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Abstract

The main objects considered in the present work are simplicial and CW-complexes with
vertices forming a random point cloud. In particular, we consider a Poisson point pro-
cess in Rn and study Delaunay and Voronoi complexes of the ϐirst and higher orders and
weighted Delaunay complexes obtained as sections of Delaunay complexes, as well as the
Cƽech complex. Further, we examine the Delaunay complex of a Poisson point process on
the sphere Sn, as well as of a uniform point cloud, which is equivalent to the convex hull,
providing a connection to the theory of random polytopes.

Each of the complexes in question can be endowed with a radius function, which maps
its cells to the radii of appropriately chosen circumspheres, called the radius of the cell. Ap-
plying and developing discrete Morse theory for these functions, joining it together with
probabilistic and sometimes analytic machinery, and developing several integral geomet-
ric tools, we aim at getting the distributions of circumradii of typical cells. For all con-
sidered complexes, we are able to generalize and obtain up to constants the distribution
of radii of typical intervals of all types. In low dimensions the constants can be computed
explicitly, thus providing the explicit expressions for the expected numbers of cells. In par-
ticular, it allows to ϐind the expected density of simplices of every dimension for a Poisson
point process in R4, whereas the result for R3 was known already in 1970’s.
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1. Introduction

The work is focused on studying different random complexes. In this introduction, we de-
ϐine the concepts, introduce the notation and summarize the tools used to produce the re-
sults. Sections 1.1 – 1.4 are devoted to geometric complexes, associated to a point cloud in
ametric space, that are widely used in shape reconstruction and topological data analysis.
Section 1.5 contains a short introduction to the discreteMorse theory. Sections 1.6 and 1.7
introduce the random setup we are working in, mainly focusing on Euclidean space, while
Section 1.8 focuses on spheres. Section 1.9 introduces the integral geometric tools used in
the proofs of the main results.

1.1 Čech complex

Recall that an abstract simplicial complex is deϐined as a set S ⊆ 2V of simplices closed
under taking subsets: σ ∈ S and τ ⊆ σ imply τ ∈ S. The empty set is conventionally
excluded from S. All elements of the simplices in S form the vertex set: V = ∪

σ∈S σ. Every
vertex is identiϐied with the one-element simplex containing this vertex. The dimension of
a simplex τ is deϐined as dim τ = |τ | − 1, and the dimension of the complex is the maximal
dimension of its simplices. An abstract simplicial complex can be geometrically realized
in R|V |+1 as a subset of the standard simplex by mapping distinct vertices in V to distinct
vertices of the standard simplex. In general, a geometric simplicial complexC is a collection
of simplices in Rn closed under taking faces, with an additional property that for any two
simplices of C their intersection is either empty or a face of both. For every geometric
simplicial complex one gets an abstract simplicial complex by considering the vertex sets
of geometric simplices and dropping all geometric information. It can be easily shown that
all geometric realizations of the same abstract simplicial complex are homeomorphic. In
particular, the homotopy type of an abstract simplicial complex is well-deϐined. For a more
detailed introduction into simplicial complexes see [26, Section III.1].

One motivation for the work reported in this thesis is the desire to reconstruct sur-
faces from point sets; see [21] and in particular the Wrap algorithm described in [25].
While the points usually describe a distinctive shape and are therefore not random, they
are affected by noise and display random features locally. To effectively cope with local
noise is a necessary component of every high quality surface reconstruction software. An-
other motivation derives from the work in topological data analysis; see [17]. Let X be a
point set in a metric space. We assume that the space is Rn for the sake of simplicity of
exposition, but it can be substituted with any other metric space, like a sphere Sn. This set
X may be considered as sampled from some n-dimensional shape, and the Cƽech complex
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is used to deϐine a way to possibly reconstruct the shape. Fix a radius r and consider a set
Xr ⊆ Rn which is obtained as a union of closed balls of radius r centered at points of X:

Xr =
∪

x∈X

B(x, r).

This set can be considered as an approximation of the shape. By deϐinition, Xr is covered
by a family of balls B = {B(x, r) : x ∈ X}, and the Nerve theorem can be applied to
obtain a simplicial complex that is homotopy equivalent to Xr. For a collection of sets U ,
the nerve Nrv U is deϐined as an abstract simplicial complex with V = U and every σ ⊆ U
is a simplex of Nrv U if ∩U∈σ U ̸= ∅. In simple terms, a vertex gets assigned to every set,
and a set of vertices forms a simplex, if the corresponding sets have a non-empty common
intersection. We are now ready to state the simplest version of the Nerve theorem [51, 26,
41]:

Theorem (Nerve theorem). Let U be a ϔinite collection of closed, convex sets in Euclidean
space. Then the nerve of U and the union of the sets in U have the same homotopy type.

The Nerve theorem shows thus that Xr = ∪
B∈B is homotopy equivalent to Nrv B, and

the latter is called the Čech complex ofX for radius r and denoted ČechrX . It is an abstract
simplicial complex, which is generically not embeddable in Rn. Its vertices correspond to
the balls around every point ofX , so we identify the vertices with points ofX . An example
is shown in Figure 1.1. The complexes for different values of r are nested. It means that

Figure 1.1: Čech complex

for every r1 ≤ r2 complex Čechr1X is a subcomplex of Čechr2X , with Čech0X = X and
Čech∞X = 2X , implying that every subset of X enters the Cƽech complex at some value of
radius.

With this in mind, the Cƽech complex can be alternatively described using enclosing
balls. For a set σ ⊆ X deϐine the smallest enclosing ball (or the Čech ball) of σ to be the
unique smallest closed ball that contains σ. Let RČ : 2X → R be the function, called the
Čech radius function, that maps every σ to the radius of such ball, called the Čech radius
of σ. Then σ ∈ ČechrX iff r ≥ RČ(σ). Indeed, the balls B(x, r) for x ∈ σ have a common
intersection iff there is a point, which has distance not more than r to all points of σ, see
also [26].

The Cƽech complex, though being relevant in theway that it encodes the topology ofXr,
has several drawbacks,mainly coming from the fact that it is exponential in size and is hard
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to compute. One simpliϐication is the Vietoris–Rips complex, which relaxes the conditions
of the nerve. More precisely, a simplex σ belongs to the Vietoris–Rips complex for radius
r if every two closed balls of radius r centered at vertices of σ intersect. The edges of this
complex are thus the same as in the Cƽech complex, but it might have more simplices of
higher dimensions. Although easier to compute, it is still exponential in size, and does not
preserve the topology ofXr. Nevertheless, it is still used in applications for approximating
the Cƽech complex. Another advantage of the Vietoris–Rips complex is that it considers only
pairwise distances between points, hence not depending on the ambient space.

1.2 Voronoi and Delaunay complexes

Another way of representing the topology of the union of balls is provided by the Delau-
nay complex. In contrast to the Cƽech complex, it is easier to compute, has size polyno-
mial (and, often, linear) in the number of points, and generically has a canonical geomet-
ric realization. To deϐine the concept, we start with introducing Voronoi diagrams. Recall
that X is a point set in a metric space, which is assumed to be Rn. The Voronoi domain
of a point x ∈ X consists of all points for which x minimizes the Euclidean distance:
dom(x) = {a ∈ Rn : ∥a − x∥ ≤ ∥a − y∥, for all y ∈ X}. Every Voronoi domain is a possi-
bly unbounded convex polyhedron. The Voronoi diagram or the Voronoi tessellation is the
collection of Voronoi domains, see Figure 1.2. The Delaunay mosaic or Delaunay triangu-

Figure 1.2: Voronoi diagram and corresponding Delaunay mosaic. Blue triangles and bold
edges are critical in the sense of Section 1.5.

lation DelX is isomorphic to the nerve of the Voronoi domains. Speciϐically, the Delaunay
mosaic is the collection of subsets Q ⊆ X whose corresponding Voronoi domains have a
non-empty common intersection: Vor(Q) = ∩

x∈Q dom(x). Adopting the convention from
the discussion of abstract simplicial complexes, we call Q a simplex, and, as common in
combinatorial topology, identify it with the convex hull of Q when it is convenient. The
Delaunay mosaic is an n-dimensional simplicial complex iff the Voronoi diagram is primi-
tive (the notion used in discrete geometry) or normal (the notion used in stochastic geom-
etry), that is: the intersection of any 0 ≤ k + 1 ≤ n + 2 Voronoi domains is either empty
or (n − k)-dimensional. In particular, the intersection of any n + 2 domains is necessarily
empty. In this case the Delaunay mosaic can be canonically embedded intoRn with vertex
setX bymapping every Voronoi domain to the point ofX it is deϐined by, and it is the dual
of the Voronoi diagram [20]. The primitivity of the Voronoi diagram is guaranteed if X is
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in general position, that stands for the following conditions, that are a bit stronger than the
ones required in [20], throughout this work: for every 0 ≤ k < n,

1. no k + 2 points belong to a common k-plane,

2. no k + 3 points belong to a common k-sphere,

3. considering the unique k-sphere that passes through k + 2 points, no k + 1 of these
points belong to a k-plane that passes through the center of the k-sphere, and the
radii of all such spheres are different.

It is also possible to describe the Delaunay mosaic using the way similar to describing
Cƽech complexes using smallest enclosing balls. By construction, every point z ∈ Vor(Q)
is equally far from all points in Q and at least as far from all points in X \ Q. We call a
sphere with center z and radius ∥z − x∥, x ∈ Q, an empty circumscribed sphere of Q be-
cause all points of Q lie on the sphere, and all points of X lie on or outside the sphere. The
unique smallest empty circumscribed sphere is called the Delaunay sphere (sometimes
just circumsphere, [31]), and its radius and center are called the Delaunay radius and the
Delaunay center ofQ. Note that only Delaunay simplices have aDelaunay sphere. Indeed, if
a simplex Q has an empty circumscribed sphere with center z, then z ∈ Vor(Q), implying
thatVor(Q) ̸= ∅. TheDelaunay radius function,RD : DelX → R, maps every simplex to its
Delaunay radius. Observe that the function is increasing: for P ≤ Q, meaning that P is a
face of Q, we clearly have RD(P ) ≤ RD(Q). Fixing an r ≥ 0 and taking all simplices from
DelX that have Delaunay radius not greater than r we thus obtain a subcomplex of DelX ,
theAlpha orDelaunay complex for radius r,DelrX . In contrast toDelX , its simplices do not
cover the entire convex hull of X and can therefore form cycles and other topological fea-
tures, and it is indeed homotopy equivalent to the union of balls, Xr; see [23]. It can even
be showed that ČechrX , which is also homotopy equivalent to Xr, collapses onto DelrX;
see [8].

There is anotherway to get theDelaunay complexwithout the radius function. For this,
we decompose Xr = ∪

x∈X B(x, r) as Xr = ∪
x∈X (B(x, r) ∩ dom(x)). It is easy to see that

it is indeed a cover of Xr: if a point a belongs to some ball B(x1, r), but to dom(x2), then
∥a − x2∥ ≤ ∥a − x1∥ ≤ r, so a ∈ B(x2, r) ∩ dom(x2). Then the Delaunay complex for
radius r is isomorphic to the nerve of this cover. By the Nerve theorem, it follows that Xr

is homotopy equivalent to DelrX .
It is also worth mentioning that there is a way to deϐine the Delaunay mosaic, that

is embedded in Rn even if the points are not in general position, by requiring only geo-
metric duality. We want to assign to every j-dimensional Voronoi polyhedron an (n − j)-
dimensional Delaunay cell preserving incidences: if two Voronoi polyhedra are incident
(i.e., share a common face), then their duals must belong to the dual of the common face.
This procedure is similar to taking the dual graph in two-dimensional case, and a simple
formal way to show its consistency in higher dimensions is the lifting to paraboloid. More
precisely, embed Rn into Rn+1 as a plane xn+1 = 0 and lift every point x of X to (x, ∥x∥2).
Then it can be shown, that the orthogonal projection of the lower convex hull of the lifted
points onto Rn satisϐies these properties; see [24]. Moreover, for points in general posi-
tion the construction gives the same Delaunay mosaic as before; but in the other case it
produces a cell complex, embedded in Rn, which is not necessarily simplicial.
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1.3 Weighted Voronoi and Delaunay complexes

The ϐirst generalization of the Voronoi diagrams and Delaunay mosaics considered in this
work assigns weights to the points; see Figure 1.3. This extra degree of freedom permits

Figure 1.3: Weighted Voronoi tessellation in R2 with superimposed weighted Delaunay mo-
saic. All points have zero weight except the point with the shaded domain, which has positive
weight.

better approximations of observed tilings, such as cell cultures in plants [62] and mi-
crostructures of materials [16]. Let Y be a point set in Rk, and deϐine for a point y ∈ Y
withweightw(y) ∈ R the power distance of any point a ∈ Rk to be ∥a − y∥2 −w(y). Ifw(y)
is 0, then the power distance is the squared Euclidean distance, but it can be negative if the
weights are positive. As before, the weighted Voronoi domain of y is deϐined as the set of
points,whosepowerdistance tox is not greater than to the other points ofY . Theweighted
Voronoi diagram or power diagram [4] or Laguerre tessellation [49] is the collection of all
weighted Voronoi domains. The weighted Delaunay mosaic WDelY , sometimes called La-
guerre triangulation [59] or regular triangulation [38], is again isomorphic to its nerve.
Assuming general position, which now requires an additional assumption onweights (see
[26, page 68]), it can be geometrically realized in Rk with vertices being a subset of Y .
We note that some points of X might have an empty weighted Voronoi domain, thus not
belonging to weighted Delaunay mosaic. As in the remark on Delaunay mosaics, one can
also cope with points not in general position using the weighted lifting. The procedure is
similar with the only difference that one now lifts y to (y, ∥y∥2 − w(y)) in Rk+1.

A simple intuition can be given for the concept when the weight is negative: assume
Rk is embedded into Rn and consider the point ŷ which lies at the distance

√
−w(y) to

y in the space orthogonal to Rk. Then the power distance of any point a ∈ Rk to x is
exactly the squared Euclidean distance to ŷ, which gives a way to construct a weighted
Voronoi diagram by taking a slice of an (unweighted) Voronoi diagram in Rn; see [6, 69].
Speciϐically, ifX is a discrete set of points inRn andRk ↪→ Rn is spanned by the ϐirst k ≤ n
coordinate axes, then the Voronoi tessellation of X inRn intersectsRk in a k-dimensional
weightedVoronoi tessellation. The points inRk that generate theweighted tessellation are
the orthogonal projections yx of the points x ∈ X , and their weights arewx = −∥x − yx∥2.
While allweights in this construction are non-positive, this is not a restriction of generality
because the tessellation remains unchanged when all weights are increased by the same
amount. Indeed, every ϐinite weighted Voronoi tessellation can be obtained as a slice of an
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unweighted Voronoi tessellation. If X is in general position (see below) in Rn, then this
slice is a normal tessellation in Rk, guaranteeing that the dual weighted Delaunay mosaic
can be canonically embedded in Rk. There is also an intriguing connection between the
volumes of skeleta of unweighted Voronoi tessellations and the number of simplices in
weighted Delaunay mosaics through the Crofton formula, which is worth exploring. We
will state this result in Section 1.9 after introducing the necessary notation.

This work focuses on weighted Delaunay mosaics that are obtained as duals of slices
of random unweighted Voronoi diagrams. In this case, the radius function can be naturally
deϐined. Before doing this, however, we need to slightly adjust the notion of general posi-
tion for points inRn. Speciϐically, we add the following two requirements to the deϐinition
on page 4: for every 0 ≤ j < n,

4. considering the unique j-plane that passes through j +1 points, this plane is neither
orthogonal nor parallel to Rk,

5. no two points have identical distance to Rk.

For j = 0, property 4 means that no point belongs toRk. This additional properties assert
that Rk is a “generic plane” in Rn. Now we are ready to deϐine the radius function. Given a
point set X in general position inRn, denote its projection ontoRk by X ′. The radius func-
tion, RWD : WDelX ′ → R, maps every simplex Q of WDelX ′ to the radius of the smallest
(n − 1)-sphere that satisϐies the following properties:

• it passes through all preimages of the vertices of the simplex,

• it does not contain any points of X inside,

• its center lies in Rk.

In other words, this is the smallest empty circumscribed sphere of the preimage of Q that
has its center in Rk. Indeed, simplex Q belongs to the weighted Delaunay mosaic iff the
Voronoi domains of the preimages of vertices of Q have a common intersection with Rk,
and a point belongs to this intersection iff it is a center of such sphere. We call this sphere
the weighted Delaunay sphere of Q or the anchored Delaunay sphere of the preimage of Q.
Also, its center is called the anchor of Q or of its preimage. Note that RWD = RD if k = n.

1.4 Voronoi and Delaunay complexes of higher order

Another generalization of Voronoi diagram partitions the space not according to the clos-
est point, but to the closest k points. As usual, we start with a discrete set X ⊆ Rn, and
for k points x1, . . . , xk of X we deϐine the order-k Voronoi domain domk(x1, . . . , xk), gen-
erated by these points, to consist of points a ∈ Rn, such that x1, . . . , xk are the k closest to
a points of X . An order-k Voronoi diagram Vor(k)(X) [68, 35] is deϐined as the collection
of order-k Voronoi domains, spanned by k-point subsets of X . An example is presented
in Figure 1.4. The order-1 Voronoi diagram is thus the usual Voronoi diagram. Note that
for k > 1 the diagram may not be normal even generically, i.e., for some t domains their
intersection can be not (n− t+1)-dimensional. For example, ifX consists of four points in
general position inR3, then the six order-2 Voronoi domains intersect in a common point,
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Figure 1.4: The dotted edges decompose the plane into the order-1 Voronoi domains, while
the solid edges decompose it into order-2 Voronoi domains. The two tessellations share some
of their vertices but not all.

the circumcenter of the tetrahedron. It is not completely straightforward therefore, how to
generalize the Voronoi–Delaunay duality for order-k diagrams. We cannot take the short-
cut with the nerve, because the inconvenient case when the nerve can not be embedded
in Rn is typical now, so we have to construct a geometrically dual tessellation with a bit
more care. As in the note on geometrical duality in Section 1.2, wewould like to have a dual
diagram in a sense that every j-dimensional polyhedron of the order-k Voronoi diagram
corresponds to an (n−j)-dimensional polytope in the order-k Delaunay triangulation, and
the incidence is preserved: if two order-k Voronoi polyhedra share a common face, then
their duals must be the faces of the dual of the common face. It can be shown [5] that it is
possible to construct such dual tessellation in the followingway. Assign to each non-empty
order-k Voronoi domain, generated by k points of X , the center of mass of these points.
These will be the duals of order-k Voronoi domains. Then the order-k Delaunay mosaic
of X , denoted by Del(k)X , is obtained by connecting every two points with a segment if
the corresponding order-k Voronoi domains share a common face of dimension n − 1.
The polytopes of higher dimensional skeleta are then deϐined as above, i.e., if a face of the
order-k Voronoi diagram is the intersection of several order-k Voronoi domains, then the

Figure 1.5: The order-1 Delaunay mosaic on the left and the order-2 Delaunay mosaic on the
right, both superimposed on their corresponding Voronoi tessellations.
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polytope in the dual is the convex hull of the vertices dual to these domains. An example
is presented in Figure 1.5. To prove that this construction is consistent, we can describe
it as a projection of a special lower convex hull of points in Rn+1. More precisely, we can
consider the order-k Voronoi diagram as a (non-generic) weighted Voronoi diagram with
appropriately chosen weights; see [5, 27]. Another way to construct the order-k Delau-
nay mosaic is iterative, where one can obtain the order-k diagram from the order k − 1
[50, 5]. Clearly, when the order-k Voronoi diagram is not normal, the corresponding dual
is not a triangulation. Throughout the text we will refer to the cells of the order-k Voronoi
tessellations as order-k Voronoi polyhedra.

