
 
 

 

 

 
 

ON THE NATURE OF GENE REGULATORY DESIGN –  
THE BIOPHYSICS OF TRANSCRIPTION FACTOR BINDING SHAPES 

GENE REGULATION 
 

by 
 

Claudia Igler 
 

May, 2019 
 
 

 

 

 

 

 

 

 

 

 

 

 

A thesis presented to the  

Graduate School 

of the  

Institute of Science and Technology Austria, Klosterneuburg, Austria  

in partial fulfillment of the requirements  

for the degree of  

Doctor of Philosophy 
  



ii 
 

  



iii 
 

The dissertation of Claudia Igler, titled On the Nature of Gene Regulatory Design - The Biophysics of 

Transcription Factor Binding Shapes Gene Regulation, is approved by: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Supervisor: Călin Guet, IST Austria, Klosterneuburg, Austria 
 
 

 Signature:                                                             

  

 

 Co-Supervisor: Jon P. Bollback, University of Liverpool, Liverpool, UK 
 
 

 Signature:                                                             
 
 

Committee Member: Gasper Tkačik, IST Austria, Klosterneuburg, Austria 

 

 

  Signature:                                                             
 
 
Committee Member: Stephen T. Abedon, The Ohio State University, Columbus (Ohio), USA 
 

 

  Signature:                                                             

                                 

 

 Exam Chair: Nick Barton, IST Austria, Klosterneuburg, Austria 
 
 
 Signature:                                                             

 



iv 
 

 

 

 

  



v 
 

 

© by Claudia Igler, May, 2019 
 

[Some Rights Reserved] 

[CC BY-NC-ND The copyright of this thesis rests with the author. Unless otherwise indicated, its 

contents are licensed under a Creative Commons Attribution-Non Commercial-No Derivatives 4.0 

International License. Under this license, you may copy and redistribute the material in any medium 

or format on the condition that; you credit the author, do not use it for commercial purposes and do 

not distribute modified versions of the work.] 

 
 

IST Austria Thesis, ISSN: 2663-337X 

 

I hereby declare that this dissertation is my own work and that it does not contain other people’s 

work without this being so stated; this thesis does not contain my previous work without this being 

stated, and the bibliography contains all the literature that I used in writing the dissertation. 

 

I declare that this is a true copy of my thesis, including any final revisions, as approved by my thesis 

committee, and that this thesis has not been submitted for a higher degree to any other university or 

institution. 

 

I certify that any republication of materials presented in this thesis has been approved by the 

relevant publishers and co-authors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Signature: _______________________ 

 

Claudia Igler 

 

May 3, 2019 

  

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


vi 
 

  



vii 
 

Abstract 
 

Decades of studies have revealed the mechanisms of gene regulation in molecular detail. We 

make use of such well-described regulatory systems to explore how the molecular 

mechanisms of protein-protein and protein-DNA interactions shape the dynamics and 

evolution of gene regulation.  

 

i) We uncover how the biophysics of protein-DNA binding determines the potential of 

regulatory networks to evolve and adapt, which can be captured using a simple 

mathematical model.  

ii) The evolution of regulatory connections can lead to a significant amount of crosstalk 

between binding proteins. We explore the effect of crosstalk on gene expression from a 

target promoter, which seems to be modulated through binding competition at non-specific 

DNA sites.  

iii) We investigate how the very same biophysical characteristics as in i) can generate 

significant fitness costs for cells through global crosstalk, meaning non-specific DNA binding 

across the genomic background.  

iv) Binding competition between proteins at a target promoter is a prevailing regulatory 

feature due to the prevalence of co-regulation at bacterial promoters. However, the 

dynamics of these systems are not always straightforward to determine even if the 

molecular mechanisms of regulation are known. A detailed model of the biophysical 

interactions reveals that interference between the regulatory proteins can constitute a new, 

generic form of system memory that records the history of the input signals at the 

promoter.  

 

We demonstrate how the biophysics of protein-DNA binding can be harnessed to investigate 

the principles that shape and ultimately limit cellular gene regulation. These results provide 

a basis for studies of higher-level functionality, which arises from the underlying regulation.    
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1. Introduction 

1.1 Gene regulation by transcription factors 

The complexity and marvel of cellular life originates fundamentally from the 
regulation of the genes within a cell. It is gene regulation that allows genetically 
identical cells to develop varying shapes and functions - thereby also determining the 
complexity of an organism - and it is also gene regulation that governs if and how cells 
can respond to external signals. Based on some of the supposedly most simple 
organisms, François Jacob, André Lwoff, Jacques Monod and Mark Ptashne laid the 
foundation of gene regulatory research through the discoveries of transcriptional 
repressors in E. coli1 and phage Lambda2,3 over 50 years ago,. Their seminal work 
defined the individual units that ultimately determine the entire functioning of a cell. 
These transcriptional units consist of one or several genes under the control of an 
upstream promoter, which contains binding sites for RNA polymerase (RNAP) and 
transcriptional regulators, and is bounded by a downstream terminator4. The 
transcriptional regulators are proteins, which serve as receptors for signals from the 
external environment or the inside of the cell and transmit the signal information by 
changing their regulatory activity (usually through conformational changes). The 
presence or absence of regulatory proteins in a promoter region is then integrated in 
a manner resembling a logic unit to produce a specific transcription rate from the 
promoter.  

 

Since these early discoveries the picture of how transcription factors (TFs) regulate 
gene expression in a positive (activators)5 or negative (repressors) manner has 
become much clearer, but also much more complex6. The lac operon and the Lambda 
genetic switch are among the best characterized regulatory systems, but even those 
have revealed continuous surprises over the years7,8. Individual TFs can regulate gene 
expression by either hindering or helping RNAP binding or one of the following steps 
of transcription initiation, depending on their relative position in the promoter region: 
Repressors can hinder RNAP binding directly through steric occlusion at the promoter, 
or indirectly, obstructing the promoter through DNA looping or blocking activator 
binding. Activators on the other hand, can interact with RNAP in different ways (for 
example, by contacting the α-subunit or the σ-factor), or induce a conformational 
change in the promoter region9. Consequently, the mode of activation can differ from 
recruiting RNAP to its binding site to assisting the transition from closed to open 
complex formation, which precedes transcription initiation.  

 

At least three-quarter of the promoters in E. coli are regulated by TFs and most of 
these promoter regions generally contain several binding sites for one or more TFs. 
Hence, signal integration in a promoter region is often a complex interaction between 
several players. TF binding of the same species can moreover be facilitated by binding 
cooperativity and DNA loop formation10,11. Binding sites for different TFs in close 
vicinity or even overlapping one another can lead to competition and steric hindrance 
between them12,13, or speed up the dissociation from the binding site14. In addition, 
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there are also indirect mechanisms how regulatory proteins can affect transcription 
initiation from afar like induction of structural changes, polarity and strength changes 
in supercoiling15,16 or transcriptional interference from another promoter17.  

 

Most of the players in transcriptional regulation (DNA, RNA, proteins) are present at 
only a few copies per cell, introducing stochasticity into the process of gene regulation, 
leading to a surprising amount of phenotypic variation in clonal cell populations18. 
While noise in gene expression can be detrimental for individual cells by preventing 
precisely tuned responses, surprisingly, this noise can also provide a fitness advantage 
to cell populations19–22. Examples of beneficial noise include the stochastic expression 
of stress-related genes and bet hedging, meaning that a part of the population displays 
a phenotype suboptimal for the current environment but potentially advantageous in 
a future environment23. So far, most observations of phenotypic variability in clonal 
cell populations have been linked to stochasticity in transcription and translation, but 
the underlying molecular mechanisms often remain unclear23.  

 

Overall, the picture of gene regulation that arose in the last 50+ years exhibits many 
more nuances than originally expected - even considering just the ‘simplest’ 
organisms. Although the molecular regulatory mechanisms have been elucidated in 
detail in isolated systems, it remains to be explored how those mechanisms shape the 
dynamics and evolution of complex regulatory systems.  

 

1.2 From transcriptional units to networks 

Individual transcriptional units generally do not work in isolation within their host cells 
but are connected into larger motifs, which are again interwoven to form large gene 
regulatory networks. Those networks determine cellular complexity, structure and 
functioning, much more so than the number of genes does24. While the picture of 
molecular interactions in individual units is becoming ever clearer, the emergent 
behavior of regulatory networks remains largely mysterious.  

 

In order to simplify this daunting task, one approach is to break down the network 
into smaller building blocks, so-called network motifs25. One example of such motifs 
are autoregulatory circuits, where a TF controls its own expression directly or 
indirectly. However, even very simple genetic circuits generally do not allow for 
straightforward predictions of function just by looking at the wiring diagram, 
especially if they involve auto-regulation. Hence, even a limited number of 
components can result in a large diversity of complex behaviors depending on their 
connectivity and context26. This increasing complexity and unpredictability makes 
understanding gene regulatory networks a central quest in modern biology as it allows 
cells to respond and adapt to their environment in intricate ways.  
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A topic of specific interest in this context is the evolution of gene regulatory networks. 
Until now the main efforts have been put into finding global network properties that 
can describe their ability to physiologically and/or evolutionarily adapt. Two 
properties that have been discussed in depth in connection to network evolution are 
robustness and evolvability. One obstacle to unifying the results of different studies is 
the fact that both concepts have been defined in various ways and on various 
levels27,28. Accordingly, there has been some dispute on the apparent paradox that 
robustness (resistance to genetic change) has to be negatively correlated with 
evolvability (adaption in response to genetic change)29. This paradox has been 
addressed at the network level by different suggestions: i) network degeneracy: a 
partial overlap in the functioning of multi-functional components allows evolvability 
of a component while its degenerate counter-part still robustly fulfills its function30; 
or ii) the existence of neutral networks: genotype networks that code for the same 
phenotype make them robust but they also allow for a wide exploration of genotype 
space which makes them more evolvable as well, as they will eventually encounter 
new phenotypes31,32. However, a molecular understanding of these properties has not 
so far been accomplished.  

 

Regardless of these specific definitions for robustness and evolvability, regulatory 
networks seem to be extremely plastic with regard to their regulatory 
connections33,34, being able to tolerate a large amount of rewiring35. While several 
studies investigated the origin of gene duplications as catalyst for network 
rewiring36,37, on a mechanistic level network adaptation has to occur through local 
rewiring of regulatory connections38,39. Again, analyses have been generally 
performed at the network level or – as that can be a quite complex task experimentally 
– through computational studies, while the molecular-level analyses have received 
little to no attention, especially from an experimental point of view.   

 

1.3 Global cellular properties influence gene regulation 

While most regulatory networks are generally studied in isolation from the rest of the 
cell, we should not ignore that the cellular machinery and genomic background can 
have a significant impact on local promoter regulation as well. Several studies have 
shown for example that global cellular properties affect gene expression levels due to 
changes in growth rate or macromolecular crowding40,41.  

 

The cellular cytoplasm is crowded with proteins and up to 50% of the DNA is occupied 
by non-specifically bound proteins41. Hence, macromolecular crowding and non-
specific binding will both impact the DNA-target search of binding proteins41–43. TFs 
search for their binding targets through a combination of 3D-diffusion in the 
cytoplasm and 1D-sliding along the DNA44, where the latter generally would speed up 
search times as compared to pure 3D diffusion, but also can be hindered by non-
specific DNA binding41,42. Others suggest that non-specific binding does not affect the 
target search time significantly but rather the occupancy time at the target 
promoter45,46. Whether occupancy time is increased or decreased depends on the 
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mobility of the non-specifically bound protein (immobile or sliding)45. Immobile 
proteins on DNA can also lead to roadblocks for RNAP progression, thereby aborting 
the transcription process47. As roadblocks are dislodged with increasing efficiency for 
increasing TF dissociation rates, they might not form to a significant extent in the case 
of non-specific binding. Macromolecular crowding however can affect the association-
dissociation equilibria of TFs at their target binding sites, which in simple regulatory 
systems can lead to increased or decreased gene expression (for activators and 
repressors, respectively)46. In more complicated networks, like the phage Lambda 
genetic switch, crowding results in highly non-linear changes in binding strength and 
impacts network performance in a counter-intuitive manner46. Macromolecular 
crowding was also found to have a larger impact on specific - than non-specific - DNA 
binding, decreasing 3D-diffusion but aiding 1D-search dynamics43.   

 

Another global cellular effect on gene regulation is determined by cell growth itself. 
Depending on the environmental conditions, growth rates can vary substantially, 
which leads to changes in cell size and macromolecular composition48, as well as the 
number of chromosomes per cell49,50. Hence, growth rate affects gene expression 
indirectly by changing global cellular parameters like RNAP and ribosome abundance, 
gene copy number and protein dilution40. Increasing growth rates will lead to higher 
amounts of transcripts per cell for constitutively expressed genes but at the same time 
lower protein densities due to the strong increase in cell volume, for example. The 
effect of growth rate on gene expression depends on the details of promoter 
regulation, however, showing differences between activation and repression as well 
as for systems with cooperativity. Networks characterized by a bistable behavior can 
even exhibit qualitatively different behavior40.  

 

Gene regulation in bacterial cells is therefore critically influenced by constraints due 
to other cellular proteins and the background DNA, as well as the available 
transcriptional machinery, which is dictated by growth rate effects.  

 

1.4 Mathematical models of gene regulation 

Modeling approaches  

Since the first experimental explorations of gene regulation, mathematical modeling 
has proven to be a useful and complementary tool to gain insight into mechanisms 
driving gene expression processes51,52. Models allow a precise description of 
regulatory interactions and systematic derivations of quantitative and qualitative 
network behavior, thereby providing powerful predictions and biological insights. 
Increases in genomic information and computational power in the last decades has 
spurred the development of an array of modeling approaches, varying in their 
mathematical complexity and biological detail53,54. Four of the most commonly 
employed model classes for gene regulation are: Boolean models, thermodynamic 
models, differential equation models and stochastic models54.  
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Boolean models54 

Boolean models rely on simplistic representations of complex biochemical networks 
by describing regulatory processes as logic gates and classifying the entities of the 
system using two states (‘on’ or ‘off). Accordingly, these models do not require 
quantitative details of the system under investigation, making them easy to 
implement, analyze and interpret. Despite their simplicity, they have been employed 
successfully in many instances and can provide fundamental insights into underlying 
processes - in some cases coming even close to the accuracy achieved by more 
complex differential equation models55. Boolean models were for example applied to 
study 12 variants of the lac promoter, finding that few mutations were sufficient to 
significantly change the logic type of the input function56. 

 

Generally, this type of model provides a good starting point for investigations into 
networks that have been poorly studied experimentally, but they can give wrong or 
inaccurate predications if the network structure and concentrations of the molecular 
players are of importance.    

 

Thermodynamic models54 

Thermodynamic models make use of detailed knowledge of biophysical system 
parameters to predict gene expression levels from the combination of binding sites in 
the promoter region. One of the main assumptions of these models is that the 
prediction of gene expression can be replaced by calculating the probability of RNAP 
being bound to the promoter - which is increased by activator binding and decreased 
by repressor binding - from the equilibrium DNA occupancy of the involved binding 
proteins.  

 

As a first step, all the possible system states (binding configurations of the involved 
TFs) have to be enumerated and their statistical mechanical weights (Boltzmann 
weights) assigned. The weights are determined by the concentrations of the involved 
TFs and their binding affinities to specific or non-specific DNA sequences. Cooperative 
and competitive interactions between TFs can be incorporated by modifying the 
Boltzmann weights. In a second step, the probability of RNAP being bound is obtained 
by summing the Boltzmann weights of all states where RNAP is bound and dividing it 
by the sum of all possible weights57. Even though these modeling approaches neglect 
processes that occur downstream of TF-DNA binding, they have proven to be very 
successful in diverse contexts from prokaryotic to eukaryotic regulatory networks. 
Application of a thermodynamic model to the Lambda phage genetic switch for 
example led to the suggestion that the involved repressors are non-specifically bound 
most of the time58. However, one major shortcoming of thermodynamic models is that 
they cannot capture temporally evolving dynamics of a system. 

 

Another crucial concern for the suitability of these types of models concerns the 
second main assumption; namely that the promoter system is in equilibrium. The 
validity of this assumption can be judged by considering the timescales of processes 
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involved in regulation compared to those of transcription initiation at the promoter. 
If those timescales are clearly separated (regardless of which constitutes the fast and 
which the slow process), then the equilibrium binding probability will provide a good 
approximation for gene expression from this promoter. For example, the assumption 
is fulfilled if equilibration of TF binding states at the promoter is much faster than the 
protein transcription and degradation rates. However, the validity of equilibrium for 
promoter regulation has been experimentally challenged by showing that the lac 
repressor stays bound at its operator for several minutes8. More generally, many cell 
decisions seem to be determined by transient transcriptional dynamics rather than 
steady state59–62. The prevailing focus on steady state behavior - which is a feature of 
many mathematical models in gene regulation, not only thermodynamic models - 
might limit the phenotype space that can be studied and ignore biologically relevant 
mechanisms.  

 

Differential equation models54 

Differential equation models describe the time (or space) progression of biochemical 
species (e.g. mRNA and proteins) through a defined set of rules. These rules are 
inferred from chemical reaction equations and define how each species evolves over 
time as a function of other system components and the corresponding reaction rates. 
These types of models can also be combined with thermodynamic models: 
Thermodynamics are used to describe the details of protein-DNA interactions, 
whereas the time progression of proteins and RNA is described by the differential 
equations. This approach has been used for many prokaryotic promoter systems, for 
example the phage Lambda genetic switch51,63 and the lac operon64, to elucidate the 
emergence and stability of bistable systems. 

 

One limitation of this type of models is the often large number of parameters that 
must be accounted for. This makes the approach unsuitable for poorly characterized 
systems and poses the danger of overfitting. Accordingly, the model fit might deliver 
good results but still miss important biological implications. Moreover, this leads to a 
computational challenge as even moderately complex networks can lead to an 
explosion of parameters if they are investigated in detail. Consequently, differential 
equation models are often not as fine-scaled as it is possible with thermodynamic 
models. Nevertheless, as they are well-suited to capture the dynamics of biological 
systems, while still allowing for a reasonable amount of detail, they provide a unique 
trade-off between molecular accuracy and temporal (spatial) evolution.  

 

Stochastic models65,66 

Stochastic models constitute the model class of highest complexity as they are able to 
capture stochasticity in gene expression as well as the full system dynamics. These 
models provide the full probability distributions of mRNA and proteins (as compared 
to only mean values in the previous model classes) as a function of time by solving 
either Langevin or Chemical Master equations.  
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Stochastic system descriptions tend to be very complicated even for simple systems, 
containing a large number of parameters. This also makes these models 
computationally expensive and hard to solve.  

 

1.5 Design principles of regulatory architecture 

A key challenge in understanding gene regulatory networks is the search for universal 

design principles that link biological function in a direct manner to a given DNA 

sequence67. It is still unclear how much of the diversity in biological designs that we 

observe in nature is due to ‘historical accident’ or due to a set of design rules that 

remain yet to be found4. Although we are still far from determining a predictive set of 

design principles, several studies give hope that there are network features, which 

have not come about by random accidents.  

 

Comparisons to random models have revealed architectural design that are 

overrepresented in prokaryotic genomes. Increasing genomic information has 

revealed that most promoters are regulated by more than one TF, yet overall they are 

less heavily regulated than would be expected13. Moreover, many of the binding sites 

in co-regulated promoter regions overlap one another, hinting at an advantage of TF 

competition in gene regulation. Indeed, TF competition has been found to enhance 

the capacity of signal integration12 and maximize information flow in signaling 

networks68. Generally, promoter architecture – meaning the arrangement, strength 

and multiplicity of operators - crucially determines noise in gene expression69. At a 

higher level, the overrepresentation of certain network motifs25 – network building 

blocks of a specific regulatory connectivity – suggests that certain constraints are 

acting on their design.   

 

Different roads have been taken to map out these design principles on different layers 
of the network architecture: General rules on the energetic bounds of specific TF-DNA 
binding have been drawn from constraints of the genomic background24. Similarly, 
optimizing information transmission in the face of transcriptional noise sets 
limitations on how genes are regulated22. High-throughput measurements have also 
spurred a wealth of studies trying to predict binding affinities of TFs, but the common 
divergence between in vitro and in vivo promoter occupancy in these approaches 
shows that there are important aspects missing70. Interactions between closely bound 
TFs and sequence context are possible candidates for these missing features, but even 
though our understanding in that regard is constantly increasing, there are no general 
design rules to be discerned so far. On the next level, rules for how individual 
transcriptional units are combined into small networks, called network motifs, are 
being studied mostly through computational studies as well as synthetically built 
networks67. These studies indicate that there is a finite space of solutions for a given 
target function, with only a handful of critical parameters determining design. 
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However, there are still various ways to implement a certain circuit diagram, and 
architecture alone is not enough to specify function67. A first step was taken to 
connect these motifs to cellular decision-making by studying them as dynamical 
systems and defining motifs as functional modules71. Combinations of different motifs 
however, can lead to behavior that is not easily anticipated by summing up the 
individual behaviors72.  

 

Most approaches at finding general design rules have focused on beneficial or 
overrepresented network features. Yet, instead of asking: ‘Why are we observing 
certain types of regulatory structures?’ it might be even more informative to ask, ‘Why 
are we not observing other types?’, meaning that it is worth focusing more on the 
constraints that limit the phenotypic space of regulatory systems. At the most 
fundamental level, this space will be delimited by the molecular interactions between 
regulatory components and the selection pressures acting upon them.  

 

1.6 Biophysical constraints on regulatory architecture 

Cellular behavior and adaptation arise from the timing and regulation of gene 
expression. Gene regulation on the other hand is crucially shaped at the molecular 
level by biophysical characteristics of protein-protein and protein-DNA interactions. 
By combining experiments with synthetic transcriptional systems and mathematical 
modeling, we will study how regulatory architecture is constrained through those 
biophysical characteristics. Specifically, we will investigate how molecular interactions 
shape regulatory connectivity, regulatory crosstalk, and gene expression dynamics, 
thereby ultimately delimiting the regulatory design space upon which selection can 
act. 

 

1.7 A brief overview 

Chapter 2 

We investigate the mechanistic basis of rewiring gene regulation at a local level, 
meaning changes in connectivity between TFs and their target promoters, which 
drives gene regulatory network evolution, but has been neglected so far. A 
combination of well-known molecular systems and a simple thermodynamic model 
allows us to dissect the contribution of individual parameters to local rewiring. The 
results highlight that only a few, inherent biophysical properties of individual network 
components – TFs – crucially determine the potential for evolutionary changes. 

 

Chapter 3 

Regulatory rewiring between two promoters can lead to binding sequences that have 
substantial affinity for both repressors. We explore the consequences of molecular 
binding crosstalk between two related repressors at several mutated promoters. The 
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presence of a second repressor can lead to a counter-intuitive increase in promoter 
repression over repression achieved by increasing the concentration of the focal TF. A 
simplified thermodynamic model suggests the importance of global competition at 
non-specific binding sites between the two repressors in explaining this phenomenon. 

 

Chapter 4 

In temperate phages crosstalk between their repressors is directly related to 
organismal fitness. We explore the potential consequences of repressor crosstalk on 
phage lifestyle decisions and fitness.  

 

Chapter 5 

We study the impact of non-specific TF binding to background genomic DNA on 
cellular fitness. Certain growth conditions - which are relevant in natural bacterial 
environments - show a significant growth arrest in the presence on non-specific TF 
binding. This effect seems to be dependent on TF concentration, non-specific binding 
strength and binding cooperativity, as well as DNA concentration; possible putting 
global cellular constraints on gene regulatory parameters and horizontal gene 
transfer.  

 

Chapter 6 

Competition between transcription factors in a promoter region due to closely spaced 
binding sites is a common architecture at prokaryotic promoters, yet the implications 
of this architecture for signal integration remain largely unexplored. We investigate 
the importance of signal arrival timing and ordering at a promoter with two inputs and 
find substantial history-dependence in gene expression over several hours. 
Accordingly, we employ a differential equation model combined with a 
thermodynamic description of protein-DNA binding and protein-protein interactions 
to elucidate the underlying mechanisms. Interference between TFs at their binding 
sites seems to be a previously unrecognized means to encode memory in gene 
regulation and to produce gene expression variability that is not caused by 
stochasticity.  
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2. Evolutionary potential of transcription factors for gene regulatory 
rewiring 

 

The following chapter has been published in Nature Ecology& Evolution: 
Igler, C., Lagator, M., Tkačik, G., Bollback, J. P. & Guet, C. C. Evolutionary potential of 
transcription factors for gene regulatory rewiring. Nat. Ecol. Evol. 2, (2018). 

2.1 Abstract 

Gene regulatory networks evolve through rewiring of individual components, that is, 
through changes in regulatory connections. However, the mechanistic basis of 
regulatory rewiring is poorly understood. Using a canonical gene regulatory system, 
we quantify the properties of transcription factors that determine the evolutionary 
potential for rewiring of regulatory connections: robustness, tunability, evolvability. 
In vivo repression measurements of two repressors at mutated operator sites reveal 
their contrasting evolutionary potential: while robustness and evolvability were 
positively correlated, both were in trade-off with tunability. Epistatic interactions 
between adjacent operators alleviated this trade-off. A thermodynamic model 
explains how the differences in robustness, tunability and evolvability arise from 
biophysical characteristics of repressor-DNA binding. The model also uncovers that 
the energy matrix, which describes how mutations affect repressor-DNA binding, 
encodes crucial information about the evolutionary potential of a repressor. The 
biophysical determinants of evolutionary potential for regulatory rewiring constitute 
a mechanistic framework for understanding network evolution.  

 

2.2 Introduction 

From the seminal discovery of repression and activation as the basic mechanisms of 
gene regulation1,73, a fundamental picture has emerged where individual regulatory 
components - promoters and transcription factors (TFs) - are interconnected into gene 
regulatory networks (GRNs): global structures that determine cellular gene expression 
patterns. However, a mechanistic understanding of how GRNs evolve is still lacking. 
GRN evolution can be studied at two opposing levels of organization: (i) global 
emerging features of GRNs, such as functional redundancy, which can promote 
changes in network structure30, or (ii) local rewiring, which leads to the formation of 
new regulatory connections within GRNs38. The principles of GRN evolution have been 
primarily studied globally, at the level of entire networks, through comparative 
genomic analyses34,38 or in silico74,75, in order to understand how global network 
features determine evolutionary properties like robustness76 (phenotypic persistence 
in the face of mutation), tunability77 (changes in gene expression levels), and 
evolvability28 (capacity to acquire new regulatory connections). Yet, GRN structures 
can change solely through making and breaking of connections at the molecular level, 
that is, through local rewiring of individual components33,35,39,78–80. However, how 
characteristics of individual regulatory components impact GRN evolution by 
determining robustness, tunability and evolvability is unknown. 
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Local network rewiring, i.e. changes in the binding specificity of a TF, involves loss of 
binding, gain of binding and modifications in the strength of binding, which occur 
either through mutations in TFs or in DNA-binding sites of TFs (operators). Most 
experimental studies on network rewiring focused on mutations in proteins81 or on 
the consequences of gene duplication events36,37,82, showing that TF divergence 
affects GRN evolution83. However, in contrast to mutations in operators84–86, 
mutational pathways of TFs are thought to be heavily constrained by epistasis 
between amino acids87, the high frequency of deleterious mutations88 and the strong 
pleiotropic effects of TFs89, suggesting that operators are superior targets for 
modifying existing and acquiring novel network connections.  

In contrast to previous studies on promoter evolution, which considered promoters 
independently of the associated TFs86,90–92, we want to understand how the properties 
of a TF determine its evolutionary interactions with operator sites. To achieve this, we 
define the evolutionary potential for local rewiring with respect to point mutations in 
an operator, thus characterizing the evolutionary potential for an individual network 
component that does not itself change: the repressor. We combine three distinct 
properties, which have been previously used to describe network rewiring35,93,94, to 
define the evolutionary potential of a repressor as the ability (i) to withstand operator 
mutations (robustness), (ii) to modify the strength of binding to existing operators 
(tunability), and (iii) to acquire binding to new operators (evolvability) (Fig. 2.1a). Using 
two of the best understood prokaryotic repressors - Lambda CI and P22 C2 - we study 
how characteristics of individual TFs determine the evolutionary potential for 
regulatory rewiring. 

 

2.3 Results 

Experimental system for quantitative measurements of evolutionary potential  

We used homologous95 elements of the bacteriophage Lambda and P22 genetic 
switches2,96. Specifically, we used Lambda CI and P22 C2 repressors, along with their 
respective PR promoter regions. The PR promoter region consists of RNA Polymerase 
(RNAP) binding sites and two operators, OR1 and OR2, which regulate PR expression 
through cooperative repressor binding (Fig. 2.1b). We experimentally studied changes 
in gene expression, and hence binding of the repressors, along the mutational path 
between the two promoters by directionally mutating the operator sequence of one 
repressor to that of the other (Fig. 2.1c). Throughout, we refer to systems containing 
matching (non-matching) repressors and promoters as cognate (non-cognate) (Fig. 
2.1b). We created a library of OR1 operator mutants by selecting all base pairs known 
to have large impact on repressor binding97,98, and that differed between Lambda and 
P22 OR1 sequences, resulting in six mutated positions (Fig. 2.1d, Table 
2.1).Subsequently, we also investigated mutations in OR2, even though repressor 
binding to this operator is considered to have only a minor direct impact on PR 
repression2. All mutants were cloned into a very low copy number plasmid99 and 
fluorescence as a proxy for PR expression levels was measured in the presence and 
absence of repressor. This setup, which measures binding of two repressors along the 
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mutational path between the two operators, allowed us to study in a comparative 
manner how the evolutionary potential for regulatory rewiring depends on repressors 
themselves. 
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Figure 2.1. Experimental investigation of evolutionary potential of a repressor.  

a) Mutations (indicated by ‘x’) in the cognate operator can either have no effect on 
repressor binding (robust); alter repressor binding (tunable); or remove repressor 
binding (not shown). Mutations in the non-cognate site can either have no effect on 
repressor binding (not evolvable); or lead to gain of repressor binding (evolvable). 
Together, robustness, tunability and evolvability describe the evolutionary potential 
for regulatory rewiring. b) The synthetic template consists of a repressor controlled by 
an inducible Ptet promoter, and a strong PR promoter - containing two repressor 
operators (OR1 and OR2) and the RNA Polymerase (RNAP) binding sites - that controls 
the expression of a fluorescence marker venus-yfp. c) An increasing number of 
mutations (blue) are introduced into the cognate operator (orange) of repressor A. The 
thickness of the blunt-ended arrows indicates the strength of repression. d) Homology 
alignment of Lambda and P22 OR1 and OR2, showing mutated sites in bold. Arrows show 
OR1 base pairs that were exchanged. The dashed arrow marks an additional site that 
was used to construct four cognate Lambda mutants, as one of the original positions 
abolished RNAP binding (Table 2.1). 

  

Evolutionary potential of repressors 

To characterize the evolutionary potential of the two repressors, we experimentally 
measured their robustness, tunability and evolvability in terms of how repressor 
binding is affected by operator mutations. Robustness and tunability were quantified 
on the cognate promoter background. Robustness was the fraction of cognate 
operator mutants that maintained at least 90% repression. Tunability was the 
standard deviation in repression levels when repression was reduced but not 
completely lost (90-10%). From these definitions, it does not follow that robustness 
and tunability are necessarily negatively correlated: the expression variability 
(tunability) generated by non-robust mutations can be either large or small. 
Evolvability was the fraction of non-cognate operator mutants that could be repressed 
to at least 10%.  

 

Lambda CI and P22 C2 have drastically different evolutionary potential (Fig. 2.2a), in 
spite of their shared ancestry95. These differences are particularly evident when 
considering the relationship between repression and the number of mutations in the 
operator (Fig. 2.2b). The high Lambda CI robustness to up to three mutations is 
surprising, since the OR1 site is almost fully conserved across at least twelve different 
lambdoid phages100. As this site is part of a complex promoter region in the phage, it 
could be conserved due to binding of RNAP or the second repressor in the switch (Cro). 
In contrast to Lambda CI, one to three mutations in the P22 cognate OR1 site led to a 
wide range of repression (0-100%).  

 

At the non-cognate site, even introduction of single point mutations in P22 OR1 led to 
repression of at least 35% by Lambda CI (Fig. 2.2c). Gain of binding to the non-cognate 
site was much less frequent for P22 C2, and, except for one mutant, the range of 
repression was 0-20%, markedly lower than the 10-90% of Lambda CI (Fig. 2.2c).  
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Overall, Lambda CI had higher robustness as well as evolvability, suggesting that a 
repressor that is more robust to mutations in its cognate operator might also more 
readily acquire novel binding sites. At the same time, P22 C2 was more tunable, 
indicating a trade-off between robustness and tunability. The consistently stronger 
binding of Lambda CI compared to P22 C2 suggests that the evolutionary potential for 
regulatory rewiring is a property of the repressor, not of the operator.  

 

 

 

 

Figure 2.2. Lambda CI and P22 C2 have different evolutionary potential.  

a) Robustness, tunability and evolvability of Lambda CI and P22 C2. b) Loss of binding 
was determined by mutating away from the cognate site, making it more similar to 
the non-cognate site. The dotted line shows the 90% repression threshold used to 
evaluate robustness. c) Gain of binding was determined by mutating away from the 
non-cognate site making it more similar to the cognate one. The dotted line shows the 
10% repression threshold for evolvability. Expression levels in the absence of repressor 
are shown in Table 2.2. Mutants that abolished RNAP binding are not shown, resulting 
in a different number of mutants in b) and c). Points show mean percent repression 
over three replicates, bars are standard errors of the mean. Lambda is orange, P22 is 
blue. Binding to the wild type cognate or non-cognate site is shown by a dark orange 
point.  

 

Thermodynamic model of evolutionary potential  
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In order to expand on the experimental findings and identify how evolutionary 
potential depends on the biophysical system parameters, we used a thermodynamic 
model of gene regulation51,57 (Fig. 2.3a). While experimentally we determined the 
general trends underlying the evolutionary potential of the two repressors by 
introducing mutations in a directional manner, we used the model to comprehensively 
explore all possible mutations in the six selected OR1 positions.  

 

The model — for which all parameter values except repressor concentrations were 
taken from literature (Table 2.3, Fig. 2.4) — accurately reproduced experimental 
observations in cognate mutants (Fig. 2.5). The poor model fit to non-cognate mutants 
is not surprising, as the model assumption of independent contribution of each 
position to the overall binding energy is known to be violated when mutated far away 
from the wild type sequence101. Nevertheless, the use of the model is justified 
because: (i) the model performs comparably for both repressors (Fig. 2.5), (ii) it 
provides a lower bound for the experimentally measured non-cognate repression, and 
(iii) only modest improvements are achievable by accounting for dinucleotide 
dependencies102,103. 

.  

We simulated binding to all possible mutants at the six chosen positions (4095) and 
quantified the evolutionary potential of repressors: for tunability and evolvability we 
used the same definitions as in the experiments (Fig. 2.3b,c), but calculated them 
separately for each mutant class. We used a standard definition to quantify robustness 
in our simulations76 (see Methods), which we could not apply to the experimental 
measurements due to the insufficient number of mutants connected by single 
mutations. Importantly, applying the experimental definition of robustness to the 
simulations identified consistent differences in robustness (51.9% for Lambda CI and 
0.3% for P22 C2). Overall, model simulations corroborated the experimentally 
determined differences in the evolutionary potential of the two repressors: Lambda 
CI was more robust and more evolvable than P22 C2, but less tunable for up to three 
mutations (Fig. 2.3d).  
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Figure 2.3. Thermodynamic model of gene expression.  

a) Gene expression is determined by: intra-cellular concentration of (i) repressor, and 
(ii) RNAP; iii) cooperativity of binding between two repressor dimers; iv) binding energy 
to the wild type operator (offset EWT); and v) additional contribution of each mutation 
to the binding energy (energy matrix). Negative (positive) entries in the energy matrix 
show mutations that decrease (increase) binding energy, and hence increase 
(decrease) repression. Zero values denote the wild type sequence. b), c) The sigmoidal 
relationship between binding energy and repression, determined by the 
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thermodynamic model, provides quantitative definitions of robustness, tunability and 
evolvability. d) Comprehensive simulation of repression for all possible mutations in 
the six chosen positions in OR1.  

