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Abstract

The main objects considered in the present work are simplicial and CW-complexes with
vertices forming a random point cloud. In particular, we consider a Poisson point pro-
cess in R™ and study Delaunay and Voronoi complexes of the first and higher orders and
weighted Delaunay complexes obtained as sections of Delaunay complexes, as well as the
Cech complex. Further, we examine the Delaunay complex of a Poisson point process on
the sphere S™, as well as of a uniform point cloud, which is equivalent to the convex hull,
providing a connection to the theory of random polytopes.

Each of the complexes in question can be endowed with a radius function, which maps
its cells to the radii of appropriately chosen circumspheres, called the radius of the cell. Ap-
plying and developing discrete Morse theory for these functions, joining it together with
probabilistic and sometimes analytic machinery, and developing several integral geomet-
ric tools, we aim at getting the distributions of circumradii of typical cells. For all con-
sidered complexes, we are able to generalize and obtain up to constants the distribution
of radii of typical intervals of all types. In low dimensions the constants can be computed
explicitly, thus providing the explicit expressions for the expected numbers of cells. In par-
ticular, it allows to find the expected density of simplices of every dimension for a Poisson
point process in R*, whereas the result for R* was known already in 1970’s.
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Introduction

The work is focused on studying different random complexes. In this introduction, we de-
fine the concepts, introduce the notation and summarize the tools used to produce the re-
sults. Sections [1.1] - [L.4] are devoted to geometric complexes, associated to a point cloud in
a metric space, that are widely used in shape reconstruction and topological data analysis.
Section [L.5 contains a short introduction to the discrete Morse theory. Sections[1.6 and [L.7
introduce the random setup we are working in, mainly focusing on Euclidean space, while
Section [L.8 focuses on spheres. Section [L.9 introduces the integral geometric tools used in
the proofs of the main results.

1.1 Cech complex

Recall that an abstract simplicial complex is defined as a set S C 2V of simplices closed
under taking subsets: ¢ € S and 7 C o imply 7 € S. The empty set is conventionally
excluded from S. All elements of the simplices in S form the vertex set: V = |J,cq 0. Every
vertex is identified with the one-element simplex containing this vertex. The dimension of
a simplex 7 is defined as dim 7 = |7| — 1, and the dimension of the complex is the maximal
dimension of its simplices. An abstract simplicial complex can be geometrically realized
in RIVI*! as a subset of the standard simplex by mapping distinct vertices in V to distinct
vertices of the standard simplex. In general, a geometric simplicial complex C'is a collection
of simplices in R” closed under taking faces, with an additional property that for any two
simplices of C' their intersection is either empty or a face of both. For every geometric
simplicial complex one gets an abstract simplicial complex by considering the vertex sets
of geometric simplices and dropping all geometric information. It can be easily shown that
all geometric realizations of the same abstract simplicial complex are homeomorphic. In
particular, the homotopy type of an abstract simplicial complex is well-defined. For a more
detailed introduction into simplicial complexes see [26, Section IIL.1].

One motivation for the work reported in this thesis is the desire to reconstruct sur-
faces from point sets; see [21] and in particular the Wrap algorithm described in [25].
While the points usually describe a distinctive shape and are therefore not random, they
are affected by noise and display random features locally. To effectively cope with local
noise is a necessary component of every high quality surface reconstruction software. An-
other motivation derives from the work in topological data analysis; see [[17]. Let X be a
point set in a metric space. We assume that the space is R” for the sake of simplicity of
exposition, but it can be substituted with any other metric space, like a sphere S™. This set
X may be considered as sampled from some n-dimensional shape, and the Cech complex



is used to define a way to possibly reconstruct the shape. Fix a radius r and consider a set
X, C R"™ which is obtained as a union of closed balls of radius r centered at points of X:

X, = B(z,r).

reX

This set can be considered as an approximation of the shape. By definition, X, is covered
by a family of balls B = {B(z,r): « € X}, and the Nerve theorem can be applied to
obtain a simplicial complex that is homotopy equivalent to X,. For a collection of sets U/,
the nerve Nrv U is defined as an abstract simplicial complex with V' = U/ and every o C U
is a simplex of Nrv/ if Ny, U # 0. In simple terms, a vertex gets assigned to every set,
and a set of vertices forms a simpley, if the corresponding sets have a non-empty common
intersection. We are now ready to state the simplest version of the Nerve theorem [51, 26,
41]:

Theorem (Nerve theorem). Let U be a finite collection of closed, convex sets in Euclidean
space. Then the nerve of U and the union of the sets in U have the same homotopy type.

The Nerve theorem shows thus that X, = (Jgcp is homotopy equivalent to Nrv B, and
the latter is called the Cech complex of X for radius r and denoted Cech, X. Itis an abstract
simplicial complex, which is generically not embeddable in R". Its vertices correspond to
the balls around every point of X, so we identify the vertices with points of X. An example
is shown in Figure [L.1. The complexes for different values of r are nested. It means that

IS

Figure 1.1: Cech complex

for every r; < ry complex éecth is a subcomplex of (vjechTQX, with éechoX = X and
Cech, X = 2%, implying that every subset of X enters the Cech complex at some value of
radius.

With this in mind, the Cech complex can be alternatively described using enclosing
balls. For a set o C X define the smallest enclosing ball (or the Cech ball) of o to be the
unique smallest closed ball that contains 0. Let Rs: 2¥ — R be the function, called the
Cech radius function, that maps every o to the radius of such ball, called the Cech radius
of . Then ¢ € Cech, X iffr > Rs(c). Indeed, the balls B(z, r) for # € ¢ have a common
intersection iff there is a point, which has distance not more than r to all points of o, see
also [26].

The Cech complex, though being relevant in the way that it encodes the topology of X,
has several drawbacks, mainly coming from the fact thatitis exponential in size and is hard



to compute. One simplification is the Vietoris-Rips complex, which relaxes the conditions
of the nerve. More precisely, a simplex o belongs to the Vietoris-Rips complex for radius
r if every two closed balls of radius r centered at vertices of ¢ intersect. The edges of this
complex are thus the same as in the Cech complex, but it might have more simplices of
higher dimensions. Although easier to compute, it is still exponential in size, and does not
preserve the topology of X,.. Nevertheless, it is still used in applications for approximating
the Cech complex. Another advantage of the Vietoris-Rips complex is that it considers only
pairwise distances between points, hence not depending on the ambient space.

1.2 Voronoi and Delaunay complexes

Another way of representing the topology of the union of balls is provided by the Delau-
nay complex. In contrast to the Cech complex, it is easier to compute, has size polyno-
mial (and, often, linear) in the number of points, and generically has a canonical geomet-
ric realization. To define the concept, we start with introducing Voronoi diagrams. Recall
that X is a point set in a metric space, which is assumed to be R". The Voronoi domain
of a point z € X consists of all points for which  minimizes the Euclidean distance:
dom(z) = {a € R": |ja — z|| < ||la —y||, forall y € X}. Every Voronoi domain is a possi-
bly unbounded convex polyhedron. The Voronoi diagram or the Voronoi tessellation is the
collection of Voronoi domains, see Figure . The Delaunay mosaic or Delaunay triangu-

0 /
.yﬁqi -
[
Figure 1.2: Voronoi diagram and corresponding Delaunay mosaic. Blue triangles and bold
edges are critical in the sense of Section .

lation Del X is isomorphic to the nerve of the Voronoi domains. Specifically, the Delaunay
mosaic is the collection of subsets () C X whose corresponding Voronoi domains have a
non-empty common intersection: Vor(Q)) = (,co dom(z). Adopting the convention from
the discussion of abstract simplicial complexes, we call () a simplex, and, as common in
combinatorial topology, identify it with the convex hull of () when it is convenient. The
Delaunay mosaic is an n-dimensional simplicial complex iff the Voronoi diagram is primi-
tive (the notion used in discrete geometry) or normal (the notion used in stochastic geom-
etry), that is: the intersection of any 0 < k£ + 1 < n + 2 Voronoi domains is either empty
or (n — k)-dimensional. In particular, the intersection of any n + 2 domains is necessarily
empty. In this case the Delaunay mosaic can be canonically embedded into R™ with vertex
set X by mapping every Voronoi domain to the point of X itis defined by, and it is the dual
of the Voronoi diagram [20]. The primitivity of the Voronoi diagram is guaranteed if X is



in general position, that stands for the following conditions, that are a bit stronger than the
ones required in [20], throughout this work: for every 0 < k < n,

1. no k + 2 points belong to a common k-plane,
2. no k + 3 points belong to a common k-sphere,

3. considering the unique k-sphere that passes through &k + 2 points, no k£ + 1 of these
points belong to a k-plane that passes through the center of the k-sphere, and the
radii of all such spheres are different.

It is also possible to describe the Delaunay mosaic using the way similar to describing
Cech complexes using smallest enclosing balls. By construction, every point z € Vor(Q)
is equally far from all points in ) and at least as far from all points in X \ @. We call a
sphere with center z and radius ||z — z||, € Q, an empty circumscribed sphere of () be-
cause all points of () lie on the sphere, and all points of X lie on or outside the sphere. The
unique smallest empty circumscribed sphere is called the Delaunay sphere (sometimes
just circumsphere, [31]), and its radius and center are called the Delaunay radius and the
Delaunay center of (). Note that only Delaunay simplices have a Delaunay sphere. Indeed, if
a simplex () has an empty circumscribed sphere with center z, then z € Vor(Q), implying
that Vor(Q) # . The Delaunay radius function, R p: Del X — R, maps every simplex to its
Delaunay radius. Observe that the function is increasing: for P < (), meaning that P is a
face of (), we clearly have Rp(P) < Rp(Q). Fixing an r > 0 and taking all simplices from
Del X that have Delaunay radius not greater than » we thus obtain a subcomplex of Del X,
the Alpha or Delaunay complex for radius r, Del, X. In contrast to Del X, its simplices do not
cover the entire convex hull of X and can therefore form cycles and other topological fea-
tures, and it is indeed homotopy equivalent to the union of balls, X; see [23]. It can even
be showed that éecth , which is also homotopy equivalent to X, collapses onto Del,. X;
see [8].

There is another way to get the Delaunay complex without the radius function. For this,
we decompose X, = U,cx B(z,7) as X, = Uzex (B(x,r) Ndom(z)). Itis easy to see that
it is indeed a cover of X,.: if a point a belongs to some ball B(zy, ), but to dom(z,), then
la —z2o|| < |la—21]] < r,s0a € B(xe,r) N dom(zy). Then the Delaunay complex for
radius r is isomorphic to the nerve of this cover. By the Nerve theorem, it follows that X,
is homotopy equivalent to Del, X.

It is also worth mentioning that there is a way to define the Delaunay mosaic, that
is embedded in R" even if the points are not in general position, by requiring only geo-
metric duality. We want to assign to every j-dimensional Voronoi polyhedron an (n — j)-
dimensional Delaunay cell preserving incidences: if two Voronoi polyhedra are incident
(i.e., share a common face), then their duals must belong to the dual of the common face.
This procedure is similar to taking the dual graph in two-dimensional case, and a simple
formal way to show its consistency in higher dimensions is the lifting to paraboloid. More
precisely, embed R” into R"*! as a plane z,,,; = 0 and lift every point z of X to (z, ||z?).
Then it can be shown, that the orthogonal projection of the lower convex hull of the lifted
points onto R” satisfies these properties; see [24]. Moreover, for points in general posi-
tion the construction gives the same Delaunay mosaic as before; but in the other case it
produces a cell complex, embedded in R", which is not necessarily simplicial.



1.3 Weighted Voronoi and Delaunay complexes

The first generalization of the Voronoi diagrams and Delaunay mosaics considered in this
work assigns weights to the points; see Figure [1.3. This extra degree of freedom permits

( / ’ N
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Figure 1.3: Weighted Voronoi tessellation in R? with superimposed weighted Delaunay mo-
saic. All points have zero weight except the point with the shaded domain, which has positive
weight.

better approximations of observed tilings, such as cell cultures in plants [62] and mi-
crostructures of materials [16]. Let Y be a point set in R¥, and define for a pointy € Y
with weight w(y) € R the power distance of any point a € R¥ to be ||a — y||> —w(y). If w(y)
is 0, then the power distance is the squared Euclidean distance, but it can be negative if the
weights are positive. As before, the weighted Voronoi domain of y is defined as the set of
points, whose power distance to x is not greater than to the other points of Y. The weighted
Voronoi diagram or power diagram [4] or Laguerre tessellation [49] is the collection of all
weighted Voronoi domains. The weighted Delaunay mosaic WDelY, sometimes called La-
guerre triangulation [59] or regular triangulation [38], is again isomorphic to its nerve.
Assuming general position, which now requires an additional assumption on weights (see
[26, page 68]), it can be geometrically realized in R* with vertices being a subset of Y.
We note that some points of X might have an empty weighted Voronoi domain, thus not
belonging to weighted Delaunay mosaic. As in the remark on Delaunay mosaics, one can
also cope with points not in general position using the weighted lifting. The procedure is
similar with the only difference that one now lifts y to (y, ||y[|* — w(y)) in R**™,

A simple intuition can be given for the concept when the weight is negative: assume
R* is embedded into R™ and consider the point § which lies at the distance \/—w(y) to

y in the space orthogonal to R*. Then the power distance of any point a € R* to x is
exactly the squared Euclidean distance to ¢, which gives a way to construct a weighted
Voronoi diagram by taking a slice of an (unweighted) Voronoi diagram in R"; see [6, 69].
Specifically, if X is a discrete set of points in R” and R¥ < R" is spanned by the firstk < n
coordinate axes, then the Voronoi tessellation of X in R” intersects R” in a k-dimensional
weighted Voronoi tessellation. The points in R* that generate the weighted tessellation are
the orthogonal projections y,, of the points = € X, and their weights are w, = —||z — y, HQ
While all weights in this construction are non-positive, this is not a restriction of generality
because the tessellation remains unchanged when all weights are increased by the same
amount. Indeed, every finite weighted Voronoi tessellation can be obtained as a slice of an



unweighted Voronoi tessellation. If X is in general position (see below) in R”, then this
slice is a normal tessellation in R¥, guaranteeing that the dual weighted Delaunay mosaic
can be canonically embedded in R*. There is also an intriguing connection between the
volumes of skeleta of unweighted Voronoi tessellations and the number of simplices in
weighted Delaunay mosaics through the Crofton formula, which is worth exploring. We
will state this result in Section @ after introducing the necessary notation.

This work focuses on weighted Delaunay mosaics that are obtained as duals of slices
of random unweighted Voronoi diagrams. In this case, the radius function can be naturally
defined. Before doing this, however, we need to slightly adjust the notion of general posi-
tion for points in R". Specifically, we add the following two requirements to the definition
on page H]: for every 0 < j < n,

4, considering the unique j-plane that passes through j + 1 points, this plane is neither
orthogonal nor parallel to R¥,

5. no two points have identical distance to R”.

For j = 0, property 4 means that no point belongs to R¥. This additional properties assert
that R* is a “generic plane” in R”. Now we are ready to define the radius function. Given a
point set X in general position in R", denote its projection onto R* by X". The radius func-
tion, Ryp: WDel X’ — R, maps every simplex ) of WDel X” to the radius of the smallest
(n — 1)-sphere that satisfies the following properties:

e it passes through all preimages of the vertices of the simplex,
« it does not contain any points of X inside,

e its center lies in R”.

In other words, this is the smallest empty circumscribed sphere of the preimage of () that
has its center in R*. Indeed, simplex Q) belongs to the weighted Delaunay mosaic iff the
Voronoi domains of the preimages of vertices of () have a common intersection with R,
and a point belongs to this intersection iff it is a center of such sphere. We call this sphere
the weighted Delaunay sphere of () or the anchored Delaunay sphere of the preimage of ().
Also, its center is called the anchor of () or of its preimage. Note that Ryyp = Rp if k£ = n.

1.4 Voronoi and Delaunay complexes of higher order

Another generalization of Voronoi diagram partitions the space not according to the clos-
est point, but to the closest k£ points. As usual, we start with a discrete set X C R", and
for k points 1, . .., x; of X we define the order-k Voronoi domain domy(x1, ..., ), gen-
erated by these points, to consist of points a € R"”, such that xy, ..., z; are the k closest to
a points of X. An order-k Voronoi diagram Vor(k)(X) [68, 35] is defined as the collection
of order-k Voronoi domains, spanned by k-point subsets of X. An example is presented
in Figure [L.4. The order-1 Voronoi diagram is thus the usual Voronoi diagram. Note that
for £ > 1 the diagram may not be normal even generically, i.e., for some ¢t domains their
intersection can be not (n —t + 1)-dimensional. For example, if X' consists of four points in
general position in R?, then the six order-2 Voronoi domains intersect in a common point,



Figure 1.4: The dotted edges decompose the plane into the order-1 Voronoi domains, while
the solid edges decompose it into order-2 Voronoi domains. The two tessellations share some
of their vertices but not all.

the circumcenter of the tetrahedron. It is not completely straightforward therefore, how to
generalize the Voronoi-Delaunay duality for order-£ diagrams. We cannot take the short-
cut with the nerve, because the inconvenient case when the nerve can not be embedded
in R" is typical now, so we have to construct a geometrically dual tessellation with a bit
more care. As in the note on geometrical duality in Section [1.2, we would like to have a dual
diagram in a sense that every j-dimensional polyhedron of the order-%£ Voronoi diagram
corresponds to an (n—j)-dimensional polytope in the order-% Delaunay triangulation, and
the incidence is preserved: if two order-k Voronoi polyhedra share a common face, then
their duals must be the faces of the dual of the common face. It can be shown [5] that it is
possible to construct such dual tessellation in the following way. Assign to each non-empty
order-k Voronoi domain, generated by k points of X, the center of mass of these points.
These will be the duals of order-k£ Voronoi domains. Then the order-k Delaunay mosaic
of X, denoted by Del®) X, is obtained by connecting every two points with a segment if
the corresponding order-k Voronoi domains share a common face of dimension n — 1.
The polytopes of higher dimensional skeleta are then defined as above, i.e,, if a face of the
order-k Voronoi diagram is the intersection of several order-k Voronoi domains, then the

Figure 1.5: The order-1 Delaunay mosaic on the left and the order-2 Delaunay mosaic on the
right, both superimposed on their corresponding Voronoi tessellations.



polytope in the dual is the convex hull of the vertices dual to these domains. An example
is presented in Figure [L.5. To prove that this construction is consistent, we can describe
it as a projection of a special lower convex hull of points in R"*, More precisely, we can
consider the order-k Voronoi diagram as a (non-generic) weighted Voronoi diagram with
appropriately chosen weights; see [5, 27]. Another way to construct the order-k Delau-
nay mosaic is iterative, where one can obtain the order-£ diagram from the order £ — 1
[50, 5]. Clearly, when the order-%k Voronoi diagram is not normal, the corresponding dual
is not a triangulation. Throughout the text we will refer to the cells of the order-£ Voronoi
tessellations as order-£ Voronoi polyhedra.

After defining the Delaunay mosaic of order £, we aim at generalizing the radius func-
tion to this case. Unfortunately, the discrete Morse theory for order-k diagrams seems to
not have been developed yet, and the idea of the radius function originates from it. So we
do not have any reference, and we defer the definition until Chapter E As we are going
to see, the order-1 and order-k cases are not significantly different from the probabilistic
point of view, so the discrete Morse theory will be the main topic of that chapter.

1.5 Discrete Morse theory

1.5.1 Main definitions

In this section we summarize the concepts of the discrete Morse theory introduced in
[36], generalized in [37], and applied to Delaunay complexes in [8]. The motivation comes
from the classical Morse theory, which studies smooth manifolds by analyzing functions
on them; see [57]. The generalization to the discrete case is not straightforward, see [26]
for a discussion, and there are some further differences in notation. In our case we stick
to the following. Let 3 be a simplicial complex, and consider a function f : ¥ — R. For
us this function is a generalized discrete Morse function if it is increasing, meaning that if a
simplex P € Y is aface of Q € ¥ then f(P) < f(Q), and provides an interval structure
on X.. To explain the latter concept, for two simplices L, U € X with L being a face of U we
define an interval [L,U] = {P € ¥: L C P C U} to contain all faces of U that have L as
their face. L is called the lower bound and U the upper bound of the interval. If P is a face of
@ and f(P) = f(Q), then all simplices of [P, ()] also have the same function value. A sim-
ple definition of the interval structure would just require that every level set f~'(r) C ¥
is an interval. However, it would prohibit that all vertices have the same function value,
which is often the case in our considerations. So, not aiming at the full generality, for the
purposes of this work we require that f(P) > 0 for all simplices, and f(P) = 0 can only
hold if P is a single vertex. So, for every r > 0 we require that f~!(r) is an interval and
f71(0) contains only vertices. The interval structure on X is the decomposition of 3 into
maximal intervals sharing the function value. If an interval [L, U] in this decomposition
contains a single simplex, i.e., if L = U, then this simplex is called critical and the interval
singular. All simplices which are not critical are called regular. In particular, all vertices
with function value 0 are required to be critical. Function values on critical (corr. regular)
simplices are called critical (corr. regular) values.

This terminology mimics the classical Morse theory, and, indeed, critical simplices are
of topological significance. The following theorem [36, 37] is an analogue of the classical
theorem on retractability of sublevel sets of classical Morse functions:



Theorem. Let X be a simplicial complex and f a generalized discrete Morse function on it.
Write 3, for the sublevel set: 3. = f~1([0, r|). If a real half-segment (r1,7r5] C R does not
contain critical values, then ., \, ¥,,.

Here by \, we mean collapsability [73], which is a simplicial analogue of deformation
retraction. What is important is that it implies that ,., and X, are homotopy equivalent.
A stronger statement holds: there exists a CW-complex, which has one cell of the corre-
sponding dimension for every critical simplex of > and is homotopy equivalent to >.. It is
called the Morse complex. Writing n; for the number of j-dimensional simplices in %, ¢;
for the number of j-dimensional critical simplices, we can thus obtain the discrete Morse
relations:

X(Z) =) (=1)8;(%) = Z(—l)jnj => (—1)c;,

Fj
%
| A

j
)i—a
Z cg(X

Here x (%) is the Euler characteristic, defined by the first equality, and 3;(X) is the j-th Betti
number of ¥, i.e,, the rank of the j-th homology group (say, modulo Z/27Z). See [41, 26]
for an introduction to these concepts. The last two expressions are called discrete Morse
inequalities.

Before we continue, we want to make a remark on the number of simplices in an in-
terval. Let [L, U] be an interval with dim L = ¢ and dim U = m. Then we call (¢, m) the
type of the interval, and the interval itself an (¢, m)-interval. Most of the time we will count
the intervals in random mosaics, and to get the number of simplices out of the number of
intervals we note that an (¢, m)-interval has (T_‘f ) simplices of dimension j. This simple
fact can be used to prove the Euler relation above: for every non-singular interval the al-
ternating sum of numbers of simplices in it is thus > (—1)’ (Tj”_f) = (1 —1)"*=0.To get
the number j-simplices in a complex knowing its interval structure we have the following
lemma.