After deϐining the Delaunay mosaic of order k, we aim at generalizing the radius func-
tion to this case. Unfortunately, the discrete Morse theory for order-k diagrams seems to
not have been developed yet, and the idea of the radius function originates from it. So we
do not have any reference, and we defer the deϐinition until Chapter 6. As we are going
to see, the order-1 and order-k cases are not signiϐicantly different from the probabilistic
point of view, so the discrete Morse theory will be the main topic of that chapter.

1.5 Discrete Morse theory

1.5.1 Main deϐinitions

In this section we summarize the concepts of the discrete Morse theory introduced in
[36], generalized in [37], and applied to Delaunay complexes in [8]. Themotivation comes
from the classical Morse theory, which studies smooth manifolds by analyzing functions
on them; see [57]. The generalization to the discrete case is not straightforward, see [26]
for a discussion, and there are some further differences in notation. In our case we stick
to the following. Let Σ be a simplicial complex, and consider a function f : Σ → R. For
us this function is a generalized discrete Morse function if it is increasing, meaning that if a
simplex P ∈ Σ is a face of Q ∈ Σ then f(P ) ≤ f(Q), and provides an interval structure
on Σ. To explain the latter concept, for two simplices L, U ∈ Σ with L being a face of U we
deϐine an interval [L, U ] = {P ∈ Σ: L ⊆ P ⊆ U} to contain all faces of U that have L as
their face.L is called the lower bound andU the upper bound of the interval. IfP is a face of
Q and f(P ) = f(Q), then all simplices of [P, Q] also have the same function value. A sim-
ple deϐinition of the interval structure would just require that every level set f−1(r) ⊆ Σ
is an interval. However, it would prohibit that all vertices have the same function value,
which is often the case in our considerations. So, not aiming at the full generality, for the
purposes of this work we require that f(P ) ≥ 0 for all simplices, and f(P ) = 0 can only
hold if P is a single vertex. So, for every r > 0 we require that f−1(r) is an interval and
f−1(0) contains only vertices. The interval structure on Σ is the decomposition of Σ into
maximal intervals sharing the function value. If an interval [L, U ] in this decomposition
contains a single simplex, i.e., if L = U , then this simplex is called critical and the interval
singular. All simplices which are not critical are called regular. In particular, all vertices
with function value 0 are required to be critical. Function values on critical (corr. regular)
simplices are called critical (corr. regular) values.

This terminology mimics the classical Morse theory, and, indeed, critical simplices are
of topological signiϐicance. The following theorem [36, 37] is an analogue of the classical
theorem on retractability of sublevel sets of classical Morse functions:
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Theorem. Let Σ be a simplicial complex and f a generalized discrete Morse function on it.
Write Σr for the sublevel set: Σr = f−1([0, r]). If a real half-segment (r1, r2] ⊆ R does not
contain critical values, then Σr2 ↘ Σr1 .

Here by ↘ we mean collapsability [73], which is a simplicial analogue of deformation
retraction. What is important is that it implies that Σr2 and Σr1 are homotopy equivalent.
A stronger statement holds: there exists a CW-complex, which has one cell of the corre-
sponding dimension for every critical simplex of Σ and is homotopy equivalent to Σ. It is
called the Morse complex. Writing nj for the number of j-dimensional simplices in Σ, cj

for the number of j-dimensional critical simplices, we can thus obtain the discrete Morse
relations:

χ(Σ) =
∑

(−1)jβj(Σ) =
∑

(−1)jnj =
∑

(−1)jcj,

βj(Σ) ≤ cj,
j∑

q=0
(−1)j−qβq(Σ) ≤

j∑
q=0

(−1)j−qcq(Σ).

Hereχ(Σ) is theEuler characteristic, deϐinedby the ϐirst equality, andβj(Σ) is the j-thBetti
number of Σ, i.e., the rank of the j-th homology group (say, modulo Z/2Z). See [41, 26]
for an introduction to these concepts. The last two expressions are called discrete Morse
inequalities.

Before we continue, we want to make a remark on the number of simplices in an in-
terval. Let [L, U ] be an interval with dim L = ℓ and dim U = m. Then we call (ℓ, m) the
type of the interval, and the interval itself an (ℓ, m)-interval. Most of the timewewill count
the intervals in randommosaics, and to get the number of simplices out of the number of
intervals we note that an (ℓ, m)-interval has

(
m−ℓ
j−ℓ

)
simplices of dimension j. This simple

fact can be used to prove the Euler relation above: for every non-singular interval the al-
ternating sum of numbers of simplices in it is thus∑(−1)j

(
m−ℓ
j−ℓ

)
= (1 − 1)m−ℓ = 0. To get

the number j-simplices in a complex knowing its interval structure we have the following
lemma.

Lemma 1.5.1 (Simplices and intervals). Let Σ be a simplicial complex with a generalized
discrete Morse function and write cℓm for the number of (ℓ, m)-intervals and dj for the num-
ber of j-simplices in Σ. Then

dj =
j∑

ℓ=0

∞∑
m=j

(
m − ℓ

m − j

)
cℓm.

This equationwill be used every timewe compute densities of j-dimensional simplices
in a random simplicial complex.

1.5.2 Delaunay and other mosaics

In [8] it was shown that RD and RČ are generalized discrete Morse functions on the De-
launay and Cƽech complexes if the underlying point set is in general position. Themain idea
is that if two simplices share a common Delaunay sphere (or a common smallest enclos-
ing ball), then their intersection and union do so, implying that a set of simplices sharing
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a Delaunay sphere (or a smallest enclosing ball) is always an interval. An identical claim
holds for anchored Delaunay spheres of the weighted Delaunay mosaics, so RWD is also
a generalized discrete Morse function. An important fact is that the intervals imposed by
these functions have nice intrinsic characterizations. The crucial role plays the number of
points inside the smallest sphere, circumscribed around the simplex, and the visibility of
facets. We turn to this in more details right away.

Delaunay radius function intervals. By general position assumption and by deϐinition,
the intervals of the Delaunaymosaic are the simplices that share the Delaunay sphere. Re-
call that the Delaunay sphereS(Q) of a Delaunay simplexQ ∈ DelX is the smallest sphere
that has no points of X inside and passes through all vertices of Q. We follow [8] to de-
scribe the interval containing Q. Deϐine U = S(Q) ∩ X . Clearly, U ⊇ Q is the upper bound
of the interval. Indeed, S(Q) is the smallest empty sphere that passes through vertices
of U , otherwise we would ϐind a smaller empty sphere that passes through vertices of Q.
To determine the lower bound, we need the notion of visibility. Consider a d-dimensional
simplex σ in Rn and consider its afϐine hull, a d-dimensional space α ∼= Rd. A facet, i.e.,
a (d − 1)-dimensional face of σ is called visible from point p ∈ α, if the (d − 1)-plane it
lies within separates the opposite vertex from p. Every ray, originating from p and passing
through a facet, enters the simplex at a visible and leaves at an invisible facet, explaining
the choice of the term; see Figure 1.6. If p is the center of the unique circumscribed sphere
of σ in α, we omit the “from” part and just call the facet visible. We refer to [8] for the proof
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Figure 1.6: Visible facets of different tetrahedra. The intersection of all visible facets is in bold.
If there are no visible facets, the intersection is the whole tetrahedron.

that the lower bound L of the interval containing Q is the intersection of all visible facets
of U . Similar results will be proven in Lemmas 1.8.1 and 6.3.1. We summarize this in the
lemma:

Lemma 1.5.2 (Delaunay complex interval structure). Letting X ⊆ Rn be in general posi-
tion, a pair L ⊆ U of subsets of X , considered as simplices, deϔines an interval of the radius
function RD : DelX → R iff the smallest circumscribed sphere of U is empty and L is the
largest face of U common to all visible facets, i.e., L = U ∩∩F ∈vis(U) F , where vis(U) denotes
the set of visible facets ofU . The smallest circumscribed sphere ofU is the common Delaunay
sphere of all simplices in this interval.

Recall the special case of a critical simplex, L = U , which is characterized by contain-
ing the center of its Delaunay sphere inside. In this case, the closed ball bounded by the
Delaunay sphere is also the smallest enclosing ball of U (see page 2).
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Čech radius function intervals. An even simpler intrinsic characterization can be pro-
vided for the Cƽech complex. Again, by general position assumption the simplices that be-
long to a common interval are the simplices sharing the smallest enclosing ball. Take a sim-
plex Q ⊆ X and write B(Q) for its (closed) smallest enclosing ball. Let L = X ∩ bd B(Q)
and U = X ∩ B(Q). Clearly, bd B(Q) is the smallest sphere passing through vertices of
L, and trivially L ⊆ Q, because otherwise a smaller enclosing ball would exist. Further,
B(Q) is by deϐinition the smallest enclosing ball of U . The interval of RČ containing Q is
thus [L, U ]; more details can be found in [8]. Note that the smallest enclosing ball of L
passes through all vertices of L iff the smallest circumscribed sphere of L has its center in
conv L, or, equivalently, L has no visible facets. The statement about the interval structure
for Cƽech complex follows:

Lemma 1.5.3 (Cƽech complex interval structure). Letting X ⊆ Rn be in general position, a
pair L ⊆ U of subsets of X , considered as simplices, deϔines an interval of RČ : ČechX → R
iffLhas no visible facets and,writingB(L) for the closed ball boundedby the smallest (n−1)-
sphere passing through vertices of L, U = B(L) ∩ X . The smallest circumscribed sphere of
L bounds the common smallest enclosing ball of all simplices of this interval.

Note that critical simplices of Cƽech and Delaunay complexes are the same.

Weighted Delaunay radius function intervals. The weighted case is a simple extension
of the Delaunay characterization. Without going into details, we state that they are identi-
cal modulo anchoring:

Lemma 1.5.4 (Weighted Delaunay complex interval structure). Let X ⊆ Rn be in general
position and X ′ its projection onto Rk. Projections L′ and U ′ of a pair L ⊆ U of subsets of
X , considered as simplices, deϔine an interval [L′, U ′] of RWD : WDelX ′ → R iff the smallest
anchored circumscribed sphere of U is empty and L′ is the largest face of U ′ common to
all facets of U ′ visible from its center, i.e., L′ = U ′ ∩ ∩

F ∈vis(U ′) F . The smallest anchored
circumscribed sphere of U is the common anchored Delaunay sphere of all simplices of this
interval.

Figure 1.7: From left to right on the horizontal line: a critical vertex, an edge-vertex pair, a
critical edge, a vertex-edge pair, and another critical vertex.

The proof is also identical to [8] modulo anchoring, and details are left to the reader.
See Figure 1.7 for a 1-dimensional example. A notable difference to the two previous com-
plexes is that it is no longer true that all vertices are critical and have function value 0. That
is why a rich interval structure appears already in low dimensions.
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1.6 Poisson point process

We study properties of randomly generated discrete point sets inRn using a Poisson point
process. It is deϐined by an intensity measure, which is a Borel measure on Rn, absolutely
continuous with respect to the Lebesgue measure. As before, the space Rn is chosen to
simplify the notation, any othermeasurable space canbeused instead, andwewill also use
Sn later. The Poisson point process can be characterized by the following two properties:

1. The numbers of points within a ϐinite collection of pairwise disjoint Borel sets are
independent random variables;

2. The expected number of points within a Borel set is the intensitymeasure of the set.
The intensity function is the Radon–Nikodym derivative of the intensity measure, ς : Rn →
[0, +∞), i.e. the function, such that the intensity measure of any Borel set is the integral of
this function with respect to the Lebesgue measure. Formally, a Poisson point process is
thus a random counting measure on Rn. We do not go into the measure-theoretic details
however, and refer to [46] for a good introduction to Poisson point processes.

We will work with stationary or homogeneous Poisson point processes, which are de-
ϐined by constant intensity functions: ς(x) = ρ, and the constant can be called density in
this case. All processes will be assumed stationary unless explicitly stated. We further do
not distinguish the process as random variable and its realization, writing X ⊆ Rn for a
random point set, which has the corresponding distribution.

Properties. First we note that for stationary processes we can express Condition 2 more
succinctly asE[|X ∩ B|] = ρ∥B∥. Here ∥B∥ stands for the Lebesguemeasure ofB. The two
conditions imply that the number of points in a Borel setB has a Poisson distributionwith
parameter ρ∥B∥. In particular, the probability of having k points in B is P[|X ∩ B| = k] =
(ρ∥B∥)k

k! e−ρ∥B∥, so the probability of having no point in B is P[X ∩ B = ∅] = e−ρ∥B∥.
Another important property is the Slivnyak–Mecke formula, which is used to rewrite

expectations of random variables, depending on all k-tuples of points of a Poisson point
process. Write δx for a delta-measure at point x ∈ Rb, i.e., the measure which is 1 for any
Borel set containingx and 0 otherwise, and letN be the space of all countingmeasures, i.e.,
ϐinite and countable sums of delta-measures. We again skip the measure-theoretic details
about deϐining the natural measure on N and refer to [67, Chapter 3]. The formula, stated
as Corollary 3.2.3 in [67], is the following:
Lemma 1.6.1 (Slivnyak–Mecke formula). Let X be a Poisson process in Rn with intensity
function ς , let k ∈ N, and let f : N × (Rn)k → R be a nonnegative measurable function.
Write x for a k-ple of points (x1, . . . , xk) ∈ (Rn)k. Then

E[ ∑
x∈Xk

f(X, x)] =
∫

x∈(Rn)k

E[f
(

X +
k∑

i=1
δxi

, x
)

]ς(x1) . . . ς(xk) dx.

This formula will be used inmany contexts throughout this text, and nowwe can use it
to show that the Poisson point process is in general position according to the deϐinitions
in Sections 1.2 and 1.3 with probability 1. Indeed, every general position assumption con-
cerns the ϐixed number of points of X , so setting f(X, x) to 1 iff x violates one of the as-
sumptions, we get on the left the probability of this event and on the right 0, because the
Lebesguemeasure of the corresponding set is 0. It shows thatX is in general positionwith
probability 1, and we will always assume that it is the case.
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1.7 Randommosaics

The term “randommosaic” stands for a random tessellation of the space. A random tessel-
lation can be obtained either directly by taking random hyperplanes in the space, or indi-
rectly, by ϐirst choosing randompoints and then producing a random tessellation based on
these points. Questions under consideration in this work correspond to mosaics related
to the Poisson point process. More precisely, given a Poisson point process X in Rn and
using the fact that it is in general position with probability 1, we can consider all tessella-
tions deϐined in previous sections. We thus obtain Poisson–Voronoi and Poisson–Delaunay
mosaics, as well asweighted Poisson–Voronoi andweighted Poisson–Delaunay mosaics and
Poisson–Voronoi and Poisson–Delaunay mosaics of order k. We can also study the subcom-
plexes with the radius bound, which have holes and are thus not tessellations of the space,
as well as Poisson-Čech complexes, which do not partition the space either. We consider all
mentioned random objects as random simplicial or CW-complexes, and the focus of this
work is to ϐind the expected number of their cells and the distribution of radius. These
particular questions on Poisson–Delaunay mosaics have been pioneered by Miles almost
50 years ago [54, 55]. Properties of randomweighted Voronoi diagrams with given distri-
butions of weights, like normal or uniform, were studied in [48, 49]. Weighted Poisson–
Delaunay mosaics corresponding to slices of Poisson–Voronoi tessellations were brieϐly
considered in [58]. Topological characteristics of Cƽech and Rips complexes over Poisson
point processes have been investigated in work of Kahle [44, 45], Bobrowski and Wein-
berger [13], Bobrowski andAdler [11], andDecreusefond et al. [19]. A good survey on ran-
dom mosaics and stochastic geometric background is [67]. Another survey is the chapter
“Poisson Voronoi Diagrams” in [59, pp. 291–410]. There is also a connection to percola-
tion theory. Namely, the Poisson–Delaunay complex for radius r has the same topology as
the Boolean or Gilbert disk model [15]. Percolation on the Poisson–Voronoi mosaic itself is
also interesting [10, 14]. We now summarize the relevant results for this work and then
state our questions formally.

We start with mentioning that with probability 1 the Poisson–Voronoi mosaic is nor-
mal, because as noticed before the Poisson point process is in general position with prob-
ability 1. Further, since conv X = Rn with probability 1, all Voronoi domains are bounded
convex polyhedra, see [67]. The ϐirst relevant result concerns volumes and areas of the
skeleta of Poisson–Voronoi mosaic [56, 58, 67].

Theorem 1 (Expected volume of Poisson–Voronoi skeleta). Fix 0 ≤ ℓ ≤ n, ϔix a Borel
regionΩ ⊆ Rn, and letX be a stationary Poisson point processwith density ρ inRn. Then the
expected ℓ-dimensional volume of the ℓ-dimensional skeleton of the Poisson–Voronoi mosaic
intersected with Ω is

E[ηℓ] = ρ
n−ℓ

n ∥Ω∥ 2n−ℓ+1π
n−ℓ

2

n(n − ℓ + 1)!
Γ
(

n2−nℓ+ℓ+1
2

)
Γ(1+ n

2 )n−ℓ+ ℓ
n Γ
(

n−ℓ+ ℓ
n

)
Γ
(

n2−nℓ+ℓ
2

)
Γ
(

n+1
2

)n−ℓ

Γ
(

ℓ+1
2

) .

HereΓ stands for theGamma function, see Section2.1. Setting ℓ = 0 in this theorem,we
get the number of Voronoi vertices, or, equivalently the number of Delaunay n-simplices.
A simple observation that every point of the point process is a Delaunay vertex and that
every Delaunay (n − 1)-simplex belongs to two n-simplices gives the following relations
[67], which are enough to establish the size of Poisson–Delaunay mosaics for n ≤ 3:
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Theorem2. Fix a Borel regionΩ ⊆ Rn and letX be a stationary Poisson point process with
density ρ inRn. Write dn

j for the expected number of j-dimensional Delaunay simplices in Ω.
Then

dn
0 = ρ∥Ω∥ dn

n = E[η0]

dn
n−1 = n + 1

2
d(n)

n

n∑
j=0

(−1)jdn
j = 0.

