores. This

was not necessarily expected, as allogrooming can reduce the load of an individual

but lead to transmission of spores to others, and this is likely system dependent (e.g.

contingent on pathogen infectiousness and the efficiency of host defences [Theis et al.,

2015]). Termites seem to consistently groom fungus infected individuals [Rosengaus

et al., 1998a; Yanagawa et al., 2011], yet the prediction has not been reported so

concurrently for ants. Many studies observed that ants increased their allogrooming
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Figure 3.2: Changes in time allocated to grooming, between pre- and post-treatment

observation periods. For every ant, we look at the difference in the proportion of time al-

located, before and after treatment, to (A) grooming received, (B) grooming performed,

(C) selfgrooming and (D) selfgrooming of acidopore. Ants are grouped into spore-

contaminated (S; green), sham-treated (T; blue) and untreated nestmates (N; grey)

across experimental groups. Spore-contaminated ants are pooled together regardless

of individual dose and treatment group (global dose). Shown in boxes are the median

and 95% CI, and in outlines are violin plots. The red line denotes no change between

pre- and post-treatment periods, and stars denote a significant change in time alloc-

ated (paired-Wilcoxon Test, statistics in text). Letters denote the differences between

spore and sham-treatment (LMER, statistics in text).
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towards infectious individuals [Bos et al., 2012; Walker and Hughes, 2009; Okuno et al.,

2012; Yek et al., 2013; Hughes et al., 2002], but some found it unchanged compared to

sham-treated ([Theis et al., 2015; Reber et al., 2011; Graystock and Hughes, 2011]).

Most studies have concentrated on the positive effect that allogrooming can have

on survival, and tend to report only on the allogrooming received by the exposed indi-

viduals. Two studies [Bos et al., 2012; Theis et al., 2015] have looked at allogrooming

from the exposed individuals towards their nestmates and found a decrease in the rate

of allogrooming rate. Our observations are in line with these studies.Treated ants re-

duce their allogrooming towards untreated nestmates, and we further add that they do

so equally when they are spore-exposed and sham-exposed. This strategy has been

suggested to be generally beneficial to reduce transmission [Theis et al., 2015].

(ii) Selfgrooming is increased both by treated ants and by their nestmates

All ants increased the proportion of time they allocated to selfgrooming (Figure 3.2 C;

spore-contaminated [paired-Wilcoxon Test], V = 2697, p < 0.001; sham-treated V =

840, p = 0.031; nestmates, V = 20610, p < 0.001) as compared to the pre-treatment

phase. We did not find any difference in the magnitude of this increase between groups

(Figure 3.2 C; [LMER]: LR χ2 = 4,49, df = 2, p = 0.10).

Selfgrooming, as a behavior which removes infectious particles without incurring the

risk of transmission is expected from directly exposed ants, as well as, unexposed nest-

mates after contact with an exposed individual [Theis et al., 2015]. Elevated selfgroom-

ing after direct exposure was previously reported [Bos et al., 2012; Theis et al., 2015;

Reber et al., 2011; Okuno et al., 2012; Yek et al., 2013], yet the expectation of elevated

selfgrooming of unexposed individuals was not met until now.

(iii) Treated ants immediately increased acidopore selfgrooming

To complement mechanical removal of the spores social insects can chemically neut-

ralize infectious agents. Ants are known to make use of their poison secretions for

disinfection (e.g. grooming the opening of their metapleural gland [Fernández-Marı́n

et al., 2006] or the joint opening of the Dufour and poison glands, i.e. acidopore
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[Tragust et al., 2013]. In particular, poison from the acidopore (at the tip of their ab-

domen) can be taken up into the mouth and redistributed during allogrooming [Tragust

et al., 2013]. We recorded selfgrooming of the acidopore, and analyzed it separately

from other types of selfgrooming, given its critical function in sanitary care. We found

that after exposure, both spore-contaminated and sham-treated ants increased the

time they allocated to grooming their acidopore (Figure 3.2 D; [paired-Wilcoxon Test]

spore-contaminated, V = 1735, p < 0.001; sham-treated, V = 738, p = 0.012). Further-

more, spore-contaminated ants showed a larger increase in acidopore selfgrooming

than sham-treated (Figure 3.2 D; [LMER]: LR χ2 = 4.21, df = 1, p = 0.041). On the

other hand, nestmates decreased the time invested to acidopore selfgrooming (Fig-

ure 3.2 D;[paired-Wilcoxon Test] nestmates, V = 68407, p < 0.001). This is perhaps

unexpected, as nestmates benefit from disinfection as well. This could happen if nest-

mates give priority first to allogrooming during the time frame we observe, but would

anyhow later come back to selfgrooming and disinfection. Extending the time frame of

our experiment certainly would shed some light to this matter.

(iv) Pellets are produced by all and the number depends on global spore dose

Pellets contain the spores (and other detritus) collected while grooming in the infrabuc-

cal pocket (a filtering pouch in the head). The spores are combined with poison secre-

tions in the infrabuccal pocket before being disgorged, and their viability is significantly

reduced [Tragust et al., 2013; Fernández-Marı́n et al., 2006]. The production of pellets

has drawn relatively little attention as part of the chain of sanitary behaviors (but see

[Fernández-Marı́n et al., 2006]), perhaps due to the small size of the pellets and the

difficulty of observing the expulsion. We recorded (whenever visible) the expulsion of

pellets.

Over the duration of the experiment no pellets were produced in our control group

(TT), whereas pellets were typically produced in most replicates with contaminated

ants (with the exception of one HT and three LT replicates). There was no differ-

ence in the proportion of replicates which produced pellets, across experimental groups

(Fisher’s exact test, p = 0.1066; no figure shown). We collected all pellets from each

dish and found that the total number of pellets disgorged by the group of ants depends

on the global spore dose, with more pellets found in groups with a pair of high-dose
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contaminated individuals, the least in groups with a single low-dose contaminated in-

dividual and none in dishes with a pair of sham-treated individuals (Figure 3.3 A; [KW

test], H = 33.08, df = 4, p < 0.001). There was no significant difference in the num-

ber of pellets produced by groups of ants in which the same global spore doses was

established, but carried either by a single ant or by two (HT and LL, respectively).

We scored pellet expulsion events, whenever visible. Spore-contaminated ants

where seen disgorging 30% of the pellets scored in their group (Figure 3.3 B). A single

spore-contaminated ant (e.g. H in HT) is thus producing the same percentage of pel-

lets than two spore-contaminated ants (e.g. both L in LL). One likely explanation for

this is that high-dose contaminated ants can produce more pellets than low-dose con-

taminated ants. This will be addressed in later sections.
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Figure 3.3: Expulsion of pellets. (A) The total number of pellets produced per treat-

ment group, depends on global dose across treatment groups. Letters denote statist-

ical comparisons; groups sharing letters do not differ. (B) Pellets are spit out by both

spore-contaminated and non-contaminated individuals. Colors denote the type of ant

observed expelling the pellet. The ratio of observed expulsion events / total pellets

recovered is also shown.
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3.3.2 Time-resolved response

Some of the responses that we observe above are localized in time, and now we ex-

plore the time-resolved annotations to study the temporal evolution of sanitary beha-

viors. We first looked at the mean proportion of time allocated to each behaviour by

spore-contaminated (S), sham-treated (T) and untreated nestmates (N) with a time-

resolution (i.e. window size) of three-minutes (Figure 3.4).

(i) All behaviors are stationary during pre-exposure

During the observation period previous to exposure, all behaviors are stationary, that

is, their mean and variance parameters do not change over time. This observation is

relevant to confirm that looking at changes in allocation from pre-exposure baseline (as

we did in the previous section) is a valid procedure.

(ii) Allogrooming is markedly non-stationary after exposure

After treatment, the allogrooming response – mostly performed by nestmates and re-

ceived by treated ants – immediately departs from the baseline and reels back to

baseline towards the end of the experiment. We first did a coarse-grained explora-

tion of the response, in which we divided the observation period into three equal parts

of thirty minutes each. For every ant, we compared its mean allogrooming behaviour

during this part (i.e. thirty minutes during the post-exposure period), to its mean al-

logrooming behaviour during the pre-exposure period. We then compared the change

(post- minus pre-exposure scores for each ant) across treatment groups. Afterwards,

we took a finer-grained, closer look at the first part of the response, which we divided

into three phases: Rise (0-3 min) Peak (3-9 min) and Early Fall (9-15 min). (See Fig-

ure 3.4 B, where both partitions are depicted)

(iii) Allogrooming received depends on spore-presence

After exposure the ants were allowed a few seconds to regain stance, and introduced

in quick succession to their group, so that not more than a minute passed between

reintroduction and the first recorded behavior. The grooming response (performed by
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nestmates and received by treated ants, in Figure 3.4 A-B) peaks very rapidly, within 3

min after reintroduction. The peak of the response lasts only a bit more than 5 minutes

before it starts to decay, in an exponential manner. The response trends towards pre-

exposure level at the end of the 90 min observation period. Indeed, in the last 30

minutes the grooming performed by the nestmates, no longer differs significantly from

pre-exposure scores (Table 3.2).

Spore-contaminated ants receive more grooming than sham-treated, during the first

hour after exposure (Figure 3.4 A;Table 3.1). On the other hand, grooming performed

by spore-contaminated ants did not differ from sham-treated (Figure 3.4 B; Table 3.2).

We further test this observation and its dependence on individual dose and global dose,

in a later section (Section 3.3.3).

First third Second third Third third

Baseline

Comparison

paired-Wilcoxon

Pairwise

comparisons

after

Kruskal-Wallis

rank sum test

χ2 = 171.16,

df=2, p<0.001

Baseline

comparison

paired-Wilcoxon

Pairwise

comparisons

after

Kruskal-Wallis

rank sum test

χ2 = 133.56,

df=2, p<0.001

Baseline

comparison

paired-Wilcoxon

Pairwise

comparisons

after

Kruskal-Wallis

rank sum test

χ2 = 80.78,

df=2, p<0.001

spore-

contaminated

n=131, V=27, a V=462, a V=1907 a

p < 0.001 p < 0.001 p < 0.001

sham-

treated

n=67,V=34, b V=292 b V=652 a

p < 0.001 p < 0.001 p < 0.01

untreated
n=395,

V=69383,

c V=62044 c V=57290 b

p < 0.001 p < 0.001 p < 0.001

Table 3.1: Allogrooming received coarse-grained

(iv) Selfgrooming is briefly reduced during peak, but quickly recovers

For simplicity, we considered the same time-partitioning for selfgrooming. Selfgrooming

seems to dip below baseline level for all ants during the allogrooming peak, but soon

after, exceeds baseline-levels (Figure 3.4 C; Table 3.3). For the first third, we detected

no differences between spore-contaminated, sham-treated and untreated nestmates.

However, for the second and third period, untreated ants, are self-grooming more than

treated ones.
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First third Second third Third third

Baseline

Comparison

paired-Wilcoxon

Pairwise

comparisons

after

Kruskal-Wallis

rank sum test

χ2 = 163.37,

df=2, p<0.001

Baseline

comparison

paired-Wilcoxon

Pairwise

comparisons

after

Kruskal-Wallis

rank sum test

χ2 = 97.81,

df=2, p<0.001

Baseline

comparison

paired-Wilcoxon

Pairwise

comparisons

after

Kruskal-Wallis

rank sum test

χ2 = 18.44,

df=2, p<0.001

spore-

contaminated

V=8187, a V=7478 , a V=6171 a

p < 0.001 p < 0.001 p < 0.001

sham-

treated

V=2016, a V=1805 a V=1682 a

p < 0.001 p < 0.001 p = 0.001

untreated
V=5218, b V=21814 b V=36882 b

p < 0.001 p < 0.001 p = 0.327

Table 3.2: Allogrooming performed coarse-grained

First third Second third Third third

Baseline

Comparison

paired-Wilcoxon

Pairwise

comparisons

after

Kruskal-Wallis

rank sum test

χ2 = 4.59, df=2,

p=0.10

Baseline

comparison

paired-Wilcoxon

Pairwise

comparisons

after

Kruskal-Wallis

rank sum test

χ2 = 8.88, df=2,

p=0.011

Baseline

comparison

paired-Wilcoxon

Pairwise

comparisons

after

Kruskal-Wallis

rank sum test

χ2 = 12.66,

df=2, p=0.002

spore-

contaminated

V=4718, a V=2248 , ab V=131 a

p=0.364 p < 0.001 p < 0.001

sham-

treated

V=1468, a V=792 a V=678 a

p < 0.05 p < 0.05 < 0.01

untreated
V=49688, a V=21966 b V=15556 b

p < 0.001 p < 0.001 p < 0.001

Table 3.3: Selfgrooming coarse-grained

(v) Acidopore selfgrooming is rare and mostly done by treated-ants

Selfgrooming of the acidopore occurs with relatively low frequency (i.e. less than 9

seconds per minute) and thus, the average signal appears noisy. Nevertheless, it is

evident that throughout the observation period, treated ants increase their acidopore

selfgrooming, while nestmates do less of it (Figure 3.2 D and Figure 3.4 D).
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First third Second third Third third

Baseline

Comparison

paired-Wilcoxon

Pairwise

comparisons

after

Kruskal-Wallis

rank sum test

χ2 = 80.01,

df=2, p<0.001

Baseline

comparison

paired-Wilcoxon

Pairwise

comparisons

after

Kruskal-Wallis

rank sum test

χ2 = 83.34,

df=2, p<0.001

Baseline

comparison

paired-Wilcoxon

Pairwise

comparisons

after

Kruskal-Wallis

rank sum test

χ2 = 64.25,

df=2, p<0.001

spore-

contaminated

V=2769, a V=1949, a V=2235 a

p < 0.001 p < 0.001 p < 0.001

sham-

treated

V=792, a V=719 a V=1141 b

p < 0.05 p < 0.01 p = 0.992

untreated
V=70707, b V=64365 b V=61236 c

p < 0.001 p < 0.001 p < 0.001

Table 3.4: Acidopore grooming coarse-grained
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Figure 3.4: Time-resolved behavior before (left) and after (right) treatment. For non

overlapping time windows (horizontal axis), the ratio of the total time an ant is (A)

performing allogrooming, (B) receiving allogrooming, (C) performing selfgrooming and

(D) performing acidopore selfgrooming, over the length of the window (3 minutes),

grouped by the treatment of the ant: spore-contaminated (S; green), sham-treated (T;

blue) and untreated nestmates (N; grey). We divide the duration of the post treatment

observation period into three equally long periods (shown in (B) in dark blue), and

identify three periods (shown in (B) in purple), corresponding to the rise, the peak and

the early fall of the grooming response. Continued...
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Figure 3.4: (Continued) Effective time is the proportion of time allocated to a given

behavior in each window. For selfgrooming and grooming performed, it is simply the

proportion of time spent in these states. For grooming received, it is the sum of the time

allocated by different ants to the receiver, since one ant can be groomed simultaneously

by several ants. The solid lines show the mean effective time grooming, over all ants

with a given treatment, per window, and the shaded area the 95% CI of the mean.

The dotted line shows the average, over all ants, engaged in each behavior before

treatment (i.e. the pre-treatment baseline). Statistical comparisons to baseline and

between treatment means in Tables 3.1,3.2,3.3 and3.4.
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(vi) Pellet expulsion has a similar time evolution as allogrooming performed

Not much is known about the production of pellets, except that it is increased after

pathogenic exposure [Fernández-Marı́n et al., 2006]. Pellet expulsion is not a very con-

spicuous behavior, but we were able to score around half as many events as pellets

collected after the experiment. We looked at the timing of these events. The timing dis-

tribution of the observed pellet expulsions is similar to that of allogrooming performed

by the untreated nestmates, with a fast and sharp rise and an exponential decay. It is

slightly shifted to the right, peaking around 15 min after exposure (Figure 3.5 A).

We know the largest part of the pellets were spit by nestmates, so we looked at

allogrooming performed by nestmates and timing of pellet expulsion. Nestmates who

groom the most in the group (rank = 1 Figure 3.5 B) also spit the most pellets. In

particular, we wanted to know how much allogrooming is performed by a nestmate

before it produces a pellet. To estimate when grooming for a given pellet begins, we

take a look at how much grooming the expelling ant did, between the start of the video

and the expulsion of the pellet, then we find the moment in time where the ant had

performed half of that grooming (i.e. “halftime before pellet” Figure 3.5 C). The amount

of time an ant grooms before expelling a pellet varies (Figure 3.5 E), which contrasts

with our expectation of a fixed amount of grooming time required to collect spores for

a pellet. We think this variation can be determined by the amount of spores present in

the groomed ants.
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Figure 3.5: Timing of pellet expulsion by nestmates. (A) Distribution in time of expul-

sion events (grey histogram) compared to nestmate allogrooming response (red line,

see Figure 4B) (B) Number of pellets expelled according to grooming rank. Within each

dish, the four nestmates are ranked, depending on how much allogrooming they per-

formed. The ants that performed the most grooming in each dish (rank 1) also expelled

the most pellets. (C) Halftime before pellet expulsion denotes, for each expulsion event

(dark red), the amount of time (bright red) necessary to perform half (light grey) of all

the allogrooming performed before the expulsion of the pellet (black). It is a measure

of when the allogrooming leading to the expulsion event was performed. The plot is

the cumulative allogrooming performed by a randomly chosen nestmate, notice a plat-

eau in allogrooming before expulsion. (D) Amount of allogrooming before each pellet

as a function of when it was performed. For each pellet expelled by a nestmate, the

amount of allogrooming it performed since its previous expulsion (or the start of ob-

servation) was recorded, as was the halftime before that expulsion. Colors denote the

first (red), second (green), third (blue) or fourth (purple) pellet expulsion. (E) Amount

of allogrooming performed by a nestmate before expelling a pellet.
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3.3.3 Time-resolved response, a closer look

We look at the very first interaction and then we proceeded to analyze the effects of

individual dose (high-dose (H) and low-dose (L) and zero-dose or sham-treated (T),

hereafter, often abbreviated for clarity), as well as the effect of global dose. More

precisely, we looked at the effect that the treatment of the second ant in the pair has

on the response of the first, in other words, the partner dose effect.

(i) First interaction is exploratory

We know that spore contaminated ants receive more grooming than sham-treated ants,

until both responses go back to baseline. We took a closer look at what happens at

the very beginning, to find out whether ants can detect spore-presence from the first

interaction, and make a distinction based on individual dose of their interaction part-

ner. For each ant, we looked at the latency to the first allogrooming interaction, the

identity of the receiver and the duration. The first allogrooming interaction is not ne-

cessarily the first interaction between two ants. For instance, an ant could touch other

ants with its antennae (i.e. antennation), before it engages in a grooming interaction,

potentially recognizing those ants treated by chemical . All ants performed their first

observed interaction before six minutes. First, we found that allogrooming another un-

treated nestmate, at this moment, was infrequent (Figure 3.6 A, missing stats due to

problems with model assumptions). Also, the latency to groom a nestmate was higher

(Figure 3.6 B) and the duration shorter (Figure 3.6 C [LMER]: LR χ2 =19.79, df = 3,

p <0.001), compared to grooming a treated group member. Thus, nestmates discrim-

inate between untreated and treated individuals, immediately, as the first observed

allogrooming interactions are directed towards treated ants rather than untreated nest-

mates. However, we cannot confirm early discrimination of the pathogen. We conclude

that the ants make no immediate discrimination between treated ants. Moreover, we

put forth that some “sampling” is needed before nestmates can discriminate the pres-

ence of the pathogen, and moreover, get a “global” picture of the pathogen risk.
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Figure 3.6: First allogrooming interaction. For all nestmates (non-treated individuals),

we recorded the recipient of its first allogrooming interaction. (A) Distribution of recip-

ients. Proportion of first allogrooming towards H (dark green), L (light green), sham-

treated (blue), or an untreated (grey) ant, grouped by treatment group. (B) Latency.

Time to first grooming interaction grouped by recipient treatment. (C) Duration of first

grooming interaction, also grouped by recipient treatment (horizontal axis). Shown are

the median (black line), 95% CI (shaded boxes), and violin plot outline. Letters denote

significant differences between groups after LMER (statistics in text).

(ii) Allogrooming received depends both on individual and partner dose

We wish to test if nestmates modulate their behavior towards a given infected ant de-

pending on the context, that is, the partner-dose effect. We grouped the ants based on

the spore dose given and on their partners dose. We here present the allogrooming

response during the peak of the allogrooming response.

At the peak of the grooming response, ants contaminated with a high-dose and

paired with sham-treated or low-dose treated (H in HT and HL) are groomed more

compared to control treated ants (T in TT). Ants treated with a low-dose and paired with
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Figure 3.7: Effect of dose given and dose of partner on allogrooming received during

peak allogrooming response. Treated ants were grouped by the treatment they re-

ceived (three panels with grey heading above) and the treatment their partner received

(horizontal axis). Data is depicted as boxplots, with shaded boxes for 95% CI around

the median. Lettering shows Tukey post hoc comparisons after LMER (statistics in

text), groups which do not share letters are significantly different.

sham-treated (L in LT) are also groomed more. Other ants fall in-between (Figure 3.7

[LMER]: LR χ2 =32.915, df = 8, p <0.001, Tukey post hoc comparisons H in HT, H in

HL and L in LT vs T in TT, p < 0.05, all others n.s). We suggest that discrimination is

happening and is easier when the contrast between the pair is highest. In other words,

when the difference in spore dose given is largest. We further test this preference in

the following sections.

(iii) Instantaneous spore load estimation

We know that spores are effectively removed by allogrooming, thus, the applied spore

dose is decreasing with every grooming event. We have a response modulated by

a stimulus, which decreases as a result of the response itself. We next explore the

predictions of a model were we estimate instantaneous spore load for each exposed

individual over time.
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We build a spore-decay model to see if the (predicted) instantaneous spore load

indeed explains grooming preference throughout the response. Spore load change

as a function of selfgrooming and allogrooming received, is best explained using a

Michaelis-Menten model. Linear and exponential models were considered, but provided

an inferior fit. In such a model, spores(S) are removed as in Michaelis-Menten kinetics,

dS/dt = −vS/(S + K ),

with constants v and K . One can think of an ant as an “enzyme” and spores as

the enzyme’s “substrate”. At first, the ant removes spores at a maximum rate v . The

speed of spore reduction is linear. As the spore number is reduced the ant is able to

capture less, and the speed of spore removal shrinks exponentially. K , the dissociation

constant gives the transition between the exponential and linear regime. For a number

of spores S >> K , the equation can be simplified to dS/dt ≈ −v , i.e., linear decay.

When S << K , dS/dt ≈ −v/KS , i.e. exponential decay. v and K are parameters we

fit to experimental data. The parameters are chosen so that the initial distributions of

spore loads predicted by the model are as similar as possible to those recovered from

exposure controls, as measured by how similar their means and standard deviations

are. The stability of these parameter values with respect to the choice of optimization

criteria was corroborated by recovering similar values by minimizing the earth movers

distance between the distributions.

Below, we compare estimated instantaneous spore loads between pairs of ants.

Since all spore load estimations are done using the same model parameters, a sub-

optimal fit would lead incorrect estimations, but the distance between two such incor-

rect estimations would be the same as between two correct ones. Thus, although we

have taken great care to do a sensible exploration of the parameter space, the use we

are making of the model is tolerant to sub-optimal parameter estimation.