Lemma 1.5.1 (Simplices and intervals). Let > be a simplicial complex with a generalized
discrete Morse function and write c,,,, for the number of (¢, m)-intervals and d; for the num-

ber of j-simplices in ¥.. Then
7 (m —/ )
Z . | Ctm-
=0 m-—1J

This equation will be used every time we compute densities of j-dimensional simplices
in a random simplicial complex.

1.5.2 Delaunay and other mosaics

In [8] it was shown that Rp and R are generalized discrete Morse functions on the De-
launay and Cech complexes if the underlying point set is in general position. The main idea
is that if two simplices share a common Delaunay sphere (or a common smallest enclos-
ing ball), then their intersection and union do so, implying that a set of simplices sharing
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a Delaunay sphere (or a smallest enclosing ball) is always an interval. An identical claim
holds for anchored Delaunay spheres of the weighted Delaunay mosaics, so Ryp is also
a generalized discrete Morse function. An important fact is that the intervals imposed by
these functions have nice intrinsic characterizations. The crucial role plays the number of
points inside the smallest sphere, circumscribed around the simplex, and the visibility of
facets. We turn to this in more details right away.

Delaunay radius function intervals. By general position assumption and by definition,
the intervals of the Delaunay mosaic are the simplices that share the Delaunay sphere. Re-
call that the Delaunay sphere S(Q) of a Delaunay simplex ) € Del X is the smallest sphere
that has no points of X inside and passes through all vertices of (). We follow [8] to de-
scribe the interval containing ). Define U = S(Q) N X. Clearly, U 2O @ is the upper bound
of the interval. Indeed, S(Q) is the smallest empty sphere that passes through vertices
of U, otherwise we would find a smaller empty sphere that passes through vertices of Q).
To determine the lower bound, we need the notion of visibility. Consider a d-dimensional
simplex ¢ in R™ and consider its affine hull, a d-dimensional space o« = R, A facet, i.e.,
a (d — 1)-dimensional face of ¢ is called visible from point p € «, if the (d — 1)-plane it
lies within separates the opposite vertex from p. Every ray, originating from p and passing
through a facet, enters the simplex at a visible and leaves at an invisible facet, explaining
the choice of the term; see Figure [L.6. If p is the center of the unique circumscribed sphere
of o in o, we omit the “from” part and just call the facet visible. We refer to [8] for the proof

X

Figure 1.6: Visible facets of different tetrahedra. The intersection of all visible facets is in bold.
If there are no visible facets, the intersection is the whole tetrahedron.

that the lower bound L of the interval containing () is the intersection of all visible facets
of U. Similar results will be proven in Lemmas and . We summarize this in the
lemma:

Lemma 1.5.2 (Delaunay complex interval structure). Letting X C R" be in general posi-
tion, a pair L. C U of subsets of X, considered as simplices, defines an interval of the radius
function Rp: DelX — R iff the smallest circumscribed sphere of U is empty and L is the
largest face of U common to all visible facets, i.e, L = U N(\peyisuy ', where vis(U) denotes
the set of visible facets of U. The smallest circumscribed sphere of U is the common Delaunay
sphere of all simplices in this interval.

Recall the special case of a critical simplex, L = U, which is characterized by contain-
ing the center of its Delaunay sphere inside. In this case, the closed ball bounded by the
Delaunay sphere is also the smallest enclosing ball of U (see page ).
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Cech radius function intervals. An even simpler intrinsic characterization can be pro-
vided for the Cech complex. Again, by general position assumption the simplices that be-
long to a common interval are the simplices sharing the smallest enclosing ball. Take a sim-
plex @ C X and write B(Q) for its (closed) smallest enclosing ball. Let L = X Nbd B(Q)
and U = X N B(Q). Clearly, bd B(Q) is the smallest sphere passing through vertices of
L, and trivially L C @), because otherwise a smaller enclosing ball would exist. Further,
B(Q) is by definition the smallest enclosing ball of U. The interval of R containing Q) is
thus [L, U]; more details can be found in [8]. Note that the smallest enclosing ball of L
passes through all vertices of L iff the smallest circumscribed sphere of L has its center in
conv L, or, equivalently, L has no visible facets. The statement about the interval structure
for Cech complex follows:

Lemma 1.5.3 (Cech complex interval structure). Letting X C R™ be in general position, a
pair L. C U of subsets of X, considered as simplices, defines an interval of R ;s CechX — R
iff L has no visible facets and, writing B(L) for the closed ball bounded by the smallest (n—1)-
sphere passing through vertices of L, U = B(L) N X. The smallest circumscribed sphere of
L bounds the common smallest enclosing ball of all simplices of this interval.

Note that critical simplices of Cech and Delaunay complexes are the same.

Weighted Delaunay radius function intervals. The weighted case is a simple extension
of the Delaunay characterization. Without going into details, we state that they are identi-
cal modulo anchoring:

Lemma 1.5.4 (Weighted Delaunay complex interval structure). Let X C R" be in general
position and X' its projection onto R*. Projections L' and U’ of a pair L C U of subsets of
X, considered as simplices, define an interval [L', U'] of Ryyp: WDel X' — R iff the smallest
anchored circumscribed sphere of U is empty and L' is the largest face of U’ common to
all facets of U’ visible from its center; ie, L' = U’ N Npeyswr) F- The smallest anchored
circumscribed sphere of U is the common anchored Delaunay sphere of all simplices of this
interval.

Figure 1.7: From left to right on the horizontal line: a critical vertex, an edge-vertex pair, a
critical edge, a vertex-edge pair, and another critical vertex.

The proof is also identical to [8] modulo anchoring, and details are left to the reader.
See Figure [L.7 for a 1-dimensional example. A notable difference to the two previous com-
plexesis thatitis no longer true that all vertices are critical and have function value 0. That
is why a rich interval structure appears already in low dimensions.



12

1.6 Poisson point process

We study properties of randomly generated discrete point sets in R using a Poisson point
process. It is defined by an intensity measure, which is a Borel measure on R"”, absolutely
continuous with respect to the Lebesgue measure. As before, the space R" is chosen to
simplify the notation, any other measurable space can be used instead, and we will also use
S™ later. The Poisson point process can be characterized by the following two properties:

1. The numbers of points within a finite collection of pairwise disjoint Borel sets are
independent random variables;

2. The expected number of points within a Borel set is the intensity measure of the set.

The intensity function is the Radon-Nikodym derivative of the intensity measure, ¢: R" —
[0, +00), i.e. the function, such that the intensity measure of any Borel set is the integral of
this function with respect to the Lebesgue measure. Formally, a Poisson point process is
thus a random counting measure on R”. We do not go into the measure-theoretic details
however, and refer to [46] for a good introduction to Poisson point processes.

We will work with stationary or homogeneous Poisson point processes, which are de-
fined by constant intensity functions: ¢(x) = p, and the constant can be called density in
this case. All processes will be assumed stationary unless explicitly stated. We further do
not distinguish the process as random variable and its realization, writing X C R” for a
random point set, which has the corresponding distribution.

Properties. First we note that for stationary processes we can express Condition 2 more
succinctly as E[| X N B|] = p|| B||. Here || B|| stands for the Lebesgue measure of B. The two
conditions imply that the number of points in a Borel set B has a Poisson distribution with
parameter p|| B||. In particular, the probability of having & points in Bis P[|X N B| = k| =
%e*mw”, so the probability of having no pointin Bis P[X N B = )] = e 715l

Another important property is the Slivnyak-Mecke formula, which is used to rewrite
expectations of random variables, depending on all k-tuples of points of a Poisson point
process. Write d, for a delta-measure at point z € R?, i.e.,, the measure which is 1 for any
Borel set containing x and 0 otherwise, and let N be the space of all counting measures, i.e.,
finite and countable sums of delta-measures. We again skip the measure-theoretic details
about defining the natural measure on N and refer to [67, Chapter 3]. The formula, stated
as Corollary 3.2.3 in [67], is the following:

Lemma 1.6.1 (Slivnyak-Mecke formula). Let X be a Poisson process in R" with intensity
function s, let k € N, and let f: N x (R")* — R be a nonnegative measurable function.
Write x for a k-ple of points (z1, ..., x;) € (R™)*. Then

E[ ¥ f(X,x)]= / E[f (X —I—zk:&;i, x)]g(wl) sy dx.

eXk -
x x€(R") =1

This formula will be used in many contexts throughout this text, and now we can use it
to show that the Poisson point process is in general position according to the definitions
in Sections [1.4 and [L.3 with probability 1. Indeed, every general position assumption con-
cerns the fixed number of points of X, so setting f (X, x) to 1 iff x violates one of the as-
sumptions, we get on the left the probability of this event and on the right 0, because the
Lebesgue measure of the corresponding set is 0. It shows that X is in general position with
probability 1, and we will always assume that it is the case.
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1.7 Random mosaics

The term “random mosaic” stands for a random tessellation of the space. A random tessel-
lation can be obtained either directly by taking random hyperplanes in the space, or indi-
rectly, by first choosing random points and then producing a random tessellation based on
these points. Questions under consideration in this work correspond to mosaics related
to the Poisson point process. More precisely, given a Poisson point process X in R" and
using the fact that it is in general position with probability 1, we can consider all tessella-
tions defined in previous sections. We thus obtain Poisson-Voronoi and Poisson-Delaunay
mosaics, as well as weighted Poisson-Voronoi and weighted Poisson-Delaunay mosaics and
Poisson-Voronoi and Poisson-Delaunay mosaics of order k. We can also study the subcom-
plexes with the radius bound, which have holes and are thus not tessellations of the space,
as well as Poisson-Cech complexes, which do not partition the space either. We consider all
mentioned random objects as random simplicial or CW-complexes, and the focus of this
work is to find the expected number of their cells and the distribution of radius. These
particular questions on Poisson-Delaunay mosaics have been pioneered by Miles almost
50 years ago [54, 55]. Properties of random weighted Voronoi diagrams with given distri-
butions of weights, like normal or uniform, were studied in [48, 49]. Weighted Poisson-
Delaunay mosaics corresponding to slices of Poisson-Voronoi tessellations were briefly
considered in [58]. Topological characteristics of Cech and Rips complexes over Poisson
point processes have been investigated in work of Kahle [44, 45], Bobrowski and Wein-
berger [13], Bobrowski and Adler [11], and Decreusefond et al. [19]. A good survey on ran-
dom mosaics and stochastic geometric background is [67]. Another survey is the chapter
“Poisson Voronoi Diagrams” in [59, pp. 291-410]. There is also a connection to percola-
tion theory. Namely, the Poisson-Delaunay complex for radius r has the same topology as
the Boolean or Gilbert disk model [15]. Percolation on the Poisson-Voronoi mosaic itself is
also interesting [10, 14]. We now summarize the relevant results for this work and then
state our questions formally.

We start with mentioning that with probability 1 the Poisson-Voronoi mosaic is nor-
mal, because as noticed before the Poisson point process is in general position with prob-
ability 1. Further, since conv X = R" with probability 1, all Voronoi domains are bounded
convex polyhedra, see [67]. The first relevant result concerns volumes and areas of the
skeleta of Poisson-Voronoi mosaic [56, 58, 67].

Theorem 1 (Expected volume of Poisson-Voronoi skeleta). Fix 0 < ¢ < n, fix a Borel
region {) C R", and let X be a stationary Poisson point process with density p in R™. Then the
expected (-dimensional volume of the (-dimensional skeleton of the Poisson-Voronoi mosaic
intersected with () is

- on—t+1,_ 7=t n2—nll+1 r(1+@)"’”%r n—£+£
Bl = sy

2

Here I' stands for the Gamma function, see Section [1] Setting ¢/ = (in this theorem, we
get the number of Voronoi vertices, or, equivalently the number of Delaunay n-simplices.
A simple observation that every point of the point process is a Delaunay vertex and that
every Delaunay (n — 1)-simplex belongs to two n-simplices gives the following relations
[67], which are enough to establish the size of Poisson-Delaunay mosaics for n < 3:
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Theorem 2. Fix a Borel region ) C R™ and let X be a stationary Poisson point process with
density p in R". Write d for the expected number of j-dimensional Delaunay simplices in L.
Then

dy = pll€2]] dy, = E[no]
1 noo
n = ”; dm S (—1)Ydr = 0.
=0

The last relation comes from the Euler formula. There are several subtleties hidden in
this statement, the first one is the definition of the relation “simplex lies in the region”. The
usual way of defining this relation for random mosaics is to consider centroids of faces and
to count the faces with centroid inside the region. One possible choice of the centroid is
the center of mass of the face, but any other translationally invariant choice is acceptable
and gives the same result, see [58] for details. In other words, for a random mosaic we
construct a point process of centroids of j-dimensional faces and compute the expected
number of points of this point process in the region. Another problem is that it is no longer
true that every (n — 1)-simplex belongs to two n-simplices when we restrict the mosaic
to €2, but this can be worked around [58, 67]. If instead we say that a simplex is inside
) if its intersection with (2 is not empty, then under appropriate formalization the same
result holds for regions with smooth boundary up to o(||2]|) as ||€2|| — oo, compare with
Lemma |5.3.2. We are not going to use this formalization of centroids, rather going for the
characterization which takes into account the neighboring faces. Before turning to this,
we would just like to mention the result about the weighted Poisson-Delaunay mosaics.
Relations between volumes of skeleta of Voronoi tessellations and weighted Voronoi tes-
sellations were studied in [58], and for the expected number of weighted Voronoi vertices,
or, equivalently, the number of weighted Delaunay top-dimensional simplices, the follow-
ing formula was obtained:

Theorem 3 (Expected sizes of weighted Poisson-Delaunay mosaics). Fix a Borel region
Q) C R¥ C R" and let X be a stationary Poisson point process with density p in R". Write
df’"for the expected number of j-dimensional weighted Delaunay simplices in €). Then

e Gromey 2kl F(W) F(%H)kﬂf% F(k: L1 %)
[ I i b e e L G e
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kn k,n
dk—l - 2 dk: Y

where o; stands for the (i — 1)-dimensional area of the unit sphere in R".

Subsets and subcomplexes. In this paragraph we emphasize the difference in the way
we use to count simplices. Take for instance the Poisson-Delaunay mosaic. Assuming X is
in general position, we use a Borel set 2 to specify three subsets of it.

o The subcomplex K, = K((£2) of Del X consists of all simplices () such that Vor(Q) N
Q) + 0; see Figure [1.8. Equivalently, K, consists of all simplices such that the in-
tersection N,coldom(z) N Q] # 0. If  is convex, the intersections dom(z) N €2 are
convex as well, and the Nerve Theorem applies and asserts that K and €2 have the
same homotopy type, and since a convex set is contractible, this implies y (/) = 1.
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e The subset K; = K;(f2) of DelX consists of all simplices in K; whose Delaunay
spheres (recall the definition of the Delaunay sphere in Section ) have center in
(2. We can construct K by removing one simplex at a time from K. Each removed
simplex changes the Euler characteristic by 1, which gives

IX(K1) — x(Ko)| < Ko\ K.

o The subset Ky = K5(2) of Del X consists of all simplices in Del.X whose center of
mass lies in 2.

Figure 1.8: The Voronoi diagram restricted to a disk on the left, and the corresponding re-
stricted Delaunay mosaic, K, on the right. In this case, the set K; consists of all simplices in
Ky except for the two vertices that lie outside €.

We will always work with K. So, we say that a Delaunay simplex lies in 2 if its Delaunay
center lies in (2. The Delaunay center of the simplex, as defined in Section is not an
internal characteristic of the face, it relies on the emptiness of some spheres, so this defi-
nition is not equivalent to choosing a centroid, which gives K. Nevertheless, this choice is
still very “local”: if € is a nice set, then the difference between the number of simplices in
Koy and K7 is o([|Q]|); see Section 5.3, This is so because a simplex belongs to K, \ K; only if
the common intersection of the corresponding Voronoi domains touches the boundary of
(2, and there are not many such simplices. The details are a bit lengthy and can be found in
Section 5.3, It is also known (see [67]) that the difference between K and K is o(||2]]), so
the expected numbers of simplices in K; and K differ at most by o(||€2||), but we will get
precise expressions without these small-order terms, implying that the expected numbers
of simplices in K and K, are the same, so Theorem 2 holds both for K; and K5, and up to
o(]|2|]) for K. Similar remarks hold for all other complexes in question.

1.8 Random inscribed polytopes and Fisher space

One more question targeted in this work is about the sizes of Poisson-Delaunay mosaics
on the sphere. Our reason for comparing random sets in the Euclidean space and on the
sphere is the Fisher information metric, which measures the dissimilarity between dis-
crete probability distributions. Write x = (z, z1,...,2,) andy = (yo,¥1, - - -, Yn) for two
such distributions, with 7" ;z; = > (v; = 1 and x;, y; > O forall 7, and note thatx and y
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are points of the n-dimensional standard simplex, A™. Letting v: [0, 1] — A" be a smooth
curve connecting x = 7(0) toy = (1), we define its length as

Length(y) = / J % s B2,

=
t=0 %ilt)

in which ~;(¢) and +;(t) are the i-th components of the curve and its velocity vector. The
Fisher information metric assigns the length of the shortest connecting path to the pair
X,y; see [EL Section 2.2] as well as [m, Section [.4], where this metric is referred to as the
Shahshahani metric. This way of measuring distance is fundamental in information geom-
etry and in population genetics.

To shed light on the Fisher information metric, we map every pointx = (xg, z1, ..., x,)
of A™ to the point p(x) = (ug, u1, . . ., u,) with u; = \/2z; for every i. The coordinates of
¢(x) are all non-negative and satisfy 37, u? = 2. In words, ¢ (x) is a point of v/2S", which
is our notation for the non-negative orthant of the sphere with radius \/2 centered at the
origin in R"*!; see Figure @ on the right. As noticed already by [3], see also [l page
39], this mapping is an isometry between A" and \/581. We can therefore understand
A" under the Fisher information metric by studying S} under the geodesic distance. To
get a handle on the difference between random sets in R"” and in A", we compare point
sets selected from Poisson point processes in R™ and on S", the latter being the topic of
this section. Figure IE illustrates the isometry by showing three level lines each for seven
points in the standard triangle on the left and for the seven corresponding points in the
positive orthant of the sphere on the right.

°

o,

» &

Figure 1.9: Left: disk neighborhoods under the Fisher information metric of seven points in
the standard triangle. Right: the corresponding seven points and cap neighborhoods in the
isometric non-negative octant of the 2-sphere. For aesthetic reasons, the octant is scaled to
1/4/2 times its actual size. Thanks to Hubert Wagner for providing the figure.

Consider the model in which a random polytope is generated by taking the convex
hull of randomly chosen points on the unit sphere. The first paper with substantial results
on this topic is [@]. The large body of work on the expected number of faces of random
polytopes and their volume is summarized and surveyed in [@, 43,63, 66, E7|]. A survey of
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recent results can be found in [70]. The more general setting in which the points are se-
lected on the boundary of a convex body is addressed in [64], and the linear dependence
of the expected number of faces on the number of vertices is proved. The connection to
the present work becomes clear if we notice that the Delaunay mosaic for a point set on
the sphere is essentially their convex hull.

Voronoi tessellations and Delaunay mosaics. We recall that the object under consider-
ation is S® C R"*! with the geodesic distance, d: S" x S — R, the metric inherited from
the Euclidean metric on R"*!, The distance between any pair of points is defined to be
the length of the shortest connecting path: d(z,y) = 2arcsin @ This shortest path is
unique, unless y = —ux, in which case there are infinitely many shortest paths of length
7. Letting X be a finite set of points on S”, we follow [65] to define the Voronoi domain of
x € X as the points for which z minimizes the geodesic distance, further constraining it
to within the open hemisphere centered at x:

dom(z) = {w € §" | d(w, ) < d(w,y) forally € X and d(w,r) < §}.

Note that d(w, x) < d(w,y) defines a closed hemisphere, namely all points w € S" that
satisfy ||w — z|| < ||w — y|| in R"*. It follows that dom(z) is the intersection of a finite
collection of hemispheres — a set we refer to as a (convex) spherical polytope. Any two
of these spherical polytopes have disjoint interiors. The Voronoi tessellation of X is the
collection of Voronoi domains, one for each point in X. It covers the entire n-sphere, ex-
cept if X is contained in a closed hemisphere, in which case it covers S” minus a possibly
degenerate but non-empty spherical polytope; see Figure . Generically, the common

Figure 1.10: The Voronoi domains of four points on the 2-dimensional sphere. The darker
region in the south does not belong to any of these domains because the four points all
belong to the northern hemisphere. The dual Delaunay complex consists of two triangles
glued along a shared edge.

intersection of 1 < k£ < n + 1 Voronoi domains is either empty or a shared face of dimen-
sionn — k 4 1, and the common intersection of n + 2 or more Voronoi domains is empty.



18

The Delaunay mosaic of X is isomorphic to the nerve of the Voronoi tessellation:
DelX = {Q C X | ﬂer dom(z) # 0}.

The Nerve Theorem implies that the Delaunay mosaic has the same homotopy type as
the union of Voronoi domains. Assuming there is no closed hemisphere that contains all
points, this is the homotopy type of S".

Delaunay mosaics and inscribed polytopes. The Delaunay mosaic is an (abstract) sim-
plicial complex. In the generic case, Del X can be geometrically realized in R™"!, namely
by mapping every abstract simplex, @), to the convex hull of its points. To make this pre-
cise, we compare Del X with the boundary complex of conv X, which is a convex polytope
inscribed in the n-sphere. Each (n — 1)-sphere S C S™ defines two (closed) caps. If S is
a great-sphere, these caps are hemispheres, else they have different volume and we call
one the small cap and the other the big cap. Every facet of conv X defines such a pair of
caps, namely the portions of S” on the two sides of the n-plane spanned by the facet. One
of these caps is empty, by which we mean that no point of X lies in its interior. If 0 is in
the interior of conv X, then all empty caps are small, but if 0 ¢ conv X, then there is at
least one empty big cap. For non-generic sets, 0 may lie on the boundary of conv X, in
which case there is at least one empty hemisphere cap. Parsing the definitions of Voronoi
and Delaunay mosaics, we observe that a simplex () C X belongs to the Delaunay mosaic
iff there is an (n — 1)-sphere, S, that contains (), which is not a great-sphere, and whose
empty cap is small. In the generic case, these simplices () are exactly the faces of the facets
of conv X whose small caps are empty. In particular, it shows that if points are not con-
tained in any hemisphere, then Del X is isomorphic to the boundary of conv X, a random
inscribed polytope.

Radius function. Consider growing a spherical cap from each pointin X. To formalize this
process, we write Cap, (r) = {w € S" | d(w,z) < n} for the cap with center z € X and
geodesic radius 7. Clipping the Voronoi domain to within the cap, for each point x € X,
we get a subcomplex of the Delaunay mosaic when we take the nerve:

Del, X = {Q C X | ﬂzeQ[dom(x) N Cap, (z)] # 0}.