 

 

Figure 2.4. Cellular concentrations of the two repressors are 3-6 fold different.  

Gel electrophoresis image of a Western blot used to calculate relative cellular 
concentrations of Lambda CI and P22 C2. Western blot was carried out in the presence 
of the system inducer, aTc. The left-most lane shows the molecular weight marker. The 
first visible band above the boxed bands shows the reference gene by which the values 
for Lambda CI and P22 C2 concentration were normalized. Red boxes mark Lambda CI 
bands; blue boxes mark P22 C2 bands. We calculated the relative difference in 
concentrations of the two repressors at full concentration and in a 2x dilution. Lambda 
CI had a higher cellular concentration by a factor of 3.8 at full concentration, and of 
5.5 at 2x dilution. 
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Figure 2.5. Model-to-data fit for OR1 mutant library.  

Linear regression between experimental and model-derived percent repression of each 
experimentally tested OR1 mutant (from Fig. 2.1d) is shown for: a) Lambda cognate 
mutants; b) P22 cognate mutants; c) Lambda non-cognate mutants; and d) P22 non-
cognate mutants. Lambda is orange, P22 is blue. The model accurately describes 
binding of both repressors to their cognate sites (left side panels), but tends to 
underestimate their binding to non-cognate sites as the simulation values are 
generally lower than the experimental values (right side panels). Previously 
determined offset and energy matrices for Lambda CI97 and P22 C298, as well as the 
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strength of cooperativity between repressor dimers12 were used in the model. Only the 
repressor concentrations were fitted from the data. The good fit for cognate mutants 
suggests a general agreement with previously published experimentally determined 
binding energies97,98.   

 

To confirm that the observed differences in evolutionary potential did not arise from 
the specific operator sites used in this study, we simulated evolvability of both 
repressors to 106 random operators. We found that Lambda CI bound a consistently 
higher portion of random sites (Fig. 2.6) irrespective of repressor and RNAP 
concentration, further supporting the view that evolutionary potential is a property of 
the repressor, not the operator.  

 

 

Figure 2.6. Evolvability on random operator sequences.  

Repression by Lambda CI and P22 C2 was modeled on 1 million random 17 or 18 base 
pair operator sequences in the lac operon promoter region, for which the repressor 
operator does not overlap with the RNAP binding site. Binding energies were 
calculated for random operators using Lambda and P22 energy matrices and for RNAP 
using the energy matrix from Kinney et al., 2010117. Lambda CI bound a higher portion 
of random sequences than P22 C2, irrespective of repressor (a,c) or RNAP 
concentrations (b,d), indicating an inherent difference in the evolvability of the two 
TFs. 

 

The thermodynamic model identifies several system parameters that affect the 
evolutionary potential of a repressor (Fig. 2.3a): (i) intra-cellular conditions, i.e. 
concentrations of repressor and RNAP, (ii) interactions arising from the promoter 
architecture, which in our system enable cooperative repressor binding, and (iii) 
intrinsic binding characteristics of the repressor itself. Repressor-specific binding 
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characteristics are captured in the total binding energy, Etot, which is determined by 
the strength of repressor binding to its wild type operator (called ‘offset’, or EWT), to 
which the effect of each mutation on binding is added, as defined by the ‘energy 
matrix’ (Eseq), so that Etot = EWT + Eseq. Hence, the ‘offset’ captures the overall 
propensity of a repressor to bind cognate DNA, while the ‘energy matrix’ describes 
how operator mutations affect repressor binding.  

 

 

Figure 2.7.  System parameters determine evolutionary potential.  

a) Correlation between each evolutionary property and a given system parameter: ‘+’ 
indicates a positive correlation; ‘-‘ a negative correlation; ‘0’ a negligible effect; and ‘*’ 
a non-linear relationship. Lambda CI is orange, P22 C2 is blue. b) We swapped 
parameter values of repressor concentration, cooperativity and offset from one 
repressor to the other. ‘Fraction of variance explained’ (R2) was calculated between 
the repressor with swapped parameter(s), and the other repressor with its original 
parameters. R2 is shown as the grey portion of the pie charts: the fuller the pie chart, 
the more similar the evolutionary property between the two repressors. Starting from 
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the original parameter values, each of the three parameters was swapped individually, 
and all three simultaneously. 

 

 

Figure 2.8. Robustness depends on repressor and RNAP concentrations as well as on 
cooperativity.  

Points are mean robustness for all mutants with a given number of mutations, with 
colors indicating the mutant class. Bars are the variance of the mean frequency of 
neutral mutations for a given mutant class. a) Effect of CI concentration on Lambda CI 
robustness; b) Effect of RNAP concentration on Lambda CI robustness; c) Effect of 
cooperativity on Lambda CI robustness; d) Effect of C2 concentration on P22 C2 
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robustness; e) Effect of RNAP concentration on P22 C2 robustness; f) Effect of 
cooperativity on P22 C2 robustness. Each line connects mean robustness across mutant 
classes for a given parameter value. Cooperativity values are given in kcal/mol. CI and 
RNAP concentration are given as x10-6M. The parameter values for cooperativity and 
concentrations that were used in the model are bolded. 

 

 

Figure 2.9. Tunability depends on repressor and RNAP concentrations as well as on 
cooperativity.  
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Points are tunability values for a given mutant class. Colors indicate the mutant class. 
a) Effect of CI concentration on Lambda CI tunability; b) Effect of RNAP concentration 
on Lambda CI tunability; c) Effect of cooperativity on Lambda CI tunability; d) Effect of 
C2 concentration on P22 C2 tunability; e) Effect of RNAP concentration on P22 C2 
tunability; f) Effect of cooperativity on P22 C2 tunability. Each line connects tunability 
measures across mutant classes for a given parameter value. Cooperativity values are 
given in kcal/mol. CI and RNAP concentration are given as x10-6M. The parameter 
values for cooperativity and concentrations that were used in the model are bolded. 

 

 

Figure 2.10. Evolvability depends on repressor and RNAP concentrations.  

Points are evolvability values for a given mutant class. Colors indicate the mutant class. 
a) Effect of CI concentration on Lambda CI evolvability; b) Effect of RNAP concentration 
on Lambda CI evolvability; c) Effect of C2 concentration on P22 C2 evolvability; d) Effect 
of RNAP concentration on P22 C2 evolvability. Each line connects evolvability measures 
across mutant classes for a given parameter value. Cooperativity values are given in 
kcal/mol. CI and RNAP concentration are given as x10-6M. The parameter values for 
cooperativity and concentrations that were used in the model) are bolded. 

 

Repressor and RNAP concentrations, as well as binding cooperativity, influence 
robustness, tunability and evolvability to different degrees, though not always in a 
straightforward manner (Fig. 2.7a; Fig. 2.8, 2.9, 2.10). As such, the evolutionary 
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potential for rewiring depends on intra-cellular conditions that change with cellular 
physiology104, and on the promoter architecture that can determine binding 
cooperativity. Experimental measurements of relative repressor concentrations 
revealed 3.8 to 5.5-fold higher intracellular Lambda CI levels (Fig. 2.4). Reassuringly, 
the difference in evolutionary potential between repressors was consistently 
identified across a range of repressor and RNAP concentrations, making the model 
results largely independent of uncertainty in these parameters (Fig. 2.11).  

 

 

Figure 2.11. Various concentration values show the same differences in repression 
values between the two repressors.  

Points are mean repression values from model simulations for all mutants with a given 
number of mutations (colors indicate the mutant class) for a) Lambda cognate 
mutants; b) P22 cognate mutants; c) Lambda non-cognate mutants; and d) P22 non-
cognate mutants. Each line connects mean repression across mutant classes for a 
given concentration value, which are given as x10-6M. Standard errors of the mean are 
not shown, as they were smaller than the points indicating mean repression values.  

 

Biophysical determinants of evolutionary potential 

We asked if it was possible to reconcile the differences in the evolutionary potential 
between Lambda CI and P22 C2 by swapping their model parameters. Specifically, we 
calculated robustness and tunability for one repressor after swapping either repressor 
concentration or cooperativity with the parameter values of the other repressor. For 
evolvability, we only swapped repressor concentration, since the absence of a cognate 
OR2 site prevented cooperative binding.  
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Swapping either repressor concentration or cooperativity between Lambda CI and P22 
C2 decreased the differences in robustness and evolvability, but still left a disparity in 
robustness, tunability and evolvability of at least 50% (Fig. 2.7b). Therefore, intrinsic 
binding characteristics of repressors - the offset and the energy matrix - crucially 
determine their evolutionary potential, as previously found for the regulation of the 
lac promoter105. When we swapped the offset between the two repressors, we found 
that the effect was comparable to the effects of swapping either repressor 
concentration or cooperativity. Notably, swapping all three parameters did not lead 
to a full reconciliation between the two repressors (Fig. 2.7b), indicating that the 
energy matrices accounted for the remaining differences of at least 30% (except for 
robustness when swapping from P22 C2 to Lambda CI).  

 

 

Figure 2.12. Biophysical determinants of the evolutionary potential.  

a) Generic definitions of robustness, tunability and evolvability that utilize only the 

offset and the energy matrix. 𝑅𝑜𝑏 =
𝐸1/2−𝐸𝑊𝑇

𝑚
 and 𝐸𝑣𝑜 =

𝐸1/2−𝐸𝑟𝑎𝑛𝑑𝑜𝑚

𝑚
= 𝑅𝑜𝑏 +

#𝑚𝑢𝑡, where E1/2 is the binding energy at half repression (which equals the chemical 
potential, μ), Erandom is the typical binding energy to a random sequence, m the average 
mutational effect size, and #mut the distance of the random sequence to the cognate 
operator in number of mutations (see Methods). Evolvability is negative as mutations 

towards E1/2 improve binding. 𝑇𝑢𝑛 = (𝜎 ∗
𝑑 𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝑑 𝑏𝑖𝑛𝑑𝑖𝑛𝑔 𝑎𝑓𝑓𝑖𝑛𝑖𝑡𝑦
|𝐸1/2)/𝑅𝑜𝑏, where σ is the 

standard deviation of the energy matrix and 
𝑑 𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝑑 𝑏𝑖𝑛𝑑𝑖𝑛𝑔 𝑎𝑓𝑓𝑖𝑛𝑖𝑡𝑦
|𝐸1/2  the slope of the 

sigmoid curve at E1/2. The table shows the values for robustness, tunability and 
evolvability for the experimental systems (Fig. 2.1b). Here, we calculated evolvability 
for the non-cognate sites of Lambda CI and P22 C2. b) Locations of Lambda CI and P22 
C2 binding to three categories of operators (EWT, Enon-cognate, Emax) are indicated by large 
symbols on the sigmoidal curve relating binding energy and repression. Repressor 
concentrations are kept equal. Small symbols show mean energy values obtained 
through model simulations for different mutant classes (1 – single, 2 – double, etc) 
when mutating the cognate (crosses) or the non-cognate (circles) operators. 
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To better understand the mechanism by which intrinsic binding characteristics of a 
repressor (offset and energy matrix) determine the differences in the evolutionary 
potential, we developed an intuitive and generic description of robustness, tunability 
and evolvability based on the sigmoidal curve relating repressor binding energy to 
repression (Fig. 2.12a). The formulas in Figure 2.12a describe the evolutionary 
potential in terms of the offset and the energy matrix, rather than using the full 
thermodynamic model. Robustness is the average number of mutational steps needed 
to lose 50% of repression. Evolvability is the average number of mutational steps 
necessary to gain 50% of repression starting from a given random sequence. Tunability 
is the ease of generating variation in gene expression levels, i.e. the variation in 
repression around the half-repression point, defined in relation to the distance 
between this point and the cognate operator (Fig. 2.12a).   

 

Adopting these generic definitions results in simple analytical expressions (Fig. 2.12a), 
which show that robustness and evolvability are positively correlated through the 
number of mutations that separate the given random sequence from the cognate 
operator. This correlation holds true as long as: (i) the average mutational effect size 
(m) is relatively small and similar between repressors – which is a reasonable 
assumption in general because the scale of m is set by the energetics of hydrogen 
bonds (1-3 kcal/mol)24, but also an assumption that is specifically testable for any 
particular set of TFs for which the energy matrices are known; and (ii) the energy 
matrix is a fixed property of a repressor, meaning that m stays constant when 
mutating towards a random non-cognate site. Tunability, on the other hand, is in a 
trade-off with robustness, although the dependence of tunability on the standard 
deviation of mutational effects suggests that this relationship can be adjusted to some 
extent.  

 

Applying these generic definitions to the systems used in this study, we observe higher 
robustness and evolvability, but lower tunability for Lambda CI (Fig. 2.12a). To 
illustrate that these generic definitions are in accordance with the binding landscape 
obtained through model simulations, we used the simplest model setup where 
repressors bind only a single operator site and repressor concentrations are the same. 
We selected three operator sequences for each repressor - the cognate (EWT), the non-
cognate (Enon-cognate), and the weakest binding (Emax) sequence - computed their 
binding energies, and positioned them on the sigmoidal repression curve.  

 

The consistently stronger binding of Lambda CI to all three types of operators (Fig. 
2.12b) arises from its lower offset (-13.2 kcal/mol, compared to -12 kcal/mol for P22 
C2) and smaller average mutational effect size (1.23kcal/mol, compared to 
2.43kcal/mol for P22 C2). Positioning the mean binding energy of each mutant class 
(Fig. 2.2) on the sigmoidal curve (hence not using the full model but only the offset 
and the energy matrix) allowed accurate predictions of the experimental 
measurements, at least for cognate sites (Fig. 2.13). Therefore, the lower offset of 
Lambda CI places it further away from the slope of the repression curve (Fig. 2.12b), 
resulting in higher robustness, but lower tunability. Similarly, Lambda CI binds the 
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non-cognate operator, all of its mutants, and even the operator sequence with 
weakest possible binding more strongly (Fig. 2.12b), illustrating that, on average, 
Lambda CI binding a random sequence will be closer to the rise of the sigmoidal curve 
and hence, more evolvable.  

 

 

Figure 2.13. OR1 mutant fit between mean repression values obtained from the 
sigmoid curve (energy matrix, Eseq + offset, EWT) and experimental data.  

Mean repression values were calculated for each mutant class directly from mean 
energy values, by locating them on the sigmoidal repression curve (Gene expression =

 
1

1+𝑒𝐸𝑡𝑜𝑡 −𝜇
 , with 𝐸𝑡𝑜𝑡 = 𝐸𝑊𝑇 + 𝐸𝑠𝑒𝑞), instead of using the full model (shown in Fig. 2.5). 

The correlation between these repression values and the experimentally measured 
means per mutant class was determined through a linear regression for: a) Lambda 
cognate mutants; b) P22 cognate mutants; c) Lambda non-cognate mutants; and d) 
P22 non-cognate mutants.  

 

Role of inter-operator epistasis 

We investigated experimentally if promoter architecture — the existence of multiple 
operator sites — can affect the observed trade-off between robustness/evolvability 
and tunability. We first tested the effects of mutating four residues in the Lambda 
cognate OR2 (Table 2.4). The effects of mutations in OR2 on repression (Fig. 2.14a) were 
modest (75-100% repression), but less robust than mutations in OR1 (comparing Fig. 
2.14a to Fig. 2.2b top panel), despite the supposedly weaker influence of OR2 on 
repression2. 

 



28 
 

We tested for interactions between mutations in two operators (inter-operator 
epistasis) by creating a cognate library with mutations in both OR1 and OR2. Because 
the trade-off between high robustness and low tunability was observed only in 
Lambda CI, we focused only on inter-operator epistasis in the cognate Lambda system. 
We randomly selected three neutral OR1 mutants, and combined each with eight 
randomly selected OR2 mutants (Table 2.1, 2.4). We observed a wider spectrum of 
repression values (40-80%), and hence higher tunability, among these mutants (Fig. 
2.14b) compared to mutations in individual operators (Table 2.5). This meant that 
mutations in OR2 exacerbate the effects of phenotypically neutral OR1 mutations, 
indicating pervasive inter-operator epistasis (Table 2.6). Inter-operator epistasis 
arising from multiple mutations in both operators could not be captured by the 
thermodynamic model (Fig. 2.15), which is in contrast to a previous study where we 
introduced only a single point mutation into each operator106. However, the findings 
we report here are in line with studies showing that the presence of multiple operators 
can obstruct sequence-based predictions of gene expression107.  

 

 

Figure 2.14. Inter-operator epistasis alleviates the trade-off between robustness and 
tunability.  

a) Homology alignment of Lambda and P22 OR2, showing mutated sites in bold. Arrows 
show base pairs that were exchanged between the two operators (Table 2.4). Loss of 
Lambda CI binding due to mutations in b) cognate OR2; c) both cognate sites. Points 
are mean percent repression of three replicates, bars are standard errors of the mean. 
Plot symbols indicate OR2 mutant class. ‘x’ symbols correspond to the operator with the 
given OR1 mutation(s) and the wild type OR2 sequence (Fig. 2.3b). One OR1-OR2 mutant 
gave no measurable expression in the absence of repressor and is not shown.  
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Inter-operator epistasis alleviated the trade-off between robustness and tunability for 
Lambda CI in OR1, likely by effectively modifying cooperative repressor binding. This 
role of inter-operator epistasis could be specific to operators that are functionally 
connected through cooperative binding, and might be different for redundant 
operators. Our results suggest that for cooperative binding, additional operators can 
facilitate network rewiring, as inter-operator epistasis helps generate expression level 
diversity, while maintaining robustness to the existing operators. 

 

 

Figure 2.15. Thermodynamic model fit for the Lambda OR2 and the combined 
Lambda OR1 - OR2 mutant libraries.  

Linear regression between experimental and model-derived percent repression of each 
experimentally tested mutant (from Fig. 2.14) is shown for Lambda CI binding to 
cognate a) OR2 mutants; b) operators with mutations in both OR1 and OR2. In order to 
evaluate the best possible performance of the model, here we show model estimates 
using parameter values that were fitted from the data (for repressor and RNAP 
concentrations, as well as offset and cooperativity).  

 

2.4 Discussion 

The principles that govern gene regulatory evolution, which have been studied 
primarily from a global network perspective, remain poorly understood. Here, we 
identify the biophysical mechanisms that determine the evolutionary potential of 
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transcription factors for rewiring of regulatory network connections. Specifically, we 
provide an analytical expression (Fig. 2.12a) that, under reasonable assumptions, 
correlates robustness, tunability and evolvability (as defined in this study). Indeed, we 
experimentally observed these correlations for two closely related repressors: 
Lambda CI is more robust and at the same time more evolvable, while P22 C2 is more 
tunable. These differences in mutational effects likely arise from differences in specific 
DNA binding mechanisms108: while the binding specificity of Lambda CI is mostly based 
on direct contacts between operator bases and amino acid residues97, the affinity of 
P22 C2 relies strongly on the local DNA conformation98,109. The nonlinear relationship 
between binding energy and repression, which is inherent to the thermodynamic 
model110 (Fig. 2.3), captures the differences in robustness, tunability and evolvability, 
explaining how the intrinsic binding characteristics of a repressor determine its 
evolutionary potential for regulatory rewiring (Fig. 2.12a). The model does so by 
representing the evolutionary potential for each repressor through its total binding 
energy (offset EWT plus energy matrix Eseq) and the average effect size of mutations 
(given by the energy matrix). Typically, energy matrices are used to determine and 
predict binding of TFs to a given DNA sequence111. However, our findings imply that 
the composition of the energy matrix crucially determines not only the current 
regulatory structure, but also the potential of the repressor to contribute to GRN 
evolution through making and breaking of individual connections. It is worth noting 
that while we only considered steady state expression levels, operator mutations 
could also affect expression dynamics, which might be subject to different constraints.  

 

The in vivo positive correlation between robustness and evolvability is surprising, as 
molecular systems that are more persistent in the face of mutational pressure are 
generally assumed to be less likely to acquire novel functions29. Previous theoretical 
studies attempted to resolve this paradox by describing how robustness and 
evolvability ‘emerge’ as properties of existing networks30,76,112,113, but so far, direct 
experimental approaches have been missing. We experimentally resolve this apparent 
paradox by showing that local mechanisms of TF-DNA binding intrinsically correlate 
robustness and evolvability in a positive manner. In fact, this positive correlation can 
be explained through an analytical expression that shows how robustness and 
evolvability are connected through the mutational distance between the cognate 
operator and a random DNA sequence (Fig. 2.12a). As such, a more promiscuous TF is 
simultaneously more robust and more evolvable, retaining cognate binding more 
easily while facilitating acquisition of novel operator sites. The positive correlation 
between robustness and evolvability can facilitate GRN evolution82 by enabling a 
neutral network of genotypes, throughout which mutations have small phenotypic 
consequences30,76. Lambda CI is known to be promiscuous, showing nonspecific 
binding across the E. coli genome58 and to non-cognate phage operators114. Thus, a 
Lambda CI-like TF has a higher potential to become a global regulator, whereas a P22 
C2-like TF would be more suited as a local regulator, since its easy loss of binding could 
facilitate rewiring by reducing detrimental crosstalk115. However, the same biophysical 
mechanisms can impose a trade-off between evolvability and tunability, thus 
constraining the range of expression levels that can be achieved by a promiscuous TF 
at a single operator.  
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Given the key role that rewiring of local regulatory connections plays in changing GRN 
structure, the scarcity of direct experimental approaches studying the mechanisms of 
rewiring is striking. Our work provides a mechanistic link between the biophysics of 
TF-DNA binding and GRN evolution. Epistatic interactions, which emerge through the 
presence of multiple operators and alleviate the trade-off between tunability and 
robustness/evolvability, can prevent a straightforward prediction of how local 
rewiring properties determine global network evolution. Moreover, the binding 
landscape for regulatory rewiring we describe is based purely on biophysical 
characteristics that connect genotype (mutations) to phenotype (gene expression 
levels), which will be further shaped by selection forces acting on this 
landscape91,92,116. By integrating biophysical models with the existing molecular 
knowledge of regulatory elements, our work provides the first steps towards a 
quantitative mechanistic framework for understanding gene regulatory network 
evolution.  

 

2.5 Tables 

Table 2.1. Identity of OR1 mutants used in experiments.  

Only the positions in the OR1 site that were mutated (as seen in Fig. 2.1d) are shown. 
The identities of introduced mutations are indicated by an ‘X’. Mutants that showed 
no expression in the absence of repressor in the Lambda cognate background are 
marked in red. Orange shading indicates additional mutants made in the cognate 
Lambda background (see Methods section ‘Construction of mutant OR1 libraries’). 
Grey shading indicates OR1 mutants that were used in the construction of the Lambda 
cognate library with mutations in both sites (each of the three OR1 mutants was 
combined with each of the eight OR2 mutants given in Table 2.4).  

 OR1 

Lambda PR mutated positions 

P22 PR mutated positions 

      A    C    T    G    C    G    A 

      T    T    A    A    T    C     T 

       -     X    -     -      -     -     - 

       -     -    X     -      -     -     - 

Single OR1 mutants       -     -    -     X      -     -     - 

       -     -    -     -      X     -     - 

       -     -    -     -      -     X     - 

       -     -    -     -      -     -     X 

       -    X   X     -      -     -      - 

       -     -    -    X     X     -      - 

Double OR1 mutants       -     -    -    X      -    X      - 

       -     -    -     -     X     -     X 

       -    X    -     -     X     -      - 
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       -     -    X    -      -    X      - 

       -    X   X    X      -     -      - 

       -     -   X    X      -    X      - 

       -     -   X     -      -    X     X 

Triple OR1 mutants       -    X    -     -     X     -     X 

       -    X   X     -      -     X     - 

       -     -    -    X     X    X      - 

       -    X    -    X     X     -      - 

       -    X   X     -     X     X     - 

       -     -    -    X     X     X    X 

Quadruple OR1 mutants       -    X   X    X     X      -     - 

       -     -   X    X     -     X     X 

       -    X   X    X     -     X      - 

       -    X    -    X    X     X      - 

       -    X   X    X     -     X     X 

       -    X    -    X    X     X     X 

Quintuple OR1 mutants       -    X   X    X    X     X      - 

      X    X   X     -    X     X      - 

      X    X   X    X    X      -      - 

      X    X    -    X    X     X      - 

Sextuple OR1 mutants       -    X   X    X    X     X     X 

      X    X   X    X    X     X      - 

 

Table 2.2. Normalized expression levels in the absence of repressor.  

Mean and standard deviation for expression levels of three replicates for each cognate 
Lambda OR1 and P22 OR1 mutant. For easier comparison, each measurement was 
normalized by the Lambda PR wild type fluorescence, as the wild type Lambda and P22 
PR promoters have different expression levels, and most P22 OR1 mutants increased 
fluorescence above the wild type level. Lambda OR1 mutants that had no expression 
in the absence of CI are not shown.  

 

 

Lambda OR1 mutants P22 OR1 mutants 

Mean wt-normalized 
expression 

Standard deviation Mean wt-normalized 
expression 

Standard deviation 
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Single mutants 

0,852222 0,145704 0,383942 0,041988 

0,877816 0,092266 0,429844 0,055555 

0,647231 0,105471 0,408099 0,039533 

0,70991 0,20474 0,271347 0,138469 

0,874034 0,102582 0,447254 0,157922 

  0,396608 0,144001 

Double mutants 

0,805726 0,112751 0,416264 0,028769 

0,940418 0,011987 0,318855 0,03031 

0,913362 0,075526 0,723779 0,194892 

0,44648 0,177222 0,375827 0,056349 

0,500238 0,046582   

Triple mutants 

0,761709 0,170817 0,376119 0,016535 

0,852082 0,136546 0,338433 0,032626 

0,901182 0,108706 0,296501 0,044589 

0,455281 0,061705 0,513411 0,092668 

0,486204 0,049246 0,529408 0,145505 

Quadruple mutants 

1,070794 0,117644 0,517823 0,033796 

0,9803 0,096567 0,299942 0,05575 

0,054822 0,003222 0,31519 0,038923 

0,483373 0,063435 0,313736 0,105104 

0,50058 0,014603   

Quintuple mutants 

0,052591 0,005129 0,34829 0,084974 

0,962642 0,136703 0,287203 0,100048 

0,52376 0,008103 0,510868 0,079894 

0,503235 0,015616   

0,663547 0,047102   

Sextuple mutant 

0,536111 0,008606 0,289135 0,089228 
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Table 2.3. Parameter values used in the thermodynamic model.  

All parameters were selected from the literature, except repressor concentrations, 
which were fitted to experimental data (see Methods).  

 

Table 2.4. Identity of Lambda OR2 mutants used in experiments.  

Only the mutated positions in the OR2 site (as shown in Fig. 2.1d) are shown. The 
identities of introduced mutations are indicated by an ‘X’. Grey shading indicates OR2 

mutants that were used in the construction of the Lambda cognate library with 
mutations in both sites (each of the three OR1 mutants shown in grey in Table 1 was 
combined with each of the eight OR2 mutants). We only created OR2 mutants in the 
Lambda background. 

 

 OR2 

Lambda PR mutated positions 

P22 PR mutated positions 

C    C    G    G 

A    A    A    A 

 X     -     -     - 

Single OR2 mutants -    X     -     - 

 -     -    X     - 

 -     -     -    X 

Parameter Parameter value 

Lambda PR promoter strength 50118 

P22 PR promoter strength 40118 

Lambda CI dimer cooperativity 5 kcal/mol12 

P22 C2 dimer cooperativity 3 kcal/mol12 

Lambda CI concentration 3 µM (this study) 

P22 C2 concentration 1 µM (this study) 

Chemical potential due to non-specific 
binding 

-7,4 kcal/mol12 

RNAP concentration 3 µM118 

Binding affinity of Lambda CI to wt OR1 -13,2 kcal/mol119 

Binding affinity of Lambda CI to wt  OR2 -11,7 kcal/mol119 

Binding affinity of P22 C2 to wt OR1 -12 kcal/mol98 

Binding affinity of P22 C2 to wt OR2 -10 kcal/mol98 

Binding affinity of RNAP binding to PR -12,5 kcal/mol63 
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 X    X     -     - 

 X     -    X     - 

Double OR2 mutants X     -     -    X 

 -    X    X     - 

 -    X     -    X 

 -     -    X    X 

 X    X    X     - 

Triple OR2 mutants X    X     -    X 

 X     -    X    X 

 -    X    X    X 

Quadruple OR2 mutants X    X    X    X 

 

Table 2.5. Mutations in Lambda OR2 increase the variance in repression of OR1 
mutants.  

Variance between the three Lambda OR1 mutants (one single, one double, and one 
triple mutant, marked with grey shading in Table 2.1) was calculated on the wild type 
and each of eight OR2 mutant backgrounds. Red marks OR2 mutant backgrounds that 
significantly increase standard deviation between the three OR1 mutants, compared 
to the wild type OR2 background, calculated with an F-test for equality of variances. 
Identities of OR2 mutants correspond to Table 2.4. 

OR2 

background 
wild 
type 

single  
1 

single  
2 

double  
1 

double  
2 

double  
3 

triple  
1 

triple  
2 

quadru-
ple 

Std. 
deviation 

10-14 0,031 0,012 0,023 0,001 0,019 0,01 0,010 0,010 

 

Table 2.6. Statistical significance of epistasis between mutations in Lambda OR1 and 
OR2.  

The left-hand column indicates the specific combination of OR1 and OR2 mutations 
(numbers of different mutants correspond to grey shaded mutants in Tables 2.1, 2.4). 
FDR-corrected t-tests were carried out to test if epistasis of each OR1 – OR2 mutant was 
significantly different from the multiplicative expectation based on single mutant 
effects (shown in red).  

OR1 – OR2 mutant identity p-value t-value (6 d.f.) 

Single OR1 mutant (#2) - Single OR2 mutant (#1) 2,06E-05 -272,715 

Single OR1 mutant (#2) - Single OR2 mutant (#4) 1,67E-06 -1513,59 

Single OR1 mutant (#2) - Double OR2 mutant (#1) 0,0045 -15,1928 

Single OR1 mutant (#2) - Double OR2 mutant (#3) 1,01E-05 -435,482 
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Single OR1 mutant (#2) - Double OR2 mutant (#6) 5,26E-08 -14784,2 

Single OR1 mutant (#2) - Triple OR2 mutant (#2) 1,95E-05 -289,947 

Single OR1 mutant (#2) - Triple OR2 mutant (#3) 7E-06 -546,572 

Single OR1 mutant (#2) - Quadruple OR2 mutant  0,023241 -6,44467 

Double OR1 mutant (#2) - Single OR2 mutant (#1) 7,19E-05 -133,29 

Double OR1 mutant (#2) - Single OR2 mutant (#4) 5,26E-08 -16929,5 

Double OR1 mutant (#2) - Double OR2 mutant (#1) 2,38E-05 -245,52 

Double OR1 mutant (#2) - Double OR2 mutant (#3) 1,97E-06 -1292,91 

Double OR1 mutant (#2) - Triple OR2 mutant (#2) 2,1E-06 -1102,63 

Double OR1 mutant (#2) - Triple OR2 mutant (#3) 1,29E-05 -370,905 

Double OR1 mutant (#2) - Quadruple OR2 mutant  0,003547 -17,5286 

Triple OR1 mutant (#7) - Single OR2 mutant (#1) 6,4E-05 -145,371 

Triple OR1 mutant (#7) - Single OR2 mutant (#4) 2,88E-06 -894,356 

Triple OR1 mutant (#7) - Double OR2 mutant (#1) 9,99E-05 -110,067 

Triple OR1 mutant (#7) - Double OR2 mutant (#3) 1,63E-06 -1879,73 

Triple OR1 mutant (#7) - Double OR2 mutant (#6) 1,63E-06 -1944,52 

Triple OR1 mutant (#7) - Triple OR2 mutant (#2) 0,00042 -52,3063 

Triple OR1 mutant (#7) - Triple OR2 mutant (#3) 1,67E-06 -1639,08 

Triple OR1 mutant (#7) - Quadruple OR2 mutant  2,1E-06 -1122,88 

 

2.6 Methods 

Strains and plasmids 

The experimental system is based on the ‘genetic switches’ of the bacteriophages 
Lambda and P22, which have similar regulatory architecture and substantial structural 
homology due to shared ancestry95; specifically we use  the PR promoter system. We 
constructed a template plasmid consisting of two parts that are separated by 500 
random base pairs and a terminator sequence (represented by a hairpin structure in 
Fig. 2.1b): an inducible repressor gene on one strand and a regulatory region 
controlling a fluorescence marker on the other strand. Either Lambda CI or P22 C2 
were placed after an inducible PTET promoter. The fluorescent protein gene venus-
yfp120 was placed under the control of the PR regulatory promoter region, containing 
an RNAP binding site as well as two operators, OR1 and OR2, either from Lambda or 
P22. Specifically, for Lambda PR we used the region from -60bp upstream of the 
transcriptional start site to +9bp downstream. To our knowledge the specific location 
of the transcriptional start site for P22 PR has not been defined. Therefore, upstream 
of OR2 and downstream of OR1 we used the wild type P22 sequence that was of the 
same bp length as the analogous Lambda PR regions. This meant that we used the wild 
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type P22 sequence from -65bp upstream up to the start codon of cro. OR1 more 
strongly binds the repressor and is in direct overlap with the RNAP binding site (-10). 
OR2 has a weaker affinity for the repressor, and assists in repression mainly through 
cooperative binding between two repressor dimers121. Downstream of the phage 
sequences both promoter regions contain the same ribosomal binding site in front of 
the reporter gene. These parts were cloned in all four combinations (cognate 
combinations: Lambda cI with Lambda PR, and P22 c2 with P22 PR; non-cognate 
combinations: Lambda cI with P22 PR, and P22 c2 with Lambda PR) into a low copy 
number plasmid (pZS*) containing a kanamycin resistance marker99. The TL17 
terminator sequences followed the repressor genes, and the T1 terminator the venus-
yfp (Fig. 2.1b). The plasmid libraries were then transformed into MG1655 derived E. 
coli cells (strain BW27785, CGSC#: 7881)122. 

 

Construction of mutant OR1 libraries 

We created a library of mutants in OR1 by selecting six base pairs that were found to 
be most important for the binding of either of the two repressors97,98, and that 
differed between Lambda and P22 OR1 sequences. This was done by aligning the OR1 
sites from Lambda and P22 wild type operators (according to homology, not 
symmetry) and comparing the corresponding base pairs in the operator sites. The six 
base pairs that were most important for repressor binding and that differed between 
the two operators were substituted by the base pairs of the non-cognate OR1 in both 
directions: starting with wild type Lambda OR1 and mutating it to be more similar to 
P22 OR1; as well as starting with wild type P22 OR1 and mutating it to be more similar 
to Lambda. We generated all six single mutants, four double, five triple, four 
quadruple, three quintuple, and the sextuple mutant. For mutating Lambda OR1 from 
cognate to non-cognate, ten additional mutants were constructed that did not contain 
mutations in base pairs overlapping the -10 binding region of RNAP: two double, two 
triple, two quadruple, three quintuple, and another sextuple mutant. For the 
quintuple and sextuple mutants an additional base pair was chosen, that was linked 
to high affinity binding of Lambda CI (Table 2.1). The additional double and triple 
mutants were also created for the P22 non-cognate library. OR1 operator libraries were 
constructed by synthesizing oligos of 73bp length (Sigma Aldrich), carrying wild type 
OR2 and mutated OR1 (Table 2.1), and cloning them into the experimental system 
plasmid backbone (Fig. 2.1b). Clones carrying correct mutants were confirmed 
through Sanger sequencing. 

