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SUMMARY

Patterning in plants relies on oriented cell divisions
and acquisition of specific cell identities. Plants
regularly endure wounds caused by abiotic or biotic
environmental stimuli and have developed extraordi-
nary abilities to restore their tissues after injuries.
Here, we provide insight into a mechanism of restor-
ative patterning that repairs tissues after wounding.
Laser-assisted elimination of different cells in
Arabidopsis root combinedwith live-imaging tracking
during vertical growthallowedanalysisof the regener-
ation processes in vivo. Specifically, the cells adjacent
to the inner side of the injury re-activated their stem
cell transcriptional programs. They accelerated their
progression through cell cycle, coordinately changed
thecell divisionorientation, andultimatelyacquiredde
novo the correct cell fates to replace missing cells.
These observations highlight existence of unknown
intercellular positional signaling and demonstrate the
capability of specified cells to re-acquire stem cell
programs as a crucial part of the plant-specificmech-
anism of wound healing.

INTRODUCTION

Multicellular animals and plants emerged well after the split of

these two lineages during evolution, and thus, these major eu-

karyotic groups utilize largely independent mechanisms to deal

with challenges of multicellularity, such as cell-to-cell communi-

cation, development coordination, and tissue patterning. Unlike

in animals, plant cells are encapsulated within rigid cell walls and

thus cannot use cell migration during tissue patterning or wound

healing. Therefore, plants rely mainly on strictly controlled orien-

tation of cell divisions followed by the acquisition of specific cell

fates (Rasmussen and Bellinger, 2018). The core cell-cycle ma-

chinery is conserved between animals and plants (Harashima

et al., 2013); however, signals and mechanisms regulating the

transition of cell-cycle stages and control of the cell division

plane during patterning are presumably plant specific. Multiple

molecular components and mechanisms of cell-fate specifica-
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tion have been elucidated in plants (Benfey et al., 1993; De Rybel

et al., 2013), but little is known about how these individual mech-

anisms are activated and integrated during the concerted tissue-

patterning processes.

Plants as sessile organisms have to regularly endure

wounds caused by abiotic or biotic environmental factors;

therefore, they evolved a remarkable ability to regenerate

wounded tissues—e.g., reconnect interrupted vascular

strands (Mazur et al., 2016) or regenerate whole complex

structures, such as the root apical meristem (Efroni et al.,

2016; Sena et al., 2009). It has been known for almost a cen-

tury that harmed plant tissues activate cell division in adjacent

cells and switch division planes to fill the wound with new

daughter cells (Hartsema, 1926; Hush et al., 1990; Sinnott

and Bloch, 1941). Later, when Arabidopsis root has been es-

tablished as essential model for elucidation of patterning

mechanisms in plants (Benfey et al., 1993; Dolan et al.,

1993), more specific, microsurgical, laser-assisted cell elimi-

nations allowed the observation of cell re-specification to

regenerate lost cells—in particular, in the area of the root

stem cell niche (van den Berg et al., 1995; Xu et al., 2006).

Similar approaches also demonstrated that constant posi-

tional signaling is essential for maintaining the root meristem

pattern during continuous development (Berger et al., 1998;

Kidner et al., 2000). However, the phenomenon of wound heal-

ing and restoration of correct tissue pattern after injury has not

been addressed specifically in Arabidopsis roots. In particular,

how the tissue re-acquires a correct pattern of cell types and

what positional signaling mechanisms contribute to this

remain unknown.

Here, we established a method of well-defined wounding by

targeted cell elimination of individual cells or cell groups in Ara-

bidopsis root meristem and combined this with extended live im-

aging at the vertical-stage microscope. This allowed analysis of

the phenomenon of restorative patterning during wound healing.

Restorative patterning involves activation of respective stem cell

pathways and manifests in an immediate induction of cell divi-

sion, controlled re-orientation of division planes, and acquisition

of specific, correct cell fates. These observations provide in-

sights into plant-specific wound healing and reveal previously

unappreciated aspects of mechanisms underlying cell-division

orientation, cell-fate acquisition, and positional signaling, as

well as coordination of these processes during tissue patterning.
9, May 2, 2019 ª 2019 The Authors. Published by Elsevier Inc. 957
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Figure 1. Ablation Triggers Restorative Cell Divisions in Inner Adjacent Cells

(A) Cell types in the Arabidopsis root meristem. Inset shows magnification of stem cell niche.

(B) 3D reconstruction of a single ablated endodermal cell in SCR::SCR-YFP root just after ablation. Propidium iodide (PI) stains cell walls and is not permeant to

living cells and therefore was used to identify the ablated cell and intact neighboring cells. Shortly after ablation, PI becomes oversaturated and thus can partly

overlap also with neighboring non-ablated cells. Later, PI staining is more restricted to the collapsed eliminated cell (see Figures S1C and S1D).

(C) Anticlinal division of cells in root meristem (gray arrow).

(D–G) Periclinal divisions of the inner adjacent cells (green arrows) after ablation. Ablation in LRC (D), epidermis (E), cortex (F), and endodermis (G) is shown. Total

number of ablations: n = 30–60 per cell type.

LRC, lateral root cap; Ep, epidermis; Co, cortex; En, endodermis; P, pericycle. Red asterisks: sites of ablation.

See also Figure S1 and S7, Table S1, and Videos S1 and S2.
RESULTS

Restorative Cell Divisions Induced by Local Wounding
The root apex of Arabidopsis thaliana proved to be a great model

for studying tissue patterning in plants. A small group of cells

with stem cell-like properties surrounds the so-called quiescent

center (QC) and generates all different cell types that form the

root (Berger et al., 1998; De Rybel et al., 2016; Kidner et al.,

2000; Kumpf and Nowack, 2015; Scheres et al., 2002). Once

the different cell types are established by the stereotypic, asym-

metric cell divisions, the daughter cells undergo only prolifera-

tive, anticlinal (perpendicular to the root axis) divisions that prop-

agate the cell files on their way out of the meristem (Figures 1A

and 1C).

We adapted the targeted UV-laser ablation technique (Mar-

havý et al., 2016; Xu et al., 2006) to eliminate specifically individ-

ual cells or cell groups in different cell layers of the root tip. 3D

reconstruction of the area around the ablated cell confirmed an
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ablation of single cells with intact surrounding tissues (Figure 1B;

Video S1).

The cell ablation led invariantly to a switch from anticlinal to

periclinal (parallel to the root axis) division typically of the inner

(very rarely also outer) adjacent cell, leading to eventual replace-

ment of the eliminated cell (Figures 1D–1G; Table S1; Video S2).

This capacity to initiate cell division was observed in all major cell

types of the root meristem no matter in which layer the ablation

was performed: ablation of a young lateral root cap (LRC) cell

induced periclinal divisions in adjacent epidermis cells (Fig-

ure 1D), ablation of epidermis induced division of adjacent cortex

(Figure 1E), ablation of a cortex cell led to the endodermis divi-

sion (Figures 1F, S1A, and S1B; Video S2), ablation of endo-

dermis induced pericycle division (Figure 1G). Periclinal cell divi-

sions also occurred when larger injuries of two or three

neighboring cells of different cell layers were ablated, always

leading to the periclinal division of the first intact cell at the inner

side of the eliminated cells (Figures S1C–S1F). In this case, the



inner adjacent cells continued to divide periclinally until all dead

cells were replaced (Figure S1G). To eliminate cells by a different

method, we used treatment with hydroxyurea (HU), an inhibitor

of ribonucleotide reductase, which inhibits DNA replication and

induces cell death (Cools et al., 2011). We observed random

cell deaths in cortex and endodermis, and all these events led

to periclinal divisions of the inner adjacent cells (Figures S1K–

S1M), as seen in the case of laser-assisted cell elimination. Natu-

rally occurring wounds occasionally observed even in laboratory

growth conditions induced similar periclinal divisions in inner

adjacent cells (Figure S1N).

Moreover, when we ablated cells in the roots of dicots

Capsella rubella, Nicotiana benthamiana, and the monocot

Oryza sativa, we observed the same phenomenon of wound-

induced activation of periclinal cell division (Figures S1H–S1J).

Genetics and marker lines analysis (Figures S7A–S7G) revealed

that the injury-induced division does not require known regula-

tors of periclinal cell division (LHW, TMO5, LOG4, TCS), mecha-

nosensing (FERONIA, THESEUS, MCA1 and MCA2, MSLs), or

formation of the preprophase band (trm6,7,8), suggesting exis-

tence of unknown signalingmechanism conserved across higher

plants.

