
Secure Credit Reporting on the Blockchain

Amir Kafshdar Goharshady
IST Austria

Klosterneuburg, Austria
amir.goharshady@ist.ac.at

Ali Behrouz
Department of Computer Engineering

Sharif University of Technology
Tehran, Iran

abehrouz@ce.sharif.edu

Krishnendu Chatterjee
IST Austria

Klosterneuburg, Austria
krishnendu.chatterjee@ist.ac.at

Abstract—We present a secure approach for maintaining and
reporting credit history records on the Blockchain. Our ap-
proach removes third-parties such as credit reporting agen-
cies from the lending process and replaces them with smart
contracts. This allows customers to interact directly with the
lenders or banks while ensuring the integrity, unmalleability
and privacy of their credit data. Additionally, each customer
has full control over complete or selective disclosure of her
credit records, eliminating the risk of privacy violations or data
breaches. Moreover, our approach provides strong guarantees
for the lenders as well. A lender can check both correctness and
completeness of the credit data disclosed to her. This is the first
approach that can perform all credit reporting tasks without
a central authority or changing the financial mechanisms*.

Index Terms—Credit Reporting, Smart Contracts, Blockchain

1. Introduction and Preliminaries

In this section, we first provide a high-level overview of
both smart contracts and credit reporting services. Then, we
discuss some of the problems that currently exist in real-
world credit reporting and argue that these can be mitigated
by decentralization and migrating to smart contracts.
Blockchain. Blockchain was initially used as a means to
achieve global consensus about peer-to-peer cryptocurrency
transactions in Bitcoin [2]. However, the technology itself
is capable of much more than just verifying transactions.
Specifically, one can include scripts in transactions, forcing
a consensus about the outputs of these scripts. Bitcoin allows
simple scripting in a Forth-like loop-free language [3]. A
script in a Bitcoin transaction is essentially a program that
sets the conditions one must satisfy in order to use the
currency units stored in that transaction. For example, a
script might ask for a digital signature.
Ethereum and Smart Contracts. Ethereum is a cryptocur-
rency that allows stateful scripts of arbitrary, i.e. Turing-
complete, complexity [4]. It provides an ecosystem for the
development of decentralized applications, called smart con-
tracts, that are executed and verified by the whole Ethereum

*An extended version of this article is accessible at [1].

network. A smart contract can be created by anyone and is
stored in a bytecode format on the Blockchain. After its cre-
ation, the contract can save data in its own dedicated storage
and hold, receive and transfer funds (cryptocurrency units)
from/to other people or contracts. It can also interact with
other contracts and even create new ones. However, the state
and actions of the contract are all controlled by its code and
subject to consensus using the Blockchain protocol. After
its deployment, one can only interact with a contract by
calling its functions which perform actions as programmed
by its creator. These characteristics, and the inherent lack
of a centralized authority in the Blockchain, make smart
contracts ideal for implementing a variety of unbreakable
financial agreements. For example, a smart contract called
BitHalo replaces trusted third-parties and provides escrow
services [5]. See [1] for more examples.
Credit Reporting. A credit report is a document that in-
cludes data regarding a person’s history of managing credit.
This data is used to assess the creditworthiness of the
individual. It usually contains the following information [6]:
• Identifying information, such as the name, address and

social security number, of the individual.
• Information reported to the credit reporting agency by

creditors, such as banks, regarding details of current
and past loans, leases, credit report requests, bills, etc.
We refer to each of these as a credit account.