 

We also tried to construct promoter regions containing cognate OR1 and non-cognate 
OR2. As both operators contain parts of the RNAP binding site, we did not obtain 
fluorescence expression in the absence of CI from these promoters even when we 
varied the spacing between the operators. This is possibly due to factors other than 
sequence-dependent binding energy playing a role in the regulatory context of these 
promoters107.  

 

Fluorescence assays 
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We measured fluorescence of all OR1 mutants (Lambda and P22 cognate and non-
cognate systems), both in the presence and in the absence of the inducer aTc. Three 
biological replicates of each mutant of the library were grown at 37°C overnight in M9 
media, supplemented with 0.1% casamino acids, 0.2% glucose, 30μg/ml kanamycin, 
and either without or with 15ng/ml aTc. Overnight cultures were diluted 1,000X, grown 
to OD600 of approximately 0.05, and their fluorescence measured in a Bio-Tek Synergy 
H1 plate reader. All replicate measurements were randomized across multiple 96-well 
plates. All measured mutants had fluorescence levels significantly above the detection 
limit of the plate reader, resulting in measurements at least 1.5-fold greater than the 
non-fluorescent control.  

 

Fluorescence values were normalized by OD600 values (in RFU=Relative Fluorescence 
Units) and averaged over three replicates. Repression values were calculated as a 
normalized ratio between the measured fluorescence with and without the repressor:  

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = (1 −
𝑅𝐹𝑈𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑜𝑟

𝑅𝐹𝑈𝑛𝑜 𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑜𝑟
) ∗ 100.  

Standard errors of the mean repression values were calculated using error 
propagation in order to account for the inherent variability in the fluorescence 
measurements. The fluorescence levels measured in the absence of repressor were 
comparable across all Lambda operator mutants, as well as all P22 operator mutants 
(Table 2.2). This means that the reported differences in percent repression arose 
mainly from changes in repressor binding, rather than alterations to the RNAP binding 
site. Moreover, our simulations showed that changes in RNAP concentration, which 
correlates with the strength of RNAP binding, do not change the qualitative pattern of 
binding for the two repressors. Interestingly, when compared to P22 wild type OR1, all 
of the P22 cognate OR1 operator mutants showed increased expression levels in the 
absence of repressor. Lambda PR is a stronger promoter than P22 PR, and introducing 
mutations in the operator region of P22 PR increased promoter strength by making it 
more similar to Lambda PR. 

 

Direct comparisons between the in vivo effects of operator mutations on gene 
expression level that we measured, and the previous published studies of the same 
operators97,98 were hindered by the in vitro nature of previous studies. All previous 
studies of Lambda PR and P22 PR  mutants relied on biochemical filter binding assays, 
which do not account for cooperativity between the two sites, and as such do not 
necessarily translate quantitatively into gene expression levels. As such, comparisons 
between published data and our data are possible only through a modeling 
framework, such as the one we utilize (see Materials and Methods section 
‘Thermodynamic model of repression at the PR promoter’). 

 

For the experimental data, the evolutionary properties were calculated in the 
following way: robustness and tunability of the repressors were evaluated on the 
cognate operator mutants. Robustness for the experimental data was calculated as 
the percent of mutants for which >90% of the wild type repression was retained. 
Tunability was calculated as the standard deviation in repression levels for mutants 
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that exhibited between 10% and 90% of the wild type repression. On the cognate 
background, mutants that were repressed less than 10% were considered neither 
robust nor tunable. Evolvability was calculated as the portion of non-cognate mutants 
that were repressed to more than 10%. 

 

Cellular concentrations of the two repressors were determined using Western blots. 
Lambda CI and P22 C2 were cloned with a His-Tag or an HA-Tag, respectively, at their 
carboxy-terminal end. Rat and rabbit primary antibodies (Roche and Thermo Fisher, 
respectively) in combination with Goat anti-rat and anti-rabbit secondary antibodies 
(Thermo Fisher) were used to detect them. Samples were processed once at full 
concentration and once at 2-fold dilution. The obtained bands from gel 
electrophoresis were normalized by a household gene and normalized concentrations 

between the two repressors were compared as (
𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝐿𝑎𝑚𝑏𝑑𝑎 𝐶𝐼

𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝑃22 𝐶𝐼
). Lambda CI was 

present in excess over P22 C2: 3.8-fold for full concentration samples and 5.5-fold for 
diluted samples. We also tested variation in repressor levels by measuring 
fluorescence from the PTET promoter on the same plasmid construct as used in the 
library measurements for 6 replicates either without or with 15ng/ml aTc and found 
only minor variability (without aTc: 3.6% CV, with aTc: 2% CV) that cannot explain the 
experimentally observed differences between the repressors.  

 

Thermodynamic model of repression at the PR promoter 

The model is based on previously described thermodynamic approaches51,57, which 
rely on several assumptions: (i) TF binding to DNA takes place at thermodynamic 
equilibrium; (ii) gene expression can be equated with the probability of binding of 
participating proteins (in our case RNAP and repressor); and (iii), the contribution of 
each base pair in the operator to binding is additive. The probability of a gene being 
expressed is derived by summing the Boltzmann weights over all promoter occupancy 

states where RNAP is bound. Boltzmann weights are given by wi=[N]* 𝑒  (𝐸𝑡𝑜𝑡−μ), where 
Etot is the energy of a certain configuration, N is the molecule concentration (in μM), 
and μ is the chemical potential. Etot, the total binding energy, is composed of the offset 
(EWT), which is the energy of binding to a reference (wild type) sequence; and the 
binding energy derived for a specific sequence from the energy matrix of the binding 
protein Eseq=∑l

i=1 єi(ai), where l is the length of the sequence, ai the specific nucleotide 
at position i, and єi the energy contribution due to the energy matrix of the specific 
nucleotide a at position i. Total binding energy is therefore Etot= EWT+ Eseq. Binding 
energies and chemical potential are given in kcal/mol. In our model system, there are 
two operator sites (OR1 and OR2) that can each be occupied by a repressor dimer, and 
binding to each operator site is affected by the strength of cooperative binding 
between them. The probability of the gene being expressed is then given by the sum 
of all states conducive to promoter expression (RNAP bound) normalized by the sum 
over all possible states: 
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𝐺𝑒𝑛𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 =
1

1 +
𝐾𝑝

[𝑅𝑁𝐴𝑃]
∗

(1 + 2
[𝑅]
𝐾𝑅

+ (
[𝑅]
𝐾𝑅

)
2

𝑒𝜔)

(1 +
[𝑅]
𝐾𝑅

)

 

, where 𝐾𝑥 = 𝑒  (𝐸𝑡𝑜𝑡,𝑥−μ) represents the effective equilibrium dissociation constant 
(relative to the genomic background) – which is the concentration for half-maximal 
occupation of the site - of, either RNAP (KP) or the repressor (KR). Please note that we 
account for concentration-specific effects separately and µ incorporates only non-
specific background binding and other unspecific cellular effects. The probability of 

transcription factor (TF)–DNA binding is of the form84: pi=
[𝑇𝐹𝑖]/𝐾𝑖

1+ [𝑇𝐹𝑖]/𝐾𝑖
. Based on Garland 

(2002), we can assume that 𝐾𝑥 is individually tunable for each binding site. [R] is the 
concentration of repressor dimers, which is the effective concentration, as repressors 
only bind as dimers and, as we assume fast dimerization123, this corresponds to half of 
the total monomer concentration in the cell. [RNAP] is the concentration of RNAP, and 
𝜔 is the cooperativity energy value, describing the strength of interaction between two 
repressor dimers. All concentrations and dissociation constants are given in units of 
µM. The calculated gene expression value is a relative measure, with 1 indicating full 
expression and 0 no expression. Percent repression was then calculated using the 
formula:  

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = (1 −
𝑔𝑒𝑛𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑜𝑟

𝑔𝑒𝑛𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑛𝑜 𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑜𝑟
) ∗ 100.  

 

In the ‘main model’, which is used throughout the study, RNAP competes with 
repressor binding at OR1, and repressor binding to OR1 is increased by cooperative 
binding of a second dimer to OR2. Therefore, the following scenarios are possible: (i) 
the promoter can be bound by neither protein; (ii) RNAP can be bound either alone or 
together with repressor at OR2; or (iii) repressor bound to OR1 keeps RNAP from 
binding, either by binding on its own or cooperatively together with another repressor 
at OR2. The corresponding formula was taken from Bintu et al.57 (Case 4). We also 
considered an ‘alternative model’ where OR2 binding impedes RNAP binding as well 
(Bintu et al57; Case 6), but as the main model always gave a better fit to experimental 
data, we utilized only the main model throughout.  

 

Energy values for binding to mutated sequences were calculated for RNAP and 
repressor binding using the respective energy matrices by adding up the individual 
relative contributions of each base pair and adding an offset. The offset is the energy 
of binding of the repressor to the wild type sequence, which was added because the 
energy matrix calculates only energy differences relative to wild type binding. Binding 
energy matrices were based on Sarai & Takeda (1989) for Lambda CI, on Hilchey et al. 
98 for P22 C2 - which were both determined biochemically - and, for RNAP, on an 
ongoing work on RNAP binding to Lambda PR within the group. Wild type binding 
affinities of Lambda CI to both operators (offset) were taken from Vilar119. Other 
model parameters were taken from the following sources: binding cooperativity and 
nonspecific binding energy were adopted from Hermsen et al.12; wild type binding 
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affinities for both operators were obtained from Hilchey et al.98 for P22 repressor; and 
binding energy and concentration for RNAP were taken from Santillan & Mackey63. 
Promoter strength for both Lambda PR and P22 PR was based on previously published 
values for the Lambda PL promoter118, but we also found that the results were not 
sensitive to this parameter. Repressor dimer concentrations were the only parameters 
that were fitted to the data by means of a Monte Carlo algorithm. The algorithm used 
simulated annealing to find the optimal parameter values minimizing the squared 
difference between the predicted and observed percent repression between the data 
and the model. The fitted difference in concentration values between the two 
repressors is slightly lower than found experimentally (Fig. 2.4). We tested the model 
for concentration values from 0- to 7-fold difference, and always found the same 
trends in the evolutionary potential (Fig. 2.11). Note that standard experimental 
measures cannot provide effective TF concentrations (i.e. proteins that are free to 
bind at the target site), especially when two TFs are not equally promiscuous, as these 
measures cannot distinguish free and non-specifically bound proteins. Because of this, 
and because the overall differences in evolutionary potential did not depend on 
variations in repressor concentration parameters, we used repressor concentrations 
determined by the best model fit, and not those we experimentally measured.  All 
parameter values used in the model are shown in Table 2.3. 

 

In order to verify the fit of our model to the experimental data, linear regression was 
performed between the data obtained experimentally (see Fluorescence assays) and 
the prediction of repression values produced through the thermodynamic model. 
Matlab R2015a software was used to calculate the regression, R squared and P-values 
for the OR1 library (Fig. 2.5). The model accurately reproduced experimental 
observations in cognate mutants, but did not fit non-cognate mutant measurements 
(Fig. 2.5). The lack of fit to non-cognate mutants is not surprising, as thermodynamic 
models assume an independent contribution of each position, which does not hold 
when mutated far away from the wild type operator sequence101,119. Nevertheless, 
because the model provided a lower bound on the experimentally measured non-
cognate repression levels (Fig. 2.5), we used it to explore parameters affecting 
repression at non-cognate sites as well. 

 

Robustness 

Robustness was calculated for repressors binding to cognate mutants only if they 
retained more than 20% repression. We counted the number of robust neighbors for 
each operator, where ‘robust neighbor’ refers to an operator sequence that is exactly 
one mutation away from the reference and exhibits more than 90% repression of the 
reference repression value. Specifically, starting from the wild type, each mutant 
(above the 20% repression threshold) was taken as a reference and repression of all 
other mutants that are exactly one mutation away was calculated. The relative count 
of robust neighbors was averaged for each reference operator and the mean was 
taken over each mutant class. This procedure was repeated with different values for 
cooperativity (1,3,5,7 kcal/mol), repressor concentration (1,3,5,7 µM) and RNAP 
concentration (1,3,5,7 µM). We tested if the results were sensitive to the percent 
repression thresholds by calculating robustness for 80% and 95% thresholds, and 
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found no qualitative differences. For comparison with the experimental data and the 
definition of robustness used there, we also calculated robustness as the percent of 
all mutants for which >90% of the wild type repression was retained. 

 

Tunability 

Tunability was determined for repressor binding to cognate mutants with repression 
values between 10% and 90%, as the standard deviation over those mutants for each 
mutant class. Tunability was calculated for different values of cooperativity (1,3,5,7 
kcal/mol), repressor concentration (1,3,5,7 µM) and RNAP concentration (1,3,5,7 µM). 
We tested if the results were sensitive to the percent repression thresholds by 
calculating tunability for 5% and 20% lower, as well as 80% and 95% upper threshold 
bound, and found no qualitative differences.  

 

Evolvability 

Evolvability was calculated for repressor binding to non-cognate mutants exceeding a 
threshold of 10% repression. For each mutant class the number of mutants above the 
threshold was counted and averaged. This procedure was repeated with different 
values for cooperativity (1,3,5,7 kcal/mol), repressor concentration (1,3,5,7 µM) and 
RNAP concentration (1,3,5,7 µM).  We tested if the results were sensitive to the 
percent repression thresholds by calculating evolvability for 5% and 20% thresholds, 
and found no qualitative differences. 

 

Evolvability on random operators 

The promoter region for the random sequence library was based on the lac operon117, 
because the binding sites for RNAP and repressor do not overlap in this system, 
thereby avoiding unwanted modifications of RNAP binding by an introduction of a 
random operator. Binding affinities for RNAP were calculated for this system using the 
energy matrix from Kinney et al., 2010. For the operator sites, 1,000,000 random 
17bp-long sequences for Lambda CI, and 18bp-long sequences for P22 C2 were 
created in Matlab R2015a. The 1bp difference in the length of the sites used for the 
two repressors corresponds to the actual length of their respective cognate operator 
sites.  Binding affinities to these operators were calculated for Lambda and P22 
repressors using their energy matrices.  

 

Swapping model parameters of the two repressors and comparing evolutionary 
properties 

We calculated robustness and tunability for Lambda CI after swapping the values for 
repressor concentration, cooperativity, and offset with the respective values for P22 
C2. The values were calculated separately for each mutant class (number of 
mutations). We first swapped each parameter value individually, and then we 
swapped all three parameters with the values of P22 C2. For evolvability, only the 
values for repressor concentration and offset were swapped individually and 
simultaneously. The same simulations were done for P22 C2 with Lambda CI 
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parameters. For each evolutionary property, we used a linear regression to determine 
the R2 value for the goodness of fit between the reference repressor with its wildtype 
parameter values, and the other repressor with the swapped parameter(s). 
Regression was carried out across the six mutant classes. The fact that swapping 
repressor concentrations did not reconcile the evolutionary potential of the two 
repressors provides further evidence that the experimentally observed differences in 
the evolutionary potential between the two repressors (Fig. 2.2) could not be 
attributed solely to the measured differences in their intracellular concentrations (Fig. 
2.4). 

 

Relationship between binding energy and repression 

The total binding energy (𝐸𝑡𝑜𝑡) is related to gene expression through: 

Gene expression =  
1

1+[𝑅]𝑒𝐸𝑡𝑜𝑡 −μ
 , with 𝐸𝑡𝑜𝑡 = 𝐸𝑊𝑇 + 𝐸𝑠𝑒𝑞 

, where μ describes the chemical potential of a repressor. The relationship between 
binding energy and repression is sigmoidal, with the position of the curve for a given 
repressor determined by μ and repressor concentration (which we set to 1 as we do 
not want to consider concentration effects here). The same chemical potential and 
repressor concentration was used for Lambda CI and P22 C2 and taken from Hermsen 
et al.12. The positions of a certain operator sequence for a specific repressor on the 
curve are then given by the total binding energy, Etot, with concentrations for the two 
repressors being the same. We wanted to develop generic definitions of robustness, 
tunability and evolvability as properties of only the energy matrix and EWT. The average 
effect size of one mutation (m) is determined by taking the average of the energy 
matrix for a given repressor (grand mean over the non-zero entries of the energy 
matrix, calculated in our example for the six mutated positions) and the deviation in 
mutational effects (σ) is calculated as standard deviation over all non-zero entries of 

the energy matrix. Robustness can then be defined as 𝑅𝑜𝑏 =
𝐸1/2−𝐸𝑊𝑇

𝑚
 and evolvability 

as 𝐸𝑣𝑜 =
𝐸1/2−𝐸𝑟𝑎𝑛𝑑𝑜𝑚

𝑚
 ,where E1/2 is the binding energy at half repression (50%) and  

Erandom is the typical binding energy to a random sequence, which will be equal to non-
specific binding above a certain number of mutations101 and is from that point on 
independent of the energy matrix. Derivation shows that evolvability and robustness 
are correlated by the number of average mutations between the cognate operator 
binding energy and the binding energy of a random sequence (#mut), as m determines 

the positioning of Erandom relative to EWT:  𝐸𝑣𝑜 =
𝐸1/2−𝐸𝑟𝑎𝑛𝑑𝑜𝑚

𝑚
=

𝐸1/2−(𝐸𝑊𝑇+#𝑚𝑢𝑡∗𝑚)

𝑚
=

𝑅𝑜𝑏 + #𝑚𝑢𝑡. This correlation depends critically on two assumptions. First, we assume 
that the typical mutational effect size (m) is relatively small compared to the offset 
(EWT) and comparable between different repressors. We base this assumption on the 
notion that TF-DNA binding is determined by the strength of hydrogen bonds, which 
range between 1-3kcal/mol24. The second assumption is that the energy matrix is an 
intrinsic property of a repressor, meaning that it doesn’t change depending on the 
DNA sequence that the repressor is binding to. In other words, we assume that m is 
constant across all binding sites, cognate and non-cognate. Tunability can be defined 

around E1/2 as 𝑇𝑢𝑛 = (𝜎 ∗
𝑑 𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝑑 𝑏𝑖𝑛𝑑𝑖𝑛𝑔 𝑎𝑓𝑓𝑖𝑛𝑖𝑡𝑦
|𝐸1/2)/𝑅𝑜𝑏 ,where 

𝑑 𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝑑 𝑏𝑖𝑛𝑑𝑖𝑛𝑔 𝑎𝑓𝑓𝑖𝑛𝑖𝑡𝑦
|𝐸1/2 
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gives the slope of the sigmoid curve at E1/2. Positions on the curve for both repressors 
were calculated for binding to cognate operators, non-cognate operators and the 
operator with weakest possible binding (according to the energy matrix). Moreover, 
mean energy values for each mutant class were calculated from model simulations for 
the cognate and non-cognate operators and placed on the curve. Their locations on 
the curve provide mean repression values that were then compared to the 
experimental data through linear regression (Fig. 2.13). Matlab R2015a software was 
used to calculate the regression, R squared and P-values. The fit was similar to the one 
obtained using the full model (Fig. 2.5). 

 

Lambda cognate OR2 mutant library 

OR2 mutant operators were synthesized analogously to OR1 mutants. Based on the 
assumption that energy matrices between the two closely related operators are likely 
to be very similar, mutated base pairs in OR2 were chosen in positions corresponding 
to the mutations in OR1. However, the last two were discarded as possibly interfering 
with RNAP binding (-35 region), leaving four base pairs for mutation (Fig. 2.2b). Four 
single, six double, four triple and the quadruple mutant were constructed in the 
Lambda cognate system and measured as described previously. The fit between data 
and model was determined through linear regression (Fig. 2.15a).  

 

Lambda cognate OR1 - OR2 mutant library 

OR1-OR2 mutant operators were synthesized analogously to OR1 mutants, but with one 
to three mutations in OR1 and one to four mutations in OR2. One single, one double and 
one triple OR1 mutant, that showed no decrease in repression, were combined with 
each of eight randomly selected OR2 mutants (two single, three double, two triple, and 
the quadruple). OR1-OR2 mutant operators were constructed in the Lambda cognate 
system, as P22 C2 had very low robustness and hence no trade-off, and measured as 
described previously. The fit between data and model was determined through linear 
regression (Fig. 2.15b). 

 

Calculation of epistasis in OR1-OR2 mutants 

We measured epistasis in two ways. First, through its effect on the tunability of the 
system, where we considered that a given combination of OR1-OR2 mutations is in 
epistasis when the presence of mutations in both operators significantly increased the 
variance in the observed gene expression levels, compared to the variance achieved 
by mutations in OR1 alone. We compared the variance independently for each mutant 
class (number of mutations). Second, we calculated epistasis between mutations in 
the two operators as a deviation from the multiplicative expectation of double mutant 
repression level based on single mutant effects:  

𝑒𝑝𝑖𝑠𝑡𝑎𝑠𝑖𝑠 =
𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑂𝑅1−𝑂𝑅2

𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑂𝑅1∗𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑂𝑅2
, 

and conducted FDR-corrected two-tailed t-tests for each of the double mutants, to 
determine if epistasis was significantly different from the null multiplicative 
expectation (Table 6). 
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3. Global crosstalk between transcription factors can enhance 
specificity 

3.1 Abstract 

Crosstalk in transcriptional regulation, which occurs when a transcription factor 
interferes with regulation at a non-cognate promoter, can have substantial 
consequences on the targeted cellular program. While these consequences have been 
explored theoretically, little is known about the mechanisms that determine how 
crosstalk affects gene expression levels in cells. We utilized components of 
bacteriophages Lambda and P22 to create synthetic systems in which two repressors 
have varying degrees of crosstalk at a promoter. We found that the presence of a 
second repressor elevates repression levels beyond what can be achieved by either of 
the repressors alone, indicating that crosstalk can enhance binding of transcription 
factors at their cognate binding site. Using a thermodynamic model of gene 
regulation, we found that global crosstalk in the form of binding competition at many 
weak non-cognate sites across the genome could elevate binding to the cognate site, 
and do so in a concentration-dependent manner. Our findings, which indicate that 
crosstalk can increase effective specificity, provide the first experimental insights into 
the mechanisms that determine how crosstalk with a non-cognate repressor can 
impact gene expression and, hence, organismal function. 

 

3.2 Introduction 

Specificity of molecular interactions is an essential property of all living systems, 
arising from the need for critical reactions to occur between cognate substrates even 
in the presence of high concentrations of similar non-cognate molecules. The 
widespread presence of proofreading mechanisms dedicated to ensuring correct 
molecular pairing, observed in diverse processes such as the correct matching 
between tRNAs and amino acids124, immune system recognition of antigens125, 
protein-protein interactions126,127 and ligand sensing128, points to the biological need 
to reduce unwanted ‘crosstalk’ – a generic term describing interactions between non-
cognate substrates.  

 

In transcriptional regulation - the primary mechanism controlling gene expression - 
specificity is achieved through the binding of a transcription factor (TF) to its DNA-
binding site (operator). Yet, TF-operator specificity is far from perfect: while every TF 
preferentially binds a single unique operator sequence (cognate site), it is also capable 
of binding a range of related, less specific sequences101,129,130. Given this flexibility in 
TF binding, the short length of operator sequences (ranging from 5 to 35 base pairs), 
and the comparatively large genome sizes, non-cognate TF binding is a common 
occurrence41,84. In other words, crosstalk between a TF and non-cognate operators is 
the rule, not the exception.  
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Crosstalk in transcriptional regulation can have severe consequences for organismal 
fitness131,132, as binding of a TF to non-cognate DNA sequences can lead to 
misregulation: repression of an essential gene, or expression of a gene in the wrong 
amount, or at a wrong time or place. Yet, in spite of the importance of crosstalk in 
determining fitness, experimental work on transcriptional regulation has been almost 
exclusively devoted to understanding how to achieve reliable cognate TF binding133. 
Here, we take the first steps in understanding the mechanisms that determine how 
crosstalk impacts gene regulation, by asking how the presence of an additional non-
cognate TF affects gene expression levels at a promoter.  

 

 

Figure 3.1. Experimental systems.  

A) Generic layout of the experimental system, showing the plasmid and the lysogen 
construct. The plasmid system contains either Lambda cI (orange) or P22 c2 (blue) 
repressor, under an inducible PTET promoter. It also contains a yellow fluorescence 
marker under the control of the P22 PR promoter, which consists of RNA polymerase 
binding site (marked with -10 and -35) and two operators, OR1 and OR2. We mutated 6 
positions in the P22 OR1 operator in various combinations (marked in bold) to be more 
similar to Lambda OR1 operator (Table 3.1), hence creating a mutant library exhibiting 
a range of binding to both repressors (blue rectangle represents this OR1 mutant 
library). B) Lysogen-free systems. Two plasmid systems, one with Lambda cI (orange 
star) and the other with the P22 c2 (blue star), were introduced into two hosts, E. coli 
and S. enterica. C) Lysogen systems. Lambda lysogen (orange oval) was introduced into 
E. coli, and P22 lysogen (blue oval) into S. enterica. Then, both plasmid systems (one 
with Lambda cI and the other with P22 c2) were introduced into both lysogen strains.  
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3.3 Results 

Single repressor systems 

To explore the effects of crosstalk on local gene regulation, we utilized components of 
two canonical molecular systems – repressors and operators involved in the ‘genetic 
switches’ of bacteriophages Lambda and P2296,121, which share common ancestry95. 
Specifically, we placed either Lambda cI or P22 c2 repressors, under an inducible PTET 
promoter, on a very low copy number plasmid99. The same plasmid carried the strong 
P22 PR promoter, which contained P22 C2 cognate operators OR1 and OR2, and 
controlled the expression of a yellow fluorescence protein venus-yfp (Fig. 3.1A). 
Binding of a repressor to OR1 is sufficient for repression, while P22 C2 binding to OR2 

primarily serves to stabilize the binding to OR1 through cooperative binding between 
P22 C2 dimers96,121. Lambda CI and P22 C2 dimers do not show any appreciable 
cooperativity between them134.  

 

 

Figure 3.2. Repression in lysogen-free strains.  

Percent repression achieved by plasmid-borne Lambda CI (orange frames) or P22 (blue 
frames) in the lysogen-free systems (Fig.1B) is shown as box plots for A) all mutants in 
E. coli; B) individual mutants in E. coli; C) all mutants in S. enterica; D) individual 

mutants in S. enterica. Percent repression was calculated as (1 −

𝑅𝐹𝑈𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒 𝑜𝑓 𝑖𝑛𝑑𝑢𝑐𝑒𝑟

𝑅𝐹𝑈𝑎𝑏𝑠𝑒𝑛𝑐𝑒 𝑜𝑓 𝑖𝑛𝑑𝑢𝑐𝑒𝑟
) ∗ 100. One, two, and three stars indicate p-values of less than 

0.05, 0.001, and 0.0001, respectively. Full statistical tests are shown in Table 3.2. 
Mutants are ordered according to Table 3.1.   
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Drawing from our previous work135, we introduced mutations into OR1 that enabled 
differential binding of Lambda CI and P22 C2 (Table 3.1). Then we used the two 
plasmid systems, one with Lambda cI and the other with P22 c2, to measure 
repression of the P22 PR promoter mutants in two host species – Escherichia coli and 
Salmonella enterica (Fig. 3.1B). By measuring the difference in fluorescence in the 
absence and in the presence of either repressor, we observed that OR1 mutants 
exhibited a wide range of repression levels for each of the two repressors, albeit with 
a greater range in E. coli than in S. enterica (Fig. 3.2).  

 

Non-cognate repressors increase repression more than cognate ones 

In order to investigate how crosstalk – binding of two repressors at one operator – 
impacts overall repression, we introduced bacteriophage lysogens into their natural 
host species (Fig. 3.1A): Lambda lysogen was introduced into E. coli, and P22 lysogen 
into S. enterica. Lambda and P22 lysogens naturally produce CI and C2 repressors, 
respectively, resulting in strains that always have one of the repressors present, albeit 
at a relatively low concentration compared to plasmid expression. We then inserted 
the plasmid mutant libraries into these strains, giving rise to: E. coli strains that had 
either two copies of Lambda cI (concentration effect), or a copy of Lambda cI and a 
copy of P22 c2 (crosstalk); and S. enterica strains with either a copy of P22 c2 and a 
copy of Lambda cI (crosstalk), or two copies of P22 c2 (concentration effect) (Fig. 3.1C).  

 

We measured the difference in fluorescence before and after induction of the 
plasmid-borne repressor. In single repressor systems, such measurements gave the 
total percent repression of each OR1 mutant by a given repressor (Fig. 3.2), as it was 
the only repressor present in the system. In contrast, such measurements in lysogen 
strains gave the additional repression achieved by the induction of either the second 
repressor (crosstalk) or the second copy of the same repressor (concentration effect) 
- meaning the repression achieved on top of the one resulting from the lysogen-borne 
repressor, which is always expressed in the cell.  

 

We observed that crosstalk – induction of the second repressor – resulted in 
significantly higher additional repression in both E. coli (F1,47=55.45, P<0.0001) and S. 
enterica (F1,47=92.23, P<0.0001), compared to inducing the second copy of the same 
repressor (Fig. 3.3). This meant that additional repression achieved by two repressors 
was not simply due to an increase in the overall concentration of the repressors in the 
system, but rather due to an interaction of the two repressors that resulted in higher 
overall binding at OR1. This difference is best observed in S. enterica, where inducing 
Lambda CI alone has very low repression across all mutants (Fig. 2D), while inducing it 
when P22 C2 is already present achieves large additional repression in most mutants 
(Fig. 3.3D). Indeed, in 13/16 mutants additional repression (P22 C2 together with 
Lambda CI) is at least 10% greater than the percent repression achieved by Lambda CI 
alone, while the reverse is never the case. Our data indicates that, in both hosts, 
crosstalk enhances local repression.  
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Figure 3.3. Repression in lysogen strains.  

Additional repression achieved by inducing the plasmid-borne Lambda CI (orange 
frame) or P22 (blue frame) in the lysogen systems (Fig. 3.1C) is shown as box plots for 
A) all mutants in E. coli; B) individual mutants in E. coli; C) all mutants in S. enterica; D) 
individual mutants in S. enterica. Lysogen strains are always expressing either Lambda 
CI (orange fill) or P22 C2 (blue fill), meaning that inducing a repressor from the plasmid 
adds either the second repressor or more of the same repressor that is already present 

in the cells. Additional repression was calculated as (1 −
𝑅𝐹𝑈𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒 𝑜𝑓 𝑖𝑛𝑑𝑢𝑐𝑒𝑟

𝑅𝐹𝑈𝑎𝑏𝑠𝑒𝑛𝑐𝑒 𝑜𝑓 𝑖𝑛𝑑𝑢𝑐𝑒𝑟
) ∗ 100. 

One, two, and three stars indicate P-values of less than 0.05, 0.001, and 0.0001, 
respectively. Full statistical tests are shown in Table 3.3. Mutants are ordered 
according to Table 3.1.   

 

Global crosstalk can enhance specificity 

Why would the presence of a second repressor enhance overall repression? We 
already excluded the possibility that the crosstalk-enhanced repression arises from a 
concentration effect (Fig. 3.3). The observed results could also have arisen if there was 
a bias in how mutations in OR1 affected organismal fitness (measured as growth rates), 
but we found no evidence this was the case (Fig. 3.4, 3.5). Similarly, we found no 
evidence that the effects of OR1 mutations on RNA polymerase binding were biased, 
as expression levels measured in the absence of any repressors did not correlate with 
repression levels (Fig. 3.6, 3.7). As there are two operators in our system, enhanced 
binding could also be due to cooperativity between P22 C2 and Lambda CI, but the 
two repressors were shown not to be able to interact with each other measurably134.  
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Figure 3.4. Effects of OR1 mutations on growth rates in E. coli.  

We measured growth rates of three replicate populations in the absence and in the 
presence of the inducer aTc. A) Box plots comparing growth rates in the absence and 
in the presence of the inducer across all OR1 mutants in the lysogen-free strains. B) Box 
plots comparing individual differences in growth rates between mutants in the 
lysogen-free strains. C) and D) are same as above, but for lysogen E. coli strains.  

 

Crosstalk-enhanced repression can arise if the concentration of the cognate repressor 
at a local promoter is higher when both repressors are present in the system. One way 
this could occur is that the two repressors share and compete for binding at an 
appreciable portion of their non-cognate sites. As was recognized previously, many 
transcriptional regulators are bound non-specifically to random DNA sequences along 
the bacterial genome41. However, there will be many sequences (referred to as non-
cognate) that are more closely related to a TF’s target sequence and hence will be 
bound more strongly, trapping the TF through non-cognate binding. A higher portion 
of those non-cognate sequences will be shared between related TFs, as we found for 
P22 C2 and Lambda CI, which share 7-8% of their non-cognate sites. In such cases, 
binding competition for the shared non-cognate sites can either increase the 
dissociation rate of the bound repressor through a process called facilitated 
dissociation14,136, or sterically hinder binding of the other repressor12. Regardless of 
the specific mechanism, we will call the competition for binding at non-specific DNA 
sites global crosstalk. Global crosstalk can lead to increased turnover and hence 
increased free concentration of the cognate repressor when the second repressor is 
present, if the second repressor (i) is present at higher concentrations; or (ii) binds 
more strongly to the shared non-cognate sites. As Lambda CI has stronger overall non-
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cognate binding135, its presence could lead to an increase in the free concentration of 
P22 C2 and, as P22 C2 binding is additionally aided by cooperativity, to greater binding 
at the cognate operators. Besides, modeling suggests that increasing concentrations 
of non-cognate proteins bound randomly to the DNA increase binding at the cognate 
promoter due to confinement of the cognate TF in the vicinity of its target site45. 
However, it is questionable if the low levels of repressor from a low copy plasmid (and 
even lower levels from the lysogen) could result in the necessary amount of random 
non-cognate binding to produce a significant effect45. It is rather more likely in this 
case that the effect comes from a shared pool of non-cognate binding sites.  

 

 

Figure 3.5. Effects of OR1 mutations on growth rates in S. enterica.  

We measured growth rates of three replicate populations in the absence and in the 
presence of the inducer aTc. A) Box plots comparing growth rates in the absence and 
in the presence of the inducer across all OR1 mutants in the lysogen-free strains. B) Box 
plots comparing individual differences in growth rates between mutants in the 
lysogen-free strains. C) and D) are same as above, but for lysogen S. enterica strains.  
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Figure 3.6. Effect of OR1 mutations on RNA polymerase binding in E. coli.  

A) Expression levels in lysogen-free E. coli strains in the absence of the inducer aTc for 
three replicates of each mutant. Expression levels under these repressor-free 
conditions indicate how OR1 mutations impact RNA polymerase binding. B) As OR1 
mutant identity had a significant effect on RNA polymerase binding (F31,62 = 192.9; P < 
0.0001), we checked if these differences impacted measured repression levels, and 
found no significant correlation. C) Expression levels in lysogen E. coli strains in the 
absence of the inducer aTc for three replicates of each mutant. B) As OR1 mutant 
identity had a significant effect on inducer-free expression levels (F31,62 = 35.96; P < 
0.0001), we checked if these differences impacted measured repression levels, and 
found no significant correlation. 
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Figure 3.7. Effect of OR1 mutations on RNA polymerase binding in S. enterica.  