The last relation comes from the Euler formula. There are several subtleties hidden in
this statement, the ϐirst one is the deϐinition of the relation “simplex lies in the region”. The
usual way of deϐining this relation for randommosaics is to consider centroids of faces and
to count the faces with centroid inside the region. One possible choice of the centroid is
the center of mass of the face, but any other translationally invariant choice is acceptable
and gives the same result, see [58] for details. In other words, for a random mosaic we
construct a point process of centroids of j-dimensional faces and compute the expected
number of points of this point process in the region. Another problem is that it is no longer
true that every (n − 1)-simplex belongs to two n-simplices when we restrict the mosaic
to Ω, but this can be worked around [58, 67]. If instead we say that a simplex is inside
Ω if its intersection with Ω is not empty, then under appropriate formalization the same
result holds for regions with smooth boundary up to o(∥Ω∥) as ∥Ω∥ → ∞, compare with
Lemma 5.3.2. We are not going to use this formalization of centroids, rather going for the
characterization which takes into account the neighboring faces. Before turning to this,
we would just like to mention the result about the weighted Poisson–Delaunay mosaics.
Relations between volumes of skeleta of Voronoi tessellations and weighted Voronoi tes-
sellationswere studied in [58], and for the expected number of weighted Voronoi vertices,
or, equivalently, the number of weighted Delaunay top-dimensional simplices, the follow-
ing formula was obtained:
Theorem 3 (Expected sizes of weighted Poisson–Delaunay mosaics). Fix a Borel region
Ω ⊆ Rk ⊆ Rn and let X be a stationary Poisson point process with density ρ in Rn. Write
dk,n

j for the expected number of j-dimensional weighted Delaunay simplices in Ω. Then

dk,n
k = ρ

n−ℓ
n ∥Ω∥ σ1σn+1

σk+1σn−k+1

2k+1πk/2

n(k + 1)!
Γ
(

kn+n−k+1
2

)
Γ
(

kn+n−k
2

) Γ
(

n+2
2

)k+1− k
n

Γ
(

n+1
2

)k

Γ
(
k + 1 − k

n

)
Γ
(

n−k+1
2

)
dk,n

k−1 = k + 1
2

dk,n
k ,

where σi stands for the (i − 1)-dimensional area of the unit sphere in Ri.

Subsets and subcomplexes. In this paragraph we emphasize the difference in the way
we use to count simplices. Take for instance the Poisson–Delaunaymosaic. AssumingX is
in general position, we use a Borel set Ω to specify three subsets of it.

• The subcomplex K0 = K0(Ω) of DelX consists of all simplices Q such that Vor(Q) ∩
Ω ̸= ∅; see Figure 1.8. Equivalently, K0 consists of all simplices such that the in-
tersection ∩x∈Q[dom(x) ∩ Ω] ̸= ∅. If Ω is convex, the intersections dom(x) ∩ Ω are
convex as well, and the Nerve Theorem applies and asserts that K0 and Ω have the
same homotopy type, and since a convex set is contractible, this implies χ(K0) = 1.
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• The subset K1 = K1(Ω) of DelX consists of all simplices in K0 whose Delaunay
spheres (recall the deϐinition of the Delaunay sphere in Section 1.2) have center in
Ω. We can construct K1 by removing one simplex at a time from K0. Each removed
simplex changes the Euler characteristic by 1, which gives

|χ(K1) − χ(K0)| ≤ |K0 \ K1|.

• The subset K2 = K2(Ω) of DelX consists of all simplices in DelX whose center of
mass lies in Ω.

Figure 1.8: The Voronoi diagram restricted to a disk on the left, and the corresponding re-
stricted Delaunay mosaic, K0, on the right. In this case, the set K1 consists of all simplices in
K0 except for the two vertices that lie outside Ω.

We will always work with K1. So, we say that a Delaunay simplex lies in Ω if its Delaunay
center lies in Ω. The Delaunay center of the simplex, as deϐined in Section 1.2 is not an
internal characteristic of the face, it relies on the emptiness of some spheres, so this deϐi-
nition is not equivalent to choosing a centroid, which givesK2. Nevertheless, this choice is
still very “local”: if Ω is a nice set, then the difference between the number of simplices in
K0 andK1 is o(∥Ω∥); see Section 5.3. This is so because a simplex belongs toK0 \K1 only if
the common intersection of the corresponding Voronoi domains touches the boundary of
Ω, and there are not many such simplices. The details are a bit lengthy and can be found in
Section 5.3. It is also known (see [67]) that the difference betweenK0 andK2 is o(∥Ω∥), so
the expected numbers of simplices in K1 and K2 differ at most by o(∥Ω∥), but we will get
precise expressionswithout these small-order terms, implying that the expected numbers
of simplices in K1 and K2 are the same, so Theorem 2 holds both for K1 and K2, and up to
o(∥Ω∥) for K0. Similar remarks hold for all other complexes in question.

1.8 Random inscribed polytopes and Fisher space

One more question targeted in this work is about the sizes of Poisson–Delaunay mosaics
on the sphere. Our reason for comparing random sets in the Euclidean space and on the
sphere is the Fisher information metric, which measures the dissimilarity between dis-
crete probability distributions. Write x = (x0, x1, . . . , xn) and y = (y0, y1, . . . , yn) for two
such distributions, with∑n

i=0 xi = ∑n
i=0 yi = 1 and xi, yi ≥ 0 for all i, and note that x and y
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are points of the n-dimensional standard simplex, ∆n. Letting γ : [0, 1] → ∆n be a smooth
curve connecting x = γ(0) to y = γ(1), we deϐine its length as

Length(γ) =
1∫

t=0

√√√√1
2
∑n

i=0
γ̇i(t)2

γi(t)
dt,

in which γi(t) and γ̇i(t) are the i-th components of the curve and its velocity vector. The
Fisher information metric assigns the length of the shortest connecting path to the pair
x, y; see [2, Section 2.2] as well as [1, Section I.4], where this metric is referred to as the
Shahshahanimetric. This way ofmeasuring distance is fundamental in information geom-
etry and in population genetics.

To shed light on the Fisher informationmetric, wemap every pointx = (x0, x1, . . . , xn)
of ∆n to the point φ(x) = (u0, u1, . . . , un) with ui =

√
2xi for every i. The coordinates of

φ(x) are all non-negative and satisfy∑n
i=0 u2

i = 2. In words,φ(x) is a point of
√

2Sn
+, which

is our notation for the non-negative orthant of the sphere with radius
√

2 centered at the
origin in Rn+1; see Figure 1.9 on the right. As noticed already by [3], see also [1, page
39], this mapping is an isometry between ∆n and

√
2Sn

+. We can therefore understand
∆n under the Fisher information metric by studying Sn

+ under the geodesic distance. To
get a handle on the difference between random sets in Rn and in ∆n, we compare point
sets selected from Poisson point processes in Rn and on Sn, the latter being the topic of
this section. Figure 1.9 illustrates the isometry by showing three level lines each for seven
points in the standard triangle on the left and for the seven corresponding points in the
positive orthant of the sphere on the right.

Figure 1.9: Left: disk neighborhoods under the Fisher information metric of seven points in
the standard triangle. Right: the corresponding seven points and cap neighborhoods in the
isometric non-negative octant of the 2-sphere. For aesthetic reasons, the octant is scaled to
1/

√
2 times its actual size. Thanks to Hubert Wagner for providing the figure.

Consider the model in which a random polytope is generated by taking the convex
hull of randomly chosen points on the unit sphere. The ϐirst paper with substantial results
on this topic is [55]. The large body of work on the expected number of faces of random
polytopes and their volume is summarized and surveyed in [7, 43, 63, 66, 67]. A survey of
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recent results can be found in [70]. The more general setting in which the points are se-
lected on the boundary of a convex body is addressed in [64], and the linear dependence
of the expected number of faces on the number of vertices is proved. The connection to
the present work becomes clear if we notice that the Delaunay mosaic for a point set on
the sphere is essentially their convex hull.

Voronoi tessellations and Delaunaymosaics.We recall that the object under consider-
ation is Sn ⊆ Rn+1 with the geodesic distance, d : Sn × Sn → R, the metric inherited from
the Euclidean metric on Rn+1. The distance between any pair of points is deϐined to be
the length of the shortest connecting path: d(x, y) = 2 arcsin ∥x−y∥

2 . This shortest path is
unique, unless y = −x, in which case there are inϐinitely many shortest paths of length
π. Letting X be a ϐinite set of points on Sn, we follow [65] to deϐine the Voronoi domain of
x ∈ X as the points for which x minimizes the geodesic distance, further constraining it
to within the open hemisphere centered at x:

dom(x) = {w ∈ Sn | d(w, x) ≤ d(w, y) for all y ∈ X and d(w, x) < π
2 }.

Note that d(w, x) ≤ d(w, y) deϐines a closed hemisphere, namely all points w ∈ Sn that
satisfy ∥w − x∥ ≤ ∥w − y∥ in Rn+1. It follows that dom(x) is the intersection of a ϐinite
collection of hemispheres — a set we refer to as a (convex) spherical polytope. Any two
of these spherical polytopes have disjoint interiors. The Voronoi tessellation of X is the
collection of Voronoi domains, one for each point in X . It covers the entire n-sphere, ex-
cept if X is contained in a closed hemisphere, in which case it covers Sn minus a possibly
degenerate but non-empty spherical polytope; see Figure 1.10. Generically, the common

Figure 1.10: The Voronoi domains of four points on the 2-dimensional sphere. The darker
region in the south does not belong to any of these domains because the four points all
belong to the northern hemisphere. The dual Delaunay complex consists of two triangles
glued along a shared edge.

intersection of 1 ≤ k ≤ n + 1 Voronoi domains is either empty or a shared face of dimen-
sion n − k + 1, and the common intersection of n + 2 or more Voronoi domains is empty.



18

The Delaunay mosaic of X is isomorphic to the nerve of the Voronoi tessellation:
DelX = {Q ⊆ X |

∩
x∈Q

dom(x) ̸= ∅}.

The Nerve Theorem implies that the Delaunay mosaic has the same homotopy type as
the union of Voronoi domains. Assuming there is no closed hemisphere that contains all
points, this is the homotopy type of Sn.

Delaunay mosaics and inscribed polytopes. The Delaunay mosaic is an (abstract) sim-
plicial complex. In the generic case, DelX can be geometrically realized in Rn+1, namely
by mapping every abstract simplex, Q, to the convex hull of its points. To make this pre-
cise, we compare DelX with the boundary complex of conv X , which is a convex polytope
inscribed in the n-sphere. Each (n − 1)-sphere S ⊆ Sn deϐines two (closed) caps. If S is
a great-sphere, these caps are hemispheres, else they have different volume and we call
one the small cap and the other the big cap. Every facet of conv X deϐines such a pair of
caps, namely the portions of Sn on the two sides of the n-plane spanned by the facet. One
of these caps is empty, by which we mean that no point of X lies in its interior. If 0 is in
the interior of conv X , then all empty caps are small, but if 0 ̸∈ conv X , then there is at
least one empty big cap. For non-generic sets, 0 may lie on the boundary of conv X , in
which case there is at least one empty hemisphere cap. Parsing the deϐinitions of Voronoi
and Delaunay mosaics, we observe that a simplex Q ⊆ X belongs to the Delaunay mosaic
iff there is an (n − 1)-sphere, S, that contains Q, which is not a great-sphere, and whose
empty cap is small. In the generic case, these simplicesQ are exactly the faces of the facets
of conv X whose small caps are empty. In particular, it shows that if points are not con-
tained in any hemisphere, then DelX is isomorphic to the boundary of conv X , a random
inscribed polytope.

Radius function. Consider growing a spherical cap fromeach point inX . To formalize this
process, we write Capη(x) = {w ∈ Sn | d(w, x) ≤ η} for the cap with center x ∈ X and
geodesic radius η. Clipping the Voronoi domain to within the cap, for each point x ∈ X ,
we get a subcomplex of the Delaunay mosaic when we take the nerve:

DelηX = {Q ⊆ X |
∩

x∈Q
[dom(x) ∩ Capη(x)] ̸= ∅}.

By construction, DelηX is a simplicial complex, which we call the spherical Delaunay com-
plex, andDelηX ⊆ DelζX whenever η ≤ ζ . For η = π

2 , each restricting cap is a hemisphere
and thus contains its corresponding Voronoi domain, which implies Delπ/2X = DelX . We
are now ready to introduce the spherical Delaunay radius function, RS : DelX → R, which
maps every simplex to the smallest geodesic radius for which the simplex belongs to the
subcomplex of the Delaunay mosaic:

RS(Q) = min{η | Q ∈ DelηX}.

In other words, RS
−1[0, η] = DelηX . We will prove shortly that for generic X , the radius

function on the Delaunay mosaic is a generalized discrete Morse function. Formally, we
say a ϐinite set X ⊆ Sn is in general position if |X| > n + 1 and for every 0 ≤ k < n

1. no k + 3 points of X belong to a common k-sphere on Sn,
2. considering the unique (k + 1)-sphere that passes through k + 3 points of X , no

k + 2 of these points belong to a common k-sphere that shares its center with the
(k + 1)-sphere.
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Condition 2 implies that no n + 1 points of X lie on a great-sphere of Sn. We need a few
additional concepts. Assume X is in general position and Q ⊆ X is a k-simplex with 0 ≤
k ≤ n. A cap circumscribesQ if the bounding (n−1)-sphere passes through all points ofQ.
Since X is generic, Q has a unique smallest circumscribed cap, which we denote cap(Q). If
Q ∈ DelX ,Q also has a unique smallest empty circumscribed cap, whichmay ormay not be
the smallest circumscribed cap. We call it the Delaunay cap of Q and denote it as cap∅(Q).
TheEuclidean center of a cap is the center of the bounding (n−1) sphere,which is a point in
Rn+1 but not on Sn. Using this center, we use the notion of visibilitywithin the afϐine hull of
Q, which is a k-dimensional plane inRn+1. Recall that a facet ofQ is visible from this center
if the (k −1)-plane spanned by the facet separates the center fromQ or, equivalently, if the
center lies in one closed k-dimensional halfspace bounded by the (k − 1)-plane and Q is
contained in the other such halfspace. It is easy to see that the radius function maps every
simplex to the geodesic radius of its Delaunay cap; compare with Section 1.2.
Lemma 1.8.1 (Spherical radius function). Let X ⊆ Sn be a ϔinite set in general position.
Then RS : DelX → R is a generalized discrete Morse function, and [L, U ] is an interval of
RS iff cap(U) is empty and L is the maximal common face of all facets of U that are visible
from the Euclidean center of cap(U). Furthermore, for every Q ∈ [L, U ], we have cap∅(Q) =
cap(U).

Proof. We prove that for each Q ∈ DelX there are unique Delaunay simplices L ⊆ Q ⊆ U
such that cap(U) = cap∅(U), L is the intersection of all visible facts of U , and all simplices
in [L, U ] share the Delaunay cap. Note that RS(Q) is the geodesic radius of the Delaunay
cap of Q. Letting U ⊆ X be the set of all points on the (n − 1)-sphere that bounds this
Delaunay cap, we have cap∅(U) = cap(U) for else we could ϐind a smaller empty circum-
scribed cap. Let z be the center and η the geodesic radius of cap(U). By assumption of
general position, |U | ≤ n + 1, so U is a Delaunay simplex. For every facet F of U , let zF

be the center and ηF the geodesic radius of cap(F ), and let uF be the unique vertex in
U \ F . We move the center of this cap along the shortest path from zF to z while adjusting
the radius so that all points of F remain on the boundary of the cap. During this motion,
the radius increases continuously, and when it reaches η, the boundary of the cap passes
through uF . If F is visible from z, then uF is inside the cap at the beginning and on the
boundary of the cap at the end of the motion. If F is not visible from the Euclidean center,
then uF changes from outside at the beginning to on the boundary of the cap at the end
of the motion. In other words, cap(U) is the Delaunay cap of every visible facet of U , but
every invisible facet has a smaller empty circumscribed cap. Since the intersection of two
simplices with common Delaunay cap has the same Delaunay cap [8, Lemma 3.4], we can
take L as the intersection of all visible facets of U and get cap∅(L) = cap(U). On the other
hand, any face of U that does not contain L is also a face of an invisible facet and therefore
has a smaller empty circumscribed cap. This implies L ⊆ Q.

We note that the construction gives a partition of DelX into intervals. Indeed, any two
Delaunay simplices sharing theDelaunay cap give rise to the same simplexU and therefore
to the same interval [L, U ]. This concludes the proof.

RĊĒĆėĐ. While the proof follows almost verbatim the proof in the Euclidean case [8], and
actually the Euclidean Delaunay mosaic of the spherical point set is almost identical to
the one we are talking about, there is a subtlety hidden in its deϐinition. Indeed, because
each Voronoi domain is restricted to within the open hemisphere centered at the generat-
ing point, the sets dom(x) ∩ Capη(x) form a system in which every common intersection
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is either empty or contractible. The Nerve Theorem thus applies, proving that the sub-
complex of the Delaunay mosaic has the same homotopy type as the union of caps of ra-
dius η. This property breaks down for the boundary complex of conv X . This can be seen
by considering the four points on S2 shown in Figure 1.10: A, B = (±ε, 0,

√
1 − ε2) and

C, D = (0, ±1/2,
√

3/2), in which ε is a sufϐiciently small positive real number. The great-
circle arc shared by the Voronoi domains of C and D has length only slightly shorter than
π and it intersects the union of four caps of geodesic radius η slightly larger than π

2 in two
disconnected segments. The union of the four caps has the topology of a disk, while the
nerve has the topology of a circle. Indeed, the latter consists of two triangles glued along
a shared edge plus another edge connecting the two respective third vertices of the two
triangles.

Poisson point process. We are interested in random sets X ⊆ Sn, and we primarily
consider Poisson point process on the sphere. Now we prove that the difference between
the boundary complex of conv X and DelX is small if X is a Poisson point process. More
precisely, the number of faces of conv X that are visible from 0 outside conv X vanishes
rapidly as the density increases. This is consistent with the rapid decrease of the proba-
bility that 0 ̸∈ conv X , as computed in [72] for the uniform distribution on Sn.

Lemma 1.8.2 (Non-Delaunay faces). Let X be a Poisson point process with density ρ > 0
on Sn. For every 0 ≤ k ≤ n, the expected number of k-faces of conv X that do not belong to
DelX goes to 0 as ρ goes to ∞.

Proof. We may assume that conv X is simplicial and that no n + 1 points lie on a great-
sphere of Sn. Let Q ⊆ X be a set of n + 1 points and consider its small and big caps. The
big cap has volume larger than of the volume of the sphere, σn+1/2, and Q is a facet of
conv X but not a simplex of DelX iff this big cap is empty. The probability of this event is
less than e−ρσn+1/2. The expected number of such facets of conv X is therefore less than a
constant times ρn+1e−ρσn+1/2, which goes to 0 as ρ goes to ∞. Here we used that E[|X|n+1]
is at most a constant times ρn+1. For k < n, every k-face of conv X that does not belong to
DelX is a face of a facet with this property. The expected number of such k-faces thus also
goes to 0 as ρ goes to ∞.