(iv) Implications of the model

The biological intuition behind this model is that ants remove spores from a contam-

inated ant at a speed which depends on the number of spores present. When there

is plenty of spores they remove at a maximum speed. Speed decreases when spores

become more and more difficult to find.
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Experimental Michaelis-Menten kinetics prediction

median(log(load)) H 12.0078 11.8869

stddev(log(load)) H 0.54688 0.576157

median(log(load)) L 11.4225 11.5039

stddev(log(load)) L 0.57912 0.61598

score - 0.01301

parameters - v=05.122 K=47712.793

Table 3.5: Spore decay model values. These were found by minimizing, separately for

H and L exposure levels, the difference between two distributions of spore loads: that

of exposure controls, and that of initial loads estimated using the model.

Ants can remove spores from one another directly by scraping or licking them off

with their mouth parts. They can also brush spores from a surface with a stroke of

their foreleg [Jander, 1976; Farish, 1972], which they can subsequently clean with their

mouth. In both cases, they collect spores and other particulate matter in a flexible fil-

tering pouch inside their mouth, called the infrabuccal pocket [Eisner and Happ, 1962].

We speculate, that ants could be, to some extent, aware of the state of fullness of their

infrabuccal pocket. There is room for a positive feedback mechanism – where the ant

keeps grooming as long as there are still spores to remove – or a negative feedback –

where the ant stops allogrooming to expel a pellet or to continue to groom itself.

(v) Nestmates groom ants with higher instant spore load

With a model providing the instant spore load per ant at every time point, based on its

previous grooming history, see Figure 3.8 for illustration), we can test the hypothesis

that the nestmates make a distinction between the two treated ants and preferentially

groom individuals currently carrying more spores. We can define preference of the

group of nestmates for the ant with a higher load, for each time window. We consider

that nestmates ‘choose’ or preferentially groom the treated ant which, we estimate, has

a higher spore load in that window, if more than half the grooming time in the window is



60

allocated to the ant with the higher load, and there are at least 10 seconds of grooming

performed towards a treated ant in that window. The 10 second threshold is chosen

because no grooming events are smaller than this (duration of a grooming event: min

= 10.07, median = 39.7, mean = 57.2, max = 688.6 seconds) and, thus, if a treated ant

received less than this grooming in a time window, most of the grooming events are

located in an adjacent window. The result is a binary variable, ‘nestmates chose higher

load or ‘do not choose it’, per time window. A logistic regression was performed, taking

as predictor variable the logarithm of the difference in spore loads.

We found that indeed, nestmates preferentially groom ants with a higher load, with

a probability decreasing as the difference in instant spore load between the pair de-

creases. For a unit increase (or ten-fold increase) in the difference in spore load

between treated ants, the probability of grooming the one with higher instant load is

given as the Odds Ratio (OR). The OR is highest for spore-contaminated ants paired

with sham (i.e. HT and LT). This is because ants in these groups are preferentially

groomed in the first time windows, when the spore load is highest (see Figure 3.9 A

and Table 3.6). We can also visualize the probability for this preference predicted by

logistic regression as a function of spore load difference (see Figure 3.9 B).

It must be said, that the difference in spore loads, can reflect the difference in treat-

ment that the ants received (e.g. H vs L), but it can also stem from stochastic variation

during exposure (i.e. the difference in dose between treated ants in HH or LL can

largely deviate from zero). Additionally, as one ant receives (both self and allo) groom-

ing for a period of time, the difference between its instantaneous load and that of its

partner changes, eventually reversing sign. For this reason, it is not sufficient to study

grooming preference, or any other behavior, as a function of the dose the ants were

treated with, but instead a model of instantaneous load is very important. Interestingly,

the fact that our logistic model predicts a preference for the ant with a higher-dose, in

the case of HH suggests that ants really discriminate this differences finely.
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(A)

(B)

Figure 3.8: Example of grooming choice per window and estimated spore load differ-

ence. (A) For each 3 minute time window (horizontal axis) the black line shows the

logarithm of the difference in estimated spore loads between the two treated ants. The

dots show whether nestmates preferentially groomed the treated ant with higher load

(orange, top), chose the one with lower load (gray, bottom) or did not have elements

for choice (i.e. less than 10 seconds of grooming were performed) (gray, middle). No-

tice how grooming the ant with higher load diminishes the difference, as spores are

removed from it, and, respectively, grooming the ant with smaller load increases the

difference. The estimation of instantaneous load was done using a Michaelis-Menten

kinetics model (see text). Shown is replicate number 16 from the HL treatment group.

(B) For illustration purposes, spore differences where binned into four bins in logar-

ithmic scales (dotted lines in both plots). The number of windows in which the differ-

ence in spore load was within a bin and the nestmates preferentially groomed the ant

with higher load (orange dots), was fitted with a logistic model.
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(A)

(B)

Figure 3.9: Nestmate preference. (A) All 3 minute time windows for all dishes were

binned into different ranges of estimated spore-load difference between the two treated

ants (x axis). For each bin, the orange bars show the percentage of windows in which

the ant with higher spore load was preferentially groomed (see text and Figure 3.8 for

details). The dark solid lines show a fit of these points (unbinned) to a logistic model, to

predict the probability of the ant with a higher load being preferentially groomed, as a

function of the difference in spore loads. The fits for different dish treatments is shown

in (B), where it is clear that the probability increases faster in the cases where there is

a single treated ant (LT and HT).
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Treatment LOR OR χ2 p AIC

HH 0.75 2.12 14.8 <0.001 602

HL 0.82 2.27 18.7 <0.001 605

LL 0.39 1.47 2.87 0.09. 600

HT 1.13 3.09 26 <0.001 603

LT 1.37 3.93 37 <0.001 648

Table 3.6: Logistic regression of preference as a function of load difference
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3.3.4 Outcome of the response in terms of spores

To recall, we exposed two ants per dish to get six treatment groups abbreviated with

the combination exposure of the pair as: HH, HL, LL, HT, LT and TT. Low-dose (L)

was half of the high-dose (H), by design. Experimentally, there was a considerable

deviation from this ratio (H mean 200,478 SEM 3,143, L mean 112,742 SEM 1,428, H

/ L = 1.78)

We compared the behavior of ants across treatment groups to explore the effect

of individual and group (global) dose. In particular, we put to test the hypothesis that

the number of spore-contaminated ants, on the condition that the global dose remains

the same, can influence the group behavior. Our data reveal that ants preferentially

groom individuals contaminated with a higher spore dose, more easily so when the

difference in spores is higher. In particular they show this preference earlier, in case

the spore-contaminated ant is paired with a sham-treated ant. In essence, even though

HT and LL groups have a comparable global dose, the group seems to respond to the

individual dose.

In this next section, we assess the consequences of the grooming response, in

terms of the number of spores removed from contaminated ants as well as spores

transmitted to the nestmates.

(i) Spores can circulate through various transmission routes

Spores from the body of a contaminated individual can be collected by selfgrooming

in their heads. Specifically, these spores accumulate in a filtering pouch (infrabuccal

pockets) where they are mixed with disinfecting secretions, compressed into a pel-

let and discarded. The spores can be transferred to another ant, either collected by

allogrooming or inadvertently transferred during the process. The groomer can, of

course, selfgroom and the spores cleaned can be discard in a pellet, as well.

Spores in pellets and in infrabuccal pouches have reduced germination [Tragust

et al., 2013] and pose a relatively negligible risk, as compared to spores remaining on

the ants bodies, which hold the potential to infect. A third transmission pathway is shed-

ding or loss to the substrate and inadvertent pickup by a passerby (See Figure 3.10.

Spore transmission routes, for a simple depiction of this routes).
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Figure 3.10: Possible routes in which spores move within the system. A treated ant

receives spores from exposure. As a result of selfgrooming, the treated ant collects

spores into its head, most of which are later expelled in an infrabuccal pellet. When

a nestmate grooms the treated ant, it collects spores from it, most of which end up

in the its head or in the pellets it expelled. Some, however, can be transferred to the

nestmates body. Treated ants also shed spores onto the substrate, where they can

also be picked up, i.e. indirect transmission.

(ii) Spores are collected in the head of a contaminated ant by selfgrooming

For contaminated ants, there are two processes by which the spores they were con-

taminated with, can shift location. On one hand, we anticipated that the spores would

accumulate in their head as a result of selfgrooming. On the other, the number of

spores remaining on their body can be reduced as a result of both selfgrooming and

allogrooming received. As a consequence of these two processes, the ratio of body

spores to head spores decreases (e.g. reduction on the body and accumulation in the

head). While we only have spore measurements for head and body at the end of the

experiment, we can compare those to exposure-controls (frozen immediately after ex-

posure and processed identically). Exposure-controls had 5 to 10 times more spores

on their body than in their head. We found no difference between dose groups (D =

0.16, p-value = 0.80, log-transformed variable). Meanwhile, exposed ants (after 90 min
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of the experiment) had only 2 to 5 times more spores on their body (Figure 3.11 A).

The body to head ratio significantly shifted (Two-sample Kolmogorov-Smirnov Test, D

= 0.37, p<0.001).

The shift in body to head ratio can be due either to an increase in the spores in

the head, or a decrease in the spores on the body. To see how these two processes

contributed to the shift, we estimate the number of spores a treated ant must have

had in its head and in its body before any interaction and contrast with the final load

measured. We estimate the initial number of spores and then assign a portion to the

head and a portion to the body, according to the median body to head ratio of the

exposure controls. The initial number on a treated ant, is the sum of all the spores of

a matching label that were recovered from the dish (i.e. from all six ants and pellets).

The median body to head ratio of the spore-exposed controls was 7.01, 95% CI (5.86

- 8.59), n = 60. So for instance, if the total dish eGFP spores measured on a dish

was 80, 000, we assigned 10,000 to head and 70,000 to body as an initial load for the

eGFP-spore contaminated ant (Figure 3.11 A).

By subtracting this initial estimate from the final measured loads, we determine

the amount of spores gained or lost in head and on body. The spores gained in the

head accumulated there from selfgrooming, and those lost from the body were lost to

grooming (both self and allo). The histograms of these differences are presented in

Figure 3.11 B, and show that, indeed, treated ants both gain spores in the head, and

loose spores from the body, during the 90 minutes of observation period. Both of these

processes contribute to a shift in body to head ratio, but most of the shift is due to

spores being removed from the body Figure 3.11 B [LMER]: LR χ2 =5.52, df = 1, p =

0.018)). This is consistent with the fact that spores can be removed from the body of a

treated ant in three ways: by self-grooming, by allo-grooming and by being lost to the

environment; while only the first of these leads to an increase in the number of spores

in their head.

(iii) Spores are collected in the heads of nestmates by allogrooming

Before we looked at focal individual, now we look at nestmates. Allogrooming has long

been known to effectively remove fungal spores [Reber et al., 2011]. Our experiments
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show that nestmates collect the spores in their heads, and that the chance of them

doing so increases with the amount of allogrooming they performed. We detected

spores in the heads of 70-80% of the nestmates. We set to find out if this can be

reasonably predicted by allogrooming performed, which would not necessarily be the

case, for instance, if they disgorge all spores into pellets. We build a logistic model with

a binary variable indicating the presence of spores in the head of nestmates and, as

predictors, the total number of spores measured in the replicate group, and nestmate

allogrooming rank, based on the allogrooming performed towards spore-contaminated

ants. The probability of finding spores in the head of a nestmate increases with global

spore dose and is lowest for ants who groomed the least (Logistic regression GLM

overall LR χ2 =26.59, df = 4, p <0.001; grooming rank LR χ2 = 6.6291, df = 1 p =

0.010; dish load LR χ2 =20.4, df = 3, p < 0.001).

To better our understanding, we built another model to test whether the amount

of spores with a given label, collected by a nestmate, was predicted by time it spent

grooming the ant carrying the respectively labelled spores, and the number of them

(i.e. the dose of the ant being groomed). Indeed, the amount of spores collected by

a nestmate is determined by the time it groomed an ant and the dose it had (LMER

overall LR χ2 14.95, df = 2, p <0.001; grooming performed LR χ2 = 4.69, df = 1 p =

0.030; dose LR χ2 = 9.39, df = 1, p = 0.002).

(iv) Treated ants also take part in allogrooming their contaminated partner

With our design with two-labeled spores, we can also look at how many spores are

transferred across the treated ants (from now on these spores as referred to as cross-

transferred spores). We first examined the cross-transferred spores in the heads of

the treated ants and conclude that treated ants indeed collect spores from each other

(median 1488, 1stQ 425, 3rdQ 5988), although at least tenfold less than nestmates

collect (median 11420, 1stQ 4462, 3rdQ 20340).

We wanted to know when treated ants groom each other e.g. whether it depends

on their own or their partners dose. We fit a logistic model to predict the probability of

finding cross-transferred spores in the head of treated ant. We used the effective time

allogrooming the contaminated partner and its given dose (H or L). Cross-transferred
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Figure 3.11: Body to head spore load ratio. (A) Body to head ratio in exposure-controls

and experimental samples. The vertical axis shows the number of spores on the body

over the number of spores in the head, of the same ant, according to treatment dose

(vertical axis), either in exposure controls (left) or after 90 minutes observation (right).

Mean and confidence intervals (shaded) are shown. (B) Shift with respect to control.

A histogram is shown of the difference between the number of spores recovered from

either the head (top) or the body (bottom) of an ant, and the estimated number of

spores that said ant had in the corresponding body part at the beginning of the ex-

periment. Bins to the right of zero indicate a loss in spores during the 90 minutes of

observation, and those to the left a gain in spores. The estimate of initial spore load

takes into account the total number of spores with a given label recovered in a dish,

and the body/head spore ratio of the exposure controls, as described in the text.

spores were more likely found in the head of ants who allogroomed for longer and even

higher for those who groomed a high-dose contaminated partner (Logistic regression

GLM overall LR χ2 = 26.59, df = 4, p <0.001; rank LR χ2 = 6.6291, df = 1 p = 0.010; dish

load LR χ2 = 20.4, df = 3, p < 0.001). Nevertheless, ants with cross-transferred spores

in their head are not those with spores on their body (Pearson-correlation= -0.08, p =

0.256).

We further investigated the spores transferred across treated-ants which end up

on the body. These spores are disease relevant, and will be referred to with the term

cross-contamination. Since cross-contamination was rare, and the spores relatively

few, we used a different approach. We used a probabilistic approach and found that
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HH HL LL HT LT

Head spores

(collection)
14/34 5/16 6/16 3/32 7/15 7/17

Body spores

(transmission)
5/34 3/16 3/16 2/32 0/15 1/17

Table 3.7: Spores transferred across treated ants. For each treatment group (in

columns) the ratio of replicates in which treated ants had spores from the other treated

ant either in their head (top row) or in their body (bottom row). For ants in HL-treated

dishes, we distinguish those which were treated with H and had spores from the one

treated with L (left), and those which were treated with L and had spores from the one

treated with H (right).

the likelihood of cross-contamination is the same across groups (Fisher’s exact test p =

0.425). Secondly, treated ants are equally likely to get cross-contamination spores from

a high-dose contaminated partner than from a low-dose contaminated one (Fisher’s

exact test p = 0.77). Interestingly, 13 out of 98 spore-treated ants, i.e. 13%, had

spores from the other treated ant on their body, whereas only 1 sham-treated out of

32, i.e. 3% had them. It is tempting to conclude that sham-treated individuals acquire

less from their treated partner compared to cross-contamination between two spore

contaminated partners. Yet, for the sample size and the rarity of contamination, we

have not enough power to make this inference (See Table 3.7)

(v) Number of spores packed into pellets across groups and estimated spore

content of a pellet

Another neglected aspect of pellets is simply the amount of spores each of them con-

tains and the total number of spores which a group of ants packs into pellets. This pellet

estimates seem relevant, not only if one thinks of pellets as a sink (i.e. as spores sub-

tracted from the pathogen infection cycle), but also if one considers that they take time

(as presented above) and resources (i.e. presumably costly gland secretions [Tragust

et al., 2013; Fernández-Marı́n et al., 2006]) to produce.
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We looked at the total number of spores packed into pellets in each dish. The mean

number of spores packed in pellets was 7,315 spores and 95% CI [5,651–9,183]. Ants

in HH groups packed the largest amount of spores into pellets, with more than 30,000

spores. Comparing across treatment groups, we found a small but significant difference

between HH and LT groups (Figure 3.12 A [LM] LR χ2 =1.465, df = 4, p =0.032, Tukey

post hoc comparisons, BH adj-p-value 0.039, all others n.s.), which had the highest

and lowest global dose, respectively.

We pooled the pellets collected before quantification, which means we do not have

individual spore measurements per pellet. Nevertheless, we can estimate the average

number of spores contained in a pellet by dividing our spore measurement of the pool

by the number of pellets pooled (see number of pellets produced per per dish in Fig-

ure 3.3 A). A pellet has an estimated 1634 spores, and 95%CI [1,250–2,093], with no

significant differences across treatment groups (Figure 3.12 B [LM] LR χ2 =0.502, df =

4, p =0.593). The estimate was consistent across groups, which suggests that pellets

reach an average size before being disgorged.

(vi) More spores are removed from high-dose contaminated ants and further

more from singly contaminated ants

As depicted in Figure 3.10, the spores that we applied to an ant at the beginning of the

experiment can be transferred to other ants (heads and bodies) and subsequently to

pellets, or they can be shed directly to the substrate. In the case of spore-contaminated

ants, we can measure the spores ‘remaining’ (i.e. those we contaminated them with)

and the spores ‘acquired’ (i.e. those we did not contaminate them with) All spores are

’acquired’ if found on sham-treated ants and untreated nestmates. See Method for

expanded definitions.

Here we investigate the change, or rather reduction, in the number of spores that an

ant initially had (estimated as above, i.e. the sum of spores, with the relevant label, on

all ants and pellets), and the number of spores remaining. In other words, we look at

the difference between the estimated initial load and the final load of the contaminated

ants. Differences across treatment groups in the magnitude of spore reduction, can

help elucidate the consequences of the behavioral dynamics described above.
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Figure 3.12: Spores in pellets A) Total spores per dish in pellets. The vertical axis

shows the total number of spores recovered from all pellets in that replicate group.

There is one point per dish. The dotted line shows the overall mean. Lettering shows

statistical comparison between groups, groups sharing letters do not differ. B) Average

number of spores contained in a pellet. The vertical axis shows the average number

of spores a pellet from each dish had. There is one point per dish, and the dotted line

shows the overall mean.
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We modelled spore reduction for an ant as a function of two predictors, its dose and

that of the other ant treated. We found the following. First, spore-treated individuals that

carried more spores from the beginning (H) showed a higher reduction in spores than

those carrying less (L). Second, spore-treated individuals paired with sham-treated

ones (HT and LT) have an even greater reduction in spore load than those paired

with other spore-treated ones (Figure 3.13 A: [LMER] full χ2 = 25.49, df = 3 p<0.001;

interaction χ2 = 0.4818 df = 2 p = 0.786; effect of dose χ2 = 15.146, df = 1 p = 9.953e-

05, effect of partner-dose χ2 = 11.892 df = 2, p = 0.003).

The first finding is in accordance to our spore decay model, where the number of

spores removed by unit of grooming received is proportional to the number of spores

present. The second, is to be expected, since the nestmates (of HT and LT) have only

one spore-treated ant on which to focus their grooming.

Now, it is important to notice that the reduction in spores on a spore-contaminated

ant is, by our definition, equivalent to the sum of spores acquired from it by all ants,

plus the spores found in pellets (of the relevant label). The total amount of spores

acquired (in the head) by all ants is not significantly different across treatment groups

(Figure 3.13 B, [LM spores acquired by all ˜ treatment group] SS = 8.77, df = 4, p =

0.312). The amount of spores expelled in pellets showed a very weak global dose

trend, with more spores in pellets for HH compared to LT groups (Figure 3.12 B).

Why is there a larger spore reduction from spore-contaminated ants when they are

the only exposed (i.e. H in HT and L in LT)? One hypothesis, to discard, is that the extra

reduction results from changes in their behavior or that of their nestmates (e.g. total

time allogrooming and selfgrooming). We modeled grooming behaviors as a function of

dose and treatment, including dish as a random effect to deal with pseudoreplication.

The spore-contaminated ants paired with sham (H in HT and L in LT) do not receive

more allogrooming in total (Figure 3.13 C [LMER] χ2 = 0.889, df = 3, p = 0.83), nor

perform more selfgrooming (Figure 3.13 D [LMER] χ2 = 1.463, df = 3, p = 0.69).

If it is not the amount of allo or selfgrooming, perhaps it could be the timing of

these behaviors. We modeled the promptness of grooming behaviors as a function of

dose and treatment, including dish as a random effect to deal with pseudoreplication.

Neither are they allogroomed earlier (Figure 3.13 E [LMER] χ2 = 3.584, df = 3, p =

0.31) nor do they selfgroom earlier (Figure 3.13 F [LMER] χ2 = 0.385, df = 3, p =
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0.94). Promptness was computed using the area under the curve of the cumulative

sum of the behavior per time window, normalized so that the cumulative sum at the

final observation windows is equal to one.

We next investigate whether the total spores acquired on their bodies is different

and whether there is potential loss of spores to the environment.

(vii) Loss is highest in treatments with two spore-contaminated ants

We define loss as the difference between the total number of spores (both labels)

measured per dish and the total number of spores applied (See Method for detail). The

loss is significantly larger for groups with two spore-contaminated ants (Figure 3.14,

Permutation Test based on 9999 Monte-Carlo resamplings Z=2.58, p = 0.008). This

suggests that the more focused attention on spore-treated individuals when they are

paired with sham-treated (i.e. H in HT and L in LT) may reduce the amount of spores

lost to the environment.

(viii) Contamination is highest in groups with two-spore treated ants

Very few nestmates acquire spores on their bodies. Contamination does not show

a global load dependence. Yet, nestmates were more likely to get contaminated in

treatment groups with two-contaminated ants (14-19% incidence) compared to groups

with a single contaminated target (4-8% incidence). This is backed by a logistic re-

gression of body spore presence as a function of number of ants exposed, with dish

as a random factor to account for non-independence of data points within a dish (Fig-

ure 3.15 GLMER χ2 =6.305, df = 1, p = 0.012). The number of spores on the body of

a nestmate has no correlation to the number of spores it collected in its head (Pear-

son corr = -0.03, p = 0.87), which is in contrast with the untested expectations men-

tioned in literature (e.g. [Schmid-Hempel, 1998; Cremer et al., 2007; Theis et al., 2015;

Rosengaus and Traniello, 1997; Fefferman et al., 2007]). Hence, allogrooming intens-

ity cannot predict the level of contamination on the body of the groomers (only in their

heads, see point (iii) in this section), revealing that transmission to the body surface

during the course of allogrooming is unlikely. On the other hand, we find that the rate of

contamination is highest in groups with a higher proportion of contaminated and hence
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Figure 3.13: Spore reduction and acquisition. A) Spores reduced from spore-treated

ants, depending on the treatment they received and their partner. LMER with reduc-

tion as a function of dose and partner-dose. Letter for Tukey post hoc comparisons

according to dose (upper-case) and partner-dose(lower-case) B) Spores acquired (by

all ants) in a dish across treatment groups. Shown is the number acquired into the

heads of the ants, but the results also hold if considering the sum of acquired in head

and body, since the later is very small.
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Figure 3.13 (Continued from previous page): Letters are Tukey post hoc comparisons

C) Total allogrooming received and D) Total selfgrooming performed by spore-treated

ants, according to treatment and to partner. E) Promptness of allogrooming received

and F) Promptness of selfgrooming performed by spore-treated ants, according to

treatment and to partner. Promptness is computed as the area under the curve of

the cumulative sum of the behavior per time window, normalized so that the cumulative

sum at the final observation windows is equal to one.
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Figure 3.14: Proportional loss estimated with exposure-controls. For each dish, the

amount of loss is computed as the ratio of the number of spores measured in all six ants

and recovered pellets, over the number of spores originally applied (as per exposure

controls). The loss is shown for each treatment group, median and 95% confidence

intervals. The letters denote significantly different groups, according to a Permutation

Test based on 9999 Monte-Carlo resamplings (Z=2.58, p = 0.008).

infectious individuals (2/6 instead of 1/6), in which also the loss is highest. Therefore,

we formulate a hypothesis whereby nestmates inadvertently pickup spores from the

substrate, with a probability proportional to number of spores present on the substrate

(i.e. the accumulated loss). This working hypothesis, of course, needs experiment

validation.
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Figure 3.15: Proportion of nestmates contaminated. For each treatment group, the

proportion of nestmates with spores on the body at the end of the experiment.
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3.4 Discussion and Conclusion

(i) Allogrooming

Allogrooming performed by spore-contaminated ants towards susceptible nestmates is

a route for pathogen transmission. Avoiding this route and, in general, self-exclusion

from social interactions (e.g. leaving the nest when moribund [Bos et al., 2012]) have

been posed as adaptive for epidemic control in ant colonies [Theis et al., 2015]. Ex-

posed ants have been reported to distance themselves from brood [Ugelvig and Cre-

mer, 2007] and other nestmates [Stroeymeyt et al., 2018], which implies an overall re-

duction in their interactions. We confirm the observation [Theis et al., 2015] of reduced

allogrooming from infectious to susceptible individuals, but we add, an equivalent re-

duction in sham-treated ants which suggests that this strategy is prophylactic and not

exclusively contingent on pathogen presence. This might constitute a general, less

costly, less error-prone strategy. We nevertheless add that it could also simply result

from a constraint, namely, that an ant being allogroomed prevents it from allogrooming

other ants.