A) Expression levels in lysogen-free S. enterica strains in the absence of the inducer aTc 
for three replicates of each mutant. Expression levels under these repressor-free 
conditions indicate how OR1 mutations impact RNA polymerase binding. B) As OR1 
mutant identity had a significant effect on RNA polymerase binding (F31,62 = 45.57; P < 
0.0001), we checked if these differences impacted measured repression levels, and 
found no significant correlation. C) Expression levels in lysogen S. enterica strains in 
the absence of the inducer aTc for three replicates of each mutant. B) As OR1 mutant 
identity had a significant effect on inducer-free expression levels (F31,62 = 30.00; P < 
0.0001), we checked if these differences impacted measured repression levels, and 
found no significant correlation. 

 

To test if global crosstalk at non-specific binding sites might play a role in the observed 
enhanced repression, we adapted the model we previously used to study the binding 
landscape of Lambda CI and P22 C2135. This model, which is based on the 
thermodynamic properties of protein-DNA binding51,57, relates the binding energy 
between a repressor and an operator to the repression level of the promoter, by 
assuming that the duration of the TF x retention on the operator (determined by the 
equilibrium dissociation constant, Kseq,x) is the rate-determining step in transcriptional 
initiation12. To keep the model and its interpretations simple, we considered the 
scenario where one of the repressors (Lambda CI) binds the local operator weakly with 
a constant binding energy, and we calculated repression levels across a range of P22 
C2 binding energies. Then, we compared repression levels across this range when: (i) 
non-cognate sites are not shared between the two repressors, meaning that Kseq,x of 
each repressor is independent of the other repressor; (ii) non-cognate sites are shared 
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between the two repressors, leading to a dependency of P22 C2 Kseq,P22 on Lambda CI 
concentration and non-cognate binding energy; and (iii) only P22 C2 is present, but at 
double the concentration, to compensate for the absence of Lambda CI in terms of 
total TF concentration. 

 

The model showed that global crosstalk can play a critical role in repression at the 
target operator (Fig. 3.8). Presence of global competition at shared non-cognate sites 
between two repressors can lead to increased repression at the local promoter – by 
changing operator affinity in dependence of the non-cognate repressor concentration 
and non-cognate binding energy – going beyond what can be achieved by doubling 
the concentration of a single repressor (Fig. 3.8A). In fact, a comparison with the 
model that did not account for non-specific binding dependency showed that at least 
a 10-fold excess of Lambda CI would be required to produce the same increase in 
repression (Fig. 3.9), suggesting that the experimental results are not simply a 
consequence of a difference in concentrations between the two repressors.  When 
repressor concentrations are fixed, local repression was increased when the non-
cognate repressor binds the globally shared non-cognate sites more strongly than the 
other (Fig. 3.8B) – as was suggested to be the case for Lambda CI and P22 C2135.  

 

 

Figure 3.8. Global crosstalk impacts repression at a local operator.  

A) Using a thermodynamic model of gene regulation, we simulated binding at the OR1 
site when: (i) only P22 C2 is present at double the concentration (circles); (ii) two 
repressors are present and global crosstalk takes place across all their shared non-
cognate sites (squares); and (iii) two repressors are present but no global crosstalk 
occurs (triangles). Lambda CI binding energy is kept constant at -9 kcal/mol, which is a 
low binding energy in the range of mean genomic non-cognate binding. B) For global 
crosstalk to increase repression at a local operator, mean genomic non-cognate 
binding of the repressor with weaker binding at the local operator (Lambda CI in the 
case of our simulations) must be stronger than that of P22 C2. Mean genomic non-
cognate binding represents the average binding energy of a repressor across all of its 
non-cognate sites in the genome. For each specific ‘difference in mean genomic non-
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cognate binding between Lambda CI and P22 C2’, the box plot is based on a range of 
P22 C2 cognate binding energies from -13 to -3, as shown in A).  

 

 

Figure 3.9. Dependency of cognate repression on Lambda CI concentration.  

We used the thermodynamic model to calculate repression across all OR1 mutants for 
a range of P22 C2 binding energies (as seen in Fig. 3.4A). We compare repression 
achieved in the presence of two repressors when the model allows for global crosstalk 
(squares) and when it does not (triangles). When the model does not allow for global 
crosstalk, we modified Lambda CI concentration by increasing it 5- (green) and 10-fold 
(red) compared to P22 C2 concentration, and found that the effect on repression 
achieved by global crosstalk requires at least a 10-fold increase in Lambda CI 
concentration. Note that a 10-fold increase in Lambda CI concentration might not be 
biologically realistic.   

 

3.4 Discussion 

In this study, we experimentally investigated the effects of crosstalk on gene 
expression regulation and found that the presence of two related repressors leads to 
elevated repression at a local promoter. This means that having two different TFs in 
the system leads to stronger overall binding at the cognate operator compared to 
having only the cognate TF at higher concentrations (equal to the concentration of 
having both TFs). Previous modeling suggests that this could be due to confinement 
of the cognate TF near its target site if a large part of the DNA is bound by  non-cognate 
TFs45, which is however unlikely in our system. By contrast, using a thermodynamic 
model of gene regulation, we find that global crosstalk can give rise to elevated 
binding at a local operator at reasonable repressor levels: binding competition 
between two TFs at their shared non-cognate operators can either enhance the 
removal of the bound TF from, or hinder its binding to these sites, leading to an 
increase in the free concentration of TF in the cell and hence an increase in binding to 
stronger affinity (i.e. cognate) operators. This implies that global crosstalk can increase 
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the apparent specificity of TF binding. Apparent specificity here describes an 
‘effective’ property, which arises from context effects (e.g. binding of other TFs), as 
opposed to ‘bare’ specificity, which is giving through binding affinities measured in 
isolation (e.g. in vitro). The action of the non-cognate repressor can be compared to 
the role of an ‘inducer’, which is similar to sigma factors ‘inducing’ RNAP off non-
specific sites as has been described previously52.  

 

Global crosstalk will increase binding at a given operator when several conditions are 
met. First, the TFs must have the potential for non-cognate binding, which is true for 
all known TFs due to their tolerance for operator mutations133. Second, the two TFs 
must share non-cognate binding sites, meaning that they participate in global 
crosstalk with each other. This condition is often met, especially between related TFs 
that have a substantial overlap in the binding sites they can bind137,138. For such TFs, 
shared non-cognate binding sites at a genomic scale are common due to the short 
length of operators. Third, the non-cognate TF must have stronger non-specific 
binding, meaning greater overall propensity for binding DNA, as is the case for Lambda 
CI compared to P22 C298,119. Finally, global crosstalk will increase binding only at higher 
affinity operators, which are likely dissimilar even between related TFs, a difference 
which is enhanced with cooperativity in cognate binding, whereas shared weak 
operators will be predominantly bound by the more promiscuous, non-cognate TF. As 
such, introduction of a global regulator, which is by definition promiscuous, ought to 
increase specificity of more locally-acting TFs. Put together, global crosstalk leads to 
higher binding at the few more specific operators, and to a reduction in binding to the 
many shared weak sites. It is also worth noting that there might be other indirect 
means of how non-cognate TF binding can affect cognate binding. For example, 
Lambda CI could increase P22 C2 operator occupancy  by introducing large-scale 
modifications to the chromosomal structure – a conceivable scenario given the 
propensity of Lambda CI to induce DNA looping139.  

 

Ordinarily, discussions of crosstalk in transcriptional regulation focus on how non-
cognate binding of one TF interferes with cognate binding of other TFs in the cell37,115. 
We show that non-cognate interactions can also dramatically increase specificity at a 
local cognate operator. While this effect can increase robustness in the system, it 
could also affect organismal function negatively by interfering with the transcriptional 
program, depending on the targeted promoter output. Although random molecular 
crowding can also affect binding specificity at sufficiently high concentrations of non-
cognate proteins45, crosstalk-enhanced specificity is especially likely when 
homologous TFs are present in the cell, as their shared ancestry often results in similar 
DNA-binding specificities140,141 even at low TF levels. Therefore, TFs that are 
horizontally transferred between related species, TFs that diverged following a 
duplication event, and decision-making bacteriophage TFs during co-infection are 
particularly likely to participate in crosstalk. Indeed, divergence in TF binding 
preference and operator sequence often follows gene duplication93,142,143 and 
horizontal gene transfer events79,144, indicating overall detrimental fitness effects of 
crosstalk. Similarly, many bacteriophages develop ‘immunity’ to prevent related 
bacteriophages from successfully infecting the host cell and interfering with their 
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lifestyle decision making114,145. Our findings provide an insight into how selection acts 
on homologous TFs and their binding sites, by identifying a novel mechanism through 
which crosstalk can affect organismal fitness.  

 

3.5 Tables 

Table 3.1. Identity of OR1 mutants used in experiments.  

Only the positions in the OR1 site that were mutated (as seen in Fig. 3.1A) are shown. 
The identities of introduced mutations are indicated by an ‘X’. Mutants are arranged 
in order of decreasing percent repression by P22 C2 in the lysogen-free E. coli strain 
(corresponding to blue mutants in Fig. 3.2B).   

 OR1 

P22 PR mutated positions 

Lambda PR positions 

      T     T    A   A     T    C   

      A    C    T    G    C    G    

mutant 1       -    X    -     -      -     - 

mutant 2       -     -    -     -      -    X 

mutant 3       -     -    -    X      -     - 

mutant 4       -     -    -     -     X     - 

mutant 5       -     -   X     -      -     - 

mutant 6       -    X   X     -      -     - 

mutant 7       -     -    -    X     X     - 

mutant 8       -    X   X    X      -     - 

mutant 9       -    X   X     -      -    X 

mutant 10       -     -   X    X      -    X 

mutant 11       X   X   X    X    X     X 

mutant 12       -    -    -     X     -     X 

mutant 13       -    X   X    X     -     X  

mutant 14       -    X   X    X    X     X 

mutant 15       X   X   X    X    X      - 

mutant 16       -    X   X    X    X      - 

 

Table 3.2. T-tests comparing percent repression in lysogen-free strains.  

FDR-corrected two-tailed t-tests were carried out to test if, for each mutant, total 
percent repression achieved by Lambda CI and P22 C2 was significantly different. The 
tests were performed independently for each host, E. coli and S. enterica. P-values 
were evaluated with 4 degrees of freedom. Significance is shown in Fig. 3.2. Mutants 
are ordered according to Table 3.1.  
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Mutant t-test in 
E. coli 

P value in E. 
coli 

t-test in S. 
enterica 

P value in S. 
enterica 

1 45,5 1,4 E-06 40,3 2,3 E-06 

2 13,5 1,7 E-04 51,1 8,8 E-07 

3 90,5 9,0 E-08 33,3 4,8 E-06 

4 27,3 1,1 E-05 111,8 3,8 E-08 

5 0,5 0,6 88,1 10,0 E-08 

6 7,3 1,9 E-03 68,1 2,8 E-07 

7 9,7 6,3 E-04 35,5 3,8 E-06 

8 2,9 0,05 21,3 2,9 E-05 

9 2,4 0,08 1,9 0,1 

10 4,0 0,02 13,2 1,9 E-04 

11 11,1 3,8 E-04 0,9 0,4 

12 33,5 4,7 E-06 2,4 0,1 

13 1,7 0,2 1,0 0,4 

14 10,5 4,7 E-04 0,2 0,8 

15 44,5 1,5 E-06 1,1 0,3 

16 1,4 0,2 0,6 0,6 

 

Table 3.3. T-tests comparing percent repression in lysogen strains.  

FDR-corrected two-tailed t-tests were carried out to test if, for each mutant, additional 
repression achieved through plasmid induction of Lambda CI or P22 C2 was 
significantly different. The tests were performed independently for each host, E. coli 
and S. enterica. P-values were evaluated with 4 degrees of freedom. Significance is 
shown in Fig. 3.3. Mutants are ordered according to Table 3.1. 

Mutant t-test in E. 
coli 

P value in E. 
coli 

t-test in S. 
enterica 

P value in S. 
enterica 

1 56,6 5,8 E-07 41,3 2,1 E-06 

2 28,2 9,4 E-06 17,6 6,1 E-05 

3 67,5 2,9 E-07 1,9 0,1 

4 28,5 9,0 E-06 4,5 0,01 

5 7,1 2,1 E-03 25,6 1,4 E-05 

6 34,1 4,4 E-06 6,6 2,0 E-03 

7 3,8 0,02 6,7 2,5 E-03 

8 5,6 4,9 E-03 4,4 0,01 
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9 0,7 0,5 15,2 1,1 E-04 

10 7,1 2,0 E-03 3,4 0,03 

11 3,7 0,02 0,1 0,9 

12 6,8 2,5 E-03 3,8 0,02 

13 2,7 0,05 2,4 0,07 

14 16,1 8,6 E-05 31,8 5,8 E-06 

15 2,1 0,1 11,5 3,3 E-04 

16 15,9 9,2 E-05 3,0 0,04 

 

Table 3.4. Parameter values used in the thermodynamic model.  

All parameters were selected from the literature, except repressor concentrations, 
which were taken from previous simulations135. 

Parameter Parameter value 

P22 PR promoter strength 40118 

P22 C2 dimer cooperativity 3 kcal/mol12 

Lambda CI concentration 1 µM  

P22 C2 concentration 1 µM135  

Non-specific binding P22 C2 (when 
independent) 

-7.4 kcal/mol12 

RNAP concentration 3 µM118 

Binding affinity of Lambda CI -9 kcal/mol  

Binding affinity of P22 C2 to wt OR1 -12 kcal/mol98 

Binding affinity of P22 C2 to wt OR2 -10 kcal/mol98 

Binding affinity of RNAP binding to PR -12,5 kcal/mol63 

 

3.6 Methods 

Strains and plasmids 

The experimental system is based on the ‘genetic switch’ of the bacteriophage P22, 
and more specifically on the PR promoter system. We constructed two template 
plasmids consisting of two parts that are separated by 500 random base pairs and a 
terminator sequence: an inducible repressor gene (either Lambda cI or P22 c2) under 
an inducible PTET promoter followed by TL17 terminator sequences on one strand; and 
the P22 PR promoter (containing the RNA polymerase binding site as well as two 
operators, OR1 and OR2) controlling the expression of a venus-yfp120 fluorescence 
marker on the other strand (Fig. 3.1A). Binding to OR1 leads to repression. Binding to 
OR2 assists in repression mainly through cooperative binding between two repressor 
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dimers121, which in our experiments is possible only between P22 C2 dimers, as 
Lambda CI does not bind the P22 OR2 site and there are no cooperative interactions 
between Lambda CI and P22 C2 dimers134. Downstream of the promoter is a ribosomal 
binding site in front of the reporter gene. These parts were cloned into a low copy 
number plasmid (pZS*) containing a kanamycin resistance marker99, resulting in two 
template plasmids, one with Lambda cI and the other with P22 c2 (Fig. 3.1A). The 
plasmid libraries were then transformed into: MG1655 derived E. coli cells (strain 
BW27785, CGSC#: 7881) [44] (i) without; and (ii) with Lambda lysogen; S. enterica 
strains (iii) without (strain LT2); and (iv) with P22 lysogen (strain TH2680) (Fig.1B,C). 
The P22 lysogen strain was obtained from Marc Erhardt and introduced as described 
in Benson & Goldman (1992)146. The Lambda lysogen was obtained from Dominik 
Refardt and introduced into BW27784 by mixing serially diluted Lambda chlor lysate 
with 0.1 ml of an overnight culture (LB) in 3 ml of phage soft agar and spread on phage 
plates. Lysogens were used to bring a second repressor into the cell because 
expression of both repressors from plasmids resulted in toxicity and strongly reduced 
growth.  

 

Construction of crosstalk libraries 

Informed by our previous work on the effects of mutations in P22 OR1 on the binding 
of Lambda CI and P22 C2135, we selected 16 P22 OR1 mutants that have a minimal effect 
on RNA polymerase binding, while exhibiting a gradient in both Lambda CI and P22 C2 
binding (Fig. 3.2). These mutants contained between 1 and 6 point mutations in OR1 

(Table 3.1). Mutants were constructed by synthesizing oligonucleotides of 73bp length 
(Sigma Aldrich) carrying wild type P22 OR2 and mutated OR1, and cloning them into the 
two experimental template plasmids. Clones carrying correct mutants were confirmed 
through Sanger sequencing. 

 

Fluorescence assays and growth rate measurements 

We measured fluorescence of all mutants (in all four experimental systems shown in 
Fig. 3.1), both in the presence and in the absence of the inducer aTc. Three biological 
replicates of each mutant of the library were grown at 37°C overnight in M9 media, 
supplemented with 0.1% casamino acids, 0.2% glucose, 30μg/ml kanamycin, and either 
without or with 8ng/ml of the PTET inducer aTc. Overnight cultures were diluted 1,000X, 
grown to OD600 of approximately 0.1, and their fluorescence measured in a Bio-Tek 
Synergy H1 plate reader. We also continued growing these cultures and measured their 
OD600 every 20 minutes, in order to obtain growth curves for all mutants in all 
experimental systems. All replicate measurements were randomized across multiple 
96-well plates.  

 

All measured mutants (including lysogens) had fluorescence levels significantly above 
the detection limit of the plate reader, resulting in measurements at least 1.5 fold 
greater than the non-fluorescent control. Fluorescence values were normalized by 
OD600 values (in RFU=Relative Fluorescence Units) and averaged over three replicates. 
Repression values were calculated as a normalized ratio between the measured 
fluorescence with and without the repressor:  
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𝑃𝑒𝑟𝑐𝑒𝑛𝑡/𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = (1 −
𝑅𝐹𝑈𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒 𝑜𝑓 𝑖𝑛𝑑𝑢𝑐𝑒𝑟

𝑅𝐹𝑈𝑎𝑏𝑠𝑒𝑛𝑐𝑒 𝑜𝑓 𝑖𝑛𝑑𝑢𝑐𝑒𝑟
) ∗ 100.  

Total percent repression was calculated for the strains without the lysogen, as no 
repressors were present in the absence of the inducer. In contrast, in lysogenic strains 
a repressor was always present (Lambda CI in the E. coli lysogen, and P22 C2 in the S. 
enterica lysogen), so adding the inducer added either the second repressor or more 
of the same repressor, leading to additional repression measures. Standard errors of 
the mean percent/additional repression were calculated using error propagation in 
order to account for the inherent variability in the fluorescence measurements.  

 

We obtained growth rates for three replicates of each mutant in every experimental 
system, both in the absence and in the presence of the inducer aTc, by calculating the 
highest slope of six consecutive log10 (OD600) measurements using a sliding windows 
approach.  

 

Statistical analyses 

In lysogen-free strains, we tested if there was an overall difference in percent 
repression between mutants carrying Lambda CI and those carrying P22 C2 using 
ANOVA (aov function in R statistical software version 3.5.0), with repressor identity as 
a fixed variable, percent repression as the response, and replicates nested within 
mutant identity as the error structure. Then, we performed a series of FDR-corrected 
two-tailed t-tests asking if there was a significant difference between having Lambda 
CI or P22 C2 for each mutant individually. We performed both the ANOVA and t-tests 
for mutants measured in E. coli and S. enterica independently. Then we performed the 
same tests for lysogen strains using additional repression as the response variable, 
asking if there was an effect of having one or two repressors across all mutants 
(ANOVA) and for each mutant individually (FDR-corrected t-tests). Note that we did 
not perform direct statistical comparisons between lysogen-free and lysogen strains, 
because their output measurements (percent repression vs. additional repression) 
constitute fundamentally different variables.  

 

To analyze if growth rates were constant across the strains and between 
environments (without and with the inducer, aTc), we performed two sets of tests. 
First, we used ANOVA (absence or presence of aTc as the fixed variable; 
percent/additional repression as the response variable; and replicate nested within 
mutant identity as the error structure) to test if the growth rates depended on the 
presence of the inducer, and we tested this across all mutants in a given host. Then, 
we tested if growth rates differed between mutants in a given host, using ANOVA with 
mutant identity as the fixed variable and replicate as the error.  

 

We were also interested in whether expression levels in the absence of the inducer 
were consistent between mutants. In lysogen-free strains, differences in inducer-free 
expression levels would arise if the mutations introduced into OR1 had an effect on 
RNA polymerase binding. In lysogen strains, these differences would arise if mutations 
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affect either repressor or RNA polymerase binding. To test for these effects, we used 
ANOVA with expression levels in the absence of aTc as the response variable, mutant 
identity as the fixed variable, and replicate as error. We performed these tests 
independently for all four strains (E. coli without and with lysogen, and S. enterica 
without and with lysogen), and found that there were significant differences in RNA 
polymerase binding between mutants (Fig. 3.6,3.7). These differences could impact 
our findings if the expression levels in the absence of the inducer affected repression 
levels when the inducer was present. To test if this was the case, using a linear 
regression we tested for a correlation between expression levels in the absence of the 
inducer and percent/additional repression in the presence of aTc and found no 
correlation (Fig. 3.6,3.7). These results indicate that, while mutants differ with respect 
to their inducer-free expression levels, these differences did not significantly influence 
percent/additional repression, and hence did not play a major role in our findings.  

 

Thermodynamic model of gene regulation 

The model is based on previously described thermodynamic approaches51,57, which 
rely on several assumptions: (i) TF binding to DNA takes place at thermodynamic 
equilibrium; (ii) gene expression can be equated with the probability of binding of 
participating proteins (in our case RNAP and repressor); and (iii), the contribution of 
each base pair in the operator to binding is additive. The probability of a gene being 
expressed is derived by summing over all states where RNAP is bound relative to all 
possible binding states. The dissociation constant of any transcription factor x from an 
operator sequence is calculated in the following way12: 

𝐾𝑠𝑒𝑞,𝑥 = 𝑛𝑠𝑥 ∙ 𝑒
−𝐸𝑠𝑒𝑞,𝑥  

, where 𝑛𝑠𝑥 is the non-specific binding constant of repressor x, 𝐾𝑠𝑒𝑞,𝑥 the dissociation 

constant, and 𝐸𝑠𝑒𝑞,𝑥 the binding energy of repressor x for a sequence seq (parameters 

are given in Table 3.4). Note that we account for concentration-specific effects 
separately and 𝑛𝑠𝑥 incorporates only non-specific background binding and other non-
specific cellular effects. Repression was calculated either in the presence of both 
repressors, or only with P22 C2 at double the concentration in the following way: 

𝐺𝑒𝑛𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 =
1

1 +
𝐾𝑝

[𝑅𝑁𝐴𝑃]
∗

(1 +
[𝑅𝐿𝑎𝑚𝑏𝑑𝑎]
𝐾𝐿𝑎𝑚𝑏𝑑𝑎

+ 2
[𝑅𝑃22]
𝐾𝑃22

+ (
[𝑅𝑃22]
𝐾𝑃22

)
2

𝑒𝜔)

(1 +
[𝑅𝑃22]
𝐾𝑃22

)

 

, where 𝐾𝑥 represents the effective equilibrium dissociation constant (relative to the 
genomic background) as calculated above for a specific sequence – which is the 
concentration for half-maximal occupation of the site - of, either RNAP (KP) or one of 
the repressors (𝐾𝐿𝑎𝑚𝑏𝑑𝑎, 𝐾𝑃22). [R] is the concentration of repressor dimers, which is 
the effective concentration, as repressors only bind as dimers and, as we assume fast 
dimerization123, this corresponds to half of the total monomer concentration in the 
cell. [RNAP] is the concentration of RNAP, and 𝜔 is the cooperativity energy value, 
describing the strength of interaction between two P22 C2 repressor dimers. All 
concentrations, non-specific binding constants and dissociation constants are given in 
units of µM (Table 3.4). The calculated gene expression value is a relative measure, 
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with 1 indicating full expression and 0 no expression. Percent repression was then 
calculated using the formula:  

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = (1 −
𝑔𝑒𝑛𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑜𝑟

𝑔𝑒𝑛𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑛𝑜 𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑜𝑟
) ∗ 100.  

 

We compared repression with both repressors when non-cognate binding was 
independent of the second repressor, and when the non-cognate binding constant of 
P22 C2 𝑛𝑠𝑃22 𝐶2 in the calculation of 𝐾𝑥 was replaced with the factor: 

𝑛𝑠𝑃22 𝐶2 ∙
𝑛𝑠𝑃22 𝐶2 ∙ 𝑐𝑃22 𝐶2

𝑛𝑠𝐿𝑎𝑚𝑏𝑑𝑎 𝐶𝐼 ∙ 𝑐𝐿𝑎𝑚𝑏𝑑𝑎 𝐶𝐼
 

The factor results from the hypothesis that non-specific binding of P22 C2 decreases 
proportionally with Lambda CI binding at shared global non-specific sites. Hence, P22 
C2 non-specific binding is inversely proportional to Lambda CI concentration and its 
non-specific binding constant - which both increase global crosstalk - but the 
modification is relative to the amount of non-specific binding of P22 C2 itself, hence 
relative to P22 C2 concentration and its non-specific binding constant. Here we do not 
differentiate between shared and separate non-cognate binding sites but introduced 
a constant that modulates the overall binding as an average effect of binding 
competition. At first, P22 C2 binding energy was varied from -13 to -3 kcal/mol, 
Lambda CI was kept at -9 kcal/mol and concentrations were the same (1*10-6M). Non-
cognate binding was 107M for P22 C2 and 108M for Lambda CI. For bar plots over a 
range of relative non-cognate values between P22 C2 and Lambda CI, non-cognate 
binding was 107 for P22 C2 and for Lambda CI varied from 105M to 1010M; and we 
subtracted repression values of both repressors with and without modified non-
specific P22 C2 binding. For the comparison with concentration effects of Lambda CI, 
P22 C2 concentration was kept at 1*10-6M for Lambda CI was varied between 1*10-

6M and 10*10-6M. We could not use the model to directly verify these findings for our 
system, as already the data fit for Lambda CI repression in the absence of a second 
repressor was very poor, likely because energy matrices are not valid when moving 
too far away from the wild type operator sequence101. 

Note that we model non-cognate binding competition specifically as a change in the 
binding constant of the repressor instead of assuming that competition in itself would 
lead to variation in occupancy of binding sites. As the latter possibility would 
effectively result in a change in effective repressor concentration, those two scenarios 
lead to very similar results in an equilibrium system. 

 

Calculating the shared non-cognate sites of Lambda CI and P22 C2 

We tested for shared non-cognate binding sites between Lambda CI and P22 C2 across 
the Salmonella genome, as well as across 1,000,000 random DNA sequences. For the 
Salmonella genome we used a sliding window approach to calculate the energy 
penalty at every genome position for Lambda CI or P22 C2. From energy penalties 
calculated for genome positions or to the random sequences, we obtained the binding 
affinities of either repressor through:  

𝐾𝑠𝑒𝑞,𝑥 = 𝑛𝑠𝑥 ∙ 𝑒
−𝐸𝑠𝑒𝑞,𝑥  
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𝑞𝑠𝑒𝑞,𝑥 =
𝑐𝑥

𝐾𝑠𝑒𝑞,𝑥
. 

Then we took the sequences that were above the non-cognate binding threshold (10-

7M) and calculated the % of P22 C2 non-cognate sites that were shared with Lambda 
CI non-cognate sites. For random sequences we found 7,6% shared, whereas for the 
Salmonella genome it was 7,1% shared relative to the total number of P22 C2 ‘more 
specific’ non-cognate sites. 
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4. The evolution of phage immunity regions 

4.1 Crosstalk between phage repressors 

Recent years have shown that phages are omnipresent entities, which manipulate the 
behavior of their bacterial hosts, thereby profoundly affecting most biological 
organisms as well as the biosphere. Their study has yielded profound insights into 
molecular mechanisms of gene regulation, horizontal gene transfer and drivers of host 
co-evolution225. An area of research that has been neglected, especially with regard 
to the underlying molecular bases, are interactions between phages themselves. 
Phages, however, are likely to encounter other phages during their search for a new 
host. This issue is especially relevant for temperate phages as they can choose to turn 
their host cells into lysogens, where the phage genome (prophage) is either integrated 
into the host genome or maintained extrachromosomally, replicating together with 
the host cell without producing phage progeny226. During their stable propagation 
over extended periods of time, prophages are likely to encounter heterologous phages 
infecting their host cell, as evidenced by the large number of polylysogens found in 
nature227,228. In rare cases the integration of several phage genomes into the same 
chromosome after superinfection was even witnessed for phage λ, even though the 
paradigm deems it immune to such superinfection229. The induction of polylysogens 
can lead to within-host competition, which is generally detrimental for the 
productivity of at least one of the phages involved230. Although the molecular 
mechanisms remained unclear, within-host competition showed a significant impact 
on phage fitness230. 

 

Another indicator for the importance of phage superinfection is the amount of 
different mechanisms temperate phages encode to prevent other phages from 
successfully infecting an already lysogenized host231. The general mechanism that 
confers immunity against other phage infections by the prophage residing in the cell 
is conveyed by the phage repressor responsible for maintaining the lysogenic cycle. 
This lysogenic repressor can interfere with a newly infecting phage by binding to the 
regulatory regions responsible for deciding the phage lifestyle (lytic or lysogenic), 
thereby aborting the incoming infection232. Phages interacting in this manner - 
meaning that their repressors and regulatory binding sites are compatible – are called 
homoimmune and belong to the same immunity class. The evolution of these 
superinfection immunity classes can be driven by invasion of ultra-virulent mutants – 
phages whose binding sites are immune to repressor binding of the residing prophage 
– and co-evolution of repressors to those binding sites232. As the immunity modules in 
different phage species likely evolved through extensive horizontal gene transfer145, it 
is unclear how many members one immunity group contains, but a classification of 
100 wild bacteriophages revealed 20 different immunity classes with one consisting 
of 48 members233. As evidenced by the example of cross immunity between the 
phages λ and VT2-Sa, this classification is likely based on similarities in operator 
sequence recognition and repressor binding motifs, even though the sequences can 
diverge quite substantially from each other114. So far, immunity classes have been 
based on phenotypic classification: whether a second phage can infect a lysogenized 
host cell or not. However, the intermediate steps in the immunity diversification 
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process likely involve binding crosstalk between phages, meaning that the repressor 
of one phage can bind to the operator of another phage, even though the operator 
sequence has diverged from its own (preferred) target sequence. This kind of crosstalk 
– which can also be asymmetric between the phages - and its impact on phage fitness 
remain unknown.  

 

In order to study the impact of different strengths of crosstalk between phages from 
different immunity classes, we used phage P22 and introduced mutations into the P22 
OR1 operator, which would make it more similar to the λ OR1 operator135. The OR1 
operator is responsible for repression of PR, the promoter driving the expression of 
lytic genes. The repression strengths of the mutated OR1 operators by either the λ CI 
repressor or the P22 C2 repressor or both together are known from in vivo 
measurements of isolated PR systems on plasmids (see Chapter 2&3). (The presence 
of both repressors in S. enterica cells for those measurements was achieved by 
introducing a P22 C2 lysogen and a plasmid expressing the λ CI repressor, which is very 
similar to the experiments with phages described below.) In this manner, phage fitness 
can be linked to underlying molecular mechanisms.  

 

As a first step we introduced the mutations into P22 OR1 through recombination and 
subsequent selection according to plaque morphology on a lawn of S. enterica cells. 
Even single mutations resulted in an observable difference in plaque morphology (Fig. 
4.1). This is in agreement with our repression measurements in isolated systems, 
where we found a significant reduction in P22 C2 binding already for single mutants 
(Fig. 2.2). Increasing the number of mutations up to six yielded a very similar plaque 
morphology as that of single mutants with the clearing in the center of the plaque 
becoming even more pronounced, indicating a decreased likelihood of lysogenization. 
Wild type plaques showed the typical, turbid phenotype produced by temperate 
phages, surrounded by a darker ring, which consists of a combination between older 
bacterial colonies that are being lysed by phages, and younger small lysogenic 
colonies234. For mutant phages, plaques displayed a clear center, surrounded by a ring 
of dense colonies and at the edge another, thinner ring of clear space (bull’s eye 
morphology). The loss of turbidity in the center stems from a reduced likelihood to 
form lysogens as the P22 OR1 mutants reduce repression of the lytic genes by P22 C2. 
During later infection cycles the number of phages (and hence the multiplicity of 
infection) increases, restoring the ability to produce lysogens234. Additionally, during 
later infection cycles bacterial colonies will already approach stationary phase and 
changes in host cell physiology, which generally decrease the competence for 
successful lytic infection235, ultimately result in the darker outer ring, consisting largely 
of lysogenic bacterial colonies which ran out of nutrients and remained almost 
invisibly small.  
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Figure 4.1. Plaque morphologies of wild type P22 phages (left) compared to a single 
OR1 mutant (middle) and the sextuple OR1 mutant (right).  

Wild type phages produce turbid plaques, while mutant phages produce bull’s eye 
formations. 

 

As a next step we want to investigate the influence of crosstalk between the immunity 
region of P22 phages and λ CI. Therefore, plasmids containing an aTc-inducible λ CI 
repressor are introduced into host cells before infection with mutant P22 phages. In 
this manner, we avoid adding the complexity of infection by a second phage species, 
which can result in many other types of interference - from the competition for host 
resources to superinfection exclusion systems230,236,237. Assuming that λ CI only affects 
P22 fitness through binding at the mutated P22 OR1 operators, there are three possible 
outcomes: 

i) Addition of λ CI does not influence the lifestyle decision of P22 phages at all, as the 
binding affinities (and/ or concentrations) of P22 C2 and Cro are higher, dominating 
the regulatory decision. 

ii) Binding of λ CI increases repression of P22 OR1, leading either to an increased 
frequency of lysogenic development, or – for strong enough binding – to abortion of 
the infection akin to superinfection immunity.  

iii) Competition of λ CI for P22 OR1 binding interferes with P22 C2 binding and leads to 
a reduced frequency of lysogenic development. Additionally, this interference could 
also affect binding of Cro to OR1, which is necessary for progression of the lytic cycle 
as it represses the lysogenic regulator CII. 

Preliminary experiments with λ CI expressed in the host cells used for plating did not 
yield a visible difference in plaque morphology compared to the host cells without λ 
CI, for the triple mutant (Fig. 4.2), but suggested a decrease in the diameter of the 
clear center for the sextuple mutant (Fig. 4.3). However, plaque assays only allow the 
observation of quite substantial lifestyle changes, hence more subtle and direct 
measurements of burst size, latent period and lysogenization frequency would be 
required. First experiments with the sextuple mutant on host cells in the presence and 
absence of λ CI suggest that the latent period stays the same and that changes in burst 
size might not be significant (Fig. 4.4). The variation in burst size for the sextuple 

wt double sextuple 
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mutant without λ CI is extremely high however and might be reduced in the presence 
of λ CI (Fig. 4.4).  

 

Figure 4.2. Comparison of plaques formed by a P22 triple OR1 mutant in the absence 
(left) or presence (right) of λ CI.  

Bull’s eye formation can be seen in plaques regardless of λ CI expression in the host 
cells.  

 

 

Figure 4.3. Comparison of plaques formed by the P22 sextuple OR1 mutant in the 
absence (left) or presence (right) of λ CI.  

Bull’s eye formation can be seen in plaques regardless of λ CI expression in the host 
cells, although the diameter of the clear zone seems to be decreased in the presence 
of λ CI.  