We need one more concept to express the asymptotic behavior of the expected num-
bers, when their density goes to inϐinity. Assuming a Poisson point process with density
ρ > 0 on Sn, for a cap with geodesic radius η, we call η̄ = ηρ1/n the normalized radius of
the cap. It is the geodesic radius of the cap after scaling the unit sphere to the sphere with
area ρ times bigger.

Uniform distribution. Taking points on the sphere uniformly at randommay seem to be
more natural then considering a Poisson point process. For questions addressed in this
work there is not much difference, though. This will be brieϐly discussed in Section 7.3.
Curiously, we will need other related results for uniform distributions. In Section 1.9 and
in Chapter 3 we will often face powers of the volume of a simplex under the integral over
all possible inscribed simplices. These integrals will be further investigated in Chapter 4,
and the starting point is formed by the following theorems.

The ϐirst, simpler, result gives themoments of the volumes of cones over facets of a uni-
formly random inscribed simplex. Let u = (u0, u1, u2, . . . , uk) be a k-simplex with vertices
on Sn−1 ⊆ Rn. For each 0 ≤ i ≤ k, let ui be the k-simplex obtained by substituting 0 for
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ui and write Vi = Vol(ui) for its k-dimensional volume. We call this simplex a cone over
the i-th facet. The next theorem is [53, Equation 2.11] and with a minor correction [55,
Equation (23)], although known before.

Theorem 4 (Moments of cone volumes). Let u0, u1, u2, . . . , uk be independently and uni-
formly distributed on Sn−1 ⊆ Rn. Then for any integer a ≥ 0, the a-th moment of the volume
of a cone over any facet, i.e., the expectation of Vi

a, is

Mnt1(k, n; a) = E[Vi
a] = 1

k!a
[

Γ(n/2)
Γ((n+a)/2)

]k−1 k−1∏
i=1

Γ((n−k+a+i)/2)
Γ((n−k+i)/2) . (1.1)

With the exception of the proof of the next theorem, we will only need the case k = n.
Besides these moments, we also need the mixed moments to get our results. In general,
it seems to be a complicated problem, which can be reformulated in the language of ran-
dommatrices, asking about the mixed moments of minors of Wishart matrices, the ques-
tion considered e.g. in [22]. Indeed, there is a connection between uniform distribution
on the sphere and the Gaussian distribution, it will be used in Section 2.1. It leads to an
equivalent question for Gaussian random simplex, and a Gaussian random simplex can be
represented as a random n× (n+1)-matrixM with independent identically normally dis-
tributed elements. The cone volumes are the n × n-minors of this matrix, or equivalently,
the square roots ofn×n-minors ofMT M , the latter being known asWishart ensemble. Not
going further into this connection, we will compute the moments only for pairs of cones
now.

Theorem 5 (Pairwise mixed moments of cone volumes). Let u be a sequence of n + 1
independently and uniformly distributed points on Sn−1. Then for any 0 ≤ i < j ≤ n and
integers a, b ≥ 0, the expectation of V a

i V b
j is

Mnt2(n; a, b) = Mnt1(n−1,n;a+b)
na+b

[
Γ(n/2)
Γ(1/2)

]2 Γ((a+1)/2)
Γ((n+a)/2)

Γ((b+1)/2)
Γ((n+b)/2) . (1.2)

Proof. Note that Vi = 1
n
hiA and Vj = 1

n
hjA, in which A is the (n − 1)-dimensional volume

of the shared facet of ui and uj , and hi, hj are the distances of the points ui, uj from the
hyperplane spanned by the shared facet. For geometric reasons, it is clear that hi, hj, A are
independent; see [53] for details. Hence, we get

E[V a
i V b

j ] = 1
na+b E[ha

i ] E[hb
j] E[Aa+b],

with E[Aa+b] = Mnt1(n − 1, n; a + b) with value given in (1.1). The value for E[ha
i ] given

in [53], right before Formula (2.11), is Γ(n
2 )/Γ(1

2) times Γ(a+1
2 )/Γ(n+a

2 ). Substituting the
analogous expression for E[hb

j] gives the claimed relation.

We illustrate Theorems 4 and 5 by computingMnt1 andMnt2 for a selected set of small
values of k, n, a, b, chosen so the results will be useful in Section 4.4; see Table 1.1.

Another relevant result is about themoments of the total volumeof a random inscribed
simplex. It seems to be much more complicated then Theorem 4, and can actually be seen
as a consequence of Theorem21 proved in this work if we set f ≡ 1. Indeed, a very similar
reasoning was used in [55] to get the following statement.
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Mnt1(k, n; a) a = 1 a = 2 a = 3
k = n = 2 1

π
1
8

1
6π

3 π
48

1
162

4 8
81π2

a = 1 a = 2 a = 2
Mnt2(n; a, b) b = 1 b = 1 b = 2

n = 2 1
π2

1
8π

3 1
216

4

Table 1.1: Values of Mnt1 for small values of k, n, a on the left, and values of Mnt2 for small
values of n, a, b on the right.

Theorem 6 (Moments of simplex volumes). Let u0, . . . , uk be k + 1 independent uniformly
distributed random points on Sn−1 ⊆ Rn, and write u = (u0, . . . , uk) for the k-simplex with
these vertices. Then for any integer a ≥ 0, the a-th moment of the volume of this simplex, is

E[Vol(u)a] = 1
k!a

[
Γ(n/2)

Γ((n + a)/2)

]k Γ
( (k+1)(n+a)

2 −k

)
Γ
( (k+1)(n+a)−a

2 −k

) k−1∏
i=1

Γ((n − k + a + i)/2)
Γ((n − k + i)/2)

.

1.9 Blaschke–Petkantschin formulas

Blaschke–Petkantschin formula is a classic result in integral geometry. It is used to change
from integration over k points inRn to the integration over the afϐine hull of these points.
In this section we present the two well known variants of this formula and the necessary
notation. Let 0 < k ≤ n and write Ln

k for the Grassmannian consisting of all k-planes
passing through the origin in Rn. We recall that there is a standard measure on Grassma-
nian; see [39] and Section 2.1. The following theorem is the classic formula in the form
[55, Equation (27)]:

Theorem 7 (Linear Blaschke–Petkantschin formula). Fix 0 ≤ k ≤ n. Then for a measur-
able non-negative function f : (Rn)k+1 → R∫

x∈(Rn)k+1

f(x) dx =
∫

L∈Ln
k

∫
h∈L⊥

∫
x∈Lk+1

f(h + x)(k!Vol(x))n−k dx dh dL,

in which x = (x0, x1, . . . , xk), each xi is a point in Rn, h + x is (h + x0, h + x1, . . . , h + xk),
and Vol(x) is the k-dimensional volume of the simplex spanned by x.

Almost all (n + 1)-tuples of points in Rn deϐine a unique (n − 1)-sphere that passes
through all of them. In other words, the following formula [67, Theorem 7.3.1] integrates
over circumscribed spheres of simplices inRn:

Theorem 8 (Top-dimensional spherical Blaschke–Petkantschin formula). Every measur-
able non-negative function f : (Rn)n+1 → R satisϔies∫

x∈(Rn)n+1

f(x) dx =
∫

z∈Rn

∫
r≥0

∫
u∈(Sn−1)n+1

f(z + ru)rn2−1n!Vol(u) du dr dz,

in which we use the standard spherical measure on Sn−1.



23

Further formulas of these type were studied in [74, 64].
Not explicitly used in thiswork but relevant for the derivation of the number of vertices

in aweighted Voronoi diagram is the Crofton’s formula. Using (50) and (103) fromChapter
6 of [39] (see also [67, Theorem 9.4.7]), we can obtain the following formula for a convex
set A ⊆ Rn−k ⊆ Rn:

λn−k(A) = ν1...νk−1
νn−k...νn−1

∫
L∈Ln

k

∫
x⊥L

1x+L∩A ̸=∅ dx dL, (1.3)

where λn−k is the (n − k)-dimensional Lebesgue measure and νi is the volume of a unit
ball in Ri. The 1 is the indicator function, which is equal to 1 if x + L ∩ A ̸= ∅ and is zero
otherwise. This formula clearly generalizes to the following:

Theorem (Crofton’s formula). Let A be an (n − k)-dimensional set in Rn which can be
decomposed as a countable union of convex sets. Then

λn−k(A) = ν1...νk−1
νn−k...νn−1

∫
L∈Ln

k

∫
x⊥L

#{(x + L) ∩ A} dx dL,

where # is the (possibly inϔinite) number of points in the set.

Further generalizations are possible. For example, the convexity requirement can be
replaced with appropriate smoothness, but we are not going into these details.
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2. Results

In this chapter we collect new results of the work. Section 2.1 gives the background and
notation for standard functions andmeasures needed to state the results, while the results
themselves are summarized in the remaining sections, grouped by the random complex
they are related to.

2.1 Standard notation and functions

Before stating the results, we summarize the notation and functions used in the text.

Gamma functions.We recall that the lower incomplete Gamma function takes two param-
eters, j and t0 ≥ 0, and is deϐined by

γ(j; t0) =
∫ t0

t=0
tj−1e−t dt.

The corresponding complete Gamma function is Γ(j) = γ(j; ∞). An important relation
for Gamma functions is Γ(j + 1) = jΓ(j), which holds for any real j that is not a non-
positive integer. We often use the ratio, γ(j; t0)/Γ(j), which is the density of a probability
distribution and called the Gamma distribution with parameter j. We prove a technical
lemma about incomplete Gamma functions, whichwill be repeatedly used in the following
chapters.
Lemma 2.1.1 (Gamma function). Let c, p, j, t0 ∈ R with p ̸= 0 and t0 > 0. Then

∫ t0

t=0
tj−1e−ctp dt =

γ
(

j
p
; ctp

0

)
pcj/p

.

Proof. We rewrite the numerator of the right-hand side of the claimed identity using the
deϐinition of the lower incomplete Gamma function and substituting u = ctp and du =
cptp−1 dt:

γ
(

j
p
; ctp

0

)
=
∫ ctp

0

u=0
u

j
p

−1e−u du

=
∫ t0

t=0
(ctp)

j
p

−1e−ctp

cptp−1 dt

=
∫ t0

t=0
pc

j
p tj−1e−ctp dt.

Dividing by pcj/p gives the claimed relation.
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Beta functions. Given real numbers a, b, and 0 ≤ t0 ≤ 1, the incomplete Beta function is
deϐined by

Bt0(a, b) =
∫ t0

t=0
ta−1(1 − t)b−1 dt,

and the complete Beta function is B(a, b) = B1(a, b), which can be expressed in terms of
complete Gamma functions: B(a, b) = Γ(a)Γ(b)/Γ(a + b).

The Beta functions can be used to integrate over the projection of a sphere in Rn to
a linear subspace Rk ↪→ Rn, as we now explain. Assuming Rk is spanned by the ϐirst k
coordinate vectors ofRn, the projection of a point means dropping coordinates k + 1 to n.
Suppose now that we pick a point x = (x1, x2, . . . , xn) uniformly on Sn−1 by normalizing
a vector of n normally distributed random variables: Xi ∼ N (0, 1) for 1 ≤ i ≤ n and
xj = Xj/ (∑n

i=1 X2
i )1/2 for 1 ≤ j ≤ n. Its projection to Rk is x′ = (x1, . . . , xk, 0, . . . , 0), and

the squared distance from the origin is ∥x′∥2 =
(∑k

i=1 x2
i

)
/ (∑n

i=1 x2
i ). It can be written

as r2 = X/(X + Y ), in which X and Y are χ2-distributed independent random variables
with k and n − k degrees of freedom, respectively. This implies that r2 ∼ B

(
k
n
, n−k

n

)
[71,

Section 4.2]. We state it as a lemma.
Lemma2.1.2 (Projection of uniform distribution on the sphere). Let u be a uniformly ran-
dom point on the unit sphere in Rn, and let u′ be the projection of u to Rk ↪→ Rn. Then
∥u′∥2 ∼ B

(
k
n
, n−k

n

)
.

Hypergeometric functions.The family ofhypergeometric functions takes p+q parameters
and one argument and can be deϐined as a sum of products of Gamma functions, while the
regularized version of this function is obtained by normalizing by the product of Γ(bi):

pFq (a1, . . . , ap; b1, . . . , bq; z) =
∞∑

j=0

[ p∏
i=1

Γ(j + ai)
Γ(ai)

] [ q∏
i=1

Γ(bi)
Γ(j + bi)

]
zj

j!
,

pF̃q (a1, . . . , ap; b1, . . . , bq; z) = pFq (a1, . . . , ap; b1, . . . , bq; z) /
q∏

i=1
Γ(bi)

=
∞∑

j=0

[ p∏
i=1

Γ(j + ai)
Γ(ai)

] [ q∏
i=1

1
Γ(j + bi)

]
zj

j!
.

We are interested in the type p = 3 and q = 2. Here convergence of the inϐinite sum
depends on the values of the parameters. We always have convergence for |z| < 1, and if
z = 1, a sufϐicient condition for convergence is b1 + b2 > a1 + a2 + a3 [60].

Standard measures. Recall that νn and σn denote the volume and the surface area of the
unit ball inRn. Using Gamma function, we canwrite the explicit expressions for these con-
stants νn = π

n
2

Γ(n
2 +1) and σn = 2π

n
2

Γ(n
2 ) . There are two interesting relations between these

constants worth mentioning: σn = nνn and σn+2 = 2πνn.
Further, using Beta functions we can also write an explicit formula for the spherical

cap of geodesic radius η. For η ≤ π
2 , the fraction of the sphere covered by the cap Capη(x)

is F (η) = 1
2Bs(n

2 , 1
2)/B

(
n
2 , 1

2

)
, in which s = sin2 η is the square of the Euclidean radius

measured in Rn+1; see [52]. The area of the cap is then

Area(η) =
{

F (η)σn+1 for 0 ≤ η ≤ π
2 ,

[1 − F (π − η)] σn+1 for π
2 ≤ η ≤ π,

(2.1)
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in which F (π − η) = F (η) because sin(π − η) = sin η.
Onemoremeasure thatwewill commonly face is themeasure of theGrassmanian [39]:

∥Ln
k∥ = σnσn−1·...·σn−k+1

σ1σ2·...·σk
. To get an intuition for this formula we notice that, for example,

Ln
n−1 may be identiϐied with the set of normal directions and hence ∥Ln

n−1∥ = σn

2 , half the
volume of the (n − 1)-dimensional sphere.

2.2 Poisson–Delaunay mosaics

As discussed in Section 1.7, for ϐixed j, the Delaunay centers of j-dimensional simplices
in the Poisson–Delaunay mosaic inRn form a non-simple point process. At the same time,
the Delaunay centers of (ℓ, m)-intervals form a simple point process. With the following
theorems we claim that both of these processes are stationary even if we further restrict
the Delaunay radius, and give relations between their intensities.

Theorem 9 (Delaunay intervals). Let X be a stationary Poisson point process with density
ρ > 0 in Rn. Then there exist constants Cn

ℓ,m, such that for any r > 0 (including r = ∞)
and for any integers 1 ≤ ℓ ≤ m ≤ n, the expected number of intervals in the Poisson–
Delaunay mosaic with Delaunay center in a Borel set Ω, lower bound dimension ℓ, upper
bound dimension m, and Delaunay radius at most r is given by the lower incomplete Gamma
function,

γ(m; ρνnrn)
Γ(m)

Cn
ℓ,m · ρ∥Ω∥,

and Cn
ℓ,m is the intensity of the process of the Delaunay centers of (ℓ, m)-intervals.

RĊĒĆėĐ. Theorem 9 does not cover the case ℓ = 0 (because of the degenerate distribution
of the Delaunay radius), which is straightforward: all vertices are critical, so the expected
number of critical vertices in Ω is ρ∥Ω∥ and there are no intervals with ℓ = 0 and m > 0.

Applying Lemma 1.5.1 to the result of Theorem 9, we get the similar statement for the
number of Delaunay j-simplices.

Theorem 10 (Delaunay simplices). Let X be a stationary Poisson point process with den-
sity ρ > 0 in Rn. For any r > 0 (including r = ∞) and for any integer j > 0, the expected
number of j-simplices in the Poisson–Delaunay mosaic with Delaunay center in a Borel set
Ω and Delaunay radius at most r is given by the sum of the incomplete Gamma functions,

n∑
m=j

γ(m; ρνnrn)
Γ(m)

j∑
ℓ=1

(
m − ℓ

m − j

)
Cn

ℓ,m · ρ∥Ω∥.

Setting r = ∞ we get for the intensity of the process of the Delaunay centers of j-simplices

Dn
j =

n∑
m=j

j∑
ℓ=1

(
m − ℓ

m − j

)
Cn

ℓ,m.

In Chapter 4 we give explicit expressions for the constants Cn
ℓ,m, see equation (4.3),

and compute them in dimensions n = 2, 3, 4. The resulting numerical values for are given
in Table 2.1. Hence we also have explicit values for Dn

j for n = 2, 3, 4; see Table 2.2. This
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Cn
ℓ,m n = 2 n = 3 n = 4

m = 0 1 2 0 1 2 3 0 1 2 3 4
ℓ = 0 1.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

1 2.00 1.00 4.00 2.55 1.22 8.00 5.67 3.56 1.67
2 1.00 4.85 3.70 17.67 18.96 11.15
3 1.85 15.41 14.22
4 4.74

Table 2.1: Rounded constants in the expected numbers of critical simplices (diagonal) and
non-singular intervals (off-diagonal) for a Poisson point process in R2 on the left, in R3 in the
middle, and in R4 on the right. The exact values can be found in Chapter 5.

Dn
j j = 0 1 2 3 4

n = 2 1.00 3.00 2.00
3 1.00 7.77 13.54 6.77
4 1.00 18.89 65.56 79.44 31.78

Table 2.2: Rounded constants in the expected numbers of simplices in a Poisson–Delaunay
mosaic. The values are straightforward in two dimensions, they have been found by R. Miles
[67] in three dimensions, and except for j = 0, 3, 4 they are new in four dimensions. The exact
values can be found in Chapter 5.

extends the result of Miles mentioned in [67] to n = 4. Figure 2.1 illustrates how the
numbers of different simplices and intervals compare to each other at each radius.