(ii) Selfgrooming

Selfgrooming is considered to be a generally benevolent strategy in terms of epidemic

outcome as it removes spores without risking transmission [Theis et al., 2015]. An

increase in selfgrooming is expected to be advantageous both for directly contamin-

ated ants and their nestmates, and thus is expected. We indeed observed a general

increase in selfgrooming by both treated and untreated ants. An increase in selfgroom-

ing of spore-contaminated with respect to sham-treated was observed before [Ugelvig

and Cremer, 2007], but the observation in nestmates was awaiting confirmation.

Now, selfgrooming has been reported to happen at much higher rates than al-

logrooming [Theis et al., 2015]. Nevertheless, we find that a smaller proportion of

time is allocated to selfgrooming than to allogrooming, both before and after expos-

ure. We believe this inconsistency is due to the fact that behavioral observations in

different studies span different intervals of time. Behavioral observations in our study

finish ninety minutes after exposure. Thus, we cannot exclude the possibility, that a
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late phase of selfgrooming, mainly of spore-contaminated ants, is happening after the

allogrooming phase we observed.

(iii) Acidopore grooming

Acidopore grooming has been described as an important component in sanitary care.

The acidopore is a structure unique to the family Formicinae located at tip of the abdo-

men. It gets its name because this aperture is connected to the poison gland, which

mostly contains formic acid. It is in fact, jointly connected to the Dufour gland and

hindgut. The poison and Dufour gland compounds are known for their use in antipred-

ator defense and trail formation. Given its antimicrobial properties, formic acid, has

an additional role in antipathogen defense. L. neglectus ants are known to groom the

acidopore and take up the secretions into their mouth. The transiently stored com-

pounds are orally applied during sanitary care [Tragust et al., 2013]. Importantly, they

also serve to disinfect the spores collected and likely the groomer herself. Also, note

that though the use of formic acid is unique to the Formicines, it is likely that poison

of other ants is also antimicrobially active and moreover that ants can make use of

metapleural gland secretions for disinfection [Fernández-Marı́n et al., 2006].

Given that the untreated nestmates performed the most allogrooming and produce

the most pellets, we expected them to increase acidopore selfgrooming. Unexpec-

tedly, we found increased acidopore selfgrooming from spore-contaminated ants and

sham-treated, and a decreased acidopore selfgrooming from nestmates. Now, there is

an order in sanitary behaviors where ants transition from grooming to acidopore self-

grooming and finally to pellet spitting. Treated ants produced pellets earlier, possibly

depleting the formic acid transiently stored in their mouth; the acidopore selfgrooming

we observe is likely replenishing their storage. We cannot exclude the possibility that

given longer, nestmates would perform acidopore selfgrooming, as well.

We observed an acidopore selfgrooming response which differed between untreated

nestmates and treated ants. Granted that this observation is restricted to the chosen

observation period, it could also fall in line with evidence for ‘sick signaling’ in euso-

cial insects. Communication about pathogen intrusion is key for any host, including

the super-organismic host. In vertebrates, there are cells specialized in patrolling, de-
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tecting threats and recruiting a larger cellular response. Besides this, individual cells

can signal their own status. Similarly social insects are known to patrol and detect

threats [Cremer and Sixt, 2009]. They can also mount complex systemic responses,

such as ’fever’ [Starks et al., 2000]. Evidence of communication about contaminated

or diseased individuals, remains elusive. Signaling from contaminated or diseased in-

dividual themselves,’sick signaling’, is still a matter of debate and ongoing experiment-

ation, in particular to determine if any behavioral changes constitute just side effects

of contamination which are interpreted by nestmates (cues), or if it is an independently

evolved mechanism for signaling contamination. For instance, pathogen-exposed ter-

mites have been shown to use vibrational cues to trigger a group response [Rosengaus

et al., 1999]. Also, nestmates destroy and disinfect infected brood triggered by cuticu-

lar hydrocarbon changes [Pull et al., 2018]. Moreover, wounded ants may signal their

status for nestmates to rescue and carry them back to the nest [Frank et al., 2018].

Acidopore grooming, exclusively shown by exposed individuals, needs further confirm-

ation as constituting ‘signaling of contamination’.

Given that the acidopore secretion contains both a volatile (formic and acetic acid)

and smaller less-volatile (Doufour gland hydrocarbons, used also for pheromone trail

marking) fraction [Tragust et al., 2013], acidopore selfgrooming can potentially be used

in both short-range (peer-to-peer) and long-range (broadcast) communication, at the

same time. If contaminated individuals would apply the secretion unto themselves,

the volatile fraction could serve to recruit nestmates (additionally to its active role as

disinfectant), while the less-volatile part could be the basis for identifying them as con-

taminated (in addition to compounds of fungal origin such as octenol (Ugelvig, L.V.,

unpublished data).

(iv) Overall response dynamics

The grooming response surges and decays in an exponential fashion towards baseline

values within our 90 min observation period after treatment; allogrooming is followed

by pellet expulsion. Spore-presence increases the amplitude of the response, in com-

parison to sham-treatment, but this difference fades away during the last third. By then

(60 min after treatment), the grooming performed by nestmates does not differ from

their pre-exposure baseline. We seem to be observing a single grooming bout in the
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group. The dynamics of this bout are likely to change for different numbers of ants

and ratios of contaminated to untreated nestmates. For the bout observed, the nest-

mates have reached a point where the stimulus is not sufficient to sustain the response.

These nestmates might have reached a saturation point for this stimulus. Further work

is needed to know if the same ants would take part in subsequent grooming bouts, in

other words, to measure what the “refractory” period of an ant is. More experiments,

for example, replacing the group of nestmates or the contaminated individuals, are

needed to confirm that the stimulus is simply the number of spores. The ants could

be chemically imprinting a contaminated nestmate, as they do with larvae (Ugelvig,

L.V., unpublished data) We predict that a fresh batch of nestmates will mount another

(perhaps of lower amplitude) response. Also, replacing contaminated individuals could

elicit a similar response from nestmates after some refractory period. These experi-

ments should take into consideration that germination starts relatively quickly (a couple

of hours) after spores first contact the insect cuticle.

(iv) Grooming preference

Estimating instant spore load, makes it possible to account for two things: 1) the exper-

imental variation in exposure (see Supplement for distribution of spore load in exposure

controls) and, more importantly 2) the fluctuating relative difference in spore number

between the pair (due to different removal rates). Nestmates preferentially groom those

exposed-ants with a larger load. This can be achieved by the group, in several ways.

Based on our observations, we delineate one mechanism.

There are several ways that ants may detect spores, one of them is by contact

(i.e. via a combination of mechanical [Ugelvig and Cremer, 2007] and chemical signals

(Ugelvig, L.V., unpublished data) during grooming, which stimulates further grooming.

The resulting reduction in spores is the key to a self-regulating mechanism. Let us here

note that long-range detection of spores is not sufficient to explain grooming preference

or the strong directionality observed.

Our results show that the observed behavioral changes, can occur with no need

for an individual to assess the relative spore load of all nestmates, or to be endowed

with memory to integrate the global dose. Ants are likely to groom any individual that
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they come across with but are more likely to groom for longer so long as they detect

spores. There is a moment when they will pause, regardless of the spore load left

on the contaminated ants, and that is probably when they reach the capacity of their

infrabuccal pocket. They might restart the cycle after expelling a pellet and grooming

themselves, until they reach a pathogen detection limit. After this they will go to a

steady rate of prophylactic care.

These dynamics, defined in the individual level and without the need for global

information, are in line with other descriptions of ant behavior as ensembles of seem-

ingly uncoordinated local behavior from which global patterns, beneficial to the colony,

emerge [Solé et al., 1993].

(v) Spores collected by grooming and pellets

It is now known that social interactions can predict spore load [Stroeymeyt et al., 2018]

and it is often assumed that grooming frequency predicts the risk for the groomer to

contract disease (in some cases only a low level infection, which provides immune

protection [Konrad et al., 2012]). However, the work making these predictions has

relied on measures of total spore load of the ants [Stroeymeyt et al., 2018] (but see

[Konrad et al., 2012] who measured germination from spores in thorax and abdomen).

Here we make a clear distinction between disease-relevant contamination of the body

surface and the spores collected in the infrabuccal pocket, which are neutralized and

hence, no longer relevant for transmission within the colony.

Doing this distinction, we find that most spores found on non-treated ants are ac-

tually found in their heads. Their presence can be predicted by the amount of al-

logrooming of spore-contaminated individuals which they perform. On the other hand,

spores are rarely found on the bodies of nestmates, and when they are, it is in very low

amounts. Consistent with this result, we observe that spore-treated individuals also

remove spores from their bodies and accumulate them in their heads. In conclusion

we have observed and quantified a sanitary behavior that consists of accumulation of

spores in the head, where they presumably present less risk.

From the spores in their heads, ants form infrabuccal pellets which they shortly

afterwards expel. The amount of spores expelled in a pellets is distributed over two
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orders of magnitude, but no difference stems from the pathogen dose in the system

where they were expelled. The number pellets expelled, however, is correlated with

global spore dose. This suggest that ants collect spores up to a more or less fixed

capacity before they expel a pellet and resume grooming.

(vi) Loss to the substrate and spore transmission

A considerable amount of spores is lost to the substrate. This amount is larger in

groups with two spore-contaminated ants, even though a similar quantity of spores is

collected and spat into pellets by a similar amount of grooming performed (i.e. by self-

grooming and allogrooming). In these groups with high loss, transmission to nestmates

(i.e. spores on their body) is more likely. Further experiments will be needed to con-

firm that the behavioral response, in particular, the preferential grooming of ants with

a higher load, prevents loss and thus transmission to nestmates via the substrate. We

did not perform this experiments yet, since we did not foresee the importance of loss.

Nevertheless it should be straightforward to quantify spores from the substrate (e.g.

with fluorescent imaging of the arena), and further, perform experiments to check the

viability of these spores (e.g. stamping the arena on a cultivation plate) and to estimate

the likelihood of inadvertent pick-up (e.g. by correlating the trajectories of ants and

the spores acquired after walking over arenas with a controlled amount of spores laid).

One more interesting aspect to measure would be the decline in the spore viability

off-host, since we know that ants disinfect their nest (e.g nest disinfection with formic

acid).

Studies of direct pathogen spread over proximity-based interaction networks have

started to describe the disease dynamics of ant colonies in unprecedented detail [Sump-

ter, 2006]. In general, studies of the contact networks of insects have been extremely

valuable to test and generate new hypothesis regarding the flow of pathogens [Stroey-

meyt et al., 2014], but also of resources and information in complex societies (e.g.

[Jeanson, 2012; Blonder and Dornhaus, 2011; Pinter-Wollman et al., 2011]). On the

other hand, indirect transmission has received comparably less attention in experi-

mental epidemiology [Richardson et al., 2015]. Indirect pathways are able to enhance

or decrease spreading, depending on the decay characteristics of the agent in question

[Richardson et al., 2015]. Considering indirect pathways is likely to be key to solving the
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conundrum posed the simultaneous need of enhanced and decreased transmission in

communication networks [Richardson et al., 2015]. In our particular case, considering

loss to the environment might explain the sanitary care response or the group which

would minimize both, the risk of infection of contaminated individuals and the risk of

transmission to nestmates, at the same time.

(vii) Importance and Future directions

Decision making in ants in the context of collective disease defenses has not yet been

explored. Our study provides a strong basis to understand the collective properties

of the sanitary response. Future work should elucidate the rules that individual ants

employ to determine when they switch from one behavior to another (e.g. from doing

nothing to allogrooming to selfgrooming). By testing several of such rules, including

those that reflect the results reported here (i.e. grooming preference is proportional

to instantaneous load), and comparing the statistics of simulations to those from real

data, one can reject the need of each rule or combination therein. Furthermore, one

can explore, in simulations, other rules, and see if they lead to behaviors which are stat-

istically consistent with our observations. Many interesting biological hypotheses arise

from these approach. For example, one can test the need for ants to have memory

of their encounters, and the limits of their pathogen detection and discrimination cap-

abilities. These direction is currently being explored with Katka Bod’ová and Gašper

Tkačik.

3.5 Method

We studied the behavioral changes of garden ants upon exposure to an entomopatho-

genic fungus. All necessary details are described below. For a general summary see

Figure 3.1

Host and pathogen

The invasive unicolonial ants (Lasius neglectus) were collected in June 2015, from

Jena, Germany (N 50° 55.910 E 11° 35.140). The stock colony was housed in six
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separate boxes. The experiment was carried out in July 2016, when the colonies were

one year old, and had each ca. 20 queens and ca. 8000 workers. We took workers

from a single stock colony for the final run of the experiment. We sampled workers from

nest chambers which were not shared with queens or brood, in this way we avoided

sampling callow or old foragers. The stock colony and experimental groups were kept

at constant temperature of 23° C with 75% humidity and a 14/10 light/dark cycle. This is

an unprotected ant species, and all experiments and handling were done in accordance

with European Law and IST Austria ethical guidelines.

We used conidiospores of a fungal strain Metarhizium robertsii, with one of two

fluorescent gene labels (i.e. eGFP-Ma5275, and mRFP-Ma5275). We cycled them

through ants to ensure equal virulence and germination. Prior to the experiment,

conidiospores were grown on 6.5% sabaroud dextrose agar at 23° C until sporulation

and harvested by suspending them in 0.05% sterile Triton X-100 (Sigma). Germination

was determined to be above 95% for both labelled spores in all plates harvested.

Experimental procedure

To allow for individual behavioral scoring and individual pathogen load estimation, ants

were colour-marked (Edding 780 markers) 18-24 hours before observation. Groups

of six uniquely marked ants (n=18) were placed together in plastered Petri dishes of

Ø 45 mm with Ø 50mm glass covers (Edmund Optics), without food and recorded for

30 minutes (i.e. Baseline behavior, Figure 3.1). After treatment (more detail below),

we allowed only a few seconds, until ants had recovered stance, before we reintro-

duced them to their dish and recorded a second observation period, of 90 minutes (i.e.

Treatment-induced behavior, Figure 3.1). After this post-treatment observation period,

all dishes were frozen at -80° C, the ants in them hence freeze-killed.

The length of the observation period, the number of ants, and dosages, were

chosen based on previous work [Ugelvig and Cremer, 2007] and preliminary runs,

to fulfill the following requirements: (1) no pathogen multiplication is happening, (2)

grooming interactions happen between all ants, i.e. interaction networks are fully con-

nected, (3) transmission happens and is measurable, (4) not too many pellets are

disgorged.
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Two ants in every dish were randomly assigned to be exposed with a high dose

(H), low dose (L), or treated with pathogen-free solution (T), resulting in six treatment

combinations (HH, HL, HT, LL, LT, TT). The experiment was designed to disentangle

the effects of individual and global dose. To allow for comparison between treatment

groups with the same global dose, carried by a single ant or evenly distributed among

the pair, we set the high dose to be twice as high as the low dose (H=2L and thus we

can compare HT vs LL with the same global dose).

We used two fluorescently labelled fungi, created from a single strain tagged with

one of two single gene labels, created in the lab of Mike Bidochka. Conidiospores (here

also referred simply as spores) from the labelled fungi, carry a single plasmid with either

eGFP or an mRFP gene. We targeted both genes for simultaneous quantification (see

Spore quantification)

The labelled spores used for exposure were randomly assigned, so that the fol-

lowing properties held: i) in case both ants were to be spore-exposed, they would be

exposed each to a differently labelled spore, ii) in case a single ant was to be spore-

exposed and the other sham-exposed, the spore-exposed ant would be treated with

eGFP-labelled spores in 50% of the replicates and with mRFP-labelled spores in the

rest. The use of two labels was chosen so that we could infer the origin of the spores

collected by or transferred to other ants.

We anticipated that spores would accumulate in the mouth-parts and head as a

result of the grooming performed. It is known that spores accumulate in the infrabuccal

pocket, where they are mixed with formic acid and other glandular compounds which

strongly reduce their germination [Tragust et al., 2013]. They are then physically com-

pacted into a pellet and disgorged. Spores in the head, and pellets, are mostly inac-

tivated and thus no longer able to cause disease. Spores on the rest of the body, best

represent disease-relevant transmission, since they still hold the potential to germin-

ate and penetrate into the host. We thus, decapitated the ants (i.e. we separated the

head from thorax with a scalpel), to separately quantify the spores in the head and on

the body (see Spore quantification). Furthermore, we collected from each dish all dis-

carded pellets and pooled them form quantification. All the handling tools (i.e. scalpel,

pinzers) were thoroughly rinsed with Triton X-100 solution and wiped with optical lense

tissue, to avoid contamination between samples.
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Using two labelled spores and dissecting the ants, is quite informative. In the case

of spore-contaminated ants, we refer to the spores ‘remaining’, as those we contam-

inated them with. Spores ‘acquired’, are spores with a different label to what they

were contaminated with. In the case of sham-treated ants and untreated nestmates,

all spores are ‘acquired’, either collected in their heads by allogrooming or picked up,

haphazardly, and found on their body. This lets us draw several inferences, for in-

stance, finding eGFP-spores in the head of an mRFP-spore-contaminated ant, implies

that treated ants also allogroom one another and we can see how this matches our

behavioral observations.

In total, we excluded eight replicates (˜7% of the dishes) from all analyses, since we

could not ascertain whether contamination or swaps had happened during exposure or

in later quantification steps. The replicates excluded were: HL6, HH11, HL11, HT11,

LL11, LL16, TT16, HT18.

Exposure method and controls

We exposed individual ants by gently rolling them over a 0.3µL droplet of a spore or

sham suspension with sterile soft forceps. We prepared five aliquots for each suspen-

sion and kept them at 4° C. We used new aliquots every day, to minimize changes in

spore concentration due to evaporation. This also cut down the risk of contamination.

We prepared two spore concentrations for each labelled spore: a 1x 10ˆ9 and 5 x

10ˆ8 conidiospores per mL of 0.05 % sterile Triton X-100, a high-dose and half- or low-

dose, respectively. Applying 0.3uL of the high-dose suspension to adult worker in this

species, constitutes a lethal dose with a killing rate of 50% (or LD50). Sham-treated

ants were exposed to sterile Triton X-100 only.

In addition, we produced exposure controls (three replicates) at the beginning of

each five experimental day (out of six days). We discarded the samples made on the

sixth day, due to abnormally high variation due to experimental mishaps (i.e. n=15).

For the exposure controls, each ant was decapitated and frozen immediately. We used

the exposure controls to estimate initial spore load of each ant (see Instant spore load

estimation) as well as initial distribution of the spores in the head and on the body. In

addition, we estimated the background noise level in spore quantification.
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Spore quantification

Ant samples, pellet samples and control-exposure samples were processed in the

same way for spore quantification. In brief, DNA was extracted from the samples and

two genes-- eGFP and mRFP-- were simultaneously targeted for amplification. We

used a droplet digital PCR (ddPCR), which partitions the sample into thousands of oil

droplets. Following PCR, each droplet is read in two fluorescence channels. For each

channel, a positive read corresponds to the presence of, with very high (poisson dis-

tributed) probability, a single copy a gene. Since each spore carries one plasmid with

a single gene copy, we obtain absolute spore counts in the input sample from both

labeled spores. Importantly, this technique is equally efficient for live and dead spores

(Anna Grasse, establishment work), hence also chemically inactivated spores can be

quantified.

Spore quantification was done using the Bio-Rad droplet digital ddPCR system.

Prior to this, DNA was extracted from the samples by homogenizing the ant/fungal

material in a TissueLyser II (Qiagen) using a mixture of 2.8 mm ceramic (VWR), 1 mm

zirconia (BioSpec Products) and 425-600 µm glass beads (Sigma) and 50 µl water.

Total DNA was extracted using Qiagen DNeasy96 Blood and Tissue Kit according to

the manufacturer’s instructions, with a final elution volume of 50 µl Buffer AE.

To perform absolute quantification of the two labelled spores simultaneously, we

designed a duplex ddPCR probe assay targeting the mRFP1 and the eGFP gene se-

quences. Both genes are known to be present as single copies within each fungal

spore. Cross-amplification was excluded as well.

For the enzymatic digest of the genomic DNA we used EcoRI and HindIII enzymes

(both New England Biolabs). We made sure that the enzymes do not cut within the

amplified gene regions. The enzymatic digest was done within the 20 µl 1x ddPCR

reaction, which comprised the following: 10 µl of 2x ddPCR Supermix for probes (Bio-

Rad), 14 pmol of both eGFP primers (forward: 5’-AAGAACGGCATCAAGGTGAA, re-

verse: 5’-GTGCTCAGGTAGTGGTTGTC; Sigma), 18 pmol of both mRFP1 primers

(forward: 5’-CTGTCCCCTCAGTTCCAGTA, reverse: 5’-CCGTCCTCGAAGTTCATCAC;

both Sigma), 5 pmol of eGFP probe 5’-[HEX]CAGCTCGCCGACCACTACCAGCAGAAC

[BHQ1], 5 pmol of mRFP1 probe 5’-[6FAM]AGCACCCCGCCGACATCCCCG[BHQ1],
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both Sigma, 10 U each of EcoRI-HF and HindIII-HF (New England Biolabs), 2.8 µl

nuclease-free water (Sigma) and 2µl DNA template.