These observations show that controlled, localized injuries in

the root meristem of various species invariantly induce periclinal

cell divisions in the inner adjacent cells. Notably, in the undis-

turbed situation, cells in these root regions undergo only anti-

clinal divisions, but the wound does not, typically, heal by this

type of simple proliferation of the injured cell file. Instead, it

requires signaling to the different cell files adjacent to the inner

side of the wound, possible activation of their division, and

the re-orientation of the division plane. As these processes

ultimately lead to the regeneration of the wounded tissue, we

termed this previously unappreciated phenomenon ‘‘the restor-

ative cell division.’’

Competence to Initiate Restorative Cell Divisions
Our observations suggested that various root cell types have a

capacity to initiate periclinal cell divisions in response to wound-

ing also well outside of the stem cell niche, to where this type of

divisions is normally confined. Thus, we tested systematically

the competence of different cell types depending on their dis-

tance from the stem cell niche. We eliminated cells at different

positions in the root apex (Figure 2A) andmeasured their position

within the root apex by different means at 1 h after cell ablation

along with the ability of inducing restorative cell divisions after

16 h (Figures 2B and S2A). We found that the capacity of cells

to induce restorative divisions gradually decreases at different

rates in various cell types with the distance from the QC (Fig-

ure 2B). It appears that epidermis loses the responsiveness to

cell ablation first (around 150 mm), followed by cortex (190 mm)

and endodermis (220 mm), while pericycle maintains its compe-

tence to initiate restorative divisions—consistent with its

behavior as a ‘‘dormant meristem’’ throughout the whole root

development (Marhavý et al., 2016).

This demonstrates that epidermis, cortex, endodermis, and

pericycle cells all are competent to initiate restorative cell divi-

sions well outside of the stem cell niche with their competence

decreasing at different rates with the distance from it.
PLETHORA Regulators Mediate Competence for
Restorative Cell Divisions
To get further insight into the mechanism underlying decreasing

competence to initiate restorative cell divisions in more differen-

tiated parts of the root meristem, we analyzed roots with short-

ened meristems. First, we analyzed cre1 ahk2 ahk3 triple mutant

of the cytokinin receptor genes and plants treated with cytokinin

and brassinolide, which all displayed reduced meristematic ac-

tivity (Higuchi et al., 2004; Marhavý et al., 2011; Zhu et al.,

2013). While the ability to induce restorative cell division in

epidermis and cortex was significantly reduced, division rate in

endodermis was only slightly decreased (Figures S2B–S2D).

Thus, as expected, the regenerative competence in some cell

types depends highly on meristematic activity.

Next, we analyzed the potential involvement of members of

the PLETHORA (PLT) regulators of stem cell activities, which

form an expression gradient decreasing with distance from the

QC (Galinha et al., 2007; Figures S2F and S2G), thus correlating

with the decrease of regenerative competence. Moreover,

ectopic expression of PLT1 and PLT2 initiates a variety of pheno-

types, including increased meristem size and ectopic root for-

mation throughout the plant (Aida et al., 2004; Galinha et al.,

2007). Thus, we analyzed regeneration competence 12 h

after ablation in the transition and elongation zones of the

35S::PLT2-GR line. Ectopic PLT2 expression strongly rescued

the capacity of cortex cells to induce restorative divisions after

epidermis ablation even when they already left the division

zone of the root tip (Figure 2C); also, in some cases, ablation

of LRC cells at the end of the division zone induced periclinal

or oblique divisions in epidermis (Figure S2E). Similarly, the cells

of endodermis slightly regained the competence to divide pericli-

nally following cortex ablations even outside of the division zone

(Figure 2C). Notably, induction of PLT2 expression as short as 1 h

prior to ablation was sufficient to increase the rate of restorative

divisions within (150–200 mm) and at the end of the division zone

(200–230 mm) and even allowed cells that already left the division

zone to induce restorative divisions (at 275–400 mm from 0% in

wild type [WT] to �70% in 35S::PLT-GR; Figure 2D).

In a reciprocal experiment, we analyzed plt1 and plt2mutants

and found that single mutants showed no reduction in periclinal

division rates in epidermis but possessed increased number of

periclinal divisions in cortex (plt1) and endodermis (plt2).

Notably, plt1plt2 double mutant is strongly defective in restor-

ative divisions in epidermis (Figures 2E and 2F).

Our results identified PLT transcription factors as being neces-

sary and sufficient components of the root cell competence to

initiate restorative division. Moreover, the regenerative compe-

tence depends on PLT expression levels and correlates with

the PLT expression gradient in the root.

Accelerated Progression through Cell Cycle during
Restorative Division
To analyze whether the wounding only changes the plane of cell

division fromanticlinal to periclinal or, in addition, also accelerates

the entry into and/or progression of the cell cycle, we performed a

time series counting the divisions associated with the ablation

events using the vertical-stage microscope with automatic

tracking (von Wangenheim et al., 2017). Roots without ablations
Cell 177, 957–969, May 2, 2019 959



Figure 2. Decreasing Competence of Restor-

ative Divisions Correlates with PLT Activity

(A) Tile scan of a root 24 h after ablation of

cortex and epidermis. While ablation of cortex

cells (red asterisk) induced periclinal cell di-

visions in endodermis (red arrows), ablation of

epidermis (green asterisk) did not induce peri-

clinal division in cortex, which lost the compe-

tence to divide. In contrast, ablation of epidermis

closer to the quiescent center induced the peri-

clinal cortex cell divisions. Marked ablated cells

moved from meristem into elongation zone dur-

ing growth.

(B) Number of periclinal divisions decreases with

distance from QC as measured in various cell types

after 16 h depending on distance from the QC at

the time of ablation (mm). Total number of ablations:

n = 15–50 for every 10 mm (70–250 mm).

(C) Number of periclinal divisions in cortex and

endodermis cells depending on the distance

from the QC at the time of ablation is increased

after PLT2 induction as measured in WT and

35S::PLT2-GR (treated with 5 mM DEX 1 h prior

ablation) 12 h after ablation. Roots with ectopic

oblique divisions were excluded from the quanti-

fications. Number of ablations per data point:

n = 3–26.

(D) Overexpression of PLT2 starting 1 h before

ablation triggered periclinal and oblique divisions in

inner adjacent cells. Cortex cells are already partly

elongated. Ablation was performed at 282 mm from

the QC.

(E) Number of periclinal divisions after ablation in

plt1, plt2 single, and plt1plt2 double mutants in

different cell layers at random distance from the QC

after 12 h. Data are represented as weighted mean

(bar) and individual experiments (dots, area indicates sample size). Asterisks correspond to p values from conditional logistic regression (CLR); plt1 (cortex):

0.000538, plt2 (endodermis): 0.0231, plt1plt2 (epidermis): 9.99E�07.

(F) Periclinal division was not induced in epidermis in the plt1plt2 double mutant 12 h after ablation.

Red asterisks: sites of ablation. Roots were stained with PI.

See also Figure S2 and Table S1.
underwent anticlinal divisions in a spatially and temporarily regular

manner, which can be observed as a nearly linear increase of cu-

mulative divisions over time. Fitted sigmoidal curves showed

nearly flat derivatives, showing that there is equal probability of

cell divisions during the observed time frame in all cell types (Fig-

ure3A). Incontrast,wounding-inducedpericlinaldivisionsshowed

different but very uniform characteristics within different roots

(Video S3). After a lag time of �5–7 h, the cumulative periclinal

division events from �40 ablation sites increased rapidly and

reached a maximum within 10 additional h. The derivatives of

the fitted sigmoidal curves showed that ablation highly increased

the probability of divisions (Figure 3B). Additionally, the speed of

induction of restorative cell divisions varied markedly between

cell types. Whereas epidermis cells induced divisions almost uni-

formly, endodermis division events spread over a slightly broader

timescale. The ability to specifically inducedivisions in cortex cells

varied from a rate comparable to endodermis (Figure S3A) to situ-

ations without wounding (Figure S3B) but wasmostly somewhere

between these two extrema (Figure 3B). In most cases for cortex

(60%) and epidermis (70%), exponential curves showed a better

fit, while endodermis curves in majority (70%) fitted better to a
960 Cell 177, 957–969, May 2, 2019
sigmoidal behavior. Pericycle cells are not efficiently trackable

for prolonged periods, but endpoint (e.g., 12 h) measurements af-

ter ablation revealed induction times similar to the endodermis

(Figure S3C). Despite these differences, the minimal observed in-

duction time of �5 h is consistent within all cell types.