 

After learning the impact of λ CI on the P22 phage lifestyle decision, we can speculate 
on the outcome when λ and P22 phages are competing for one host cell. Assuming 
that crosstalk between phage repressors affects phage fitness and assuming that it is 
asymmetrical (i.e. λ CI can bind to P22 OR1, but P22 C2 cannot bind to λ OR1), we can 
imagine several scenarios encountered by the two phages in one host cell: 

1. Both phages are infecting the cell at the same time at MOI=1: Binding of λ CI to P22 
OR1 will result in titration of λ CI, increasing the probability that phage λ will follow its 
lytic pathway. Depending on how λ CI binding interferes with the lifestyle decision of 
P22 (see i-iii), P22 might choose the lysogenic or the lytic lifestyle. The former will not 
lead to any P22 phage progeny as its lytic cycle will be repressed but the host cell is 
lysed by phage λ. The latter will lead to competition with phage λ for host resources 

- λ CI + λ CI 

- λ CI + λ CI 



70 
 

to produce virions, which in itself is disadvantageous, but the interference through λ 
CI likely provides another hindrance for P22 in within-host competition.  

2. Both phages are infecting the cell at the same time at MOI>1: Lysogeny will be 
favored in both phages and both will integrate into the host genome as they use 
different attachment sites for integration.  

3. P22 is present as a prophage and λ is infecting the cell at MOI=1: λ will most likely 
follow lytic development and lyse the cell. Except if λ CI strongly interferes with P22 
C2 repression at P22 OR1, P22 will remain lysogenic and will be destroyed together 
with the host cell. If P22 is induced, it will again compete with λ for the host resources. 

4. P22 is present as a prophage and λ is infecting the cell at MOI>1: λ will likely 
integrate into the host chromosome, which does not interfere with the P22 prophage 
and the cell will become a polylysogen.  

5. λ is present as a prophage and P22 is infecting the cell: This scenario corresponds 
to i-iii above, except if λ CI is titrated to significant amounts, reaching the threshold 
for induction. This is however unlikely, as λ CI negatively regulates its own expression, 
meaning that titration will only lead to higher λ CI production, which maintains the 
prophage state201.  

Overall, crosstalk will be neutral (if lysogeny is chosen) or beneficial for the 
crosstalking phage (in our case λ), but mostly detrimental for the phage that is 
interfered with (here P22) – which will likely lead to strong selection against crosstalk.  

 

 

Figure 4.4. Burst size and latent period of the sextuple mutant in the presence (blue) 
or absence (red) of λ CI.  

Time is given in minutes on the x-axis and the burst size in PFU on the y-axis. The latent 
period was roughly 40 minutes for all samples but the rise and thereby potentially burst 
size showed a large variation, especially for samples in the absence of λ CI. Red curves 
show 3 replicates of the phage sextuple mutant in the absence of λ CI and blue show 2 
replicates of the same mutant in the presence of λ CI. 
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4.2 Difference in phage PR promoter strengths 

Although the genetic switch regions – or immunity modules – of lambdoid phages 
show substantial structural similarity, there are noticeable differences in the details of 
regulation114. The λ and P22 genetic switches seem to share the same molecular 
mechanisms of regulation, and yet we found substantial differences in how the two 
repressors λ CI and P22 C2 respond to mutations in their binding sites. This raises the 
question why there is no stronger selection for P22 C2 to resist mutations at OR1? We 
found that the λ PR promoter is substantially stronger than that of P22 (Fig. 4.5), 
suggesting that repression by P22 C2 does not need to be as efficient to keep the level 
of expression from P22 PR low.  

 

Most of the mutations that we introduced into either λ OR1 or P22 OR1 resulted not 
only in binding affinity changes for repressors but also for RNAP, as evidenced by the 
variation in fluorescence expression in the absence of repressor (Table 2.2). Hence, 
changes in OR1 operator sites due to divergence of immunity regions will likely lead to 
changes in PR promoter strength as well. We tested this hypothesis by measuring 
fluorescence expression from six different phage PR promoters from a low copy 
plasmid and found substantial variation between them (Fig. 4.5). As the CII and Q 
proteins, which are the master regulators of the lysogenic and lytic pathway after 
infection, are both expressed from the PR promoter, this should not affect the balance 
between them. It can however affect the concentration of the lysogenic repressor (e.g. 
λ CI or P22 C2) needed to repress PR, changing the selection pressures working on 
different parts of the switch. This could also be partly an explanation for the observed 
variety in molecular regulation mechanisms between immunity regions of different 
phages114.  

 

The differences in PR promoter strengths can also indicate differences in the lifestyles 
of these phages. Shiga-toxin expressing phages like 933W were found to have a much 
higher rate of spontaneous induction frequency than phages like λ, P22 and 434 that 
do not express toxins238. Accordingly, we found that 933W has the strongest PR 
promoter, which together with its low transcription rate of CI during lysogeny238 
explains the high incidence of spontaneous induction. λ and 434 on the other hand 
show high lysogen stability, stemming from high lysogenic CI transcription rates238 
coupled with less strong PR promoters. Additionally, the reduced production of CI 
transcripts in 434 as compared to λ (by about one-third) seems to be balanced by a 
similarly reduced PR strength (Fig. 4.5) to maintain lysogen stability. Hence, PR 
promoter strength and lysogenic repressor expression might co-evolve to produce 
lifestyles that benefit phages in a specific environments. 
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Figure 4.5. Comparison of phage PR strengths for different phages.  

The strength of different PR promoters was measured through fluorescence expression 
and normalized by λ PR strength (NFU).  

 

4.3 Methods 

Creation of mutant phages 

A derivative of the S. enterica LT2 strain was lysogenized with P22 phage from a high 
titer lysate by creating a dilution series of the lysate and plating them on a lawn of 
stationary S. enterica cells using LB plates. Bacterial lawns were created by mixing 3ml 
LB soft agar with 100µl of cells grown in M9 medium (1x M9 salts (12.8 gl−1, 
Na2HPO4.7H2O, 3 gl−1 KH2PO4, 0.5 gl−1 NaCl, 1 gl−1 NH4Cl), 2 mM MgSO4, 0.1 mM CaCl2) 
at 37 °C. Turbid plaques were picked and confirmed by streaking on mint green plates 
(10 g Bacto tryptone, 5 g Bacto yeast extract, 5 g NaCl, 2.5 g d-glucose, 12 g Ameresco 
agar) for phage lysis.  Mutations in P22 OR1 were created by λ Red recombineering239 
using short single-stranded DNA oligos (73bp)219. Plaques of mutant phages were 
picked according to morphology, as they displayed distinct bull’s eye morphologies 
(see text). Mutants were confirmed by sequencing the entire PRM-OR-PR region. All 
plates were incubated at 37°C overnight.  

 

Lysate preparation 

Phage lysates were prepared by plate lysis. Specifically, individual phage plaques were 
picked with a sterile pipette tip, resuspended in 3 ml of phage soft agar together with 
100 μ l of overnight bacterial culture and plated on top of LB plates. The plates were 
then incubated at 37 °C overnight. The soft agar was scraped with a sterile microscope 
glass slide, resuspended in 10 ml of SM buffer (100 mM NaCl, 8 mM MgSO4, 200 mM 
Tris-Cl (pH 7.5)) with a few drops of chloroform to kill the residual bacteria. The lysates 
were then centrifuged to remove the leftover agar, sterilized by filtration (0.2 μ m) 
and stored at 4 °C.  
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Estimating burst size and latent period240 

S. enterica cells from overnight cultures were diluted 1:100 into M9 medium and 
grown for 4h. Lysate was added to reach 106 pfu/ml and phages were adsorbed for 20 
minutes at 37°C. After that time, the mixture was diluted 100-fold into fresh M9 
medium and incubated at 37°C with vigorous shaking. Samples were taken every 10 
minutes and several dilutions were plated on S. enterica lawns. One sample at the 
beginning of the experiment was filtered and plated to determine the number of 
unabsorbed bacteria.     

 

Measuring strength of different PR promoters 

We constructed a template plasmid carrying a fluorescence marker gene venus-yfp120 
under the control of the PR promoter region, containing an RNAP binding site as well 
as two operators, OR1 and OR2. The PR region was taken either from Lambda, P22, 
phi80, HK620, 933W or 434. Specifically, for Lambda PR we used the region from -60bp 
upstream of the transcriptional start site to +9bp downstream. To our knowledge the 
specific location of the transcriptional start site has not been defined for the other 
phage PR promoters. Therefore, upstream of OR2 and downstream of OR1 we used the 
wild type phage sequences that were of the same bp length as the analogous Lambda 
PR regions. 

We measured fluorescence of all phage PR promoters using a Bio-Tek Synergy H1 
platereader. Three biological replicates of each phage PR promoter were grown at 37°C 
overnight in M9 media, supplemented with 0.1% casamino acids, 0.2% glucose and 
30μg/ml kanamycin. Overnight cultures were diluted 1,000X, grown to OD600 of 
approximately 0.1 for fluorescence measurements. All replicate measurements were 
randomized across multiple 96-well plates. All measurements showed fluorescence 
levels significantly above the detection limit of the plate reader. Fluorescence values 
were divided by OD600 values (in RFU=Relative Fluorescence Units) and averaged over 
three replicates. All mean fluorescence measurements were normalized by the mean 
fluorescence value of Lambda PR. 

 

4.4 Author contributions 

C.I. (Claudia Igler), C.C.G. (Călin C. Guet) conceived the study together. C.I. designed 
and carried out the experiments and analyzed the data. M.P. (Maroš Pleška) assisted 
in the experimental design. C.I. wrote the current draft of the manuscript and revised 
it together with S.A. (Steve Abedon). 
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5. Non-specific TF binding inhibits cellular growth 

5.1 Abstract 

Correct functioning of cellular programs depends on the appropriate expression of 
genes, which is largely determined through binding of transcription factors (TFs) to 
specific DNA targets. Non-specific binding of TFs however, might significantly interfere 
with cellular programs. Although it has been suggested that many TFs might be bound 
non-specifically to DNA most of the time, the overall impact of non-specific binding on 
the cell remains unclear. We show experimentally that gratuitous expression of phage 
repressors in Escherichia coli and Salmonella enterica significantly reduces fitness 
under certain conditions. The growth reduction is dependent upon a (i) repressor’s 
ability to bind DNA, (ii) its ability to form cooperative interactions and (iii) its 
concentration relative to the concentration of DNA. We find that non-specific binding 
due to promiscuous or non-native TFs can be detrimental to the cell and might put a 
constraint on regulatory design.  

 

5.2 Introduction 

Although it has been acknowledged for decades that cellular gene expression is 
controlled by specific binding of transcription factors (TFs) to DNA sites73,202, the 
suggestion that non-specific binding is a decisive factor in gene regulation52 has 
received less attention. Indeed, many regulatory proteins might be bound to DNA non-
specifically most of the time52,58,129. This might provide the TF with an advantage, 
speeding up the target search due to 1D-sliding on DNA (facilitated diffusion)44,203 or 
protection of TFs from degradation204. However, non-specific binding could also 
disturb the cellular program, as modeling indicates that DNA occupancy at non-
specific sites can interfere with binding of TFs at their target sites, potentially imposing 
global constraints on the regulatory architectures of cells115. Hence, non-specific TF 
binding seems to be an abundant mechanism with possibly far-reaching consequences 
on gene regulation, and yet the overall ramifications of non-specific TF-binding on 
cellular fitness remain unclear as they have not been investigated experimentally so 
far. 

 

5.3 Results 

Experimental setup 

Here, we test the effects of non-specific TF binding employing gratuitous expression 
of DNA-binding proteins, i.e. TFs without a cognate binding site, on the host cell. 
Therefore, we cloned a phage repressor gene (λ cI or P22 c2) under the control of an 
aTc-inducible promoter (Ptet) on a low copy number plasmid (Fig. 5.1A). In their natural 
systems, both phage repressors bind to one operator as a dimer, but they can also 
bind cooperatively to adjacent operators or form long- and short-distance loops 
involving two to four dimers96,121,156,205,206 (Fig. 5.1A). The plasmids were transformed 
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into E. coli and S. enterica cells, which are each the native host for one of the phages 
- λ and P22, respectively - but do not contain operator sites for either repressor. As 
we wanted to capture the overall impact of non-specific binding on cellular fitness, we 
used growth as a global determinant for the effects of repressor expression.  
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Figure 5.1. Growth defects in the presence of repressors in minimal media.  

A) A repressor (either λ CI or P22 C2) was put under the control of Ptet on a low-copy 
number plasmid and introduced into E. coli or S. enterica cells (upper). Both repressors 
bind as dimers and form cooperative interactions and loops (lower). Curves show mean 
OD600 for E. coli (upper) or S. enterica (lower) cells grown in minimal medium with 
glucose in the presence (yellow) or absence (black) of (B) λ CI (C) P22 C2, or just the 
chemical inducer aTc in cells without plasmid (D); error bars show standard deviation. 
The x-axis shows time in minutes. 

 

 

Figure 5.2. Expression of a fluorescence marker from Ptet on the pZS plasmid used 
for repressor expression.  

Mean OD600 is shown for E. coli cells (growth curves are similar in S. enterica, not 
shown) grown in minimal media with glucose in the absence (blue) and presence of 
the plasmid (black), as well as when a fluorescence gene under the control of Ptet is 
expressed from the plasmid (yellow). Error bars give standard deviation. The x-axis 
shows time in minutes. 

 

Growth effects in different media and induction treatments 

For cells grown in minimal media with glucose over 10h the presence of λ CI resulted 
in a strong reduction of growth in E. coli and S. enterica when compared to growth in 
the absence of λ CI, with a stronger effect found in S. enterica (Fig. 5.1B, Table 5.1). 
P22 C2 on the other hand, showed no effect in S. enterica, while stopping growth 
completely when expressed in E. coli (Fig. 5.1C, Table 5.1). We found no growth 
changes due to the addition of aTc (Fig. 5.1D) or the presence of a plasmid alone; nor 
due to expression of a fluorescence marker from the same plasmid construct (Fig. 5.2).  
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Figure 5.3. Conditional impact of repressors on cellular growth.  

Curves show mean OD600 for E. coli or S. enterica cells grown in the presence (indicated 
color) or absence (black) of λ CI or P22 C2; error bars show standard deviation. The x-
axis shows time in minutes. A) Cells were grown in rich media (LB) at full induction. B) 
Inducer concentrations for repressor expression were varied from 1-25ng. C) Induction 
time points of repressor expression were varied from lag phase (0h) to early- and mid- 
exponential phase (2h and 4h).  

 

We further explored the conditions for repressor-mediated growth changes by varying 
the environmental conditions in which the cells were grown. In rich media, the growth 
defect was abolished completely in E. coli for both repressors, and substantially 
reduced with λ CI expressed in S. enterica (Fig. 5.3A, Table 5.2).  Minimal media 
supplemented with Casamino acids (and glycerol or glucose) resulted in intermediate 
growth reductions between rich and poor media (Fig. 5.4, Table 5.3). P22 C2 did not 
have an effect on growth in S. enterica in any of the conditions (Table 5.1, 5.2, 5.3) and 
will not be discussed in further experiments.  
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Figure 5.4. Expression of repressors in M9 minimal media supplemented with 
Casamino acids (CAA) and glucose (left) or glycerol (right).  

Curves show mean OD600 for E. coli or S. enterica cells grown in the presence (yellow) 
or absence (black) of λ CI or P22 C2; error bars show standard deviation. The x-axis 
gives time in minutes. 

 

In addition to nutrient availability, we tested the dependence of the growth defect on 
repressor concentration and induction timing. In E. coli, decreasing repressor 
concentrations showed a gradual recovery of normal growth (Fig. 5.3B, Table 5.4, 5.5), 
whereas even low expression of λ CI in S. enterica resulted in significant growth 
reductions (Fig. 5.3B, Table 5.6). We also found that the induction time point is a 
significant determinant - surprisingly however only relieving λ CI-induced growth 
defects. Whereas λ CI induction in early- and mid-exponential growth (as opposed to 
induction during the lag phase) gradually abolished the growth defect in E. coli and S. 
enterica (Fig. 5.3C, Table 5.7), this was not the case for P22 C2, where growth was 
always halted 1-2h after repressor induction (Fig. 5.3C, Table 5.7). Hence, gratuitous 
expression of repressors resulted in significant growth defects under various 
conditions.  
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Figure 5.5. Controls for the competition assays.  

Curves show mean fluorescence for E. coli (upper) or S. enterica (lower) cells grown in 
minimal media with glucose in the presence (yellow) or absence (black) of a λ CI 
dimerization mutant (A) and LacI-Venus or LacI-Venus alone (B); error bars show 
standard deviation. Cells containing the λ CI dimerization mutant were mixed 1:1 with 
cells containing LacI and a constitutively expressed Venus marker. Fluorescence 
(indicative of LacI-plasmid cells) was measured over several hours (x-axis shows time 
in minutes). 

 

Fitness effects of gratuitous repressor expression 

We tested if the phage repressor-mediated growth effects also reduce cellular fitness 
using direct competition with cells that expressed a non-toxic TF (LacI) from the same 
plasmid construct (Fig. 5.5). Plasmids containing LacI were additionally labeled with a 
constitutive Venus marker, which also showed no fitness effect. 1:1 mixtures of cells 
with phage repressor plasmids and cells with LacI plasmids were grown in minimal 
media. The fluorescence production in the cell mixtures was compared between the 
absence (no fitness effect of the plasmids) and presence of repressor induction 
(growth reduction in phage repressor-expressing cells). In accordance with previous 
experiments, the expression of repressors led to a significant increase in LacI-
expressing cells, except for P22 C2 in S. enterica (Fig. 5.6, Table 5.8). 
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Figure 5.6. Competition assays.  

(A) Cells containing a toxic repressor (λ CI or P22 C2) were mixed 1:1 with cells 
containing a non-toxic repressor (LacI) and a constitutively expressed Venus marker. 
Cells were competed over 20h and fluorescence was taken as a measure of the relative 
change in LacI containing cells versus phage repressor containing cells. Curves show 
mean fluorescence for E. coli (upper) or S. enterica (lower) cells grown in minimal 
media with glucose in the presence (yellow) or absence (black) of λ CI (A) or P22 C2 (B) 
and LacI; error bars show standard deviation. Fluorescence (indicative of LacI-plasmid 
cells) was measured over several hours (x-axis shows time in minutes). Selection 
coefficients (for calculation see Methods) after 20h were 0.16 (E. coli) and 0.35 (S. 
enterica) in (A) and 0.63 (E. coli) and 0.09 (S. enterica) in (B). 

 

Distributed, non-specific binding as a basis for growth effects 

Accordingly, gratuitous expression of phage repressors can be exceedingly 
detrimental to cellular growth, but what is the cause of the defect? By definition, 
repressors are DNA-binding proteins and could interfere with the cellular program 
through non-specific DNA binding. λ CI only binds DNA in dimeric form207, so we tested 
expression of a mutant that cannot form dimers134, as well as of a mutant defective in 
DNA binding, and found that the growth and fitness effect of repressor expression was 
almost completely abolished in E. coli as well as in S. enterica (Fig. 5.7A, 5.8, Table 5.8, 
5.9). (As neither of these mutants has been characterized for P22 C2 so far, we only 
performed this experiment with λ CI). We found similar results for a λ CI mutant 
defective in cooperativity between repressor dimers (Fig. 5.7B, Table 5.9). To rule out 
that repressor misfolding or aggregation was responsible for the growth defect, we 
over-expressed a chaperone gene (tig) together with the repressors, which however 
did not diminish the detrimental effect (Fig. 5.9, Table 5.10). Hence, the ability to bind 
DNA – especially in a cooperative manner – seems to be crucial for repressor-
mediated growth effects. In agreement with previous studies on λ CI and other 
TFs44,58,203,208, this indicates substantial non-specific binding, which is supported 
through repressor oligomerization209,210.  
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Figure 5.7. λ CI mutants support non-specific binding of wildtype λ CI. 

Curves show mean OD600 for E. coli (upper) or S. enterica (lower) cells grown in minimal 
medium with glucose in the presence (yellow) or absence (black) of a λ CI dimerization 
mutant (A), or a λ CI cooperativity mutant (B); error bars show standard deviation. The 
x-axis shows time in minutes.  

 

Non-specific binding might reduce growth by binding to and interfering with a few 
essential bacterial genes, so we performed ChIP sequencing to search for target genes 
of λ CI non-specific binding in E. coli and S. enterica, using HA-tags, which did not 
change the growth patterns caused by the repressors (Fig. 5.10). However, the data 
did not reveal strong peaks for any genomic site or obvious essential gene targets, but 
indicated weak binding at numerous sites all over both chromosomes (Fig. 5.11A). 
Further, non-specific binding was preferentially found within genes, not intergenic 
regions (Fig. 5.11B). A simple thermodynamic model of λ CI binding strength across 
the genome showed a surprising degree of correlation with the number of reads from 
ChIP sequencing (Fig. 5.12), considering that those models generally perform poorly 
for low affinity sites101.  
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Figure 5.8. Expression of a binding mutant of λ CI abolishes growth defect 
completely.  

Curves show mean OD600 for A) E. coli or B) S. enterica cells grown in minimal media 
with glucose in the presence (yellow) or absence (black) of a λ CI binding mutant; error 
bars show standard deviation. The x-axis gives time in minutes. 

 

 

Figure 5.9. Expression of λ CI or P22 C2 together with a chaperone gene in E. coli or 
S. enterica.  

Additional expression of a chaperone (Tig) that prevents formation of aggregates does 
not affect mean OD600 in minimal media with glucose (blue vs black), but does also not 
alleviate repressor-mediated growth defects (red vs yellow). Error bars give standard 
deviation. The x-axis shows time in minutes. 

 

Non-specific binding leads to arrest of cell division 

Distributed non-specific repressor binding is in agreement with the observation that 
increasing concentrations of repressor lead to a gradual increase in the severity of the 
growth defect. Additionally, the dependence on media and induction timing indicate 
that DNA concentration - or rather the concentration ratio between repressor and 
DNA - might also play a role. If cell doubling time is slower than the time needed for 
DNA replication and cell division (~60min. in E. coli50 and ~50min. in S. enterica211 - 
which is close to our observed doubling time in minimal media: ~63min. and 58min. 
respectively), each cell contains only one chromosome. At faster growth, replication 
cycles are overlapping and daughter cells inherit 2-8 origins at birth, together with 
partially replicated chromosomes50. Hence, the richer the medium and the faster the 
growth, the more DNA will be available to titrate potentially detrimental non-specific 
binding proteins. Similarly, cells that are induced during the lag or early-exponential 
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phase (after 1-2 doublings) will only have one chromosome as they did not inherit 
partially replicated chromosomes from their mothers and grandmothers yet. We 
tested this theory by introducing a high copy number plasmid carrying four native λ CI 
binding sites into E. coli cells containing Ptet - λ CI. Although expression of λ CI still 
slowed down growth, growth was significantly faster than for cells not carrying the 
binding sites (Fig. 5.13). Hence, titration of λ CI alleviates the growth defect, likely even 
more so if additional chromosomal DNA is present as it provides more potential 
binding sites than the ~200 from the high copy number plasmid.  

 

 

Figure 5.10. HA tags on λ CI and P22 C2 produce the same growth patterns as wildtype 
repressors in E. coli and S. enterica.  

Curves show mean OD600 for E. coli (upper) or S. enterica (lower) cells grown in minimal 
medium with glucose in the presence (yellow) or absence (black) of a λ CI with an HA 
tag (A), or P22 C2 with an HA tag (B); error bars show standard deviation. The x-axis 
shows time in minutes.  
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Figure 5.11. Non-specific binding of λ CI in E. coli or S. enterica.  

A) Boxplots showing the number of ChIP sequencing reads for 1000bp windows across 
the genome for cells grown in minimal media with glucose in the presence or absence 
of λ CI and for a background control. B) Binding footprints in genic or intergenic regions 
show enrichment within genes for λ CI binding in E. coli (footprints in S. enterica are 
not shown but look similar). Genic and intergenic regions (going from the 5’ to the 3’ 
end) were scaled to make them comparable and coverage is given for each percentile 
over all genic or intergenic regions. A control where reads in genic regions were 
shuffled as well as the footprint on the background control are shown for comparison.  

 



85 
 

 

Figure 5.12. Fit between binding strength predictions of a thermodynamic model 
and ChIP sequencing reads.  

Plots show the correlation between binding strength predicted by a simple 
thermodynamic model using the energy matrix for λ CI binding and ChIP sequencing 
reads across 1000bp windows along the A) E. coli or B) S. enterica genome. The 
calculated Spearman coefficients for these correlations are shown.  

 

We used fluorescence microscopy of E. coli cells containing Ptet - λ CI to investigate if 
repressor expression was interfering with DNA replication or cell division. First, we 
imaged cells expressing a SeqA-gfp fusion protein, which is an indicator of replication 
fork progression. Even though most of the imaged cells formed long filaments, the 
fluorescent dots suggest ongoing replication but no division in those filaments (Fig. 
5.14A, 5.15). Most of the filamentous cells did not show substantial activation of the 
stress response (Fig. 5.14B, 5.16), which would lead to self-cleavage of the repressor 
molecules212 (relieving the stress), but also temporally to inhibition of cell division213. 
Cell division is dependent on FtsZ ring formation at the cell midpoint, which can be 
inhibited by the stress response but also by nucleoid occlusion, meaning that rings 
cannot form as long as the chromosome is located at the cell midpoint214. By using a 
Fis-gfp fusion protein, which is an unspecific DNA-binder, we found that in many 
filaments at least one chromosome was located close to the cell center (Fig. 5.14C, 
5.17). This could also explain why some filaments manage to start dividing again at 
one end after growing to a substantial length, as FtsZ ring formation starts occurring 
at quarter points in filamentous cells214.  Therefore, it seems that cell replication is not 
substantially affected, but that chromosomes are retained at the cell midpoint, 
thereby inhibiting cell division.  
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Figure 5.13. Titration of λ CI by target binding sites on a plasmid.  

Curves show differences in mean OD600 for E. coli cells grown in minimal media with 
glucose containing λ CI and an empty high copy number plasmid (yellow) or λ CI 
together with 4 native λ CI binding sites on a high copy number plasmid (black). 
Differences in growth were calculated as the difference in growth between conditions 
with atc (repressor induction) and without atc. Error bars show standard deviation; the 
x-axis gives time in minutes. 

5.4 Discussion 

Overall, we find that non-specific binding of regulatory proteins can put a significant 
cost on the host cell, arresting growth and inhibiting cell division. The severity of the 
cost depends on the repressor’s ability to bind DNA non-specifically – which seems to 
be enhanced through binding cooperativity - as well as its concentration relative to 
the DNA concentration within the cell. Slow cell growth compounds the effect as cells 
contain less DNA but accumulate more proteins than at fast growth40. Additionally, 
stress tolerance could be higher at fast growth in rich media. It does not seem likely 
however that media-specific genes are targeted through non-specific binding, as ChIP 
sequencing revealed distributed, weak binding by λ CI. Rather, inhibition of cell 
division seems at least partially to be due to nucleoid occlusion, as chromosomes tend 
to accumulate at the cell center. Clearance of the division site is impeded if sister 
chromosomes fail to be completely segregated215, which could be caused by structural 
interference due to looping between non-specifically bound repressor molecules, 
explaining the dependence of the growth defect on cooperativity.  

 

Our findings suggest that the potentially detrimental effect of DNA-binding proteins 
could be a universal problem that cells are facing due to cellular crowding45, horizontal 
gene transfer216, or mutations that affect the binding specificity of a TF. λ CI, which is 
a more promiscuous TF135, reduces growth in E. coli and S. enterica, indicating a global 
constraint on promiscuous binders within cells, as implicated by previous modeling115. 
P22 C2, however, was shown to be a rather specific binder135, which agrees with the 
observation that it was only detrimental in E. coli, but not in its natural host. This might 
also explain why later induction does not relieve the growth defect as P22 C2 is not 
titrated away by additional, partially replicated chromosomes if they do not contain 
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its ‘more specific’ non-specific sequences. Non-specific binding can exert a significant 
fitness cost on bacterial cells and might put a constraint on regulatory architectures, 
for example constraining the number of DNA-binding proteins and the influx of foreign 
genes. As the repressors, which we used, originated from temperate phages, 
interference with host cell growth might also limit the potential host range of 
temperate phages with regard to successfully establishing lysogeny. We found 
however no growth defect for two different phage repressors (Fig. 5.18) or for λ CI 
and P22 C2 in a different host strain (Fig. 5.19), which further indicates that the effect 
is dependent on the specific strain-TF combination.  

 

A  B  C  

Figure 5.14. Microscope images of E. coli cells grown in minimal media with glucose 
and induced for λ CI.  

Fluorescence indicates (A) replication progression (SeqA-gfp fusion), (B) induction of 
the stress response (PsulA-yfp reporter), and (C) chromosome positioning (Fis-gfp 
fusion). 

 

Figure 5.15. Microscope images of cell replication in E. coli cells grown in minimal 
media with glucose and induced for λ CI.  

Fluorescence indicates replication progression (SeqA-gfp fusion). 
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Figure 5.16. Stress response induction in E. coli with λ CI.  

E. coli cells containing an stress response reporter gene (PsulA-yfp) and λ CI were grown 
in minimal media with glucose. Cells were either not induced (black), or induced for 
different stressors: with aTc, producing λ CI (yellow), or with UV exposure for 30sec 
(blue). UV induction leads to a spike in the stress response and an initial decrease in 
growth, whereas λ CI does not induce the stress response but leads to an increasing 
growth defect.  

 

 

Figure 5.17. Microscope images of cell division in E. coli cells grown in minimal media 
with glucose and induced for λ CI.  

Fluorescence indicates chromosome positioning (Fis-gfp fusion). 
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Figure 5.18. No growth defect due to phage repressors from 434 and HK022. 

Curves show mean OD600 for E. coli (upper) or S. enterica (lower) cells grown in minimal 
medium with glucose in the presence (yellow) or absence (black) of a HK022 CI (A), or 
434 CI (B); error bars show standard deviation. The x-axis shows time in minutes.  

 

 

Figure 5.19. No growth defect of λ CI or P22 C2 in E. albertii. 

Curves show mean OD600 for E. albertii cells grown in minimal medium with glucose in 
the presence (yellow) or absence (black) of the chemical inducer aTc in cells without 
plasmid (left),  λ CI (middle), or P22 C2 (right); error bars show standard deviation. The 
x-axis shows time in minutes. 

 

5.5 Tables 

Table 5.1. Statistical significance of growth changes in minimal media with glucose 
due to the presence of λ CI or P22 C2 in E. coli and S. enterica.  

FDR-corrected t-test were carried out at four time points to test if growth in the 
presence of a repressor was significantly different from growth in its absence; p-values 
and t-values are shown (red values indicate no significant difference).  
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Time (min) E. coli - λ CI E. coli - P22 C2 S. enterica - λ CI S. enterica -P22 C2 

120 p=0,047; f=0,05 p=0,020; f=0,02 p=0,053; f=0,05 p=0,021; f=0,02 

240 p=0,002; f=0,00 p=0,000; f=0,00 p=0,002; f=0,00 p=0,047; f=0,05 

360 p=0,000; f=0,00 p=0,000; f=0,00 p=0,000; f=0,00 p=0,953; f=0,95 

480 p=0,000; f=0,00 p=0,000; f=0,00 p=0,000; f=0,00 p=0,334; f=0,33 

 

Table 5.2. Statistical significance of growth changes in rich media (LB) due to the 
presence of λ CI or P22 C2 in E. coli or S. enterica.  

FDR-corrected t-test were carried out at four time points to test if growth in the 
presence of repressor was significantly different from growth in its absence; p-values 
and t-values are shown (red values indicate no significant difference).  

Time (min) E. coli - λ CI E. coli - P22 C2 S. enterica - λ CI S. enterica - P22 C2 

120 p=0,491; f=1,19 p=0,064; f=3,20 p=0,020; f=4,44 p=0,871; f=-0,27 

240 p=0,967; f=-0,04 p=0,020; f=4,44 p=0,000; f=27,46 p=0,152; f=2,37 

360 p=0,767; f=0,50 p=0,020; f=4,51 p=0,000; f=15,75 p=0,606; f=0,92 

480 p=0,020; f=4,54 p=0,006; f=6,94 p=0,000; f=29,17 p=0,755; f=0,59 

 

Table 5.3. Statistical significance of growth changes in minimal media supplemented 
with Casaminoacids and glycerol due to the presence of λ CI or P22 C2 in E. coli and 
S. enterica.  

FDR-corrected t-test were carried out at four time points to test if growth in the 
presence of repressor was significantly different from growth in its absence; p-values 
and t-values are shown (red values indicate no significant difference).  

Time (min) E. coli - λ CI E. coli - P22 C2 S. enterica - λ CI S. enterica - P22 C2 

120 p=0,182; f=1,75 p=0,008; f=5,68 p=0,045; f=3,27 p=0,144; f=2,00 

240 p=0,096; f=2,42 p=0,002; f=9,70 p=0,004; f=7,25 p=0,040; f=3,44 

360 p=0,024; f=4,18 p=0,001; f=12,22 p=0,024; f=4,15 p=0,083; f=2,59 

480 p=0,006; f=6,20 p=0,001; f=15,39 p=0,003; f=8,13 p=0,968; f=-0,06 

 

Table 5.4. Statistical significance of growth changes due to different concentrations 
of λ CI in E. coli.  

FDR-corrected t-test were carried out at four time points to test if growth in minimal 
media with glucose in the presence of λ CI was significantly different from growth in 
its absence; p-values and t-values are shown (red values indicate no significant 
difference).  

Time 
(min) 

E. coli - λ CI 1ng 
atc 

E. coli - λ CI 2ng 
atc 

E. coli - λ CI 3ng 
atc 

E. coli - λ CI 4ng 
atc 
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120 p=0,755; f=0,40 p=0,100; f=-2,61 p=0,027; f=-4,70 p=0,042; f=-3,81 

240 p=0,017; f=-5,74 p=0,001; f=-25,63 p=0,003; f=-11,20 p=0,006; f=-9,00 

360 p=0,169; f=-2,00 p=0,001; f=-26,96 p=0,001; f=-27,67 p=0,005; f=-9,34 

480 p=0,218; f=-1,71 p=0,002; f=-14,09 p=0,002; f=-14,70 p=0,009; f=-7,23 

 

Table 5.5. Statistical significance of growth changes due to different concentrations 
of P22 C2 in E. coli.  

FDR-corrected t-test were carried out at four time points to test if growth in minimal 
media with glucose in the presence of P22 C2 was significantly different from growth 
in its absence; p-values and t-values are shown (red values indicate no significant 
difference).  

Time (min) E. coli - P22 C2 
1ng atc 

E. coli - P22 C2 2ng 
atc 

E. coli - P22 C2 
3ng atc 

E. coli - P22 C2 
4ng atc 

120 p=0,078; f=-2,91 p=0,472; f=-0,87 p=0,011; f=-6,79 p=0,013; f=-6,06 

240 p=0,042; f=-3,81 p=0,011; f=-6,62 p=0,001; f=-23,95 p=0,000; f=-28,53 

360 p=0,119; f=-2,34 p=0,001; f=-15,94 p=0,001; f=-20,48 p=0,000; f=-32,55 

480 p=0,128; f=-2,20 p=0,003; f=-10,98 p=0,001; f=-20,38 p=0,000; f=-32,67 

 

Table 5.6. Statistical significance of growth changes due to different concentrations 
of λ CI in S. enterica.  

FDR-corrected t-test were carried out at four time points to test if growth in minimal 
media with glucose in the presence of λ CI was significantly different from growth in 
its absence; p-values and t-values are shown (red values indicate no significant 
difference).  