Droplet generation was done using the QX200 droplet generator (Bio-Rad) accord-

ing to manufacturer’s recommendations. Droplets were transferred into a 96-well plate

(Eppendorf) for PCR amplification in a T100 Thermal Cycler (Bio-Rad). Cycling condi-

tions were as follows: Enzyme activation for 10 min at 95° C, followed by 40 cycles of

30 sec at 94° C and 1 min at 56° C, followed by enzyme deactivation for 10 min at 98°

C. For the entire protocol the ramp rate was set to 2° C/sec.

Following PCR amplification the PCR plate was put into a QX200 droplet reader for

the readout of positive and negative droplets. The droplet reader enables detection of

fluorescence in two different channels (FAM and HEX). We set the fluorescent amp-

litude thresholds manually for each channel, using QuantaSoft™ Analysis Pro Soft-

ware (Bio-Rad). The threshold values selected were 3000 for FAM (reporter in mRFP1

probe) and 2000 for HEX (reporter in eGFP probe). Samples with a total droplet count

of less than 10000 were repeated. Raw values are given as copies/20 µl well by the

software.

Background noise in the quantification of spores was defined as the maximum num-

ber of copies read in the non-target channel (i.e reads in FAM channel for eGFP ex-

posure, and reads in HEX channel for mRFP exposure). Values below background

noise level (8 copies for mRFP and 12 for eGFP) were not considered (see Supple-

ment). Final values were computed by adjusting raw values by elution volume (2µ of

DNA template eluted in 50 µl, i.e. a factor of 25x) and dilution factor. Samples were

run undiluted, and only repeated with a 1:10 dilution when copy number was too high.

From the exposure controls, we recovered roughly two thirds of what was applied,

i.e. we measured a mean of 2x10ˆ5 spores (high-dose control exposure samples, head

and body sum), while the exposure droplet contained 3x10ˆ5. This reflects a 60%

efficiency. Others have estimated that only 10-15% of the spores applied are expected

to ultimately adhere [Cremer et al., 2018]. We confirm this expectation by comparing

the number of spores measured from exposure controls to the sum of spores recovered

from experimental samples (i.e. total spores in ant samples and pellets). Indeed, the

proportional loss seems to be quite high and variable (mean 66%, CI 63-70%, sd 16%).

We considered this, and use the sum of spores recovered from experimental samples
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or the estimated (from controls) spores applied with caution, and specify which when

relevant.

Recording and behavioral scoring

We recorded four replicates (i.e. petri dishes with a group six ants) at a time in a four

camera parallel setup (rolling-shutter cameras from IDS UI-1640LE USB 2.0 CMOS,

18fps, 1024x1024, 1.3MPixel, 1.3 “Aptina Sensor, Rolling-shutter; fixed focal length

lense 6MM 1/1.8” f 1.4-f/16 C-mount, Edmund Optics; Streampix software for acquisi-

tion).

From the recorded videos, we scored behavior for every ant during both observa-

tion periods. We were blind to both group treatment and individual exposure of the

ants. We used Solomon Coder © 2017 (by András Péter) to score with frame-based

resolution. The behaviors analyzed were a) selfgrooming, b) acidopore selfgrooming,

c) allogrooming performed and d) received and, finally, e) pellet disgorgement.

All recordings were done between 8am and 7pm GMT+1, three replicates every

day, for a total of six recording days. Twelve additional controls (with no ants treated)

were recorded but were not scored or analyzed yet.

Instant spore load estimation

We have experimental spore load measurements at the end of the observation period,

as well as an estimate of the spore load at the start. The later we infer from control ants

exposed in the same way but freeze-killed immediately and processed together with

the experimental samples see Section Spore load quantification. However, we have

no spore load estimate throughout the observation period. Here we get an estimate of

the spore load on spore-contaminated ants for a series of 3-minute time windows of a

90 minute post-treatment observation period, a total of 30 windows, for each treated

individual based on its time-resolved performed and received behaviors.

To this end, we adopt the following assumptions: (i) the measurement of spore

load on spore-contaminated ants at the end of the observation period is accurate, (ii)

the distribution of initial spore loads from experimental ants contaminated with a given
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dose (high or low) resembles the distribution of spore loads from exposure-controls

and (iii) The spore load on a given spore-contaminated individual decreases with time

with the following dynamics. As individuals selfgroom or receive allogrooming, the

spore number is reduced at a rate P which decreases with spore load, conforming to

Michaelis-Menten kinetics (3.1):

dP/dτ = vS/(K + s), (3.1)

where v and K are parameters to be fit. v represents the maximum rate of spore

decay, and K is the spore concentration at which P = v/2. P is maximum when the

spore load, S , is maximum, and thereafter it decreases with τ , the amount of grooming

the ant is subject to (both allo- and selfgrooming). The decrease in spore load, we

assume, is due to the transfer of spores from the body of the infected individual into

the mouth parts of the one performing the grooming.

Statistical analyses

This section includes necessary details to reproduce all statistical analyses. We first

detail the general procedures applied, followed by individual analyses performed in

each section, and finally list the statistical packages used.

General statistical procedures

All logistic regressions were implemented as generalised linear models (GLM) with bi-

nomial error terms and logit-link function. To estimate the significance of the predictors,

all generalized linear and mixed models (i.e. GLM, LMER) were compared to null (in-

tercept only) and reduced models (for models with multiple predictors) using Likelihood

Ratio (LR) tests. Significance values were corrected using the Benjamini-Hochberg

procedure to protect against false discovery rate, whenever multiple inferences were

made. We checked the necessary assumptions of all tests i.e. by viewing histograms of

data, plotting the distribution of model residuals, testing for unequal variances, testing

for the presence of multicollinearity, testing for overdispersion, and assessing models

for instability and influential observations.
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Behavioral unit

For all grooming behaviors, we consider the proportion of time allocated to a given

behavior-- in an entire observation period (Time-aggregated response) or in each win-

dow of the observation period. This unit, which we call effective time, gives a better

intuition of the time budget, as opposed to using seconds. For selfgrooming and groom-

ing performed, it is simply the proportion of time spent in these states. For grooming

received, it is the sum of the time allocated by different ants to the receiver, since one

ant can be groomed simultaneously by several ants. If given for a time window, the

effective time exceed one, this means the receiver was groomed by more than one ant

for this window of time. Effective time can be easily converted to minutes, for example,

given three-minute windows, one needs to multiply effective time by three. One can

then think of ant-minutes allocated, similar to the concept of man-hours.

Time-aggregated response

We analyzed the relative changes in time allocated to each behavior for ants grouped

into spore-contaminated (S), sham-treated (T) and untreated (N) categories. We used

paired-Wilcoxon signed-rank tests, a non-parametric procedure, to determine whether

behavior significantly changes after exposure (i.e. pre-exposure vs post-exposure val-

ues are paired. To examine all grooming behaviours (allo-, self- and acidopore groom-

ing) and the number of pellets produced, we compared across groups with Kruskal-

Wallis rank sum test (KW) test and subsequent post hoc pairwise Mann-Whitney-

Wilcoxon (MWW) comparisons, a non parametric alternative. Ants within a dish do not

constitute independent observations so, in this case, we dealt with pseudo-replication

by collapsing the data by dish (e.g. we get a single mean value for all nestmates in the

same dish). We used a Fisher’s exact test, to compare the number of replicates which

produced pellets across groups.

Time-resolved response

We looked again at relative change in time allocation, this time, splitting the post-

treatment period into three thirty-minute partitions, and repeated the statistical ana-
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lyses described above (General response).

Time-resolved response, a closer look

We used linear mixed effects regressions (LMER) to test for the effect of treated indi-

vidual and treated partner dose on each behavior. In this case, we did not collapse the

data, but instead included a random intercept for each dish.

For each treatment group, we fit a logistic regression of grooming preference (a

binary variable indicating whether or not grooming was performed towards the ant with

higher spore load) with spore-load difference as a predictor.

Outcome of the response in terms of spores

We compared the distributions of body to head ratio of control-exposed and experi-

mentally contaminated ants performed a two-sample Kolmogorov-Smirnov test. We

also compared between doses using the same test. We tested the contribution of

selfgrooming and allogrooming towards the shift in body to spore ratio with a LMER

including the behaviors as predictors, and the shift as response variable. We added

dish as a random term. We define loss as the ratio between all the spores (both labels)

measured in all six ants (body and head) and recovered in pellets, over the number of

spores originally applied. These were estimated for each treatment using the median

values of the exposure controls.

Statistical packages

All statistical analyses were carried out in R version 3.3.2 [R Core Team, 2013]. We

used the packages ‘lme4’ [Bates et al., 2016] to fit LMER models and ‘influence.ME’

[Nieuwenhuis et al., 2017]to test all model assumptions. We used the ‘multcomp’ [Ho-

thorn et al., 2016] package for post hoc comparisons. All graphs were made using the

‘ggplot2’ package [Wickham et al., 2018].



93

3.6 Supplement

(A)

(B)

Supplementary figure 3.1: Exposure controls. (A) Raw values from ddPCR for un-

treated, high and low exposed ant, grouped by body part. Dotted line indicates back-

ground noise threshold. (B) Total pore number (head+body) per day. Lines indicates

group means. Notice that there is an overlap in the distribution of spore numbers

between high and low exposed ants, yet the groups are statistically distinct ([KW test]

H = 15.98, df = 3, p = 0.001). Colors indicate fluorescent channel: FAM, mRFP in red

and HEX, eGFP in green. See Table S1 for post hoc comparisons.



94

Comparison H p value sig.

high.eGFP - high.mRFP1 -3.80 0.597 n.s

high.eGFP - low.eGFP 16.03 0.008 **

high.eGFP - low.mRFP1 16.16 0.008 **

high.mRFP1 - low.eGFP 19.83 0.002 **

high.mRFP1 - low.mRFP 19.96 0.002 **

low.eGFP - low.mRFP1 0.13 0.98 n.s

Supplementary table 3.1: Comparisons between exposure controls, Kruskal Wallis

post hoc comparisons. Grouped by dose and fluoresecent channel (i.e. spore la-

bel). There are no significant differences within dose groups and there are significant

between them, as we intended with our design.

Dose Channel

Spore-label

Median Mean SD Group

High ch1 mRFP1 208 000 201 761 85 128 a

Low ch1 mRFP1 96 000 111 525 47 119 b

High ch1 eGFP 181 250 197 435 105 524 a

Low ch1 eGFP 107 750 112 200 39 745 b

Supplementary table 3.2: Summary statistics for exposure controls, group based on

Kruskal Wallis post hoc comparisons (see 3.1). Despite wide variation in exposure,

high dose and low dose distributions are statistically distinct, as we intended.
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Supplementary figure 3.2: Behavioral budget of all ants before treatment and in the

post-treatment period split by treatment (N = nestmate, T = sham, L = low, H = high).

Selfgrooming of the acidopore, grooming received, grooming performed and general

selfgrooming shown.
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4 Effect of queen pathogen-contamination

on colony development

The experimental design of the work described in this chapter was done together with

Christopher D. Pull and Sylvia Cremer. C.D. Pull additionally helped with the experi-

ment setup and colony rearing. The videos were analysed with the use of an image-

based tracker developed with Filip Naiser under the supervision of Jiri Matas. We

jointly worked on adaptations to optimize ant tracking for this experiment (see Chapter

5). Before submission of the manuscript for publication, we will add results of ongo-

ing experimental work to monitor pathogen load over the course of the experiment,

performed with Elisabeth Naderlinger. We would like to thank Adria LeBoeuf, who

contributed to the discussion regarding the hormone-based regulation of growth.

4.1 Abstract

A mature colony of ants is a collectively organized ensemble where the propensity

of each member to perform a set of tasks or to interact with a particular group of

individuals can determine the colony’s ecological success. The emergence of these

group features depends on having reached a particular group size, so what happens

until a young colony reaches this stage?

Ant colonies go through vast changes in size and composition from foundation to

maturity. Behavioural and morphological transitions also take place; following founda-

tion by a mother queen, the small workers, reared directly by her, take over brood care.

Later worker generations acquire a wide array of tasks. In mature colonies, foraging

and nest maintenance are performed by specialized groups of workers. During these

transitions, colonies face several challenges (e.g.. they encounter pathogens, they en-
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dure their first winter). The pressure may not always lead to colony extinction, but may

have important developmental effects.

Here, we present the results of monitoring colony composition and image-derived

proxies of behaviour during colony ontogeny, starting when the first batch of workers

emerged and both before and after a period of hibernation. Furthermore, we test

whether early exposure of a queen to a pathogen affects the trajectory of a colony.

We find that survival to hibernation is greatly determined by the amount of brood

produced immediately before, as well as by the amount of aggregation of workers

around the queen. In colonies that where founded by queens which have been exposed

to pathogens, growth is reduced with respect to those which have not been exposed.

Among such exposed colonies, those which are slow growing have greater odds of

surviving hibernation, and tend to recover in numbers afterwards, by growing faster.

These results suggest that the developmental speed of the colonies varies as a

means to change the allocation of resources in time, and that this flexibility in growth-

rate regulation plays a role in colony survival to pathogen exposure.

4.2 Introduction

The individuals of a eusocial insect colony act with such coherence that their func-

tions have for a long time been compared to those of a unitary organism [Wheeler,

1911]. The initiation, growth, reproduction and decline of the colony can be compared

to the developmental processes of a multicellular organism. In particular, the division of

metazoan cells into germline and soma is mirrored in the separation of insect colonies

into reproductive (queens and males) and non-reproductive (sterile workers) individu-

als [Wheeler, 1911; Boomsma and Gawne, 2018]. This division of labour marks a

major, irreversible evolutionary transition from simple sociality to a new form of life – an

organism made of organisms – known as the ‘superorganism’ [Boomsma and Gawne,

2018].

An incipient colony is as different from its sexually mature stage, as an embryo is

from an adult vertebrate [Tschinkel, 2010]. Typically, a colony is founded by a single

reproductive ant, the queen, who leaves her maternal colony to embark on a mass mat-
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ing flight with sexuals from other colonies. After mating, the male dies and the queen

digs a nest and seals herself underground, never to surface again. This strategy of

colony foundation is known as claustral foundation. Without an outside food supply the

queen metabolizes her own body tissues to rear her first clutch of workers and to sur-

vive her first winter. If successful, the workers will take over all non-reproductive tasks

(e.g.. brood rearing, nest expansion, maintenance, defense and foraging), allowing

the queen to focus solely on egg-laying and reproduction. The colony will eventually

produce sexuals, usually within 1-2 years of colony initiation, which will leave to start

colonies of their own. Most ant species exhibit this mode of reproduction, however,

some variants include non-claustral founding, foundation by multiple queens (a.k.a.

pleometrosis), attempting to take over an existing colony (a.k.a. social parasitism), and

fission or budding of the parent colony (a.k.a. dependent colony founding) [Ward, 2014;

Cronin et al., 2013]. These alternative strategies are thought to enhance early colony

growth and improve the chances of a colony surviving until it can reproduce (i.e. raise

sexuals). Put simply, the more workers a colony produces in its early stages, the more

able it is to perform behaviours such as brood rearing, nest defense and foraging, which

directly impact colony survival and growth of a superorganism.

Like a traditional organism, the growth and development of a superorganism is the

result of a complex interplay between signaling and feedback mechanisms, and is in-

fluenced by environmental factors [Yang, 2007]. Relatively few studies have focused

on the early development of insect colonies and the factors that affect growth. Not-

ably, the consequences of pathogen exposure on colony development remain largely

unexplored in ants (but see [Calleri II et al., 2006; Calleri II et al., 2007] for work on

termites).

There is more to development than just growth. Individuals in a colony vary in quality

throughout development. For instance, the first workers of a claustral queen are smaller

than those produced in later stages. It has been suggested that these small workers

(also called nanitics or minims) are fast and cheaply produced [Peeters and Ito, 2015]

and yet they can be more efficient at brood rearing and live longer [Kramer et al., 2016;

Porter and Tschinkel, 1986]. Nanitics are gradually replaced by ‘normal’ sized workers,

which can either be of strikingly different proportions and sizes (i.e. polymorphic) or

have limited variation (i.e. monomorphic species).
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In addition to the metabolic resources of the queen, body size is conditioned upon

many factors. These include, but are certainly not limited to, larval nutrition, the social

environment, and the abiotic environment of the colony. At the same time, body size will

influence resource utilization (e.g. larger workers carry more) and mediate resistance

to stress (e.g. desiccation, temperature, pathogens).(recently reviewed by [Trible and

Kronauer, 2017; Wills et al., 2018]).

As the brood transitions through larval and pupal stages to adulthood, workers need

to attend the colony’s changing needs. As the colony grows, foraging becomes more

frequent and efficient, whereas brood is handled more systematically. Nanitics get

replaced by larger workers who each perform specialized behaviours and colony dy-

namics altogether change.

Development does not happen in isolation. Ant colonies, will face many challenges

early in their development and recurrently thereafter, including seasonality of temper-

ature (i.e cold, drought, lack of food) and pathogen contamination (e.g.. the pathogens

a queen encounters, on her path from mother colony to her own nest, and pathogens

imported by foragers).

When incipient colonies face their first winter, they can go into a reduced meta-

bolic state, called diapause. Diapause in ants can be studied at the individual level

and at the colony level [Elena B. Lopatina, 2018]. The capacity for diapause can be

facultative (e.g.. middle stage larvae), always present (e.g.. queen) or absent (e.g..

eggs, first instar larvae, pre-pupae and pupae) at the level of the individual, while it

is inevitable at the colony level, for most temperate and boreal species. Diapause

can be triggered by environmental (e.g. temperature, photoperiod) and social (e.g..

worker interaction)conditions(reviewed in [Elena B. Lopatina, 2018]). At the individual

level it is generally assumed that overwintering affects ants in the same way it affects

any other insect, in terms of energy resources, water content and immune defence.

Despite a wealth of literature on overwintering strategies in animals, relatively little at-

tention has been devoted to the study of overwintering in ant colonies [Haatanen et al.,

2015]. Overwintering is most crucial in developing colonies, before the colony excav-

ates deeper and escapes extreme temperature changes.

The response of ant colonies to pathogens has been investigated under many dif-

ferent scenarios [Stroeymeyt et al., 2014]. Yet, as far as we know, only one study
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[Bordoni, 2017] was performed to investigate the long term effects of pathogen ex-

posure. In this study [Bordoni, 2017], queens were exposed shortly before the end of

hibernation to a high-dose (LD50) of a fungal entomopathogen (genus Metarhizium),

and monitored for one year. The authors report high mortality of the pathogen-exposed

colonies, but no developmental effect on the surviving colonies after a year.
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Figure 4.1: Experimental design. (A) Sampling. Forty eight queens and their incipient

colonies were observed at approx. 2.5 week intervals, except during hibernation, for

one year, totalling nine observation periods. (B) Treatments. Half of the queens were

exposed to a sub-lethal dose of a fungal pathogen, whilst the other half were treated

with a pathogen-free control solution within a week after mating flight.(C) Worker num-

ber at the start of the observation period. Observations started nine weeks after flight,

when all pupae from the first batch had hatched. The number of initial workers was not

significantly different between treatment groups.

Given that queens are likely to face a low level exposure during mating flight and

this challenge will be closely followed by winter here we examine the consequences of

such trials for queen and the development of her colony. We exposed queens directly

after a mating flight to a (sub-lethal, LD2) conidiospore solution or a control solution
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of a fungal pathogen and reared them under controlled conditions for a year, includ-

ing a controlled (4° C) winter pause. We used the common black garden ant, Lasius

niger, which is a claustral, monogyne, monomorphic species, with a single annually

periodic and reproductive event, which means that all colonies reached winter at the

same age. We used a generalist entomopathogenic fungus, Metarhizium brunneum,

which is broadly distributed and naturally infects Lasius niger queens. We filmed three

hour sessions every two and a half weeks on average, before and after the colonies

overwintered (Figure 4.1). We monitored colony size and composition and measured

overwintering survival. In addition, we extracted image-derived measures of activity,

foraging, aggregation, and worker size-distribution.

4.3 Results and Discussion

Growth

(i) Pathogen exposure slows colony growth before winter diapause

On average, colonies increased in size exponentially before and after overwinter-

ing, halting their growth during the simulated winter conditions (Figure 4.2 A). For each

colony, we examined growth (measured as number of workers) during pre-diapause

and post-diapause periods, separately. To estimate the growth rate (β) we fit a lin-

ear regression of the log-transformed number of workers on colony age (i.e days

after mating flight). This is equivalent to rearranging an exponential growth equa-

tion y = y0e
βx into ln(y) = ln(y0) + βt, where y is the number of ant workers and t

is the colony age. Ant colony growth is thought to be approximately logistic, but the

maximum size is usually not reached within the first two years (e.g. [Tschinkel, 1998;

Cole, 2009]), thus an exponential fit is suitable here. Colonies from pathogen-exposed

queens, on average, grew at slower rates than control colonies during pre-diapause

(Figure 4.2 B MWW W = 402, p = 0.018). However, growth rate was not significantly

different between treatments after diapause (Figure 4.2 C MWW W = 128, p = 0.789).

One possibility leading to a decrease in growth before diapause is that colonies had a

different starting point. If contaminated queens reared a smaller first batch of brood,

the subsequently smaller colonies would likely also rear a smaller number of larvae to
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adulthood, resulting in slower growth compared to control colonies. We were able to

rule this out since the number of workers was similar for both treatment groups at the

start of the study (Figure 4.1 C MWW W = 228.5, p = 0.221; mean ± SD number of

workers: spore contaminated = 11.08 ± 4.2; control = 9.77 ± 3.4 workers).

To gain a better understanding of colony growth and the effect of queen spore ex-

posure, we used a linear mixed effects analysis to model worker number (log - trans-

formed), with treatment and colony age as predictors (Figure 4.3 A [LMER]: LR χ2=

78.53, df = 3, p < 0.001). This approach allowed us to introduce a different start-

ing point (random intercept), as well as a differing rate of growth (random slope) per

colony, which conveyed that the more workers a colony started with, the more it could

produce. Model fit was improved by inclusion of an interaction term between treat-

ment and colony age, indicating that the effect of treatment differed for different values

of colony age (treatment*age interaction χ2 = 6.6, df = 1, p = 0.010). In particular,

colonies from spore-exposed queens grew more slowly over time before overwintering,

compared to controls. The negative effect of the pathogen seems stronger at observa-

tion periods three and four, which corresponds to periods when pupae started eclosing

as adults. In contrast, colony growth seemed unaffected by pathogen exposure after

winter (Figure 4.3 B [LMER]: LR χ2 = 52.46, df = 2, p < 0.001; interaction LR χ2 = 0.45,

df = 1, p = 0.49; effect of age, LR χ2 = 51.85, df = 1, p < 0.001; effect of treatment LR

χ2 = 0.41, df = 1, p = 0.51;).

Overall, sub-lethal exposure to Metarhizium appears to take a toll on initial colony

growth. Immune defense and reproduction have been known to trade-off in several

insect species (review, [Schwenke et al., 2017]), including L. niger ant queens [Pull

et al., 2013]. The delayed negative effect of the pathogen might seem surprising,

but this may be due to the timing of egg laying and infection. Queens started laying

eggs immediately after they were housed, whilst the pathogen takes approximately 48

hours to germinate and penetrate the host cuticle. The first batch of eggs was likely

laid before the queen was infected, but an infection was possibly harboured by the

queens whilst they lay a second batch and thus we see a delayed effect. There are

several possibilities for the disappearance of the pathogen effect after hibernation: (a)

the colonies that suffered most from exposure did not survive overwintering, (b) the

pathogen was cleared before or during hibernation or (c) once the colony had grown
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Figure 4.2: Individual colony growth trajectories (A) Number of workers as a function of

time. Note the scale is logarithmic indicating an exponential growth. Scale for worker

number is natural-logarithmic, time units are days after mating flight (i.e. colony age),

but shown as months in they year. (B) Exponential growth rate β is slower for the colon-

ies of spore-contaminated queens before hibernation compared to control colonies, (C)

but equal after winter conditions.
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beyond a critical size, brood rearing success is independent of the number of workers,

and so growth rate can recover. We know that queens can sustain infections for a

while before clearing them ([Pull et al., 2013]). We are currently running experiments

to monitor pathogen clearance, to tease apart the possible scenarios. In the following

sections we explore the link between overwintering survival, colony size and pathogen

contamination.