Next, we observed progression of the cell cycle after ablation

and analyzed which transition steps are required for the initiation

of restorative cell divisions. We tested the expression of S-, G2/

M-, and cytokinesis-specific markers, which also showed dy-

namic changes in proliferative cell divisions occurring in a

seemingly random diverse spatial and temporal distribution

within the root meristem (Dewitte and Murray, 2003). The evolu-

tionary conserved inhibitor of the G1-to-S-phase transition,

RETINOBLASTOMA-RELATED1 (RBR1) (Ebel et al., 2004), in

the RBR1::RBR1-GFP marker line showed occasionally specific

downregulation in the inner neighbor cells to the wound before

restorative divisions were induced (Figure S3J). However, in

long-term imaging experiments, we could not observe any spe-

cific expression changes in most cells that perform restorative

divisions. So we investigated a synthetic S-phase marker,

HTR2::CDT1a-GFP, which gets promptly activated when a cell



Figure 3. Accelerated Activation of Cell-Cycle Progression

(A and B) Cumulative divisions in roots monitored by vertical-stage microscopy (observed roots; n = 10 for each experiment). Without ablations, all cell types

divided slowly at the same rate, as seen in the quantification of anticlinal divisions in roots with virtual ablations (n = 4 per root) (A), whereas division rates were

much faster and differed markedly between cell types after wounding, as seen in quantifications of periclinal divisions in roots with laser ablations (n = 3 per root)

(B). Thin lines show raw data, and thick lines show fitted curves calculated by least-square estimates (sigmoidal curves: y = a*ê(�b*ê(�c*x))). Insets show de-

rivatives of fitted curves.

(C–F) Expression pattern of cell-cycle regulators during restorative divisions. Inner adjacent cells of ablated cells were already in S phase during ablation as

indicated by strong HTR2::CDT1a-GFP signal (left) but still performed periclinal cell division (right) (C). Mean CDT1a-GFP fluorescence intensity at 0 h after

ablation relative to the first time point after ablation: 9.3 ± 1.6 (n = 8 cells). G2/M transition marker pCYCB1;1::GFP is specifically upregulated before restorative

divisions (D), while CYCD2;1::CYCD2;1-GFP leaves the nucleus shortly before division (E), and cytokinesis marker KN::GFP-KN is upregulated at the newly

formed cell plate (F). Progression of cell-cycle phases are shown in blue arrow with green stripes indicating expression patterns as observed or previously re-

ported (for CDT1a-GFP, see Yin et al., 2014).

(G–I) Quantification of fluorescent signals ofmarker gene expressions of pCYCB1;1::GFP (G),CYCD2;1::CYCD2;1-GFP (H), andKN::GFP-KN (I) during restorative

divisions after ablation. Data for pCYCB1;1::GFP and CYCD2;1::CYCD2;1-GFP were collected by long-term vertical-stage imaging over 24 h and are presented

asmean fluorescence intensity relative to time point of finished division of subsequently followed cells (n = 16 and n = 10, respectively) ±SEM and is supported by

(legend continued on next page)
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enters the S phase and gets slowly degraded until the cytoki-

nesis (Yin et al., 2014). Most cells in the root meristem showed

strong expression in this marker, meaning they were currently

in S phase. When we ablated cells adjacent to such cells, we

observed that S-phase cells were able to trigger restorative divi-

sions, including the switch to periclinal orientation (Figure 3C),

suggesting that aG1-to-S-phase transition (e.g., by downregula-

tion of RBR1) is not crucial for restorative divisions.

A transcriptional activator of G1-/S-phase transition genes,

ETHYLEN RESPONSE FACTOR 115 (in the ERF115::GFP-NLS

line) was upregulated around 4–5 h after ablation, prior to restor-

ative cell divisions as described previously (Heyman et al., 2016;

Heyman et al., 2013). Nonetheless, the ERF115 upregulation is

specific to endodermal and stele cells next to wound and was

not observed in epidermis and cortex cells (Figures S3D–S3G).

Accordingly, the ERF115-SRDX dominant-negative line showed

a significantly reduced number of restorative cell divisions in

endodermis and a lower number of divisions in pericycle (Fig-

ure S3H). This suggests that, although not required, the transition

from G1 to S phase is part of the restorative division initiation and

increases the amount of restorative cell divisions that occur within

12 h. The binding partner of ERF115, PHYTOCHROMEA SIGNAL

TRANSDUCTION1 (PAT1; Heyman et al., 2016), and one of the

downstream targets, WOUND INDUCED DEDIFFERENTIATION1

(WIND1, Iwase et al., 2011), did not show any specific expression

changes during restorative divisions (Figures S3K and S3L). Addi-

tionally,wind1mutant and overexpression lines did not show any

defects in periclinal division after ablation (Figure S3I).

Next, we observed the progression through the G2 phase and

its importance for restorative divisions. Using long-term imaging

during restorative divisions, we observed upregulation of the G2/

M marker pCYCB1;1::GFP (Ubeda-Tomás et al., 2009) and

downregulation of CYCD2;1::CYCD2;1-GFP (Sanz et al., 2011)

as it normally occurs during progression through G2 phase (Fig-

ures 3D–3E and 3G–3H). Additionally, we observed the cytoki-

nesis onset and progression as marked by the cytokinesis-spe-

cific protein KNOLLE in KN::GFP-KN (Reichardt et al., 2007) at

the newly formed cell plate during restorative divisions (Figures

3F and 3I). This demonstrates that enhanced progression

through the cell cycle requires the differential expression of ca-

nonical G2- and M-phase genes.

Thus, the quantifications of cumulative cell divisions revealed

that wounding-induced restorative divisions occur significantly

faster than regular proliferative divisions. Notably, whereas for

the normal, proliferative cell division rates, there are no visible

differences between the cell types, the restorative cell divisions

show strongly divergent rates of divisions in different cell types.

Whereas these quantifications cannot discriminate between

accelerated entry and accelerated progression of the cell cycle,

the molecular markers further confirmed the accelerated cell cy-

cle progression. Additionally, it showed that coordinated G1-/S-

phase transition is not required for restorative cell division, while

G2-/M-phase transitions are tightly controlled after wounding.
three qualitative experiments. KN::GFP-KN is represented as mean (bar) and ind

GFP signals.

Red asterisks: sites of ablation. Roots were stained with PI.

See also Figure S3, Table S1, and Video S3.
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Restorative Cell Divisions Generate Daughter Cells with
Distinct, Correct Fates
Next, we addressed the cell fate of the daughter cells generated

by restorative cell divisions. In the root, the stereotypic divisions

of the stem cells generate all cell types, which, subsequently af-

ter leaving the stem cell niche, have their fixed identities propa-

gated by the proliferative anticlinal cell divisions (van den Berg

et al., 1995; Berger et al., 1998; Dolan et al., 1993; Kidner

et al., 2000).

To assess possible cell-fate changes, we used specificmarker

lines for different cell types (Figure 4A) and followed their expres-

sion during and after restorative cell divisions. After ablation

of LRC cells in the LRC-specific marker line SMB::SMB-GFP

(Willemsen et al., 2008), we measured GFP fluorescence in

both daughter cells generated by a restorative division of the

epidermis. The SOMBRERO (SMB)-GFP expression in outer

daughter cells, facing the ablation site, as compared to the inner

cell, became significantly higher 4 h after division (Figures 4B and

4G). This indicates that the outer epidermis daughter cell gener-

ated by the restorative division rapidly acquired the LRC fate re-

placing the eliminated cell.

Next, we observed dividing cortex cells after ablation of

epidermal cells in the roots of the cortex and endodermis-spe-

cific marker line J0571 (Haseloff, 1999; Mylona et al., 2002).

The difference between inner and outer daughter cells ap-

peared about 24 h after ablation, and the GFP signal almost

disappeared from the outer cells after 32 h, indicating that

these cells were losing cortex cell fate and acquired their

new fate (Figures 4C and 4H). Additionally, at about 24 h after

epidermis ablation, outer cells of periclinally divided cortex

cells started to express the epidermal marker WER::GFP

(Lee and Schiefelbein, 1999), confirming that these cells

were in the process of acquiring the cell fate of the eliminated

epidermal cell (Figures 4D and 4H).

After ablation of cortex cells, we monitored the endodermis-

specific marker SCR::SCR-YFP and the cortex-specific marker

Co2::HYFP (Heidstra et al., 2004) to analyze the cell-fate

changes after restorative divisions. Also, in this case, the outer

daughter cell gradually lost its endodermal fate, as evidenced

by decreasing SCARECROW (SCR)-YFP expression (Figures 4I

and S4A), and acquired the cortex fate (increasing Co2::HYFP

expression) at about 16–24 h after ablation (Figures 4E and 4I).