• Public records such as bankruptcy information.
Credit Reporting Industry. CRAs are the companies that
gather credit report information. They compile credit data
and help future lenders decide about extending credit. There
are three major CRAs in the US. In 2003, they issued
2 million credit reports each day and each of them was
estimated to hold data about roughly 1.5 billion credit
accounts belonging to 190 million individuals [6]. One of
them, Equifax, reported a revenue of nearly $850 million in
the third quarter of 2017 [7].
Problems with Credit Reporting. The fact that CRAs are
collecting and storing vast amounts of sensitive data about
hundreds of millions of people is concerning. To address
these concerns, laws are passed to ensure the rights of
individuals to privacy and fair treatment. One example is the
US Fair Credit Reporting Act (FCRA) of 1970. However,
there are a variety of problems that cannot be addressed by

regulation alone. These include:
• Long Update Intervals. CRAs generally receive infor-

mation from creditors once a month and it takes them
up to seven days to update the records [6].

• Identification Problems. The data received by the CRAs
does not always include uniquely-identifying informa-
tion and might be erroneously attributed to the wrong
individual [8]. Another related aspect of this problem
is identity theft. It was estimated that 12 percent of
Americans were victims of identity theft in the 5-year
period ending in 2003 [9].

• Errors and Inconsistency. Reports stored by different
CRAs can be inconsistent or contradictory [8]. More-
over, it is estimated that as many as a third of all credit
reports might contain errors that can lead to denial of
access to credit [6], [10].

• Endemism. Credit data is usually tied to a single coun-
try or jurisdiction. The CRAs cannot access foreign
credit information [6]. When an individual relocates,
her credit data is effectively erased.

• Data Breaches. A major source of discomfort is the
possibility of data breaches and unauthorized access
to the sensitive credit report information. In a famous
catastrophic case in 2017, hackers stole sensitive data
of 143 million people from Equifax [11].

Our Contribution. In this paper, we propose an approach
based on smart contracts that can remove the CRAs from the
lending process and fixes all the problems mentioned above.
In our approach (i) data updates take only a few seconds,
(ii) identification problems are entirely avoided, (iii) there
is no possibility of inconsistency, (iv) credit reports can be
used globally and (v) all sensitive information is secured by
cryptography. We also give individuals full control over their
credit report, allowing them to disclose all or any part of it
to others. From the creditors’ point-of-view, we guarantee
that the report is correct and not editable by its owner and
that the creditor can easily check to ascertain that it includes
all the data in a requested time-frame.

We now provide a high-level overview of our approach.
We first recall the main concepts of encryption, decryption
and digital signatures and then proceed with an intuitive
description of our method. A more formal treatment is
provided in the next sections.
Asymmetrical Cryptography. We assume basic familiarity
with asymmetrical and public-key cryptography, as intro-
duced e.g. in [12]. Formally, we use pairs of keys of the form
(K, k) for encryption, decryption and digital signatures. The
public key is denoted as K and its corresponding private key
as k. One can encrypt data using K and then the encrypted
data can only be decrypted if one knows k. Similarly, one
can sign a piece of data using k and this signature is
verifiable by anyone who has access to the data and K. In
particular, a function call in a smart contract always includes
the public key K and is signed by the private key k. This
means that anyone can see the function call data and its
caller by reading the Blockchain but no one can make a
fake function call on behalf of another person unless they
have access to her private key.

Underlying Principles of Our Approach. We achieve the
above by employing the following techniques:

(i) Identity Management. We use a decentralized identity
management and certification system in which a bor-
rower’s identity can be certified by lenders.

(ii) Data Encryption. We store the credit data in an en-
crypted format, using asymmetrical encryption. Only
the owner and creator of a record can decrypt it.

(iii) Links Encryption. We chain the records belonging to
each individual in a linked list whose pointers are also
encrypted. Hence, not only one cannot read a record
without authorization, but it is also impossible to find
the owner of a given record.

(iv) Fraud Prevention. We use digital signatures and asym-
metrical cryptography to avoid fraud. The simplified
intuition is that a credit record can be first signed by
the creditor and then encrypted using a key pair that is
shared with the customer. Then, when another creditor
wants to see the record, the customer can decode it and
the creditor can check the previous creditor’s signature
to make sure the customer has not altered the record.