Theorem 10 (and Theorem 9) can be equivalently stated in terms of the distribution of
the Delaunay radius. Let Ω be ameasurable set inRn with non-empty interior, and choose
uniformly one of the centers of the Delaunay spheres in Ω, conditioning on the existence
of such centers. The j-simplex thus chosen is the typical j-dimensional Delaunay simplex.
Then Theorem 10 can be restated as
Corollary 2.2.1 (Delaunay radius distribution). Let X be a stationary Poisson point pro-
cess with density ρ > 0 in Rn and constants Cn

ℓ,m and Dn
j be the same as above. Then the

distribution function of the Delaunay radius of the typical j-dimensional Delaunay simplex
for j > 0 is a mixed Gamma distribution with distribution function:

Gn
j (r) =

n∑
m=j

γ(m; ρνnrn)
Γ(m)

j∑
ℓ=1

(
m − ℓ

m − j

)
Cn

ℓ,m

Dn
j

, r ≥ 0.

It should be noted that it follows that for j = n the Delaunay radius is Gamma dis-
tributed. This is in accordance with the Complementary Theorem of Miles [56] (see also
Møller [58]), and follows also from the very general paper on Gamma-type results by
Baumstark and Last [9], see also Chenavier [18].

While Theorems 9 and 10 make statements about expectations in a ϐixed region Ω, a
standard ergodic argument implies that for a sequence of regions Ω1 ⊆ Ω2 ⊆ . . . covering
the entire space, the numbers of intervals inside Ωi, normalized by ∥Ωi∥, converge to the
corresponding constants almost surely as random variables, see [54] for details.

It should also be pointed out that Theorem 10 can be converted into results for the
dual Poisson–Voronoi tessellation. Then it gives the intensity of the (n − j)-dimensional
face process of the Poisson–Voronoi tessellation, while the corollary gives the distribution
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Figure 2.1: Left: the densities of distributions of the expected number of intervals as a func-
tion of the Delaunay radius (ρ = 1). The graphs are obtained by drawing Cn

ℓ,m times the
derivative of γ(m, νnrn) normalized by Γ(m), for 1 ≤ ℓ ≤ m ≤ n, with n = 2, 3, 4 from
top to bottom. Right: the corresponding densities of distributions of the expected number of
Delaunay simplices.
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of the minimal distance of the typical (n − j)-face to the closest point of the Poisson point
process.

2.3 Poisson–Čech mosaics

The case of the Cƽech complex is very similar to the Delaunay analysis.

Theorem 11 (Cƽech intervals). Let X be a stationary Poisson point process with density
ρ > 0 in Rn. For any r > 0 (and r < ∞) and for any integers 1 ≤ ℓ ≤ m ≤ n, the expected
number of intervals of the Poisson–Čech mosaic with lower bound dimension ℓ, upper bound
dimension m and their eclosing balls having center in a Borel set Ω and radius at most r is
given by the lower incomplete Gamma function,

γ(m; ρνnrn)
Γ(m)

Čn
ℓm · ρ∥Ω∥,

where Čn
ℓm = Cn

ℓ,ℓ

(
m−1
ℓ−1

)
and Cn

ℓ,ℓ are the same as in Theorem 9.

As a corollary we obtain the expected number of simplices in the Cƽech complex.

Theorem 12 (Cƽech simplices). Let X be a stationary Poisson point process with density
ρ > 0 in Rn. The expected number of j-dimensional simplices of the Poisson–Čech mosaic
with smallest enclosing balls having radius at most r and center in Ω is

min{j,n}∑
ℓ=0

Cn
ℓ,ℓ

∞∑
m=j

(
m − ℓ

j − ℓ

)(
m − 1
ℓ − 1

)
γ(m; ρνnrn)

Γ(m)
.

This sum diverges for r = ∞ and converges for r < ∞.

Similarly to Theorem 9 the distribution of the radius of the smallest enclosing ball of
a typical Cƽech simplex follows. For completeness we notice that the case r = ∞ is trivial:
ČechX is the complete simplicial complex on X . Hence the expected number of simplices
with vertices inΩ isE[

(
|X∩Ω|
m+1

)
]. Since |X ∩Ω| is a Poisson random variable with parameter

ρ∥Ω∥, we get

E[
(

|X∩Ω|
m+1

)
] =

∞∑
i=m+1

(
i

m + 1

)
e−ρ∥Ω∥ (ρ∥Ω∥)i

i!
= (ρ∥Ω∥)m+1

(m + 1)!
.

Talking about the total number of simplices that contain the center of the smallest enclos-
ing ball inside Ω does not make sense any more: it is inϐinite.

2.4 Weighted Poisson–Delaunay mosaics

The next theorem is the extension of Theorem 9 to the weighted case.
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Theorem13 (Weighted Delaunay intervals). LetX be a Poisson point process with density
ρ inRn andRk ↪→ Rn. There are constantsCk,n

ℓ,m such that for any r ≥ 0, the expected number
of intervals of type (ℓ, m) in the k-dimensionalweighted Poisson–Delaunaymosaicwith their
anchored Delaunay spheres having center in a Borel set Ω ⊆ Rk and radius at most r is

Ck,n
ℓ,m ·

γ
(
m + 1 − k

n
; ρνnrn

)
Γ
(
m + 1 − k

n

) · ρ
k
n ∥Ω∥.

Here we allow ℓ = 0 unless k = n, in which case it is Theorem 9. The constants Ck,n
ℓ,m

are the intensities of the process inRk of the anchors of intervals. We give explicit integral
expressions for them in (4.4) and compute them for m = 0 and m = 1, as well as for k ≤ 2
in Section 4.5. The extension of Theorem 10 is again the corollary of Lemma 1.5.1.

Theorem 14 (Weighted Delaunay simplices). In the setup of Theorem 13, the expected
number of j-dimensional simplices in the weighted Poisson–Delaunay mosaic with their an-
chored Delaunay spheres having center in a Borel set Ω ⊆ Rk and radius at most r is k∑

m=j

γ
(
m + 1 − k

n
; ρνnrn

)
Γ
(
m + 1 − k

n

) j∑
ℓ=0

(
m − ℓ

m − j

)
Ck,n

ℓ,m

 · ρ
k
n ∥Ω∥.

Setting r = ∞ we get for the intensity of the process of the anchors of j-simplices

Dk,n
j =

n∑
m=j

j∑
ℓ=1

(
m − ℓ

m − j

)
Ck,n

ℓ,m.

Again, in an equivalent formulation, this theorem states that the radius of the anchored
Delaunay sphere of a typical interval is Gamma-distributed, whereas the radius of the an-
choredDelaunay sphereof a typical simplex is amixtureofGammadistributions. Fork = n
we get Theorems 9 and 10. For some values of n, the constants are approximated in Tables
2.3 and 2.4.

n = 2 3 4 5 6 7 8 9 . . . 20 . . . ∞
C1,n

0,0 1.00 1.09 1.16 1.22 1.26 1.29 1.32 1.35 . . . 1.47 . . . 1.65
C1,n

0,1 0.27 0.36 0.42 0.45 0.48 0.50 0.51 0.53 . . . 0.60 . . . 0.68
D1,n

0 1.27 1.46 1.58 1.67 1.74 1.79 1.84 1.87 . . . 2.07 . . . 2.33

Table 2.3: The rounded constants in the expressions of the expected number of intervals and
simplices of a 1-dimensional weighted Delaunay mosaic. The ratio of the expected number
of critical edges over the expected number of regular edges it is monotonically decreasing.
It follows that we can infer the ambient dimension from the ratio.

Connection toBooleanmodel.Wewant to emphasize one application of the case k = 1of
Theorem 13. LetX be a Poisson point process with density ρ inRn and consider the union
of closed balls of ϐixed radius r and centers in X , denoted Xr. The obtained random set is
sometimes referred to as the Boolean model [67]. Write Xr ∩ Ω for the intersection of this
set with a line segment Ω ⊆ R1 ⊆ Rn. We claim that the homotopy type of this intersec-
tion is the same as that of the weighted Delaunay complex, restricted to Ω. In particular,
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n = 3 4 5 6 7 8 9 10 . . . 20 . . . 1000
C2,n

0,0 1.11 1.25 1.38 1.49 1.58 1.66 1.73 1.79 . . . 2.12 . . . 2.69
C2,n

0,1 0.26 0.42 0.54 0.63 0.71 0.77 0.82 0.86 . . . 1.12 . . . 1.54
C2,n

0,2 0.09 0.15 0.21 0.25 0.28 0.31 0.33 0.35 . . . 0.47 . . . 0.65
C2,n

1,1 2.47 2.92 3.30 3.61 3.87 4.09 4.28 4.44 . . . 5.37 . . . 6.92
C2,n

1,2 1.46 1.83 2.13 2.37 2.57 2.74 2.89 3.01 . . . 3.72 . . . 4.88
C2,n

2,2 1.37 1.67 1.92 2.12 2.29 2.43 2.55 2.66 . . . 3.25 . . . 4.23
D2,n

0 1.46 1.83 2.13 2.37 2.57 2.74 2.89 3.01 . . . 3.72 . . . 4.88
D2,n

1 4.37 5.48 6.38 7.10 7.71 8.22 8.66 9.03 . . . 11.16 . . . 14.65
D2,n

2 2.92 3.66 4.25 4.74 5.14 5.48 5.77 6.02 . . . 7.44 . . . 9.77

Table 2.4: The rounded constants in the expressions of the expected number of intervals
and simplices of a 2-dimensional weighted Delaunay mosaic obtained from a Poisson point
process in n dimensions.

β0(Xr ∩ Ω) = β0(WDelr(X ′; Ω)), in which X ′ is the projection of X onto R1, β0 counts
the connected components and WDelr(X ′; Ω) is the subcomplex of the weighted Delau-
nay mosaic that consists of all simplices with radius at most r lying completely within Ω.
This follows from the general observation that the weighted Delaunay complex for radius
r of a set of pointsY ⊆ Rk withweightsw(y) is homotopy equivalent to the union of power
balls, Yr = {a ∈ Rk | ∥a − y∥2 −w(y) ≤ r2}, and Yr ∩Ω = Xr ∩Ω. Indeed, theweightedDe-
launay complex can be deϐined as the nerve of the decomposition of Yr with the weighted
Voronoi tessellation, so the Nerve Theorem asserts the homotopy equivalence; see [26]
for details.

Following the evolution of the nested complexes WDelr(X ′; Ω), as r goes from 0 to ∞,
we observe that every critical vertex creates a new componentwhen it enters the complex,
each regular interval does not affect the homotopy type, and every critical edge connects
two components; compare with Figure 1.7. It follows that the expected number of compo-
nents in Xr ∩ Ω is

E[β0(Xr ∩ Ω)] = E[c1,n
0,0 (r) − c1,n

1,1 (r)] (2.2)

= σn−1Γ(1− 1
n)

nν
1−1/n
n

[
γ(1− 1

n
; ρνnrn)

Γ(1− 1
n) − γ(2− 1

n
; ρνnrn)

Γ(2− 1
n)

]
· ρ

1
n ∥Ω∥ (2.3)

= σn−1

nν
1−1/n
n

[
γ
(
1 − 1

n
; ρνnrn

)
− γ(2− 1

n
; ρνnrn)

1− 1
n

]
· ρ

1
n ∥Ω∥, (2.4)

where we substituted values for C1,n
ℓ,m from (4.42)–(4.43). We write A = ρνnrn, use the

deϐinition of the incomplete Gamma function, and integrate by parts to get

γ
(
2 − 1

n
; A

)
=

A∫
0

x1− 1
n e−x dx =

[
−x1− 1

n e−x
]A

0
+
(
1 − 1

n

) A∫
0

x− 1
n e−x dx (2.5)

= −A1− 1
n e−A +

(
1 − 1

n

)
γ
(
1 − 1

n
; A

)
. (2.6)

Noticing that A1− 1
n ρ1/n = (ρνnrn)1− 1

n ρ1/n = ρν
1− 1

n
n rn−1, we plug (2.6) into (2.4) to obtain

E[β0(Xr ∩ Ω)] = σn−1

nν
1−1/n
n

1
1− 1

n

e−ρνnrn

ρν
1− 1

n
n rn−1∥Ω∥ = σn−1

n−1 rn−1e−ρνnrn

ρ∥Ω∥ (2.7)
= νn−1r

n−1e−ρνnrn

ρ∥Ω∥, (2.8)
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wherewe use the identity σn−1
n−1 = νn−1 in the last transition. In short, (2.8) gives an explicit

formula for the expected number of connected components in the Booleanmodel inRn in-
tersected with a line segment of length ∥Ω∥. This result is not new and follows after some
straightforward computations from [40, Excercise 4.8], but the goal of this derivation is to
provide another, more topological view on the problem. The graphs of β0 for different di-
mensions n are shown in Figure 2.2. Using Crofton’s formula (1.3) and the fact that almost
every connected component is a line segment, which meets the boundary of the Boolean
model in two points, (2.8) can be transformed into a statement about its expected (n − 1)-
dimensional volume:

V n−1(Xr) = 2
√

π
Γ(n

2 )
Γ(n+1

2 )νn−1r
n−1e−ρνnrn

ρ,

in which V n−1(Xr) stands for the limit of the (n − 1)-dimensional volume of the boundary
of Xr inside a growing region over the volume of this region; see [67, Section 9] for the
detailed discussion of the quantity.
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Figure 2.2: Graphs of the expected number of connected components per unit length de-
pending on the radius for different dimensions n. To make sense of putting the curves cor-
responding to different dimensions on the same plot, they are rescaled, so the parameter on
the horizontal axis is ρνnrn, which stands for the expected number of points inside a ball of
radius r in Rn. That said, the curves are β0(ρνnrn) = E[β0(Xr ∩ Ω)] with ∥Ω∥ = 1.

2.5 Poisson–Delaunay mosaics of higher order

The next two results refer to the order-k Poisson–Delaunaymosaic. Since we neither have
a deϐinition nor a description of intervals, we state only the result about the number of
cells, deferring the intervals until we deϐine them in the corresponding chapter, see (6.9).
The development of the discrete Morse theory for the order-k case in Section 6.3 can also
be considered a separate and independent achievement of this work.

Letting G be a j-dimensional cell of the Poisson–Delaunay mosaic of order k, we note
that it uniquely determines the smallest sphere centered at a point of the dual order-k
Voronoi cell such that the closed ball it bounds contains at least k points ofX; see Chapter
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6 for details. We call the center and the radius of this ball the center and the radius of G.
To count, we specify a dimension 0 ≤ j ≤ n, a Borel region Ω ⊆ Rn, and a radius r ≥ 0,
and we write d

(k,n)
j (r) for the number of j-cells in Del(k)X whose center belongs to Ω and

whose radius is at most r. We give an explicit formula for the expectation of d
(k,n)
j (r).

Theorem 15 (Expected number of cells). Let X be a stationary Poisson point process with
density ρ in Rn, let k ≥ 1 and 0 < j ≤ n. The expected number of j-cells in Del(k)X with
center in a Borel region Ω and radius at most r satisϔies

E[d(k,n)
j (r)] = ρ∥Ω∥ ·

n∑
u=j

u∑
v=1

Cn
v,u

g1∑
g=1

γ(u + k − g; ρνnrn)
Γ(k − g + 1)Γ(u)

t1∑
t=t0

(
v + 1

t

)(
u − v

t + j − v

)
,

in which g1 = min{k, u}, t0 = max{0, v−j, g−j}, and t1 = min{v+1, u−j, g−1}. Further,
for j = 0 and k ≥ 2 we have

E[d(k,n)
0 (r)] = ρ∥Ω∥ ·

n∑
u=1

u∑
v=1

Cn
v,u

γ(u + k − v − 1; ρνnrn)
Γ(k − v)Γ(u)

.

The constants Cn
v,u are again the same constants deϐined in (4.3). Setting r0 = ∞, we

obtain the expected total number of j-cells in Del(k)X .
RĊĒĆėĐĘ. (1) The case j = 0 when k = 1 is trivial, because all points of X are 1-Delaunay
vertices.

(2) Again, the theorem can be restated in terms of the distribution of the radius of a
typical j-cell.

(3) Throughout the investigation we always have the special case j = 0. The case can
be simpliϐied if one considers degree-k diagrams instead. Degree-k Voronoi domains split
the order-k Voronoi domains into several domains sharing the furthest point.

The secondnewresult for order-kmosaics concerns the expectedareaof the ℓ-skeleton
of an order-k Poisson–Voronoi tessellation. By deϐinition, this is the ℓ-dimensional Lebes-
guemeasure of the union of all ℓ-dimensional faces of order-k Voronoi domains. Since this
area is inϐinite, we normalize by letting η

(k,n)
ℓ be the area of the ℓ-skeleton within a unit

volume of space.
Theorem 16 (Expected area). Let X be a stationary Poisson point process with density
ρ > 0 in Rn, let k ≥ 1 and 0 ≤ ℓ < n. The expected area of the ℓ-skeleton of the order-k
Voronoi tessellation of X per unit volume of space is

E[η(k,n)
ℓ ] = ρ

n−ℓ
n

k−1∑
i=max{0,k+ℓ−n}

2n−ℓ+1π
n−ℓ

2

i!n(n − ℓ + 1)!
Γ
(

n2−nℓ+ℓ+1
2

)
Γ(1+ n

2 )n−ℓ+ ℓ
n Γ(n−ℓ+i+ ℓ

n)
Γ
(

n2−nℓ+ℓ
2

)
Γ(n+1

2 )n−ℓ
Γ( ℓ+1

2 )
..

For ℓ = n, we have E[η(k,n)
n ] = η(k,n)

n = 1.

This extends Theorem 10.2.4 in [67] to the order-k case.

2.6 Spherical Poisson–Delaunay mosaics

We conclude the summary of the new results with the Poisson–Delaunay mosaic on the
sphere. Recall that in Section 1.8 we deϐined the normalized radius of a spherical cap with
geodesic radius η to be η̄ = ηρ1/n. The following theorems count intervals and simplices
in this mosaic with bounded radius, or, equivalently, faces of random inscribed polytopes.
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Theorem17 (Spherical Delaunay intervals). Let X be a Poisson point process with density
ρ > 0 on Sn. For any integers 1 ≤ ℓ ≤ m ≤ n and any real number 0 < η0 < π

2 , the expected
number of intervals of type (ℓ, m) and geodesic radius at most η0 is

E[ζn
ℓ,m, η0] = ρσn+1 · σm

n

2Γ(m)nm−1 · Cn
ℓ,m

s∫
t=0

ρmt
mn−2

2 (1 − t)
n−m−1

2 P∅(
√

t) dt,

in which s = sin2 η0 is the square of the maximum Euclidean radius, and P∅(r) is the proba-
bility that a spherical cap with geodesic radius η = arcsin r contains no points of X , namely
P∅(r) = e−ρArea(η). Let now ρ → ∞. For any η̄0 ∈ [0, +∞], the expected number of intervals
of type (ℓ, m) and normalized radius of the Delaunay cap at most η̄0 is

E[ζn
ℓ,m, η̄0] = ρσn+1 · γ(η̄n

0 νn; m)
Γ(m) · Cn

ℓ,m + o(ρ).

RĊĒĆėĐĘ. (1) Constants Cn
ℓ,m are the same as in Theorem 9.