Time (min) S. enterica - λ CI 
1ng atc 

S. enterica - λ CI 
2ng atc 

S. enterica - λ CI 
3ng atc 

S. enterica - λ CI 
4ng atc 

120 p=1,000; f=0,00 p=0,308; f=1,32 p=0,008; f=-7,55 p=0,051; f=0,90 

240 p=0,068; f=-3,11 p=0,017; f=-5,59 p=0,000; f=-48,00 p=0,005; f=-1,32 

360 p=0,004; f=-10,44 p=0,001; f=-20,00 p=0,000; f=-50,20 p=0,004; f=-4,11 

480 p=0,001; f=-35,34 p=0,002; f=-15,36 p=0,001; f=-32,94 p=0,008; f=-7,62 

 

 

Table 5.7. Statistical significance of growth changes due to different induction time 
points (2 and 4h after inoculation) of λ CI and P22 C2 in E. coli and λ CI in S. enterica.  

FDR-corrected t-test were carried out at four time points to test if growth in minimal 
media with glucose in the presence of a repressor was significantly different from 
growth in its absence; p-values and t-values are shown (red values indicate no 
significant difference).  
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Time 
(min) 

E. coli - 
λ CI 2h 

E. coli - 
λ CI 4h 

E. coli - 
P22 C2 2h 

E. coli - 
P22 C2 4h 

S. enterica - 
λ CI 2h 

S. enterica - 
λ CI 4h 

120 p=1,000; 
f=1,19 

p=0,095; 
f=3,20 

p=0,160; 
f=0,86 

p=0,285; 
f=4,44 

p=0,267; 
f=2,01 

p=1,000; 
f=0,00 

240 p=0,907; 
f=-0,04 

p=0,026; 
f=4,44 

p=0,033; 
f=0,39 

p=0,095; 
f=27,46 

p=0,001; 
f=2,30 

p=1,000; 
f=0,00 

360 p=0,092; 
f=0,50 

p=0,370; 
f=4,51 

p=0,002; 
f=-0,06 

p=0,451; 
f=15,75 

p=0,001; 
f=0,88 

p=0,026; 
f=0,00 

480 p=0,033; 
f=4,54 

p=0,031; 
f=6,94 

p=0,002; 
f=1,27 

p=0,001; 
f=29,17 

p=0,044; 
f=0,56 

p=0,940; 
f=0,00 

 

Table 5.8. Statistical significance of fluorescence differences in growth competitions.  

Fluorescence was measured in 1:1 mixtures of cells containing plasmids with either a 
phage repressor (λ CI, P22 C2 or λ CI dim mutant) or LacI and a fluorescence marker. 
FDR-corrected t-test were carried out at four time points to test if the number of lacI-
containing cells was significantly increased in the presence of inducer as compared to 
its absence when cells were grown in minimal media with glucose; p-values and t-
values are shown (red values indicate no significant difference). The LacI control in the 
lower table gives the fluorescence difference between absence and presence of LacI 
in cells containing the LacI-Venus plasmid. 

Time 
(min) 

E. coli - λ CI vs.  

LacI Venus 
E. coli- P22 C2 vs. 

LacI Venus 
S. enterica - λ CI vs. 

LacI Venus 
S. enterica - P22 C2 

vs. LacI Venus 

120 p=0,021; f=-15,986 p=0,017; f=-26,851 p=0,047; f=-4,555 p=0,813; f=-0,494 

240 p=0,025; f=-12,498 p=0,017; f=-28,534 p=0,047; f=-5,683 p=0,898; f=-0,146 

360 p=0,035; f=-8,654 p=0,017; f=-21,504 p=0,047; f=-4,464 p=0,898; f=-0,170 

480 p=0,030; f=-10,625 p=0,021; f=-15,064 p=0,047; f=-7,430 p=0,898; f=-0,165 

Time 
(min) 

E. coli - λ CI dim 
mutant vs. LacI Venus 

E. coli- LacI Venus 
control 

S. enterica - λ CI dim 
mutant vs. LacI 

Venus 

S. enterica – LacI 
Venus control 

120 p=0,325;f=-2,055 p=0,059;f=5,869 p=0,373;f=-1,688 p=0,802;f=0,442 

240 p=0,284;f=-2,362 p=0,014;f=19,614 p=0,723;f=-0,790 p=0,052;f=6,531 

360 p=0,284;f=-2,423 p=0,014;f=30,801 p=0,792;f=-0,628 p=0,108;f=4,137 

480 p=0,419;f=-1,471 p=0,014;f=22,877 p=0,813;f=-0,482 p=0,234;f=2,527 

Table 5.9. Statistical significance of growth changes due to mutant λ CI in E. coli and 
S. enterica.  

FDR-corrected t-test were carried out at four time points to test if growth in minimal 
media with glucose in the presence of mutated λ CI (dim… dimerization mutant, bind… 
binding mutant, coop… cooperativity mutant) was significantly different from growth 
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in its absence; p-values and t-values are shown (red values indicate no significant 
difference).  

Time 
(min) 

E. coli - λ 
CI dim 

mutant 

S. enterica - 
λ CI dim 
mutant 

E. coli - λ 
CI bind 
mutant 

S. enterica - 
λ CI bind 
mutant 

E. coli - λ 
CI coop 
mutant 

S. enterica - λ 
CI coop 
mutant 

120 p=0,234; 
f=0,23 

p=0,049; 
f=0,05 

p=0,099; 
f=-3,464 

p=0,041; 
f=8,000 

p=1,000; 
f=-0,27 

p=0,033; 
f=0,00 

240 p=0,034; 
f=0,03 

p=0,017; 
f=0,02 

p=0,078; 
f=4,914 

p=0,041; 
f=8,598 

p=0,015; 
f=2,37 

p=0,014; 
f=0,00 

360 p=0,029; 
f=0,03 

p=0,015; 
f=0,01 

p=0,011; 
f=26,348 

p=0,168; 
f=2,313 

p=0,017; 
f=0,92 

p=0,015; 
f=0,00 

480 p=0,045; 
f=0,04 

p=0,016; 
f=0,02 

p=0,079; 
f=4,323 

p=0,616; f=-
0,589 

p=0,059; 
f=0,59 

p=0,092; 
f=0,00 

 

Table 5.10. Statistical significance of growth changes due to overexpression of a 
chaperone gene in E. coli and S. enterica.  

FDR-corrected t-test were carried out at four time points to test if the growth defect 
caused by phage repressors in minimal media with glucose could be alleviated by 
additional expression of a chaperone (Tig); p-values and t-values are shown (red 
values indicate no significant difference).  

Time (min) E. coli - 
λ CI 

E. coli - 
P22 C2 

S. enterica - 
λ CI 

S. enterica - 
P22 C2 

120 p=0,547; 
f=0,997 

p=0,667; 
f=0,500 

p=0,547; 
f=0,945 

p=0,547; f=-
1,000 

240 p=0,547; 
f=1,045 

p=0,547; 
f=1,000 

p=0,563; 
f=0,832 

p=0,564; f=-
0,756 

360 p=0,547; 
f=2,986 

p=0,547; 
f=1,000 

p=0,547; 
f=0,994 

p=0,547; f=-
1,589 

480 p=0,079; 
f=14,172 

p=0,547; 
f=2,000 

p=0,547; 
f=1,392 

p=0,547; f=-
1,782 

 

 

5.6 Methods 

Plasmids and strains 

λ CI, P22 C2, HK022 CI and 434 CI were cloned under the control of a PLtetO-1 promoter 
onto a low copy number kmR plasmid (pZS)99. The plasmids were transformed either 
into MG1655 derived E. coli cells (strain BW27785, CGSC#: 7881)122 or into LT2 derived 
S. enterica cells or into KF1 derived E. albertii cells with a tetracycline cassette inserted 
in the P22 attachment site (LT2 attP22::tetRA). In control experiments the phage 
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repressor on the plasmid was replaced by a fluorescence marker gene (gfp). Titration 
of λ CI was tested by transforming E. coli cells containing the pZS21- λ CI plasmid with 
a high-copy number pZE plasmid (50-70 copies)99, which carries the natural λ CI 
operators OR1, OR2, OL1 and OL2, i.e. 200-280 operators per cell.  

For the competition experiments the phage repressor was replaced by LacI and a 
constitutive fluorescent marker venus-yfp120 was introduced into the plasmid. In order 
to test for misfolding of repressor proteins, we used a high copy number plasmid 
containing a chaperone gene (tig217) – which exists in E. coli and S. enterica (UniProt) 
-under the control of a PLac promoter from the ASKA(-) library218.  

To monitor the induction of the stress response, we used a strain with a fast-maturing 
yellow fluorescent protein (YFP)120 fused to the promoter of sulA (PsulA-yfp), which 
was placed on the chromosome using lambda red recombineering219. SulA is strongly 
upregulated as a part of the stress response220. The PsulA-yfp strain was then 
transformed with the pZS21- λ CI plasmid. We checked induction of the reporter by 
exposing cells to UV light for 30 seconds.  

To visualize the chromosome we used a previously characterized fusion between a 
green fluorescent protein (GFP) and a major NAP (Nucleosome Assembly Protein) Fis 
(GFP-Fis) under the control of a PLac promoter221. The construct was placed on a pZE12 
plasmid99 and transformed into E. coli cells containing the pZS21- λ CI plasmid. 

We used a seqA-gfp translational fusion under the control of the natural seqA 
promoter to monitor replication as seqA binds hemimethylated GATC sequences in 
the wake of the advancing replication fork, marking newly synthesized DNA222. The 
fusion protein was inserted into the HK022 attachment site on the E. coli chromosome 
using CRIM plasmids177.  

 

λ CI mutants 

Based on previous studies, we produced three different λ repressor mutants that were 
cloned into the same low copy number plasmid (pZS) under the control of a PLtetO-1 
promoter: 1. A repressor mutant that cannot form dimers (S228N)134 and hence not 
bind DNA effectively anymore; 2. A repressor mutant that can dimerize but not form 
higher-order oligomers, i.e. that cannot bind cooperatively (Y210N)134 and 3. A 
repressor that is defective in its ability to bind DNA (N52D)223.  

 

Growth measurements 
All cells were grown overnight at 37°C in M9 medium supplemented with 0.2% glucose 
and 50μg/ml kanamycin (except specified differently). Those cultures were used to 
dilute (1:100) 6 replicates without inducer and 6 replicates with 25ng aTc in 96 well 
plates and were grown at 37°C on the shaker at 220 rpm. Populations were measured 
(OD600) every 30min or every 60min using Biotek H1 plate reader for overall 10h. 
Population growth was also measured in LB, and M9 medium supplemented with 0.5% 
Casamino acids and either 0.5% glycerol or 0.2% glucose. When indicated inducer 
concentration was change 1, 2, 3 and 4ng aTc or the induction time was varied from 
the inoculation point (0h) to 2h or 4h post-inoculation (early- and mid-exponential 
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phase). The chaperone gene was induced using 1mM IPTG and fis-gfp was expressed 
by adding 0.1mM IPTG to the medium. 
Repressor concentration at 25ng aTc was measured using the Promega Nano-Glo 
HiBiT Lytic Detection System and gave about 500 dimers per cell in LB. The HiBiT 
peptide tag was attached at the N-terminal end (which is involved in DNA binding) 
using a (GGGS)2 linker (sequence: GGTGGTGGTTCTGGTGGTGGTTCT) to assure 
accessibility of the tag for interaction with the detection reagent.  
 
Competition assays 
A single colony for each host strain (E. coli or S. enterica) – plasmid (pZS21- λ CI, pZS21- 
λ CI dimerization mutant, pZS21-P22 C2, pZS21-LacI-Venus) combination was picked 
from a freshly streaked plate and grown overnight in minimal media with glucose 
supplied with kanamycin. Strains containing a phage repressor plasmid were mixed 
approximately 1:1 with a corresponding strain carrying pZS21-LacI-Venus and diluted 
1:100 into fresh medium and grown in 96-wellplates for 10h. Fluorescence was 
measured every 30min. and compared between strains that were induced with aTc 
and strains that were not induced. There was no significant difference in fluorescence 
between the presence and absence of LacI expression in LacI-Venus-containing cells 
for S. enterica and a slight disadvantage in the presence of LacI in E. coli (Table 8), 
which however only strengthens the advantage of LacI-expressing cells in competition 
with phage repressor-expressing cells.  
The selection coefficients were calculated using ln[(R+

t/R-
t)* (R+

0/R-
0)], where R+

t and 
R-

t represent densities of cells with and without inducer aTc (presence or absence of 
repressor expression) at time t=20h respectively, and R+

0 and R-
0 represent densities 

at the beginning of the experiment. 
 
Microscope fluorescence measurements 
A Nikon Ti-E microscope equipped with a thermostat chamber (TIZHB, Tokai Hit), 100× 
oil immersion objective (Plan Apo λ, N.A. 1.45, Nikon), cooled CCD camera (ORCA-
Flash, Hamamatsu Photonics) and LED excitation light source (DC2100, Thorlabs) was 
used for the microscopy fluorescence measurements of PsulA-yfp and SeqA-gfp. The 
microscope was controlled by micromanager (https://micro- manager.org). The cells 
were grown overnight in minimal media with glucose, diluted 1:100 in fresh media 
and grown to early exponential phase in the presence of the inducer aTc. Phase, YFP 
or GFP fluorescence (where appropriate) and RFP fluorescence images were taken 
simultaneously at 3-min time-lapse interval. Multiple patches of cells were monitored 
simultaneously in a single experiment. We used a custom macro of ImageJ 
(http://imagej.nih.gov/ij/) for the image analysis. 
For TIRF microscopy of Fis-gfp, agarose pads were prepared by casting agarose molten 
in low-autofluorescence medium (minimal media with glucose and 25ng aTc) between 
two glass slides spaced by two cover slips. A 2x2mm square was cut out, placed onto 
a glass slide, and 100ul of bacterial culture was spotted onto it and allowed to dry. The 
pad was framed by a double-sided sticky 9x9mm frame seal (Bio-Rad SLF0201) and 
covered with a high-precision and clean room grade cover slip (Schott Nexterion glass 
D, thickness 0.170+/- 0.005mm). Imaging was done at 37°C with a temperature-
controlled Olympus IX83 total internal reflection fluorescence microscope equipped 
with a water-cooled Hamamatsu ImageEM C9100-13 camera, a 100x 1.49NA objective 
lens and an additional 2x magnification tubular lens giving an effective pixel size of 
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80nm/pixel. Images were acquired every 3min. using a single-band pass GFP filter and 
a diode 488nm laser set to an output of 0.4mW and low camera gain settings. Fis-gfp 
was imaged at 65nm penetration depth. 
 
ChIP sequencing 
To perform ChIP sequencing experiments, λ CI was cloned with an HA-Tag at their 
carboxy-terminal end and transformed into both host strains. Samples were prepared 
according to Waldminghaus & Skarstad (2010)224; library preparation and Illumina 
Sequencing was performed at the VBCF NGS Unit (www.vbcf.ac.at). The obtained data 
was analyzed using Galaxy and RStudio, considering reads of non-overlapping 1000bp 
windows. 
Binding footprints for genic and intergenic regions were obtained by scaling them and 
calculating binding for each percentile over all genic and intergenic regions annotated 
in E. coli and S. enterica. The analysis was performed for strains that expressed λ CI as 
well as a background control. In a further control reads in genic regions were randomly 
shuffled, giving a completely different footprint. 
The number of reads in each bin was compared with the binding strength calculated 
from the λ CI energy matrix97 by summing up binding affinities over the same 1000bp 
windows across the genomes if the affinities above a certain threshold. The threshold 
was optimized for giving the best Spearman correlation between the number of reads 
and the predicted binding strength. Binding strength was calculated using 1/1+exp(E-
µ), with µ being the chemical potential and E the binding energy. 
 
Statistical tests 

Collected data was tested for normality (Shapiro-test) and subsequently we compared 
mean OD600 or fluorescence expression values using t-tests with FDR correction for 
multiple comparisons in RStudio. T-tests were performed for four different time points 
between samples grown in the presence and absence of inducer aTc (presence or 
absence of repressors) under indicated conditions.  
Spearman correlation was calculated for the fit between model predictions of binding 
strength and the number of obtained ChIP reads per 1000bp window.  
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6. TF interference produces transient promoter memory in response to 
signal timing 

6.1 Abstract 

Cells usually integrate over multiple input signals at individual promoters, which 
governs their phenotype in changing environments60,121,147,148. However, different 
signals generally do not arrive at a promoter at exactly the same time149, possibly 
making gene expression dependent on the signaling history. By measuring 
fluorescence dynamics from a promoter that is controlled by two transcriptional 
regulators, we show that even small differences in signal arrival timing can lead to 
transient regulatory memory over several generations. The longevity of these 
transient patterns largely result from generic transcription factor interactions - namely 
interference with each other’s binding - which constitutes an abundant feature in 
multiple signal integration. Furthermore, we show that after environmental change 
transient memory can influence growth rates significantly. Transient promoter 
dynamics represents a generic form of memory, which produces phenotypic diversity 
in clonal cells.  
 

6.2 Introduction 

Integration of multiple signals is a key feature of regulation at many promoters147 and 
differences in signal arrival time occur commonly in any given environment149. Cellular 
phenotypes can be significantly influenced by such signaling delays149, making them 
dependent on the signaling history. History-dependence, or memory, has generally 
been associated with specific mechanisms, such as feedback loops or epigenetic 
states150, which lead to multi-stability151. However, little attention has been paid to 
regulatory mechanisms per se as a source of (transient) memory152,153. Only recently, 
it has been proposed that the kinetics of transcription factor (TF) binding154 and 
transient regulatory processes8,59,60 can shape cellular phenotypes. Here, we report 
that microbes can employ transient gene regulatory dynamics to realize a generic form 
of memory. We use a promoter that is controlled by two external signals and has a 
single equilibrium state to determine transient promoter dynamics in response to 
varying signaling histories: two TFs are either induced with a time delay between 
them, or both are induced concomitantly (Fig. 6.1A).   
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Figure 6.1. The experimental system and induction scheme.  

A) Expression of the fluorescent marker gene (gfp) is controlled by Psyn through 
competitive binding of an activator (λ CI, green) and a repressor (LacI, orange). 
Induction of both TFs at t0 leads to transient expression (two ovals) before reaching 
steady state (three ovals). A time delay Δt between the TFs produces unknown 
transient expression before reaching steady state. B) Circles indicate locations of the 
system components: on the chromosome (dashed line), on a low or medium copy 
number plasmid (dotted and solid line respectively). Arrows show promoters and colors 
show genes and their encoded TFs. Psyn consists of the region directly upstream of the 
fluorescence marker and two additional λ CI operators 2.3kbp away. λ CI operators are 



99 
 

green (OR1 & OR2 and OL1 & OL2) and LacI operators orange (O1 and O2). C) Timeline of 
the induction procedure (grey arrow): gray dots as well as the green and orange arrows 
(activator and repressor respectively) give the induction time points of the first (240, 
20 and 1min) and second inducer (vertical dashed line shows t0). Grey, dashed lines 
indicate no induction, green lines activation only, orange lines repression only and 
black lines concomitant activation and repression. 
 

 

Figure 6.2. The experimental system.  

A) Psyn consists of the region directly upstream of the fluorescence marker and two 
additional λ CI operators 2.3kbp away121. λ CI operators are green (OR1 & OR2 and OL1 

& OL2) and LacI operators orange (O1 and O2). B) λ CI binds OR (and OL) through 
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cooperative binding of two dimers (green ovals). Cooperative binding of four λ CI 
dimers results in a long-distance DNA loop156 (left). LacI forms tetramers, where each 
dimer subunit (orange ovals) binds one operator, forming a short (~94bp) DNA loop10 
(right). C) DNA sequence of the Psyn region. The region between the beginning of OR1 
and the beginning of O1 (28 – 101bp) was taken from the wildtype PRM, except for the 
introduction of a mutation (r3) that destroys the OR3 operator (to avoid repression by 
CI). LacI operator O1 was introduced at a distance from -10 as in the wildtype PlacZ 
promoter and at a distance to O2 that favors looping174.  

 
 
 

6.3 Results 

Synthetic promoter design and experimental layout 
As it is difficult to determine promoter dynamics directly, we can instead observe if 
gene expression trajectories differ significantly from the expectation based on fast 
regulatory equilibration. Due to its high stability155, DNA looping could be one process 
that slows down promoter state equilibration. To test the timescales of complex 
promoter regulation, we constructed a synthetic promoter (Psyn) that is regulated by 
two well-studied TFs, λ CI and LacI10,121(Fig. 6.1B), which both form DNA loops (Fig. 
6.2): λ CI forms a long-distance loop with a second operator region156 , whereas LacI 
forms a short-distance loop10. DNA looping is not necessary for gene regulation, but 
increases the efficiency of either regulatory state10,157,158  and interferes strongly with 
looping by the other TF155,159. LacI represses expression of a fluorescence marker from 
Psyn and its expression is controlled by an arabinose-inducible PBAD promoter. The 
activator of Psyn, λ CI, was degradation-tagged due to its toxicity at high concentrations 
and placed under the control of an aTc-inducible PTet promoter (Fig. 6.1C).  
 
We determined transient gene expression trajectories from Psyn for various signaling 
histories by measuring population fluorescence levels over 14h: Three conditions (‘R-
>A’: ‘R240A’, ‘R20A’, ‘R1A’) were induced with arabinose (LacI expression) for 240, 20 
and 1 min (1min ~= synthesis time of 1-2 TF molecule(s)) before aTc (λ CI expression) 
was added at t0 (Fig. 6.1C). Likewise, three conditions (‘A->R’: ‘A240R’, ‘A20R’, ‘A1R’) 
were induced first with aTc and after the specified time delay also with arabinose (Fig. 
6.1C). As controls, one sample was not induced (‘basal’), one was activated (‘A’), one 
was repressed (‘R’) and one was induced for both TFs concomitantly (‘AR’) (Fig. 6.3A,B) 
in order to determine expression trajectories for fast promoter equilibration in the Psyn 
system.  
 
Transient promoter memory 
By comparing fluorescence production after t0 from ‘R->A’ delay conditions with that 
of the ‘AR’ control we found significant memory in Psyn regulation for ‘R240A’ and 
‘R20A’ (Fig. 6.3C, Table 6.1). Strikingly, for ‘R240A’ the fluorescence increase was very 
slow, contrasting strongly with the steep increase of ‘AR’. For ‘A->R’ delay conditions 
we tested if fluorescence decay rates were longer than dilution rates; meaning that 
the timescales of promoter state equilibration were slower than those of dilution. We 
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compared regression slopes for fluorescence decay and inverse growth (dilution) over 
3h after t0 and found that ‘A20R’ and ‘A1R’ decay was significantly slower than dilution 
(Fig. 6.3D, 6.4, Table 6.2). Generally, significant expression divergence from ‘AR’ was 
seen for 4-11h (~ 3-8 doublings) after t0 with ‘A->R’ conditions and for more than 11h 
after t0 with two ‘R->A’ conditions (Fig. 6.5A,B, Table 6.3). The observed memory in 
gene expression levels lasted for several cell generations, stemming from long 
transient promoter timescales. 
 

 

Figure 6.3. Experimentally observed transient memory in gene expression.  

(A, B) OD600-normalized fluorescence units (NFU) are shown for 10h after t0 (x-axis 
shows time in minutes). Controls (dashed lines) and delay conditions are indicated by 
symbols. The second TF was induced at t0 for all cultures (dashed vertical line). 4 
population doublings after t0 are indicated at 6h. Error bars are standard errors of the 
mean. ‘AR’ is shown in black, ‘R->A’ and ‘R’ conditions are orange (A, C) and ‘A->R’ and 
‘A’ conditions are green (B, D). (C, D) Memory measures for experiments in systems 
with and without DNA looping. C) Bars show fluorescence production for ‘AR’ (dashed 
line) and ‘R->A’ delay conditions, calculated over 1.5h after t0. Stars indicate significant 
difference to ‘AR’. D) Rates for dilution (inverse growth) and observed fluorescence 
decay for ‘A->R’ delay conditions were determined through linear regression (from t0.5 
to t3) of log growth and log fluorescence (shown on the right).  
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Figure 6.4. Mean decay and dilution rates for ‘A240R’, ‘A20R’, ‘A5R’, ‘A1R’at 7 time 
points after t0.  

Time is given in minutes after t0. Grey symbols give the individual dilution (crosses) 
and fluorescence decay (circles) rates for ‘A->R’ conditions. Mean decay rates were 
calculated from experimental fluorescence measurements (big green circles) and mean 
dilution rates were calculated from experimental OD measurements as the inverse of 
the growth rate (big black crosses). Error bars give standard deviations. The green and 
black lines give the mean decay and dilution rates respectively.  

 
Simultaneously with plate-reader population measurements we performed FACS 
analysis of single cell fluorescence, but found no appreciable bimodality in the 
fluorescence distributions (Fig. 6.6). Hence, our observations did not result from 
subpopulations that were either fully activated or fully repressed in varying 
proportions, but from transient regulatory dynamics within individual cells. FACS and 
population measurements showed a fluorescence drop in the ‘A’ control to a lower, 
yet unmistakably activated, level (Fig. 6.3B). As fluorescence remained constant 
thereafter and the drop rate does not align with ‘A->R’ or ‘R->A’ fluorescence decay 
or dilution rates, the observed transient memory effects remain valid.  
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Figure 6.5. Relative fluorescence trajectories of experimentally observed transient 
memory.  

The x-axis shows time in minutes and the y-axis relative OD600-normalized fluorescence 
with respect to ‘AR’. Delay conditions are indicated by symbols. A), C) ‘R->A’ and ‘R’ 
conditions are orange and B), D) ‘A->R’ and ‘A’ conditions are green. The second TF 
was induced at t0 for all conditions (dashed vertical line). 4 population doublings after 
t0 are indicated at 6h. ‘AR’-relative fluorescence values are shown for experiments A), 
B) with DNA looping, C), D) without DNA looping. The horizontal dashed line at 1 
indicates conditions with fluorescence equal to ‘AR’. Bar plots show the relative 
fluorescence values at t4. 
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Figure 6.6. FACS data for transient memory at Psyn in the experiments with DNA looping.  

Distributions of fluorescence values over 4h after t0 are shown. The order of conditions 
from bottom to top is as follows: ‘basal’, ‘A’, ‘R’, ‘AR’, ‘A240R’, ‘A20R’, ‘A5R’, ‘A1R’, 
‘R240A’, ‘R20A’, ‘R5A’, ‘R1A’. The conditions show no bimodality, although the 
coefficient of variation is higher for several ‘A5R’, ‘A1R’, and ‘R->A’ conditions after 
induction of the second TF. FACS measurements show no bimodality and especially for 
‘A->R’ conditions the variation in gene expression distributions already resembles that 
of the ‘A’ control after one hour. ‘R->A’ conditions show a broader distribution that in 
some cases overlaps ‘AR’ but the mean expression differs significantly and reproducibly 
from AR (except for ‘R5A’). 

 
Reaction rate model of transient dynamics 
In order to gain a better understanding of the promoter dynamics causing the 
transient expression patterns, we built a reaction rate model, which calculates gene 
expression levels from the probabilities of promoter states (i.e. binding configurations 
of TFs) and the transitions between states, determined by TF binding affinities51,57,160 
(Fig. 6.7). Model parameters were fitted to experimental data, but were kept within 
physiological ranges (Table 6.4). Due to the transient promoter dynamics observed 
experimentally, we did not use equilibrium transition rates, i.e. we modeled binding 
and unbinding reactions individually. Further, several studies demonstrated 
interference between TFs, such as binding in close proximity (steric binding 
hindrance)12,161 and concentration-dependent TF unbinding rates (facilitated 
dissociation)14,136. Hence, we introduced ‘interference’ states (Methods), in which 
both TFs can bind at the promoter at the same time. In the full model we assume that 
binding rates in those states are decreased (due to steric occlusion (SO) between TFs), 
whereas unbinding rates are increased proportionally to the concentration of the 
competing TF (facilitated dissociation (FD)). This model resulted in good agreement 
between simulations and experimental data (Fig. 6.8, Table 6.5). Our model proposes 
a mechanism for the non-equilibrium effects at Psyn: TF interference and the 
production of TFs results in slow timescales, which are not well seperated from 
dilution (production) rates (Table 6.4), and contrast with the greatly increased 
unbinding rates due to facilitated dissociation.  
 
We compared this ‘interference’ model to a thermodynamic model, which is the most 
commonly used reaction rate model for gene expression but assumes equilibrium in 
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the system57,162,163, and a non-equilibrium model that does not include ‘interference’ 
states. Both models produced a worse fit to our data (Fig. 6.8, 6.9, Table 6.5).  
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Figure 6.7. Regulatory states (binding configurations) of the non-equilibrium model 
with ‘interference’.  

λ CI operators (OR1 & OR2 and OL1 & OL2) and λ CI dimers are shown in green, whereas 
LacI operators (O1 and O2) and LacI tetramers (each oval represents a dimer) are shown 
in orange. Arrows show transitions between individual regulatory states, with the size 
and coloring of the arrow indicating the speed of the reaction (big and dark arrows = 
fast reactions). For simplicity, repressor binding to one operator is only shown for O1, 
but the same states and transitions were included for O2. Rate names correspond to 
Table 6.4. 

 
 

 
 

Figure 6.8. Model fit with experimental data.  

Barplots show the model fit with experimental data for different model versions: 

equilibrium model, non-equilibrium without interference states (both TF bound), non-

equilibrium model with interference states without FD (facilitated dissociation) or SO 

(steric occlusion), with either of them or the full model containing both (interference 

model). R2-values were calculated as described in Methods. Numbers at the bottom of 

the bars give the number of fitted parameters per model. 
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Figure 6.9. Qualitative fit for different model versions with experimental data.  

The x-axis shows time in minutes and the y-axis fluorescence either in OD600-

normalized fluorescence units relative to the Psyn basal expression level (fold 

expression) (experiment) or in arbitrary units (AU) (simulations). ‘AR’ is shown in 

black, ‘A->R’ and ‘A’ conditions are green and ‘R->A’ and ‘R’ conditions orange. 

Control conditions (dashed lines, star symbols) and delay conditions are indicated by 

symbols (circles, diamonds, squares, triangles for 240, 20, 5, 1min delays 

respectively). The second TF was induced at t0 for all conditions (dashed vertical line).  

A) Experimental observations of transient memory. Error bars are standard errors of 

the mean. Model simulations of fluorescence dynamics with the B) equilibrium 

model, C) non-equilibrium model, D) non-equilibrium model with SO (steric occlusion, 



108 
 

E) non-equilibrium model with FD (facilitated dissociation), and the F) non-

equilibrium model with SO and FD (interference model). Especially the fluorescence 

patterns of ‘R->A’ conditions after t0 (e.g. the initial peak in fluorescence) are only 

captured by the simulations in F). Interference states increase the duration of 

transient dynamics compared to the equilibrium model but decrease the duration of 

states that could be assumed to be highly stable (e.g. DNA loops).  

 
Growth effects of transient memory 
Transient memory, as observed in our system, can lead to variation in population 
growth after environmental changes164,165. We studied growth effects due to signaling 
delays by replacing the gfp marker in the Psyn system with the tetracycline efflux pump, 
tetA, which determines growth rate in the presence of the antibiotic tetracycline (Fig. 
6.10). The described induction scheme remained the same, but tetracycline was 
added together with the second inducer at t0. Four delay conditions showed 
significantly different growth curves and rates than ‘AR’ (Fig. 6.11A,B, Table 6.6, 6.7). 
Due to toxicity of high tetA expression in the presence of tetracycline166, growth is not 
proportional to higher tetA levels but a trade-off between the toxicity cost and the 
benefit of pumping out tetracycline (Fig. 6.12).  Nonetheless, long-term population 
growth was significantly influenced by transient promoter memory.  
 
 

 

Figure 6.10. System for measuring growth differences due to the expression of 
tetracycline resistance.  

A) Psyn with tetA instead of gfp. B) TetA encodes an efflux pump that is incorporated 
into the cytoplasmic membrane and confers resistance by pumping tetracycline out of 
the cell166.  
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Figure 6.11. Experimental growth curves in the presence of tetracycline with tetA 
expressed from Psyn.  

The x-axis shows time in minutes and the y-axis shows growth measurements (log 
OD600). ‘AR’ control conditions are black and delay conditions are indicated by symbols. 
A) ‘R->A’ and ‘R’ conditions orange, B) ‘A->R’ and ‘A’ conditions are green. The second 
TF was added together with tetracycline at t0 for all cultures (dashed vertical line). All 
conditions, except ‘A20R’, are significantly different from ‘AR’ for most measurement 
points after t4 (Table 6.6). 

 

 

Figure 6.12. Growth curves of control conditions in the presence of tetracycline for Psyn 
controlling tetA.  

‘Basal’ is shown in blue, ‘AR’ in black, ‘A’ in green and ‘R’ in orange. Error bars show 
variation in growth rates. Cells were grown in triplicates in 96 well plates in M9 with 
0.5% CAA on a shaker at 30°C. The second TF was induced at the same time as 
tetracycline (5ug/mL) was added to the media, which is indicated by the dashed 
vertical line. The increased growth of ‘basal’ over ‘A’ and ‘AR’ conditions indicates a 
trade-off between the cost of tetA overproduction in the presence of tetracycline and 
the expression of enough efflux pumps to confer resistance to the antibiotic.  

Transcription factor interference as basis of transient memory 
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The memory of the initial regulatory state at Psyn could result from stability conferred 
by DNA looping. We therefore tested the generality of transient memory by removing 
the operators that enable looping by either TF (Fig. 6.13). Indeed, even without DNA 
looping, almost all delay scenarios showed transient promoter dynamics (Fig. 6.3C,D, 
Table 6.1, 6.2) and fluorescence patterns that differed significantly from ‘AR’ (Fig. 
6.5C,D, Table 6.8) for 5-9h. By adjusting the regulatory states in our non-equilibrium 
model with ‘interference’ accordingly, we obtained a satisfactory fit between 
simulations and experiments (Fig. 6.14, Table 6.9).  
 

 

Figure 6.13. Psyn layout without operators for looping.  

λ CI operators are shown in dark orange (OR1 & OR2) and the LacI operator is shown in 
green (O1). Operators involved in DNA looping by either TF were removed.  

 

 

Figure 6.14. Transient memory in gene expression at Psyn without DNA looping for 
time delays of 240, 20, 5 and 1min.  

The x-axis shows time in minutes and the y-axis fluorescence either in OD600-
normalized fluorescence units (NFU) (experiment) or in arbitrary units (AU) 
(simulations). A) Experimental observations of transient memory at Psyn without DNA 
looping. Colors and symbols correspond to Fig. 6.8A with green curves ‘A->R’ and 
orange curves ‘R->A’ conditions. Notably, there is no drop in activation in a system 
without looping. B) Model simulations of transient memory at Psyn without DNA 
looping. Colors correspond to the ones used in A). The simulations produced the best 
qualitative and quantitative fit for the system without looping, indicating the 
increasing accuracy of modelling transients with decreasing system complexity.  

 
 
As looping is not an essential feature, transient memory could be conferred by slow 
production of TFs in response to external signals or by direct binding interference 
between TFs (Fig. 6.2). Model predictions show that the interference between RNA 
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polymerase binding (which in our model is equivalent to activator binding) and 
repressor binding leads to transient memory - which is abolished if repressor binding 
is weakened (Fig. 6.15). We tested this prediction by introducing a single mutation in 
the repressor operator that weakens the binding affinity167. We measured the 
memory effect by comparing fluorescence production rates after t0 and found no 
significant difference between the delay conditions and the ‘AR’ control (Fig. 6.15, 
Table 6.1). This confirms the model prediction of memory loss due to decreased 
binding competition between RNA polymerase and the repressor. Moreover, either of 
the three models (thermodynamic, non-equilibrium, interference) gave an equally 
good fit to experimental data (Table 6.9). As the rate of TF production should remain 
the same as in previous experiments, promoter dynamics arise to a significant extent 
from interference between TFs, thereby providing a generic form of transient memory 
at complex promoters.  
 