By construction, Del, X is a simplicial complex, which we call the spherical Delaunay com-
plex, and Del, X C Del. X whenever n < (.Forn = 7, each restricting cap is a hemisphere
and thus contains its corresponding Voronoi domain, which implies Del, X = Del X. We
are now ready to introduce the spherical Delaunay radius function, Rs: Del X — R, which
maps every simplex to the smallest geodesic radius for which the simplex belongs to the
subcomplex of the Delaunay mosaic:

Rs(Q) = min{n | @ € Del, X }.

In other words, Rs~'[0, 7] = Del, X. We will prove shortly that for generic X, the radius
function on the Delaunay mosaic is a generalized discrete Morse function. Formally, we
say a finite set X C S" is in general position if | X| > n + 1 and forevery 0 < k < n

1. no k + 3 points of X belong to a common k-sphere on S”,

2. considering the unique (k + 1)-sphere that passes through £ + 3 points of X, no
k + 2 of these points belong to a common k-sphere that shares its center with the
(k + 1)-sphere.
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Condition 2 implies that no n + 1 points of X lie on a great-sphere of S”. We need a few
additional concepts. Assume X is in general position and () C X is a k-simplex with 0 <
k < n.A cap circumscribes () if the bounding (n — 1)-sphere passes through all points of Q).
Since X is generic, ) has a unique smallest circumscribed cap, which we denote cap(Q). If
Q@ € Del X, @ also has a unique smallest empty circumscribed cap, which may or may not be
the smallest circumscribed cap. We call it the Delaunay cap of () and denote it as capy(Q).
The Euclidean center of a cap is the center of the bounding (n—1) sphere, which is a pointin
R"™*! butnot on S™. Using this center, we use the notion of visibility within the affine hull of
@), which is a k-dimensional plane in R"*!, Recall that a facet of Q is visible from this center
ifthe (k — 1)-plane spanned by the facet separates the center from () or, equivalently, if the
center lies in one closed k-dimensional halfspace bounded by the (k — 1)-plane and @ is
contained in the other such halfspace. It is easy to see that the radius function maps every
simplex to the geodesic radius of its Delaunay cap; compare with Section @

Lemma 1.8.1 (Spherical radius function). Let X C S" be a finite set in general position.
Then Rgs: DelX — R is a generalized discrete Morse function, and [L, U] is an interval of
Rs iff cap(U) is empty and L is the maximal common face of all facets of U that are visible
from the Euclidean center of cap(U ). Furthermore, for every () € [L, U], we have capy(Q)) =
cap(U).

Proof. We prove that for each () € Del X there are unique Delaunay simplices L. C ) C U
such that cap(U) = capy(U), L is the intersection of all visible facts of U, and all simplices
in [L, U] share the Delaunay cap. Note that R¢(Q) is the geodesic radius of the Delaunay
cap of Q. Letting U C X be the set of all points on the (n — 1)-sphere that bounds this
Delaunay cap, we have capy(U) = cap(U) for else we could find a smaller empty circum-
scribed cap. Let z be the center and 7 the geodesic radius of cap(U). By assumption of
general position, |U| < n + 1, so U is a Delaunay simplex. For every facet F' of U, let zp
be the center and 7y the geodesic radius of cap(F'), and let ur be the unique vertex in
U\ F. We move the center of this cap along the shortest path from z to z while adjusting
the radius so that all points of F' remain on the boundary of the cap. During this motion,
the radius increases continuously, and when it reaches 7, the boundary of the cap passes
through up. If F' is visible from z, then u is inside the cap at the beginning and on the
boundary of the cap at the end of the motion. If F' is not visible from the Euclidean center,
then ur changes from outside at the beginning to on the boundary of the cap at the end
of the motion. In other words, cap(U) is the Delaunay cap of every visible facet of U, but
every invisible facet has a smaller empty circumscribed cap. Since the intersection of two
simplices with common Delaunay cap has the same Delaunay cap [8, Lemma 3.4], we can
take L as the intersection of all visible facets of U and get cap,(L) = cap(U). On the other
hand, any face of U that does not contain L is also a face of an invisible facet and therefore
has a smaller empty circumscribed cap. This implies L. C Q.

We note that the construction gives a partition of Del X into intervals. Indeed, any two
Delaunay simplices sharing the Delaunay cap give rise to the same simplex U and therefore
to the same interval [L, U]. This concludes the proof. O

REMARK. While the proof follows almost verbatim the proof in the Euclidean case [8], and
actually the Euclidean Delaunay mosaic of the spherical point set is almost identical to
the one we are talking about, there is a subtlety hidden in its definition. Indeed, because
each Voronoi domain is restricted to within the open hemisphere centered at the generat-
ing point, the sets dom(z) N Cap, (v) form a system in which every common intersection
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is either empty or contractible. The Nerve Theorem thus applies, proving that the sub-
complex of the Delaunay mosaic has the same homotopy type as the union of caps of ra-
dius 7. This property breaks down for the boundary complex of conv X. This can be seen
by considering the four points on S? shown in Figure [1.10: 4, B = (£e,0,v/1 —¢2) and
C,D = (0,41/2,+/3/2), in which ¢ is a sufficiently small positive real number. The great-
circle arc shared by the Voronoi domains of C' and D has length only slightly shorter than
7 and it intersects the union of four caps of geodesic radius 7 slightly larger than 7 in two
disconnected segments. The union of the four caps has the topology of a disk, while the
nerve has the topology of a circle. Indeed, the latter consists of two triangles glued along
a shared edge plus another edge connecting the two respective third vertices of the two
triangles.

Poisson point process. We are interested in random sets X C S”, and we primarily
consider Poisson point process on the sphere. Now we prove that the difference between
the boundary complex of conv X and Del X is small if X is a Poisson point process. More
precisely, the number of faces of conv X that are visible from 0 outside conv X vanishes
rapidly as the density increases. This is consistent with the rapid decrease of the proba-
bility that 0 € conv X, as computed in [72] for the uniform distribution on S".

Lemma 1.8.2 (Non-Delaunay faces). Let X be a Poisson point process with density p > 0
on S™. For every 0 < k < n, the expected number of k-faces of conv X that do not belong to
Del X goes to 0 as p goes to oc.

Proof. We may assume that conv X is simplicial and that no n + 1 points lie on a great-
sphere of S”. Let Q C X be a set of n + 1 points and consider its small and big caps. The
big cap has volume larger than of the volume of the sphere, 0,,,1/2, and @ is a facet of
conv X but not a simplex of Del X iff this big cap is empty. The probability of this event is
less than e~#7+1/2, The expected number of such facets of conv X is therefore less than a
constant times p"*!e~*7n+1/2, which goes to 0 as p goes to co. Here we used that E[| X |"*+!]
is at most a constant times p"*!. For k < n, every k-face of conv X that does not belong to
Del X is a face of a facet with this property. The expected number of such k-faces thus also
goes to 0 as p goes to oo. [

We need one more concept to express the asymptotic behavior of the expected num-
bers, when their density goes to infinity. Assuming a Poisson point process with density
p > 0 on S, for a cap with geodesic radius 7, we call 7 = np*/™ the normalized radius of
the cap. It is the geodesic radius of the cap after scaling the unit sphere to the sphere with
area p times bigger.

Uniform distribution. Taking points on the sphere uniformly at random may seem to be
more natural then considering a Poisson point process. For questions addressed in this
work there is not much difference, though. This will be briefly discussed in Section [7.3.
Curiously, we will need other related results for uniform distributions. In Section and
in Chapter 3 we will often face powers of the volume of a simplex under the integral over
all possible inscribed simplices. These integrals will be further investigated in Chapter @],
and the starting point is formed by the following theorems.

The first, simpler, result gives the moments of the volumes of cones over facets of a uni-
formly random inscribed simplex. Let u = (uq, uy, us, . . ., ux) be a k-simplex with vertices
on S*! C R™. For each 0 < i < k, let u; be the k-simplex obtained by substituting 0 for
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u; and write V, = Vol(u;) for its k-dimensional volume. We call this simplex a cone over
the i-th facet. The next theorem is [53, Equation 2.11] and with a minor correction [55,
Equation (23)], although known before.

Theorem 4 (Moments of cone volumes). Let ug, uy, us, ..., u; be independently and uni-
formly distributed on S"~! C R™. Then for any integer a > 0, the a-th moment of the volume
of a cone over any facet, i.e., the expectation of V.*, is

a 1 n - n a1t
Mnt, (k,n;a) = B[V,"] = -5 |5 n+{f/2] ]‘[ Hcktalid), (1.1)

With the exception of the proof of the next theorem, we will only need the case k = n.
Besides these moments, we also need the mixed moments to get our results. In general,
it seems to be a complicated problem, which can be reformulated in the language of ran-
dom matrices, asking about the mixed moments of minors of Wishart matrices, the ques-
tion considered e.g. in [22]. Indeed, there is a connection between uniform distribution
on the sphere and the Gaussian distribution, it will be used in Section [1] It leads to an
equivalent question for Gaussian random simplex, and a Gaussian random simplex can be
represented as arandom n X (n + 1)-matrix M with independent identically normally dis-
tributed elements. The cone volumes are the n x n-minors of this matrix, or equivalently,
the square roots of n x n-minors of M7 M, the latter being known as Wishart ensemble. Not
going further into this connection, we will compute the moments only for pairs of cones
now.

Theorem 5 (Pairwise mixed moments of cone volumes). Let u be a sequence of n + 1
independently and uniformly distributed points on S*~'. Then for any 0 < i < j < n and
integers a,b > 0, the expectation of V;"“ij is

) _ Mnti(n—1,n5a+b) [T(n/2)]2 T((a+1)/2) T((b+1)/2)
Mnt(n; a, b) = Ml [ e i) (1.2)

Proof. Note that V; = 1h;Aand V; = Lh;A, in which A is the (n — 1)-dimensional volume
of the shared facet of u; and u;, and h;, h; are the distances of the points w;, u; from the
hyperplane spanned by the shared facet. For geometric reasons, itis clear that »;, h;, A are
independent; see [53] for details. Hence, we get

E[VeV?) = —Ls E[h¢] E[hY] E[A*],

with E[A%*"] = Mnty(n — 1,n; a + b) with value given in (fL.1)). The value for E[r¢] given
in [53], right before Formula (2.11), is I(2)/T'(3) times T'(“:) /T(%+%). Substituting the
analogous expression for E[hﬂ gives the clalmed relation. ]

We illustrate Theorems B] and @ by computing Mnt; and Mnt, for a selected set of small
values of k, n, a, b, chosen so the results will be useful in Section @; see Table .

Another relevant resultis about the moments of the total volume of arandom inscribed
simplex. It seems to be much more complicated then Theorem @, and can actually be seen
as a consequence of Theorem El] proved in this work if we set f = 1. Indeed, a very similar
reasoning was used in [55] to get the following statement.



22

a=1 a=2 2
Mnty(k,n;a) | a=1 a=2 a=3 Mnta(n;a,b) | b=1 b=1 b=2
R T T T — T T
3 il L 3 1
48 162 216
4 o= 4

Table 1.1: Values of Mnt; for small values of k, n, a on the left, and values of Mnt, for small
values of n, a, b on the right.

Theorem 6 (Moments of simplex volumes). Let ug, . .., u; be k + 1 independent uniformly
distributed random points on S*~' C R", and write u = (uy, . . . , uy) for the k-simplex with
these vertices. Then for any integer a > (, the a-th moment of the volume of this simplex, is
k+1)(n+a
e ) 1:[ —k;+a+z’)/2)
p(EHGEEE ) o T((n =k +14)/2)

. 1 I'(n/2)
E[Vol(u)"] = -2 [F((n +a)/2)

1.9 Blaschke-Petkantschin formulas

Blaschke-Petkantschin formula is a classic result in integral geometry. It is used to change
from integration over £ points in R" to the integration over the affine hull of these points.
In this section we present the two well known variants of this formula and the necessary
notation. Let 0 < k < n and write £} for the Grassmannian consisting of all k-planes
passing through the origin in R". We recall that there is a standard measure on Grassma-
nian; see [39] and Section [1] The following theorem is the classic formula in the form
[55, Equation (27)]:

Theorem 7 (Linear Blaschke-Petkantschin formula). Fix 0 < k& < n. Then for a measur-
able non-negative function f: (R")**! — R

/ f(x)dx=/ / / f(h+x)(k!Vol(x))" * dx dhdL,

x€(Rn)k+1 LELY he Lt xeLk+1

in which x = (xg, z1,...,%x), each x; isa point in R", h + xis (h + xo, h + z1,...,h + x}),
and Vol(x) is the k-dimensional volume of the simplex spanned by x.

Almost all (n + 1)-tuples of points in R" define a unique (n — 1)-sphere that passes
through all of them. In other words, the following formula [67, Theorem 7.3.1] integrates
over circumscribed spheres of simplices in R™:

Theorem 8 (Top-dimensional spherical Blaschke-Petkantschin formula). Every measur-
able non-negative function f: (R")"*! — R satisfies

/ f(x)dx = / / / f(z 4+ ra)r™ "'nlVol(u) dudrdz,

xe(Rn)n+1 ZERM T‘ZO ue(Snfl)nJﬁl

in which we use the standard spherical measure on S,
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Further formulas of these type were studied in [74, 64].

Not explicitly used in this work but relevant for the derivation of the number of vertices
in a weighted Voronoi diagram is the Crofton’s formula. Using (50) and (103) from Chapter
6 of [39] (see also [67, Theorem 9.4.7]), we can obtain the following formula for a convex
set A C R** C R™

Aowl(d) = et [ [, o dea, (1.3)

Un—k---Vn—1

LeLy xlL

where A, is the (n — k)-dimensional Lebesgue measure and v; is the volume of a unit
ball in R%. The 1 is the indicator function, which is equal to 1 if z + L N A # () and is zero
otherwise. This formula clearly generalizes to the following:

Theorem (Crofton’s formula). Let A be an (n — k)-dimensional set in R™ which can be
decomposed as a countable union of convex sets. Then

)\n,k(A):%/ /#{(a:+L)ﬂA}da:dL,

Un—k--Vn—1

LeLy alL

where # is the (possibly infinite) number of points in the set.

Further generalizations are possible. For example, the convexity requirement can be
replaced with appropriate smoothness, but we are not going into these details.
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Results

In this chapter we collect new results of the work. Section .1] gives the background and
notation for standard functions and measures needed to state the results, while the results
themselves are summarized in the remaining sections, grouped by the random complex
they are related to.

2.1 Standard notation and functions

Before stating the results, we summarize the notation and functions used in the text.

Gamma functions. We recall that the lower incomplete Gamma function takes two param-
eters, j and ¢ty > 0, and is defined by

to .
v(Js to) = / t'=e™ dt.
t=0

The corresponding complete Gamma function is T'(j) = ~(j; co). An important relation
for Gamma functions is I'(j + 1) = jI'(j), which holds for any real j that is not a non-
positive integer. We often use the ratio, v(j; to)/I'(j), which is the density of a probability
distribution and called the Gamma distribution with parameter j. We prove a technical
lemma about incomplete Gamma functions, which will be repeatedly used in the following
chapters.

Lemma 2.1.1 (Gamma function). Letc,p, j,to € Rwith p # 0 and t, > 0. Then

J. 4P
o f—Lg—et” qp — 7(;07 Cto)
t=0 pci/p

Proof. We rewrite the numerator of the right-hand side of the claimed identity using the
definition of the lower incomplete Gamma function and substituting u = ¢t and du =
cptP~1 dt:

, ety
L. cth :/ ur e " du
7(19 0) 40
to ;
:/ (ct”)%fle—dpcptp_l dt
t=0
t -
= Opc%tj’le’dpdt.
t=0

Dividing by pc?/? gives the claimed relation. O
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Beta functions. Given real numbers q, b, and 0 < ¢, < 1, the incomplete Beta function is
defined by

By, (a,b) = /tt‘)o =11 — 1)L dt,
and the complete Beta function is B(a,b) = Bj(a,b), which can be expressed in terms of
complete Gamma functions: B(a,b) = I'(a)T'(b)/T'(a + b).

The Beta functions can be used to integrate over the projection of a sphere in R" to
a linear subspace R* < R", as we now explain. Assuming R¥ is spanned by the first &
coordinate vectors of R", the projection of a point means dropping coordinates k + 1 to n.
Suppose now that we pick a point z = (xy, ¥, . .., z,) uniformly on S"~! by normalizing
a vector of n normally distributed random variables: X; ~ N(0,1) for 1 < i < n and
v, =X,/ (X, Xf)l/2 for 1 < j < n.Its projection to R* is ' = (zy, ..., 24,0, ...,0),and
the squared distance from the origin is ||2/||> = (Zle :z:f) / (3F_, z2). It can be written
asr? = X/(X +Y), in which X and Y are y?-distributed independent random variables
with k and n — k degrees of freedom, respectively. This implies that 72 ~ B(%, "%’“) [71,
Section 4.2]. We state it as a lemma.

Lemma 2.1.2 (Projection of uniform distribution on the sphere). Let u be a uniformly ran-
dom point on the unit sphere in R", and let u' be the projection of u to R — R". Then

J'||* ~ B(E, 22).

Hypergeometric functions. The family of hypergeometric functions takes p+q parameters
and one argument and can be defined as a sum of products of Gamma functions, while the
regularized version of this function is obtained by normalizing by the product of I'(b;):

qu(al,...,ap;bl,...,bq;z)—i[ﬁW] [ﬁrr(b)] 2

j=0 Li=1 o DG +0)] g

q
pFy(an, o ap; by, by 2) = pFy (an, ... ap; by, .. bgy 2) T T(0:)
i=1

_i lHF(jMi)] lﬁ 1 1%’
: [(a;) S TG+0)] g

We are interested in the type p = 3 and ¢ = 2. Here convergence of the infinite sum

depends on the values of the parameters. We always have convergence for |z| < 1, and if

z = 1, a sufficient condition for convergence is b; + by > a; + as + a3 [60].

Standard measures. Recall that v,, and o,, denote the volume and the surface area of the
unit ball in R”. Using Gamma function, we can write the explicit expressions for these con-

n
2m2

and o, = r(z) There are two interesting relations between these

T2
r(3+1) = 3
constants worth mentioning: o, = nv,, and 0,, .5 = 27V,.

stants v,, =

Further, using Beta functions we can also write an explicit formula for the spherical
cap of geodesic radius 7. For ) < 7, the fraction of the sphere covered by the cap Cap, (z)

is F(n) = 1B(%, %)/B(%, %), in which s = sin?7 is the square of the Euclidean radius

measured in R"*!; see [52]. The area of the cap is then
F(n)ops for0<n<Z,

Areal) = { 1= F(x—n)on forf<n<m, -
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in which F(r — n) = F(n) because sin(r — 1) = sinn.

One more measure that we will commonly face is the measure of the Grassmanian [39]:

Lkl = 2= ="2=£ To get an intuition for this formula we notice that, for example,
L_, may be identified with the set of normal directions and hence ||£};_, || = %, half the

volume of the (n — 1)-dimensional sphere.

2.2 Poisson-Delaunay mosaics

As discussed in Section @, for fixed 7, the Delaunay centers of j-dimensional simplices
in the Poisson-Delaunay mosaic in R" form a non-simple point process. At the same time,
the Delaunay centers of (¢, m)-intervals form a simple point process. With the following
theorems we claim that both of these processes are stationary even if we further restrict
the Delaunay radius, and give relations between their intensities.

Theorem 9 (Delaunay intervals). Let X be a stationary Poisson point process with density
p > 0in R™ Then there exist constants C}',,, such that for any r > 0 (including r = oo)
and for any integers 1 < { < m < n, the expected number of intervals in the Poisson-
Delaunay mosaic with Delaunay center in a Borel set ), lower bound dimension {, upper
bound dimension m, and Delaunay radius at most r is given by the lower incomplete Gamma
function,

v(m; prar™)

['(m)

and C},, Is the intensity of the process of the Delaunay centers of ({, m)-intervals.

REMARK. Theorem [g does not cover the case ¢ = 0 (because of the degenerate distribution
of the Delaunay radius), which is straightforward: all vertices are critical, so the expected
number of critical vertices in 2 is p||Q2|| and there are no intervals with £ = 0 and m > 0.

Applying Lemma to the result of Theorem E, we get the similar statement for the
number of Delaunay j-simplices.

Theorem 10 (Delaunay simplices). Let X be a stationary Poisson point process with den-
sity p > 0in R". For any r > 0 (including r = oo) and for any integer j > 0, the expected
number of j-simplices in the Poisson-Delaunay mosaic with Delaunay center in a Borel set
Q) and Delaunay radius at most r is given by the sum of the incomplete Gamma functions,

> Ay (e, ool

m=j /=1 -

Setting r = oo we get for the intensity of the process of the Delaunay centers of j-simplices

L AP

m=j {=1

In Chapter E] we give explicit expressions for the constants C7,, see equation (),
and compute them in dimensions n = 2, 3, 4. The resulting numerical values for are given
in Table [1] Hence we also have explicit values for D} for n = 2,3, 4; see Table . This
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Ci'm n =2 n=23 n=4
m =0 1 2 0 1 2 3 0 1 2 3 4

=0 1.00 0.00 0.00|1.00 0.00 0.00 0.00|1.00 0.00 0.00 0.00 0.00
1 2.00 1.00 4.00 2.55 1.22 8.00 5.67 3.56 1.67
2 1.00 4.85 3.70 17.67 18.96 11.15
3 1.85 15.41 14.22
4 4.74

Table 2.1: Rounded constants in the expected numbers of critical simplices (diagonal) and
non-singular intervals (off-diagonal) for a Poisson point process in R? on the left, in R? in the
middle, and in R* on the right. The exact values can be found in Chapter E

Dy | j= 1 2 3 4
1.00  3.00 2.00

2
3 1.00 777 1354 6.77
4 1.00 18.89 65.56 79.44 31.78

Table 2.2: Rounded constants in the expected numbers of simplices in a Poisson-Delaunay
mosaic. The values are straightforward in two dimensions, they have been found by R. Miles
[67] in three dimensions, and except for j = 0, 3, 4 they are new in four dimensions. The exact
values can be found in Chapter E

extends the result of Miles mentioned in [67] to n = 4. Figure [1] illustrates how the
numbers of different simplices and intervals compare to each other at each radius.

Theorem [10 (and Theorem @) can be equivalently stated in terms of the distribution of
the Delaunay radius. Let {2 be a measurable set in R™ with non-empty interior, and choose
uniformly one of the centers of the Delaunay spheres in {2, conditioning on the existence
of such centers. The j-simplex thus chosen is the typical j-dimensional Delaunay simplex.
Then Theorem [10 can be restated as

Corollary 2.2.1 (Delaunay radius distribution). Let X be a stationary Poisson point pro-
cess with density p > 0 in R" and constants C},,, and D7 be the same as above. Then the
distribution function of the Delaunay radius of the typical j-dimensional Delaunay simplex
for j > 0is a mixed Gamma distribution with distribution function:

n . n J _ C’n
Gy = 3o 2 r”) )Z<m f) Lm r>0.

o I'(m) = \m—j) D} ’

It should be noted that it follows that for ; = n the Delaunay radius is Gamma dis-
tributed. This is in accordance with the Complementary Theorem of Miles [56] (see also
Mgller [58]), and follows also from the very general paper on Gamma-type results by
Baumstark and Last [9], see also Chenavier [[18].