(ii) Slow growth increases overwintering survival odds for pathogen-exposed

colonies

The variation in colony size increases with time: before diapause, the interquart-

ile range almost tripled for both treatment groups (Figure 4.3 C [LM]: LR χ2= 18.74,

df = 1, p = 0.007, treatment had no effect and was removed from the model). After

diapause, the interquartile range increased tenfold in the controls and fivefold in spore-

exposed(Figure 4.3 D [LM]: LR χ2= 15.47, df = 2, p = 0.003, effect of time LR χ2 =

19.76, df = 1, p = 0.003; effect of treatment LR χ2 = 11.18, df = 1, p = 0.012). At the

end of the experiment, the largest colony was ten times larger than the smallest (i.e.

96/9, largest/smallest). It was clear that some colonies had entered an exponential

growth phase whilst others remained small (Figure 4.3). For simplicity, and to maintain

a balanced design, we divided up colonies based on their growth rate before winter

diapause, such that the half that grew slower and the half that grew faster than the

median growth rate, respectively for each treatment group, were split in two groups.

The same grouping is kept for the data after hibernation. Colonies which grew faster

before hibernation stagnated afterwards, whereas slow growing colonies sped up and

recovered (Figure 4.4 A-B). The fast growing colonies were equally large in both treat-

ments, but the slow growing pathogen-challenged colonies were much smaller than the

control colonies, shortly before hibernation (Figure 4.4 C [GLMER]: LR χ2 = 31.53, df =

3, p < 0.001; interaction LR χ2 = 4.21, df = 1, p = 0.04; Tukey post hoc comparisons p

< 0.05). At the end of the experiment (T9), the size of the colonies did not significantly

differ across groups (Figure 4.4 D [GLMER]: LR χ2 = 3.91, df = 3, p = 0.27). We did

not measure pathogen load in the colonies, since our method to quantify low amount

of fungal material is destructive. Consequently, we are unable to explain whether the

very slow growth of some contaminated colonies was linked with pathogen load or the

continuing presence of an infection. Nevertheless, if there was an effect of infection on
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colony growth rate, it is likely to manifest and impact on overwintering survival. That is,

if some spore challenged colonies grow slow due to heavier infection, we could expect

them to be less likely to survive winter diapause.

Almost a third of all the colonies did not survive overwintering (15/48), but there

was no difference in survival between treatments. Knowing that pathogen treatment

slows growth for exposed colonies, but it is not directly associated with higher mortality,

we wanted to know whether the opposite was true (i.e. slow growth leads to greater

survival). Indeed, growing slow increased the probability of survival more likely for

colonies of pathogen-contaminated queens (Table 4.1 Fisher’s one-sided test p = 0.034

OR 9.9), while there was no association for control colonies (Table 1, Fisher’s one-

sided test n.s OR 1). Growth rate in the presence of a pathogen becomes important for

survival. How the deceleration effect is brought about by the pathogen, by the exposed

queen or by the colony, merits further research.

Colonies from spore-exposed queens Colonies from sham-exposed queens

Growth mode

before diapause
Survive Fail Total

Growth mode

before diapause
Survive Fail Total

Slow 11 1 12 Slow 8 4 12

Fast 6 6 12 Fast 8 4 12

Total 17 7 24 Total 16 8 24

Table 4.1: Growth mode before diapause and survival

Colonies from spore-exposed queens Colonies from sham-exposed queens

Growth mode
After diapause

Growth mode
After diapause

Slow Fast Slow Fast

Before diapause
Slow 4 7

Before diapause
Slow 4 4

Fast 5 1 Fast 4 4

Table 4.2: Growth before and after diapause for surviving colonies
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Figure 4.3: Colony growth (A) Number of worker in each colony before and (B) after

hibernation. Median and confidence intervals are shown and data is grouped by treat-

ment and observation period. Colonies from fungus contaminated queens grow slower

than control colonies, the largest worker number difference is noticeable during the

third and fourth observation periods, which correspond to times when pupae eclose.

Notice that as colonies grow, the dispersion of worker number values increases. This is

because some colonies stay small while others multiply fast. (C) Worker number vari-

ation before and (D) after hibernation. Data corresponds to the interquartile ranges of

the worker number values for each treatment, in every observation period. As colonies

grow, the variation in colony size increases. Statistics in text.
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Figure 4.4: Colony size split by growth mode. (A) Worker number in colonies from

queens treated with control or (B) spore solution. Mean and confidence intervals are

shown and data is grouped by observation period and by growth mode: light hues

correspond to fast growing colonies, dark hues, to slow growing colonies. The blue

bars show when winter was simulated. Initially fast growing colonies grew slowly after

hibernation and vice versa. (C) Worker number shortly before hibernation (fourth ob-

servation period) and (D) at the end of the experiment (ninth observation period).

Data is grouped by growth mode and treatment. Letters denote significantly differ-

ent groups (Tukey posthoc comparisons after GLMER, α < 0.05 after BH adjustment).

Slow-growing colonies from spore-contaminated queens were much smaller than slow-

growing control colonies, before hibernation.
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(iii) Growth before winter diapause determines growth after winter diapause

for spore-exposed colonies

For all surviving colonies, we determined a growth modality for the whole period

after overwintering, in the same manner as for the period before winter. Several patho-

gen challenged colonies that grew slowly were able to accelerate growth after dia-

pause. All colonies from spore-exposed queens that had grown rapidly before dia-

pause had slower growth rates afterwards, except for one fast growing colony, which

maintained a high growth rate but died before the end of the experiment (i.e. colony

S1). We tested the hypothesis that no modulation, i.e. growing fast before hiberna-

tion, would have a cost for the colonies that survived. There is a marginally signific-

ant association between growth mode before and after diapause (Table 4.2 Fisher’s

one-sided test p = 0.088 OR 0.13). We repeated the test excluding colony S1, which

survived overwintering but died before the end of the experiment. (Fisher’s one-sided

test p = 0.028, OR between 0 and 0.76, 95%CI). For colonies from sham-exposed

queens, colony growth before diapause clearly did not determine colony growth after-

wards (Table 4.2 Fisher’s one-sided test p = 0.69 OR 1). This result, admittedly only

weakly supported by the statistics, suggests that modulating colony growth rate before

hibernation has an impact after hibernation, when a pathogen is present. Modulating

colony growth could be an adaptive response to pathogens in incipient colonies. Con-

nected to this idea, modulation of colony pace [Buechel and Schmid-Hempel, 2016]

has been reported as a defence mechanism against disease in mature colonies of

many social insects (see Chapter 2).

Brood production

We compared brood production between colonies of pathogen exposed and control

queens, before and after diapause. We first analysed the relationship between brood

numbers and growth rate. Afterwards we analysed the link between brood and over-

wintering failure.

(i) Slow growing pathogen-exposed colonies produced less brood

The number of brood produced by the queens changed throughout the duration

of the experiment. Moreover, production was different for queens depending on their
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treatment and the colony growth rate (i.e. slow or fast growth mode). Slow growing

spore-exposed colonies produced the smallest amount of larvae (Figure 4.5 A [NB]:

LR s = 21.80, df = 3, p <0.001; interaction s = 4.65, p = 0.032) and pupae before

hibernation (Figure 4.5 C [NB]: LR s = 21.80, df = 3, p <0.001; interaction s = 4.65,

p = 0.032). In particular, these colonies had significantly less larvae in the first period

(Figure 4.5 B [KW test]: H = 12.65, df = 3, p = 0.005), and significantly less pupae

during the second period of observation (Figure 4.5 D [KW test]: H = 21.17, df = 3,

p < 0.001). Brood production was similar otherwise, including after hibernation (see

Supplement for all comparisons).The differences in brood production help to explain

the slower growth of pathogen challenged colonies, since there was essentially no

worker death in the colonies before winter.

We also analyzed the production of early brood (i.e. egg clutch and first instar

larvae), which is interesting, as it presumably represents a smaller investment for the

colonies, compared to production of pupae and larvae at later stages. Eggs can be

viable and develop or merely represent a food source (e.g. trophic eggs or cannibal-

ism), and thus do not necessarily correlate with colony growth. We observed that the

percentage of colonies presenting early brood fluctuated in time. The number of time

points in which colonies had early brood did not differ between slow and fast colon-

ies, or between treatments (Figure 4.5 E [NB]: LR s = 0.77, df = 3, ns). Interestingly,

fast-growing pathogen-exposed colonies had early brood shortly before overwintering

(Figure 4.5 F, no statistics). These colonies, as we will later detail, were the least likely

to survive overwintering.

(ii) Colonies with less brood and workers had a better chance of surviving

overwintering

We compared the total amount of brood produced before winter, between colonies

that survived overwintering and those that failed. We further split up the analysis by

brood type. Colonies that produced more workers, pupae, larvae and early brood were

less likely to survive, independently of the queen treatment. (Figure 4.6 A-D [KW test]:

workers, H = 5.78, df = 1, p = 0.016, pupae, H = 11.46, df = 1, p < 0.001, larvae, H=

9.8, df = 1, p = 0.001, early brood = 6.8, df = 1, p = 0.009).

To better understand how the composition of the colony before hibernation is pre-

dictive of overwintering survival we explored a set of models. For each observation
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Figure 4.5: Brood production before hibernation. Total brood produced (left) (A) Total

number of pupae (A), larvae (C) and (E) observation periods with early brood present.

Letters denote significantly different groups (pairwise post hoc comparisons after Neg-

ative Binomial regression, significance threshold = 0.05). (B,D,F right ) Brood produced

per time period. Asterisk denote a significantly different group according to a Kruskal

Wallis test with pairwise comparison and BH correction. Everywhere we show the

mean and confidence intervals of data grouped by treatment (spore = greens, control

= grays) and growth mode (light hues = fast, dark = slow).
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Figure 4.6: Brood production and overwintering outcome. (A) Total workers (B), pupae,

(C) larvae and (D) number of observations (out of four) in which early brood was pro-

duced, before hibernation in colonies grouped by treatment and outcome. Mean and

confidence intervals shown (spore = greens, control = grays) and growth mode (light

hues = fast, dark = slow). Letters denote difference between groups which survived

and groups which failed hibernation, there were no differences between treatments

(KW with pairwise comparison and BH correction).
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period, we fit a logistic regression of overwintering survival, with the total number of

pupae and late larvae and the presence of early brood produced before hibernation,

as predictors. We looked at how well the composition per time point predicted survival

(Table 4.3). The brood composition seems to be the most predictive shortly before the

colonies were put into controlled winter conditions, during northern-hemisphere winter.

We conclude this based on the Akaike Information Criterion (AIC), an estimator widely

used for statistical inference. Simply put, AIC scores a model considering how well

it fits the data (based on likelihood estimation) and penalizing for model complexity.

In this case all models have the same number of parameters, it’s the data used which

changes, i.e. we use data for one observation period at a time. Conversely, the number

of brood items in any category, has no predictive power at the first time point sampled.

Behaviour

Ants in a colony express many behaviours simultaneously that are expected to change

with growth and development (e.g.. a focus on brood care in spring). Moreover, early

disease exposure may alter the response thresholds of ants in a plastic and adapt-

ive manner. To get a proxy of colony behaviour we focused on the following meas-

urements: (1) proportion of ants near the queen (2) mean distance of the ants to the

queen, (3) proportion of ants active (exhibiting locomotion), (4) mean distance between

active ants, (5) mean distance to the closest ant and (6) effective time foraging. We first

investigated whether colony behaviour predicts overwintering survival, then we look at

the change in colony behaviour after diapause.

Even though proportions of ants, distances averaged over a number of ants, and

effective (per capita) time foraging are, by definition, relative to colony size, the rela-

tionship is not necessarily linear. Hence, we look at the change of each variable with

respect to colony size.

(i) Aggregation around the queen and worker activity were predictive of sur-

vival

Workers from colonies that survived overwintering had a smaller average distance

to the queen, during the pre-hibernation period, than those which failed, irrespective

of the treatment of the queen (Figure 4.7, Table 4.4 Proportion near queen, and Mean
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Observation

period

Model χ2 df p BH adj-p sig Residual

deviance

AIC

1 Full 6.48 3 <0.001 <0.001 n.s
53.14

df = 44
61.14

2

Full 13.75 3 0.003 0.006 **
51.16

df = 47
59.16

Pupae 6.87 1 0.008 0.010 *

Larvae 12.11 1 <0.001 <0.001 ***

Early brood 0.78 1 0.375 0.375 n.s

3

Full 17.86 3 <0.001 <0.001 ***
38.67

df = 42
46.67

Pupae 6.25 1 0.012 0.014 *

Larvae 7.03 1 0.008 0.010 *

Early brood 13.13 1 <0.001 <0.001 ***

4

Full 24.18 3 <0.001 <0.001 ***
35.44

df = 44
43.44

Pupae 8.60 1 0.003 0.006 **

Larvae 4.86 1 0.027 0.029 *

Early brood 7.86 1 0.005 0.009 **

Table 4.3: Overwintering survival predicted by colony composition at each time point

distance to queen). Accordingly, a smaller proportion was active, i.e fewer exceeded

the speed threshold we set to determine motion (Figure 4.7, Table 4.4, Proportion of

ants active). Aggregation between workers, and foraging activity were not predictive

of overwintering survival (Figure 4.8, Table 4.4, Mean distance between active ants,

Mean distance to closest, Effective time foraging).

(ii) Group behaviour changes after hibernation

Aggregation and activity fluctuate across time points, irrespective of treatment. On

average, the proportion of ants near the queen decreases after hibernation, as the

ants become more active and leave the vicinity of the queen. This is visible both in the

increased average distance to the queen and between workers. Although we do see
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some scouts before hibernation, foraging becomes commonplace only after hiberna-

tion (See Table 4.5 and the third column of Figure 4.7).

LMER with queen treatment and overwin-

tering outcome as predictors and colony

ID as a random intercept

χ2 df p sig

Proportion

near queen

treat+outcome 15.20 2 <0.001 ***

interaction 0.82 1 0.365 n.s

treatment 3.07 1 0.079 n.s

outcome 12.42 1 <0.001 ***

Mean distance

to queen

treat+outcome 10.63 2 0.005 **

interaction 0.84 1 0.359 n.s

treat 2.42 1 0.119 n.s

outcome 8.25 1 0.004 **

Proportion of

ants active

treat+outcome 11.23 2 0.004 **

interaction 1.16 1 0.280 n.s

treat 1.10 1 0.293 n.s

outcome 10.08 1 0.001 **

Mean distance

between active

ants

treat*outcome 3.03 3 0.387 n.s

Mean distance

to closest
treat*outcome 3.62 3 0.305 n.s

Effective time

foraging (KW)
treat*outcome 1.95 3 0.582 n.s

Table 4.4: Aggregation and activity before diapause

Paired-Wilcoxon Test V p sig

Proportion near queen 483 <0.001 ***

Mean distance to queen 59 <0.001 ***

Proportion of ants active 26 <0.001 ***

Mean distance between active ants 115 0.002 **

Mean distance to closest 141 0.012 *

Effective time foraging 20 <0.001 ***

Table 4.5: Mean aggregation and activity compared before and after diapause

(iii) Aggregation and activity features were weakly dependent on colony size

Colony size ranges from 5 to 99 workers throughout the experiment. The features
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Figure 4.7: Colony behaviour. Each row corresponds to one behavioural variable.

The first column shows the mean and confidence interval of the values before dia-

pause in colonies grouped by treatment and overwintering outcome. Asterisks denote

significance of the survived/failed factor in the models predicting the variables on the

y-axes as a function of treatment and survival (See statistics in Table 4.4). The second

column shows the mean and CI for each observation period. Asterisks denote signific-

ant change after winter compared to values before winter (See statistics in Table 4.5).

The third column shows a scatter of the values against colony size, together with a lin-

ear regression, with R and significance level indicated (but See statistics in Table 4.6).

Not significant (p>0.5) is denoted by n.s, while significance level is denoted by aster-

isks as follows, p<0.01 *, p<0.001 ** and p<0.0001 ***.
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Colony behaviour (Continued). Each row corresponds to one behavioural variable. The

first column shows the mean and confidence interval of the values before diapause in

colonies grouped by treatment and overwintering outcome (See statistics in Table 4.4).

The second column shows the mean and CI for each observation period. Asterisks

denote significance change after winter compared to values before (See statistics in

Table 4.5). The third column shows a scatter of the values against colony size, together

with a linear regression, with R and significance level indicated (but See statistics in

Table 4.6). Not significant (p>0.5) is denoted by n.s, while significance level is denoted

by asterisks as follows, p<0.01 *, p<0.001 ** and p<0.0001 ***.
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computed (means and proportions) should be independent of colony size if the rela-

tionship between these variables and colony size were linear. To check if the variables

are roughly linear with respect to colony size for both treatments, we used linear mixed

models with each variable as a response and colony size and treatment as predictors,

specifying time and colony identity as random effects, to deal with non-independence

of the observations. In addition we computed a Spearman correlation, from which one

can directly interpret the strength of the association (See Table 4.6 and the third column

of Figure 4.7).

Whilst treatment had no effect, the responses changed weakly with colony size. In

particular, workers were slightly less likely to be near the queen when the colony size

was larger (Figure 4.7, Table 4.6 Proportion near queen and Mean distance to queen)

and more likely to be closer to other workers (Mean distance to closest). The proportion

of active ants and the foraging activity did not significantly change with colony size

(Figure 4.7, Table 4.6 Proportion of ants active, Effective time foraging).

The spatial patterns of individuals are linked to their social interactions. In our study

species (L. niger ) brood-tending ants gather in large stable clusters, whilst food- gath-

ering ants aggregate in short-lived small clusters [Depickère et al., 2004]. Functional

segregation into behavioural clusters (i.e. foragers and nurses) and the stability and

strength of these clusters, can have serious implications for a colony. For instance,

the social structure of L. niger has been shown to have transmission inhibiting prop-

erties, which are further enhanced adaptively, as the colony responds to the presence

of a pathogen [Jander, 1976; Stroeymeyt et al., 2014]. Aggregation patterns in these

examples are quantified directly by monitoring individuals and their interactions. The

imaging techniques implemented to do so have improved considerably in the past dec-

ade and continue to achieve greater precision, efficiency and usability (See Chapter

5).

We measured aggregation of workers in three ways, with respect to the queen, with

respect to each other (closest ant), and between active ants. We categorized those

ants which stay close to the queen, those (active) which move, and those which for-

age. We directly measured foraging activity as the time of overlap with a delimited food

source. These measurements together provide a unique and, previously, uncharacter-

ized view of colony behaviour during early development .
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LMER with queen treatment and colony size

as predictors and colony ID and colony age,

as random effects

χ2 df p sig

Spearman cor-

relation ρ and BH

adjusted p-value

Proportion near queen

treat*size 14.681 2 <0.001 ***
r = -0.21

p <0.001

interaction 0.396 1 0.529 n.s

treat 0.563 1 0.453 n.s

colony size 24.13 2 <0.001 ***

Mean distance to queen

treat+size 27.40 2 <0.001 ***
r = 0.29

p <0.001

interaction 0.005 1 0.944 n.s

treat 0.786 1 0.375 n.s

colony size 26.94 1 <0.001 ***

Proportion of ants active treat*size 0.130 3 0.988 n.s
r = -0.05

p = n.s

Mean distance between active

treat+size 24.121 2 <0.001 ***
r = -0.21

p <0.001

interaction 1.237 1 0.266 n.s

treat 0.615 1 0.443 n.s

colony size 23.444 1 <0.001 ***

Mean distance to closest

treat+size 78.56 2 <0.001 ***
r = -0.58

p <0.001

interaction 0.49 1 0.482 n.s

treat 0.12 1 0.727 n.s

colony size 78.40 1 <0.001 ***

Effective time foraging treat*size 4.88 3 0.180 n.s
r = 0.14

p = 0.014

Table 4.6: Aggregation and activity relationship to colony size

Worker size

An increase in worker body size is expected, as small nanitic workers are joined or

replaced by larger workers. To detect this transition and test whether the pathogen

had an effect on its timing, we estimated worker size distribution from each video. We

did so by sampling the area values of single ant detections from the image-segmented

frames of the videos (See Methods and Chapter 5 for more detail). Morphometric head

width measures are certainly more stable than body area. Comparison between area

and head width measures in our experiment should be done to validate our results.

Before winter diapause, worker size fluctuates without any discernible trend (Fig-
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ure 4.8 [LMER]: LR χ2 = 0.004, df = 1, p = 0.99). After winter diapause, worker size

was small but steadily increasing (Figure 4.8 [LMER]: LR χ2 = 56.69, df = 1, p <0.001).

We did not detect any effect of treatment in worker size before or after diapause. We

detected, by means of image processing, an overall increase in worker size, confirming

previous observations based on measuring ant morphometrics [W.R. Tschinkel, 1993].

In the case of tropical fire ants, most of the change in worker size occurred over the

course of six months [W.R. Tschinkel, 1993]. In contrast, for L. niger we observed little

change in the four months observed before hibernation, and consistent growth only

thereafter.

We speculate that the transition from nanitic to full sized workers, could be delayed

in all temperate species, compared to tropical species. One reason for this delay could

be a constraint in colony development, for example, if the colony needs to reach a

certain metabolic threshold before the brood can start developing into ordinary workers,

rather than nanitics. In fact, there is evidence of such a threshold (75-200 individuals)

above which nanitics engage in cooperative foraging, and the colony starts producing

normal sized workers [Deacon, 2013]. This is consistent with our observations that

foraging only occurs after diapause.

A second possibility, is that delaying the production of full-sized workers is an ad-

aptation to overwintering, for instance if nanitics where better suited to withstand the

winter conditions. Because nanitics are smaller, they presumably need less metabolic

reserves to sustain them over winter. Nanitics have been shown to survive longer than

foragers [Kramer et al., 2016], but the comparison is controversial given that foragers

engage in more risky activities (e.g. risk of encountering pathogen while foraging [Cre-

mer et al., 2007]). An increased overwintering survival of nanitics could manifest as

either death of normal sized ants, production of nanitics during the winter, or a com-

bination of both. In any case, a decrease of median worker size would be observed.

In this experiment, indeed we detect a considerable drop in median worker size after

diapause, that is, the median of the size distribution is significantly smaller in time point

five compared to time point four (Figure 4.8[LMER]: LR χ2 = 21.154, df = 1, p <0.001).

The salient drop in size, given that there is no significant reduction in colony size (4.3)

suggests that during winter, workers produced were particularly tiny. We did not find dif-

ferences in worker size distribution between colonies which survived and those which
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failed, neither with respect to treatment and growth mode. Nevertheless, we suggest

a more systematic comparison between nanitics and full sized workers, which meas-

ures survival, physiological performance and size over different winter scenarios (i.e. a

wider range of temperatures and starvation lengths).
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Figure 4.8: Worker size change in time. Mean and confidence intervals of worker

size measured as area (in square millimeters) per observation period, and grouped by

treatment. An LMER was fit for the median worker size before and after hibernation,

with treatment as film batch as predictors. Treatment had no significant effect. So the

models without treatment as a predictor are shown as dotted red lines.