We also followed cell-fate changes after elimination of an

endodermal cell, which is replaced by the restorative division

of the adjacent pericycle cell using endodermal SCR::SCR-

YFP and SHR::SHR-GFP that is more uniformly distributed in

stele, including pericycle cells, but is restricted to the nucleus

specifically in endodermis (Nakajima et al., 2001). Analogically

to other cell types, we observed that the newly formed outer

daughter cell gradually changed its fate to become endodermis

as manifested by the activation of SCR-YFP expression (Figures

4F, 4J, and S4B) and nuclear appearance of SHORTROOT

(SHR)-GFP (Figure S4C).
ividual experiments (dots, area indicates sample size) of qualitative analysis of



Figure 4. Restorative Cell Divisions Generate Daughter Cells with Distinct Cell Fates

(A) Expression domains of marker lines in Arabidopsis root meristem.

(B) Ablation of LRC cells. Expression of LRC marker SMB::SMB-GFP is restored in newly formed LRC cells. Total number of ablations: n = 5 for all time points.

(legend continued on next page)
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In rare cases (well below 10%of events), cells at the outer side

of thewoundwould divide periclinally in addition to cells at the in-

ner side.Notably, in suchcases,wedid not detect any changes in

cell fate of the daughter cells using SCR::SCR-YFP, WER::GFP

and E4722 marker lines (Figures S4D–S4I), contrasting with

consistent cell fate re-specifications at the inner-wound side.

This suggests that an inside-to-outside intercellular signaling is

required for correct re-specification during wound regeneration.

Taken together, restorative periclinal divisions induced by

wounding generate daughter cells that replace dead or damaged

cells by acquiring a new, ‘‘correct’’ cell fate. Thus, restorative cell

division represents a special case of formative division. This ne-

cessitates the existence of multiple intercellular signaling mech-

anisms, constantly providing positional information to the cells,

which acts also outside the stem cell niche.

Re-activation of SHR/SCR-CYCD6 Stem Cell Program
Replaces Eliminated Cortex
Howdo thecells adjacent to thewoundget activatedandgenerate

cellswithnew,correct identitiesduringwoundhealing?Theasym-

metric cell division generating different cell types occurs typically

only in the stem cell niche. For example, cortex and endodermis

cell files originate from the same stemcell, the cortex-endodermis

initial (CEI). TheCEI continuously divides anticlinally to renew itself

and produce a daughter cell, which further divides periclinally to

generate cortex and endodermis (De Rybel et al., 2016; Helariutta

et al., 2000; Kumpf and Nowack, 2015; Scheres et al., 2002). This

process is governed by the transcription factors SHR and SCR,

which activate the expression of CYCD6;1 and thus initiate a

switch in division plane orientation (Heidstra et al., 2004; Sozzani

et al., 2010; Figure 5A). Hence, scr and shr mutants lacking the

initial formativedivisioncontainonlya single layer ofground tissue,

while overexpressionof SHRorCYCD6;1 leads to the formation of

additional ground-tissue cell layers (Benfey et al., 1993; Sevilem

et al., 2015). Despite SHR and SCR being expressed throughout

the whole-root meristem, activation of CYCD6;1 and formative

cell division within young seedlings occurs only in the stem cell

niche (Cruz-Ramı́rez et al., 2012; Heidstra et al., 2004; Sozzani

et al., 2010; Yu et al., 2017).

We have examined involvement of the SHR/SCR-CYCD6;1

module in the restorative division. In the shr and scr mutants,

the restorative cell divisions specifically in the single ground tis-

sue layer were significantly defective, whereas the division of

other cell types occurred normally (Figures 5B and 5C). Notably,

CYCD6;1::GFP and CYCD6;1::CYCD6;1-GFP expression, typi-

cally detectable only in the stem cells, was upregulated specif-

ically in endodermal cells next to eliminated cortex cells and

started between 3 and 7 h after wounding well before the onset
(C and D) Ablation of epidermal cells. Expression of cortex and endodermis ma

cortex cells (C), while epidermis marker WER::GFP is upregulated (D). Numbers

(E) Ablation of cortex. Expression of cortex marker Co2::HYFP is upregulated in o

marker SCR::SCR-YFP is downregulated (see Figure S4A). Co2::HYFP; n = 43–7

(F) Ablation of endodermis. Expression of SCR::SCR-YFP is upregulated in outer

(G–J) Quantification of fluorescent signals of marker gene expressions in pericli

daughter cells in periclinally divided epidermis (G) and average fluorescent signa

daughters were measured if the inner adjacent cells divided multiple times (as se

Red asterisks: sites of ablation. Roots were stained with PI.

See also Figure S4 and Table S1.
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of the restorative division (Figures 5D and S5A; Video S4). On the

other hand, SHR-GFP and SCR-YFP signal intensity decreased

before and during mitosis (Figures 5E, S5B, and S5C). A similar

downregulation of SCR/SHR and activation of CYCD6;1 expres-

sion can be observed outside of the stem cell niche during initi-

ation of an additional cortex layer, so called middle cortex (Ben-

fey et al., 1993; Paquette and Benfey, 2005). Middle-cortex

formation shares some similarities with restorative divisions of

endodermis, such as switch of cell division plane to periclinal.

However, it occurs only in older roots and is under a strong con-

trol of the phytohormone gibberellic acid (GA) (Cui and Benfey,

2009; Gong et al., 2016; Paquette and Benfey, 2005). Notably,

neither application of GA nor GA biosynthesis inhibitor paclobu-

trazol (PAC) had an influence on the competence of endodermis

cells to undergo restorative divisions (Figures S5D–S5G),

implying that restorative division and middle-cortex formation

while both depending on SHR/SCR-CYCD6;1 signaling use at

least partly divergent mechanisms.

Our observations show that cortex elimination by wounding

activates the endodermis/cortex SHR/SCR-CYCD6;1 stem cell

program in the underlying endodermis cell, enabling its restor-

ative division and ultimately healing the wound by generating

daughter cells with the correct fate.

Re-activation of FEZ/SMB Stem Cell Program Replaces
Eliminated Epidermis
Besides CEIs, the stem cell niche consists of other initials that

divide asymmetrically to form distinct cell types, such as the

LRC/epidermis initials (LEIs).

Their correct division pattern is regulated by two transcription

factors, FEZ and SMB (Fisher and Sozzani, 2016; Willemsen

et al., 2008). FEZ induces the asymmetric division of the initial,

while SMB inhibits further divisions of already specified LRC

cells. fez mutants lack additional stem cell divisions and show

decreased number of LRC layers, while stem cells in smbmutant

undergo more periclinal divisions and generate additional LRC

layers (Fisher and Sozzani, 2016; Willemsen et al., 2008). The

concomitant expression of both proteins is specific to LRC/

epidermis initials in the stem cell niche and very young LRC cells,

where they interact with each other in a negative feedback loop,

and their expression is never observed in already specified

epidermis cells (Figure 6A).

We observed a specific upregulation of both FEZ::FEZ-GFP

and SMB::SMB-GFP in epidermis cells adjacent to wounded

LRC cells (Figures 6B, 6C, S6A, and S6B). The upregulation

started 4–6 h after LRC elimination and was always followed

by a periclinal division. While the FEZ expression dropped

shortly after division, SMB was asymmetrically upregulated in
rker J0571 is downregulated in the outer daughter cells of periclinally divided

of ablations per time point: n = 19–77 (J0571), n = 16–66 (WER::GFP).

uter daughter cells of periclinally divided endodermis cells, while endodermis

9 ablations per time point.

cells of periclinally divided pericycle cells. n = 13–23 ablations per time point.

nally divided cells after ablation. Relative signal intensity between outer/inner

l in cortex (H), endodermis (I), and pericycle (J) at different time points. Outer

en in D). Data are represented as mean ± SEM.



Figure 5. Re-activation of SHR/SCR-CYCD6;1 Module during Restoration of Cortex

(A) SHR/SCR-CYCD6;1 module in ground tissue development (Fisher and Sozzani, 2016; Sozzani et al., 2010).

(B and C) Ablation of epidermal cells (B, left) and ground tissue (B, right) in shr-1 mutant. Quantification of periclinal divisions in scr-3 and shr-1 (C). Data are

represented as weighted mean (bar) and individual experiments (dots, area indicates sample size); p values from CLR for scr-3: 0.00234; shr-1: 8.61E�9.

M, ground tissue layer formed in shr mutants.

(D and E) Expression of CYCD6;1::GFP is upregulated in periclinally divided endodermis cell after ablation of cortex (for the translational fusion, see Figure S5A)

(D), while SHR::SHR-GFP is downregulated before periclinal division (see also Figure S5B) (E). Total number of ablations: n = 109 (CYCD6;1), n = 101 (SHR).

Red asterisks: sites of ablation. Roots were stained with PI.

See also Figure S5 and Table S1.
the newly forming LRC cells, and it vanished in the remaining

epidermis cells (see Figure 4B). In the fez mutant, we observed

a reduction in epidermis division rate and an increase in the rates

of cortex and endodermis (Figures 6D and 6E). In the smb

mutant, the rate of epidermis division following LRC elimination

dropped significantly, whereas other cell types showed normal

rate of restorative divisions (Figures 6D and 6F).