The main novelty of our approach is a combination
of these ideas that achieves secure credit reporting on the
Blockchain. To the best of our knowledge, this is the first
method that can reliably perform all credit reporting tasks
without trusted third-parties or changing the financial mech-
anism of credit reporting.
Organization. Our approach consists of three distinct proto-
cols, each realized by a different smart contract. In Section 2,
we present our solution for identity management. Section 3
explains how we handle credit accounts. This is followed by
our public records protocol in Section 4. Section 5 provides
a short report on a proof-of-concept implementation that
is publicly available. We discuss some limitations of our
approach in Section 6 and finally, Section 7 concludes.

2. Identity Management Protocol

One of the main issues in credit reporting, as in many
other distributed applications, is identity management. There
are two important aspects to this issue: first, one should
not be able to masquerade as another person, i.e. commit
identity theft, and second, one should not be able to use
more than one identity. Note that in a cryptocurrency setting
individuals having multiple identities do not pose a problem,
given that this does not entail any benefit. However, disjoint
credit reports for a single person should not be allowed.

A simple solution is to create one or several central
authorities that check real-world identities and issue cer-
tificates of their validity. This is the solution used, for
example, for checking valid HTTPS signatures [13]. It is
also commonly used for managing the identities of banks,
institutions and public authorities. In this paper, we assume
that such entities’ identities can be verified in this manner.
However, the same approach is not desirable for individual
credit customers, because it puts much power in the hands
of the certificate issuers and they can, at least in theory, bar
one from credit by refusing to certify.

Figure 1. Interactions between an individual, an institution and the identity
management contract. Numbers denote the order of actions.

Our proposal is to let the lenders act as certificate au-
thorities. Concretely, we allow anyone to issue a certificate,
but we expect the lenders, who are typically banks and
financial institutions, to only take into account certificates
issued by other banks or institutions that they already trust.
Given that the lenders trust data sent by other lenders to
the CRAs, which includes identifying information about the
owners of credit accounts, it is expected that they agree
to accept this same information directly, i.e. without the
CRAs as middlemen, too. While this approach might lead
to a situation where a few banks perform most of the
certifications, this is not considered to be a problem, since no
group of institutions have a monopoly on certification and
every lender who is willing to extend credit to an individual
can also certify her identity.
Data Fields of the Identity Management Contract. We
now formalize our identity management protocol. It is re-
alized by a single instance of a smart contract that keeps
track of every individual by storing the following data:
• The public key used by the individual.
• Fingerprint. A unique identifier that can be used in

real world to check the individual’s identity. This can
be biometric data or any other data that is unique to
the individual. Our approach is not dependent on the
exact standard that is used for creating fingerprints, but
they should be standardized. If this data is sensitive,
one can store a hashed version of it. For example, we
can use a hashed version of the individual’s country of
nationality, appended with her national id number.

• Two Pointers. A pointer to the first public record of the
individual and another one to her first credit account.
These will be formalized in the next sections.

• Certificates. A list of public keys who have verified
this identity in the real world.

Functions of the Identity Management Contract. We now
describe how our identity management smart contract works.
This is summarized in Figure 1. Anyone can register in this
contract by calling the register function and providing
her own desired public key and (possibly fake) fingerprint.
The contract even allows several public keys to be registered
as corresponding to the same fingerprint. After a public key
and its corresponding fingerprint are added to the contract,