4.4 Conclusion

In summary, pathogen contamination of the queen can slow down colony growth. Con-

trary to what we expected, fast growth in pathogen-exposed colonies leads to an in-

creased susceptibility to overwintering failure. Moreover, growth rate before diapause

will affect growth rate after diapause. Hence, modulating colony growth in the presence

of a pathogen could be an adaptive trait.

The composition of the colony shortly before hibernation had the best predictive

power for overwintering survival but, colony growth modulation is bound to happen

much earlier.

We do not know whether the queen or the workers are responsible for the growth de-

celeration. We also do not know by which mechanism this happens. We can draw from
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the existing literature to formulate a hypothesis. There is an interesting link between

reproduction, immunity and hibernation.

In insects, the juvenile hormone (JH) stimulates vitellogenesis (i.e. leading to egg

production) and suppresses immunocompetence [Schwenke et al., 2017]. In ants, a

synthetic analogue of JH is known to suppress both vitellogenesis and immunocompet-

ence [Pamminger et al., 2016]. The decoupling of JH and vitellogenesis would explain

how queens can survive for impressively long periods while maintaining a high yield of

brood throughout, escaping the reproduction-survival trade-off.

The levels of JH steeply decline at particular moments in the haemolymph of sub-

adult insects, allowing them to transition to the next stage [Hiruma and Kaneko, 2013].

During winter diapause, JH halts larval growth. The molecular pathway which leads

to lipid accumulation, also leads to JH synthesis. In ants, JH can be fed to larvae

by the workers [Leboeuf et al., 2016] and possibly also by the queen. In this way, in

addition to modulation by environmental cues, the schedule of brood development can

be adjusted by the colony.

On one hand, the colony should use JH to halt larval development, since pupae do

not survive the winter. On the other hand, a queen under pathogen stress should not

produce JH since it would suppress her own immunocompetence.

The overwintering survival of a colony depends on its particular state (i.e. size

and composition) at the time winter strikes it. The colonies which did not survive had

grown large in worker and brood numbers when they were forced into diapause. We

hypothesize that these colonies produced a large amount of JH, either as a measure to

slow down larval development or as a byproduct of the lipid pathways triggered during

diapause. The large metabolic expenditure combined with the immune suppression

caused by JH, is likely responsible for the reduced survival of larger colonies in this

experiment.

Overwintering survival is also predicted by the pattern of aggregation around the

queen (i.e. proportion of ants near queen and mean distance to queen) and the pro-

portion of active ants. We believe that these patterns of aggregation are related to

colony size. Larger colonies produce a large amount of brood, and as the number of

brood items increases, it becomes more likely that a second brood pile is formed. The

workers move between brood piles to care for the brood. This phenomenon simul-
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taneously explains more active ants, further away from the queen, in larger colonies,

which also tend to fail overwintering. This does not exclude that ants which aggreg-

ate closely near the queen, could be providing care which makes these colonies more

likely to survive.

We thus have an experimentally malleable developmental system, which can be

easily and cheaply reared and monitored in the long term, and combined with physiolo-

gical measurements, is likely to shed light on many interesting questions from evolu-

tionary biology and ecology, and perhaps also, at least by analogy, to developmental

biology. For instance, the delayed growth observed in pathogen challenged colonies

warrants comparison to the little-understood embryonic diapause, i.e. an obligate or

facultative, quiescent stage in blastocysts, which synchronizes development with more

favourable conditions in many species [Renfree and Fenelon, 2017].

The early development of a colony is a collective phenomenon of dynamic optim-

ization. Incipient colonies do not simply need to maximize growth, as this may be too

costly once resources have just been invested in immunity. The timing of any decision

is crucial when the cost of overwintering is steep. In this work we have shown that a

sub-lethal pathogen contamination during colony founding, can have a large impact on

the developmental trajectory of a colony. Pathogen challenged queens can grow slowly

and survive the winter, or grow fast and risk overwintering failure. When they survive,

the growth mode before hibernation will impact their growth afterwards.

It is increasingly possible to move beyond colony size to describe a social insect

colony. The composition (i.e. worker and brood categories), and behavior (i.e. aggreg-

ation and activity patterns) of the group can add crucial information. From an evolu-

tionary point of view, early colony development is key to understanding the evolution of

eusociality, by identifying the times when selective pressure is highest, and the traits

upon which it acts. The strategies of the superorganism to face developmental chal-

lenges, should inform and benefit from comparison to other social systems, including

multicellular organisms.
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4.5 Method

Collection and exposure

We collected Lasius niger queens during mating flights on campus, at IST Austria, on

July 5, 2014. The queens had mated and shed their wings. Five days after collection,

we exposed individual queens, by holding them with sterile soft forceps, and smearing

a 0.5ul droplet of a conidiospore suspension or a sham solution onto their thorax. The

fungal suspension was prepared from sporulating agar plates (6.5% Sabaroud dex-

trose) of Metarhizium brunneum, Ma275 KVL 03-143 and adjusted to a concentration

of 2× 104 spores per mL of 0.05% sterile Triton X-100 (Sigma). The germination of the

spores was >95% for all plates used, and the killing rate for the dose applied to queens

of this species was LD-2, determined during preliminary studies. Sham-treated ants

were exposed to sterile Triton X-100.

Rearing and overwintering

After exposure, we transferred the queens to individual clear plastic vials (height= 3

cm, Ø = 2 cm) with a plastered base as substrate. They were maintained in a climate

controlled room, at 23°C and 70% humidity, and the plaster was kept moist. As L. niger

queens do not forage (i.e. they are claustral founders), we did not provide food before

the first workers had eclosed from pupae.

Once the first batch of workers had emerged, we housed 48 colonies, 24 spore-

exposed and 24 control-treated, in plastic petri dishes (height= 3 cm,Ø = 9 cm) with

1/2 division. Half the dish had plastered-flooring, and half was left bare. The ants could

freely move across, but the plastered half was generally preferred by the queens and

the unplastered part is where we placed the food. This arrangement served to keep the

plate cleaner. A vial with sucrose solution (25%, in a cotton-plugged tube) and minced

cockroach (Blaptica dubia) were provided and replaced weekly.

All colonies were moved into simulated winter conditions (4°C), starting 130 days

after they were collected, and for a period of 20 weeks (mid-November to mid-April).

Afterwards, the colonies were returned the climate-controlled room at 23°C and 70%

humidity.
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Filming and colony counts

We started filming all colonies five weeks after the mating flight (Sept 12, 2014), when

the first batch of workers had emerged (average number of workers = 10 ±3, no dif-

ference between treatments). Colonies were filmed inside the climate-controlled room

every 2.55 ± 0.36 weeks for three hours each, except during the overwintering period.

Filming was carried out between 7am and 8pm GMT+1 and filming order was random-

ized. We stopped the experiment one year after the queens’ mating flight (July 20,

2015).

Briefly before filming, food and large debris were removed from the plate, and honey

was offered as foraging stimulus. A honey droplet was sandwiched between plastic and

a piece of paper-towel cut into a triangle and placed in the unplastered area, to help

clearly delineate a foraging arena. After recording, we replaced the honey with sucrose

solution and minced cockroaches.

Approximately, a thousand hours of video were recorded (more than 18TB pro-

duced), for 337 projects, one per colony per time point. We focused on the colonies

which survived for the duration of the whole experiment (29/48 colonies). But we also

looked at colonies that did not make it through winter (19/48).

We recorded four colonies at a time, two controls and two spore-exposed, in a

parallel setup (rolling-shutter cameras from IDS UI-1640LE USB 2.0 CMOS, at 15fps

before overwintering and 18fps after overwintering, 1024x1024, 1.3MPixel, 1.3“ Aptina

Sensor, rolling-shutter; fixed focal length lense 6MM 1/1.8” f 1.4-f/16 C-mount, Edmund

Optics; Streampix software for acquisition).

From still images extracted from each video, we manually counted the number of

workers, pupae and larvae (2nd and 3rd instar) and noted down the presence of eggs

and small (1st instar) larvae. We made no distinction between new brood items and

brood present at two consecutive time points. Nevertheless, after 2.5 weeks we expec-

ted most brood to have transitioned to the next stage, since development from egg to

adult approximately takes 6 weeks, with 2 weeks between each of four stages. Nev-

ertheless, developmental time is a plastic trait which can vary with colony parameters,

such as colony size, and thus we cannot discard that some brood is double-counted in

consecutive time points.
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Image analysis and feature extraction

Each video was processed with FERDA, a general multi-object tracking software, im-

plemented in Python and adapted specifically to solve the complex task of detecting

ants in our setup. (see Chapter 5). The ants are detected across different backgrounds

(e.g. plastered area adopted as a nest, or unplastered area with food). The fore-

ground (a number of similarly sized ants, running alone or interacting closely with each

other around a larger ant queen) has to be discerned from a difficult background (with

non-static brood items and detritus). The size, shape, orientation and color are fea-

tures (image moments) which alone, are usually not sufficient to classify foreground

from background. More sophisticated pattern descriptors computed from image mo-

ments were also not sufficient for our task. FERDA provides a tool for training a back-

ground/foreground, pixel-based, supervised (Random Forest) classifier, efficiently us-

ing a large set of features. The classifier outputs, for each pixel in each frame, a

probability of belonging to the foreground. The MSER method ([Matas et al., 2004])

is applied to the corresponding matrix of probabilities as follows. The probabilities

are thresholded with a series of threshold values, and connected regions of the frame

which remain above many of said values are considered to be ant detections (fore-

ground objects). Detections in consecutive frames can be assigned the same identity

when they fulfill certain criteria, and a sequence of detections with the same identity

constitute a trajectory. The output contains a list of trajectories and for each frame in a

trajectory: 1) a position, 2) a contour and 3) area of a detection (in pixels).

This process has two steps. The first step requires user interaction and is done

from a desktop computer. In this step, we delimit the arena, constrain the number

of detections (i.e. the number of ants to search for) and generate a training set for

the foreground/background classifier from a random set of frames. The second step

requires computing power to classify all regions and assign them to trajectories. Each

project was processed as a set of parallel tasks. Each task has access to a small part

of a video (100 frames). The results for each task are written as separate files. The

process was executed on an High Performance computing Cluster at IST Austria.

The videos have two qualities that made them particularly challenging for image

analysis and so required cleaning steps. On one hand, ants had a somewhat wide
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range of coloration. That is because ants which recently eclose have little cuticle pig-

mentation, which darkens as they age. The range of cuticle coloration closely re-

sembles that of other elements found in the nest (e.g. faeces, food bits that are placed

by the ants near the brood, small holes dug on the plaster, shadows). These elements

are sometimes incorrectly classified as ants and assigned to trajectories. We refer to

the trajectories made up from these elements as spurious tracklets.

On the other hand, the ants tend to lay immobile and very close to each other, for

long periods of time. These groups of ants, and their shadow, are often classified as

a single detection. The trajectories which consist of multiple ants are referred to as

multiple tracklets. The queen is usually found closely surrounded by workers, that is,

one of the multiple tracklets contains the queen, and we refer to it as queen tracklet.

Even though the videos present these problems, there are many detections which

are accurate and correspond to single ants. The majority of these detections belong to

ants which are far away from each other and moving. We call these trajectories single

tracklets.

We wrote Matlab scripts to determine whether tracklets contained multiple ants

- with or without a queen- single ants or spurious detections. We filtered spurious

tracklets and inferred the number of ants inside multiple tracklets, to generate features

which were comparable across time points and across colonies. Below we describe

the cleaning, supervised annotation, and feature extraction steps in detail.

The output of the processing done by FERDA on the HPC cluster, is a series of files

containing trajectories for small parts of the video. The series of files that correspond

to a video need to be accessible by all post-processing scripts. Given the large size of

the data, it is not possible to simply load all trajectories to memory at once. To handle

the data, we implemented a trajectory manager as a Matlab class. An object of this

class contains, for instance, information on which trajectories exist at any given frame.

Importantly, it loads trajectories from files into memory as they are required.

The criteria to label single tracklets, were: a velocity larger than 1mm per frame

and mean area smaller than 1.8mm² with standard deviation, across frames, of less

than 1.3 mm². This step required no user intervention. The first step that requires input

prompts the user to adjust the arena bounds, mark the foraging area and input the

number of ants in the video. Next, a frame with a large number of detections is shown,
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where the user selects spurious detections. The selected detections, and detections

outside the arena boundary, are labelled as spurious. The position and contour of

labelled spurious tracklets is used to detect reappearing spurious detections. If the

centroids of all detection in a tracklet are contained within the contour of a previously

labelled spurious detection, the tracklet is labelled spurious, as well.

Then, the user is presented with the first frame of the video, to select the queen

detection. The corresponding tracklet is labelled queen tracklet. The first frame after

the end of the queen tracklet is shown for the user to select the queen detection, and

in this way the user is prompted to label ten consecutive queen tracklets. From these

manually annotated queen tracklets, we infer the mean size and displacement of the

queen detection. The following queens tracklets are labelled automatically as such,

when they are similar sized and have a relatively small displacement with respect to

the last queen detection. Otherwise, the user is again requested to select the queen

tracklet. At this point, the user can also select additional spurious detections, that could

have gone undetected by the process mentioned above. Annotation of queen tracklets

and spurious tracklets is done at once, to save user time, as well as to avoid the costly

access to trajectories and video.

The final step requires user input to select an intensity threshold which correctly

segments pixels inside a multiple tracklet. With the selected value, the image inside the

contour of a multiple tracklet is thresholded to estimate the number of ants inside of it as

function of the area whose intensity is below the threshold. This estimation is done us-

ing a linear model previously adjusted by hand, after manually annotating multiple de-

tections with counts. The model is count = round(0.0027 area after thresholding K+0.54),

where K is the quotient between mean area of the single tracklets of the video with

which the model was adjusted, and the mean area of the single tracklets in the video

being processed. To find the threshold, the user is presented with frames thresholded

by different intensity values and with estimated counts, according to the linear model.

The user chooses the frame in which the estimate best matches the number of ants

presented. In summary, after user interaction, we end up with supervised classification

of each trajectory, as well a the best suited threshold value to get counts inside multiple

tracklets.

Another round of processing is done in the HPC cluster, consisting of two steps
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per video frame. First, the user-selected threshold is applied to detections in multiple

tracklets and the model estimates the number of ants contained inside them. Second,

a number of features based on position and speed of all ants, is computed, namely:

• Number/fraction of active ants (number)

• Average speed of active ants (mm / s)

• Average speed of all ants (mm / s)

• Average pairwise distance between all workers (mm)

• Average pairwise distance between all active workers (mm)

• Average distance between each worker and the queen (mm)

• Average distance between a worker and the next closest worker (mm)

• Number/fraction of ants inside the foraging area (number / sqmm)

• Number and size of the ants estimated inside each detection (number / sqmm)

Statistical analyses

General statistical procedures. To estimate the significance of the predictors, all

generalized linear and mixed models (i.e. LMER, LM, GLMER, GLM) were compared

to null (intercept only) and reduced models (for models with multiple predictors) using

Likelihood Ratio (LR) test [Bolker et al., 2008]. All significance values were corrected

using the Benjamini-Hochberg procedure (α = 0.05) to protect against false discov-

ery rate when multiple inferences were made [Benjamini and Hochberg, 1995]. We

checked the necessary assumptions of all tests i.e. by viewing histograms of data,

plotting the distribution of model residuals, testing for unequal variances, testing for

the presence of multicollinearity, testing for over-dispersion, and assessing models for

instability and influential observations. Specific details for each analysis are described

below.

Growth. To compare the worker number between treatment groups, at the start

of the experiment, we used a Mann-Whitney-U test or Mann-Whitney-Wilcoxon test



130

(MWW), a non-parametric procedure for independent samples. We used Paired-Wilcoxon

signed-rank tests to compare the growth rate β between treatment groups before and

after overwintering.

Colony growth was further analyzed with a general linear modeling framework [Bolker

et al., 2008]. We specified a linear mixed effects regression (LMER) with worker

number (log-transformed) as a response, and as predictors, treatment (categorical),

colony age (numerical), and their interaction. To handle the non-independence coming

from repeated observation, we included a random intercept and slope for each colony

[Bolker et al., 2008].

To determine whether the variation in size across colonies increases with time, we

modeled the interquartile range of worker number per observation period as a linear

function of observation period and treatment. We assessed the significance of each

predictor and reduce the model accordingly. The linear models (LM) were fit separately

for observations before and after the simulated winter.

The colony size shortly before hibernation was compared across colonies, grouped

by treatment and growth rate, using a general(ised) linear model (GLM) with Poisson

error terms for count data and logit-link function. Specifically, worker number during

the fourth observation period, was modeled as a function of treatment (i.e. categor-

ical, spore contaminated or control) and growth (i.e. categorical, slow or fast growth,

detailed in main text). The same was repeated for colony size at the end of the experi-

ment, i.e. worker number of colonies at the final (ninth) observation period.

The associations between growth mode and survival were tested (separately for

pathogen contaminated and control colonies), with a one-sided Fisher’s exact test.

Based on the knowledge that there was no survival differences between treatment

groups, and that treatment slowed colony growth, we concluded that slow growth does

not lead to reduced survival. We thus tested whether the opposite was true, using a

one-sided hypothesis, namely, that growth mode is negatively associated with mortal-

ity (i.e. slow growth leads to a reduced mortality whereas fast growth results in an

increased mortality). Finally, we evaluated the association between growth mode be-

fore diapause and growth mode after diapause with one-side Fisher’s exact tests.

Brood production. We compared the total number of pupae produced by the

colonies before hibernation (i.e. the sum across observation periods), using a negative
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binomial regression (NB), with treatment and colony growth mode, and their interaction,

as predictors. We used the same procedure for the total number of larvae and for the

sum of observation periods where early brood was present (i.e. discrete range from

zero to four). Differences between groups at each time point were evaluated with a

Kruskal-Wallis test (KW) and the Benjamini-Hochberg procedure was performed to

control for Type I error (i.e. false positives) arising from multiple testing.

We compared the total brood produced by colonies grouped into four categories

(i.e. treatment by overwintering outcome) using a Kruskal-Wallis test.

To assess the power that colony composition had per time point to predict overwin-

tering survival we built a logistic model. For each time point, we fit a logistic regression

with overwintering outcome of each colony (i.e. survived or failed) and each of the

brood categories (i.e. pupae, larvae and early brood) as predictors. Since the num-

ber of worker ants is strongly correlated to the number of pupae and late larvae, we

excluded this predictor from the model to avoid multicollinearity (Pearson correlations:

worker-pupae cor = 0.30, t = 5.7, df = 330, p<0.001, worker-larvae cor = 0.34, t = 6.73,

df = 330, p<0.001, pupae-larvae cor = 0.15, t = 2.90, df = 330, p<0.003) .

Behaviour. We estimated aggregation and activity values (i.e. proportion near

queen, mean distance to queen, proportion of ants active, mean distances between

active ants, mean distance to closest ant and effective foraging time) using image pro-

cessing (See Image analyses and feature extraction in this section). We obtained

these values with a frequency of 3Hz. For all of these analyses the data for each time

point (3 hours) was collapsed into a single mean value. The behavioural features were

compared across colonies grouped by treatment and overwintering outcome, using a

LMER with these grouping variables as predictors, and colony ID as a random effect to

account for repeated measures. Aggregated values were compared before and after

hibernation with a Paired-Wilcoxon test. Finally, each variable was regressed against

colony size (and treatment which had no effect), using and LMER with queen treatment

and colony size as predictors, and specifying for each colony a random intercept and

slope. A simple Spearman correlation between each variable and colony size was also

computed.

Worker size. A worker size distribution for each colony was obtained from all the

area of detections that corresponded to single ants (See image analysis and feature
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extraction in this section). The median value of the distribution was compared across

colonies before and after diapause, using and LMER with median of the worker size

for each colony as a response, and treatment and film batch as predictors.

Statistical packages. All statistical analyses were carried out in R version 3.3.2 [R

Core Team, 2013]. We used the packages ‘lme4’ [Bates et al., 2016] to fit LMER mod-

els, ‘influence.ME’ [Nieuwenhuis et al., 2017] to test the assumptions and to obtain p

values. All graphs were made using the ‘ggplot2’ package [Wickham et al., 2018]. For

Kruskal-Wallis (KW) tests and subsequent post hoc comparisons we used the ‘agric-

olae’ package [de Mendiburu, 2016] and ‘multcomp’ [Hothorn et al., 2016]. For Wilcox

tests we used ‘MASS’ [Venables and Ripley, 2002] and for data handling ‘dplyr’ [Wick-

ham et al., 2017].

Missing and incomplete data. For the period after hibernation we have missing

values at time points where we did not record the colony. First, when the queen did not

survive overwintering, we did not continue to observe the colony. Second, when the

queen survived but less than five workers survived with her, we continued recordings

only when the colony had recovered above this size threshold (i.e. C3,S17,S19,S22).

Third, some colonies survived and multiplied but died before the end of the experiment

for unknown reasons (i.e. C21,C7,S1,S11). Some videos were lost due to software

and disc failures (See Supplementary table 4.1). Our models can handle missing data

and thus no replicates were excluded from our analyses.
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4.6 Supplement

Control

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Spore

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Supplementary table 4.1: Data overview. Complete projects are shown in color. In

white, project missing due to colony death. In gray, video missing due to technical fail-

ure in acquisition or storage, or when colonies not filmed since they were too small (i.e.

under five workers) after hibernation. For these, we have information on worker num-

ber. Incomplete projects shown in red, correspond to projects for which video exists,

brood was counted as well, but image analysis failed (e.g.. video corrupt, readable but

not possible to process).
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Time Predictors for number of pupae LR stat. df p signif.

1 Treatment * Growth 2.25 3 0.52 n.s

2

Treatment + Growth 23.85 2 <0.001 ***

Treatment 7.71 1 0.005 **

Growth 19.46 1 <0.001 ***

3

Treatment * growth 13.95 3 0.003 **

Interaction 5.08 1 0.024 *

4

Treatment + growth 7.68 2 0.021 *

Treatment 2.40 1 0.12 n.s

Growth 6.90 1 0.008 **

Control Spore

Time Fast Slow Fast Slow χ2 p signif.

1 a a a a 2.79 0.424 n.s.

2 a ab b c 21.127 <0.001 ***

3 a ab bc c 15.33 0.0015 **

4 a ab bc c 10.60 0.014 *

Supplementary table 4.2: Number of pupae as a function of treatment and growth. For

each time point, we fit a negative-binomial regression between the number of pupae

and two predictors: Treatment (control exposure and sham-exposure of the queen) and

Growth (slow and fast growth before hibernation). We tested the interaction between

the predictors, and when it was not significant we estimated the effect of each predictor.

Group differences were tested with Kruskal-Wallis test and post hoc comparisons.
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Time Predictors for number of larvae LR stat. df p signif.

1
Treatment * Growth 14.01 3 0.003 **

Interaction 4.69 1 0.030 *

2
Treatment * Growth 24.89 2 <0.001 ***

Interaction 4.24 1 0.039 *

3
Treatment * Growth 24.60 2 <0.001 ***

Interaction 16.10 1 <0.001 ***

4
Treatment * Growth 27.79 2 <0.001 ***

Interaction 11.15 1 <0.001 ***

Control Spore

Time Fast Slow Fast Slow χ2 p signif.

1 a a a b 12.65 0.005 **

2 a a a a 6.263 0.090 n.s.

3 a a a a 3.569 0.311 n.s.

4 a a a a 7.559 0.560 n.s.