(2) Theorem 17 does not cover the case ℓ = 0, i.e., intervals containing vertices, but
here the results are straightforward. Speciϐically, the expected number of critical vertices
is E[ζn

0,0, η0] = ρσn+1, for every η0 ≥ 0, and ζn
0,m = 0 for every m ≥ 1.

(3) We will prove that for constant s, the integral is bounded away from both 0 and ∞.
This implies that the expected number of intervals is of order Θ(ρ); compare with [64].

(4) We will also prove that setting η̄0 = ∞ in the second equation gives the total num-
ber of intervals of type (ℓ, m) as E[ζn

ℓ,m] = ρσn+1 · Cn
ℓ,m + o(ρ). On the other hand, letting

η̄0 → ∞, we get the total number of intervals of geodesic radius Θ(ρ−1/n). This implies
that the number of intervals with radius ω

(
ρ−1/n

)
is o(ρ). Note that also the number of

intervals with radius o
(
ρ−1/n

)
is o(ρ).

The total number of simplices of dimension j in the Delaunay mosaic is again easy to
deduce from the number of intervals. We give only the limit statement.
Theorem18 (Spherical Delaunay simplices). LetX be a Poisson point process with density
ρ > 0onSn. For any integer j ≥ 1andanynon-negative real number η̄0, the expectednumber
of j-simplices of DelX with normalized radius of the Delaunay cap at most η̄0 is

ρσn+1 ·
n∑

m=j

γ(η̄n
0 νn; m)
Γ(m)

j∑
ℓ=0

(
m − ℓ

m − j

)
Cn

ℓ,m + o(ρ),

Setting

Gn
j (η̄0) =

n∑
m=j

γ(η̄n
0 νn; m)
Γ(m)

j∑
ℓ=0

(
m − ℓ

m − j

)
Cn

ℓ,m

Dn
j

,

we thus get the distribution of the normalized radius of the Delaunay cap of the typical j-
simplex in the limit when ρ → ∞.

RĊĒĆėĐĘ. (1) Observe that ρσn+1 is the expected number of points in X . Comparing with
Theorems in Section 2.2, we can notice that the obtained formulas are essentially the same
expressions as for the Poisson point process inRn.

(2) While we state our results for Poisson point processes, very similar expressions
can be obtained for the uniform distribution; see Section 7.3.
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3. Blaschke–Petkantschin formulas

A commonly used tool for questions concerning random complexes is the mentioned in
Section 1.9Blaschke–Petkantschin formula. The standard approach forworkingwith Pois-
son–Delaunay mosaics is to study metric properties of Poisson–Voronoi tessellations, and
the linear formula sufϐices for this purpose. We are approaching the problem from the
other side, though, and that is why our main tools will be formulas involving spheres, like
the one in Theorem 8. In this chapter we summarize and prove new formulas of this type.
They are completely self-contained and can be considered as separate results. In the state-
ments, we will use bold notation for sequences of points, like u = (u0, u1, . . . , uk) and
x = (x0, x1, . . . , xk), we write Vol(u) for the k-dimensional volume of a k-simplex with
vertices at u, and shorten z + ru for (z + ru0, z + ru1, . . . , z + ruk). The number of points
and the ambient dimension can vary between theorems without causing confusion. The
integrations are always with respect to the standard measures in the Euclidean space, on
the sphere and on Grassmanian [39].

3.1 Smallest circumscribed spheres

The ϐirst formula generalizes Theorem 7.3.1 in [67, page 287] to k ≤ n. It integrates over
the smallest circumscribed spheres of k-ples of points.
Theorem 19 (Blaschke–Petkantschin formula for circumscribed spheres). Let 0 < k ≤ n
and write S(L) for the (k − 1)-dimensional unit sphere inside L ∈ Ln

k , Then for every non-
negative function f of k + 1 points in Rn we have∫

x∈(Rn)k+1

f(x) dx =
∫

L∈Ln
k

∫
z∈Rn

∫
r≥0

∫
u∈S(L)k+1

f(z + ru)rnk−1(k!Vol(u))n−k+1 du dr dz dL.

Proof. We start with the form given in Theorem 7:∫
x∈(Rn)k+1

f(x) dx =
∫

L∈Ln
k

∫
h∈L⊥

∫
x∈Lk+1

f(h + x)(k!Vol(x))n−k dx dh dL. (3.1)

Using Theorem 8, we expand the innermost integral into

k!
∫

z∈L

∫
r≥0

∫
u∈S(L)k+1

rk2−1Vol(u)f(h + z + ru)(k!Vol(z + ru))n−k du dr dz. (3.2)

Note that Vol(z + ru) = rkVol(u), so we get k2 − 1 + (n − k)k = nk − 1 as the ϐinal power
of the radius. Plugging (3.2) into (3.1) and joining the integration over L⊥ and L, we get
the claimed formula.
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3.2 Smallest anchored spheres

The next formula will be used in the analysis of weighted mosaics. Assuming m + 1 points
x are in general position inRn, the afϐine hull of x is an m-plane, M = aff x. Furthermore,
the set of centers of the spheres that pass through all points of x is an (n − m)-plane,
M⊥, orthogonal to M . Generically, the intersection of M⊥ withRk is a plane of dimension
k − m. The center of the smallest anchored sphere passing through x is the point of this
intersection that is the closest to x.

Recall that for a sequence x of m + 1 ≤ k + 1 points in Rn, there is a unique smallest
anchored sphere passing through them.We claim that its center lies inside the orthogonal
projectionP of them-dimensional afϐine hull ofx ontoRk. Indeed, orthogonally projecting
the center of any anchored sphere passing through x to P in Rk we clearly get a point,
which is the center of a smaller anchored sphere still passing through x. The following
theorem tells us how to integrate over these smallest anchored circumscribed spheres.
For m = k it is Theorem 19.

Theorem 20 (Anchored Blaschke–Petkantschin formula). Let 0 ≤ m ≤ k ≤ n and α =
n(m + 1) − (k + 1). Then every measurable non-negative function f : (Rn)m+1 → R satisϔies∫

x∈(Rn)m+1

f(x) dx =
∫

y∈Rk

∫
P ∈Lk

m

∫
r≥0

∫
u∈(S)m+1

f(y + ru)rα[m!Volm(u′)]k−m+1 du dr dP dy,

in which Lk
m is the Grassmannian of (linear) m-planes in Rk, u′ is the projection of u to P ,

and S is short for the unit sphere in P × Rn−k.

Proof. As in the previous proof, we ϐirst settle the case m = k and then combine it with
the linear Blaschke–Petkantscin formula to get the result.
Lemma 3.2.1 (Blaschke–Petkantschin for top-dimensional simplices). Let 0 ≤ k ≤ n.
Then every measurable non-negative function f : (Rn)k+1 → R satisϔies∫

x∈(Rn)k+1

f(x) dx =
∫

y∈Rk

∫
r≥0

∫
u∈(Sn−1)k+1

f(y + ru)r(n−1)(k+1)k!Volk(u′) du dr dy,

in which u′ is the projection of u to Rk, Volk(u′) is the Lebesgue measure of the k-simplex,
and we use the standard spherical measure on Sn−1.

Proof. We follow the proof of Theorem 7.3.1 in [67], with just slight modiϐications. Recall
ϐirst that we choose the coordinates in Rn so that the projection of x = (x1, x2, . . . , xn)
to Rk ↪→ Rn is x′ = (x1, . . . , xk, 0, . . . , 0). The claimed relation is a change of variables:
on the right-hand side, we represent the points x by the center y ∈ Rk ↪→ Rn of the an-
chored sphere passing through these points, its radius r, and k points u on the unit sphere
Sn−1 ↪→ Rn. This change of variables is themappingφ : Rk × [0, ∞)×(Sn−1)k+1 → (Rn)k+1

deϐined by φ(y, r, u0, u1, . . . , uk) = (y + ru0, y + ru1, . . . , y + ruk), we note that φ is bi-
jective up to a measure 0 subset of the domain. We claim the Jacobian of φ is J(y, r, u) =
r(n−1)(k+1)k!Volk(u′), in which u′ = (u′

0, u′
1, . . . , u′

k) is the projection of u to Rk. To prove
it at a particular point (y, r, u), we choose local coordinates around every point ui on the
sphere. We choose them such that the matrix [uiu̇i] is orthogonal, for every 0 ≤ i ≤ k, in
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which u̇i is the n× (n−1)matrix of partial derivatives with respect to the n−1 local coor-
dinates. This is the same parametrization as in [67]. With this, the Jacobian is the absolute
value of the n(k + 1) × n(k + 1) determinant:

J(y, r, u) = abs

∣∣∣∣∣∣∣∣∣∣
En,k u0 ru̇0 0 . . . 0
En,k u1 0 ru̇1 . . . 0
... ... ... ... . . . ...

En,k uk 0 0 . . . ru̇k

∣∣∣∣∣∣∣∣∣∣
,

where we write the matrix in block notation, with En,k the n × k matrix with all elements
zero and ones in the diagonal. Similarly, ui is a column vector of length n, ru̇i is an n ×
(n − 1) matrix, and 0 is the zero matrix of appropriate size, which in this case is an n ×
(n − 1) matrix. Like in [67], we extract r from (k + 1)(n − 1) columns, and use the fact that
transposing the matrix does not affect the determinant to get

(
J(y, r, u)
r(k+1)(n−1)

)2

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ek,n Ek,n . . . Ek,n

uT
0 uT

1 . . . uT
k

u̇T
0 0 . . . 0
0 u̇T

1 . . . 0
... ... . . . ...
0 0 . . . u̇T

k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
·

∣∣∣∣∣∣∣∣∣∣
En,k u0 u̇0 0 . . . 0
En,k u1 0 u̇1 . . . 0
... ... ... ... . . . ...

En,k uk 0 0 . . . u̇0

∣∣∣∣∣∣∣∣∣∣
.

The orthogonality of the matrices [uiu̇i] implies that uT
i ui = 1, u̇T

i u̇i = En−1,n−1, whereas
uT

i u̇i is the zero row vector of length n − 1, and u̇T
i ui is the zero column vector of length

n − 1, for each 0 ≤ i ≤ k. We can therefore multiply the matrices and get

(
J(y, r, u)
r(k+1)(n−1)

)2

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

(k + 1)Ek,k
∑u′

i u̇′
0 . . . u̇′

k∑u′T
i k + 1 0 . . . 0

u̇′T
0 0 En−1,n−1 . . . 0
... ... ... . . . ...

u̇′T
k 0 0 . . . En−1,n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (3.3)

in which we write u′
i for the vector consisting of the ϐirst k coordinates of ui. Similarly, u̇′

i

is the k × (n − 1) matrix obtained from u̇i by dropping the bottom n − k rows. As written,
the n(k + 1) × n(k + 1) matrix in (3.3) is a (k + 3) × (k + 3) matrix of blocks, not all of
the same size. To zero out the last k + 1 blocks in the ϐirst row, we subtract the third row
times u̇′

0, the fourth row times u̇′
1, and so on. The determinant is therefore the product

of the determinants of the upper left 2 × 2 block matrix and the lower right (k + 1) ×
(k + 1) block matrix, the latter being 1. To further simplify the 2 × 2 block matrix, we use
[uiu̇i][uiu̇i]T = En,n, which implies [u′

iu̇′
i][u′

iu̇′
i]T = Ek,k, and we write the matrix as a

product of two matrices:(
J(y, r, u)
r(k+1)(n−1)

)2

=
∣∣∣∣∣ (k + 1)Ek,k −∑ u̇′

iu̇′T
i

∑u′
i∑u′T

i k + 1

∣∣∣∣∣ (3.4)

=
∣∣∣∣∣
∑u′

iu′T
i

∑u′
i∑u′T

i k + 1

∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣
[

u′
0 u′

1 . . . u′
k

1 1 . . . 1

] 
u′T

0 1
... ...

u′T
1 1

u′T
k 1


∣∣∣∣∣∣∣∣∣∣
, (3.5)
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in which we get from (3.4) to (3.5) using u̇′
iu̇′T

i = Ek,k − u′
iu′T

i . Finally, the determi-
nant of the vectors u′

i with appended 1 is k! times the k-dimensional volume of u′. Hence,
J(y, r, u) = r(k+1)(n−1)k!Volk(u′), as claimed. This completes the proof.

We are now ready to prove the theorem. For P ∈ Lk
m, we write P × Rn−k ∈ Ln

m+n−k

for the (m + n − k)-plane whose orthogonal projection to Rk is P . The ϐirst application
of Blaschke–Petkantschin formula integrates over all (afϐine) m-planes in Rk, spanned by
the projections of x to Rk:∫

x∈(Rn)m+1

f(x) dx =
∫

P ∈Lk
m

∫
h∈P ⊥

∫
x∈(P ×Rn−k)m+1

f(h + x)[m!Volm(x′)]k−m dx dh dP.

For everym-plane P inRk, we consider the vertical (m + n − k)-plane P ×Rn−k inRn and
apply Lemma 3.2.1 inside it. Recalling that S is the unit sphere in P × Rn−k, this gives∫

x∈(Rn)m+1

f(x) dx =
∫

P ∈Lk
m

∫
h∈P ⊥

∫
z∈P

∫
r≥0

∫
u∈(S)m+1

f(h + z + ru)r(m+n−k−1)(m+1)

m!Volm(u′)[m!Volm(ru′)]k−m du dr dz dh dP.

Note that Volm(ru′) = rmVolm(u′), which implies that the ϐinal power of r is (m + n − k −
1)(m + 1) + m(k − m) = α. Finally, we get the claimed relation by setting y = z + h and
exchanging the integral over P ∈ Lk

m with the integral over y ∈ Rk.

3.3 Circles on the sphere

The last formulawe prove lives in another space: it integrates over smallest circumscribed
caps of points on the sphere Sn ⊆ Rn+1. To express the result, we write P ⊥ for the (n −
k + 1)-plane orthogonal to the k-plane P , both passing through the origin inRn+1, and we
write SP for the unit (k − 1)-sphere in P .
Theorem 21 (Blaschke–Petkantschin formula on the sphere). Let n be a positive integer,
1 ≤ k ≤ n, and f : (Sn)k+1 → R a non-negative measurable function. Then∫

x∈(Sn)k+1

f(x) dx =
∫

P ∈Ln+1
k

∫
p∈P ⊥

rkn−2
∫

u∈(SP )k+1

f(p + ru) [k!Vol(u)]n−k+1 du dp dP,

in which r2 = 1 − ∥p∥2, implicitly assuming ∥p∥ ≤ 1, If f is rotationally symmetric, we
deϔine fr(u) = f(p + ru), in which u is a k-simplex on Sk−1 ⊆ Rk, and p is any point with
∥p∥2 = 1 − r2 ≤ 1 in the (n − k + 1)-plane orthogonal toRk ⊆ Rn+1. With this notation, we
have

∫
x∈(Sn)k+1

f(x) dx = σn+1
2 ∥Ln

k∥
1∫

t=0

t
kn−2

2 (1−t)
n−k−1

2

∫
u∈(Sk−1)k+1

f√
t(u) [k!Vol(u)]n−k+1 du dt.

Proof. We ϐirst argue that f may be assumed to be continuous. Consider the subset M of
Ln+1

k × Rn+1 × (Rn+1)k+1 consisting of all triplets (P, p, u) such that p ∈ P ⊥, ∥p∥ < 1,
and u ∈ (SP )k+1. Clearly, M is a submanifold of the product space with a natural mea-
sure. Recall that r2 = 1 − ∥p∥2 and consider the mapping T : M → (Sn)k+1 deϐined by
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T (P, p, u) = p + ru. It is a bijection up to a set of measure 0. By Theorem 20.3 in [42],
there exists a corresponding Jacobian J : M → R, meaning that every integrable function
f satisϐies ∫x∈(Sn)k+1 f(x) dx =

∫
y∈M f(T (y))J(y) dy. For non-negative f , the right-hand

side integral can be split using Fubini’s theorem. The existence of the Jacobian is thus set-
tled, and to ϐind its values, we may assume that f be continuous.

Themain idea in the rest of the proof is to thickenSn to an (n+1)-dimensional annulus,
to apply the original Blaschke–Petkantschin formula to this annulus, and to take the limit
whenwe shrink the annulus back to Sn. WewriteAn+1

1+ε = (1+ε)Bn+1 \ intBn+1 for the (n+
1)-dimensional annulus with inner radius 1 and outer radius 1 + ε. We begin by extending
f from the sphere to the annulus. Speciϐically, for points yi ∈ An+1

1+ε , we set

F (y0, y1, . . . , yk) = f (y0/∥y0∥, y1/∥y1∥, . . . , yk/∥yk∥) .

Since f is continuous on the (k + 1)-fold product of spheres, by assumption, F is contin-
uous on the (k + 1)-fold product of annuli. Because F is continuous on a compact set and
therefore bounded and uniformly continuous, we have∫

x∈(Sn)k+1

f(x) dx = lim
ε→0

1
εk+1

∫
y∈(An+1

1+ε )k+1

F (y) dy

= lim
ε→0

1
εk+1

∫
P ∈Ln+1

k

∫
p∈P ⊥

∫
u∈Ak+1

F (u)[k!Vol(u)]n−k+1 du dp dP, (3.6)

in which A = An+1
1+ε ∩ [p + P ] is the k-dimensional slice of the (n + 1)-dimensional annu-

lus deϐined by P and p. We obtain the second line by applying the standard Blaschke–
Petkantschin formula in Rn+1 to the function F (y) times the indicator function of the
(k + 1)-fold product of annuli, and then absorb the indicator into the integration domain.
To continue, we investigate the slice of the annuluswhose (k+1)-fold product is the inner-
most integration domain; see Figure 3.1. Write h = ∥p∥ for the height of the slice, which
is non-empty for 0 ≤ h ≤ 1 + ε. A is a (possibly degenerate) k-dimensional annulus, with
squared inner radius r2 = max{0, 1 − h2} and squared outer radius r2

ε = (1 + ε)2 − h2.
We split the integration domain into three regions: h ≤ 1 − ε−0.2, 1 − ε0.2 < h ≤ 1, and
1 < h ≤ 1 + ε.