6.4 Discussion 

Bacterial physiological adaptation and decision making is determined by the ability to 
display history-dependent phenotypes164,168–170. We show that phenotypic memory 
can be caused by delays in signal arrival times as even delays of one minute can result 
in transient promoter dynamics, and thus different gene expression trajectories, for 
several cell generations. Transient memory can significantly influence adaptation: 
either favoring it by sampling various expression states171, or constraining it due to 
long response times172. The inherent dynamics of simple TF-TF and TF-DNA 
interactions at a single promoter are sufficient to produce considerable phenotypic 
variation that does not originate from stochasticity, but from DNA allostery173. This 
surprising complexity in dynamics for a system with a single stable equilibrium leads 
to challenges for formal descriptions of gene regulation: even though we used well-
described TFs, a detailed model containing complex interaction and interference 
mechanisms was necessary to obtain a good fit to experimental data. TF interference 
likely is a common feature at many E. coli promoters as they frequently contain closely 
spaced operators for more than one TF (almost 50% of all known operators overlap 
another operator)13. Moreover, our findings challenge our understanding of even 
well-studied regulatory mechanisms like DNA looping or TF binding. The architecture 
of complex promoters can be a rich source of variation in gene expression154, enabling 
diverse transient promoter dynamics in clonal cells that manifest over time-scales of 
several generations.  
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Figure 6.15. Transient memory in gene expression at Psyn without DNA looping 
disappears only for a lacO1 mutant.  

(A-D) The x-axis shows time in minutes and the y-axis fluorescence either in OD600-
normalized fluorescence units relative to basal expression (fold expression) 
(experiment) or in arbitrary units (AU) (simulations). (A, C) Experimental observations 
of transient memory at Psyn without DNA looping with wildtype lacIO1 (A) or mutated 
lacIO1 (C). Colors and symbols correspond to Fig. 2 with green curves ‘A->R’ and orange 
curves ‘R->A’ conditions. Notably, there is no drop in activation in systems without 
looping. (B, D) Model simulations of transient memory at Psyn without DNA looping 
with wildtype lacIO1 (B) or mutated lacIO1 (D). Colors correspond to the ones used in 
A) and C).  E) Bars show fluorescence production for ‘AR’ (dashed line), 2 ‘A->R’ and 3 
‘R->A’ conditions, which was calculated over 1.5h after t0 relative to the starting 
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concentration at t0. Stars indicate significant difference to ‘AR’. Experiments and 
simulations with the lacO1 mutant (left) are compared to the experiments with the 
lacO1 wildtype (right).  

 

6.5 Tables 

Table 6.1. FDR adjusted p-values comparing fluorescence increase after t0 for the 
‘AR’ control, ‘R->A’ and (for the lacO1 mutant) ‘A->R’ conditions.  

The slope of the fluorescence increase was calculated from t0 over three time points 
(t0 to t1.5) and t-test were performed between ‘AR’ and ‘R->A’ conditions as well as 
‘AR’ and ‘A->R’ conditions for the lacO1 mutant without looping. P-values that are 
above the significance level α = 0.05 are shown in red. 

 Fluorescence increase in AR vs. R->A Fluorescence increase 
in AR vs. A->R 

Experiment ‘R240A’ ‘R20A’ ‘R1A’ ‘A20R’ ‘A1R’ 

Looping p=7,47 E-
13; f=20,58 

p=1,95 E-04; 
f=5,05 

p=0,10; f=-
1,60 

/ / 

No looping p=3,5 E-04; 
f=11,45 

p=1,8 E-03; 
f=7,02 

p=0,99; 
f=0,02 

/ / 

No looping with 
lacO1 mutant 

p=0,99; 
f=0,95 

p=0,99; 
f=0,99 

p=0,99; 
f=0,96 

p=0,99; 
f=0,65 

p=0,99; 
f=0,96 

Low concen-
tration of TFs 

p=0,005; 
f=6,61 

p=0,75; 
f=1,11 

p=0,84; f=-
0,21 

/ / 

 

Table 6.2. FDR adjusted p-values comparing ‘A->R’ fluorescence decay against 
dilution over 3h after t0.  

T-tests were performed for regression coefficients that were obtained from 
fluorescence decrease due to dilution or due to the decay observed in experiments. 
Decay curves were obtained by fitting an exponential function through experimental 
data points and correcting for the approximate equilibrium level. Dilution curves were 
calculated as exponential function that would be expected due to experimental 
growth rates. P-values that are above the significance level α = 0.05 are shown in red. 

 Fluorescence dilution vs. decay A->R 

Experiment ‘A240R’ ‘A20R’ ‘A1R’ 

Looping p=0,96; f=0,05 p=2,4 E-05; f=-5,85 p=2,28 E-06; f=-7,47 

No looping p=0,08; f=0,06 p=0,03; f=-5,60 p=0,004; f=-4,37 

Low concentration 
of TFs 

p=0,001; f=6,39 p=0,001; f=-8,25 p=0,001; f=-7,66 
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Table 6.3. FDR adjusted p-values comparing ‘A->R’ or ‘R->A’ fluorescence values 
against the ‘AR’ control at several time points in experiments with looping.  

T-tests were performed at different time points after t0 between ‘A->R’ or ‘R->A’ 
fluorescence and ‘AR’ fluorescence. Values that are above the significance level α = 
0.05 are shown in red. 

Time 
(min) 

‘A240R’ ‘A20R’ ‘A1R’ ‘R240A’ ‘R20A’ ‘R1A’ 

60 p=3,91E-14; 
f=-28,64 

p=1,29E-06;  
f=-8,24 

p=0,005; 
f=-3,56 

p=9,08E-09; 
f=23,79 

p=0,001; 
f=5,30 

p=0,129; 
f=-1,78 

120 p=1,348E-
12; f=-21,58 

p=1,692E-
06; f=-8,02 

p=0,012; 
f=-3,15 

p=1,92E-08; 
f=19,51 

p=0,020; 
f=2,98 

p=0,028; 
f=-2,77 

180 p=1,44E-11;  
f=-18,39 

p=7,79E-07; 
f=-8,60 

p=0,025; 
f=-2,74 

p=1,45E-07; 
f=15,10 

p=0,018; 
f=3,06 

p=0,010; 
f=-3,47 

240 p=2,04E-10; 
f=-15,33 

p=1,22E-06; 
f=-8,30 

p=0,078; 
f=-2,07 

p=1,45E-07; 
f=14,95 

p=0,028; 
f=2,78 

p=0,008; 
f=-3,65 

330 p=0,037; f=-
2,54 

p=0,000458; 
f=-4,91 

p=0,072; 
f=-2,12 

p=0,001; 
f=5,44 

p=0,043; 
f=2,51 

p=0,283; 
f=-1,22 

390 p=0,072; f=-
2,11 

p=0,000969; 
f=-4,49 

p=0,131; 
f=-1,77 

p=0,001; 
f=4,86 

p=0,040; 
f=2,55 

p=0,121; 
f=-1,84 

510 p=0,718; f=-
0,42 

p=0,004; f=-
3,76 

p=0,060; 
f=-2,25 

p=0,001; 
f=5,52 

p=0,005; 
f=3,90 

p=0,458; 
f=-0,83 

640 p=0,803; 
f=0,29 

p=0,026; f=-
2,73 

p=0,057; 
f=-2,29 

p=0,005; 
f=4,00 

p=0,006; 
f=3,83 

p=0,404; 
f=0,94 

 

Table 6.4. Parameter values (and their units) used in the reaction rate model.  

Parameters were either selected from literature or fit to the experimental data, but 
kept within boundaries found in literature (see Methods). The last column gives the 
rate label as used in Fig. 6.7. Parameters colored in green were removed in the ‘no 
looping’ model and repressor off rates for the lacO1 mutant in orange.  

Parameter Value Unit Label 

scaling constant that combines cell volume &  Avogadro number 1E+09   

protein degradation rate 0,003 s-1  

GFP mRNA degradation rate 0,000375 s-1  

GFP protein degradation rate 0,00003 s-1  

GFP maturation rate 0,005 s-1  

GFP translation rate 0,0133 s-1  

dilution rate 0,000144 s-1  

basal promoter strength 0,0068 s-1  
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activated promoter strength 0,075 s-1  

promoter strength for repressor bound at O1 and activator 
bound at OR1 0,01 s-1 

 

repressed promoter strength 0,003 s-1  

LacI copy number (chromosome) 3 
mole
c 

 

CI copy number (low-copy plasmid) 5 
mole
c 

 

Pswitch copy number (medium-copy plasmid) 20 
mole
c 

 

PBAD promoter strength 0,0358 s-1  

Ptet promoter strength 0,0387 s-1  

araC degradation rate 0,0002 s-1  

araC molecule number 50 
mole
c 

 

tetR molecule number 50 
mole
c 

 

araC dissociation constant  0,002 s-1  

tetR dissociation constant  0,0018 s-1  

CI dimerization forward 0,6 s-1  

CI dimerization reverse 5 s-1  

CI degradation rate by ClpX 0,005 s-1  

CI binding rate OR1 0,18 s-1 𝑘𝐴1
+  

CI unbinding rate OR1 0,5 s-1 𝑘𝐴1
−  

CI binding rate for two dimers with cooperativity 0,2 s-1 𝑘𝐴12
+  

CI unbinding rate for two dimers 0,3  s-1 𝑘𝐴12
−  

CI binding rate for a second dimer at OR2 with cooperativity 0,2 s-1 𝑘𝐴2
+  

CI unbinding rate for a second dimer at OR2 0,3  s-1 𝑘𝐴2
−  

CI cooperativity factor 2.2   

CI cooperativity factor for LacI bound as well 2   

LacI tetramerization forward 0,5 s-1  

LacI tetramerization reverse 5 s-1  

LacI dimerization forward 0,6 s-1  

LacI dimerization reverse 2 s-1  

LacI binding rate O1 0,4 s-1 𝑘𝑅1
+  

LacI unbinding rate O1 0,1 / 0,3 s-1 𝑘𝑅1
−  
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LacI binding rate O2 0,6 s-1 𝑘𝑅2
+  

LacI unbinding rate O2 0,4 s-1 𝑘𝑅2
−  

Looping parameters    

activated, looped promoter strength 0,05 s-1  

CI binding rate with looping from bound dimers at OR 0,1 s-1 𝑘𝐴𝐿
+  

CI unbinding rate with looping from bound dimers at OR 0,6  s-1 𝑘𝐴𝐿
−  

CI looping factor 2   

LacI binding rate with looping from bound O1 528 s-1 𝑘𝑅𝐿1
+  

LacI unbinding rate with looping from bound O1 0,015 s-1 𝑘𝑅𝐿1
−  

LacI binding rate with looping from bound O2 510 s-1 𝑘𝑅𝐿2
+  

LacI unbinding rate with looping from bound O2 0,035 s-1 𝑘𝑅𝐿2
−  

rate of changing into less activated looping state 1,5 s-1  

rate of changing back into more activated looping state 0,0005 s-1  

Steric occlusion parameters    

binding rate of CI at OR1&OR2 if LacI is bound to O1 0,0005 s-1 𝑘𝐴12𝑅1
+  

unbinding rate of CI at OR1&OR2 if LacI is bound to O1 0,2083 s-1 𝑘𝐴12𝑅1
−  

binding rate of LacI at O1 if CI is bound to OR1&OR2 0,00075 s-1 𝑘𝑅1𝐴12
+  

unbinding rate of LacI at O1 if CI is bound to OR1&OR2 0,004 s-1 𝑘𝑅1𝐴12
−  

binding rate of CI at OR2 if LacI is bound to O1 and CI to OR1 0,2 s-1 𝑘𝐴2𝑅1
+  

unbinding rate of CI at OR2 if LacI is bound to O1 and CI to OR1 0,5 s-1 𝑘𝐴2𝑅1
−  

binding rate of LacI at O2 if CI is bound to OR1&OR2 0,000133 s-1  

unbinding rate of LacI at O2 if CI is bound to OR1&OR2 0,5938 s-1  

binding rate of CI at OR1&OR2 if LacI is bound to O2 0,01 s-1  

unbinding rate of CI at OR1&OR2  if LacI is bound to O2 0,2083 s-1  

binding rate of CI at OR1&OR2 if LacI is bound to O1 and O2 0,000005 s-1  

unbinding rate of CI at OR1&OR2  if LacI is bound to O1 and O2 1,25 s-1  

CI looping rate if CI is bound at OR1&OR2 and LacI at O1 0,0002 s-1 𝑘𝐴𝐿𝑅1
+  

CI unlooping rate if CI is bound at OR1&OR2 and LacI at O1 0,175 s-1 𝑘𝐴𝐿𝑅1
−  

Facilitated dissociation parameters    

factor for facilitated dissociation due to CI concentration 20   

factor for facilitated dissociation due to LacI concentration 30   

 

Table 6.5. Comparison of R2-values for the model fit in systems with and without 
DNA looping.  
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R2-values were calculated between experimental data (18 or 6 replicates) and model 
trajectories for t0 to t6. Overall values were calculated for samples with both TFs (‘AR’, 
‘A->R’, ‘R->A’). 

  Looping 

Conditions Equilibrium 
(no FD, no 

SO) 

Non-equilibrium 
without 

interference states  
(no FD, no SO) 

Non-equilibrium 
with interference 
states  (no FD, no 

SO) 

Non-
equilibrium 
(no FD, SO) 

Non-
equilibrium 
(FD, no SO) 

Non-
equilibrium 
(FD and SO)  

=Interference 

Overall 0,74 0,76 0,83 0,84 0,83 0,90 

A 0,93 0,93 0,93 0,97 0,91 0,97 

R 0,94 0,84 0,83 0,98 0,84 0,92 

AR 0,63 0,73 0,85 0,93 0,88 0,93 

AR240 0,82 0,79 0,74 0,94 0,77 0,97 

AR20 0,99 0,96 0,73 -0,10 0,54 0,60 

AR5 0,62 0,65 0,79 0,92 0,81 0,92 

AR1 0,75 0,77 0,95 0,94 0,96 0,93 

RA240 0,58 0,66 0,79 0,91 0,82 0,90 

RA20 0,67 0,70 0,88 0,94 0,91 0,92 

RA5 0,59 0,68 0,81 0,91 0,84 0,90 

RA1 0,60 0,69 0,82 0,91 0,86 0,89 

 No looping 

Conditions Equilibrium Non-equilibrium Interference 

Overall 0,47 0,53 0,67 

A 0,64 0,64 0,64 

R 0,05 0,04 0,04 

AR 0,92 0,91 0,91 

AR240 0,23 0,66 0,97 

AR20 0,99 0,99 0,95 

AR5 0,28 0,21 0,88 

AR1 0,90 0,54 0,86 

RA240 0,44 0,88 0,88 

RA20 0,51 0,50 0,64 

RA5 0,22 0,25 0,03 

RA1 0,22 0,26 0,41 
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Table 6.6. FDR adjusted p-values comparing ‘A->R’ or ‘R->A’ OD600 values against the 
‘AR’ control value at several time points for growth with tetracycline.  

T-tests were performed at different time points after t0 between ‘A->R’ or ‘R->A’ 
fluorescence and ‘AR’ fluorescence. Values that are above the significance level α = 
0.05 are shown in red. 

Time 
(min) 

‘A240R’ ‘A20R’ ‘A1R’ ‘R240A’ ‘R20A’ ‘R1A’ 

240 p=0,013; 
f=-9,26 

p=0,456; 
f=-0,92 

p=0,012; 
f=-9,82 

p=0,038; 
f=5,10 

p=0,119; 
f=-2,64 

p=0,014; 
f=-8,72 

300 p=0,030; 
f=-6,01 

p=0,413; 
f=-1,03 

p=0,056; 
f=-4,22 

p=0,017; 
f=7,93 

p=0,042; 
f=-4,77 

p=0,005; 
f=-15,33 

360 p=0,010; 
f=-10,96 

p=0,379; 
f=-1,13 

p=0,043; 
f=-4,91 

p=0,016; 
f=8,02 

p=0,021; 
f=-6,97 

p=0,003; 
f=-18,90 

420 p=0,007; 
f=-12,63 

p=0,250; 
f=-1,63 

p=0,043; 
f=-4,93 

p=0,012; 
f=9,44 

p=0,011; 
f=-10,11 

p=0,001; 
f=-29,25 

480 p=0,018; 
f=-7,94 

p=0,250; 
f=-1,62 

p=0,045; 
f=-4,79 

p=0,014; 
f=8,89 

p=0,012; 
f=-9,69 

p=0,001; 
f=-28,70 

540 p=0,022; 
f=-7,19 

p=0,202; 
f=-1,92 

p=0,027; 
f=-6,30 

p=0,026; 
f=6,26 

p=0,014; 
f=-8,84 

p=0,002; 
f=-24,99 

600 p=0,027; 
f=-6,46 

p=0,202; 
f=-1,91 

p=0,023; 
f=-6,92 

p=0,033; 
f=5,51 

p=0,010; 
f=-10,50 

p=0,002; 
f=-27,27 

660 p=0,029; 
f=-6,12 

p=0,214; 
f=-1,83 

p=0,027; 
f=-6,32 

p=0,055; 
f=4,15 

p=0,011; 
f=-10,23 

p=0,003; 
f=-20,98 

720 p=0,030; 
f=-5,99 

p=0,212; 
f=-1,84 

p=0,027; 
f=-6,30 

p=0,100; 
f=2,93 

p=0,008; 
f=-12,16 

p=0,002; 
f=-22,69 

780 p=0,031; 
f=-5,88 

p=0,204; 
f=-1,90 

p=0,023; 
f=-6,97 

p=0,144; 
f=2,34 

p=0,010; 
f=-10,63 

p=0,001; 
f=-37,51 

 

Table 6.7. FDR adjusted p-values comparing growth rates of ‘A->R’ or ‘R->A’ 
conditions to ‘AR’.  

T-test were performed for growth rates calculated between t2 and t8 over 6 
replicates.  

‘A240R’ ‘A20R’ ‘A1R’ ‘R240A’ ‘R20A’ ‘R1A’ 

p=0,045; 
f=-5,83 

p=0,219; 
f=-1,94 

p=0,040; 
f=-6,92 

p=0,040; 
f=7,77 

p=0,058; 
f=-4,64 

p=0,011; 
f=-27,03 
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Table 6.8. FDR adjusted p-values comparing ‘A->R’ or ‘R->A’ fluorescence values 
against the ‘AR’ control value at several time points in experiments without looping 
of DNA.  

T-tests were performed at different time points after t0 between ‘A->R’ or ‘R->A’ 
fluorescence and ‘AR’ fluorescence. Values that are above the significance level α = 
0.05 are shown in red. 

Time 
(min) 

‘A240R’ ‘A20R’ ‘A1R’ ‘R240A’ ‘R20A’ ‘R1A’ 

60 p=0,001; 
f=15,85 

p=0,002; 
f=5,88 

p=0,310; 
f=0,25 

p=1,72E-06; 
f=15,85 

p=0,005; 
f=5,88 

p=0,837; 
f=0,25 

120 p=0,001; 
f=39,14 

p=0,004; 
f=5,22 

p=0,019; 
f=-0,31 

p=2,62E-07; 
f=39,14 

p=0,008; 
f=5,22 

p=0,808; 
f=-0,31 

180 p=0,001; 
f=28,80 

p=0,005; 
f=4,54 

p=0,011; 
f=-0,99 

p=1,77E-05; 
f=28,80 

p=0,012; 
f=4,54 

p=0,432; 
f=-0,99 

240 p=0,001; 
f=15,39 

p=0,005; 
f=3,93 

p=0,001; 
f=-0,71 

p=6,61E-05; 
f=15,39 

p=0,019; 
f=3,93 

p=0,570; 
f=-0,71 

340 p=0,012; 
f=4,13 

p=0,017; 
f=3,08 

p=0,045; 
f=-0,91 

p=0,016; 
f=4,13 

p=0,041; 
f=3,08 

p=0,468; 
f=-0,91 

380 p=0,017; 
f=6,25 

p=0,026; 
f=3,74 

p=0,035; 
f=-0,26 

p=0,005; 
f=6,25 

p=0,022; 
f=3,74 

p=0,835; 
f=-0,26 

420 p=0,019; 
f=6,70 

p=0,017; 
f=5,89 

p=0,103; 
f=-1,96 

p=0,004; 
f=6,70 

p=0,005; 
f=5,89 

p=0,141; 
f=-1,96 

460 p=0,019; 
f=10,88 

p=0,022; 
f=7,27 

p=0,076; 
f=-0,77 

p=0,001; 
f=10,88 

p=0,003; 
f=7,27 

p=0,545; 
f=-0,77 

500 p=0,022; 
f=10,62 

p=0,048; 
f=6,59 

p=0,017; 
f=-0,35 

p=0,001; 
f=10,62 

p=0,004; 
f=6,59 

p=0,785; 
f=-0,35 

540 p=0,022; 
f=3,95 

p=0,019; 
f=1,77 

p=0,126; 
f=-1,87 

p=0,019; 
f=3,95 

p=0,173; 
f=1,77 

p=0,156; 
f=-1,87 

 

Table 6.9. Comparison of R2-values for the model fit in experiments with the lacO1 
mutant.  

R2-values were calculated between experimental data (6 replicates) and model 
trajectories for t0 to t6. Overall values were calculated for samples with both TFs (‘AR’, 
‘A->R’, ‘R->A’). 

 No looping with lacO1 mutant 

Conditions Equilibrium Non-equilibrium 

Overall 0,918081 0,916304 

B 0,977199 0,977219 

A 0,825327 0,824652 
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R 0,851155 0,835213 

AR 0,926568 0,911066 

AR240 0,883105 0,899491 

AR20 0,994914 0,987054 

AR5 0,834139 0,854511 

AR1 0,984979 0,974295 

RA240 0,927155 0,935269 

RA20 0,968008 0,954429 

RA5 0,926338 0,926142 

RA1 0,977199 0,977219 

 

Table 6.10. Strains and plasmids. 

Strain name Current phenotype 

ASE006 BW27784 ΔlacI785 

CI088 ASE006-Pcon-tetR integrated on the chromosome at the phage P21 
attachment site 

CI125 CI088 with araC – pBAD – LacI recombined into galK 

CI158 CI125 containing plasmids pZE3-Pswitch and pZS21-CI-Lite 

CI180 CI125 containing plasmids pZE3-Psw_noloop and pZS21-CI-Lite 

pZS21-λ CI-Lite Low copy plasmid with λ CI under the control of a 𝑃𝐿𝑡𝑒𝑡𝑂−1 
promoter, and tagged for degradation with an ssrA tag 

pZE3-Pswitch Medium-copy plasmid containing the synthetic Psyn controlling a 
fluorescence gene and the 𝑃𝐿 promoter region from phage λ 

pZE3-Psw_noloop Medium-copy plasmid containing the synthetic Psyn without the 
binding sites for looping controlling a fluorescence gene 

PBAD-LacI Plasmid PBAD24 with AraC and the PBAD promoter region 
controlling LacI 

pAH81frt-cat –
Pcon-tetR 

CRIM plasmid with chloramphenicol resistance gene flanked by FRT 
sites, carrying Pcon-tetR for integration at the phage P21 
attachment site 

 

Table 6.11. Primers.  

Primers 

Pswitch_R0        TTCTCGAGCAGTgactg 

Pswitch_F0       cagtcACTGCTCGAGAATTGTGAGCGCTCACAA 
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Pswitch_R17      TCTGGCGGTGATAAAATTGTGAGCGCTCACAA 

Pswitch_F33      TTTTATCACCGCCAGAGGTAAAATAGTCAACACGC 

Pswitch_R49      GGTAAATATCTAACACCGTGCGTGTTGACTATTTTACC 

Pswitch_F68      ACGGTGTTAGATATTTACCCCTTGCAGTGATAGATTT 

Pswitch_R87      GTTACTCGCTCACATTTAAATCTATCACTGCAAGG 

Pswitch_F105     AAATGTGAGCGAGTAACAACCAATTCATTAAAGAGGA 

Pswitch_R122     GCATGCGGTACCTTTCTCCTCTTTAATGAATTGGTT 

Pswitch_F142     GAAAGGTACCGCATGCGTAAAGGAGAAGAACcatt 

Pswitch_R158     gccagacataatgtttgaaatgGTTCTTCTCCTTTAC 

Pswitch_R177     tcaaacattatgtctggc 

Pswitch_shortF0 ACTGCTCGAGAATTGTGAGCGC 

Pswitch_shortR0 GTTCTTCTCCTTTACGCATGCG 

PL3-toPswitch_fwd ATCTGGATCCCAAGGTGTTCTGGTCGG 

PL3-toPswitch_rev TATCACTAGAGTTGGTTATCTGTATGTT 

PL3-_fwd GATAACCAACTCTAGTGATAAATTATCTCTGGC 

PL3-_rev AGCTTCTAGACCTGCTGATGTGCTCAGTATC 

R0 CGCTCACATTTCTCGAG 

F0 CTCGAGAAATGTGAGCGAGTAACAACCTATCACCG 

R17 TTGACTATTTTACCTCTGGCGGTGATAGGTTGTTACT 

F35 CCAGAGGTAAAATAGTCAACACGCACGGTGTTAGA 

R54 TCACCACAAGGGATAAATATCTAACACCGTGCGTG 

F70 TATTTATCCCTTGTGGTGATAGATTTAACGTAATTGTGAGC 

R89 TCCTCTTTAGAATTGTTATCCGCTCACAATTACGTTAAATCTA 

F111 GGATAACAATTCTAAAGAGGAGAAAGGTACCGCATGC 

R132 ggtaGTTCTTCTCCTTTACGCATGCGGTACCTTTC 

F148 GTAAAGGAGAAGAACtaccactgagatgtatgatggc 

galK_term_araC_fwd CCGGAGTGTAAGAAATGAGTCTGAAAGAAAAAACACAATCTC 

CCAATTATGACAACTTGACGGC 

galK_LacI_term_rev CGGTACGGCTGACCATCGGGTGCCAGTGCGGGAGTTTCGT 

CGCAAAAAGGCCATCCGTCAG 

Pcon_fwd ACTG GCATGC AATTCACCGTCGTTG TTGACA 
TTTTTAAGCTTGGCGGT TATAATGGTACC 
ATAAGGAGGTGGATCCGGCA TAAATATGGCTGGTTCTCG 
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Pcon_rev CGAGAACCAGCCATATTTATGCCGGATCCACCTCCTTATGGTACC
ATTATAACCGCCAAGCTTAAAAATGTCAACAACGACGGTGAATTG
CATGCCAGT 

GFP_fwd ATGCGTAAAGGAGAAGA 

GFP_rev ACGTGGATCCTTATTTGTATAGTTCATCCAT 

LacI_fwd_EcoRI ACGTGAATTCATGGTGAATGTGAAACCAGTAACG 

 

 

6.6 Methods 

Psyn architecture 
We constructed a synthetic Psyn under the control of two inducible TFs: an activator, λ 
CI, and a repressor, LacI (Fig. 6.1B). Psyn was obtained from the phage λ PRM promoter 
by mutating the λ OR3 operator to eliminate repression by CI11 and introducing two 
operators for LacI binding10, positioning the strong LacI operator as in the natural 
promoter (PLacZ) and the weaker operator at a distance optimal for DNA looping174 (Fig. 
6.2). Both TFs can loop the DNA when bound to their operators (Fig. 6.2), which 
increases the efficiency of the respective regulatory state10,158. The Psyn controls the 
expression of a green fluorescent marker (gfpmut3). E. coli contains a high frequency 
of promoters that are regulated by more than one TF and most of these promoter 
architectures contain operators separated by less than 10-20 bps13, making our 
synthetic system a relevant model for natural promoters.  
In the modified Psyn, which did not allow for looping, we removed the λ phage PL 
promoter region (OL1 and OL2) as well as the second operator for LacI, O2 (Fig. 6.13). 
Due to their locations, those operators should not have any impact on promoter 
regulation on their own. CI-mediated looping on plasmids has been shown before15 
and looping in our original Psyn system was tested by measuring fluorescence 
activation (repression) with and without the PL promoter region for CI (the second 
operator, O2, for LacI). In both cases regulatory activity was significantly decreased in 
the absence of operators supporting DNA looping. Fluorescence increase due to 
activation was much slower without looping, whereas repression efficiency was 
overall considerably decreased (compare ‘A’ / ‘R’ curves in Fig. 6.8A, 6.14A). To test 
the predictions of memory loss we introduced a mutation into the lacI operator O1, 
that weakened lacI binding but didn’t abolish it completely167. 

As the region between λ 𝑃𝑅 and 𝑃𝐿 was taken from the bacteriophage genome and 
contains two genes involved in superinfection exclusion (rexA, rexB), we cloned a 
version of Psyn where we replaced those two genes with half of the galK gene and half 
of the galT gene and reproduced the transient memory dynamics in this system (Fig. 
6.16).  For the growth measurements in the presence of an antibiotic, gfpmut was 
replaced with tetA.    
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Figure 6.16. Relative fluorescence showing transient memory in gene expression for 
time delays of 240, 20 and 1 minute at Psyn, where the PR-PL region was replaced with 
parts of the galK and galT genes.  

Shown are OD600-normalized fluorescence values that were divided by ‘AR’ 
fluorescence values over the time course of the experiment (x-axis shows time in 
minutes). Green and orange curves show the ‘R->A’ (A) and ‘A->R’ (B) conditions 
respectively. The dashed vertical line indicates the time point when the second inducer 
was added. The dashed horizontal line at 1 indicates that fluorescence is equal to the 
‘AR’ control. Bar plots show the relative fluorescence values at t4. 

 

Plasmid and strain construction 

All strains, plasmids and primers used are listed in Table 6.10 and 6.11. The host strain 
used in all experiments was obtained from BW27784 (CGSC# 7881) by P1 transduction 
of a lacI::kan deletion cassette from the Keio collection strain JW0336 and subsequent 
removal of the kanamycin resistance gene by using pCP2099. The lacI gene was cloned 
into the MCS of pBAD24 175 and from the resulting plasmid the region AraC-PBAD-LacI 
was recombined with λ red onto the chromosome replacing galK176. tetR was placed 
under the control of a synthetic, constitutive promoter 𝑃𝑐𝑜𝑛

118 and inserted into the 
P21 attachment site on the chromosome of BW27784 using the CRIM plasmid 
system177. λ CI was tagged for degradation (ssrA tag)178 to avoid its accumulation in 
the cell, which proved to be toxic and put under the control of a PLtetO-1 promoter 
(short PTet) onto a low copy number kmR plasmid pZS99. PBAD and PLtetO-1 were chosen 
as promoters for the input signals as they are both tightly regulated, fast and strong 
promoters99,179,180. The Psyn promoters with and without looping were assembled 
synthetically from oligos and fused to gfpmut3. The genomic region starting after the 
stop codon of CI until (and including) the OL1 of PL were amplified from phage λ DNA 
to keep the distance and environment as similar as possible to the natural regulatory 
context158. This genomic region includes two genes rexA and rexB that provide 
superinfection exclusion in the presence of lytic phages181 and hence should not 
interfere with our promoter system. The Psyn - gfpmut3 and the Lambda DNA piece 
containing PL were cloned together into a cmR pZE plasmid99. The main operator for 
LacI is placed after the transcription start site as in the WT lac operon, thereby we 
could avoid changing the CI OR sites or RNA polymerase (RNAP) binding sites. The CI 
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repressor operator sites were at WT locations with regard to PRM but we introduced 
mutations into OR3 (r3) and OL3 (OL3-4) to avoid repression by CI121,182. As the basal 
level of λ PRM is in general relatively low and was further impaired by the lac O1 binding 
site, we introduced a strong ribosomal binding site upstream of gfp to increase the 
difference between basal and repressed fluorescence levels. The origins of the pZE 
and pZS* plasmid families are compatible and can therefore be stably propagated in 
cultures over long timescales. With these constructs activated fluorescence levels 
were 5.6-fold higher than basal at equilibrium and repressed levels were 2.7-fold 
lower than basal.  
 

Fluorescence assays 

All cells were grown overnight at 30°C in M9 medium supplemented with 0.5% 
casamino acids, 0.5% glycerol, 50μg/ml kanamycin and 30μg/ml chloramphenicol. 
Those cultures were used to inoculate twelve conditions (with 18 replicates each for 
‘looping’ and 6 replicates each for ‘no looping’ and ‘no looping with lacO1 mutant’) 
1:100 in 96 well plates and were grown at 30°C at 220 rpm. We found that growth 
rates were most comparable at these conditions, among replicates, different 
induction scenarios, as well as between different experiments. To test if high 
concentrations of TFs affected our observations or the growth rates, we repeated the 
experiments for 6 replicates with low inducer concentrations and found similar growth 
rates as well as transient memory (Table 6.1, 6.2). Similarly, the model showed 
transient memory if activator concentration and degradation rate were varied (Fig. 
6.17).   
We also measured transient dynamics at 25°C and 35°C and found increased memory 
at 25°C and decreased memory at 35°C (Fig. 6.18), as would be expected for an effect 
that is dependent on TF binding and hence DNA replication.  
Inducers were added at 25ng/ml (5ng/ml for low concentrations) for aTc and 0.05% 
(0.001% for low concentrations) for arabinose after cultures reached an initial OD600 

of 0.1 in the following way: As controls, one sample was not induced at all (‘basal 
expression’), one was activated with aTc (‘A), one was repressed with arabinose (‘R’) 
and one was induced for both TFs at the same time (‘AR’). Four conditions were 
induced with aTc (λ CI expression) and after a specific time delay arabinose (LacI 
expression) was added to the medium as well. The time delays between inductions of 
the two TFs were 240 (‘A240R’), 20minutes (‘A20R’), 5minutes (‘A5R’) and 1minute 
(‘A1R’). The last four conditions were induced first with arabinose (LacI expression) 
and after 240 (‘R->240A’), 20minutes (‘R20A’), 5minutes (‘R5A’) and 1minute (‘R1A’) 
with aTc (λ CI expression). Induction kinetics for a Ptet-based promoter and PBAD are 
expected to be on the order of minutes175,183.  
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Figure 6.17. Memory effects for varying activator concentration and activator 
degradation rate on gene expression levels.  

Fluorescence (in AU) over 14h (x-axis shows time in minutes) is shown for different 
delay scenarios in simulations with C) original CI concentration and degradation rate, 
A) increasing  or D) decreasing CI concentration, B) decreasing or E) increasing CI 
degradation rate. Colors correspond to Fig. 6.8A with ‘AR’ in black, ‘A->R’ in green and 
‘R->A’ conditions in orange. Increasing (decreasing) CI concentration has a similar 
effect to decreasing (increasing) CI degradation rate. Although the steady state 
expression level varies if activator concentration are varied, the memory effect remains 
in all cases (varying repressor concentration leads to opposing changes in steady state 
levels but similar memory effects).  
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Figure 6.18. Experimental observations of transient memory in gene expression at A, 
B) 25°C or C,D) 35°C.  

TF were induced with time delays of 240, 20 or 1min. Shown are OD600-normalized 
fluorescence values that were divided by ‘AR’ fluorescence values over the time course 
of the experiment (x-axis shows time in minutes). Green and orange curves show the 
‘R->A’ (A, C) and ‘A->R’ (B, D) conditions respectively. The dashed vertical line indicates 
the time point when the second inducer was added. The dashed horizontal line at 1 
indicates that fluorescence is equal to the ‘AR’ control. Bar plots show the relative 
fluorescence values at t4. 