While Theorems B and [LO make statements about expectations in a fixed region (), a
standard ergodic argument implies that for a sequence of regions (2; C (2, C ... covering
the entire space, the numbers of intervals inside (2;, normalized by ||€2;||, converge to the
corresponding constants almost surely as random variables, see [54] for details.

It should also be pointed out that Theorem [1( can be converted into results for the
dual Poisson-Voronoi tessellation. Then it gives the intensity of the (n — j)-dimensional
face process of the Poisson-Voronoi tessellation, while the corollary gives the distribution
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Figure 2.1: Left: the densities of distributions of the expected number of intervals as a func-
tion of the Delaunay radius (p = 1). The graphs are obtained by drawing C7',, times the
derivative of v(m, v,r") normalized by I'(m), for 1 < ¢ < m < n, with n = 2,3,4 from
top to bottom. Right: the corresponding densities of distributions of the expected number of
Delaunay simplices.
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of the minimal distance of the typical (n — j)-face to the closest point of the Poisson point
process.

2.3 Poisson-Cech mosaics

The case of the Cech complex is very similar to the Delaunay analysis.

Theorem 11 (Cech intervals). Let X be a stationary Poisson point process with density
p > 0inR™ Foranyr > 0 (and r < oo) and for any integers 1 < { < m < n, the expected
number of intervals of the Poisson-Cech mosaic with lower bound dimension {, upper bound
dimension m and their eclosing balls having center in a Borel set §) and radius at most r is
given by the lower incomplete Gamma function,

v(m; prpr™)

“n 0

where Cp. = C}, (’?:11) and C}', are the same as in Theorem 9,

As a corollary we obtain the expected number of simplices in the Cech complex.

Theorem 12 (Cech simplices). Let X be a stationary Poisson point process with density
p > 0in R™ The expected number of j-dimensional simplices of the Poisson-Cech mosaic
with smallest enclosing balls having radius at most r and center in €2 is

mirdgeh Xm0\ (m =1\ y(m; prar)
Z;%@@_QQ_J Dlm)

=Jj

This sum diverges for r = oo and converges for r < oc.

Similarly to Theorem [ the distribution of the radius of the smallest enclosing ball of
a typical Cech simplex follows. For completeness we notice that the case r = oo is trivial:
Cech X is the complete simplicial complex on X. Hence the expected number of simplices
with vertices in Q is E[(‘ﬁ i )] Since | X N is a Poisson random variable with parameter
plI€2]], we get

E[(pmm)]: i ( i >e—pg||<PHQH)i:(/)HQ”)mH'

ml o \m+ 1 il (m+1)!

Talking about the total number of simplices that contain the center of the smallest enclos-
ing ball inside (2 does not make sense any more: it is infinite.

2.4 Weighted Poisson-Delaunay mosaics

The next theorem is the extension of Theorem [ to the weighted case.
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Theorem 13 (Weighted Delaunay intervals). Let X be a Poisson point process with density
pinR™ and R* — R", There are constants C’frﬁ such that for any r > 0, the expected number
of intervals of type (¢, m) in the k-dimensional weighted Poisson-Delaunay mosaic with their
anchored Delaunay spheres having center in a Borel set ) C R* and radius at most r is

ki ’y(m +1-— %; pz/nr”)

T Tl ya )

Here we allow ¢ = 0 unless k = n, in which case it is Theorem B The constants CfTZ
are the intensities of the process in R* of the anchors of intervals. We give explicit integral
expressions for them in (#.4) and compute them for m = 0 and m = 1, as well as for k < 2
in Section @ The extension of Theorem @ is again the corollary of Lemma .

Theorem 14 (Weighted Delaunay simplices). In the setup of Theorem [13 the expected
number of j-dimensional simplices in the weighted Poisson-Delaunay mosaic with their an-
chored Delaunay spheres having center in a Borel set Q) C R* and radius at most r is

Eoy(m+1 =5 ovur™) I (m—0\ .,
s b3 (e
m=j

F(m—l—l—%) =0 m

k
o (|2

Setting r = oo we get for the intensity of the process of the anchors of j-simplices

n J _
D=3 (m ‘f)cm.

m=j =1 \""" —J

Again, in an equivalent formulation, this theorem states that the radius of the anchored
Delaunay sphere of a typical interval is Gamma-distributed, whereas the radius of the an-
chored Delaunay sphere of a typical simplex is a mixture of Gamma distributions. Fork = n
we get Theorems [ and [L0. For some values of n, the constants are approximated in Tables

2.3 and 2.4

[n=2 3 4 5 6 7 8 9 .. 20 .. o
Coo | 100 1.09 116 122 126 129 132 1.35 ... 147 ... 1.65
Cot | 027 036 042 045 048 050 051 053 ... 0.60 ... 0.68
Dy™ || 1.27 146 158 1.67 174 1.79 184 187 ... 207 ... 2.33

Table 2.3: The rounded constants in the expressions of the expected number of intervals and
simplices of a 1-dimensional weighted Delaunay mosaic. The ratio of the expected number
of critical edges over the expected number of regular edges it is monotonically decreasing.
It follows that we can infer the ambient dimension from the ratio.

Connection to Boolean model. We want to emphasize one application of the case k = 1 of
Theorem[L3. Let X be a Poisson point process with density p in R” and consider the union
of closed balls of fixed radius r and centers in X, denoted X,. The obtained random set is
sometimes referred to as the Boolean model [67)]. Write X,. N (2 for the intersection of this
set with a line segment ) C R! C R". We claim that the homotopy type of this intersec-
tion is the same as that of the weighted Delaunay complex, restricted to €. In particular,
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|[n=3 4 5 6 7 8 9 10 ... 20 ... 1000
Coo | 111 125 138 149 158 1.66 1.73 1.79 ... 212 ... 2.69
Cor | 026 042 054 063 071 077 082 086 ... 112 ... 154
Con | 009 015 021 025 028 031 033 035 ... 047 ... 0.65
CPr |l 247 292 330 3.61 3.87 4.09 4.28 444 ... 537 ... 6.92
CPy | 146 1.83 213 237 257 274 289 301 ... 372 ... 488
Cyy | 137 1.67 1.92 212 229 243 255 266 ... 325 ... 4.23
D" | 146 183 213 237 257 274 289 3.0l ... 372 ... 488
DY™ | 4.37 548 638 7.10 771 8.22 866 9.03 ... 11.16 ... 14.65
Dy | 292 3.66 4.25 4.74 514 548 577 6.02 ... 744 ... 977

Table 2.4: The rounded constants in the expressions of the expected number of intervals
and simplices of a 2-dimensional weighted Delaunay mosaic obtained from a Poisson point
process in n dimensions.

Bo(X, N Q) = By(WDel,.(X’;Q)), in which X’ is the projection of X onto R!, 3, counts
the connected components and WDel,.(X’; 2) is the subcomplex of the weighted Delau-
nay mosaic that consists of all simplices with radius at most r lying completely within €.
This follows from the general observation that the weighted Delaunay complex for radius
rofasetofpoints Y C R* with weights w(y) is homotopy equivalent to the union of power
balls, Y, = {a € R* | ||a — y||*—w(y) < r?},and ¥,NQ = X, NQ. Indeed, the weighted De-
launay complex can be defined as the nerve of the decomposition of Y, with the weighted
Voronoi tessellation, so the Nerve Theorem asserts the homotopy equivalence; see [26]
for details.

Following the evolution of the nested complexes WDel,.(X’; ), as r goes from 0 to oo,
we observe that every critical vertex creates a new component when it enters the complex,
each regular interval does not affect the homotopy type, and every critical edge connects
two components; compare with Figure . It follows that the expected number of compo-
nents in X, N Qis

E[8(X, N Q)] = Elegs (1) — e (r)] (2.2)
= nla) [lpet) o) @3)

1. n
o On—1 1. n '7(2_*7PV7L7' ) 1
- 1n71/n [7(1 — 1 PUnT ) - f_l P
nvn n

where we substituted values for (J;,Z from ()—(). We write A = pv,r", use the
definition of the incomplete Gamma function, and integrate by parts to get

Ql, (2.4)

A A

7(2 — %; A) = /3:1’%6’1 dz = [—xl’%e’x]? + (1 — %) /367%64 dw (2.5)
0 0

:—Al_%e_A—l— (1—%)7(1—%; A) (2.6)

1—1
n

Noticing that A'~# p!/™ = (pu,r™) =5 pY/" = prw "1"~L, we plug (R.6) into (2.4) to obtain

On—1 —pupr™ 1_% n— On—1,.n—1_—pvyr™
Elfo(X, NQ)] = re T pun mrt Q] = St e p||Q| (2.7)

1—1/n T —
Ny, /m 1-= n—1

1], (2.8)

_ _ n
— Vn—lrn 16 punT p
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On—1

where we use the identity ~*= = v,,_; in the last transition. In short, (@) gives an explicit
formula for the expected number of connected components in the Boolean model in R" in-
tersected with a line segment of length ||€2||. This result is not new and follows after some
straightforward computations from [40, Excercise 4.8], but the goal of this derivation is to
provide another, more topological view on the problem. The graphs of 3, for different di-
mensions n are shown in Figure [2] Using Crofton’s formula (@) and the fact that almost
every connected component is a line segment, which meets the boundary of the Boolean
model in two points, (@) can be transformed into a statement about its expected (n — 1)-
dimensional volume:

(2

Vo (%) = 2/

n—1_—pvpr™
)yn_lr e " p,

in which V,,_;(X,) stands for the limit of the (n — 1)-dimensional volume of the boundary
of X, inside a growing region over the volume of this region; see [67, Section 9] for the
detailed discussion of the quantity.

Bo
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Figure 2.2: Graphs of the expected number of connected components per unit length de-
pending on the radius for different dimensions n. To make sense of putting the curves cor-
responding to different dimensions on the same plot, they are rescaled, so the parameter on
the horizontal axis is pv,r", which stands for the expected number of points inside a ball of
radius 7 in R™. That said, the curves are 5y (pv,r") = E[Go(X, N Q)] with ||Q2]| = 1.

2.5 Poisson-Delaunay mosaics of higher order

The next two results refer to the order-£ Poisson-Delaunay mosaic. Since we neither have
a definition nor a description of intervals, we state only the result about the number of
cells, deferring the intervals until we define them in the corresponding chapter, see (@).
The development of the discrete Morse theory for the order-k case in Section 6.3 can also
be considered a separate and independent achievement of this work.

Letting GG be a j-dimensional cell of the Poisson-Delaunay mosaic of order k, we note
that it uniquely determines the smallest sphere centered at a point of the dual order-k
Voronoi cell such that the closed ball it bounds contains at least k points of X; see Chapter
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E for details. We call the center and the radius of this ball the center and the radius of G.
To count, we specify a dimension 0 < 5 < n, a Borel region (2 C R"”, and a radius r > 0,
and we write d (fom) (r) for the number of j-cells in Del*) X whose center belongs to Q and
whose radius is at most . We give an explicit formula for the expectation of d(k " (r).
Theorem 15 (Expected number of cells). Let X be a stationary Poisson point process with
density pin R", let k > 1 and 0 < j < n. The expected number of j-cells in Del®™ X with
center in a Borel region () and radius at most r satisfies
I y(u+k—g; prar”) s (v +1 u—v

E d(kn _ 0 Y ) n
[ = rliel- ZZ gzzl T(k—g+ 1)(u) 2\ t+j—nv)

u=j v=1 t=to

inwhich g, = min{k, u}, to = max{0,v—j,g—j}, andt; = min{v+1,u—j, g—1}. Further,
for j =0andk > 2 we have

Y(u+k—v—1; pryr")
E = p|| E EC" :
™) = el 3 3 D(k —v)(u)

The constants C7, are again the same constants defined in (@). Setting 7y = oo, we
obtain the expected total number of j-cells in Del® X,
REMARKS. (1) The case j = 0 when k = 1 is trivial, because all points of X are 1-Delaunay
vertices.

(2) Again, the theorem can be restated in terms of the distribution of the radius of a
typical j-cell.

(3) Throughout the investigation we always have the special case j = 0. The case can

be simplified if one considers degree-k diagrams instead. Degree-k Voronoi domains split
the order-k Voronoi domains into several domains sharing the furthest point.

The second new result for order-k mosaics concerns the expected area of the /-skeleton
of an order-£ Poisson-Voronoi tessellation. By definition, this is the /-dimensional Lebes-
gue measure of the union of all /- dimensional faces of order-k Voronoi domains. Since this

area is infinite, we normalize by letting W ") be the area of the (-skeleton within a unit
volume of space.

Theorem 16 (Expected area). Let X be a stationary Poisson point process with density
p>0inR" letk > 1and 0 < ¢ < n. The expected area of the (-skeleton of the order-k
Voronoi tessellation of X per unit volume of space is

k—1 on—f+1 15t F(n2,n§+e+1) (1 %) tap I (n—t+itt)

i!n(n—€—|— 1)! F(%)F(%) 2

o~

kn n—t
E[n"] = p*

’—J
—
~
‘+
AR
~—

t=max{0,k+{—n}
For { = n, we have E[n{F™)] = nlkn) = 1,

This extends Theorem 10.2.4 in [67] to the order-k case.

2.6 Spherical Poisson-Delaunay mosaics

We conclude the summary of the new results with the Poisson-Delaunay mosaic on the
sphere. Recall that in Section [1.8 we defined the normalized radius of a spherical cap with
geodesic radius 7 to be j = np'/". The following theorems count intervals and simplices
in this mosaic with bounded radius, or, equivalently, faces of random inscribed polytopes.
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Theorem 17 (Spherical Delaunay intervals). Let X be a Poisson point process with density
p > 0onS". Forany integers 1 < ¢ < m < n and any real number 0 < ny < 7, the expected
number of intervals of type (¢, m) and geodesic radius at most 1 is

m mn—2 n—m-—1
n

E[CZm? 770] = POp+1 * W : CZm / pmt 2 (1 - t) 2 ]P@(\/Z) dtv
t=0

in which s = sin? ) is the square of the maximum Euclidean radius, and Py(r) is the proba-
bility that a spherical cap with geodesic radius n = arcsin r contains no points of X, namely
Py(r) = e=PAra), Let now p — oo. For any iy € [0, +-00|, the expected number of intervals
of type (¢, m) and normalized radius of the Delaunay cap at most 7 is

E[ggfm?ﬁO] = POn+1 - % : CZW + O(p)

REMARKS. (1) Constants Cy',, are the same as in Theorem E

(2) Theorem [L7 does not cover the case ¢ = 0, i.e,, intervals containing vertices, but
here the results are straightforward. Specifically, the expected number of critical vertices
is E[¢fg, 0] = pon1, for every ny > 0,and ¢, = 0 for every m > 1.

(3) We will prove that for constant s, the integral is bounded away from both 0 and co.
This implies that the expected number of intervals is of order ©(p); compare with [64].

(4) We will also prove that setting 70 = oo in the second equation gives the total num-
ber of intervals of type (¢, m) as E[(}',,] = poni1 - CF,,, + o(p). On the other hand, letting
o — oo, we get the total number of intervals of geodesic radius ©(p~'/"). This implies
that the number of intervals with radius w(p‘l/n) is o(p). Note that also the number of
intervals with radius o(p_l/”) is o(p).

The total number of simplices of dimension j in the Delaunay mosaic is again easy to
deduce from the number of intervals. We give only the limit statement.

Theorem 18 (Spherical Delaunay simplices). Let X be a Poisson point process with density
p > 0onS"™ Forany integer j > 1 and any non-negative real number 1), the expected number
of j-simplices of Del X with normalized radius of the Delaunay cap at most 1 is
(75 vn; m) L (m—¢ n
POnt1 - Z W Z ( ; Of,m +o(p),

m=j =0 \"t—J

Setting

n NG Vn; m J m —/{ Cén
Gytm) = 32 G 5 (1) Sl
! m=j rm) =0 m—1J Dj
we thus get the distribution of the normalized radius of the Delaunay cap of the typical j-
simplex in the limit when p — oc.

REMARKS. (1) Observe that po,,.; is the expected number of points in X. Comparing with
Theorems in Section 2.2, we can notice that the obtained formulas are essentially the same
expressions as for the Poisson point process in R".

(2) While we state our results for Poisson point processes, very similar expressions
can be obtained for the uniform distribution; see Section [23]
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Blaschke-Petkantschin formulas

A commonly used tool for questions concerning random complexes is the mentioned in
Section[1.9 Blaschke-Petkantschin formula. The standard approach for working with Pois-
son-Delaunay mosaics is to study metric properties of Poisson-Voronoi tessellations, and
the linear formula suffices for this purpose. We are approaching the problem from the
other side, though, and that is why our main tools will be formulas involving spheres, like
the one in Theorem E In this chapter we summarize and prove new formulas of this type.
They are completely self-contained and can be considered as separate results. In the state-
ments, we will use bold notation for sequences of points, like u = (ug, u1,...,ux) and
x = (o, 1,...,2x), Wwe write Vol(u) for the k-dimensional volume of a k-simplex with
vertices at u, and shorten z + ru for (z + rug, z + ruq, ..., z + ruy). The number of points
and the ambient dimension can vary between theorems without causing confusion. The
integrations are always with respect to the standard measures in the Euclidean space, on
the sphere and on Grassmanian [39].

3.1 Smallest circumscribed spheres

The first formula generalizes Theorem 7.3.1 in [67, page 287] to k < n. It integrates over
the smallest circumscribed spheres of k-ples of points.

Theorem 19 (Blaschke-Petkantschin formula for circumscribed spheres). Let0 < k < n
and write S(L) for the (k — 1)-dimensional unit sphere inside L. € L}, Then for every non-
negative function f of k + 1 points in R™ we have

/ dx—/ // / (2 + ru)r™ Y (k1Vol (w))" ! dudr dz dL.

x€(Rn)k+1 LeL} zeR™ r>0 ueS(L)k+1

Proof. We start with the form given in Theorem 7:
/ F(x) dx = / / / F(h+x)(KVol(x))" *dxdhdL.  (3.1)
x€(Rm)k+1 LeLy heLt xeLk+1
Using Theorem B we expand the innermost integral into

k! / / / Pl (w) f(h + 2 + ra) (KIVol(z + ru))" F dudrdz.  (3.2)

z€L r>0ueS(L)k+1

Note that Vol(z + ru) = r*Vol(u), so we get k> — 1+ (n — k)k = nk — 1 as the final power
of the radius. Plugging (EZ]) into (@) and joining the integration over L' and L, we get
the claimed formula. O
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3.2 Smallest anchored spheres

The next formula will be used in the analysis of weighted mosaics. Assuming m + 1 points
x are in general position in R", the affine hull of x is an m-plane, M = aff x. Furthermore,
the set of centers of the spheres that pass through all points of x is an (n — m)-plane,
M+, orthogonal to M. Generically, the intersection of M/ with R” is a plane of dimension
k — m. The center of the smallest anchored sphere passing through x is the point of this
intersection that is the closest to x.

Recall that for a sequence x of m + 1 < k + 1 points in R", there is a unique smallest
anchored sphere passing through them. We claim that its center lies inside the orthogonal
projection P of the m-dimensional affine hull of x onto R*. Indeed, orthogonally projecting
the center of any anchored sphere passing through x to P in R* we clearly get a point,
which is the center of a smaller anchored sphere still passing through x. The following
theorem tells us how to integrate over these smallest anchored circumscribed spheres.
For m = k itis Theorem .

Theorem 20 (Anchored Blaschke-Petkantschin formula). Let 0 < m < k < nand o =
n(m+1) — (k+ 1). Then every measurable non-negative function f: (R")™! — R satisfies

[ 0= [ [ [ ] oo ars

x€(Rn)m+1 yeRF PeLk r>0uc(S)m+1

in which L is the Grassmannian of (linear) m-planes in R¥, u’ is the projection of u to P,
and S is short for the unit sphere in P x R"F,

Proof. As in the previous proof, we first settle the case m = k and then combine it with
the linear Blaschke-Petkantscin formula to get the result.

Lemma 3.2.1 (Blaschke-Petkantschin for top-dimensional simplices). Let 0 < k£ < n.
Then every measurable non-negative function f: (R")**! — R satisfies

/ x)dx = / / / £y + ra)r=DED RV (0') dudr dy,

x€(Rn)k+1 yEeRE 1>0 ug(Sn—1)k+1

in which U’ is the projection of u to R¥, Vol,(u') is the Lebesqgue measure of the k-simplex,
and we use the standard spherical measure on S™ 1,

Proof. We follow the proof of Theorem 7.3.1 in [67], with just slight modifications. Recall
first that we choose the coordinates in R” so that the projection of z = (21, x9,...,2,)
to R¥ — R"isa’ = (z1,...,24,0,...,0). The claimed relation is a change of variables:
on the right-hand side, we represent the points x by the center y € R* — R" of the an-
chored sphere passing through these points, its radius r, and % points u on the unit sphere
S™~! — R™. This change of variables is the mapping ¢ : R* x [0, 00) x (S"~ 1)k — (Rm)k+1
defined by o(y, r,ug, uy,...,ux) = (y + rug,y + ruy, ...,y + ruy), we note that ¢ is bi-
jective up to a measure 0 subset of the domain. We claim the Jacobian of ¢ is J(y,r,u) =
r(=DEFDEIVOl, (1), in which v/ = (u),u), ..., u}) is the projection of u to R¥. To prove
it at a particular point (y, r, u), we choose local coordinates around every point u; on the
sphere. We choose them such that the matrix [u;u;] is orthogonal, for every 0 < i < k, in
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which 10, is the n x (n — 1) matrix of partial derivatives with respect to the n — 1 local coor-
dinates. This is the same parametrization as in [67]. With this, the Jacobian is the absolute
value of the n(k + 1) x n(k + 1) determinant:

En,k Uo T’ilo 0 .« 0
En,k up 0 7"1.11 SN 0
J(y,r,u) =abs| .

where we write the matrix in block notation, with £, , the n x k& matrix with all elements
zero and ones in the diagonal. Similarly, u; is a column vector of length n, r1u; is an n x
(n — 1) matrix, and 0 is the zero matrix of appropriate size, which in this case is an n x
(n — 1) matrix. Like in [67)], we extract r from (k + 1)(n — 1) columns, and use the fact that
transposing the matrix does not affect the determinant to get

uOT ul u;‘f Enp up up 0 ... 0
Jly,r,a) > w0 ... 0 E,p wy 0 w ... 0
<r<k+l><n—l>>:0ﬁ?---0';
: : E.o wp 0 0 ...