We ϐirst show that the contribution of the region 1 − ε0.2 < h ≤ 1 is small. To get
started, note that rε − r = (r2

ε − r2)/(rε + r) = (2ε + ε2)/(rε + r). For small ε, this implies
rε − r ≤ const · ε/rε, in which we deliberately avoid the computation of the constant. With
this, we can bound the k-dimensional volume of A. Assuming k ≥ 2, we get Vol(A) =
νk(rk

ε − rk) = νk(rε − r)(rk−1
ε + rk−2

ε r + . . . + rk−1) ≤ const · εrk−2
ε , in which the constant

depends only on k and n. As noted before, the inequality also holds for k = 1. Since h >
1 − ε0.2, we also get r2

ε < (1 + ε)2 − (1 − ε0.2)2 ≤ ε2 + 2ε + 2ε0.2 − ε0.4 for small ε, which
implies rε < const · ε0.1. Clearly, the k-dimensional volume of any k-simplex with vertices
insideA can not exceed a constant times the k-th power of the diameter ofA, which is 2rε,
implying Vol(u) ≤ const · rk

ε . Recalling that F is bounded, we thus get∣∣∣∣∣∣∣∣∣∣
∫

P ∈Ln+1
k

∫
p∈P ⊥

∥p∥<1−ε0.2

1
εk+1

∫
u∈Ak+1

F (u)[k!Vol(u)]n−k+1 du dp dP

∣∣∣∣∣∣∣∣∣∣
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1
h

r

p

0

ε

A2
1+ε

p + P

Figure 3.1: For h = ∥p∥ < 1, the slice of the (n + 1)-dimensional annulus is a k-dimensional
annulus. In this picture, n + 1 = 2 and k = 1.

≤ const
1∫

h=1−ε0.2

1
εk+1 Vol(A)k+1Vol(u)n−k+1 dh

≤ const
1∫

h=1−ε0.2

1
εk+1 (εrk−2

ε )k+1rk(n−k+1)
ε dh

≤ const
1∫

h=1−ε0.2

rkn−2
ε dh ≤ const · ε0.2 · ε0.1(kn−2) → 0. (3.7)

Here we use the bound on rε for the last inequality, and kn ≥ 1 to see that the expression
tends to zero. Next consider the region 1 < h ≤ 1 + ε, in which A is a ball of radius rε, so
Vol(A) = νkrk

ε . We have Vol(u) ≤ νkrk
ε , as before, and r2

ε ≤ (1 + ε)2 − 1, which implies
rε ≤ const ·

√
ε. With this, we can again establish the vanishing of the integral as ε → 0:∣∣∣∣∣∣∣∣∣∣

∫
P ∈Ln+1

k

∫
p∈P ⊥

1≤∥p∥≤1+ε

1
εk+1

∫
u∈Ak+1

F (u)[k!Vol(u)]n−k+1 du dp dP

∣∣∣∣∣∣∣∣∣∣
≤ const

1+ε∫
h=1

1
εk+1 Vol(A)k+1Vol(u)n−k+1 dh

≤ const
1+ε∫

h=1

1
εk+1 rk(n+2)

ε dh ≤ const · ε · ε(kn−2)/2 → 0. (3.8)

We have thus established that the relevant region is 0 ≤ h ≤ 1 − ε0.2, and we are ready to
investigate its contribution. First, we claim that the width of the annulus A is

rε − r = r
√

1 + 2ε+ε2

r2 − r = ε
r

+ o(ε). (3.9)

To get the right-hand side of (3.9), we use the Taylor expansion of g(x) = (1 + x)1/2 =
1 + 1

2x − 1
2x2 + . . ., and r > ε0.1 as well as x = (2ε + ε2)/r2 < 3ε0.8, which we get from the
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assumed h ≤ 1 − ε0.2. observing that ε2/(2r2) = O(ε1.8), we get rg(x) − r = ε
r

+ O(rε1.8) +
O(rε1.6) and therefore (3.9). Using the fact that F (u) is equal to f(u) when all points lie
on the inner sphere and the uniform continuity of F and writing Sr for the (k − 1)-sphere
with center p and radius r in P ∈ Ln+1

k , we get

∫
u∈Ak+1

1
εk+1 F (u)[k!Vol(u)]n−k+1 du

(
1
r

)k+1
k+1∫

u∈(Sr)

f(u)[k!Vol(u)]n−k+1 du + o(1), (3.10)

in which the integration domain on the right is the k-fold product of the (k − 1)-sphere
with center p and radius r in P , and o(1) is uniform over p and P . Substituting (3.7), (3.8),
and (3.10) into (3.6), we ϐinally get∫

x∈(Sn)k+1

f(x) dx

= lim
ε→0

∫
P ∈Ln+1

k

∫
p∈P ⊥

∥p∥≤1−ε0.2

 1
rk+1

∫
u∈(Sr)k+1

f(u)[k!Vol(u)]n−k+1 du + o(1)

 dp dP (3.11)

=
∫

P ∈Ln+1
k

∫
p∈P ⊥

(
1
r

)k+1 ∫
u∈(Sr)k+1

f(u)[k!Vol(u)]n−k+1 du dp dP (3.12)

=
∫

P ∈Ln+1
k

∫
p∈P ⊥

rkn−2
∫

u∈(SP )k+1

f(p + ru)[k!Vol(u)]n−k+1 du dp dP, (3.13)

in which we drop the ∥p∥ ≤ 1 − ε0.2 condition in (3.11) for the implicitly assumed ∥p∥ ≤ 1
when passing to (3.12), which we can do because the difference vanishes in the limit and
(3.13) is obtained by rescaling and translating the sphere in (3.12). Indeed, the power
of r is a consequence of scaling the volume of the k-simplex, adjusting the volume of the
integration domain, and subtracting the power we have already in (3.12): k(n − k + 1) +
(k − 1)(k + 1) − (k + 1) = kn − 2. This proves the ϐirst relation claimed in Theorem 21.

To get the second relation, we simplify the ϐirst by exploiting the rotational symmetry
of f . Recalling that r2 = 1−∥p∥2, it makes sense to deϐine fr(u) = f(p+ru) on the (k +1)-
fold product of SP ⊆ Sn because the direction of p does not matter for a ϐixed height.
Neither does P inϐluence the function for a ϐixed height, so we can deϐine fr on (Sk−1)k+1.
Thus ∫

x∈(Sn)k+1

f(x) dx = ∥Ln+1
k ∥

∫
p∈Bn−k+1

rkn−2
∫

u∈(Sk−1)k+1

fr(u)[k!Vol(u)]n−k+1 du dp (3.14)

= ∥Ln+1
k ∥σn−k+1

1∫
h=0

hn−krkn−2
∫

u∈(Sk−1)k+1

fr(u)[k!Vol(u)]n−k+1 du dh (3.15)

= σn+1
2 ∥Ln

k∥
1∫

t=0

t
kn−2

2 (1 − t)
n−k−1

2

∫
u∈(Sk−1)k+1

fr(u)[k!Vol(u)]n−k+1 du dt, (3.16)

in which t = r2 = 1 − h2. We get (3.14) from (3.13) because every P ∈ Ln+1
k contributes

the same to the integral. Similarly, we get (3.15) from (3.14) by integrating over the range
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of heights and compensating for the different sizes of the corresponding spheres, aka ex-
pressing the integral in polar coordinates. Finally,we get (3.16) from (3.15) by substituting
t for r2, 1 − t for h2, and dt for −2h dh, noting that theminus sign is absorbed by reversing
the limits of integration. This proves the second relation in Theorem 21.



4. Constants

In this chapterwe deϐine the constantsCn
ℓ,k andCk,n

ℓ,m used in the statements of theorems in
Chapter 2. Their deϐinition involves certain expectations of volumes of inscribed simplices,
and we compute the values of Cn

ℓ,k for n ≤ 4 and of Ck,n
ℓ,m for k ≤ 2.

4.1 Spherical expectations

Denote by u = (u0, u1, . . . , um) a sequence of m + 1 random points independently chosen
according to the uniform distribution on the unit sphere in Rm, and write Vol(u) for the
m-dimensional volume of the m-simplex spanned by the ui. We deϐine

En
ℓ,m = E[Vol(u)n−m+11m−ℓ(u)], (4.1)

in which

1j(u) =
{

1 if exactly j facets of u are visible from 0,
0 otherwise;

recall the deϐinition of visibility in Section 1.5.
Similarly, denote by v = (v0, v1, . . . , vm) a sequence of m + 1 random points indepen-

dently chosen according to the uniform distribution on the unit sphere in Rm+n−k and
write v′ for the orthogonal projection of v onto any ϐixed subspace Rm. Write Vol(v′) for
the m-dimensional volume of the m-simplex spanned by the vi. Then the corresponding
constants for the weighted case are deϐined as

Ek,n
ℓ,m = E[Vol(v′)k−m+11m−ℓ(v′)]. (4.2)

Note that 0 is usually not the circumcenter of the projected simplex, but we still ask if a
facet of projected simplex is visible from 0. The main constants Cn

ℓ,m and Ck,n
ℓ,m are then

given by

Cn
ℓ,m = σn·σn−1·...·σn−m+1

σ1·σ2·...·σm

Γ(m)m!n−mσm+1
m

(m+1)nνm
n

En
ℓ,m, (4.3)

Ck,n
ℓ,m = σkσk−1·...·σk−m+1

σ1σ2·...·σm

Γ
(

m+1− k
n

)
m!k−mσm+1

m+n−k

(m+1)nν
m+1−

k
n

n

Ek,n
ℓ,m. (4.4)

Of course, for k = n we have En
ℓ,m = En,n

ℓ,m and Cn
ℓ,m = Cn,n

ℓ,m. Further, we trivially have
En

0,0 = Ek,n
0,0 = 1. Now we turn to the less trivial cases.
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4.2 General relations between constants

The constants are now fully deϐined, and the rest of the chapter is devoted to computing
them. Assume for this section that the theorems stated in Chapter 2 are proved for the
constants deϐined in (4.3) and (4.4). Then the expected number of simplices of dimension
j in (weighted) Poisson–Delaunay mosaic with ρ = 1 in any Borel region is the constant
Dn

j (Dk,n
j ) times the volume of the region. The expected number of critical simplices of di-

mension j in the corresponding complexes is similarly Cn
j,j (Ck,n

j,j ) times the volume of the
region. Now we incorporate the combinatorial structure of the complex to collect the re-
lations between the constants. All of the following statements appeared in the text before
in different contexts, and we collect them all together for a convenient reference. First we
state them for the unweighted case:

Dn
0 = 1, (4.5)

Dn
n = 2n+1π

n
2

n(n + 1)!
Γ
(

n2+1
2

)
Γ(1+ n

2 )n
Γ(n)

Γ
(

n2

2

)
Γ
(

n+1
2

)n

Γ
(

1
2

) , (4.6)

Dn
n−1 = n + 1

2
Dn

n, (4.7)

0 =
n∑

j=0
(−1)jDn

j , (4.8)

0 =
n∑

j=0
(−1)jCn

j,j, (4.9)

Cn
0,m = 1{m=0}, (4.10)

Dn
j =

j∑
ℓ=0

n∑
m=j

(
m − ℓ

m − j

)
Cn

ℓ,m. (4.11)

The ϐirst four relations come from Theorems 1 and 2, (4.9) is the ϐirst Morse relation from
page 9, (4.10) reϐlects the fact that all vertices are critical, and the last one is Lemma 1.5.1.
Note that this relations are enough to get Dn

j for n ≤ 3. Similar relations hold for Dk,n
j .

We don’t know the intensity of vertices any more, the expression for the number of top-
dimensional simplices comes from Theorem 3, and the rest is the same:

Dk,n
k = σ1σn+1

σk+1σn−k+1

2k+1πk/2

n(k + 1)!
Γ
(

kn+n−k+1
2

)
Γ
(

kn+n−k
2

) Γ
(

n+2
2

)k+1− k
n

Γ
(

n+1
2

)k

Γ
(
k + 1 − k

n

)
Γ
(

n−k+1
2

) , (4.12)

Dk,n
k−1 = k + 1

2
Dk,n

k , (4.13)

0 =
n∑

j=0
(−1)jDk,n

j , (4.14)

0 =
n∑

j=0
(−1)jCk

j,jn, (4.15)

Dk,n
j =

j∑
ℓ=0

k∑
m=j

(
m − ℓ

m − j

)
Ck,n

ℓ,m. (4.16)

We do not focus on subtleties at the boundary in the weighted case either, as they can be
resolved in the same way as in the unweighted case, see the discussion after Theorem 2.
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4.3 Reϐlections

To get hands on the explicit values of constants, we incorporate a trick developed byWen-
del in [72].

Volume decomposition. Although there was some ambiguity in the previous notation
concerning ambient dimension, in this section we write u = (u0, u1, . . . , um) for a se-
quence of m + 1 afϐinely independent points in Rm. Recall that for each 0 ≤ i ≤ m we
write ui for the m-simplex obtained by substituting 0 for ui, called a cone over the i-th
facet, and Vi = Vol(ui) for its m-dimensional volume. We faced the cones in Theorems 4
and 5, but now the simplex u is not necessarily inscribed. Expressing the origin in terms
of the points, 0 = ∑m

i=0 ζiui with∑m
i=0 ζi = 1, we see that the facet opposite to ui is visible

from 0 iff ζi < 0, and it can be veriϐied that actually ζi is a signed volume of the corre-
sponding cone. The coefϐicients ζi are called barycentric coordinates of 0with respect to u.
Writing sgn(ζi) for the sign of the i-th barycentric coordinate, we therefore have

Vol(u) =
m∑

i=0
sgn(ζi)Vi. (4.17)

This formula is easy to see, for example, as each ray originating from 0 that intersects a
simplex enters crossing a visible (front) facet and leaves crossing an invisible (back) facet,
and the formula above subtracts from the total length of the ray before it leaves the simplex
the part which lies outside.

The multiplicative group Z2 = {−1, 1} acts on Rm by reϐlecting x ∈ Rm to −x. This
action is naturally extended to the action ofZm+1

2 on (m+1)-tuples of points: for any vector
t = (t0, t1, . . . , tm), with ti ∈ {−1, 1} for 0 ≤ i ≤ m, we call tu = (t0u0, t1u1, . . . , tmum) the
reϔlectionwith signature t of u, and we write #t for the number of indices i with ti = −1.
Importantly, the reϐlection of a vertex does not affect the volume of any cone. We write
Vt = Vt(u) = ∑m

i=0 tiVi for the sum of positive and negative cone volumes. Assuming 0
is contained in the interior of the m-simplex u, the following lemma shows that it is the
signed volume of tu.

Lemma 4.3.1 (Volume decomposition). Let u ∈ (Rm)m+1 such that 0 is contained in the
interior of the m-simplex. Then Vol(tu) = |Vt(u)|, for every t ∈ {−1, 1}m+1.

Proof. Wereϐlect the vertices one by one to obtain tu fromu and argue by induction on#t.
By assumption, no facet of u is visible from 0, so Vol(u) = ∑m

i=0 Vi, which settles the base
case. Assume without loss of generality that t = (−1, . . . , −1, 1, . . . , 1) with #t = j, and
t′ = (−1, . . . , −1, 1, . . . , 1)with#t′ = j −1. By induction, the volume of t′u is±Vt′(u), i.e.,
eitherVol(t′u) = −V0 − . . .−Vj−1 +Vj + . . .+Vm orVol(t′u) = V0 + . . .+Vj−1 −Vj − . . .−
Vm, depending on which of the two expressions is positive. Reϐlecting uj either changes
the orientation of the inscribed m-simplex, meaning that the reϐlection of uj lies on the
other side of the hyperplane spanned by the remaining vertices, or it does not. In case the
orientation is changed, the reϐlection changes the visibility of exactly one facet, namely the
one opposite touj , and by (4.17)we get eitherVol(tu) = −V0−. . .−Vj−1−Vj +Vj+1+. . .+
Vm orVol(tu) = V0 + . . .+Vj−1 +Vj −Vj+1 − . . .−Vm. In case the orientation is preserved,
the reϐlection changes the visibility of every facet but one, namely the one opposite to uj ,
and again by (4.17) we get either Vol(tu) = V0 + . . . + Vj−1 + Vj − Vj+1 − . . . − Vm or
Vol(tu) = −V0−. . .−Vj−1−Vj +Vj+1+. . .+Vm. In all caseswehaveVol(tu) = |Vt(u)|.
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Visibility. There are several useful consequences of Lemma 4.3.1, which we now state.
Note that for almost every m-simplex, there are precisely two signatures for which the
corresponding reϐlections produce a m-simplex that contains the origin. Indeed, to pro-
duce one, we reϐlect every vertex opposite a facet visible from 0, and to produce the other,
we reϐlect every vertex opposite a facet that is not visible from 0. In this way we get all
barycentric coordinates of 0 to be positive, which is equivalent to containing 0 in the inte-
rior. If the ϐirst simplex corresponds to t = (t0, t1, . . . , tm), then the second corresponds
to −t = (−t0, −t1, . . . , −tm), which we refer to as the complementary signature.

Corollary 4.3.2 (Reϐlections and visibility). Let u ∈ (Rm)m+1 such that 0 is contained in
the interior of the m-simplex, and let t ∈ {−1, 1}m+1.

1. After reϔlecting a subset of the vertices, the visible facets are either the ones opposite to
the reϔlected vertices, or all others. Speciϔically, if Vt(u) > 0, then there are #t visible
facets, each one opposite a reϔlected vertex, and if Vt(u) < 0, then there arem−#t+1
visible facets, each one opposite a non-reϔlected vertex.

2. The simplices tu and−tu are central reϔlections of each other; in particular, they have
the same volume and the same indices of facets visible from 0.

Fact 1 in Corollary 4.3.2 is a direct consequence of (4.17) andLemma4.3.1, andFact 2 is
clear for geometric reasons. The following simple facts will be useful in our computations.

Lemma 4.3.3 (Visibility of facets). Let u ∈ (Rm)m+1 such that 0 is contained in the interior
of the m-simplex, and let t ∈ {−1, 1}m+1.

1. The origin, 0, is contained in the interior of the m-simplex tu iff #t = 0 or m + 1.

2. #t = 0 implies Vt(u) > 0 and, equivalently, #t = m + 1 implies Vt(u) < 0.

3. If a set of facets of tu is visible from 0, then there is no signature t′ such that the com-
plementary set of facets is visible from 0 in t′u.

4. If u is an inscribed simplex, i.e., u ∈ (Sm−1)m+1, then #t = 1 implies Vt(u) > 0 and,
equivalently, #t = m implies Vt(u) < 0.

Proof. By assumption on u, the only signatures for which all terms tiVi have the same sign
are the ones for which #t = 0 or #t = m + 1. Fact 1 follows and implies Fact 2.

To see Fact 3, we express Vol(tu) using (4.17), getting a negative coefϐicient for every
visible facet. Nevertheless, the sum of signed cone volumes is positive. If the visibility of
all facets could be reversed, (4.17) would give a negative volume, which is a contradiction.
Fact 4 follows: if u is a simplex on the sphere, then reϐlecting any vertex ui we obtain a
simplex with a single visible facet, the one opposite to ui. Hence, by Fact 3, it is impossible
to see the complementary m facets all at once from 0.