These observations revealed a specific upregulation and func-

tional requirement of both these stem cell regulators for the

restorative cell division of epidermis, leading to the replacement

of the eliminated LRC by daughter cells with a correct cell fate.

Thus, as in case of cortex replacement, the re-activation of the

specific stem cell program mediates also the replacement of

LRC during wound healing.

DISCUSSION

Plants evolved distinct mechanisms of patterning compared to

animals due to the constraints of immobile cells encapsulated

within cell walls. Owing to their sessile lifestyle, they also
frequently must endure injuries, but little is known of how the tis-

sue is restored after wounding.

In this work, we address the mechanisms underlying wound

healing and pattern restoration using targeted laser elimination

of different cell types coupled to prolonged live-cell imaging.

This approach allowed us to identify in multiple plant species

the process of restorative patterning, which encompasses

restorative cell divisions initiated after injury, and subsequent

de novo specification of the correct cell fates and ultimately

leads to replacement of the eliminated cells and correct regener-

ation of the injured tissues.

Restorative Cell Divisions Specifically and Correctly
Replace Eliminated Cells
We have shown here that root cells disrupted by injury are not

simply replaced by a proliferation of healthy cells from the

same cell file adjacent above and below to the wound. Instead,

inner adjacent cells become activated to replace the dead

neighbor by a process we call restorative patterning. This special

type of formative cell division involves several coordinated
Cell 177, 957–969, May 2, 2019 965



Figure 6. Re-activation of FEZ/SMB Module during Restoration of LRC

(A) FEZ/SMB module in LRC development (Fisher and Sozzani, 2016; Willemsen et al., 2008). Gray font shows reduced expression.

(B and C) Expression of FEZ::FEZ-GFP (B) and SMB::SMB-GFP (C) is upregulated in epidermal cells after ablation of LRC (see also Figures S6A and S6B).

(D) Quantification of periclinal divisions after ablation in fez and smb mutants in different layers show reduced numbers in mutant epidermis cells. Data are

represented as weighted mean (bar) and individual experiments (dots, area indicates sample size); p values from CLR: fez: 0.075 (epidermis), 0.50 (cortex), 0.077

(endodermis), smb: 0.013 (epidermis), 0.79 (cortex), 0.73 (endodermis).

(E and F) Cumulative divisions over time in fez (E) and smb (F) monitored by vertical stage microscopy. Observed ablations; n = 20 per genotype. Thin lines show

raw data and thick lines show fitted curves calculated by least-square estimates (y = a � b*ê(c*x)). See also Figure S6C.

Red asterisks: sites of ablation. Roots were stained with PI.

See also Figure S6.
processes: (1) recognition of the disrupted tissue by inner adja-

cent cells, (2) accelerated entry into and progress through the

cell cycle, (3) re-orientation of the cell division plane, and (4) cor-

rect cell-fate re-specification of the generated daughter cell,

which fills the wound. Furthermore, restorative divisions in inner

adjacent cells were observed independently of the nature of tis-

sue disruption: ablation of single or multiple cell layers, drug-

induced cell death, and natural collapse of multiple cells.

The underlying signaling cascades for restorative patterning

remain largely elusive; however, we provide some initial insights.

The known components of mechanosensing, periclinal cell divi-

sions, and preprophase band formations do not seem to be

involved (Figure S7). On the other hand, the graded expression

of PLT transcription regulators seems to provide some cell types

of the root with their regenerative competence.

Our observations also show that the main fraction of dividing

cells finish mitosis between 5 and 8 h, the minimum time frame

required for cell divisions in plants and other eukaryotes (Mickel-

son-Young et al., 2016). Therefore, signaling from the wound to

initiate cell-cycle transitions in inner adjacent cells must happen

very rapidly after tissue disruption and likely relies on non-

genomic factors, such asmechanical properties and local geom-

etry of disrupted tissues.
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The switch in the division plane is a crucial part of the restor-

ative patterning. Notably, it has been shown that mechanical

perturbations, including cell ablation, in the shoot apical meri-

stem can trigger division plane re-orientation of surrounding cells

(Louveaux et al., 2016), indicating that the process of restorative

patterning and the coordinated cell division plane switching,

here characterized in the root, may operate more globally

throughout the plant.

Re-activation of Stem Cell Mechanisms Mediates
Restorative Patterning
A remarkable feature of restorative patterning is that cells under-

going proliferative divisions with already clearly specified fates

start to perform formative divisions and undergo cell-fate re-

specification. This allows the generation of daughter cells with

correct cell fates to regenerate the disrupted tissue.

In the cell-type lineages, which share common ancestors in

the stem cell niche, such as LEIs and CEIs, we observed an acti-

vation of regulators usually specific only to the respective stem

cells. The upstream activators of these stem cell pathways await

identification, but the genetic analysis revealed that restorative

patterning is much less efficient albeit not completely prevented

in mutants defective in those stem cell regulators. Nonetheless,



restorative divisions where the ablated and the activated cell do

not have a common ancestor (especially cortex division after

epidermis ablation) still occur but with reduced efficiency in divi-

sion plane switching and wound healing. This implies some

redundancy in mechanisms for restorative patterning and indi-

cates the existence of a slower mechanism, which potentially

operates in all cell types regardless of their stem cell ancestry.

Therefore, the additional activation of the stem cell regulators,

which were shown to ectopically induce periclinal divisions by

overexpression (Sozzani et al., 2010; Willemsen et al., 2008; Yu

et al., 2017), provides increased efficiency and robustness to

this so-far unidentified, ‘‘default’’ cell-type-independent restor-

ative mechanism.

For the part of restorative patterning mechanism that involves

stem cell pathway activation, one can envision that even already

specified cells preserve a ‘‘memory’’ of their stem cell ancestry

and, upon receiving a wound, signal re-activate the stem cell

pathway. However, the basal, default restorative patterning im-

plies the existence of global positional signaling mechanism(s)

that determine which cell fate the daughter cells should adopt

following restorative division. While the cell fates of inner,

wound-adjacent cells of ablation is re-specified, the cell fate of

occasionally dividing outer adjacent cells is not affected, sug-

gesting that the positional signaling mediating the coordinated

cell-fate changes occurs in a radial direction from inside to

outside. Thus, the mechanism of wound healing by restorative

divisions starts always from the inner tissues regardless of the

wounding process.

As suggested previously (van den Berg et al., 1995; Berger

et al., 1998; Kidner et al., 2000), such positional signaling would

operate outside the stem cell niche and thus constantly allow

already-specified cells to adapt their cell fate according to their

position within the tissue architecture. In the case of endodermis

specification, this is likely the well-known SHR/SCR radial

signaling module that is expressed and operates throughout

the whole-root meristematic zone (Heidstra et al., 2004), but

for other cell types, any notion of this signaling remains elusive.

Conclusion
In summary, this work provides insights into the plant-specific

mechanism underlying wound healing. Focusing on the coordi-

nated response of already specified root cells to the local injury,

we uncovered a process of restorative patterning, which

correctly replaces eliminated cells and allows plant tissues to

heal despite the absence of cell migration, which is the basis

of wound healing in animals. The nature of the wound signal re-

mains enigmatic, but the downstream restorative patterning in-

volves re-activation of stem cell-specific signaling pathways

inducing asymmetric, formative divisions and cell-fate re-speci-

fications ultimately closing and healing the wound. In addition to

the regenerative competence requiring and correlating with the

gradually decreasing expression of PLT transcription factors,

our result also suggested the existence of undiscovered

signaling mechanisms constantly conveying positional informa-

tion throughout all tissues of the root meristem.