0 0 ul

The orthogonality of the matrices [u;11;] implies that u’w; = 1, ulv; = E,_1,-1, whereas
u’, is the zero row vector of length n — 1, and u! u; is the zero column vector of length
n — 1, for each 0 < ¢ < k. We can therefore multiply the matrices and get

(k+1)Ey) Sl ) ),
5 ' Sul k+1 0 0
Yy, r,u T
<r<k+1><—1>> =™ e A
uy! 0 0 oo Enina

in which we write u/ for the vector consisting of the first £ coordinates of u;. Similarly, 1]
is the k& x (n — 1) matrix obtained from wu; by dropping the bottom n — k rows. As written,
the n(k + 1) x n(k 4+ 1) matrix in (B.3) is a (k + 3) x (k + 3) matrix of blocks, not all of
the same size. To zero out the last £ + 1 blocks in the first row, we subtract the third row
times uy, the fourth row times 0/, and so on. The determinant is therefore the product
of the determinants of the upper left 2 x 2 block matrix and the lower right (k 4+ 1) x
(k + 1) block matrix, the latter being 1. To further simplify the 2 x 2 block matrix, we use
[ww)[wyw)T = E,,, which implies [u/0}][ut}]T = Ej;, and we write the matrix as a
product of two matrices:

( J(y,r, ) )2 | (B4 DBy - Sum” Tu | 24
(=) | T S uf k+1 (34)
ul 1
wu S u u, up ... uj P
- Ezfﬂl’ kz+11 - [ L1 1k] wr o1 | B
v 1
wl 1
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in which we get from (B.4) to (B.5) using w0 = E, — w/u/. Finally, the determi-
nant of the vectors u; with appended 1 is k! times the k-dimensional volume of u’. Hence,
J(y,r,u) = rF+HDE=DEIVo], (u'), as claimed. This completes the proof. O

We are now ready to prove the theorem. For P € LF, we write P x R** ¢ £
for the (m + n — k)-plane whose orthogonal projection to R¥ is P. The first application
of Blaschke-Petkantschin formula integrates over all (affine) m-planes in R¥, spanned by
the projections of x to R*:

/ / / / f(h+ x)[m!Vol,, (x)]*~"™ dx dh dP.

x€(R)m+1 PeLk, hePL xe(PxRr—k)m+1

For every m-plane P in R¥, we consider the vertical (m +n — k)-plane P x R*~* in R" and
apply Lemma inside it. Recalling that S is the unit sphere in P x R"~¥, this gives

/ / / / / / f(h 4 2+ ru)pmin=k=bim+D)

x€(Rn)m+1 Pelk hePl zePr>0ueg(S)m+!

m!Vol,, (') [m!Vol,,(ru’)]*=™ dudr dz dh dP.

Note that Vol,,,(ru’) = r™Vol,,(u’), which implies that the final power of ris (m +n — k —
1)(m + 1) + m(k — m) = «. Finally, we get the claimed relation by setting y = z + h and
exchanging the integral over P € LF with the integral over y € R*. O

3.3 Circles on the sphere

The last formula we prove lives in another space: it integrates over smallest circumscribed
caps of points on the sphere S* C R, To express the result, we write P+ for the (n —
k + 1)-plane orthogonal to the k-plane P, both passing through the origin in R"*!, and we
write Sp for the unit (k — 1)-sphere in P.

Theorem 21 (Blaschke-Petkantschin formula on the sphere). Let n be a positive integer,
1<k<n,andf: (S”)""Jrl — R a non-negative measurable function. Then

/ f(x)dx = / / rkn=2 / F(p+ra) [EVol(w)]" "' dudpdP,

Xe(Sn)k+l PGL"Z-{-I pepL ue(SP)k+l

in which > = 1 — ||p||%, implicitly assuming ||p|| < 1, If f is rotationally symmetric, we
define f,(u) = f(p + ru), in which u is a k-simplex on S¥=1 C R¥, and p is any point with
Ip||> = 1 — 2 < 1inthe (n — k + 1)-plane orthogonal to R¥ C R+, With this notation, we
have

n—k—1
2

/ Flx)dx = 22 o / 572 (1= 1) / £ (w) [Vl ()" ! du dt.

xe(Sn)k+1 t=0 ue(Sk—1)k+1

Proof. We first argue that f may be assumed to be continuous. Consider the subset M of
L x R+ % (R*H)*+ consisting of all triplets (P, p,u) such thatp € P+, |p|| < 1,
and u € (Sp)¥*L. Clearly, M is a submanifold of the product space with a natural mea-
sure. Recall that 7> = 1 — ||p||* and consider the mapping 7: M — (S™)**! defined by
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T(P,p,u) = p + ru. Itis a bijection up to a set of measure 0. By Theorem 20.3 in [42],
there exists a corresponding Jacobian J: M — R, meaning that every integrable function
[ satisfies [ cgnyer f(x)dx = [,cpr f(T(y))J(y) dy. For non-negative f, the right-hand
side integral can be split using Fubini’s theorem. The existence of the Jacobian is thus set-
tled, and to find its values, we may assume that f be continuous.

The main idea in the rest of the proofis to thicken S” to an (n+1)-dimensional annulus,
to apply the original Blaschke-Petkantschin formula to this annulus, and to take the limit
when we shrink the annulus back to S™. We write A7} = (1+¢)B"*!\ int B"*! for the (n+

1)-dimensional annulus with inner radius 1 and outer radius 1 + . We begin by extending
f from the sphere to the annulus. Specifically, for points y; € ATT!, we set

F(yo,yrs - uk) = F Wo/llwolls ya/llwalls - - uw/|lwell) -

Since f is continuous on the (k + 1)-fold product of spheres, by assumption, ' is contin-
uous on the (k + 1)-fold product of annuli. Because F' is continuous on a compact set and
therefore bounded and uniformly continuous, we have

[ fxax=lmss [ Fyay

(Sn)k+1 (A"+1)k+1

= lim s / / / w) [kIVol(w)]"**+! du dp d P, (3.6)

PeL"Jr1 pEPL ucAk+1

in which A = A7f! N [p + P] is the k-dimensional slice of the (n + 1)-dimensional annu-
lus defined by P and p. We obtain the second line by applying the standard Blaschke-
Petkantschin formula in R"*! to the function F'(y) times the indicator function of the
(k 4+ 1)-fold product of annuli, and then absorb the indicator into the integration domain.
To continue, we investigate the slice of the annulus whose (k4 1)-fold product is the inner-
most integration domain; see Figure B.1. Write i = ||p|| for the height of the slice, which
isnon-empty for0 < h < 1+ . Ais a (possibly degenerate) k-dimensional annulus, with
squared inner radius 7? = max{0,1 — h%} and squared outer radius r> = (1 + ¢)? — A’
We split the integration domain into three regions: h < 1 — 7921 —¢%2 < h < 1, and
l<h<l1l+e

We first show that the contribution of the region 1 — %2 < h < 1 is small. To get
started, note thatr. —r = (r?2 — r?)/(r. + 1) = (26 + €%)/(r. + r). For small ¢, this implies
re —r < const - £/r., in which we deliberately avoid the computation of the constant. With
this, we can bound the k-dimensional volume of A. Assuming k& > 2, we get Vol(A4) =
ve(r? — )y = vp(re — ) (rFt + rF 20 L 4 rF71) < const - er®2, in which the constant
depends only on k and n. As noted before the inequality also holds for £ = 1. Since A >
1 — &% wealsogetr? < (1+4¢)? — (1 —&%?)? < &2 + 2¢ + 2692 — &% for small &, which
implies . < const - 50 L. Clearly, the k-dimensional volume of any k-simplex with vertices
inside A can not exceed a constant times the k-th power of the diameter of A, which is 2r,
implying Vol(u) < const - r¥. Recalling that F' is bounded, we thus get

[ [ 2 [ Fakvelwrttaudpap

peLytt  pept ueAk+1
lIpll<1—€°-2
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P p+ P

Figure 3.1: For h = ||p|| < 1, the slice of the (n + 1)-dimensional annulus is a k-dimensional
annulus. In this picture, n +1 =2and k = 1.

< const / kHVOl(A)k-&-lVOl(u)n—k-&-l ah
h=1—¢0-2
< const / #(€T§*2>k+lrf(nfk+1) dh

h=1—¢0-2
1

< const / rfn_Q dh < const -2 . 010n=2) s (3.7)

h=1-¢0-2

Here we use the bound on r. for the last inequality, and kn > 1 to see that the expression
tends to zero. Next consider the region 1 < h <1+ ¢,inwhich A is a ball of radius 7., so
Vol(A) = vrk. We have Vol(u) < vr*, as before, and 72 < (1 + €)? — 1, which implies
r. < const - /. With this, we can again establish the vanlshlng of the integral as ¢ — 0:

/ / L / F(w)[E!Vol(w)]"**! dudp dP
pecnt! peP+ ucAk+1
©oagilpl<ie
1+4+e

A)k-‘rlvol(u)n—k-‘rl dh

1+4¢

k(n+2

dh < const-e-e*=2/2 5 . (3.8)

We have thus established that the relevant regionis 0 < h < 1 — %2, and we are ready to
investigate its contribution. First, we claim that the width of the annulus Ais

rg_r:r\/@—r:§+o(a). (3.9)

To get the right-hand side of (@), we use the Taylor expansion of g(z) = (1 + z)/? =
1+ iz —22%+ .. ,andr > el aswellas z = (2¢ + 2) /r? < 3¢"%, which we get from the
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assumed h < 1—¢%2 observing thate?/(2r?) = O(e'®), we getrg(z) —r = =+ O(re'®) +
O(re'%) and therefore (B.9). Using the fact that F'(u) is equal to f(u) when all points lie
on the inner sphere and the uniform continuity of ' and writing S, for the (k — 1)-sphere
with center p and radius r in P € EZH, we get

k1
/ & F(u) [k!Vol(u)]" " du (%)Hl / f(a)[E!'Vol(u)]" ¥+ du + o(1), (3.10)
ucAk+1 ue(Sr)

in which the integration domain on the right is the k-fold product of the (k — 1)-sphere
with center p and radius r in P, and o(1) is uniform over p and P. Substituting (@), (@),

and () into (@), we finally get
f(x)dx

x€(Sn)k+1

zlj_r% {T,}H /f(u)[k!\/ol(u)]”_kﬂdu+0(1) dpdP (3.11)
peLytt pEPJ- ue(Sy)k+1
Ipl<1-e02
k“ n—k+1
[ O [ rkvel ] dudpap (3.12)
PeLyt! pePt ue(S, )kt
- / / / F(p + ra) [EIVol(w)]"*! dudp dP, (3.13)
PELZ+1 pepPL €(Sp)k+t

in which we drop the ||p|| < 1 —£%2 condition in (B.11]) for the implicitly assumed ||p|| < 1
when passing to (| ), which we can do because the difference vanishes in the limit and
(B.13) is obtained by rescaling and translating the sphere in (B.12). Indeed, the power
of  is a consequence of scaling the volume of the k-simplex, adjusting the volume of the
integration domain, and subtracting the power we have already in (B.12): kEn—k+1)+
(k—1)(k+1)— (k+ 1) = kn — 2. This proves the first relation claimed in Theorem

To get the second relation, we simplify the first by exploiting the rotational symmetry
of f.Recalling that 7> = 1— ||p||*, it makes sense to define f,(u) = f(p+ru) onthe (k+1)-
fold product of Sp C S" because the direction of p does not matter for a fixed height.

Neither does P influence the function for a fixed height, so we can define f, on (SF~1)**1,
Thus

[ feax=le [ [ f Vel dudp  (314)
x€(Sn)k+1 peBn—k+1 ue(Sk—1)k+1
1

= 1LY |0 / =2 / £ (W kVol(w)]™ 1 dudh (3.15)
h=0 ue(Sk—1)k+1
= 2|23 /

in which ¢t = r2 = 1 — h2 We get (B.14)) from (B.13) because every P € £*! contributes
the same to the integral. Similarly, we get () from () by integrating over the range

/ £ (W) kVol(w)]* ! dudt,  (3.16)

ue(Sk—1)k+1
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of heights and compensating for the different sizes of the corresponding spheres, aka ex-
pressing the integral in polar coordinates. Finally, we get () from () by substituting
tfor 72,1 —t for h?,and dt for —2h dh, noting that the minus sign is absorbed by reversing
the limits of integration. This proves the second relation in Theorem 21, [



Constants

In this chapter we define the constants Cj'; and Cfanb used in the statements of theorems in
Chapter . Their definition involves certain expectations of volumes of inscribed simplices,
and we compute the values of CZk for n < 4 and of CETZ for k < 2.

4.1 Spherical expectations

Denote by u = (ug, u1, . . ., u,,) a sequence of m + 1 random points independently chosen
according to the uniform distribution on the unit sphere in R, and write Vol(u) for the
m-dimensional volume of the m-simplex spanned by the u;. We define

By = EVOI ()" o), (4.1)
in which
1j(u) _ { 1 if exactl.y j. facets of u are visible from 0,
0 otherwise;
recall the definition of visibility in Section @

Similarly, denote by v = (vg, vy, ..., v,,) a sequence of m + 1 random points indepen-
dently chosen according to the uniform distribution on the unit sphere in R™*"~* and
write v’ for the orthogonal projection of v onto any fixed subspace R™. Write Vol(v’) for
the m-dimensional volume of the m-simplex spanned by the v;. Then the corresponding
constants for the weighted case are defined as

B =E[Vol(v)" ™1, (V). (4.2)

Note that 0 is usually not the circumcenter of the projected simplex, but we still ask if a
facet of projected simplex is visible from 0. The main constants Cy,, and C’f,ﬁ are then
given by

n __  On0Onpn—1"....0Opn—m+1 F(m)m!"*mUZ#l n
O&m - 01:02°...-Om, (m~+1)nv Efﬂ“’ (43)
k
_r tk—m m+1
M OgOk—1"--"Ok—m+1 n m—+n— n
c a M) o (4.4)
Lm 0102....0m +1_E Lm: .
(m+1)nun/ n
— n _ ,n n _ n,n P
Of course, for k = n we have Ef',, = E,;, and C}',, = C,;,. Further, we trivially have

Ego = Eé“”{)‘ = 1. Now we turn to the less trivial cases.
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4.2 General relations between constants

The constants are now fully defined, and the rest of the chapter is devoted to computing
them. Assume for this section that the theorems stated in Chapter @ are proved for the
constants defined in (4.3 and (#.4). Then the expected number of simplices of dimension
J in (weighted) Poisson-Delaunay mosaic with p = 1 in any Borel region is the constant
D} (Df’”) times the volume of the region. The expected number of critical simplices of di-
mension j in the corresponding complexes is similarly C7'; (Cj’f’f) times the volume of the
region. Now we incorporate the combinatorial structure of the complex to collect the re-
lations between the constants. All of the following statements appeared in the text before
in different contexts, and we collect them all together for a convenient reference. First we

state them for the unweighted case:

Dp =1, (4.5)

n = . - , 4.6
nn+ DU e(2 ) (550) v (3) (4.6)
Dy, =" DL, (47)
= —1)'Dm, (4.8)
J

j=0
= > (-1C; (4.9)

£

I o (m—t

Dr = er . 4.11
f ;OmZ: (m _ j) B (4.11)

The first four relations come from Theorems E] and , (@) is the first Morse relation from
page E, () reflects the fact that all vertices are critical, and the last one is Lemma .
Note that this relations are enough to get D7 for n < 3. Similar relations hold for Df”
We don’t know the intensity of vertices any more, the expression for the number of top-
dimensional simplices comes from Theorem , and the rest is the same:

ok+1.k/2 P(W) F(%Q)kﬂ—% F(k L1 %)

phn — 91941 : 4.12
k Ok4+10n—k+1 n(k’+1)' F(lm‘gin*k) F(%H)k’ F(nfl2€+l> ( )
k+1
k.n k.n
Dyoy=——Dy", (4.13)
0=>(-17D", (4.14)
j=0
=3 (~1)'C¥m, (4.15)
7=0
k:,n ] k m - g k;7n
D" =% >\ |Cim (4.16)
t=0m—5 \""* —J

We do not focus on subtleties at the boundary in the weighted case either, as they can be
resolved in the same way as in the unweighted case, see the discussion after Theorem 2.
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4.3 Reflections

To get hands on the explicit values of constants, we incorporate a trick developed by Wen-
del in [72].

Volume decomposition. Although there was some ambiguity in the previous notation
concerning ambient dimension, in this section we write u = (ug, uy,...,u,,) for a se-
quence of m + 1 affinely independent points in R". Recall that for each 0 < ¢ < m we
write u; for the m-simplex obtained by substituting 0 for u;, called a cone over the i-th
facet, and V, = Vol(u;) for its m-dimensional volume. We faced the cones in Theorems 4
and H, but now the simplex u is not necessarily inscribed. Expressing the origin in terms
of the points, 0 = >/, (;u,; with >, (; = 1, we see that the facet opposite to u; is visible
from 0 iff {; < 0, and it can be verified that actually ¢; is a signed volume of the corre-
sponding cone. The coefficients (; are called barycentric coordinates of 0 with respect to u.
Writing sgn((;) for the sign of the i-th barycentric coordinate, we therefore have

m

Vol(u) = > sgn(G)V;. (4.17)

=0

This formula is easy to see, for example, as each ray originating from 0 that intersects a
simplex enters crossing a visible (front) facet and leaves crossing an invisible (back) facet,
and the formula above subtracts from the total length of the ray before it leaves the simplex
the part which lies outside.

The multiplicative group Z, = {—1,1} acts on R™ by reflecting + € R™ to —z. This
action is naturally extended to the action of Zj"** on (m+1)-tuples of points: for any vector
t = (to,t1,...,tm), witht; € {—1,1} for0 < i < m,we call tu = (touo, t1us, ..., tnu,) the
reflection with signature t of u, and we write #t for the number of indices ¢ with ¢; = —1.
Importantly, the reflection of a vertex does not affect the volume of any cone. We write
Vi = Vi(u) = X, t;V; for the sum of positive and negative cone volumes. Assuming 0
is contained in the interior of the m-simplex u, the following lemma shows that it is the
signed volume of tu.

Lemma 4.3.1 (Volume decomposition). Let u € (R™)™"! such that 0 is contained in the
interior of the m-simplex. Then Vol(tu) = |V;(u)|, forevery t € {—1,1}™*%

Proof. We reflect the vertices one by one to obtain tu from u and argue by induction on #t.
By assumption, no facet of u is visible from 0, so Vol(u) = >, V,, which settles the base
case. Assume without loss of generality thatt = (—1,...,—1,1,...,1) with #t = j, and
t'=(-1,...,—1,1,...,1) with #t' = j — 1. By induction, the volume of t'uis £V}, (u), i.e.,
either Vol(t'u) = —Vy—... =V, +V.+...+V orVol(t'u) = Vy+...+V, | =V, —...—
V.., depending on which of the two expressions is positive. Reflecting u; either changes
the orientation of the inscribed m-simplex, meaning that the reflection of v; lies on the
other side of the hyperplane spanned by the remaining vertices, or it does not. In case the
orientation is changed, the reflection changes the visibility of exactly one facet, namely the
one opposite to u;, and by (4.17) we get either Vol(tu) = =Vy—... =V, | =V, +V,  +.. .+
VorVol(tu) =Vy+...+V,_ +V,—=V,,, —...—V, .Incase the orientation is preserved,
the reflection changes the visibility of every facet but one, namely the one opposite to u;,
and again by (4.17) we get either Vol(tu) = V, + ... + Via+V, =V —...=V,or
Vol(tu) = =V,—...=V, = V;+V,,;+...+V, . Inall cases we have Vol(tu) = |V;(u)]. O
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Visibility. There are several useful consequences of Lemma , which we now state.
Note that for almost every m-simplex, there are precisely two signatures for which the
corresponding reflections produce a m-simplex that contains the origin. Indeed, to pro-
duce one, we reflect every vertex opposite a facet visible from 0, and to produce the other,
we reflect every vertex opposite a facet that is not visible from 0. In this way we get all
barycentric coordinates of 0 to be positive, which is equivalent to containing 0 in the inte-
rior. If the first simplex corresponds to t = (g, t1,...,t,), then the second corresponds
to —t = (—tg, —t1,..., —tm), which we refer to as the complementary signature.

Corollary 4.3.2 (Reflections and visibility). Let u € (R™)™"! such that 0 is contained in
the interior of the m-simplex, and let t € {—1,1}™"1,

1. Afterreflecting a subset of the vertices, the visible facets are either the ones opposite to
the reflected vertices, or all others. Specifically, if Vi (u) > 0, then there are #t visible
facets, each one opposite a reflected vertex, and if Vi (u) < 0, then there are m — #t+1
visible facets, each one opposite a non-reflected vertex.

2. The simplices tu and —tu are central reflections of each other; in particular, they have
the same volume and the same indices of facets visible from 0.

Fact1in Corollary isadirect consequence of () and Lemma , and Fact 2 is

clear for geometric reasons. The following simple facts will be useful in our computations.

Lemma 4.3.3 (Visibility of facets). Letu € (R™)™"! such that ( is contained in the interior
of the m-simplex, and let t € {—1,1}™%

1. The origin, 0, is contained in the interior of the m-simplex tu iff #t = 0 orm + 1.
2. #t = 0implies Vy(u) > 0 and, equivalently, #t = m + 1 implies Vi (u) < 0.

3. Ifa set of facets of tu is visible from 0, then there is no signature t' such that the com-
plementary set of facets is visible from 0 in t'u.

4. Ifuis an inscribed simplex, i.e, u € (S™~')™*1, then #t = 1 implies V;(u) > 0 and,
equivalently, #t = m implies Vi(u) < 0.

Proof. By assumption on u, the only signatures for which all terms ¢;V, have the same sign
are the ones for which #t = 0 or #t = m + 1. Fact 1 follows and implies Fact 2.

To see Fact 3, we express Vol(tu) using (), getting a negative coefficient for every
visible facet. Nevertheless, the sum of signed cone volumes is positive. If the visibility of
all facets could be reversed, () would give a negative volume, which is a contradiction.
Fact 4 follows: if u is a simplex on the sphere, then reflecting any vertex u; we obtain a
simplex with a single visible facet, the one opposite to u;. Hence, by Fact 3, it is impossible
to see the complementary m facets all at once from 0. U

Fact 1 of Lemma was used in [72] to compute the probability that all points of a
finite set sampled independently and uniformly on a sphere lie inside a hemisphere. Fact
4 will allow us to compute many of the values of EZm' but, unfortunately, it can not be

applied for Ef[fl, because the points are inside a ball and not on the sphere any more.
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Spherical expectations and cone volumes. We will now rewrite the expectation in the
definition (lézl]) of £, using the cone volumes. The probability space for the random vari-
ableuis P = ({S™!, 4})®(m+1) in which il is the uniform measure on the sphere, and the
random variables u; are just the projections onto i-th coordinate. Note that every inscribed
simplex, u, corresponds to a unique point configuration i € RP™ ' obtained by project-
ing u; from the sphere to the projective space. Likewise, every m-simplex with vertices in
RP™ ! corresponds to 2! m-simplices inscribed in S™~'. This allows us to decompose
the probability space as P = ({RP™ ' ('} ® {{—1,1},8B})®(™+1), in which ' is the uni-
form measure on the projective space and ‘B is the uniform measure on Z. In other words,
we decompose the uniform measure on the sphere as the measure on orbits under the ac-
tion of Z5" ™! times the Haar measure on the group. Write E,, for the expectation taken over
the sphere, E; for the expectation over the projective space and E; ¢ for the expectation
over the projective space and the group. We use the probabilistic formalism only locally, to
decompose the expectation in (lézl]) further into expectations involving volumes of cones.
We recall that the volume of tu is either V;(u) or —V;(u). Foreach1 < ¢ < m < n, we
write the expectation in (§.1)) as

Ep,, = Ey[Vol(u)" ™ "'1,,_(u)] (4.18)

= Eq o [Ve(@)[""" 1, (0, t)] (4.19)

=g Y. Ea[Ve@[" "My @sol + 5o >, Eal[|[Ve(@)|" "1y @<0]  (4.20)
#t=m—{ #Ht=0+1

=5 2 Ea[Va(@)" " Ly s (4.21)
#Ht=m—/

= o (1)) EulVe, (W)™ My o), (4.22)

inwhicht,, ,in () is an arbitrary signature with #t = m—/. The transition to () is
possible because for a fixed t, V; is the same for all simplices in an orbit, and the transition
to () is justified by the first fact in Corollary . We get () by observing that
the two sums in (4.20) are over complementary signatures, and we get (4.22)) because
relabeling the vertices does not change the expected volume. We can remove the bar in
the last transition again because V; _, is the same along the orbits.