anyone can call the function certify and announce that
they have checked an identity in the real world and would
like to certify it. In this case, the caller’s public key is
added to the list of certificates. There is also a decertify
function that can be used to revoke the certification.
Safety against Sybil Attacks. One can create as many fake
identities and certify them with as many self-created keys
as she wishes. The lenders would only consider certificates
from other trusted lenders or institutions. Such an institution
would (i) ask the individual to sign a random piece of data
using the private key corresponding to the desired public
key to ensure that she has access to it, (ii) require real-
world verification of the fingerprint, and (iii) require that no
other public key is already certified as corresponding to the
same fingerprint by another trusted institution.
Legal Guarantees. Note that the institutions, such as banks,
have publicly announced public keys and will be subject
to legal action should they provide false certifications. The
process is also uniquely transparent, given that all changes to
the contract are permanently recorded in the Blockchain. An
individual can ask each lender she deals with to certify her
identity so that the respective credit account is also trusted
by future lenders.
Privacy. Our protocol preserves user privacy. The fingerprint
is associated with a public key that does not appear in
the credit accounts, ensuring that even having access to a
person’s fingerprint cannot be used to extract information
about their non-public credit records. In the next sections,
we will show that an attacker with access to the Blockchain
cannot read data about the records, such as account details,
and is even unable to infer the owner of a given record.

3. Credit Accounts Protocol

We now turn to the core of our approach, which is a
protocol for storing credit accounts’ data. We introduce a
smart contract for modeling credit accounts. Each account is
realized by one instance of this contract. This is in contrast
to Section 2 where all identities were stored in a single
instance of the identity management contract.

As mentioned earlier, we rely on asymmetric (public-
key) cryptography. To achieve the desired level of security,
we will introduce several new keys in this section. There-
fore, to avoid confusion, we use the term “true identity” to
refer to the key pair which is publicly known to belong to an
institution. Similarly, an individual’s true identity is the key
pair with which she registers in the identity management
protocol and for which she obtains certificates. We use K
for public keys and k for private keys.

We store a singly linked list of each individual’s credit
accounts, with each account providing a pointer to the next
(Figure 2). Note that in Ethereum each deployed instance of
a smart contract is uniquely addressable and therefore these
pointers are well-defined. The identity management contract
provides a pointer to the first credit account. Moreover, these
pointers are encrypted, as explained below, and hence they
can only be traversed if the individual owner allows it.

Figure 2. Each credit account is stored in its own instance of the credit
account contract. The arrows denote encrypted pointers.

Figure 3. Key distribution prior to deployment of a Credit Account Contract

We now define the data in a credit account contract and
the process for its creation, management and use.
Key Generation. Let the institution’s true identity be
(Ki, ki) and the customer’s true identity (Kc, kc). When,
after verifying a customer’s identity and credit record, an
institution agrees to extend credit to a customer, they ask
her to create a new key pair (K ′c, k

′
c), called customer’s

account-specific keys. The institution in turn creates its
own account-specific keys (K ′i, k

′
i). Then, each side pro-

vides the other side with their account-specific public key.
Finally, they create and fully exchange two other pairs
of keys (K ′s,1, k

′
s,1), (K

′
s,2, k

′
s,2), which we call account-

specific shared keys. The keys are distributed as in Figure 3.
Contract Creation. At this point, the institution creates a
new instance of the credit account contract and publishes
it on the Blockchain. Figure 4 shows the data stored in
this contract and the conditions enforced by the contract for
changing this data. The contract stores public keys of the
customer and the institution, i.e. K ′c and K ′i. These are set at
the beginning and are not changeable afterwards. The con-
tract does not store true identities, but uses contract-specific
public keys instead. All function calls are also performed
using contract-specific keys. The reason behind this is that
anyone has access to the data stored on the Blockchain and
one must not be able to read the true identities using publicly
available data. The contract also has an expiry time which
can be changed only if both parties agree.
Commitment. After deployment, both parties must commit
to the contract by verifiably connecting it to their true iden-
tity. The institution does this by signing the contract address,
Ki and Kc using its true identity and adding the signature
to the contract. At this point, the customer can check the
signature. If the check passes, she adds the contract to her
record by letting her last account’s Next Account field
point to this contract by storing its address encrypted using
K ′s,2. Note that the Next Account field can be changed
only once and hence the contract cannot be removed from
the customer’s report when added. The institution can now
check that the contract is in customer’s report using k′s,2.
Credit Report Data. Finally, the institution can change the
contents of the field Data until the expiry time. It can