Besides these insights into the mechanism of wound healing,

our method of laser-assisted local tissue perturbation coupled

with long-term, high-resolution imaging during vertical growth
opens new possibilities to address the mechanism of intercel-

lular signaling and patterning in plant tissues. Thus, further

studies into restorative patterning using molecular genetics, sin-

gle-cell transcriptomics, andmechanical modeling, among other

approaches will reveal not only a broader understanding of the

mechanism of wound healing, but also how plants establish

and maintain their body patterns.
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�rezová, M., Petrá�sek, J., Friml, J., Kleine-Vehn, J., and Benková, E. (2011).
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Marhavý, P., Montesinos, J.C., Abuzeineh, A., Van Damme, D., Vermeer,
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Benková, E. (2016). Targeted cell elimination reveals an auxin-guided biphasic

mode of lateral root initiation. Genes Dev. 30, 471–483.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Propidium iodide Sigma-Aldrich Cat#P4864

Propidium iodide Thermo Scientific Cat#P3566

Hydroxyurea Sigma-Aldrich Cat#H8627

Gibberellic acid Sigma-Aldrich Cat#G7645

Paclobutrazol Sigma-Aldrich Cat#46046

Epibrassinolide Sigma-Aldrich Cat#E1641

Dexamethasone Sigma-Aldrich Cat#D1756

1-Naphthylacetic acid Sigma-Aldrich Cat#N0640

6-Benzylaminopurine Sigma-Aldrich Cat#B3408

Experimental Models: Organisms/Strains

Arabidopsis: WT Col-0 https://www.ncbi.nlm.nih.gov/

Taxonomy/Browser/wwwtax.cgi

NCBI:txid3702

Capsella rubella https://www.ncbi.nlm.nih.gov/

Taxonomy/Browser/wwwtax.cgi

NCBI:txid81985

Nicotiana benthamiana https://www.ncbi.nlm.nih.gov/

Taxonomy/Browser/wwwtax.cgi

NCBI:txid4100

Oryza sativa https://www.ncbi.nlm.nih.gov/

Taxonomy/Browser/wwwtax.cgi?

mode=Info&id=4530&lvl=3&lin=f&

keep=1&srchmode=1&unlock

NCBI:txid4530

Arabidopsis: cre1-12 ahk2-2 ahk3-3 Higuchi et al., 2004 Cross between cre1-12 (SALK_048970),

ahk2-2 and ahk3-3 (SALK_069269)

Arabidopsis: plt1-4, plt2-2 Aida et al., 2004 N/A

Arabidopsis: plt1plt2 Blilou et al., 2005 Cross between plt1-4 and plt2-2

Arabidopsis: wind1wind2wind3wind4 Iwase et al., 2011 Cross between wind1 (SALK_027272),

wind2 (SALK_139727), wind3 (SALK_091212)

and wind4 (SALK_099481)

Arabidopsis: shr-1 Benfey et al., 1993 NASC ID: N3997

Arabidopsis: scr-3 Fukaki et al., 1996 NASC ID: N3997

Arabidopsis: fez-1, smb-1 Willemsen et al., 2008 N/A

Arabidopsis: fer-4 Duan et al., 2010 GK-106A06

Arabidopsis: msl4msl5msl6msl9msl10 (mslD5) Haswell et al., 2008 Cross between msl4-1 (SALK_142497),

msl5-2 (SALK_127784),

msls6-1 (SALK_06711),

msl9-1 (SALK_114626),

msl10-1 (SALK_076254)

Arabidopsis: mca1, mca2 Yamanaka et al., 2010 mca1 (N/A)

mca2 (SALK_129208)

Arabidopsis: mca1mca2 Yamanaka et al., 2010 Cross between mca1 and mca2

Arabidopsis: the1-3 Hématy et al., 2007 FLAG_201_C06

Arabidopsis: trm6trm7trm8 Schaefer et al., 2017 Cross between trm6-1 (GK_048G03),

trm7-1 (SALK_074058), trm8-1

(SALK_150274)

Arabidopsis: 35S::PLT2-GR, PLT1::ECFP, PLT2::YFP Galinha et al., 2007 Transgenic Col-0

Arabidopsis: HTR2::CDT1-GFP Yin et al., 2014 Transgenic Col-0

Arabidopsis: CycB1;1::GFP Ubeda-Tomás et al., 2009 Transgenic Col-0

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Arabidopsis: KN::GFP-KN Reichardt et al., 2007 Transgenic Ler/Nd

Arabidopsis: SCR::SCR-YFP, Co2::HYFP Heidstra et al., 2004 Transgenic N/A

Arabidopsis: SHR::SHR-GFP Nakajima et al., 2001 Transgenic Col-0

Arabidopsis: J0571 Haseloff, 1999 NASC ID: N9094

Arabidopsis: WER::GFP Lee and Schiefelbein, 1999 NASC ID: N66493

Arabidopsis: RBR1::RBR1-GFP Magyar et al., 2012 Transgenic Col-0

Arabidopsis: ERF115::GFP-NLS, PAT1::GFP-NLS Heyman et al., 2016 Transgenic Col-0

Arabidopsis: ERF115-SRDX Heyman et al., 2013 Transgenic Col-0

Arabidopsis: CYCD2;1::CYCD2;1:GFP Sanz et al., 2011 Transgenic Col-0

Arabidopsis: WIND1::GFP, 35S::WIND1-SRDX,

35S::WIND1

Iwase et al., 2011 Transgenic Col-0

Arabidopsis: SMB::SMB-GFP, FEZ::FEZ-GFP Willemsen et al., 2008 Transgenic Col-0

Arabidopsis: CYCD6;1::GFP Sozzani et al., 2010 Transgenic Col-0

Arabidopsis: E4722 Gifford et al., 2008 NASC ID: N70265

Arabidopsis:MSL9::GFP-GUS/mslD5,

MSL10::GFP-GUS/mslD5

Haswell et al., 2008 Transgenic Col-0

Arabidopsis: FER::FER-GFP/fer-4 Li et al., 2015 Transgenic Col-0

Arabidopsis: TMO5::n3GFP, LHW::n3GFP De Rybel et al., 2013 Transgenic Col-0

Arabidopsis: LOG4::n3GFP De Rybel et al., 2014 Transgenic Col-0

Arabidopsis: TCSn::GFP Zürcher et al., 2013 NASC ID: N69180

Software and Algorithms

imageJ https://imagej.net/Welcome RRID:SCR_003070

Zeiss Zen 2011 https://www.zeiss.com/ N/A

R project http://www.r-project.org/ RRID:SCR_001905

R-studio https://www.rstudio.com/ RRID:SCR_000432

ggplot2 https://ggplot2.tidyverse.org/ RRID:SCR_014601

survival https://cran.r-project.org/web/

packages/survival/survival.pdf

N/A

minipack.lm https://www.rdocumentation.org/

packages/minpack.lm/versions/

1.2-1/topics/nlsLM

N/A

TipTracker https://elifesciences.org/articles/

26792/figures#SD2-data

N/A
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Ji�rı́ Friml

(jiri.friml@ist.ac.at).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Plant material
Arabidopsis thaliana (L.) Heynh (accession Columbia-0), Nicotiana benthamiana, Capsella rubella and Oryza sativa were used in this

work. The transgenic Arabidopsis thaliana lines and mutant lines were described previously: cre1-12 ahk2-2 ahk3-3 (Higuchi et al.,

2004), plt1-4 and plt2-2 (Aida et al., 2004), plt1plt2 (Blilou et al., 2005), 35S::PLT2-GR, PLT1::ECFP, PLT2::YFP (Galinha et al., 2007),

HTR2::CDT1a-GFP (Yin et al., 2014), pCYCB1;1::GFP line (Ubeda-Tomás et al., 2009), KN::GFP-KN (Reichardt et al., 2007),

SCR::SCR-YFP and Co2::HYFP (Heidstra et al., 2004), SHR::SHR-GFP (Nakajima et al., 2001), J0571 (Haseloff, 1999), WER::GFP

(Lee and Schiefelbein, 1999), shr-1 (Benfey et al., 1993), scr-3 (Fukaki et al., 1996), RBR1::RBR1-GFP and E2FA::E2FA-GFP

(Magyar et al., 2012), ERF115::GFP-NLS, PAT1::GFP-NLS (Heyman et al., 2016), ERF115-SRDX (Heyman et al., 2013),

CYCD2;1::CYCD2;1:GFP (Sanz et al., 2011), WIND1::GFP, wind1wind2wind3wind4, 35S::WIND1-SRDX, 35S::WIND1 (Iwase

et al., 2011) SMB::SMB-GFP, FEZ::FEZ-GFP, fez-1 and smb-1 (Willemsen et al., 2008), CYCD6;1::GFP (Sozzani et al., 2010),
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E4722 (Gifford et al., 2008), fer-4 (Duan et al., 2010),msl4msl5msl6msl9msl10 (mslD5),MSL9::GFP-GUS/mslD5, MSL10::GFP-GUS/

mslD5 (Haswell et al., 2008),mca1, mca2, mca1mca2 (Yamanaka et al., 2010), the1-3 (Hématy et al., 2007), FER::FER-GFP (Li et al.,

2015), trm6trm7trm8 (Schaefer et al., 2017), TMO5::n3GFP, LHW::n3GFP (De Rybel et al., 2013), LOG4::n3GFP (De Rybel et al., 2014)

TCSn::GFP (Zürcher et al., 2013).

Growth conditions
Seeds of A. thalianawere sown onMurashige and Skoog (1/2MS) medium (Duchefa) with 1% sucrose and 0.8% - 1% agar, stratified

for 2 d and grown for 4-7 d at 21�C in a 16 h light/8 h dark cycle.