Supplementary table 4.3: Number of larvae as a function of treatment and growth. For

each time point, we fit a negative-binomial regression between the number of larvae

and two predictors: Treatment (control exposure and sham-exposure of the queen) and

Growth (slow and fast growth before hibernation). We tested the interaction between

the predictors, and when it was not significant we estimated the effect of each predictor.

Group differences were tested with Kruskal-Wallis test and post hoc comparisons.
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Supplementary figure 4.1: Brood production after hibernation. Total brood produced

(left) (A) Total number of pupae (A), larvae (C) and (E) observation periods with early

brood present. Letters denote significantly different groups (pairwise posthoc compar-

isons after NB, significance threshold = 0.05). (B,D,F right ) Brood produced per time

period. Asterisk denote a significantly different group after KW with pairwise compar-

ison and BH correction. Everywhere we show the mean and confidence intervals of

data grouped by treatment (spore = greens, control = grays) and growth mode (light

hues = fast, dark = slow).
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5 Computational analysis of behavior

The work presented in this chapter results from two collaborations. It is presented

in two sections. The first, describes the development of Ferda, a project to build an

image-based tracker, which started in 2013 and is ongoing. The main developer of

Ferda is Filip Naiser, who obtained his Diploma Thesis in 2014 [Naiser, 2014] and

Master Thesis in 2017 [Naiser, 2017], working on this project under the supervision of

Jiri Matas, both affiliated to the Center of Machine Perception in Prague. The second

section, describes a deep neural network approach to behavioral classification, and

includes preliminary results. This was mainly implemented by Christoph Sommer, staff

scientist for Image Analysis at IST Austria. My contributions to each project are stated

in the text and summarized at the end of each section.

5.1 Abstract

Advances in imaging technologies and image processing have undoubtedly pushed

forward most fields of science, and behavioral biology is no exception. Imaging meth-

ods extend the spatial and temporal scale at which behaviors can be studied. It is

increasingly possible to study behaviors that are naturally invisible to the human eye or

that are not easily perceived in real time. Image processing automates, to some extent,

the process of extracting behaviorally meaningful measurements from images.

To extract meaningful quantities that capture behavior, one needs, to define what

one means by behavior. The behavior of an animal can be described based on its

structure, measured by its consequences or delineated in relation to certain features

in the environment or other individuals [Martin and Bateson, 2007]. For instance, while
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observing a foraging ant one can examine aspects of its tripod gait, the amount of food

retrieved or the trajectory between the nest and a food source. The descriptions span

multiple scales and choosing the level that will shed light onto a particular biological

question may be a challenge [Berman, 2018].

From a sequence of images it is possible to extract behaviorally meaningful meas-

urements at different scales. An animal can be described as a single point moving

through space, but a richer description can be achieved by incorporating additional

points, e.g. the position of its limbs. Similarly, social interactions can be described

based on the distance between two or more animals or making use of their posture

relative to each other. All of these measurements can be interpreted as a description

of the state of an animal or group of animals.

Given a description of states, the task of behavioral annotation can be translated

into a classification task. Classification can be achieved by different methods which

range from rules defined by a user to rules inferred automatically (i.e. machine learn-

ing). A class can also be inferred bypassing the description of states, from a raw image

(i.e. image-based deep learning).

Each step of the way can be automatized. Yet, humans have not been completely

surpassed by computers in many tasks, for example, keeping identity during occlusion

or recognition of behavioral patterns. These challenges still inspire the computer vision

scientists and hurdle behavioral biologists.

In this chapter, I will describe an image-based tracking software (Ferda) developed

in collaboration with Filip Naiser and Jiri Matas, to tackle the challenges posed by our

behavioral studies on ants, while keeping flexibility to address the general challenges

in the field. I will also describe the preliminary results of a second, ongoing, collabora-

tion with Christoph Sommer, which aims to classify ant behaviors using a deep neural

network approach, training on our manually annotated and motion-feature enriched

behavioral datasets.
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Tracking multiple animals

5.2 Introduction and approach

Image-based tracking is on the rise in behavioral research. Monitoring single anim-

als is becoming a staple across the field, from toxicological studies to neuroscience.

Tracking multiple animals, however, still remains difficult. In the last years, a number of

software solutions have been developed, which taken together, address many require-

ments in behavioral research. Nevertheless, finding amongst them, the right tool for

a particular research endeavour, is not straightforward. For instance, many software

solutions are very limited in the number of individuals they can follow (e.g. Cadabra,

Miceprofiler, 3DTraker, Flydra, GroupHousedScan, Motr). These usually require either

multiple camera setups or very high-resolution images. Some are not limited in the

number of targets but are only suitable when maintaining identity is not a requisite (e.g.

GroupScan, Multitrack). A few perform well on many animals, but only on similarly

sized animals of a given shape (e.g. Multiworm, Zebrazoom). Some were developed

for use within a specific platform, require a commercial license or the source code is

not open for customization (e.g. EthoVision, Phenotracker). (See [Dell et al., 2014],

Table S1 for a comparison of the software mentioned, and references therein).

Additional requirements include i) tracking multiple interacting animals of different

shapes and sizes (e.g. predator and prey, parent offspring) ii) observing them in dif-

ferent levels of detail (from their location on the image to the precise position of their

limbs) iv) disentangling sequences in which individuals come into close contact or even

occlude each other, v) working with imaging setups that are compatible with the sub-

jects (e.g. optimizing the setup can be unfeasible or impractical) and (vi) handling the

processing of hundreds of hours of video recordings, to name a few. These demands,

of course, depend on the experiment at hand and the research questions.

Perhaps the most ambitious demand is that an image-based tracker keeps track of

the animals individually throughout the experiment. The problem of keeping identities

of objects which minimally or significantly occlude each other, does not have a generic

solution in computer vision. In animal experiments, this can be non crucial (e.g. when

an animal cross each other) or rather be a central part of the research (e.g. when an-
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imals engage in a certain interaction). In the absence of correct identities, the output of

a tracker can be quite informative (e.g. to compute the spatial distribution of individu-

als or their average motion statistics). When identity is essential, there are plenty and

diverse strategies to attempt to retrieve it.

There are two multi-platform, open-source projects, that fulfill a wide range of user

needs: Ctrax and idTracker (See Table 5.1 for a quick comparison of these and our

proposed solution).

Computer

environment
Image requirements Output Multiple targets

Identity

method

Ctrax

2009

Python,

Matlab

Constant and

uncluttered

background

2D trajectories,

orientation

similar sized and elliptical,

15 pixel resolution

Solve

crosses

idTracker

2014
Matlab

Good contrast

between animals

and background

2D trajectories,

orientation

wide range of sizes and

shapes, 150 pixel resolution
Fingerprint

Ferda Python

Can deal with

cluttered

background

2D trajectories,

orientation, contour

(from which pose

can be estimated)

wide range of sizes and

shapes, 150 pixel resolution

Solve

crosses,

fingerprint

Table 5.1: Comparison between our tracker and two state of the art solutions

Ctrax, published in 2009, is a freely available and widely used tracker [Branson

et al., 2009]. Animals are detected by thresholding a gray-scale-image from which

centroids are identified and connected across frames. When animals cross or overlap,

a function fits ellipses to the animals inside the over-segmented region, dividing it.

The method works well to track similarly sized individuals moving across a constant,

uncluttered background. The researchers made available tools to manually correct

wrongly assigned identities, and, furthermore, tools to compute features from these

trajectories and train a behavioral classifier [Kabra et al., 2013].

ID tracker, published in 2014, recognizes the major issue which poses the propaga-

tion of wrong identities (i.e. once a trajectory is wrongly assigned, the error persists

throughout the experiment) [Pérez-escudero et al., 2014]. Cleverly, this algorithm fo-

cused on identity recognition, based on ‘fingerprint’ computed for each animal. This

fingerprint consists of a two-dimensional histogram of distances between, and sum of

intensities of, each pair of pixels that, after segmentation, are deemed to belong to
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the animal. This fingerprint is translation, rotation and reflection invariant, and, the

authors claim, obtaining a large enough set of them for a single animal, can also cap-

ture posture invariance. In the original paper they report test cases in two species of

fish, ants, flies and mice, where identification is achieved performing better than by

human observers. The initialization of these fingerprints is done on video segments

in which the expected number of animals can be told apart, mostly because they are

far away from each other. Once the prototypical histograms have been computed for

each individual, the rest of the frames which are not so clear are identified using a

nearest-neighbor classifier. Earlier this month (February 2019), an update was pub-

lished [Romero-ferrero et al., 2018], which identifies animals touching or crossing using

an approach similar to ours.

Of these two approaches, only Ctrax existed at the beginning of this project and

we found it had the following limitations. (1) Handling large data. There was a need

to significantly reduce video file sizes. Sub-sampling the resolution decreased the

quality with the result that the number of interactions which could not be resolved,

increased. Cutting the length of the videos and processing by parts was an option,

but the processing could not be parallelized. Furthermore, the output was written to

be used with Matlab tools, which limited further the amount of data which could be

processed efficiently. (2) Setup requirements. The output consisted of too many

tracklets to feasibly correct by hand, after several optimizing attempts to get the right

image quality. (3) Parameters. The amount of parameters needed was large and

not reusable, which made creating a uniform protocol difficult and time consuming.

(4) Posture. Orientation was not well preserved for interacting ants, when they were

properly segmented. Multiple detections were fitted with ellipses which frequently did

not correspond to ants. (5) Segmentation. The segmentation was not suitable to

detect differently sized individuals (e.g. queen ant and workers), which was needed in

one of our setups.

Given these limitations, we embarked in developing Ferda, our own tracking soft-

ware. We did so keeping in mind the following principles of good software design:

Good software is portable, efficient, structural, flexible, general, readable and well-

documented.
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Portable. Cross-platform portability in software (or the ability to run on different operat-

ing systems) is the norm and already a canon for many programming languages,

such as Python. This means today one doesn’t have to think about platform

differences between operating systems, nearly as much, as one decade ago.

Nevertheless, programming languages are not completely OS-agnostic and soft-

ware development still requires testing and solving for incompatibilities. Ferda

was done using open-source libraries, available for the different platforms that we

used: MacOS X, Linux on a desktop, Linux on HPC cluster and Windows. I was

involved in testing the deployment on both the Linux platforms.

Efficient. Efficiency in the usage of processing and memory resources is always crit-

ical. Ferda uses parallel computing in three ways: 1) multicore processing, 2)

GPU processing for machine learning algorithms and 3) optionally distributed

computing in an HPC cluster. I was involved in designing the parallelization

strategy and I developed the scripts necessary to distribute the computations

into two different HPC clusters (one with GPUs and CPUs and another with only

CPUs) and reintegrate the results.

Structured. To develop a program the task must be broken into subtasks, which are

developed independently. A structural code is easier to read, test and document.

Ferda was designed in such a way that each of the processing steps is performed

by a standalone or almost independent module. For some of these steps, several

alternative modules have been developed and can be easily interchanged (e.g.

image segmentation).

Flexible and general. The biggest challenge in our field is the slight variations that

each experimental setup or research question brings. For example, software

which is written rigidly for certain image format (RGB, fluorescent), individual

class specifications (fixed number vs variable number of classes), arena spe-

cifications (e.g. multiple arenas and their shapes), etc are rendered unusable

for different scenarios. While there are pre-processing workarounds, this single

hurdle will likely deter many researchers from using this software, and even from

using this type of approach. A program should be flexible to handle most changes

without having to rewrite. Ferda is written in a way that it is relatively simple to add
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different segmentation algorithm, arena specs, etc. Therefore, although Ferda is

written for a particular task, it should work for similar tasks of the same domain.

Readable and well documented. An effort for readability was made so that I could

modify, test and debug parts of the code that I was using. An object-oriented

approach and structure were implemented. Documentation is one of the most

important components of good software. As the end user, I have been contribut-

ing to the documentation, mainly proofreading and expanding where necessary.

We wanted our software to tackle two tasks, to generate two types of dataset. One

dataset requires the highest level of precision in identity assignment, where we limit

the number of ants to a small group in a simple background. The other requires less

precision in id-assignment, but deals with a large number of ants in a more complex

setup and comprises a larger volume of raw data. The datasets are described in more

detail below. The tasks stem from the experiments described in Chapter 3 and Chapter

4 and we summarize them in Table 5.2. Handling both tasks with a single piece of

software, demanded the generality and flexibility missing from other approaches, which

we aimed to provide.

High precision dataset . In each sequence a group of six uniquely color-marked

ants (Lasius neglectus) moving across a simple background is recorded. The

general idea is to observe individual behavioral sequences and link them to a

measured group outcome. In particular, we want to know if the grooming inter-

actions between individuals determine pathogen transmission (See Chapter 3 for

detail). For this reason, identity assignment is extremely relevant throughout the

sequence. This type of dataset with maximum amount of individual detail is quite

useful to approach questions that have to do with animal personality, hierarchies,

and questions were individual traits are the focus. As stated, we limited the num-

ber of targets in this dataset, yet we designed the software to be able to deal with

a larger number of targets with equally high precision, at some reasonable cost

in terms of efficiency.

Low precision dataset . In each sequence a single colony of ants (Lasius niger ) is

monitored. The colony consists of one queen and a fixed number of workers,



144

Description

The immediate response

of a small group of ants

to a pathogen-exposed group member

Long term monitoring

of colony development after

queen sub-lethal exposure

Experiment

magnitude

2 hours per sequence

108 sequences

18fps, 1024x1024

216 hours in total

2TB of video

3 hours per sequence

337 sequences

15-18fps, 1024x1024

1011 hours in total

18TB of video

Number of

individuals
6 6-99

Size of

individuals
Similarly sized workers

Similarly sized workers and

a considerably larger queen

Arena

Ø 45 mm

relatively homogeneous and

contrasting background (white plaster)

Ø 90 mm

half nest (white plaster) and

half foraging arena (plastic over white paper)

food, debris and brood items

Task

Keep or recover ID of all individuals,

especially the pathogen-exposed individual

throughout the sequence

Obtain long enough trajectories that allow

to study the aggregation of workers around the queen.

Individual ID is not crucial to maintain throughout.

Reliable segmentation is important in such a complex background .

Detections should be allowed to vary in size,

contain one or more ants and/or the queen

Table 5.2: Summary of two tracking tasks and relevant specifications

ranging from 6 to 99. They move across a complex background were brood and

detritus are visible. The arena is divided into two parts: one half is plastered and

preferred by the ants as a nest, the other unplastered half is where we place food.

The plastered part is initially white and even and offers good contrast against the

dark ants. In later time periods, the plaster is smudged and small holes are bore

by the ants, which sometimes can look quite similar in shape and size to workers,

making their detection more challenging. Detections vary in size, specifically, the

queen can be much larger (ten times) than a single worker. Detections vary in

appearance. It is expected that the first workers reared by a queen are smaller

and are gradually replaced by larger workers. Newly hatched workers are lighter

in color. Thus, worker size and color variation is small but not negligible. Detec-

tions vary in behavior as well. For example, the queen can move much faster

than the workers. In some sequences, workers will cluster around the queen and

stay relatively motionless, while in other sequences, they will venture out explor-

ing and performing foraging trips. In this experiment, positional information with

loss of individual identity is used to gather group motion and aggregation statist-
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ics. In particular, quantifying aggregation around the queen and foraging trips are

of interest (See Chapter 4). In general, getting positional information for different

classes of detections is essential, considering that most ecological interactions

happen between individuals which differ in size, appearance and behavior (e.g.

asymmetric competition, predation, parasitism or mutualism).

5.3 Method

Ferda is our general tracking solution to the tasks outlined above. A brief summary of

the workflow is given in the next paragraphs (See [Naiser, 2014; Naiser, 2017] for a

complete description). Ferda was first implemented (in Python 2.7) in [Naiser, 2014] as

a multi-object tracker with a function to resolve interactions. The problem was initially

represented as a graph, with detections in each frame for nodes, connected between

consecutive frames by edges, with a weight (or cost) given by three scores. The first

two scores are based on the distance and rotation of the observed detection from one

predicted by a simple movement model. The third is an “ant likeness” score, which

is determined by the area and major axis length of the detection, and is proportional

to the probability, estimated from manually labeled observations, that a detection with

said dimensions is labeled as an ant. The first two scores have been used by other

trackers (e.g. Ctrax), while the third score (ant-likeness) was introduced in this work.

Assignment between two consecutive frames was performed by selecting the set of

edges between nodes with the smallest sum of weights, also allowing for two nodes

to be assigned to the same detection, or to none, which is necessary to cope with

detections corresponding to multiple ants (e.g. when two ants cross or overlap) or to

none (e.g. spurious). In the case where a detection contained more than one ant,

the position of each ant within was estimated. This was done by iteratively rotating

and translating the contour of the individual ants until their union corresponded best

with the contour of the detection. The estimation of the position of ants within multiple

detections is a problem that is not entirely solved.

On two test datasets which I prepared, the first version of Ferda showed a larger ra-

tio of correctly classified objects compared to other trackers, which were state of the art,

at the time (e.g. idTracker, Ctrax). In a dataset provided by the developers of idTracker,
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this version of Ferda was unable to detect some ants, but our tracker maintained iden-

tity without a single mismatch. Although our tracker faired well in comparison to the

other trackers, many issues were identified. The main challenge, which remains, is

the estimation of positions during an interaction. Position estimation can be used for

automated behavioral annotation, which is a primary drive for using quantitative image

analysis in behavioral ecology.

With the first version, no function for identity recognition had been implemented,

which meant that every mismatch error (wrong assignment of detections between

frames) would be propagated to the following frames. Although, these could be verified

and corrected by the user, it requires a massive labour investment. The next version of

the software [Naiser, 2017] incorporated ID recognition.

In its second iteration of development, several major improvements were made. In

particular, more semi-automatic processes were introduced, as well as more sophist-

icated classification techniques. These are aimed at coping with the very varied and

complicated scenarios encountered during image classification, while simultaneously

leveraging the large amounts of training data that result from even small investments

in manual annotation.

The overall approach of this second Ferda shares two steps with the first version:

First images are segmented into regions, then regions in successive frames are iden-

tified as belonging to the same ant. Two new steps are then introduced. In the first,

detections are classified to determine whether they contain, zero, one, or more ants. In

the second and final step, the identity of sequences of consecutive frames is determ-

ined. Below, each of this steps is described, in more detail, but the reader is referred

to [Naiser, 2017] for details in the implementation.

Image segmentation. Image segmentation, the attempt to identify pixels that belong

to an ant, is performed using a statistical classifier of the Random Forest type. We

opted for this approach as we had learned, from the previous version, that directly

using threshold or MSER-based segmentation requires the user to tune several

parameters for which it is difficult to acquire intuition. Furthermore, the paramet-

ers used for one video are usually not useful for the next. Selecting, instead, a

machine learning based approach allows the user to simply select positive and
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negative examples of what constitutes an ant, and the classifier automatically de-

rives criteria to apply to the rest of the frames. In this case, the classifier uses

a representation of pixels that considers information regarding their intensity in

each of three channels, that of their neighboring pixels, and differences among

the pixel and its neighbors. The training data is extracted from user input and can

be subsequently refined after the user is shown the results of the classification.

The output of this classifier is a probability of each pixel, of belonging to an ant.

Given the resulting probability matrix (of the same dimensions as the original im-

age, and with values between 0 and 1), the MSER algorithm is used. The results,

which are called detections, are a connected sets of pixels whose probability of

belonging to an ant is similar and sufficiently different from adjacent pixels not in

the detection.

Graph pruning. Once detections are extracted from each of the frames in the video,

it is necessary to determine which detections from one frame correspond to the

same ant as the detections in the previous frame (stitching). As before, this is

posed as a graph-theoretical problem, in which an f-partite complete graph has

its edges pruned while meeting several conditions and to maximize a score. The

pruning is performed for every pair of consecutive frames, in the following three

steps:

1. Edges connecting detections which are too far away in space are discarded.

The notion of distance, used this time, is the distance between the edges of

the detections and not the centroids. I had noticed in the previous version

that, when one of the detections is large, it could happen that it was not

connected to a smaller one even when the smaller was almost contained

inside the larger one. This happened because the centroids of the detections

were far due to the large size of the first one.

2. Edges connecting detections which are too far away in space are discarded.

The notion of distance, used this time, is the distance between the edges of

the detections and not the centroids. I had noticed in the previous version

that, when one of the detections is large, it could happen that it was not

connected to a smaller one even when the smaller was almost contained
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inside the larger one. This happened because the centroids of the detections

were far due to the large size of the first one.

3. Edges which are outliers, in the sense that they connect detections which

have very different geometries, as determined by their areas and the orient-

ations of the axes of ellipses with the same central moments as the detec-

tions, are discarded.

Determining, for steps 2 and 3, which edges are outliers, is done using two Isol-

ation Forest classifiers. These are trained using the pairs of edges that, after the

first step leave an unambiguous identification of detections, for example if all ants

are far away from each other in both frames. This approach was originally presen-

ted by the authors of idTracker to obtain reference frames [Pérez-escudero et al.,

2014], and overcomes one of the limitations of the previous Ferda version: that

the user would spend a long time finding thresholds to define which are outliers,

and which were not useful for any other video. Each of these classifiers gives a

probability of an edge of being correct, in the sense of connecting two regions

that belong to the same ant. The edges that are removed in steps 2 and 3 are

those whose probabilities are in the lowest decile, according to the respective

classifier.

After edges are pruned in the three manners described above, it is very likely

that detections remain which have more than one incoming edge in the graph:

that is, that there are two or more detections in the previous frame which could

enclose the same object as the current detection. When this is the case, a score

is computed for each edge by multiplying the probabilities which are output by the

two classifiers used for steps 2 and 3 above. Afterwards, the edge with the higher

score is kept as the only one incoming to the detection, provided that its score is

sufficiently higher than that of the one with second highest score, otherwise, both

edges are kept.

Cardinality classification. The next step, which makes use of user input, is to classify

each of the detections into one of four classes: a) containing a single ant, b) con-

taining no ant at all (e.g. reflections or detritus), c) containing more than one ant

and d) containing only part of an ant. To perform this classification, regions are
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represented using a seven dimensional vector that includes simple information

on the geometry of the region: its area, its perimeter, its maximum and minimum

intensity, the major and minor axis of the circumscribed ellipse, and its stability

(according to the MSER algorithm [Matas et al., 2004]. The next step is to cluster

these vectors using the K Means++ algorithm [Arthur and Vassilvitskii, 2007], with

K being the number of user inputs that will be requested. The best representative

of each of the resulting clusters is shown to the user, who manually labels it in

each of the four categories. In the current implementation, this training is done on

a small subset of the frames, before segmenting the rest of the video. Afterwards,

the rest of the regions are classified depending on which of the manually classi-

fied regions is closest to it (in euclidean distance), ie, using a nearest neighbor

classifier. Regions that are classified as containing no ants are removed from the

graph.

Tracklet formation. The graph is then partitioned into strongly connected paths each

of whose nodes have exactly one incoming and one outgoing edge, except for the

start and end nodes that have no incoming and no outgoing edges, respectively.

The paths of regions that are the result of this partitioning are called tracklets.

Identity classification. Ferda provides the option of assigning identities to regions,

to try to disambiguate the ants that are contained in each. Since this involves

additional user input and is only feasible with a small amount of ants and with

videos with very good image quality, it is possible to opt out of this. In this case,

the tracklets are the final output of Ferda.