 
Cultures were diluted every 6h to keep them in exponential phase, grown on the 
shaker at 30°C and measured using Biotek H1 plate reader at first for 240 every 60min., 
then for 10h (‘looping’ experiment) or 6h ( ‘no looping’ and ‘low concentration’ 
experiments) every 30min. We tested if the second dilution affected the observed 
memory and found no significant differences in relative fluorescence values for any of 
the conditions (Fig. 6.19). Growth was continued overnight in the plate reader with 
measurements every 20min. In the first 14h of the ‘looping’ experiment 
measurements were taken using plate reader and FACS. In the plate reader 
fluorescence and OD600 measurements were taken and fluorescence measurements 
were normalized by the OD600 measurements to account for differences in cell density. 
Data were analyzed using R statistical software. Promoter activities were calculated 
from fluorescence and OD600 measurements using equations (6), (11) and (13) from184. 
The cell doubling time was approximately 0.75/h. All fluorescence values were given 
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as fold-changes of the basal expression level. Relative fluorescence ratios were 
calculated by dividing OD600 -normalized fluorescence values of the individual 
scenarios with delayed induction (‘A->R’ or ‘R->A) by OD600 -normalized fluorescence 
values of the ‘AR’ control at indicated time points.  
Flow cytometry analysis was carried out on the FACS Canto II Analyzer (BD Biosciences, 
San Jose, CA) equipped with FACSDiva software (version 6.1.3, BD Biosciences). 
Sensitivity of the lasers was determined within the daily setup using BD FACS 7-color 
setup beads.  Conditions were diluted into M9 buffer (1x M9 salts supplemented with 
1mM MgSO4 and 0.1 mM CaCl2) to yield ~500 events/sec at medium flow rate. For GFP 
fluorescence a 488-nm argon excitation laser and a 530/30 nm band-pass filter was 
used. For each culture 20,000 events were collected and data was analyzed with 
FlowJo software.  
 
 
Growth measurements in the presence of tetracycline 
Cells were grown overnight and diluted in the morning for 3 replicates of each 
population as described in the previous section for fluorescence measurements. 
However, induction of ‘A’, ‘R’, ‘A240R’ and ‘R240A’ was done immediately after 
inoculation in order to avoid dilution throughout the experiment. Otherwise the 
induction schemes were carried out as described before and after addition of the 
second inducer 5ug/mL tetracycline were added to each sample (results were 
comparable at 15ug/mL). Conditions were grown and measured (OD600) every 30min 
in the plate reader.  
It is highly unlikely that tetA pumps out aTc in significant amounts, even though it is a 
tetracycline derivative, as tetA only confers very weak resistance to aTc185. Further, 
we tested aTc induction of a PTet- controlled GFP in the absence and presence of tetA 
and fluorescence induction rates were not significantly different (p=0.3615, f=-0.925).  
 

 

Figure 6.19. Experimental observations of transient memory in gene expression for 
Psyn with looping A) with dilution at t-1 and t6 or B) with dilution at t-1 only.  

The x-axis shows time in minutes centered at induction of the second inducer and the 
y-axis shows OD600-normalized fluorescence (NFU) with relative errors given at each 
measurement point. Colors and symbols correspond to Fig. 8A with ‘AR’ in black, ‘A-
>R’ in green and ‘R->A’ conditions in orange. Cells were grown in 3x sextuples in 96 
well plates in M9 with 0.5% CAA on a shaker at 30°C. The first TF was induced 240, 20, 
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5 or 1 minute earlier as indicated. The second TF was induced at the same time, t0, for 
all conditions, which is indicated by the dashed vertical line.  

 

Statistical tests 

Collected data was tested for normality (Shapiro-test) and subsequently we compared 
mean expression values through t-tests with FDR correction for multiple comparisons 
in RStudio. At first mean expression values were compared between basal and 
activated or repressed states (p < 0.0001, f=-19.52 / 9.28) as well as between activated 
and repressed (p < 0.0001, f=19.46) to make sure they were significantly different. For 
memory assessment means between delay conditions and the ‘AR’ control were 
compared at indicated time points. We tested if the dilution rate was significantly 
different from the drop in fluorescence for ‘A->R’ conditions by calculating the slope 
of the logarithmic OD values and comparing it with the negative slope of the 
logarithmic, normalized fluorescence values (that were corrected for their descent to 
the equilibrium value, not to zero expression) for six replicates during the exponential 
growth phase (t0 to t3) by using t-tests and FDR correction. We also calculated the 
mean and standard deviation over all decay and dilution rates for A->R conditions in 
the following way: 

𝑟𝑎𝑡𝑒 =

log (𝑥(𝑡))

log (𝑥(𝑡+∆𝑡))

∆𝑡
, 

With x indicating either OD or fluorescence values at time point t or t+∆𝑡. 

We calculated maximum fluorescence production for the ‘AR’ control and ‘R->A’ 
conditions after t0 by finding the maximum fluorescence value and subtracting the 
fluorescence value at t0. Error bars were calculated as relative errors by using error 
propagation. Further, we compared the calculated slope of increase in fluorescence 
from t0 to t1.5 between the ‘AR’ control and R->A conditions by using t-tests with FDR 
correction.  

We determined the fit between a certain model version (the equilibrium, non-
equilibrium without interference states, non-equilibrium with interference states, 
non-equilibrium with SO (steric occlusion) or FD (facilitated dissociation) or both 
(interference model)) and the experimental data (looping, no looping and no looping 
with lacO1 mutation) for 11 time points after t0 for all conditions individually (Fig. 6.8, 
6.9, Table 6.5, 6.9) in Matlab using the following version of Fraction of Variance 

explained:    𝐹𝑉𝐸 =
𝑆𝑆𝑒𝑟

"𝑆𝑆𝑡𝑜𝑡"
=

∑ (𝑦𝑖−𝑦𝑖̂)
2

𝑖

∑ 𝑦𝑖
2

𝑖
.  

 

Reaction rate models 

Reaction rate models calculate the expression dynamics of a promoter system by 
representing the plausible state configurations and transitions between promoter 
states186,187.  The regulatory states of the promoter arise from different binding states 
of regulatory proteins84 (i.e. activator, repressor and/ or RNAP can be bound or not 
bound in various combinations at operator sites) and different DNA configurations 
(e.g. looped or not looped). Gene expression levels are then assumed to be 
proportional to the probability of RNA polymerase (RNAP) being bound at the 
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promoter, which is dependend on the binding state of the other TFs at the promoter 
(e.g. activators enable RNAP binding and repressors inhibit it)51,57,160.  

For instance, the production of a protein x from an active (RNAP / activator bound) 
promoter pON with rate α and the degradation of x with rate β would be described by 

the following reactions:          𝑝𝑂𝑁
𝛼
→ 𝑝𝑂𝑁 + 𝑥 

𝑥
𝛽
→ ∅, 

resulting in the differential equation for x:  𝑥̇ = 𝛼𝑝𝑂𝑁 − 𝛽𝑥.  (1) 

Different regulatory states are associated with varying transcriptional activity and 
overall promoter output x results from summing the product of a state’s probabilty 
and its corresponding transcription rate: 

𝑥̇ = (𝛼1𝑝1 + 𝛼2𝑝2 + 𝛼3𝑝3 +⋯) − 𝛽𝑥,  (2) 

with 𝛼𝑖 being the transcription rate of state i and 𝑝𝑖 the probability of being in state i. 
The time evolution of regulatory state probabilities, protein concentrations and GFP 
production and maturation were calculated using differential equations. GFP mRNA 
and tRNA production and degradation as well as protein folding into its fluorescent 
state were explicitely modelled188. 

 

The probability of being in a particular promoter regulatory state, and hence pON, was 
calculated differently for the three models used in this study. We will demonstrate the 
difference using the simple example reaction of a repressor R binding to an unbound 
promoter U yielding a bound promoter B: 

𝑈 + 𝑅 

𝑘+
→ 

𝑘−
← 
  𝐵   (3) 

Thermodynamic models are reaction rate models that assume that the promoter state 
is at equilibrium: 𝑝̇𝑂𝑁 = 0. Hence, the description of expression dynamics from pON is 
only dependent on equilibrium TF concentrations and TF-DNA binding affinities. 
Instead of individually modelling forward and backward transitions between two 
states of the promoter, this assumption enables the use of equilibrium constants to 
describe transitions (i.e. the forward and backward rate between two states are 

lumped into one equilibrium constant KR=
𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 𝑟𝑎𝑡𝑒

𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑟𝑎𝑡𝑒
). For the above reaction of 

repressor binding to the promoter (3), we obtain the following equation for promoter 
expression: 

𝑝𝑂𝑁 =
1

1+
[𝑅]

𝐾𝑅

    (4) 

with the equilibrium dissociation constant KR=
𝑘−

𝑘+
. 

 

For the non-equilibrium equations, we considered forward and backward rates (k+, k-
) seperately as the promoter state is not assumed to equilibrate immediately (𝑝̇𝑂𝑁 ≠
0):   

𝑝̇𝑂𝑁 = 𝑘− ∙ 𝐵 − 𝑘+ ∙ 𝑅 ∙ 𝑈  (5) 
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The non-equilibrium interference model additionally includes states where both TFs 
can bind at the same time, including looping through the activator, but not the 
repressor (as the repressor loop likely is too tight to allow for binding of the activator). 
In the full model we assumed that steric occlusion (SO) between TFs would decrease 
association rates, and that facilitated dissociation (FD) would make the dissociation 
rate of one TF dependent on the concentration cA of the other TF14,189, e.g. an 
activator, that binds in close vicinity of the repressor and modifies repressor unbinding 
(𝑘−): 

𝑝𝑂𝑁 = 𝑘−(𝑐𝐴) ∙ 𝐵 − 𝑘+ ∙ 𝑅 ∙ 𝑈  (6) 

The concentration-dependence according to FD was implemented by multiplying the 
dissociation rate by the number of molecules of competing TF present. We allowed 
for binding of both TFs at the same time as well as for DNA looping by the activator λ 
CI, but not looping by the repressor LacI as such a tight loop would likely inhibit binding 
to operators within the loop190. DNA association rates for those ‘interference’ 
transitions were decreased as we assumed that the TFs would sterically interfere with 
each other’s binding. 

We used this model (for a diagram of states and transitions see Fig. 6.7) to simulate 
fluorescence levels from Psyn over 14h in Matlab R2015a and compared the obtained 
values to experimental data. All fluorescence values were normalized by basal 
expression from Psyn as in the experimental meeasurements. Fluorescence ratios were 
calculated by dividing fluorescence levels of individual scenarios with delayed 
induction (‘A->R’ or ‘R->A) by fluorescence levels of the ‘AR’ control. Binding rates and 
TF concentrations that were used in the simulations were fitted to the experimental 
data using a simulated annealing algorithm (non-equilibrium model with interference, 
FD and SO for the looping case: 28 parameters, and the equilibrium model with 
interference: 11 parameters), but were kept within realistic ranges as found in 
previous studies at microbial promoters63,95,99,118,155,175,182,188,191–201 (Table 6.4). The 
degradation tag of the activator, λ CI, was taken into account and accordingly faster 
than degradation by dilution of the other proteins178. 
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7. Conclusion 

7.1 Network evolution – local and global determinants 

Transcriptional regulation lies at the foundation of cellular function and behavior, 
which emerges from complex interconnections between individual transcriptional 
units4,6. In order to gain a better understanding of emerging cellular behavior, we first 
have to understand how its parts function and come together, and the last decades 
have revealed an astounding richness and intricacy in gene regulatory mechanisms of 
even the simplest organisms like bacteria and viruses (see Chapter 1). Thus it has 
proven to be useful to study isolated systems in order to elucidate the molecular basis 
of gene regulatory processes.  

 

We have used this concept to provide insights into the biophysical mechanisms that 
allow or constrain the evolution of transcriptional regulation. Instead of trying to 
entangle the complex features and properties of whole networks that can potentially 
play a role in their evolution, we focused on the connections between individual 
components: TFs and their binding sites. Surprisingly, very few biophysical parameters 
are sufficient to determine the potential of a TF to rewire regulatory connections. In 
our study we used very well characterized TFs, which allowed us to explore the 
significance of all biophysical parameters in the system, but our findings indicate that 
only the wild type binding energy and the energy matrix (describing the energy penalty 
of binding site mutations) of a TF need to be determined in order to find its 
evolutionary potential. For approximate estimations, one can forgo the determination 
of the energy matrix and replace it with the general estimation of 1-3kBT energy 
penalty per mutation24. This insight provides simple, conceptual tools that can be used 
to obtain a predictive understanding of regulatory network changes based on the 
binding properties of TFs. These implications will be discussed further below under 
‘Robustness and Evolvability of TFs for regulatory rewiring’. 

 

By its very nature, the rewiring of local connections requires the consideration of at 
least one other transcriptional unit, but in reality there is the whole genome to 
acknowledge for the potential of new binding sequences. Hence, in order to obtain a 
more comprehensive picture of the constraints acting on regulatory network 
evolution, one has to go beyond isolated units. Rewiring of transcriptional connections 
will inevitably lead to crosstalk between two TFs and as our experiments indicate, it is 
highly likely that crosstalk can have unexpected consequences for gene expression 
through interactions at non-specific sites. As many (local) TFs are present in the cell at 
low numbers (e.g. LacI is present at ~10 copies per cell), titration due to non-specific 
sites can significantly affect the availability of a TF for specific regulation. Especially for 
promiscuous TFs non-specific binding sites can act as traps, hindering the target 
search41,42 and decreasing the free concentration of TF available for specific binding58. 
Competition between two TFs at non-specific binding sites can however i) increase 
free TF concentration, and therefore occupancy at the target promoter as there are 
less non-specific sites free for binding or ii) it can increase the dissociation rate at non-
specific sites due to binding of the other TF in close vicinity. This effect is likely to occur 
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with TFs sharing similar binding footprints, meaning that they are likely to engage in 
binding crosstalk. Accordingly, depending on a TFs non-specific binding strength, the 
amount of crosstalk with other cellular TFs and the level of molecular crowding on 
DNA, non-specific binding can affect promoter occupancy in opposite ways. The 
fitness effects of this outcome will again depend on the specific gene in question. 
Further, regulatory crosstalk can be beneficial for adaptation as it provides plasticity 
to the regulatory network, although it will be ultimately selected against to avoid 
interference with the newly evolved, specific regulation241.   

 

Non-specific interactions with the genome can also have other, indirect consequences 
on the cell, for example by affecting growth rates. We found a substantial burden on 
the cell when expressing two gratuitous TF from low copy plasmids. The promiscuous 
repressor showed a serious growth arrest in a strain that it evolved with as well as in 
a strain it does not usually encounter. The more specific repressor still affected growth 
of the non-host strain substantially. This suggests that although the more promiscuous 
TF has a higher evolutionary potential, there is a trade-off due to unwanted 
interactions with the rest of the genome leading to potentially high fitness costs. 
Therefore, a more comprehensive understanding of regulatory network evolution will 
require combining investigations of specific target site evolution and non-specific 
background crosstalk. 

 

7.2 Dynamics matter 

Ignoring other TFs or non-specific binding could be one of the reasons why previous 
studies reported a discrepancy between binding affinities determined through in vitro 
methods and gene expression patterns that are observed in vivo. Another reason 
however, could be the importance of transient dynamics (the path to steady state 
expression) in gene regulation, which has been largely ignored when trying to connect 
signaling input to promoter output. Many studies have successfully classified specific 
types of promoter logic and the many ways to implement them242. However, knowing 
the architecture of a regulatory system is generally not enough to determine its steady 
state gene expression67, even less the transient behavior until the steady state. It is 
becoming increasingly clear that transient gene expression is playing an important role 
in cellular behavior, especially with regard to signaling cascades60. As we observed, 
transient gene expression can last for several hours, especially in slowly growing cells, 
which increases the likelihood that the environment changes and a new signal reaches 
the cell within that time. In the extreme scenario where cellular processes rarely reach 
steady state on relevant timescales, these processes would be optimized and selected 
for their transient gene expression only. Indeed, we find that variability in transient 
gene expression patterns of growth-determining genes can result in significant growth 
differences. 

 

We show that transient gene expression can arise in complex regulatory systems due 
to delays in the arrival timing of input signals. Especially small delays of a few minutes 
between signals are very likely to occur regularly in nature, either due to differences 
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in timing of external signals (for example decreased diffusion, larger distance or slower 
uptake of one signal) or due to differences in intracellular processes along the 
signaling chain (for example promoter strength, gene length, protein production and 
folding). This makes signaling delays and hence transient gene expression patterns a 
relevant feature for cellular programs and although this variation does not stem from 
stochasticity, it can provide similar advantages. One classical example is bet-hedging, 
where phenotypic variability might reduce fitness in the current environment but 
provide an advantage by anticipating future environmental changes23. In addition, 
phenotypic variability (plasticity) can accelerate evolutionary adaptation as it 
facilitates the search for a genotype producing a new phenotype that is better suited 
for a specific environment. Subsequently, selection can stabilize this new phenotype 
genetically, allowing it to become the new dominant gene expression 
phenotype171,243. This shows that transient dynamics in gene expression can add 
another layer of behaviors to the phenotype space and should not be lightly ignored 
in order to obtain a more comprehensive picture of the mapping between promoter 
architecture and gene expression phenotype.  

 

7.3 Transcription factor interference 

TFs, which are binding in close vicinity of each other (either to specific binding sites in 
a promoter region or non-specifically anywhere along the DNA) can interfere with 
each other’s cis-regulatory activities in various ways: 1) Direct TF competition: The 
binding of one TF can partially or completely obstruct the binding site of another 
operator, thereby sterically excluding the other TF from binding12. Further, partial 
dissociation of a bound TF can provide access for another TF to bind nearby, which 
would then impede rebinding and lead to dissociation of the first TF. This mechanism 
(facilitated dissociation) can substantially increase off-rates over those measured in 
vitro14. 2) Indirect TF interference: TF binding can induce structural changes in DNA or 
affect DNA supercoiling16. Non-specifically bound TFs can also pose obstacles to the 
1D-target search along DNA244. We found evidence that TF interference significantly 
impacts gene regulation through direct competition, either locally, by hindering the 
binding of other TFs in the promoter region, or globally, by affecting free TF 
concentrations. 

 

The mean number of TF binding sites (in operons with at least one known site) is 3.5, 
demonstrating the prevalence of co-regulation at bacterial promoters. Most of these 
sites are separated from their neighbors by less than 15 base pairs and almost half of 
all binding sites overlap with another one13. An elementary example of competition 
through binding site overlap is given by repressor binding sterically excluding RNAP 
from the promoter as in the lac promoter system. This shows that TF competition 
seems to be an abundant and important feature in gene regulation, increasing the 
capacity for complex signal integration drastically12.  

 

The very nature of TF competition implies a dynamic aspect in this interaction, which 
cannot be captured through steady state promoter logic, and can lead to an increase 



134 
 

in gene expression variability245. We find that TF competition also makes the promoter 
output sensitive to signal timing, thereby providing another way of encoding 
information about the environment in the promoter architecture: TFs whose binding 
sites are too close together to allow for independent binding will produce a memory 
of the signaling history through their binding dynamics. By moving those sites further 
apart, the memory will be lost and the phenotypic variability reduced, which would 
allow for more rapid and precise responses in trade for losing the ability to integrate 
two inputs based on their timing - which is a property that could provide beneficial 
information to the cell. In our experiments the causes for the interference are most 
likely steric hindrance and facilitated dissociation. Steric hindrance will decrease the 
association rates of the second TF, increasing the occupancy of the promoter by the 
first TF. Our system exhibits TF competition through binding site overlap between 
RNAP and the repressor on one hand and the activator and the repressor on the other 
hand. Moreover, the formation of DNA loops could stabilize the retention of the first 
regulatory state. However, using previously measured values for looping timescales, 
showed that stable looping should result in drastically longer memory of the first 
regulatory state as compared to our experimental results. On the other hand, DNA 
looping increases the local TF and DNA concentration drastically, which could result in 
the dissociation of TF forming the loop through facilitated dissociation14,246, thereby 
opposing the stabilizing effect. This would also explain why there were no significant 
differences in memory to a system without DNA looping. We found that interactions 
between TFs can result in unexpected gene expression dynamics and deserve a closer 
examination.  

 

7.4 Modeling complexity 

Thermodynamic models are very useful and simple models, which capture the 
biophysics of TF binding quite comprehensively if the molecular states are known and 
the system is at steady state. Gene expression is approximated through the binding 
probability of RNAP at the target promoter, which depends on the binding energy of 
RNAP as well as the TFs binding at the promoter. We found that these simple models 
provided excellent results when extracting basic mechanistic insights from well-
defined systems, where molecular mechanisms and parameters are well known. The 
model fits the experimental data very well and allowed us to draw conclusions about 
the importance of each of the parameters on the evolution of the system under 
question.  

 

Similarly, we used the same model to investigate global crosstalk between two well-
characterized repressors. Although the fit is not expected to be very good with the 
mutants in this system approaching non-specific binding,as the energy penalties in this 
range have not been biochemically determined, a simplified model provided us with 
a mechanism that can explain the experimental observations. Even in the extreme 
case of weak non-specific binding across the genome, we found a surprising amount 
of correlation between the predicted binding strength from a thermodynamic model 
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and the number of reads for a specific region from ChIP sequencing (which is indicative 
of how strongly the region was bound by the TF).  

 

However, in order to describe the dynamics of TF competition at a complex promoter 
we had to use a differential equation model based on non-equilibrium reaction rates. 
Coupling the differential equation model with a thermodynamic description of the 
underlying regulatory dynamics produced a much worse fit as the equilibrium 
assumption was not fulfilled. TF competition leads to much slower association rates, 
which are not well separated from the promoter production and protein dilution rates. 
Moreover, they are at odds with the increased – and therefore very fast – dissociation 
rates due to facilitated dissociation. Hence, the system cannot be treated as an 
equilibrium system and the reaction rate model with non-equilibrium transition rates 
resulted in a much-improved fit. It was however not necessary to include stochastic 
effects in our model to obtain a satisfactory fit to experimental data.  

 

Overall, we found that the current workhorse for gene regulatory model class - 
thermodynamic models - is providing important insights into basic mechanisms of 
regulation and its evolution in simple and well-defined systems. However, more 
complex promoter systems will require different approaches, especially because we 
find that it will not always be enough to only consider steady state expression of the 
system. Transient dynamics seem to be of much more importance to regulatory 
complexity than currently recognized and only a combination of experimental 
evidence and appropriate modeling approaches will be able to reveal its exact 
relevance.  

 

7.5 Model systems 

We employed two of the best-characterized repressors, LacI and Lambda CI, to 
explore new mechanistic concepts, which determine regulatory architecture. This 
allowed us to combine experimental approaches with well-informed modeling 
approaches and pre-determined system parameters. Although these synthetic, 
isolated systems are not reflecting the much more intricate connectivity of natural 
regulatory systems, they have proven time and again to be a highly advantageous 
concept in order to elucidate molecular principles of regulatory processes7,67.  

 

Using phage-based regulatory components for evolutionary studies has the additional 
advantage that they are related to each other through horizontal gene transfer. Yet, 
for example Lambda and P22 have diverged over time in two different host species. 
Hence, it is possible to not only study how those two systems diverged but also their 
interactions with host and non-host genomes. The latter seems to be a significant 
constraint in regulatory evolution considering our findings regarding crosstalk and 
non-specific binding. Hence, a more comprehensive picture needs to encompass how 
the cellular and genomic background affect regulatory processes.  
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7.6 New design principles 

For many years, particularly spurred by the era of high-throughput and genomic-
sequencing approaches, much effort has been put into answering the question of 
whether there are fundamental design principles of regulatory architectures that 
would allow us to i) infer their biological function directly from the DNA sequence67 
and ii)  predict new network designs. One example of design rules are regulatory 
structures that are over- or under-represented in comparison to random network 
design13,25. However, the regulatory architecture is still not enough to draw a 
conclusion as to its function or output. Yet, it seems that there is a finite number of 
ways to obtain a specific output function67, giving rise to the hope that we can identify 
certain constraints that act on network architecture and evolution. One difficulty in 
elucidating fundamental constraints is that design rules are being studied at different 
levels and a unifying scheme is needed to obtain a comprehensive design space247.  

 

Two properties that play an important role in determining network function and 
adaptation are robustness and evolvability. Many studies have tried to elucidate the 
factors that make networks and cellular processes robust and /or evolvable as both 
properties are crucial for cellular fitness, yet often seem to be opposed to one 
another. To some extent this paradox arises however from the specific definitions of 
these properties and the scale they are measured at, both of which varies throughout 
the literature27,28. Below we will first discuss a broader concept of robustness and 
evolvability in gene expression with regard to signal integration, and then more 
specifically robustness and evolvability of TFs and the implications for regulatory 
network evolution and function.  

 

Robustness and evolvability of gene expression with regard to the signal input 

The simplest unit in regulation is the transcriptional unit, consisting of a gene 
sequence that is bounded by a promoter region and a terminator4. The promoter 
region encodes the molecular mode of control through the binding sites for RNA 
polymerase and the binding sites for regulatory proteins (TFs). The arrangement of 
binding sites for TFs (including RNAP) determines the number of constraints that the 
system encounters70. The more TFs interfere or interact with each other, the harder it 
becomes to infer the promoter output function from the regulatory architecture 
alone. What seems like a constraint on the architectural level could however lead to 
more flexibility on the signaling level. 

 

On the architectural level robustness is conferred by non-overlapping binding sites 
and no interference between TFs as this makes the binding sites more flexible with 
regard to changes in their spacing and ordering70. The more binding sites overlap with 
one another, the more constrained their arrangement becomes. This robustness leads 
at the same time to evolvability in the binding site arrangement, as the spacing and 
ordering can vary without changing the output of the system significantly. Hence, the 
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regulatory architecture can explore a neutral genotype space76 until it reaches 
genotypes that have a different phenotype. 

 

If we now consider robustness with regard to the dynamics of the signaling input at a 
promoter, we find that the steady state of a transcriptional unit is robust to changes 
in timing and even ordering of the signals: regardless if the underlying binding site 
architecture includes binding site overlap, TF interference, or looping, the system 
reaches the same steady state for signals that have long or short delays between 
them, or arrive in different succession. This appears to be an extremely relevant type 
of robustness in natural systems as signaling delays can easily arise due to external or 
internal factors (e.g. slow diffusion or protein production).  

 

Considering evolvability with respect to signal timing, there is a clear difference 
between promoter systems with and without binding site overlap or any form of TF 
interference. While systems without interference between TFs require genetic 
changes to exhibit new phenotypes that can be selected on, systems with interference 
will display phenotypic variability in transient expression dynamics. These transient 
dynamics can last for several cell generations, enabling appreciable phenotypic 
variability (plasticity), which selection can act on, thereby increasing evolvability171,243. 
Moreover, transient dynamics due to TF interference arise from history-dependence, 
which allows for selection to act not only on the current phenotype but on the current 
phenotype given a certain history. This can be useful in fluctuating environments 
where transitions are correlated248.   

 

While promoter architectures that allow for TF interference seem to be more 
constrained in their design than ones with independent TF binding, considering the 
dynamics of the input function as the selective feature reveals a benefit of TF 
interference under certain conditions. For systems that are required to reach their 
steady state fast and which have a strong constraint on the amount of gene 
expression, TF interference would be disadvantageous172. However, many 
transcriptional units might not reach steady state on timescales that are relevant for 
the cell59,60 and, hence, selection will frequently act on transient expression dynamics. 
TF interference allows for encoding of information of the signaling history reliably in 
transient expression dynamics, which – as opposed to stochastic gene expression 
phenotypes – allows for phenotypic variability that is informed by the history of the 
cell, possibly facilitating cellular physiological adaptation. Hence, systems with TF 
interference are evolvable in that selection can act on an advantageous transient 
phenotypes (produced by certain signal dynamics), while still retaining robustness 
with regard to the steady state. In this way, complex and - to some extent - variable 
gene expression patterns can be encoded in regulatory architectures without 
changing the components but only by strengthening or weakening specific 
interactions. Similarly, even though TF interference makes the system more sensitive 
to changes in binding site spacing and ordering, those changes can easily be 
compensated for by tuning the binding affinity or concentrations of TFs in order to 
obtain a certain steady state expression level.  
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Robustness and evolvability of TFs for regulatory rewiring 

As gene expression patterns and promoters adapt over time, they will not only change 
the properties of their regulatory components, but also the components themselves. 
These components – TFs and their binding sites – connect transcriptional units to form 
gene regulatory networks controlling cellular behavior, hence understanding the 
constraints on these components in changing their connections over time is crucial to 
understanding cellular evolution. Two properties crucially describing these constraints 
for TFs are robustness and evolvability. 

 

“Proteins thus give DNA its functions – its personality – in cells, turning a DNA molecule 
from just naked DNA, into a chromosome” (Marko, 2015)249. 

 

Indeed, we find that the potential for rewiring individual network connections, as 
characterized by robustness and evolvability, is determined by inherent biophysical 
characteristics of the TF, not the binding site - even though the binding site is likely 
the component changed by mutations due to higher constraint on TF mutations87. This 
reduces the number of cellular components dictating the capacity for rewiring by one 
order of magnitude from ~2600 promoter regions (~2000 of them regulated by TFs)13 
to ~270 TFs that have to be considered250. We did not find a general number of 
mutations or base pair matches that is necessary to enable binding of a TF to a certain 
sequence. Rather, if certain biophysical characteristics of a TF are known (most 
importantly the wild type binding energy and the average energy per mutation), it is 
possible to infer the average number of mutations necessary in order to gain a specific 
amount of repression using their sigmoidal relationship. As this inference is only based 
on TF binding to one operator (without knowledge of the specific DNA sequence), no 
details about the regulatory system are necessary to obtain this number.  

 

If a larger number of TFs are classified for their robustness and evolvability it might 
become possible to classify them into certain categories according to their 
evolutionary potential – which will be different from the current definition of TF 
families as Lambda CI and P22 C2 belong to the same TF family, but showed opposing 
evolutionary potential. This new evolutionary classification might be tied to the way a 
TF recognizes its DNA sequence as binding energy is one of the most important 
determinants for rewiring, and Lambda CI and P22 C2 are known to differ in their 
recognition method: the former uses direct hydrogen bonding, while the latter is also 
reliant on structural DNA information. This might indicate two different modes of 
rewiring for these two classes: whereas one class can gain access to new binding sites 
if only very few mutations accumulate in a non-cognate site, the other class is more 
likely to be reliant on duplication of its binding site in order to gain new regulatory 
connections. Overall, robustness and evolvability of individual system components 
(TFs) determine the constraints that are placed on global network evolution through 
few TF-intrinsic characteristics.  
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Robustness and evolvability of cellular programs with regard to genomic context 

The focus in designing regulatory architectures and understanding their evolution is 
generally placed on specific regulatory interactions. However, the cytoplasm is 
crowded with proteins and between 10-50% of DNA is bound by non-cognate 
proteins41. Therefore, in addition to specific regulatory requirements, non-specific 
binding along the DNA is likely to put constraints on regulatory function and 
architecture.  

 

Non-specific binding can affect regulation at target promoters in several ways: Non-
specifically bound proteins can constitute obstacles on DNA, thereby limiting 1D-
diffusion41,42, or trapping bound TFs160. This can impose certain structural 
architectures in order to circumvent this problem: for example, DNA loops formed by 
a single protein complex (e.g. LacI looping)42 or the co-localization of TFs and the genes 
they regulate251. Moreover, the need to find a specific binding site within a sea of non-
specific sites (including ones that might only be one or two base pair mutations away), 
leads to specific constraints on the binding energies of TFs - which are in good 
agreement with experimentally obtained values24,85: the binding energy per 
nucleotide is 2-3 kBT and the difference between non-specific binding and the best 
binding sequence is 15-16 kBT. The latter is a trade-off between the constraints of 
getting trapped in non-specific sites and being ‘programmable’ to new sites85.  

 

Furthermore, the avoidance of non-specific binding leads to a constraint on the 
number of TFs per cell42. This constraint can be imposed by overall binding of TFs and 
impeding of cellular processes, but also by TFs binding to non-cognate binding sites. 
The latter can impose crosstalk between a cognate and a non-cognate TF, leading to 
miss-regulation of genes and therefore to expression of genes at the wrong time or 
place, or in the wrong amounts. This can occur at much lower TF concentrations than 
the random non-specific binding across the genome, as the binding difference 
between these non-cognate sequences and the cognate sequence is likely not as high. 
Hence, one constraint will be acting on the total number of DNA binding proteins in 
the cell, but another one will be affecting individual TFs, depending on their proclivity 
to bind DNA and the presence of related binding sites. Similarly, the acquisition of 
horizontally transferred genes, plasmids or prophages can prove to be toxic to the cell 
due to non-specific binding and interference with the cellular program216. Therefore, 
cells have to balance the possible benefit of obtaining a useful gene versus the danger 
of obtaining a toxic protein and allow or limit horizontal gene transfer accordingly.  

 

We found that the fitness cost for the cell also depends on environmental conditions, 
as non-specific binding was increasingly detrimental at slower growth. This adds 
another layer of complexity to the deduction of evolutionary constraints on regulatory 
evolution as they might differ not only due to specific environmental effects on the 
regulatory network under investigation but also due to environmental effects on 
global cellular parameters and growth. The slow-growth-scenario seemed to be most 
stringent in our study, yet seems to be a realistic condition, as most bacteria tend to 
grow at a doubling time from 1-100h (with a median of ~7h) in nature252. Moreover, 
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poor environments or stress conditions often induce the uptake of foreign DNA253, 
leading to cells with slow growth having to cope with foreign TFs.  The evolutionary 
constraints that arise in nature might therefore be quite different from the ones that 
arise under fast growth in usual lab conditions.  

 

Although non-specific binding might increase the potential of TFs to acquire new 
binding sites, overall non-specific binding seems to put strong constraints on the 
regulatory architectures of the cell by limiting i) the number of TFs, ii) horizontal 
transfer of genes, iii) binding energies, iv) target search by TFs, and iv) DNA 
conformation. Consequently, more promiscuous binders are more likely to disrupt 
cellular programs and constrain adaptation. This is in direct opposition to what we 
found at specific binding sites, where TF robustness and evolvability of promiscuous 
binders leads to preservation or gain of promoter function. Hence, TF robustness and 
evolvability seem to experience a trade-off between specific and non-specific sites.   

 

7.7 Summary 

As a central feature of living organisms, gene regulation has been the focus of research 
for many decades. Even though we have learned much about the molecular 
mechanisms of TF regulation at promoters, the link between those mechanisms and 
other features that constrain gene regulatory design, like regulatory evolution and TF 
dynamics, have remained mysterious.  

The search for general design principles in regulatory architecture has focused more 
on the occurrence of specific advantageous patterns, than the molecular rules that 
delimit the possible parameter space24. Nevertheless, the biophysical characteristics 
of TF binding can provide us with fundamental rules and trade-offs that are acting on 
the architecture of regulatory networks. Properties that might seem beneficial if 
considering a specific regulatory function might be in trade-off with spurious functions 
arising from the cellular background. Furthermore, the surprising complexity of signal 
integration at many promoters makes it necessary to consider not only TF binding, but 
also the biophysics of TF-TF interactions to understand the resulting regulatory 
dynamics.  

Robustness and evolvability have been employed  previously as tools to determine 
global design rules, yet their implications depend on the regulatory level that is 
studied and the specific regulatory feature it is applied to. For example, higher 
robustness and evolvability of a TF facilitate network evolution, but can pose a 
considerable cost on cellular growth. Nevertheless, those properties can be helpful in 
determining general constraints on cellular networks by finding these trade-offs and 
the network features governing fitness.    

Overall, considering the most fundamental level of gene regulation, namely the 
molecular interactions of individual regulatory components, can provide a thorough 
understanding that can then be employed in studies of higher-level functions, such as 
resistance evolution and complex cellular group behaviors.  
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