Figure 4. Data fields and constraints in a Credit Account Contract

store all the relevant data about this account that should
appear in a credit report. This data is always encrypted using
K ′s,1 and is hence accessible to both the institution and the
customer, who know k′s,1, but not to anyone else. If the
data happens to be too big, one can store it in an external
service, such as IPFS [14] and then fill the Data field with
an address/identifier and hash of the original data.
Reading a Credit Report. When another institution wants
to read customer data, it would need the values of k′s,2 for
each of the contracts to be able to decrypt the links and
traverse the linked list. These can only be provided by the
customer. Hence, one cannot find out which accounts belong
to an individual, unless that individual allows access. When
access is granted, the institution can easily find out when it
reaches the end of a report given that the Next Account
field is only empty at the end of the linked list. The
institution can also see the beginning time of a contract
by looking up the number of the Blockchain block where
the contract was first created. Expiration times of the credit
accounts are publicly visible on the Blockchain, but not their
data. Should the customer decide to allow the institution to
read a contract, she can provide them with the contract-
specific k′s,1 to access the Data field and with the lender’s
true identity, Ki, to verify the signature.

An individual can add as many credit accounts as she
wishes to her linked list, acting as both the institution and
the customer. This can be used to initialize the linked list
by an account when creating an identity, and also to resist
any attempt to find out the true number of accounts.

4. Public Records Protocol

Our protocol for storing public records is similar to
the one we described for credit accounts. However, in this
case the protocol becomes much simpler, because unlike
credit accounts, public records can be made without the
consent of their individual owners. Similar to the previous
section, we store public records in a singly linked list.
Each record is an instance of the public record contract. As
previously mentioned in Section 2, there is a pointer from
an individual’s identity to her first public record, which can
be created by herself.

Unlike credit accounts, the pointers used to connect
public records are not encrypted. This allows anyone to

Figure 5. Data fields and constraints in a Public Record Contract

follow the list of public records corresponding to an identity.
Anyone can add a new public record to the end of any
of these lists. This is not problematic, given that lenders
will only take the records issued by real public institutions
into account. Simply, each record is either added using an
unknown identity, in which case it is spam and ignored†,
or by an official identity, in which case it is either correct
or can be corrected by the same authority. Again, note that
all changes to the contracts are permanently saved on the
Blockchain and that official authorities are bound by legal
responsibilities and cannot simply issue false records.

We now formalize this. Figure 5 shows the data fields
of a public record contract and their constraints.
Contract Creation. The public authority creates an instance
of this contract and publishes it on the Blockchain. The
authority has access to the individual’s fingerprint and can
hence add the record to linked lists corresponding to all
identities that have that fingerprint. To do so, the authority
follows the Next Record pointers until it reaches the end
of the linked list, and then sets the final Next Record to
point to the new instance of the contract. Anyone can set the
value for Next Record, but (i) it can be filled only once
and (ii) it must keep the linked list valid and extensible. We
refer to the latter condition as “validity”.
Credit Report Data. The other two data fields in this con-
tract, Data and Signature, are under complete control of
its issuer. Data is meant to contain any relevant information
that should be considered part of the credit report. The
authority can decide whether to fill this data without encryp-
tion, hence allowing public access to it, or encrypt it using
Kc, so that it is only accessible by the individual owner
herself. In the latter case, the authority signs the original
unencrypted Data and stores this signature in the contract.
This ensures that the individual owner can both read and
prove what is saved in Data and is the only person, other
than the public authority, who can perform these actions.
Reading a Credit Report. When an institution decides to
read the public records of an individual, it simply follows
the linked list, ignoring spam. In case it faces an encrypted
entry by a trusted public authority, it asks the individual
owner to decrypt the Data field and provide the decrypted
text. It then checks the signature to make sure that the text
was not changed by the owner.