The same relation also holds for Efn"l Indeed, the same reasoning can be repeated for
any rotationally invariant measure on R™ with the only addition that we need to multiply
the probability space by the measure on the R* corresponding to the norm of the vector.
The projection used in the definition of Efrz in () obviously gives a random simplex in
R™ (actually, inside the unit ball in R™) with rotationally invariant probability measure.

4.4 Computations of constants in the unweighted case

We extract the explicit factor from (@)

T Factor(m,n) || m =1 2 3 4
and rewrite it as =2 1 I
- 3 12?18
™ us
Cim = Factor(m, n)EZ‘m | | ol 1536 8.2

Note that it depends only on m and n. To
compute the coefficient for small values of
m and n, it is helpful to recall that the measures of the unit spheres are oy = 2, 05 = 27,
o3 = 4m, 04 = 2m?; see Table léEl] Our remaining job is to compute the £}, .

Table 4.1: Values of Factor
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4.4.1 Two dimensions

As a warm-up exercise, we begin with a Poisson point process in R?. We have C’go = land
C? & = 0for k& > 0 because all vertices are critical. To compute the remaining constants,
we need the spherical expectations given in (4.22):

2E7, = E[(Vy + V1)*] = 2E[V] + 2E[V, V)],

in which we get the right-hand side because expectations do not change under re-indexing.
The expectation is with respect to the uniform distribution on S°, which is a pair of points.
We have 1, = V| = 1 and therefore 2E} | = 4. We also need

sEL2 = E[Vy + Vi — Vo] = E[V],
4E3, = E[Vy + V; + V3 = 3E[V],

which both satisfy #t < 1, so Lemma applies and we can remove the indications,
which we did. These two expectations are with respect to the uniform distribution on S*.
Using (fL.1) to compute E[V;], we get 2E£7, = Mnt;(2,2;1) = 1, and similarly 453, =
3Mnt;(2,2;1) = 2. Retrieving Factor(l 2) = 1and Factor(2 2) = 2 from Table , we
can now use ([3]) to get the corresponding constants:

Ct, = Factor(1,2) - Ef ; =1-3-4=2,

C}, = Factor(2,2) - B}, = &F
C3, = Factor(2,2) - B3, = -

= »Mw

This justifies the entries of the left matrix in Table 2.1. Note that C2, — C?, + C3, = 0,
which agrees with the discrete Morse relation (@) Indeed, it makes sense to use this
relation as a check of correctness as we have refrained from using it during the derivation
of the constants.

REMARK. The computations for the critical edges generalize to n dimensions. Indeed, in
this case we have Factor(1,n) = 1and 2E7 , = E[(V{, + V})"] = 2", which gives

Cty = Factor(1,n) - EY| = 2nt, (4.23)

Simplices in the Poisson-Delaunay mosaic. For completeness, we also compute the ex-
pected numbers of simplices in the 2-dimensional Poisson-Delaunay mosaic, which are of
course known:

== 0370 - 17
- 012?1 + 01272 - 37
= 012,2 + 022,2 =2.

We have D2 — D? + D3 = 0, which is consistent with the Euler relation in the plane. Note
that D = 2 and 022’2 = 1 imply that about half the Delaunay triangles are critical. The
geometric reason behind this fact is an observation by Miles [54] that a Delaunay triangle
is acute with probability 1.
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4.4.2 Three dimensions

We have C§, = 1and C§,, = 0 for m > 0 because every vertex is critical, and we know
c3 i1 = 4 for the critical edges from (-) To compute the remaining constants in R3, we
need some spherical expectations:

sEL2 = El(Vy + Vi = V2)°] = BE[V{] — 2E[V, V],
4E;, = E[(Vy + V) + V3)°] = 3E[V{] + 6E[V, V4,

in which the expectations are with respect to the uniform distribution on the circle. We
get E[VZ] = Mnt,(2,2;2) = { from ([L.1) and E[V,V;] = Mnt,(2; 1,1) = - from ([L.Z); see
also Table u Using again Lemma 3 to omit indicators, we furthermore have

2By = E[Vy + Vi + V, = V3] = 2E[V],
8E5, =E[Vy + Vi + V, + V3] = 4E[Vy],

in which the expectations are with respect to the uniform distribution on the 2-dimen-
sional sphere. For now we sklp the computation of $E7, = E[|V, + V| — V, — V||. We
get E[V;] = Mnt,(3,3;1) ™ from (.) Multiplying the spherical expectation with the
corresponding factors in (@) we get the corresponding entries of the middle matrix in

Table R.1:

C$, = Factor(2,3) - B}, =2n -2 - (38 —2%) = Ew —3=255.
C3, =Factor(2,3)- B3, =27"- 1 - (3§ + 6%) = 27° + 3 :4.85...,
O34 =Factor(3,3) - B33 = 187 - 3 - 27 = 27 = 3.70. . .,

C3 4 =Factor(3,3) - B3y = 187 - £ - 4% = 27° = 1.85

We can compute the remaining Ci?) either by Euler formula or from (@), which gives the
constant in the number of 3-simplices in the Poisson-Delaunay mosaic as D§ = 227 This
gives

C3y= 972 =121,

560

which completes the justification of the entries of the middle matrix in Table [1] We use
(#.9) to check the numbers of critical simplices and get C3, — C3, + C3, — C3, = 0, as
required.

Simplices in the Poisson-Delaunay mosaic. While the expected numbers of simplices
in the Poisson-Delaunay mosaic in R? are known [67], it is easy to compute them from the
above constants:

:Cg,ozl
=Ci14+Cl,+Cly=2n"+1=176...
—C§2+O§2+20 +O§3=§2_1353
033+C§3+C§’3 2t =6.76. .

This completes the entries in the second row of Table . As a final check of correctness,
we compute the alternating sum, which gives D} — D} + D3 — D3 = 0, as required.
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4.4.3 Four dimensions

In four dimensions, we compute most of the constants directly, but use knowledge of D}
and Dj to get O}, and C . We have Cj, = 1 and Cf,, = 0 for m > 0 because every vertex
is cr1t1cal and Cf . = 8 by (#.23), so we proceed to the remaining constants. We will also
require expressions (4.6) and (4.7) for n = 4:

_3208/2T(17/2) [ T(3) 1* _ 286 _
D} = 2z 202 [ TN = 20 = 3177 (4.24)
Dy =380 =T5 7944 ... (4.25)

9

Triangles as upper bounds. Here we count the critical triangles and edge-triangle pairs.
Starting with C} 2, we have #t = 1 reflection, and by Lemma this implies V; > 0. We
therefore get

1B, = E[(Vy+ Vi - V)]
— B[V V7 V3 4 (V2 = V2Vt VPV — VAV V2V VRV, — 61,1415
— E[VJ] + 6E[V2V] — GE[V,V, V3.

From ([L.1) and (f1.2) we get E[V;}] = Mnt;(2,2;3) = L and E[V2V,] = Mnty(2;2,1) =
+ Note that 1}, and V; are independent in two dlmenswns so we also have E[VQV] =
E[V{] E[V;] = Mnt1(2, 2;2) Mnt; (2, 2;1), which gives the same result. For the remaining
term, we need a convenient description of the three points uniformly chosen on the unit
circle. Fixing u,, we parametrize u; and us by the angles «, 5 € [—m, 7| they form with w,.
In this setup, we have V, = i|sin(a — )|, V; = i|sinf3], V, = i|sinal, where « and /3
are uniformly distributed over [, 7]. We notice that this also implies that V; and V; are
independent whenever i # j. The moment can now be computed as

E[VyVi V3] = § E[| sin af| sin 3| sin(ar — B)]]

:%%/ /]smaHsmﬁHSln(a— Al derdfs

a=—7 =

=25 sin asin f| sin(a — B)| dadp,
=5 | ZO

in which the last equality is true because the expression does not change under transfor-
mations « — a+mand  — f+7.Computing the integral either by splitting cases or using
any mathematical software, we see that the moment evaluates to % Next, we proceed to
the critical triangles, computing 024’2. For this, we need

4By, = E[(Vy + Vi + V3)*] = BE[V5'] + I8E[V5'V;] + GE[VyV; Va.

Plugging these results into (), we get
Ct, = Factor(2,4) - Ef, = %~ .

2

C’§72 = Factor(2,4) - By, = 64771- _

(5 +6i—632ﬂ): 7 =5.66...,

= o

Tetrahedra as upper bounds. Here we count the critical tetrahedra, triangle-tetrahedron
pairs, and edge-tetrahedron quadruplets. Starting with C 3» we need the second moment
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of the volumes of cones with two visible facets. Settingt = (1, 1, —1, —1) and recalling that
—t=(-1,-1,1,1), we get

%Ei% = E[(Vo + V=V, - V3)21Vt>0]
= 3 (B[(Vy + Vi = Vo = Vo) Liso] + E[(=Vy = Vi + V3 + V3)* 1y o))
= 1 (BI(Vy + Vi = Vo = V3)*Lvisa] + E[(V + V; =V — V3)*1y<0))
= 3 BV, +V; = Vo = V3)?))
= 2E[V7] - 2E[V, V).

We get E[V?] = Mnt;(3,3;2) = & from (.1, and E[V,V;] = Mnty(3;1,1) = 51 from
(L.2). Moving on to Cf ; and to C 5, we need

2By = E[(Vy+ Vi +V, = V5)°] = 4E[V],
8Eg = B[(Vo + Vi + Vo + V5)’] = 4E[VF] + 12E[1 V1],

Plugging these results into (), we get

Cig = Factor(3,4) - B} = 1536 - % (21é2 2216) 392 —355...,

03,3 = Factor(374) . E;lg — 1536 - % 4L — 512 — 1896
1
8"

162
Cy5 = Factor(3,4) - Egy = 1536 - § - (4455 + 12 Ly =46 _ 15 40,

162 216

4-simplices as upper bounds. Here we count the critical 4-simplices and the intervals
they form with tetrahedra, triangles, and edges as lower bounds. For O;}A and 0274, we
need

BEy =EVy+ Vi + V4 Vs — V] = 3E[V],
16Ey, =E[Vy + Vi + Vo + V3 + V)] = 5E[V,].

We get E[V] = Mnt;(4,4;1) = 55 from (.1)), and using (4.3), we get

C3 4 = Factor(4,4) - B3y = 76?2 ‘16 3w = 5 = 1422

Ci, = Factor(4,4) - Ej, = = . L .58 — @ o

To avoid the complications that arise from having more than one reflection, we compute
Cf4 and C’Q‘A using the linear relations connecting the Delaunay simplices with the inter-
vals. Since all constants other than the two sought after ones are known, either from the
above calculations or from (|4_4|) and (|4_5|) this leads to a system of two linear equations:
3Ct, +2C3, = Sland C1, + C3, = 35. Solving them, we get

Ci,=35=166...
C§4—3—7_1114

We use (#.9) to check the number of critical simplices and get 08‘70 — ijl + C’;{z — C§’3 +
Ci, = 0, as required.
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Simplices in the Poisson-Delaunay mosaic. Finally, we count the total number of sim-
plices in the Poisson-Delaunay mosaic. Using the linear relations that connect the Delau-
nay simplices with the intervals, we get

D§=Cgy =1, (4.26)
Di=Ct +Cly+Cly+ Oy =10 =1888..., (4.27)
Dy =Cly4 Coy+2Ct 5+ Coy +3CT, + Cyy =32 =65.55.. ., (4.28)
Di=Cty+Chg+Cig+3C1,+205, +C5 =T =79.44 (4.29)
Di=Cly+Coy+Csy+Ciy=580=3177.... (4.30)

This completes the justification of the numbers in Tables [1] and . We note that we did
not use the Euler Relations to derive any of the constants. We can therefore use it to check
whether the computations are possibly correct. Indeed, we get Dj — D} + D3 — D3+ D} = 0,
as required.

4.5 Computations of constants in the weighted case

We now return to (@) and aim at computing the constants Ef;fb Recall that it is the ex-
pectation of the random variable

U = 1, (0')Vol,, (w) ", (4.31)

where u is a sequence of m + 1 random points uniformly and independently distributed
on the unit sphere in R™™"~*, and u’ is the corresponding sequence of points projected
to R™ < R™™~* [nstead of working with the original points, we prefer to study their
projections to R™, whose distribution was determined in Section R.1]. In this section we
find explicit expressions for C(’fjgl, C(Ifjf, Cﬁ’f, 035, 012”5‘ and (3’22,’5” .Since the interval structure
is very reach, we were not able to go beyond £ = 2 in computing Df"

4.5.1 Number of intervals

Critical vertices. For m = 0, we count intervals of type (0, 0) or, equivalently, critical ver-
tices. Since E{i’él = Uéf’él — 1, forall k < n, we get from (4.4)

n r(i-%
ckn = o, F0z). (4.32)

Vertex-edge pairs. Next we count the intervals of type (0, 1) or, equivalently, the regular
vertex-edge pairs. For this, we need the expectation of U(]i’f : picking two random points
on the unit sphere in R"~**! and projecting them to R! < R"**1 this is the expectation
when we get the k-th power of the distance between the projected points, if they lie on
the same side of the origin, and we get 0, otherwise. Writing uj,, u| € [—1, 1] for the pro-
jected points and = = |uj|, y = |u}| for their absolute values, we note that the signs and
magnitudes are independent. It follows that we get zero with probability %, so the desired
expectation is

E[Us1] = 3Ellz — y|*] = E[(z — y)¥ 1.5, ). (4.33)
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We can therefore restrict our attention to the half of the unit sphere that projects to [0, 1].
To integrate over this hemisphere, we use that 22 and y? are by Lemma independent
Beta-distributed random variables. Setting a = 2 and b = 3%, we have

1 a
1 n—k—2 1 n—k—2
E[Usy] = — / /[f—f] a2 (1—a)= b 2(1—b) dadb  (4.34)
B(Tag) a=0 b=0
1 T
4 k 2 n—k—2 2 n—k—2
= 2//[13—1/] (1—2%)2 (1-y°) = dedy (4.35)
B("5%.3) «Zoy2o
n—k+1)?
_F(k+1)F( 2 ) 7 k—n+2. k+3 n+2
o _k 3F2 (2717 5 1 9 v 9 71) (4‘36)
()

in which 3 7 is the regularized hypergeometric function defined in Section .1 and we use
the Mathematica software to get from (4.35) to (4.36). As mentioned at the end of this ap-
pendix, k—;?’ + "T” > %—l— 1+ % is a sufficient condition for the convergence of the infinite
sum that defines the value of the regularized hypergeometric function. This is equivalent
ton > 0, which is always satisfied. Plugging () into (), we get an expression for the
corresponding constant:

U?LkarleF(z - %) P'(k+ 1)F(n_Tk+l)2
AnyEkm Qkﬁr<n7_k)

29 7 2 2

_3ﬁ12( 1. k= n+2’ k+3 L"F2 1) (437)

Critical edges. Next we count the intervals of type (1, 1) or, equivalently, the critical edges.
Here the expectation of Uﬁ 1" is relevant: picking two points on the unit sphere in R*~*+!
and projecting them to R! <« R **+1 this is the expectation in which we get the k-th
power of the distance between the projected points, if they lie on opposite sides of the
origin, and we get 0, otherwise. Using again that the signs and magnitude of the projected
points are independent, we note that this expectation is E[Ufln] = 1E[(z + y)"]. Setting
a = 2% b = y?, and integrating as before, we get

1 1
1 _— _—
E[U] = .y — f+f a2 (l—a) 2 b 2(1—-b)"7" dadb (4.38)
o 5 a=0 b=0
1 1 1 .
- // < ) L — @) R (1 — )" dadb (4.39)
B J l J s
2 a=0b=0
. k 1 k k—i+1
=— 22() (25, 1) B(n5k, ), (4.40)
B( D) ,2) =0

Plugging () into (), we get the expression for the corresponding constant:

721 k+1UkF(2 - %)
Snvp~ k/”B(—k l>2z':o

2 02

kn
01,1
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4.5.2 Constants in low dimensions

Projection to a line. We now investigate the constants for £ = 1. From (), (),

(1.41) we get

n n on_1'(1-1
Cog = Ci7 = # (4.42)
n_ aaVa(2=3) fore-ny - (*F)
Cot = 2 : 4.43
0,1 n(n—1)vy, /n F(nfi) F(%) ( )
Equation (4.16) provides values
D" = Co + Cof (4.44)
Dy = Oy + C ”. (4.45)

Of course, these two values are the same. Note however, that when we introduce the radius
threshold, the numbers of vertices and edges diverge; see Theorem @] Some values are
computed in Table [3] This case can actually be analyzed purely geometrically; see [30].

Projection to a plane. In £ = 2 dimensions, the formulas provide sufficient information
to compute all constants governing the expectations of the six types of intervals. We get
three constants from (4.32)), (4.37), (4.41):

Cop = W (4.46)
Nn
(2 - 2)1(5L) .
Cox = U”‘mez <2/n 2 F((fz)) (31995 5,55 1), (4.47)
2
Chy = Tl (2= )7 S F(nT_l)Q (4.48)

N K Ol

The critical simplices satisfy the Morse relation (4.15): 03;3 — 012{‘ + 022;‘ = 0, which gives
us the constant for the critical triangles Relation (4.13) and (4.16) give further: CQ’"

Cy +Cay 5 = 2(0 + C2T 4 C27). Finally, we get a relation for the number of welghted
Delaunay triangles from (-) which we restate for k = 2:

o o D) (2 F a3
2 _Snan_lf‘(%) F(”T'H)Q F(%‘l)

(4.49)

Combining C + Oy o+ Cay H = — D3™ with the two linear relations mentioned above, we
get

Coy = —Cot — CoT + LD, (4.50)
Cry = Coy + ot — Cay + 1D§", (4.51)
Cyy = —Coo + CY. (4.52)

Explicit expressions are complicated, so we give numerical approximations in Table @



Poisson-Delaunay, Poisson-Cech
and weighted Poisson-Delaunay
complexes

In this chapter we prove three theorems stated in Chapter @, namely Theorem [d, Theorem
El] and Theorem [L3] Note that Theorem B is a special case k£ = n of Theorem , so we start
with proving the latter.

5.1 Expected size of the weighted Delaunay complex

Recall that to count the type (¢, m) intervals, we focus our attention by restricting the cen-
ter of the Delaunay sphere to a region {2 C R* and the radius to be less than or equal 7. By
Lemma , any sequence x = (Xg, X1, .. .,X;,) of m + 1 points in X C R" defines such
an interval if it satisfies the following conditions:

1. the smallest anchored sphere passing through x is empty, and we write Py(x) for the
probability of this event;

2. the center z of this sphere lies in 2, and we write 1¢(x) for the indicator;

3. the radius r of this sphere is bounded from above by r(, and we write 1,,(x) for the
indicator;

3. exactly m — /¢ facets of the projection x’ of the m-simplex x are visible from z, and
we write 1,,_,(x’) for the indicator.

Combining these conditions with the Slivnyak-Mecke formula (Lemma ), we get an

integral expression for the expected number of type (¢, m) intervals, which we partially
evaluate using Theorem R0 and Lemma R2.1.1]:

Elfno)l = ot [ P Ta(x) 1oy (x) 1L o(x') dx (5.1)
x€(Rn)m+1
= QUL o™ / e P dr / L, o(0)Vol,, ()" ™ du  (5.2)
r<ro ue(9)mtl

—m m+1—E. UnTi —-m
= lpf ek A Vel () e (53)

m+1 mt1-k
nuy
ue(s)m+1
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v(m+1-£; prpriy)
I(m+1-£)

= Cim- -1l (54)
Specifically, we get (@) by noting Py(x) = e *""", applying Theorem R0 to the right-
hand side of (El]), collapsing the indicators, using rotational invariance, and writing S for
the unit sphere in R™"*, We get (5.3) from (5.2) by applying Lemma with j =
a+1=n(m+1)—k c= pv,p=n,ty = ro which asserts that the integral over the
radius evaluates to the fraction involving the incomplete Gamma function. We get () by
defining the constant

mtF=m | 2k |0 (mA1-£)

k
9 1— £
(mAynw,

Lo_o(0')Vol,,, (0')* " du. (5.5)

ue(S)m+1

kn
Cﬂ,m -

We finish noticing that the last integral is by definition in (4.2) equal to an”,ffr,lb_ kEé“,Z, justi-

fying that () and (@) indeed define the same constant.

5.2 Expected size of the Poisson-Cech complex

Recall the characterization of intervals of Cech complex in Lemma [1.5.3. It stated that any
sequence x = (Xg,Xy,...,Xy) of m + 1 points in X C R™ defines such an interval if it
satisfies the following conditions:

1. the ball, bounded by the smallest (n — 1)-sphere passing through x, has exactly m — ¢
points of X in its interior, and we write IP,,, ,[x] for the probability of this event;

2. the center z of this sphere lies in {2, and we write 1¢(x) for the indicator;

3. the radius r of this sphere is bounded from above by r(, and we write 1,,(x) for the
indicator;

3. no facets of x are visible, and we write 1y(x’) for the indicator.

Similarly to (5.1]) we thus get for the number of Cech (¢, m)-intervals with the smallest
enclosing ball having center in () and radius not greater than r:
El¢7(ro)] = ﬁpzﬂ / Prn—e[x] 1o(x) La(x) 1,,(x) dx,
XE(R")Z+1
where P, [x] = %e—punrn is the probability that there are exactly m — ¢ points
inside the ball. The complete analysis (El])-(@) carries over and, recalling that C}',, =
;"' we obtain for the expected number of (¢, m)-intervals

Lm

v Y prnry
B[, ()] = Cp, i) oo
Note that we express the number of Cech intervals in terms of the number of Delaunay (or
Cech) critical simplices. This is so, because by Lemma the geometric characterization
of Cech intervals is similar to the critical Delaunay simplices. Using notation similar to the



59

notation used in the Delaunay case, we write for the expected density of (¢, m)-intervals
of C(X, 00):

“n . I(m) o (m—1
sz:Ce,e—F 0ol u<£_1 >7

(£)(m —

For ¢ > n we have C7, = 0.