METHOD DETAILS

Pharmacological treatments
Seedlings were transferred on solidMSmediumwith the indicated chemicals: propidium iodide (PI, 10 mM,Sigma-Aldrich or Thermo-

fisher), hydroxyurea (HU, final concentration 5 mM, Sigma-Aldrich) for 24 hours, gibberellic acid (GA, final concentration 10 mM,

Sigma-Aldrich) for 1 hour before ablation, paclobutrazol (PAC, final concentration 2 or 10 mM as indicated, Sigma-Aldrich) for 1

hour before ablation, epibrassinolide (EBL, Sigma Aldrich, final concentration 1 mM) for 1 hour before ablation, dexamethasone

(DEX, Sigma Aldrich, final concentration 5 mM) for 1 hour before ablation, 1-Naphthylacetic acid f (NAA, Sigma Aldrich, final concen-

tration 1 mM) or 1 hour before ablation, 6-Benzylaminopurine (BAP, Sigma Aldrich, final concentration 50 nM) for 1 hour before

ablation.

Sample preparation
Seedlings were placed on chambered cover glass (VWR, Kammerdeckgläser, Lab-Tek, Nunc - eine kammer, catalog number: 734-

2056) as described (Marhavý and Benková, 2015). Using the chamber, we cut out the block of solid MS media, added propidium

iodide on it, let it soak, transferred 10-15 seedlings on it and put them together to a chamber.

Confocal imaging and image processing
Confocal imaging was performed with Zeiss LSM700/800 inverted microscopes or Leica SP5 upright microscope. Pictures were

taken by 20x or 40x objectives. Fluorescence signals for GFP (excitation 488 nm, emission 507 nm), YFP (excitation 514 nm, emission

527 nm) and PI (excitation 536 nm, emission 617 nm) were detected. Samples were observed after 16 hours of ablation or at indicated

time points. Images were analyzed using the ImageJ (NIH; https://imagej.nih.gov/ij) and Zeiss Zen 2011 software. Where necessary,

images were processed using the ‘sharpen’ tool to produce clearer images of cellular organization.

Vertical stage microscopy and root tracking
Vertical stage microscopy for long-term tracking (usually 24 hours) of root meristems was performed as described (vonWangenheim

et al., 2017). Roots were imagedwith a vertically positioned LSM700 inverted confocal microscope and Zeiss Zen 2011 software with

20x objective and detection of PI, GFP (see above) and transmitted light. For observation of the whole root meristem, z stacks of

42 mm were set accordingly. For the root-tracking, the TipTracker MATLAB script was used with default settings except for interval

duration 720 s (12 min) and number of time points 120. The resulting images were concatenated and analyzed using ImageJ.

UV laser ablation setup
The UV laser ablation setup is based on the layout published in ref. (Colombelli et al., 2004) and also described in ref. (Marhavý et al.,

2016) that uses a passively Q-switched solid-state 355-nmUV-A laser (Powerchip, Teem Photonics) with a pulse energy of 15 mJ at a

repetition rate of 1 kHZ. With a pulse length of < 350 psec, a peak power of 40 kWwas obtained, of which typically < 5%was used to

cut tissue. The power was modulated with an acousto-optic modulator (AOM; Pegasus Optik, AA.MQl l0-43-UV). The laser beam

diameter matched the size of the back aperture of the objectives by means of a variable zoom beam expander (Sill Optics), enabling

diffraction-limited focusing while maintaining high transmission for objectives with magnifications in the 20 3 to 100 3 range. Point

scanning was realized with a pair of high-speed galvanometric mirrors (Cambridge Technology, Lightning DS). To this end, the scan-

ning mirrors were imaged into the image plane of the rear port of a conventional inverted microscope (Zeiss, Axio Observer Z1) with a

telecentric f-q objective (Jenoptik). To facilitate adjusting parfocality between the cutter and the spinning disk and compensate for the

offset between the positions of the back planes of different objectives, the scanmirrors and the scan optics weremounted on a com-

mon translation stage. In the microscope reflector cube, a dichroic mirror reflected the UV light onto the sample but transmitted the

fluorescence excitation and emission light. A UV-blocking filter in the emission path protected the camera and enabled simultaneous

imaging and ablation. The AOM, the galvanometric mirrors, and a motorized stage (ASI, MS 2000) with a piezo-electric actuator on

which the sample was mounted were computer controlled by custom-made software (Labview, National Instruments), enabling

three-dimensional cuttings. The maximum field size for diffraction-limited cutting with little geometric distortion, high homogeneity

of the intensity, and good field flatness was 3003 300 m2 for a 403 objective. The maximum depth was limited by the free-working

distance of the objective used and the travel of the piezo-actuator (100 mm).
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QUANTIFICATION AND STATISTICAL ANALYSIS

For counting the PD events, at each ablation site, the occurrence of a periclinal division (marked by a division plane parallel or oblique

to the growth axis) in any of the adjacent inner cells was recorded as 1/1 or 0/1 in case of only anticlinal divisions occurring.

The binary outcome ‘‘Periclinal division happened yes/no’’ of the ablations experiments was by definition distributed in a binomial

manner, hence statistical tests for binary values are required. Based on the observation that periclinal division rates varied highly be-

tween different experiments but trends of lower division rates between mutants/treatments and controls were always visible within

single experiments, we decided to opt for a statistical test that accounts for paired datasets (paired within individual experiments).

Hence, the statistical significance was evaluated with conditional logistic regression (CLR) after ref. (Kleinbaum and Klein, 2010). and

ref. (Campbell, 2006). ‘‘Periclinal division happened’’ was used as binary input for each observed ablation site in the clogit function

from the R package ‘‘survival.’’ Data was paired with experiment number as stratum. We assume that external factors such as day-

time, growth medium batch and propidium iodide batch are major causes for variations between experiments.

In the case of vertical stage microscopy with root tracking, division events were counted by marking the time point at which a new

cell wall (stained by propidium iodide) appeared in the first, inner adjacent cell of the ablation site. For ablations, only periclinal di-

visions (vertical cell walls) were counted whereas for the virtual ablations both anticlinal and periclinal divisions were quantified.

The virtual ablation sites were arbitrarily chosen similar as in the laser ablation experiments and the division events were counted

on videos after registration (correct 3D drift tool in ImageJ). The percentage of cumulative division events over time was plotted using

the R studio. Non-linear regression curves for each experiment were calculated using the nlsLM function of the R package ‘‘mini-

pack.lm’’ assuming an asymmetric sigmoidal (y = a *ê(-b*ê(-c*x))) or exponential (y = a-b*ê(c*x)) behavior with arbitrarily chosen start-

ing parameters. The calculated final parameters with lowest residual sum-of-squares were chosen to determine the first derivation of

the fitted curves to estimate the probability of division events over time.

Asterisks illustrate the p value: p < 0.001 is ***, p < 0.01 is ** and p < 0.05 is *

Number of repetitions and replicates are mentioned for each experiment in the legends.
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Supplemental Figures

(legend on next page)



Figure S1. Effects of Non-targeted Cell Eliminations and Single/Multiple Ablations in Arabidopsis and Other Plant Species, Related to

Figure 1

(A and B) 3D reconstruction front view (A) and top view (B) of a single ablated cortex cell followed by periclinal division of endodermal cells after 16 h.

(C and D) Multiple ablations of epidermis and cortex after 1 h (C) and 16 h (D) of ablation. Total number of ablations; n = 10-20 per cell type.

(E and F) Multiple ablations of epidermis, cortex and endodermis 1 h (E) and 20 h (F) after ablation. Total number of ablations; n = 10-20 per cell type.

(G) Multiple ablations of epidermis and cortex lead to repeated divisions of endodermis cells to replace eliminated cells.

(H-J) Single and multiple cell ablations of various cell types trigger periclinal cell divisions in inner adjacent cells in dicots Capsella rubella (H), Nicotiana ben-

thamiana (I), and monocot Oryza sativa (J).

(K and L) Restorative divisions in endodermis (K) and pericycle (L) after induction of non-targeted cell death by hydroxyurea.

(M) Quantification of dead cells by hydroxyurea accompanied with periclinal divisions of neighboring cells. Data are represented asmean from four experiments ±

SD (observed roots; n = 26, 15, 21, 41).

(N) Restorative divisions in endodermis after natural death of cortex cells monitored in the SHR::SHR-GFP marker line.

Ep: epidermis, Co: cortex, En: endodermis, P: pericycle.

Red asterisks: ablated cells, red arrows: periclinal divisions. Roots were stained with propidium iodide.