†Spamming is not free given that one has to pay for its gas fees.
This is Ethereum’s solution to combat spam and it naturally extends to our
contracts. On the other hand, when reading the records, one can differentiate
spam entries pretty fast, by simply checking the identity of their signatures.
Note that reading the blockchain is free but writing to it is not.

Importance of Validity. When dealing with credit accounts,
the pointers used for our linked list were filled by the
individual who owned them and there was no fear that she
might intend to destruct the whole linked list. Also, the
signatures provided by the institutions guaranteed that one
cannot add another person’s record to her linked list without
getting caught. However, in the case of public records,
anyone can add a new element to the linked list and fill
the Next Record fields. These fields remain immutable
after they are first filled. So, a natural attack would be to fill
them with invalid pointers, i.e. pointers that do not hold the
address of a valid contract of the same type. This will make
it impossible for others to keep adding records. Another
malicious behavior is adding the same instance of a record
to the linked lists belonging to two different individuals.
This will merge the two lists.
Enforcing Validity. To avoid the attacks described above,
we do not allow the individuals to create instances of our
public record contract directly. Instead, we develop a so-
called “factory” contract that can be called by anyone to
create valid instances of the public record contract. The
factory contract also keeps track of the addresses of all valid
public record contracts instantiated using it and whether they
have been added to a linked list. On the other hand, each
such instantiated contract includes an immutable pointer to
the parent factory contract. When a new contract is being
added to the linked list, it is first checked against the factory
contract to ensure it respects validity. See [1] for details.
Deanonymization. The fact that public records are not en-
crypted means that they can be used to deanonymize users.
For example, public records of bankruptcy often include
names of individuals and their national identity numbers,
which might be the same as fingerprints. However, the only
additional data that can be inferred by such deanonymization
is the individual’s public key Kc. As mentioned before, this
key is not saved in any of the credit account contracts and
cannot be used to infer any non-public information about
the individual. Note that the public records themselves are,
and should be, accessible to everyone.

5. Implementation

We have implemented our approach in Solidity to
demonstrate the feasibility of the ideas and structures that we
suggest. A proof-of-concept implementation, together with
instructions for its deployment and testing, is available at
pub.ist.ac.at/~akafshda/credit-reporting.

Our implementation is entirely loop-free and all of its
function calls terminate after executing a small (constantly-
bounded) number of instructions. Hence, our gas cost,
i.e. the cost one must pay for execution of commands in
Ethereum smart contracts [4], is very little.

6. Limitations

We discuss some limitations of our approach and ideas
to address them. See [1] for a comparison with related work.

Inherited Limitations. The goal of our approach is to
remove the CRAs from the credit reporting process, al-
lowing the same financial mechanisms that are currently
established to run without a middleman. This means that our
approach essentially inherits any limitation of the traditional
centralized credit reporting that is not due to the CRAs.
Particularly, if an individual has two provable identities in
the real world, e.g. two distinct names and national identity
numbers, then she can sign up in our identity management
contract twice and obtain certificates for both. This attack
is not dependent on the lack of CRAs and is also possible
under the current credit reporting systems.
Cryptographic Primitives. The security of our approach is
dependent on the security of the cryptographic primitives
that are used. Any data saved on the blockchain is perma-
nent. In several of the above protocols, data encryption is
used in order to restrict public access. If/when the underly-
ing ciphers are broken, this data can be recovered. Therefore,
it is advisable to refrain from saving the actual credit data
in smart contracts, but instead rely on saving its hash. This
way the data would be provable, but cannot be obtained
even if the cipher breaks. The downside to this is that the
individual will have to keep safe copies of the original data
and can only use our approach for proving her record.