Cech simplices. If we use Lemma , we get the expected total number of j-simplices
in Cech,, X restricted to (2 as

min{gn} oo . min{g,n} m—LC\ (m—1\v(m, pv,ry)
3 2 (0 =y e 2 (7))
We want to show that this sum converges for ry < oo to justify that we can change the or-
der of summation and take expectations. It can be either obtained by an asymptotic anal-
ysis or by the following argument, which claims that the sum should indeed be finite. The
expected number of Cech j-simplices, whose smallest enclosing ball has radius not greater
than ry and intersects the boundary of € is not more than the number of (j + 1)-ples of
points, that are located inside a ball of radius r( in the ry-neighborhood of 0f2. In general,
the expected number of (j + 1)-ples of points, whose smallest enclosing ball intersect any
Borel region H is not more than

1 j+1 j+1
— 1 dzg...dz; < C ro” | HL, ||
(G+1)! AoEHTO ~/501 xJEB(JJ(JQT’()) p] 0 J+1 0 p || 0 ||

where H,, is the ry- neighborhood of H. Setting H = 012, we get that the number of j-
simplices intersecting it is (]H) {(pro)UtDo(||Q|]). Hence for a fixed j the answer does not
depend on the way we restrict the complex to 2 up to o(||2||), and since this little-oh is
uniform over j, it happens for all 5 simultaneously; compare with Section

As opposed to the Delaunay case, the convergence is not uniform over the radius, so
the argument does not work for ry = oo.

5.3 Boundary effect on Poisson-Delaunay mosaics

Recall that K is the nerve of the Voronoi diagram restricted to 2, and K; C K, contains
all Delaunay simplices whose Delaunay spheres have the center inside €2. In this section,
we show that the difference between K and K is small when €2 is a ball. For simplicity we
work with the unweighted Poisson-Delaunay complex here, but similar statements can be
achieved for other complexes as well.

Big spheres. We need an auxiliary lemma implying that only a vanishing fraction of the
n-simplices in the Poisson-Delaunay mosaic have Delaunay spheres with radii larger than
some positive threshold. Note that for n-simplices the Delaunay sphere is the unique cir-
cumscribed sphere. To simplify the discussion, we call the closed ball bounded by the De-
launay sphere of an n-simplex its Delaunay ball. Letting H C R" be bounded and ry > 0,
we write #(H, ro) for the number of n-simplices in the Poisson-Delaunay mosaic whose
Delaunay spheres have center in H and radius larger than r.
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Lemma 5.3.1 (Big spheres). There exist positive constants c, «, 3, all depending only on n,
such that for any bounded Borel set H C R™ and any fixed ro > 0, E[#(H, ()] < cHHHe‘O"”’g.

Proof. Arguing as in Section .1, with the only difference that z is now integrated over H
and r from r, to infinity and the sphere is not anchored, we can write

El#(H, o)) = col[Hl| [ e *r dr = g [HID(n, pr),
r=r0

in which ¢ and ¢, are constants that depends only on n, and I'(n, z) = I'(n) — y(n, x) is
the upper incomplete Gamma function. Noticing that T'(n, prijiv,,) = 0(6‘0'9”3””), see for
example [61], completes the proof. ]

Size of boundary. We are now ready to give an upper bound on the number of simplices
in K that are notin K, which we need for bound on the Euler characteristic of K; see the
definition of K, on page . Every simplex () € K \ K; corresponds to an intersection of
Voronoi domains, Vor((Q), that has points inside as well as outside (2. Let 2 € Vor(Q) N2
and y € Vor(Q) \ 2. We argue that both points are contained in the union of Delaunay
balls of the n-simplices that share (). Indeed, all these Delaunay balls contain all points
of ), and for each ¢ € () there is a vertex of Vor(Q) that is closer to x than to ¢, so the
Delaunay ball centered at this vertex contains x. The same argument applies to y. Since
the union contains points on both sides of 0f2, at least one of these Delaunay balls has a
non-empty intersection with 0S2.

Writing #(012) for the number of n-simplices whose Delaunay balls have a non-empty
intersection with 0S2, we prove that it grows slower than the number of n-simplices whose
Delaunay balls are centered inside 2. The discussion above implies that the difference
between two complexes is |Ky \ K| < 2"1#(09Q), so to get | Ky \ K1| = o(p||Q]]), it is
enough to prove the following.

Lemma 5.3.2 (Boundary size). Let X be a Poisson point process with density p in R". Let
Q2 = B(R) be a ball of radius R centered at the origin. Then E[#(02)] = o(1)p||?|| as R —
00.

Proof. Without loss of generality assume p = 1. Fix 0 < § < 1. It suffices to count the
n-simplices with Delaunay centers outside €2 and to prove that the number of such n-
simplices whose Delaunay balls intersect 92 is O(R"~1*?). Assume R > 1 and let A be
the set of points at distance at most R° from 95). For a ball with center z outside {2 to in-
tersect €, one of the following must happen:

1. z € A;
2. z € B(2R) \ A and its radius exceeds R’;
3. z ¢ B(2R) and its radius exceeds R.

Asproved in [67] and reproved in Section El], the expected number of n-simplices in Del X
with Delaunay center in A is O(||A|) = O(R"~'*). This settles Case 1. Applying Lemma
, we see that the expected number of n-simplices with Delaunay center in B(2R) and
Delaunay radius larger than R? is O(R”e‘O‘RM), in which « and 3 are positive constants.
This settles Case 2. Finally, we decompose the complement of B(2R) into annuli of the form
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H; = B(:R + 2R) \ B(iR + R), for i > 1. To intersect {2 = B(R), a ball centered inside H;
must have radius exceeding i . Writing H = 72, Hj for the union of annuli and #(H, (2)
for the number of n-simplices with Delaunay center in H whose Delaunay ball intersects
(), we get an upper bound on the expected number:

E[#(H, Q)] < 3 E#(H, iR)]

=1

- —a(iR)?
<3 c|Hle (iR) (5.6)
i=1
! pn_—aRP .- - _—aif
< cR" Zz e , (5.7)
i=0

where we use Lemma to get (5.6), and |H,|| = O(i"R") as well as a(iR)? > ai” to
get (5.7). Since the last sum converges, we get E[#(H, Q)] = O(R"e~*"), which settles
Case 3. []

REMARKS. (1) Besides | K \ K1| = o(1)p||€?||, Lemma implies that the number of ver-
tices of K outside 2 is o(1)p]|Q2]|.

(2) Actually, we have proved that for any ¢ > 0, E[#(9Q)] = o(1)p||0Q" ™. Also, one
can apply the Markov’s inequality to show that the convergence happens in probability.
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E Poisson-Delaunay complexes of
higher order

In this chapter we spend most of the time characterizing faces of order-k Delaunay and
Voronoi mosaics and developing the discrete Morse theory, which can be applied to count
them. Theorems[1§and @ will be proved in the first and the last sections correspondingly.

6.1 Faces of higher order Voronoi diagrams and skeleta
volumes

Recall that the order-k Voronoi diagram of X C R" is defined as the collection of order-%
Voronoi domains, which are identified by the closest & points of X. In the order-1 case,
we could thus say that a point p € R"” belongs to the Voronoi domain of a pointx € X
if the unique open ball bounded by the sphere centered at p and passing through = does
not contain any points of X. It gives an alternative description for Delaunay simplices as
simplices having an empty circumscribed sphere. We want to generalize this description
for the order-k case. We start with the order-k Voronoi polyhedra, which will be trans-
formed into equivalent characterization of the order-k Delaunay cells in the next section.
Also, Theorem [@ will follow from these considerations.

Delaunay spheres. Let X C R"” belocally finite. For a pointp € R" and a positive integer £,
the order-k Delaunay sphere of p, denoted ¥ (p), is the smallest sphere centered at p € R”
such that the number of points of X that lie inside or on the sphere is at least £. It will be
convenient to have short notation for the points strictly inside and on the sphere, as well
as their numbers. Observing that conv ¥;(p) is the closed ball with boundary > (p), we
define

In(p) = X Nintconv 3k (p) and in(p) = |In(p)|, (6.1)
On(p) = X N Xy(p) and on(p) = |On(p)|. (6.2)

By definition, in(p) + on(p) > k, and by minimality of the radius, on(p) > 1 and in(p) <
k — 1. The in(p) points in In(p) are the unique in(p) nearest points to p, the on(p) points
in On(p) are all at the same distance from p, while all other points of X are further. This
gives a following characterization of the order-%£ Voronoi domains:

Lemma 6.1.1 (Incident Voronoi domains). Let X C R" be locally finite and in general
position, and let () C X with |Q| = k. A point p € R™ belongs to dom(Q) iffIn(p) C Q C
In(p) U On(p).
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Equivalence relation. We want to strengthen the previous lemma by including polyhedra
other than the Voronoi domains. Recall that the interiors of the order-k Voronoi polyhedra
partition R”. To reconstruct this partition, we say that p,q € R" are equivalent if their
order-k Delaunay spheres identify the same subsets of X. More formally, we distinguish
between the cases in which there are k£ or more than & points inside or on the Delaunay
sphere:

- qif{ n(p) U On(p) = In(q) UOn(q) forin(p) + on(p) = in(q) + on(q) = k,
X In(p) = In(g), On(p) = On(g) for in(p) + on(p) = in(q) + on(q) > k.

We claim that the equivalence classes of ~x are precisely the (relative) interiors of the
order-£ Voronoi polyhedra.

Lemma 6.1.2 (Interiors of order-k Voronoi polyhedra). Let X C R” be locally finite and
in general position. Then p, q € int F', for a common face F' of\/or(k)(X), iff v ~x q.

Proof. We first show that p ~x ¢ implies that the two points belong to the interior of
a common order-k Voronoi polyhedron. In the first case, when in(p) + on(p) = in(q) +
on(q) = k, this is clear because () = In(p) U On(p) = In(g) U On(q) is the unique set of
k nearest points in X, so p,q € int dom(Q), which is an order-k Voronoi n-polyhedron.
In the second case, when in(p) + on(p) = in(q) + on(q) > k, we leti = in(p) = in(q)
and note that ¢« < k. The points in In(p) = In(g) are the unique ¢ nearest points, and
we can add any k — ¢ points from On(p) = On(q) to get a complete set of k£ nearest points.
There are (058?) = (OI?( Z)> such choices, and by Lemmal6.1.1 each gives an order-k Voronoi
domain, that together exhaust the domains that contain p or ¢ on their boundaries. The
set of points at equal distance from on(p) = on(q) points of X is a plane of dimension
n+1—on(p) = n+1—on(g), which implies that this is also the dimension of the order-%
Voronoi polyhedron whose interior contains p and q.

We second show that p ~x ¢ implies that p and ¢ belong to the interiors of different
order-£ Voronoi polyhedra. Assume the contrary. We note that the dimension of the order-
k Voronoi polyhedron whose interior contains pis n, ifin(p)+on(p) = k,and n+1—on(p), if
in(p) +on(p) > k, and similar for ¢. In the first case, we would thus need in(¢) +on(q) = &
to match the dimensions of the domains, but then In(p) U On(p) # In(q) U On(q), so p
and ¢ belong to different domains. In the second case, we would need on(g) = on(p) to
have the same dimension of the polyhedra. Hence, In(p) # In(g) or In(p) = In(g) and
On(p) # On(q). In either case, we get a different collection of order-k Voronoi domains
for p than for q. O

Proof of Theorem [16. Recall that the proof of Lemma determines the dimension of
the order-k Voronoi polyhedron whose interior contains a point p € R" as n, if in(p) +
on(p) = k,and asn+ 1 —on(p), ifin(p) + on(p) > k. Equivalently, p belongs to the interior
of an order-£ Voronoi ¢-polyhedron iff

¢ =nandin(p) +on(p) = k or (6.3)
0</{<n—1landon(p)=n—¢+landk+¢—n <in(p) <k —1. (6.4)

These relations suffice to extend the analysis in [67] from skeletons of order-1 to skeletons
of order-k Voronoi tessellations. For 0 < ¢ < n—1,they can be obtained asin [67, Theorem
10.2.4], which is the special case k = 1 of Theorem . The sole difference is that we use



65

the probability that there are ¢ points in the interior of the ball instead of 0, and sum over
all admissible values of i, thus getting F(n —(+i+ f)/z' instead of F(n — {4+ %) in the
numerator. This is precisely the expression in the statement of Theorem . For ¢ = 0 this
gives the expected number of vertices in the order-k Poisson-Voronoi mosaic. The case

( = n is trivial: we obviously have E[n%")] = (") = 1, Theorem [L€ is thus proved.

6.2 Faces of higher order Delaunay mosaics

In this section, we are more specific about the dual of the order-k Voronoi tessellation. As
mentioned in Section @, each vertex of the order-£ Delaunay mosaic is the average of the
k points that generate a non-empty order-k Voronoi domain. Each (n — j)-polyhedron of
Vor®) (X) is shared by a number of Voronoi domains, each domain corresponds to a vertex,
and the polyhedron corresponds to the j-cell in Del™ X that is the convex hull of these
vertices. Since Vor*)(X) is not necessarily normal, Del*) X is not necessarily simplicial.

Barycenter polytopes. We introduce a class of convex polytopes that is slightly richer
than the class of simplices. As we will see later, this class contains all polytopes we gener-
ically encounter in order-k£ Delaunay mosaics. Let A be an n-dimensional simplex and
recall that it has ("Jgrl) faces of dimension g — 1, for 1 < g < n + 1. The corresponding
generation-g barycenter polytope is the convex hull of the barycenters of all (¢ — 1)-faces,
denoted A}. For g = n + 1 the corresponding polytopes consist of a single point, but
for other values of g they are n-dimensional. For ¢ = 1 and ¢ = n the polytopes are n-
simplices, namely the convex hull of the n + 1 vertices, A7 = A", and the convex hull of
the barycenters of the n + 1 (n — 1)-faces, A”. For 2 < g < n — 1, the barycenter polytope
is not a simplex, and the first such case is A3, which is an octahedron; see Figure El]

Characterization. If X is in general position, which we assume, then every cell of Del®) X
is a barycenter polytope. To prove this, we consider a u-dimensional cell G of Del® X and
recall that all interior points of its dual (n — u)-dimensional polyhedron F' of Vor™ (X)
are equivalent. In other words, there are sets / = In(F) and U = On(F’) that uniquely
determine F as the polyhedron whose interior points p satisfy I = In(p) and U = On(p).

Figure 6.1: Three barycenter polytopes in R3: the generation-1 tetrahedron, the generation-2
octahedron, and the generation-3 tetrahedron.
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We rewrite (@]) and () to get constraints on the sizes of the two sets:

I|+|U| =k ifu=0, (6.5)
U|l=u+landk—u<|I|<k—1 ifu>0. (6.6)

The vertices of Del®) X are governed by a different relation, (@), from the remainder
of the cells. Focusing on the cells of dimension 0 < u < n, we note that (6.6) allows
for a range of u possible sizes of the set I. These correspond to the generations of the
barycenter polytopes, as we now explain. Let i = |I| and define ¢ = k — i, noting that
(b.6) implies 1 < ¢ < u. By Lemma .12, F is the intersection of (“;1) order-£ Voronoi
domains corresponding to Q) = I U Uy, in which U, C U with |U,| = g. So its dual cell
G is the convex hull of the centers of masses z of these sets, as discussed in Section .
Writing x¢ as

TQ =} [erlx T erU ﬂ = Flar+ fau, (6.7)

we see that the convex hull of the z( is therefore a translated and scaled copy of a genera-
tion-g barycenter polytope, namely the convex hull of the points 2y, . Since |U| = u+1, this
polytope is u-dimensional, as expected. To summarize, we have a complete description of
the cells in an order-k Delaunay mosaic.

Lemma 6.2.1 (Order-£ Delaunay cells). Let X C R" belocally finite and in general position,
andlet I,U C X with INU = 0. If|I| + |U| = k, then there is a point p € R" with
In(p) U On(p) = T UU iff xyuy is a vertex of Del™ X, If [I| + |U| > k + 1, then there is a
point p € R™ with In(p) = I and On(p) = U iff the u-dimensional generation-g barycenter
polytope defined by I and U belongs to Del® X, in whichu = |U| — 1 and g = k — |I|.

6.3 Relaxed discrete Morse theory

In the previous section we found out that all cells of the order-£ Delaunay mosaic are de-
fined by the order-£ Delaunay spheres of points in the dual Voronoi face. This description
is not unique though: several spheres can define the same cell. We want to resolve this
non-uniqueness by choosing the unique smallest one. This rather informal description is
a starting point for developing a version of discrete Morse theory, which would generalize
the standard discrete Morse theory [36, 37, 8] to the order-k case.

Radius function. Recall that every j-cell G € Del® X corresponds to an (n — j)-polyhed-
ron F of Vor™”(X). By Lemma [6.1.2, for any point p € int F, the Delaunay sphere % (p)
passes through the same j+ 1 points On(p) = On(F’), and G is a scaled and translated copy
of a barycenter polytope defined by On(p). Since this is the smallest sphere centered at p
such that the closed ball it bounds contains at least k points of X, the definition does not
depend on F, and its radius, 7 (p), is continuous as function of p. Noting that F' is compact,
we can therefore introduce R, : Del® X — R defined by

Ri(G) = min{ry(p) | p € F and F dual to G},

and call it the radius function of Del® X. We further call the point p € F, which attains
the minimum, the center of GG. This agrees with the definitions used in the statement of
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Theorem [L5. Note that if the center p of G lies in the interior of a Voronoi face F”, then ry, (p)
is the radius of ;. (p), which determines F” in the sense of Lemma 6.1.2. A very important
observation is that On(#) C On(p) = On(F’) and In(F") C In(F) C In(F’) U On(F"),
because all k-tuples of points of X, whose order-k Voronoi domains intersect in F’, are
involved in forming F’. With this it is also easy to find out, which Voronoi polyhedra of any
fixed dimension, not necessarily n, intersect in F”.

Y

Figure 6.2: The radius function partitions the order-2 Delaunay mosaic of the three points
into four relaxed intervals: three contain a vertex each, and the fourth relaxed interval contains
the triangle together with its three edges.

The discrete Morse theory of [36] requires that level sets of the radius function are
singletons and pairs, while the generalized discrete Morse theory of [37] allows intervals,
which are maximal sets of faces of a cell that share a common face. The level sets of R,
are not necessarily of this type, as we now show. Let X consist of three points spanning
an equilateral triangle with unit length edges in the plane. The order-2 Delaunay mosaic
consists of the triangle spanned by the midpoints of the three edges, together with its
edges and vertices. Observe that vy = 1/2 is the radius assigned to its three vertices, and
r1 = +/3/3 is assigned to the triangle together with its three edges; see Figure . In-
deed, the closed disks of radius r centered at the points in X have pairwise intersections
iff r > ry, and they have a non-empty common intersection iff » > r,. Each vertex of the
order-2 Delaunay mosaic has its own center in the interior of the corresponding Voronoi
2-polyhedron, but the triangle and its three edges share the center at the circumcenter of
the triangle. The triangle together with its edges is not an interval, so Ry, is not a general-
ized discrete Morse function, and we refer to it as a relaxed discrete Morse function. This
function indeed contains some topological meaning, see [32], so the term is not chosen
randomly.

Relaxed intervals. The radius function R, is monotonic, by which we mean that R (G) <
Ri(G") whenever G is a face of G’. Equality is possible, namely when the order-k Voronoi
face F”, dual to G, contains the center of GG, which lies in £\ int F. By definition, a relaxed
interval of R;, is a maximal collection of cells in Del® X that share the center, and hence
the function value. Thus, every level set of R;, is a disjoint union of relaxed intervals.

The previous example begs the question how much more general the relaxed inter-
vals are compared to the intervals. Each relaxed interval has a unique upper bound, which
is a cell G € Del® X, whose dual Voronoi polyhedron, F, contains the center p of G in
its interior. Write U = On(p) and u = |U| — 1. The dimension of G is thus u, unless
in(p) + on(p) = k, in which case it is 0. Considering any partition of U into three sets,
U = U, UU,,U U, with U,, # U, we can slightly perturb the sphere >;(p) into a sphere
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Y, with¥NX = U,,and int XN X = U;, UIn(p). If the sizes of these two sets satisfy the re-
quirements for the order-k Delaunay sphere, they define a cell of Del®) X, which is a face of
(. On the other hand, every face of GG induces such a partition. We thus get a corresponding
between such partitions and faces of GG, which is one-to-one unless |U;, U U,,, U In(p)| = &,
otherwise we get the same vertex for different partitions with the same U;, U U,,,. We are
particularly interested in distinguishing the faces that share the center, p, from the other
faces of GG. The crucial concept is again the visibility of facets of conv U from p, as defined

in Section .

Recall that the center p of G lies in the interior of the dual Voronoi polyhedron by as-
sumption. It follows that p lies in the affine hull of U. Equivalently, the u-sphere with center
p that passes through the u + 1 points of U = On(p) is a great-sphere of ¥ (p), and £ (p)
is the smallest circumscribed sphere of U. The convex hull of U is a u-simplex, and recall
that we say that a facet of U is visible from p if the affine hull of the facet, whichisa (u—1)-
plane, separates p from conv U within the affine hull of U, which is a u-plane. Let V' be the
intersection of all visible facets of U, and write |V'| = v + 1. In particular, V' = U if there
are no visible facets. Notice that v is also the number of invisible facets minus 1, because a
vertex belongs to V' iff the facet opposite to the vertex is invisible, and observe thatv > 1
because the v + 1 points of U lie on a sphere around p; compare also with Lemma .
With these notions, we can identify the partitions of U corresponding to faces of G that
belong to the same relaxed interval.

Lemma 6.3.1 (Visibility and relaxed intervals). Let X C R" be locally finite and in general
position. Let G € Del® X with corresponding order-k Delaunay sphere Y;.(p) be the upper
bound of a relaxed interval of the radius function. A face G' of G belongs to the same relaxed
interval iff the partition On(p) = Uy, UU,, UU,,; induced by G’ satisfies U, CV C Uy, UU,,.

Proof. Write U = On(p). Let ¢ be the center of G/, and recall that G, G’ belong to the same
relaxed interval iff p = ¢. The following two conditions must hold, else p # q.

(i) If an invisible face of conv U contains U,,,, then the opposite vertex must be in Uj,.

(ii) Ifa visible face of conv U contains U,,, then the opposite vertex must be in U,,;.

To see (i), we would move the center, p, normal to and slightly toward the facet while ad-
justing the radius so the sphere keeps passing through all vertices of the facet. This gen-
erates a smaller sphere for the same partition of U, hence p # ¢. The symmetric argument
proves (ii). Now (i) is equivalent to U;,, C V/, and (ii) is equivalentto U \ V' C U,,;. Hence
p = q implies U, C V C U, U U,,. The converse is also true because the two conditions
prohibit a smaller sphere in the normal directions of all facets. These directions span all
directions in the affine hull of U. ]

The only case when the induced decomposition is not necessarily unique, is when G’ is
avertex. In particular, if the upper bound cell G is a vertex itself, an additional requirement
that V' = U appears, because otherwise we would get that some of its faces, namely itself,
belong to a different relaxed interval.