If the user opts for the identity classification, then, for each region, a set of iden-

tities of possible ants is predicted. That is, if it is known that the video contains

N ants, each region will receive a set of identities, each ranging from 1 to N. For

this, regions are represented using the same features as used in the classifier of

step 2 above, plus the Hu moments [Hu, 1962] of both a binarized and a gray-

scale version of the region. With this representation a random forest classifier is

trained using user-provided input. The identities of a tracklet are then determ-

ined by identities which have the higher probability in its regions, provided that

a set of constraints is not violated. These constraints encode the cardinality of
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each tracklet (obtained in the previous step), the fact that in every frame every ant

must be accounted for, and that the set of identities assigned to tracklets cannot

change in time. When these constraints are not satisfiable, the user is prompted

for further input, in which case they can correct identity assignation and partition

tracklets.

Identity assignment, as implemented in Ferda, is the latest solution to a problem

that was posed at the beginning. Previously, I had tried in collaboration with Mi-

chael Schwarzfischer and Fabian Theis, from Helmholtz Center Munich, to match

tracklets (from Ctrax) based on similarity of color histograms and an algorithm for

solving the stable matching problem. I brought the experience of these previous

attempts into the discussions leading to the design of Ferda’s identity classifica-

tion module.

The videos where recorded in a computer dedicated for video acquisition (four

videos where acquired at a time). Afterwards, the videos were moved to a file server

which made them accessible from both the HPC clusters and my desktop computer.

Using the desktop computer, arena parameters were input, and the foreground/ back-

ground pixel classifier was trained, followed by cardinality classification. A script was

executed that prepared the project for running in the HPC cluster and sent it to the pro-

cessing nodes, using Grid Engine (and later Slurm). In the cluster, the following steps

where done concurrently for segments of 1000 frames: image segmentation, graph

pruning, cardinality classification and tracklet formation. The end result of this is a set

of files that contain the tracklets present in each of the 1000-frame-long segments of

the video. This files are converted, also in parallel, into a format which is readable

using Matlab, such that the data for each segment is stored in the same format which

Ctrax stores its data in. when these parallel processes are finished, the results are

downloaded back to the desktop computer where a single data structure that hold the

information for the whole video is created. these data structures were used to per-

form the data analysis detailed in Chapter 4 for the long term colony experiment. The

configuration of the HPC cluster, including the installation of the necessary libraries

was done by Alois Schoegl, IT, IST Austria, who also contributed to the design of the

parallelization strategy.
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5.4 Results

The second implementation of Ferda greatly improved the user experience as well as

the processing throughput. More importantly, it was able to compete in some tracking

tasks with the state of the art. To compare Ferda with idTracker, ground truth is ne-

cessary. This takes the form of a series of trajectories for which identity and position

are correctly known. For this, ground truth provided by the idTracker team (Zebrafish-

1) was used, as well as two datasets created ex-profeso for this (Ants-1 and Ants-3).

From all, the first 4500 frames were used, and tracked by hand to create the ground

truth (See Table 5.3).

Dataset Number of animals Number of Pixels Per Object Origin

Ants-1 6 755 Own recording

Ants-3 10 817 Own recording

Zebrafish-1 5 781 idTracker team

Table 5.3: Summary of ground truth datasets tested

The output of the two different trackers was measured with respect to ground truth

(See Table 5.4). For a detection to be correctly assigned, we required that it be no more

than 1
3

the average animal length from the ground truth position and that the identities

match. All possible permutations of identities were tried (and kept constant throughout

the video) and we report the one with the best performance.

While idTracker performed better in the case of the ant videos, it is interesting to

note that Ferda performed better in the zebrafish videos for which idTracker was origin-

ally devised. Despite lower performance, Ferda remained our best option because of

the amount of videos we need to process, as well as the particular case of differently-

sized ants. There is one additional step in Ferda, in which the user is asked for input

regarding the match. This step could increase the number of correctly classified tra-

jectories, the results of which are shown in [Naiser, 2017].
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Dataset Assignment Ferda idTracker

Ants-1 correct 59.66% 71.68%

wrong 6.74% 0.32%

unassigned 33.60% 28.01%

Ants-3 correct 61.24% 82.38%

wrong 25.60% 5.25%

unassigned 13.17% 12.37%

Zebrafish-1 correct 96.92% 88.00%

wrong 0.27% 0.63%

unassigned 2.81% 11.36%

Table 5.4: Comparison between Ferda and IdTracker results

5.5 Conclusions

Creating a multi-object tracker is a challenging enterprise. In particular, making a track-

ing solution scale to be able to handle large amounts of data is not straight forward.

Interestingly, none of the solutions freely available take this into account, even when

their tracking performance was good. It is for this reason that we opted for developing

and using Ferda.

We have successfully used Ferda to generate input data for an experiment de-

scribed in the next section of this chapter and for an additional experiment, which I

co-authored and which was recently published [Liutkevičiute et al., 2018].

In essence, after running the whole Ferda processing pipeline we end up with dif-

ferent detections tagged with the number of ants they hold, as well as contours of

the detection themselves. Using these annotations we are able to do content-based

retrieval, to extract sequences of sections of video frames that, for example, showed

single ants, or pairs of ants, or that showed them in a given configuration. Extracting

these sequences is useful, among other things, for the machine learning applications,

which I will describe below.
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That being said, many problems remain only partially tackled. Image segmentation

remained a challenge when dealing with extremely noisy backgrounds. To compensate

for this we built a post-processing tool to remove spurious detections. We must note,

however, that the constant gathering during runtime of training data for the segment-

ation classifier greatly improved the performance, and we are confident that further

refinement of this method will lead to a robust segmentation method that is able to

adapt to changing lighting conditions.

Identity assignment worked well for datasets in which the ants were few, mostly

active and neatly color coded, but was not useful in the case of the Colony Experiment

(Chapter 4), where ants spent long amounts of time clustered together, near the queen.

There we could rely on the fact that identities were lost only when ants entered the

queen cluster, or worker clusters, but we could extract average velocities and positional

information of the ‘unclustered’ ants. We made use of cluster detections to extract

meaningful statistics on the global level (e.g. distribution of individuals in space, how

many cluster near a given individual, etc.).

The limitations in identity assignment in the case of long-lasting interactions are

very much related to the lack of an accurate pose estimation for ants during interac-

tions. Likewise, shape variations in ants present a problem for identity matching and

pose estimation. These problems are yet to be tackled in a satisfactory manner in any

of the solutions surveyed, which still is crucial for automating behaviour annotation.

Nevertheless, we believe that a machine-learning oriented approach can go around

the problem of describing (an estimating) pose, and we have conducted preliminary

research in that direction, as described in the next section.

5.6 Contribution

My contributions fall under several categories:

Conceptualization: formulation of research goals and aims, contribution of ideas and

discussion throughout.

Software: design, implementation of computer code and supporting algorithms and

testing of existing code components. I especially contributed to the parts dealing
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with compression and preprocessing, large file handling and parallelization, the

design of a correction tool and, in general, of user interaction.

Validation: verification of the reproducibility and scalability of results.

Investigation: data collection and preliminary work to select our approach

Behavioral Classification

5.7 Introduction

The behavior of an animal can be described as the combination of its displacement

in space and of the movement of its body parts, relative to each other, to the envir-

onment, or to other individuals. Such a general definition suggests that behavior is a

high-dimensional dynamical process. This is in stark contrast with the relative ease

with which human observers can identify it and describe it succinctly. These short

description of behaviors are only possible because, in effect, the high dimensional dy-

namics of an individual can be reasonably approximated by low-dimensional descrip-

tions [Stephens et al., 2010]. The viability of such low-dimensional descriptions is of

course not limited to behavior, rather, it has been argued that it is a general feature of

the universe, or at least of the parts of it which we can study and understand [Simon,

1996].

The automated description of behavior makes explicit use of the low-dimensionality

of animal dynamics. For example, using motion tracking technologies as those de-

scribed in the previous section, one can identify simple behaviors such as an ant being

present in the feeding area by simple examinations of a two-dimensional time series (as

done in Chapter 4). This approach can be extended by creating a manually-curated set

of dynamical features (such as velocity, acceleration, or angular momentum) and using

either a supervised classifier or a clustering algorithm to identify behavioral patterns.

While movement of the individual in space is sufficient to identify several behaviors,

ignoring the positions of the different body parts of the individual can prevent us from

identifying more fine behaviors, some of which could be of special interest (e.g. in the

case of ants, acidopore grooming, as described in Chapter 3).
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The usual approach is to augment the positional time series with variables that de-

scribe the posture of the individual. Tracking of individual body parts of an animal is not

feasible with current technology, but other methods have been devised to augment the

two dimensional description. An elegant example is the work on worm motion, which

can be described by the progression of a single phase variable, that can be thought of

as travelling wave moving up or down the worms body [Stephens et al., 2008]. Many

of the variables used to augment a two-dimensional time series are not as easy to in-

terpret. Moreover, one needs to identify which regions in the state space correspond

to meaningful behaviours. This assumes that the sequence of behaviors has discrete

and discernible states. One way forward,is defining a dynamical representation of the

behavioral series. For example, finding temporal motifs or assigning time-frequency

representations, which in essence, discretize the positional and/or postural series.

Once the position and posture time series have been augmented, or replaced, by

a dynamical representation, behavior can be identified by using statistical classifiers

(as in the case of the position-only time series, described above), or by more intric-

ate dynamical system analyses (e.g. identifying attraction basins). It is in this way

that representations of sequence of behaviours of an animal are constructed [Berman,

2018].

5.8 Approach

In the case of legged animals, it remains a challenge to describe posture by identifying

the relative positions of all body parts for multiple individuals. This is particularly diffi-

cult in the case of ants, whose tendency to aggregate make their simple segmentation

a difficult task. More over the many degrees of freedom of their six legs and antennae

make a geometrical description impractical. Recent efforts have made it feasible to

track body-part positions of freely moving animals, using a minimally supervised ma-

chine learning approach [Pereira et al., 2019]. We have also approached the problem

of behavioral detection using machine learning, but without pose estimation, and lever-

aging the vast amounts of hand-annotated behaviours we have scored (See Chapter

3).

The general approach can be defined as feeding a neural network, sections of video
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frames centered around an ant (or sequences thereof), and training it to recognize the

behavior being performed. Since we have as described in Chapter 3, vast amounts of

manually annotated videos in which ants have been color marked, generating training

data is as simple as matching the annotations with a tracked video and finding in the

frame a set of pixels corresponding to the ant’s mark. When this classifier is trained, it

should be able to take take tracked video sequences for automated annotation.

We opted for Deep Learning algorithms for image classification, since these apply

very well to the constraints of our setup outlined above. Deep-learning algorithms are a

form of artificial neural network, a computational model proposed in the 1940, inspired

by the physiology of natural neurons. In brief, an artificial neural network is made up

of a set of simple processing units, called neurons, arranged in a succession of layers.

The neurons from one layer take as input the outputs from the neurons in the previous

layer, weight them and output a highly non-linear function on its sum (e.g. tanh), which

is then taken as input by the next layer. As such, artificial neural networks can be seen

as a function that takes an input (in this case an image) and produces an output (in this

case, the class of behavior there represented). The exact function that is computed

by the network as a whole depends on the weights of the connections between the

different neurons, as well as the particular order in which these are connected. Arriving

at the function that correctly classifies the images is a process known as training, and

consists, roughly speaking, of iteratively comparing the output of the network with the

desired output in a set of manually label examples, computing its error, and adjusting

the weights to descend on the gradient of the error (as a function of the weights).

Deciding on the order in which neurons are connected (its architecture) is done before

the training starts, and is based on the experience of the practitioner and the available

literature.

Until recently, machine-learning algorithms based on artificial neural networks re-

lied on researchers to process the raw information into more meaningful form before

feeding it to computational models. This process, known as feature engineering, is akin

to defining the dynamical descriptions mentioned above. Today, a neural network has

layers to find meaningful relationships embedded in the input (e.g. edges embedded

in pixels, and faces embedded in edges). These additional layers, which allow the in-

put to enter unprocessed into the network, is what give an artificial neural network the
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designation of “Deep”.

Another common feature of Deep Neural Networks is having slightly more intricate

architectures, some of which are specially suited to fit the domain of the problem. In

the case of image recognition, Convolutional Neural Networks (CNN) have become

commonplace, since their architecture keeps in mind two characteristics of images: i)

that they contain features and patterns which are local in space (such as edges) and

ii) that the defining characteristics of an image, for the purpose of interest, need to be

always in the same relative position (e.g. the center) within the image. Furthermore,

specialized CNN architectures have been developed for image classification tasks, and

we make use of one of them in this work.

The type of deep neural network that was used in this work was based on a network

of the InceptionV3 architecture, an architecture that has shown very good results in

other image classification tasks. InceptionV3 is a complex architecture of convolutional

neural networks consisting of two identical modules, each of which is characterized

by performing convolutions with different kernel sizes on the input and then combining

them together. This choice of architecture removes the need for finding the correct con-

volution kernel size, but greatly increases the number of connections between neurons.

The authors of the original InceptionV3 architecture [Szegedy et al., 2014] have come

up with some interesting tricks to reduce the total number of training weights, but the

task of training the network remains computationally intensive.

To counter such hunger for expensive data, a method called Transfer Learning has

been devised. This method exploits the ability of neural networks to apply classification

prowess acquired from one data type to another type. That is, to use a network trained

on other datasets, tweak only some layers to fit the problem in hand, and learn from

a smaller dataset. Using transfer learning, Deep Neural Networks do not start from

scratch but start the learning process using what was learned to solve a different task,

for example, the ability to recognize edges, regions, or transitions. This operates under

the assumption that some “low level” features are present in both the dataset at hand,

and that on which the network was originally trained. This assumption is valid for most

real world images (as opposed to artificially generated ones), but still, transfer learn-

ing is not always ‘appropriate’ and experimentation is required to determine whether

knowledge can be transferred from one domain to another.
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The particular network that we based our classifier on was pre-trained to solve the

ImageNet task, a benchmark task of classifying images into 1000 categories. These

categories are, of course, not any of the categories we are interested in (which corres-

pond to the behaviors which are of interest to us), but rather general image categories

such as different animals or types of scenes. However, the first layers of the network

have been adjusted so that the activation of the neurons therein occurs when certain

patterns occur in the input image, with said patterns being useful for classifying the

images in the benchmark dataset into any of the 1000 categories.

So far, the preliminary experiments described below take only single frames as

input.

5.9 Method

We implemented an image classification method, which takes as input an image and

from it outputs a label for five behavioral categories.This image classification was a

time-ignorant CNN which was pre-trained on the ImageNet database, following the

transfer learning paradigm.

The five behavioral categories, all correspond to individual ants (i.e. no interaction),

which are stationary or in place, doing some type of self-grooming (SG), resting or

doing something else. They categories are defined as follows: (1) “Resting” where

there is only some very slow movement of the head and antenna, (2) “SG lateral”

where the ant body bends to one side to stroke her side and mid legs with her front

legs, (3) “SG antennal” where antennae are stroked with the front legs (i.e. passed

through the strigil, a cleaner structure), (4) “SG gastertip” where the ant bends over

her abdomen (gaster) to reach the acidopore, an opening of the formic and dufour

glands (5) “Other”, where ants were doing something else (e.g. ants resting against a

wall, digging). See Figure 5.1, below.

We created a toy dataset of images categorized as above. For this we used a video

sequence of six ants (18 fps, ant length ˜150 pixels), for which we obtained motion

trajectories. We selected frames where an ant stayed in position (i.e. velocity under 6

pixels / frame, less than 1 body length per second) and others were not too close (i.e.
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Rest SG Antennal SG lateral Other SG gastertip

Figure 5.1: Examples of dataset and behavioral categories

distance threshold = 100 pixels) and cut the selected frames around the ant (150 x 150

pix). We manually scored the behaviours of 530 clips to obtain 33,000 labelled frames.

The starting network was an InceptionV3 network, from which we removed the last

layer of neurons, which in the benchmark task are used to perform the final classific-

ation task into each of the 1000 categories. We replaced these layer with three more

layers: one with 512 neurons with rectifying activation function, followed by a drop-out

layer, and finally 5 softmax layers. Each layer was connected to the previous in a dense

manner (i.e. each neuron of a layer was connected to all neurons in the previous one).

The neurons with rectifying activation functions activate only when the input is positive,

in which case the output is equal to the input, and is widely used in deep neural net-

works for computer vision tasks as it has shown to increase performance. The dropout

neurons are neurons that, in each training iteration, discard a fraction of their input

(50% in our case), in effect introducing noise to avoid overfitting. Finally, the softmax

neurons are used as the standard classification layer, as their output is proportional to

the largest of their input, thus serving as a means of collecting the input of the previous

layers.

We used the Python library for Deep Learning, Keras, to train the network so con-

structed. It needed 30 minutes to re-train on the ant videos to achieve 90% accuracy.

The split into training and test data was done for each movie, so that all images from a

single were either in the train or in the test set. Furthermore, to take class imbalance

into account, stratification was performed, meaning that the training and testing sets

have the same proportions of each class as the entire dataset. Importantly, images

had to be resized to fit the network’s size of 299x299 pixels, and color conversion was

performed in the same way as in the training of InceptionV3 to Imagenet: it was conver-

ted from RGB to BGR, and from each channel, the mean of the ImageNet datasets was
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subtracted (zero centering). The training was done in two steps, first only the weights

behind each of the newly added layers were adjusted, and afterward, all weights were

re-adjusted, including those that came from the pre-trained inceptionV3 network.

5.10 Results

The results of the classification experiment are summarized in the following table:

Categories Precision Recall F1-score Support

Rest 0.95 0.97 0.96 11011

SG(antennal) 0.72 0.85 0.78 1047

SG(lateral) 0.89 0.85 0.87 2109

other 0.87 0.58 0.70 1431

SG(gaster) 0.61 1.00 0.76 344

Table 5.5: Results CNN

For a given category, precision (p) is the number of correctly classified images,

divided by the number of all images classified with this category, and recall (r) is the

number of correctly classified images divided by the number of images truly belonging

to this category (i.e. matching the manual labels). F1-score, takes both precision and

recall into account, as a their balanced harmonic mean, i.e. F1 = 2pr / (p+r). Support

is the number of occurrences of each category.

These results show good classification performance overall, considering that the

training was done on a small dataset. Selfgrooming behaviours, for which the dataset

had few examples, were well classified, in particular, lateral self-grooming.

An additional insight was obtained from visualization using partial occlusion, a

standard sanity check in the learning process [Zeiler and Fergus, 2014]. With this

visualization technique one sees the importance of different parts of an image on clas-

sification. An example visualization (Picasso [Henderson and Rothe, 2017]) is shown

in Figure 5.2 In general, our results are encouraging since they showed that a good
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separation is made between foreground and background, and that other ants present

in a frame are not taken into account.

Figure 5.2: Partial occlusion visualization in Piccasso visualizer. Classification is done

several times on an image, blocking different parts of the image (second panel, shaded

occlusion square). The image shown was classified by the model, with 98% classi-

fication probability of “SG(lateral)”. Dark blue parts of the image correspond to lower

probability of the given classification, i.e. if those parts are occluded probability of clas-

sification decreased. For instance, if we blocked parts of the ant body or legs, the

probability of “SG(lateral)” decreased, which means that without these parts it is hard

for the model to recognize that the ant is in position for this selfgrooming category.

5.11 Conclusions

Classification using the state-of-the-art deep neural network showed mixed results,

which suggest that additional experiments are needed and that more hand-labeled

training data must be procured for other behaviors. While the current results are not

sufficient to replace a human annotator, the experiments are too preliminary to rule out

this possibility. Still, the time needed to re-train the network for this particular problem is

smaller than the time needed to train a human annotator that can achieve comparable

results, especially when using only still images.

The most satisfactory result is that, based on single images (not sequences), the

network is capable of quite reliably detecting when ants are resting. This suggests

that pose estimation was successfully achieved by the network, at least to the point of

recognizing movement. Let us also recall, that the input to the classifier were images,

not any sort of description, derived from human-defined criteria, of the pose of the ant.

This simple classification is already enough to pre-select sequences of the video that

a human annotator must observe, greatly reducing the time needed for annotation.
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Several further steps can be tested to improve classification accuracy.

First, the classifier must be adapted to take sequences of images as input, to have

access to information about the movement of the ant’s limbs. This can be done in three

different ways. The simplest is to apply the current CNN on each frame and then pass

this sequence of classes to a statistical classifier, such as a Support Vector Machine.

We will also try a more advanced classifier, such as a Recurrent Neural Network, which

is especially suited for processing sequential data. Finally, re-purposing the current

CNN to take volumes as input, which would involve much more retraining.

Second, and of utmost interest to the biological community, would be to attempt

a classification of behaviors involving several individuals. The dataset that we have

produced includes annotations of such behaviors, so as soon as a suitable single-

individual-behavior classifier is found, it can be retrained for the multiple individuals’

case.

Finally, it is possible to implement the above-mentioned hybrid system of annotation,

that takes into account tracking information (even if not complete), and uses such a

classifier to point a human annotator only to the important parts of the video recording.

5.12 Contribution

In brief, my contributions fall under two categories:

Conceptualization: formulation of research goals and aims and discussion.

Investigation: dataset creation, data curation and preliminary work (e.g. behaviour

classification (SVG) trials with motion trajectory features) to select our approach
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Saramäki, editors, Temporal Networks, Understanding Complex Systems, pages

217–244. Springer-Verlag, Berlin Heidelberg, 2013.

[Chultz and Eifert, 2005] Roland S Chultz and Bernhard S Eifert, “Lasius neglectus (

Hymenoptera : Formicidae )— a widely distributed tramp species in Central Asia,”

Myrmecological News, 7(September):47–50, 2005.

[Cole, 2009] Blaine J Cole, “The ecological setting of social evolution: the demography

of ant populations,” New Frontiers for Behavior Ecology: From Gene to Society,

pages 74–104, 2009.

[Cremer et al., 2007] Sylvia Cremer, Sophie A.O. Armitage, and Paul Schmid-Hempel,

“Social Immunity,” Current Biology, 17(16):1–8, 2007.

[Cremer et al., 2018] Sylvia Cremer, Christopher D Pull, and Matthias A. Fürst, “Social

Immunity: Emergence and Evolution of Colony-Level Disease Protections,” Annual

Review of Entomology, 63:105–123, 2018.

[Cremer and Sixt, 2009] Sylvia Cremer and Michael Sixt, “Analogies in the evolution

of individual and social immunity,” Philosophical Transactions: Biological Sciences,

364:129–142, 2009.



167

[Cremer et al., 2006] Sylvia Cremer, Line V Ugelvig, Suzanne Lommen, Klaus S

Petersen, and Jes S Pedersen, “Attack of the invasive garden ant : aggression

behaviour of Lasius neglectus ( Hymenoptera : Formicidae ) against native Lasius

species in Spain,” Myrmecological News, 9:13–19, 2006.

[Cronin et al., 2013] Adam L. Cronin, Mathieu Molet, Claudie Doums, Thibaud Mon-

nin, and Christian Peeters, “Recurrent Evolution of Dependent Colony Foundation

Across Eusocial Insects,” Annual Review of Entomology, 58(1):37–55, 2013.

[Currie and Stuart, 2001] Cameron R Currie and Alison E Stuart, “Weeding and

grooming of pathogens in agriculture by ants,” Proceedings of the Royal Society

B: Biological Sciences, 2001.

[de Mendiburu, 2016] Felipe de Mendiburu, agricolae: Statistical Procedures for Agri-

cultural Research, 2016.
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[Liutkevičiute et al., 2018] Zita Liutkevičiute, Esther Gil-mansilla, Thomas Eder, Bar-
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