7. Conclusion

In this paper, we presented the first solution for secure
credit reporting with no third-parties. In Section 1 we iden-
tified five problems with current systems of credit reporting
that can be avoided by migrating to the blockchain. We
review how our approach solves these problems:
• Long Update Intervals. Each update is done via a single

function call in one of the smart contracts. Hence,
it takes a few seconds to be added to the Ethereum
blockchain, and after a few minutes one can be sure
that it will not be reverted.

• Identification Problems. The certification protocol of
Section 2 ensures only valid real-world identities will
be trusted by the institutions and that each real-world
identity is represented by a single public key Kc.

• Errors and Inconsistency. Inconsistency can only be
caused by forks in the blockchain and disappears as
soon as the fork is resolved. Wrong data added by an
institution can always be fixed by the same institution‡.
The source of such data can be provably ascertained.
Hence, the institution is legally bound to fix it.

• Endemism. Using the Ethereum blockchain, the con-
tracts and their data can be used globally.

• Data Breaches. There is no central authority possessing
all the data. Each credit account is secured by its own
keys. Hence, a large-scale breach is impossible unless
the underlying cryptographic ciphers break.

‡Note that while the contents of the blockchain are immutable, the
values of contract variables are not. The blockchain saves the sequence of
changes to these values. Hence, once an error is fixed, its history remains
in the blockchain.

Acknowledgments. We are thankful to the reviewers for
raising points that significantly improved this article. The re-
search was partially supported by Vienna Science and Tech-
nology Fund (WWTF) Project ICT15-003, Austrian Science
Fund (FWF) NFN Grant No S11407-N23 (RiSE/SHiNE)
and ERC Starting grant (279307: Graph Games). The first
author is supported by an IBM PhD Fellowship.

References

[1] A. K. Goharshady, A. Behrouz, and K. Chatterjee, “Secure credit
reporting on the blockchain,” arXiv preprint arXiv:1805.09104, 2018.

[2] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.

[3] Bitcoin Wiki, “Script.” [Online]. Available:
https://en.bitcoin.it/wiki/Script

[4] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum Project Yellow Paper, 2014.

[5] D. Zimbeck, S. Donato, A. Hahn, P. Sloin, and G. Meacci, “Bithalo,
mother of smart contracts and a decentralized market for everything.”
[Online]. Available: http://bithalo.org

[6] R. B. Avery, P. S. Calem, G. B. Canner, and R. W. Bostic, “An
overview of consumer data and credit reporting,” Federal Reserve
Bulletin, vol. 89, p. 47, 2003.

[7] Equifax, “Equifax releases third quarter results,” Nov.
2017. [Online]. Available: https://investor.equifax.com/news-and-
events/news/2017/11-09-2017-211550295

[8] Consumer Federation of America and the National Credit Reporting
Association, “Credit score accuracy and implications for consumers,”
Tech. Rep., 2002.

[9] C. M. Kahn and W. Roberds, “Credit and identity theft,” Journal of
Monetary Economics, vol. 55, no. 2, pp. 251–264, 2008.

[10] J. Golinger and E. Mierzwinski, Mistakes do happen: Credit report
errors mean consumers lose. Washington Public Interest Research
Group, 1998.

[11] Federal Trade Commission, “The equifax data
breach: What to do,” 2017. [Online].
Available: https://www.consumer.ftc.gov/blog/2017/09/equifax-data-
breach-what-do

[12] J. Hoffstein, J. C. Pipher, and J. H. Silverman, An introduction to
mathematical cryptography. Springer, 2008.

[13] Z. Durumeric, J. Kasten, M. Bailey, and J. A. Halderman, “Analysis of
the https certificate ecosystem,” in Proceedings of the 2013 conference
on Internet measurement conference. ACM, 2013, pp. 291–304.

[14] J. Benet, “IPFS - content addressed, versioned, p2p
file system,” IPFS Whitepaper, 2018. [Online]. Avail-
able: https://github.com/ipfs/papers/raw/master/ipfs-cap2pfs/ipfs-p2p-
file-system.pdf