6.4 Counting intervals and simplices

In this section, we count the cells in the relaxed intervals that arise in the partition of order-
k Delaunay mosaics. We then use the result to prove Theorem .
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Cells in relaxed intervals. As explained in the previous section, every relaxed interval has
aunique upper bound, whichisacell G € Del™™ X whose center, p € R, is contained in the
interior of the dual Voronoi polyhedron. The order-k Delaunay sphere of this point, ¥x(p),
completely determines G; see (6.7). Ignoring the case in which G is a vertex, we assume
that in(p) + on(p) > k + 1, in which case u = on(p) — 1 > 1 is the dimension of G and
g = k —in(p) is its generation. To get the number of vertices of G, we count the partitions
U = U;,UU,, of U = On(p) with |Uy,| = g, where we artificially move U,, into Uj, because
we are interested only in their union; compare with (@). To get the number of j-faces,
for 0 < j < u, we count the partitions U = U, U U,,, U U,,, that satisfy |U,,| = j + 1 and
g —J < |Un| < g — 1; compare with (@). To further limit the number to the cells in the
relaxed interval of GG, we restrict to Uy, C V C Uy, U U,,, inwhich V' C U with |[V|=v +1
contains the vertices that belong to all visible facets of U.

For j = 0, the last condition is equivalent to U;, = V. So, we have Nf)fg(O) = 1if
g = v+ 1 and 0 otherwise. When j > 0 the dimension requirement is that |U,,| = j + 1.
Writing ¢t = |U;,|, we can formulate the question purely combinatorially, first choosing the
union Uy, UU,, C U suchthatV C U, UU,, and second choosing U;,, C V': how many ways
are there to pick (t + j + 1) — (v + 1) from (u + 1) — (v + 1) points and then t from v + 1

points?
v =3 (00T (68)

e \L+J—v

in which t; = max{0,v — j,g — j} and t;, = min{v + 1,u — j,¢g — 1} are obtained from
0<t<v+1,0<j—v+t<u—vandg—j <t < g— 1. The first two conditions assert
that the binomial coefficients make sense, while the last one is the geometric requirement
for the number of points inside the sphere.

Intrinsic characterization of relaxed intervals. Let U C X C R" with [U| = u+1 <
n + 1 be a simplex, such that the smallest circumscribed sphere ¥ of U has at most k — 1
and at least K — u — 1 points inside. Letting p be the center of this sphere, we notice that
> = %(p) and On(p) = U.If on(p) + in(p) > k, it defines a cell G of Del®™ X, which is a
barycenter polytope of type A}, for g = k — in(p). By Lemma , this cell is the upper
bound of a relaxed interval of the radius function R, which contains the cells that share
p as their center. The lemma also asserts that the interval is fully described by the the set
of vertices of U that belong to all visible facets. Writing V" for this setand v = |V/| — 1 for
its dimension, we call (v, u, g) the type of the relaxed interval. It is fully defined by U.

If on(p) + in(p) = k, then p belongs to the interior of the order-k Voronoi domain of
On(p) U In(P). By Lemma and the remark after it, p is the center of this domain iff it
lies in the interior of U. In this case, we get a critical vertex, with V' = U and g = u+ 1. The
type of this interval is thus defined as (u, u, u + 1). This should not be confusing because
vertices with different relaxed interval types are really different kinds of vertices in the
mosaic.

Proof of Theorem @ We now apply the developed theory to get the expected number
of j-cells in the Poisson-Delaunay mosaic of order k. Let X be a stationary Poisson point
process with density p in R”. Using the intrinsic characterization, we want to compute the
expected numbers of intervals of type (v, u, g), while restricting the radius from above.
Write sg’fﬁ’}g) (o) for the number of tuples of u+ 1 points in X, whose smallest circumspheres

have k — g points inside, have their center in some region {2 C R", and have radius at most
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ro. As the previous discussion shows, it is the same as the number c; ug)( o) of intervals of
type (v, u, g) with center in 2 and radius at most rp, when 1 < ¢ < max{u,k}orv=u =
g — 1. For u > 0, the Slivnyak-Mecke formula (Lemma ) helps to take advantage of
such description and express the expected number of such intervals as

Eslnio)] = o [ La0)L (L (3B, ()" dx.

xXE (Rn)u«l»l

in which P,_,(x) = (pvr™)*9e """ /(k — g)! is the probability that the smallest cir-
cumsphere of x has k£ — ¢ points of X inside, 1(x) indicates whether the center of this
sphere belongs to (2, 1,,(x) indicates whether its radius is at most r(, and 1,_,(x) indi-
cates whether x has u — v visible facets. This notation mimics the notation in Chapter 5,
in particular, we write x for a sequence of u + 1 points, which is better suited for integra-
tion than the set U of u + 1 points. This formula effectively differs from (El]) only in the
way that we use P_,(x) instead of Py(x) = Py(x), and k in (5.1) is equal to n. To avoid
redundancy, we do not rewrite the steps (El]) (@) but rather focus on the difference.

Specifically, instead of [°, r"*~te=rr"vn = 7(k py"ro in (5.2), we have

o k—g

/ et (O vn) 7, (pvn) Iy (ut R — gy prarg) _ A(ut k= g5 prarg)
o (k—g)! (k=g)t  nlpyy)rths (k= g)tn(pvm)"

Repeating (El])—(@), we get

(U—'—k g; anrO)
(k —g)'I'(u)

in which the constant C7', is the same constant as defined in (.3) The case u = 0 is ex-

ceptional, because the smallest circumscribed sphere of any single vertex has radius 0 and
has no points inside, so the only non-zero value is E[sé}(ﬁ) (ro)] = p||?|| for all ry > 0, in-
dependent of the radius. Turning back to the number of relaxed intervals, we thus have

E[c(Fm) (rq)] = E[s(®) (r4)] for admissible values of parameters, i.e., for 1 < g < min{k,u}

V,U,g V,U,g

orv =u = g — 1,and 0 otherwise. The result agrees with Theorem E fork = 1.

Co =PI, (6.9)

Now that we have expressions for the number of relaxed intervals of all types, it is not
difficult to count the j-cells in the order-k£ Delaunay mosaic whose value under the radius
function is at most rg:

n w min{ku+1}

Bl (r)] =33 > Ni() - Elel (o))

u=7 v=0 g=1

For j > 0, we can use (@) and (@) to get

SURSUSED 95 90 95 9 (Sl | N el o]

u=j v=1 g=1t=to t+.]

in which ¢; = min{k, u}, to = max{0,v — j,g — j},and t; = min{v + 1,u — 5,9 — 1}, as
before. For j = 0 and £ > 2, we have to sum the numbers of all intervals with g = v + 1:

n L u+k—v 1; pvpr
Bl o) = 332 Wttt oy,

This completes the proof of Theorem n



Random inscribed polytopes

In this chapter, we prove Theorem @ It consists of an integral equation for the expected
number of intervals of a Poisson-Delaunay mosaic on S™ as a function of the maximum
geodesic radius, and an asymptotic version of the formula for p — oc.

7.1 Integral equation

We begin with the proof of the first equation in the statement of Theorem . The main
tools are again the Slivnyak-Mecke formula, and the Blaschke-Petkantschin formula, this
time for the sphere (Theorem El]).

The Slivhyak-Mecke approach. To write this integral, we recall thatx = (2o, 1, ..., Zs)
is a sequence of m + 1 points or m-simplex on S”, that Py: (S")”"" — R maps x to the
probability that its smallest circumscribed cap is empty, that 1,,, ,: (S*)™*! — Rindicates
whether or not the number of facets visible from the Euclidean center of the smallest cir-
cumscribed cap is m — £, and that 1,,: (S*)™*" — R indicates whether or not Rg(x) < 7.
Choosing points from a Poisson point process with density p > 0 on S”, we use Slivnyak-
Mecke formula to write the expected number of intervals of type (¢, m) and geodesic radius
at most 7 as

m—+1

E[c}, 0] = ooy / Py(x) - Ln_¢(x) - 1, (x) dx, (7.1)

x€(Sn)m+1

in which 0 < ¢ < m < n. The probability that the smallest circumscribed cap of the m-
simplex is empty is Py(x) = e~ A", with 7 the geodesic radius of the cap. To compute
the integral in (7.1]), we apply the second equation in Theorem 21 with

f(x) = By(x) Lo (%) 1y (%)
The corresponding function from the statement of Theorem El],
fr: (Sm—l)m—l—l g (Rn—f—l)m-i-l SR

is defined by
fr(a) = Py(r)Lm—e(a)1(r),
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where we write Py(r) = Py(u) and 1,,(r) = 1,,(u) to emphasize that these expressions
depend only on the radius. The theorem then gives

1
[ sk =gl [ - 0 T R VL, (V)
xe(Smym+1 t=0

x / L o(w)[mVol(w)]™ ™ dudt.  (7.2)

ue(Smfl)mﬁ»l

Substitution and reformulation. To continue, we recall the notion E7’,, from (lézl]) It fol-
lows that the second integral on the right-hand side of (.) is mIn-mH m“Ee - Rewrit-

ing ([Zl]) using (.) we therefore get

S

m—+41 —_
Elcf o] = gy 5 I lmi o By, [ 4

t=0

S1-)TF PV A, (7.3)

5 (1— 1) 2 Py(Vi)dt, (7.4)

= POn41 " W sz/ﬂ

in which we absorb one indicator by limiting the range of integration to the square of the
maximum Euclidean radius, s = sin? 7. To get (7.4)) from (7.3), we cancel m!, move p™
inside the integral, and use ([1]) and (@]) to substitute ', for £y, with appropriate
rescaling. This proves the integral equation in Theorem [1 .

7.2 Asymptotic result

We continue with the proof of the asymptotic result in Theorem . We proceed in two
stages, first taking liberties and leaving gaps in the argument, and second filling all the

gaps.

Argument with gaps. We are interested in the behavior of the integral in (7.4), when p —
00. We observe that the probability of a cap to be empty vanishes rapidly with increasing
geodesic radius: Py(r) = =47, in which r = sin 7 is the Euclidean radius. This implies
that the integrand is concentrated in the vicinity of 0. To make sense of the radius in the
limit, we re-scale by mapping 7 and p to the normalized radius, ij = np'/™. To proceed with
the informal computations, we assume that 7 is close to 0 and prepare two approximations
and one relation:

A. the squared Euclidean radius is roughly the squared geodesic radius: s = sin? 7 ~ n?;

B. the square of the heightis 1 — s ~ 1, which allows us to simplify the incomplete Beta
function:

S

):/S Bl -t bt e [ i ldE = 2502 (7.5)
t=0

t=0

C. the relation "Z—:l = B(%, %) implies "’;1—“/3@7 %) == =y,
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Returning to the integral in (7.4), but without the factor p", we get

sm 0 mn— ﬁZ/p2/n mn— n
/ 750 (1 — 1) 5 Py(VA) dm/0 152 gt g, (7.6)
t t

=0 =0

in which we approximate the upper limit of the integration using A, and drop the middle
factor because it is close to 1 according to B. The probability of having an empty cap is
Py(r) = e~PAr(M in which the area of the cap can be written in terms of Beta functions:

_ ont1Bs(n/2,1/2) _ ony1(2/n)s™/? n/2

Area(n) = ;ré(n/(Q,/l/2) ~ 2121(7(1/2,2/2) = s, (7.7)
using B for the approximation and C to get the final result, which we plug into the left-
hand side of (@) to get the approximation on its right-hand side. The exponential term
motivates us to change variables with 7 = pu,,t"/2. Plugging t = 7%/ /(pv,,)>" and dt =
[272/"=1 /(pv,,)*"] d7 into the right-hand side of ([7.6), we get

[ o) (2) €T dr = B (v m), (78)

=0

in which the upper bound of the integration range is

v = pyn(ﬁg/pQ/n)Hm = ﬁgynv

the power of 7 is

2 mn—2 2 o o
s+ s —1=m—1,

and the power of po,, is
_2mn—=2 _ 2

n 2 ﬁ:_m‘

We get the right-hand side of (7.8) from the left-hand side using ?* = v, and y(v; m) =
[*_o 7™ te~T dr. Finally plugging the right-hand side into ([7.4), we get

n—m

5111 70 mn—2 1
Bl o] = pons - srfor O [ 0" (1= 0" RV At (7.9)

= PO0p41 - élgmm Cg m + O(p) (710)

as claimed in Theorem . Making the unjustified substitution v = njv,, = oo, we get
E[c}] = pOut1 - Cf + 0lp), (7.11)
as claimed in Remark (4) after Theorem .

Formal justifications. We continue with the justification of the asymptotic equivalences
claimed above. To recall, there is the approximation in (@) and the substitution 7y = oo
after ([7.10)). Fixing a real number 0 < § < 1, we introduce some notation to streamline
the computations:

a="m20 o/ =gl =0 =5 =%, (7.12)
g(s) = c/ 711 — )P de, (7.13)
t=0
1 , 4 /

Jo=p" [ t*A=t)¥eOdt, J(0)=p" [ t*A—t)¥eDdt,  (7.14)

t=0 t=0

s J c

Jo(8) = p™ [ e P 4, Js(8) = p™ | t2e "5 dt. (7.15)

t=0 t=0
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We note that o, o/ > —%, B,8" > %, and g(s) is c = %* times the incomplete Beta function.

272
over complete Beta functions. Hence g(s) = Area(n), in which s = sin?#; see (2.1)). Note
also that Jj is the integral in (7.4) except that the integration range goes all the way to 1,
which corresponds to computing the number of intervals without restricting the radius.
For § = 1, we have J; = Jy, and for § = sin? 7, J; is p™ times the expression on the left-
hand side of (7.6). Finally, for § = 72p~'/7, J; is the integral on the right-hand side of (7.6)),
which we computed in (@). Next, we list a sequence of observations:

Recall that 72+ = B(” l), which implies that g(s) is % times the ratio of incomplete

. The integral in () satisfies
%sﬁ <g(s) = c/

t=22(1 — )72 de < %sﬁ + const - 5711,
=0

for0 < s < 1ontheleft,and for0 < s < %on the right. Indeed, we have 1 <
1/y/1—tforall0 <t <1land1/y1—1t<1+const-tforall0<t< 3.

II. The absolute difference between .J; and J;(9) satisfies
1 , c
[Jo = S1(9)] = Pm/ (1= )0 dt < pme "5 Bla+ 10" + 1),
t=5

because g(t) > ¢(¢6) throughout the integration domain, and g(9) > gtﬁ by I. The
value of the Beta function is a constant independent of p.

III. Ford < %, the absolute difference between J; and J; satisfies
6 /
111(6) — Jo(8)] < p™ / [9(1 — ) — t9]e 9 dt < const - 6.J(8),
t=0
because |1 — (1 —¢)*| < const - tforall0 <¢ < land o’ > —1.

IV. Foré < %, the absolute difference between J; and J3 satisfies

6 C
| Ja(8) — J5(8)] = p™ |t [e?5" — 7] at (7.16)
t=0
6 C
S pm taefpgtﬁ {1 _e—const-pt6+l} dt (717)
t=0
< J3(0) [1 = et (7.18)

in which we use the left inequality in I to get the right signs of the exponential terms

in (), and the right inequality in [ to get ().

V. Forn <1/ V2, the absolute difference between .J; at the values sin? n and 7? satisfies

72 n?
|J1(sin2 77) o Jl(n2)| — pm / ta(l o t>a’6—pg(t) dt S me / 2 dt
t=sin? n t=sin?n
S %[n2a+2 o (T] o n2)2a+2] S 4pmn2a+37

in which we use (1 — t)* < 2fort < % to get the first inequality. To get the second,
we use sinn > 1 — 1, which we glean from the Taylor series sinn = 7 — én‘g +..,
and the binomial expansion of (n — n?)?**2,
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As mentioned earlier, J; (sin? 1) is p™ times the left-hand side of (7.6), and J3(n3) is p™
times the right-hand side of ([7.€). According to (@), p™ times this right-hand side is
(2n™=1/o™) - y(v; m), with v = 7", which is a positive constant; see Remark (3) af-
ter Theorem [L7 where we first mentioned that this integral is bounded from 0 as well as
from oco. Having established that there is a positive constant C' = Js(n?), IV implies that

¢, 2(8+1)

Jo(ny) SC+ (1 —e 3% O
is also bounded by a constant. Using III, IV, V, we get

| Ji(sin®no) — J(ng)| < |Ji(sin® mo) — 1 ()| + [J1(n5) — Jo(ng)] + [ J2(ng) — T3 ()|

(7.19)
m, 2a+3 2 2 —const- 2(5+1)
< A4p™ng®T" 4 const - ngJ2(n5) + (1 —e Plo- (. (7.20)
Letting p to to infinity, we observe
m, 2a+3 m [ = —l mnt
PNy =p (nop n) — 0, (7.21)
1 n+2
o = p (i) 0, (7.22)

implying the three terms in (7.20)) go to 0. This finally justifies the approximation (7.6) and
the argument proving Theorem .

Justification of (). We finally prove that we can compute J; by setting 7, to infinity
in (7.10)) or, more formally, by replacing the incomplete gamma function in the expression
by the complete gamma function. Such a justification is needed because so far we have
treated the geodesic radius as a constant in our computations. We now couple the bound
of the integration domain with the density by setting 6, = p~'/(+1/2), We reuse Equations
(7.6) and (7.10) to compute J5(6y) = (20 /™) -y(v; m), with v = prndil? =y, pt/ (D),
The upper bound for the incomplete Gamma function thus goes to infinity and approaches
the complete Gamma function. We still have J3(dy) bounded by a constant, so the rest of
the argument above goes through. We finally use II, which shows |.J; — J;(dy)| — 0. This

justifies ().

7.3 Uniform distribution

In this section, we sketch the case of the uniform distribution on S™. The sole difference
to the Poisson point process is that the number of points is prescribed rather than a ran-
dom variable. Setting this number to N = po,,,1, it makes sense that in the limit, when N
and p go to infinity, the expected numbers of intervals of the radius function are the same
under both probabilistic models. This is indeed what we establish now more formally. By
linearity of expectation, the number of intervals of type (¢, m) and geodesic radius at most

Mo is

Elcf, no] = ( )E[P@(x) () Ly (0]

m—+1
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in which x = (zg,x1,...,x,,) is a sequence of m + 1 points on S, ) is the geodesic ra-
dius of the smallest circumscribed cap of x, and Py(x) = (1 — Area(n) /o, 1)V "™ is the
probability that this cap is empty. The analogue of (@) is therefore

N
el = (3 ) )atr [ o) a0 ) ax

xe(gn)7n+l

We apply the rotation-invariant Blaschke-Petkantschin formula from Theorem @ This
gives

sin? 79

N! T”:l mn—2 n—m—1 A N—-—m+1
B[ 0] = (N—m-Dlo7" | o=t * Com /t o (1-t) (1_%(1”)> dt,
t=0

in which = 7(t) = arcsin v/¢; compare with (7.4). To prepare the next step, we note that

(1- Area(n(t)))meJrl ~e (,nfi - Area(7(t))

On+1

ast — 0. From here on, we retrace the steps we took from (@) to (@). In particular,

we change variables with 7 = Uiﬂunt”ﬂ, and we substitute 7jop~ /" for 7,. Observing
ﬁ ~ N™*1 we simplify the expression and get

E[¢}, 7o) = N - 8m . CF 4 o(N)
for the expected number of intervals of the radius function of the Delaunay mosaic for N
points chosen uniformly at random on S", in which v = 7jv,,. Comparing with the asymp-
totic result in Theorem , we see the same constants as for the Poisson point process.
However, the variance distinguishes the two cases, being smaller for the uniform distri-
bution than for the Poisson point process; see [70].



Bl Future directions

The work is the first application of discrete Morse theory in the context of random mo-
saics. The results we were able to obtain using this approach indicate the power of a sim-
ple idea, namely that it might make a difference to characterize the mosaics using their
intrinsic properties instead of looking at all random mosaics at a common scale. In par-
ticular, changing the general definition of the centroid of a face of a mosaic to take into
account the construction of the mosaic, allowed to obtain several new results for the ex-
pected number of faces in many important cases. It looks like this approach can give new
information when applied to any kind of random mosaics, and this work is the starting
point. We finish with a list of open questions.

1. We computed the constants Cf;; and Df’” in many lower-dimensional cases. How-
ever, obtaining an explicit formula in all dimensions would be a great achievement.
The challenge lies in the spherical expectations, E[‘m and Ef:t, which remain the
main obstacle to the ultimate description of Poisson-Delaunay mosaics of all kind.
It would be exciting to get explicit values for these constants, but even a good way of
computing them numerically is of interest. In any case, the asymptotic behavior as
n goes to infinity is another important question.

2. With the description of intervals of radius functions we get some topological infor-
mation about the complex, which is provided by the discrete Morse inequalities.
However, it only sheds some light on the homology, and the question if the results
can be extended to the Betti numbers and the framework of persistent homology
(see e.g. [12]) remains open. Indeed, the intervals of size larger than 1 correspond
to O-persistent pairs, and it is natural to ask similar questions about the pairs with
positive persistence.

3. The slice construction implies a repulsive force among the vertices: the vertices of
the weighted Poisson-Delaunay mosaic are more evenly spread than a Poisson point
process. For fixed k, the repulsion gets stronger with increasing n. The mosaic can
thus model some properties of real objects better than the Poisson-Voronoi mosaic.
Itwould be interesting to study this repulsive force and its consequences analytically.

4. Afurther interesting question is about the connection between the spherical and the
Euclidean case. As proved in this work, the first-order terms of the expected number
of intervals of the radius function do not distinguish S” from R". There are no further
terms in the Euclidean case, but what are they for S"?

5. Projecting the convex hull of a finite X C S™ orthogonally onto a (k+ 1)-plane corre-
sponds to slicing the spherical Voronoi tessellation of X with a k-dimensional great-
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sphere of S™. What are the stochastic properties of these slices? Are they different
from weighted Poisson-Delaunay mosaics studied in this work?

. The motivation for the spherical Poisson-Delaunay mosaics came from information

theory. The square of the Fisher information metric, studied here, agrees infinitesi-
mally with the Kullback-Leibler divergence [47]. The more general class of Bregman
divergences has recently come into focus in [34, 33]. What are the stochastic proper-
ties of the Bregman divergences and their corresponding metrics? Is the similarity to
the Euclidean metric specific to the Fisher information metric or is it a more general
phenomenon?

. In Chapter B we developed the discrete Morse theory for order-k Voronoi diagrams.

However, it was a purely combinatorial construction, and its topological implications
are to be investigated yet. It can be shown that k-intervals can be obtained by slicing
the real intervals, which span over different values of %, and that critical and non-
critical cases have similar effect on topology as in the £ = 1 case; see the follow-up
paper [32]. Can similar extensions be also obtained for other complexes?
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