Figure S2. Role of Meristem Activity and PLT Expression Gradient in Regenerative Competence, Related to Figure 2

(A) Rate of periclinal divisions depends on the distance from the meristem end to ablated meristematic cell (total number of ablations is indicated in chart).

(B-D) Rate of periclinal divisions 12 h after ablation in cre1 ahk2 ahk3 triple mutants (B), in seedlings treated with 50 nM cytokinin (benzyl amino purine, BAP) (C)

and with 1 mM24-epibrassinolide (EBL) (D). Data are represented as weightedmean (bar) and individual experiments (dots, area indicates sample size); asterisks

indicate p values from CLR.

(E) Regeneration of epidermis competence can be greatly increased by overexpression of PLT2 as LRC ablated at 212 mm distance from the QC was able to

trigger periclinal cell division in epidermis 12 h after ablation.

(F-G) Expression patterns of PLT1::eCFP (F) and PLT2::YFP (G) were not affected by ablation of different cell types in cells undergoing restorative divisions.

Red asterisks: sites of ablation, red arrows: periclinal divisions. Roots were stained with propidium iodide.



Figure S3. Activation of Cell-Cycle Machinery Triggered by Ablation, Related to Figure 3

(A and B) Restorative division rate in cortex cells varies highly between different experiments: compare red line in (A), (B) and Figure 3B. Cumulative periclinal

division events in 10 roots with 1 ablation site per cell type each weremonitored by vertical stagemicroscopy. Thin lines show raw data and thick lines show fitted

curves calculated by least square estimates (sigmoidal curves: y = a*ê(-b*ê(-c*x))).

(legend continued on next page)



(C) Restorative division rates differ highly between cell types 12 h after ablation. Data are represented as weighted mean (bar) and individual experiments (dots,

area indicates sample size).

(D-G) ERF115::GFP expression after ablation of LRC (D), epidermis (E), cortex (F) and cortex and endodermis (G). Upregulation is specific to restorative divisions

in endodermis and pericycle.

(H) Rate of periclinal divisions after ablation in ERF115-SRDX line. Data are represented as weighted mean (bar) and individual experiments (dots, area indicates

sample size); p values from CLR: epidermis: 0.178, cortex: 0.134, endodermis: 0.00232, pericycle: 0.129.

(I) Rate of periclinal divisions induced by ablation in wind quadruple mutants, WIND1-SRDX line and 35S::WIND1 line in various cells. Data are represented as

weighted mean (bar) and individual experiments (dots, area indicates sample size).

(J) Specific downregulation of the G1/S phase transition inhibitor RBR1::RBR1-GFP was only observed in rare cases in inner adjacent cells prior to restorative

divisions.

(K) Expression of pWIND1::GFP was not detected in roots after 12 h of ablation, during restorative division initiation.

(L) Expression of pPAT1::GFP was not upregulated after 12 h of ablation, during restorative divisions.

Red asterisks: sites of ablation. Roots were stained with propidium iodide.



Figure S4. Cell Fates of Inner and Outer Adjacent Cells of Ablation, Related to Figure 4
(A) Ablation of a cortex cell results in decreased expression of endodermis marker SCR::SCR-YFP. Total number of ablations; n = 42 (8 h), n = 47 (12 h), n = 95 (16

h), n = 63 (24 h), n = 47 (32 h) - see increased cortex marker Co2::HYFP expression in Figure 4E.

(B and C) Ablation of endodermal cell results in upregulation ofSCR::SCR-YFP in pericycle (B). Ablation of cortex and endodermis results in nuclear localization of

SHR::SHR-GFP (C) in outer daughter cells of periclinally divided pericycle cells. Total number of ablations; n = 71 (16 h), n = 55 (24 h), n = 22 (32 h), n = 22 (38 h).

(D-I) Rarely induced restorative divisions in outer adjacent cells did not trigger cell fate change in any of the daughter cells. After 16 h and 38 h of cortex ablation,

expression pattern ofWER::GFP in outer adjacent periclinally divided daughter cells did not change (D and E). Expression patterns of LRCmarker E4722 (F, 16 h;

n = 52/52, 38 h; n = 43/45), SCR::SCR-YFP (G, 16 h; n = 24/24, 38 h; n = 37/37), and WER::GFP (H and I) after 16 h and 38 h of ablation did not change in the

presence of 1 mM NAA, which increased occurrence of restorative divisions at the outer adjacent side. Relative fluorescence signal was calculated as follows;

WER::GFP signals in the periclinally divided cells were divided by non-periclinally divided epidermal cells. Sample numbers are as follows; in D and E (16 h; n = 14,

38h; n = 9), in H and I (16 h; n = 10, 38h; n = 7). The error bars show SD.

Red asterisks: sites of ablation. Roots were stained with propidium iodide.



Figure S5. Periclinal Divisions in Endodermis Are Independent of GA-Inducible Activation of Middle-Cortex Formation, Related to Figure 5

(A) Ablation of cortex is followed by upregulation of CYCD6;1 translational fusion before induction of periclinal division in the inner adjacent endodermis cells.

(B and C) After cortex ablation, downregulation of SHR::SHR-GFP is followed by induction of periclinal division in endodermis cells outside of the stem cell niche

(B), which is similar to downregulation of SCR::SCR-YFP in endodermal cells undergoing periclinal divisions (C).

(D) Treatment of 10 mM GA resulted in ectopic inductions of periclinal divisions which are independent from cortex ablations as seen in root meristem 1 h after

ablation. Note that the periclinal division is not adjacent to ablations (red arrows).

(E-G) Effect of GA or PAC on the rate of periclinal divisions in endodermis. For the short-term observation, 10 mMGA and PAC (E), for the long-term observation,

2 mMPAC (F) and 10 mMGA (G) were used. There is no influence of the treatments on the division rates in endodermis cells. Total number of ablations; n = 30-40

per treatment.

Red asterisks: sites of ablation. Roots were stained with propidium iodide.



Figure S6. Periclinal Divisions in Epidermis Require Functional FEZ/SMB Module, Related to Figure 6

(A and B) Additional time points for the ablations shown in Figures 5B and 5C. While expression of FEZ::FEZ-GFP (A) and SMB::SMB-GFP (B) is absent from

epidermis cells outside of the stem cell niche, they are upregulated in the adjacent epidermis cells after ablation of LRC cells, which gradually triggers periclinal

divisions.

(C) Rate of periclinal division in cortex cells remains unchanged in mutants, while rates of periclinal divisions in epidermis decreased as can be seen in cumulative

division events over time. Observed roots; n = 10 with 2 ablation sites per genotype; exponential curves: y = a-b*ê(c*x). Thin lines show raw data and thick lines

show fitted curves calculated by least square estimates.

Red asterisks: sites of ablation. Roots were stained with propidium iodide.



Figure S7. Role of Known Components for Mechanosensing, Induction of Periclinal Division, and Preprophase Band during Restorative

Divisions, Related to Figure 1

(A-E) Known mechanosensors FERONIA (FER), MECHANOSENSITIVE SMALL CONDUCTANCE-LIKE channels (MSLs), MID1-COMPLEMENTING ACTIVITY

channels (MCAs) and THESEUS1 (THE1) are not involved in restorative cell divisions. (A) Quantification of periclinal divisions in fer-4mutants 12 h after ablation.

Data are represented as weighted mean (bar) and individual experiments (dots, area indicates sample size). (B) Expression pattern of FER::FER-GFP during

restorative division is unchanged. Autofluorescence from PI staining marks dead cells in the GFP channel. (C) Quantification of periclinal divisions 12 h after

ablation inmslD5 quintuplemutants. Data are represented asweightedmean (bar) and individual experiments (dots, area indicates sample size). (D) Expression of

MSL9::MSL9-GFP (left) and MSL10::MSL10-GFP (right) in the mslD5 background did not change during restorative divisions. (E) Quantification of periclinal

divisions 12 h after ablation in mca1, mca2, mca1mca2, the1-3 mutants. Data are represented as weighted mean (bar) and individual experiments (dots, area

indicates sample size).

(F) Preprophase band (PPB) does not define the cortical division site (CDS) in restorative divisions. trm6trm7trm8 triple mutant, which lacks the PPB, does not

display defects in deposition of periclinal cell walls in long term imaging (24 h) during vertical stage experiments.

(G) Positive regulators of periclinal cell division LONESOME HIGHWAY (LHW), TARGET OF MONOPTEROS5 (TMO5), their downstream targets LONELY GUY4

(LOG4) and cytokinin-responsive TCS are not involved in restorative divisions in multiple cell types as can be seen in: pLHW::n3GFP, pTMO5::n3GFP,

pLOG4::n3GFP and pTCSn::GFP (from left to right) at indicated time points.

Red asterisks: sites of ablation. Roots were stained with propidium iodide.
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