Fact 1 of Lemma 4.3.3 was used in [72] to compute the probability that all points of a
ϐinite set sampled independently and uniformly on a sphere lie inside a hemisphere. Fact
4 will allow us to compute many of the values of En

ℓ,m, but, unfortunately, it can not be
applied for Ek,n

ℓ,m, because the points are inside a ball and not on the sphere any more.
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Spherical expectations and cone volumes.We will now rewrite the expectation in the
deϐinition (4.1) ofEn

ℓ,m using the cone volumes. The probability space for the random vari-
able u isP = ({Sm−1,U})⊗(m+1), in whichU is the uniformmeasure on the sphere, and the
randomvariablesui are just the projections onto i-th coordinate. Note that every inscribed
simplex, u, corresponds to a unique point conϐiguration ū ∈ RPm−1 obtained by project-
ing ui from the sphere to the projective space. Likewise, every m-simplex with vertices in
RPm−1 corresponds to 2m+1 m-simplices inscribed in Sm−1. This allows us to decompose
the probability space as P = ({RPm−1,U′} ⊗ {{−1, 1},B})⊗(m+1), in which U′ is the uni-
formmeasure on the projective space andB is the uniformmeasure onZ2. In otherwords,
we decompose the uniformmeasure on the sphere as the measure on orbits under the ac-
tion ofZm+1

2 times the Haarmeasure on the group.WriteEu for the expectation taken over
the sphere, Eū for the expectation over the projective space and Eū,t for the expectation
over the projective space and the group.We use the probabilistic formalism only locally, to
decompose the expectation in (4.1) further into expectations involving volumes of cones.
We recall that the volume of tu is either Vt(u) or −Vt(u). For each 1 ≤ ℓ ≤ m ≤ n, we
write the expectation in (4.1) as

En
ℓ,m = Eu[Vol(u)n−m+11m−ℓ(u)] (4.18)

= Eū,t[|Vt(ū)|n−m+11m−ℓ(ū, t)] (4.19)
= 1

2m+1

∑
#t=m−ℓ

Eū[|Vt(ū)|n−m+11Vt(ū)>0] + 1
2m+1

∑
#t=ℓ+1

Eū[|Vt(ū)|n−m+11Vt(ū)<0] (4.20)

= 1
2m

∑
#t=m−ℓ

Eū[Vt(ū)n−m+11Vt(ū)>0] (4.21)

= 1
2m

(
m+1
m−ℓ

)
Eu[Vtm−ℓ

(u)n−m+11Vtm−ℓ
(u)>0], (4.22)

inwhich tm−ℓ in (4.22) is an arbitrary signaturewith#t = m−ℓ. The transition to (4.19) is
possible because for a ϐixed t, Vt is the same for all simplices in an orbit, and the transition
to (4.20) is justiϐied by the ϐirst fact in Corollary 4.3.2. We get (4.21) by observing that
the two sums in (4.20) are over complementary signatures, and we get (4.22) because
relabeling the vertices does not change the expected volume. We can remove the bar in
the last transition again because Vtm−ℓ

is the same along the orbits.
The same relation also holds for Ek,n

ℓ,m. Indeed, the same reasoning can be repeated for
any rotationally invariant measure onRm with the only addition that we need to multiply
the probability space by the measure on the R+ corresponding to the norm of the vector.
The projection used in the deϐinition of Ek,n

ℓ,m in (4.2) obviously gives a random simplex in
Rm (actually, inside the unit ball in Rm) with rotationally invariant probability measure.

4.4 Computations of constants in the unweighted case

Factor(m, n) m = 1 2 3 4
n = 2 1 4

3 π
3 1 2π2 18π
4 1 64

3 π 1536 768
5 π2

Table 4.1: Values of Factor

We extract the explicit factor from (4.3)
and rewrite it as

Cn
ℓ,m = Factor(m, n)En

ℓ,m.

Note that it depends only on m and n. To
compute the coefϐicient for small values of
m and n, it is helpful to recall that the measures of the unit spheres are σ1 = 2, σ2 = 2π,
σ3 = 4π, σ4 = 2π2; see Table 4.1. Our remaining job is to compute the En

ℓ,m.
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4.4.1 Two dimensions

As a warm-up exercise, we begin with a Poisson point process inR2. We have C2
0,0 = 1 and

C2
0,k = 0 for k > 0 because all vertices are critical. To compute the remaining constants,

we need the spherical expectations given in (4.22):

2E2
1,1 = E[(V0 + V1)2] = 2E[V 2

0 ] + 2E[V0V1],

inwhichweget the right-hand side because expectations donot changeunder re-indexing.
The expectation is with respect to the uniform distribution on S0, which is a pair of points.
We have V0 = V1 = 1 and therefore 2E2

1,1 = 4. We also need

4
3E2

1,2 = E[V0 + V1 − V2] = E[V0],
4E2

2,2 = E[V0 + V1 + V2] = 3E[V0],

which both satisfy #t ≤ 1, so Lemma 4.3.3 applies and we can remove the indications,
which we did. These two expectations are with respect to the uniform distribution on S1.
Using (1.1) to compute E[V0], we get 4

3E2
1,2 = Mnt1(2, 2; 1) = 1

π
, and similarly 4E2

2,2 =
3Mnt1(2, 2; 1) = 3

π
. Retrieving Factor(1, 2) = 1 and Factor(2, 2) = 4π

3 from Table 1.1, we
can now use (4.3) to get the corresponding constants:

C2
1,1 = Factor(1, 2) · E2

1,1 = 1 · 1
2 · 4 = 2,

C2
1,2 = Factor(2, 2) · E2

1,2 = 4π
2 · 3

4 · 1
π

= 1,

C2
2,2 = Factor(2, 2) · E2

2,2 = 4π
2 · 1

4 · 3 1
π

= 1.

This justiϐies the entries of the left matrix in Table 2.1. Note that C2
0,0 − C2

1,1 + C2
2,2 = 0,

which agrees with the discrete Morse relation (4.9). Indeed, it makes sense to use this
relation as a check of correctness as we have refrained from using it during the derivation
of the constants.

RĊĒĆėĐ. The computations for the critical edges generalize to n dimensions. Indeed, in
this case we have Factor(1, n) = 1 and 2E2

1,1 = E[(V0 + V1)n] = 2n, which gives

Cn
1,1 = Factor(1, n) · En

1,1 = 2n−1. (4.23)

Simplices in the Poisson–Delaunaymosaic. For completeness, we also compute the ex-
pected numbers of simplices in the 2-dimensional Poisson–Delaunaymosaic, which are of
course known:

D2
0 = C2

0,0 = 1,

D2
1 = C2

1,1 + C2
1,2 = 3,

D2
2 = C2

1,2 + C2
2,2 = 2.

We have D2
0 − D2

1 + D2
2 = 0, which is consistent with the Euler relation in the plane. Note

that D2
2 = 2 and C2

2,2 = 1 imply that about half the Delaunay triangles are critical. The
geometric reason behind this fact is an observation by Miles [54] that a Delaunay triangle
is acute with probability 1

2 .
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4.4.2 Three dimensions

We have C3
0,0 = 1 and C3

0,m = 0 for m > 0 because every vertex is critical, and we know
C3

1,1 = 4 for the critical edges from (4.23). To compute the remaining constants in R3, we
need some spherical expectations:

4
3E3

1,2 = E[(V0 + V1 − V2)2] = 3E[V 2
0 ] − 2E[V0V1],

4E3
2,2 = E[(V0 + V1 + V2)2] = 3E[V 2

0 ] + 6E[V0V1],

in which the expectations are with respect to the uniform distribution on the circle. We
get E[V 2

0 ] = Mnt1(2, 2; 2) = 1
8 from (1.1) and E[V0V1] = Mnt2(2; 1, 1) = 1

π2 from (1.2); see
also Table 1.1. Using again Lemma 4.3.3 to omit indicators, we furthermore have

2E3
2,3 = E[V0 + V1 + V2 − V3] = 2E[V0],

8E3
3,3 = E[V0 + V1 + V2 + V3] = 4E[V0],

in which the expectations are with respect to the uniform distribution on the 2-dimen-
sional sphere. For now we skip the computation of 8

6E3
1,3 = E[|V0 + V1 − V2 − V3|]. We

get E[V0] = Mnt1(3, 3; 1) = π
48 from (1.1). Multiplying the spherical expectation with the

corresponding factors in (4.3), we get the corresponding entries of the middle matrix in
Table 2.1:

C3
1,2 = Factor(2, 3) · E3

1,2 = 2π2 · 3
4 · (31

8 − 2 1
π2 ) = 9

16π2 − 3 = 2.55 . . . ,

C3
2,2 = Factor(2, 3) · E3

2,2 = 2π2 · 1
4 · (31

8 + 6 1
π2 ) = 3

16π2 + 3 = 4.85 . . . ,

C3
2,3 = Factor(3, 3) · E3

2,3 = 18π · 1
2 · 2 π

48 = 3
8π2 = 3.70 . . . ,

C3
3,3 = Factor(3, 3) · E3

3,3 = 18π · 1
8 · 4 π

48 = 3
16π2 = 1.85 . . . .

We can compute the remaining C3
1,3 either by Euler formula or from (4.6), which gives the

constant in the number of 3-simplices in the Poisson–Delaunaymosaic as D3
3 = 24

35π2. This
gives

C3
1,3 = 69

560π2 = 1.21 . . . ,

which completes the justiϐication of the entries of the middle matrix in Table 2.1. We use
(4.9) to check the numbers of critical simplices and get C3

0,0 − C3
1,1 + C3

2,2 − C3
3,3 = 0, as

required.

Simplices in the Poisson–Delaunay mosaic. While the expected numbers of simplices
in the Poisson–Delaunaymosaic inR3 are known [67], it is easy to compute them from the
above constants:

D3
0 = C3

0,0 = 1,

D3
1 = C3

1,1 + C3
1,2 + C3

1,3 = 24
35π2 + 1 = 7.76 . . . ,

D3
2 = C3

1,2 + C3
2,2 + 2C3

1,3 + C3
2,3 = 48

35π2 = 13.53 . . . ,

D3
3 = C3

1,3 + C3
2,3 + C3

3,3 = 24
35π2 = 6.76 . . . .

This completes the entries in the second row of Table 2.2. As a ϐinal check of correctness,
we compute the alternating sum, which gives D3

0 − D3
1 + D3

2 − D3
3 = 0, as required.
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4.4.3 Four dimensions

In four dimensions, we compute most of the constants directly, but use knowledge of D4
4

and D4
3 to get C4

1,4 and C4
2,4. We have C4

0,0 = 1 and C4
0,m = 0 form > 0 because every vertex

is critical, and C4
1,1 = 8 by (4.23), so we proceed to the remaining constants. We will also

require expressions (4.6) and (4.7) for n = 4:

D4
4 = 32π3/2

80
Γ(17/2)

Γ(8)

[
Γ(3)

Γ(5/2)

]4
= 286

9 = 31.77 . . . , (4.24)
D4

3 = 5
2

286
9 = 715

9 = 79.44 . . . . (4.25)

Triangles as upper bounds. Here we count the critical triangles and edge-triangle pairs.
Starting with C4

1,2, we have #t = 1 reϐlection, and by Lemma 4.3.3 this implies Vt > 0. We
therefore get

4
3E4

1,2 = E[(V0 + V1 − V2)3]
= E[V 3

0 +V 3
1 −V 3

2 + 3(V 2
0 V1−V 2

0 V2+V 2
1 V0−V 2

1 V2+V 2
2 V0+V 2

2 V1) − 6V0V1V2]
= E[V 3

0 ] + 6E[V 2
0 V1] − 6E[V0V1V2].

From (1.1) and (1.2) we get E[V 3
0 ] = Mnt1(2, 2; 3) = 1

6π
and E[V 2

0 V1] = Mnt2(2; 2, 1) =
1

8π
. Note that V0 and V1 are independent in two dimensions, so we also have E[V 2

0 V1] =
E[V 2

0 ] E[V1] = Mnt1(2, 2; 2) Mnt1(2, 2; 1), which gives the same result. For the remaining
term, we need a convenient description of the three points uniformly chosen on the unit
circle. Fixing u0, we parametrize u1 and u2 by the angles α, β ∈ [−π, π] they form with u0.
In this setup, we have V0 = 1

2 | sin(α − β)|, V1 = 1
2 | sin β|, V2 = 1

2 | sin α|, where α and β
are uniformly distributed over [−π, π]. We notice that this also implies that Vi and Vj are
independent whenever i ̸= j. The moment can now be computed as

E[V0V1V2] = 1
8 E[| sin α|| sin β|| sin(α − β)|]

= 1
8

1
4π2

π∫
α=−π

π∫
β=−π

| sin α|| sin β|| sin(α − β)| dα dβ

= 1
8π2

π∫
α=0

π∫
β=0

sin α sin β| sin(α − β)| dα dβ,

in which the last equality is true because the expression does not change under transfor-
mationsα 7→ α+π andβ 7→ β+π. Computing the integral either by splitting cases or using
any mathematical software, we see that the moment evaluates to 3

32π
. Next, we proceed to

the critical triangles, computing C4
2,2. For this, we need

4E4
22 = E[(V0 + V1 + V2)3] = 3E[V 3

0 ] + 18E[V 2
0 V1] + 6E[V0V1V2].

Plugging these results into (4.3), we get

C4
1,2 = Factor(2, 4) · E4

12 = 64π
3 · 3

4 · ( 1
6π

+ 6 1
8π

− 6 3
32π

) = 17
3 = 5.66 . . . ,

C4
2,2 = Factor(2, 4) · E4

22 = 64π
3 · 1

4 · (3 1
6π

+ 18 1
8π

+ 6 3
32π

) = 53
3 = 17.66 . . . .

Tetrahedra asupperbounds.Herewe count the critical tetrahedra, triangle-tetrahedron
pairs, and edge-tetrahedron quadruplets. Starting with C4

1,3, we need the second moment
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of the volumes of coneswith two visible facets. Setting t = (1, 1, −1, −1) and recalling that
−t = (−1, −1, 1, 1), we get

4
3E4

13 = E[(V0 + V1 − V2 − V3)21Vt>0]
= 1

2

(
E[(V0 + V1 − V2 − V3)21Vt>0] + E[(−V0 − V1 + V2 + V3)21V−t>0]

)
= 1

2

(
E[(V0 + V1 − V2 − V3)21Vt>0] + E[(V0 + V1 − V2 − V3)21Vt<0]

)
= 1

2

(
E[(V0 + V1 − V2 − V3)2]

)
= 2E[V 2

0 ] − 2E[V0V1].

We get E[V 2
0 ] = Mnt1(3, 3; 2) = 1

162 from (1.1), and E[V0V1] = Mnt2(3; 1, 1) = 1
216 from

(1.2). Moving on to C4
2,3 and to C4

3,3, we need

2E4
23 = E[(V0 + V1 + V2 − V3)2] = 4E[V 2

0 ],
8E4

33 = E[(V0 + V1 + V2 + V3)2] = 4E[V 2
0 ] + 12E[V0V1].

Plugging these results into (4.3), we get

C4
1,3 = Factor(3, 4) · E4

13 = 1536 · 3
4 · (2 1

162 − 2 1
216) = 32

9 = 3.55 . . . ,

C4
2,3 = Factor(3, 4) · E4

23 = 1536 · 1
2 · 4 1

162 = 512
27 = 18.96 . . . ,

C4
3,3 = Factor(3, 4) · E4

33 = 1536 · 1
8 · (4 1

162 + 12 1
216) = 416

27 = 15.40 . . . .

4-simplices as upper bounds. Here we count the critical 4-simplices and the intervals
they form with tetrahedra, triangles, and edges as lower bounds. For C4

3,4 and C4
4,4, we

need

16
5 E4

34 = E[V0 + V1 + V2 + V3 − V4] = 3E[V0],
16E4

44 = E[V0 + V1 + V2 + V3 + V4] = 5E[V0].

We get E[V0] = Mnt1(4, 4; 1) = 8
81π2 from (1.1), and using (4.3), we get

C4
3,4 = Factor(4, 4) · E4

34 = 768π2

5 · 5
16 · 3 8

81π2 = 128
9 = 14.22 . . . ,

C4
4,4 = Factor(4, 4) · E4

44 = 768π2

5 · 1
16 · 5 8

81π2 = 128
27 = 4.74 . . . .

To avoid the complications that arise from having more than one reϐlection, we compute
C4

1,4 and C4
2,4 using the linear relations connecting the Delaunay simplices with the inter-

vals. Since all constants other than the two sought after ones are known, either from the
above calculations or from (4.24) and (4.25), this leads to a systemof two linear equations:
3C4

1,4 + 2C4
2,4 = 737

27 and C4
1,4 + C4

2,4 = 346
27 . Solving them, we get

C4
1,4 = 5

3 = 1.66 . . . ,

C4
2,4 = 301

27 = 11.14 . . . .

We use (4.9) to check the number of critical simplices and get C4
0,0 − C4

1,1 + C4
2,2 − C4

3,3 +
C4

4,4 = 0, as required.
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Simplices in the Poisson–Delaunay mosaic. Finally, we count the total number of sim-
plices in the Poisson–Delaunay mosaic. Using the linear relations that connect the Delau-
nay simplices with the intervals, we get

D4
0 = C4

0,0 = 1, (4.26)
D4

1 = C4
1,1 + C4

1,2 + C4
1,3 + C4

1,4 = 170
9 = 18.88 . . . , (4.27)

D4
2 = C4

1,2 + C4
2,2 + 2C4

1,3 + C4
2,3 + 3C4

1,4 + C4
2,4 = 590

9 = 65.55 . . . , (4.28)
D4

3 = C4
1,3 + C4

2,3 + C4
3,3 + 3C4

1,4 + 2C4
2,4 + C4

3,4 = 715
9 = 79.44 . . . , (4.29)

D4
4 = C4

1,4 + C4
2,4 + C4

3,4 + C4
4,4 = 286

9 = 31.77 . . . . (4.30)
This completes the justiϐication of the numbers in Tables 2.1 and 2.2. We note that we did
not use the Euler Relations to derive any of the constants. We can therefore use it to check
whether the computations are possibly correct. Indeed,we getD4

0−D4
1+D4

2−D4
3+D4

4 = 0,
as required.

4.5 Computations of constants in the weighted case

We now return to (4.4) and aim at computing the constants Ek,n
ℓ,m. Recall that it is the ex-

pectation of the random variable
Uk,n

ℓ,m = 1m−ℓ(u′)Volm(u′)k−m+1
, (4.31)

where u is a sequence of m + 1 random points uniformly and independently distributed
on the unit sphere in Rm+n−k, and u′ is the corresponding sequence of points projected
to Rm ↪→ Rm+n−k. Instead of working with the original points, we prefer to study their
projections to Rm, whose distribution was determined in Section 2.1. In this section we
ϐind explicit expressions forCk,n

0,0 ,Ck,n
0,1 ,Ck,n

1,1 ,C2,n
0,2 ,C2,n

1,2 andC2,n
2,2 . Since the interval structure

is very reach, we were not able to go beyond k = 2 in computing Dk,n
j .

4.5.1 Number of intervals

Critical vertices. For m = 0, we count intervals of type (0, 0) or, equivalently, critical ver-
tices. Since Ek,n

0,0 = Uk,n
0,0 = 1, for all k ≤ n, we get from (4.4)

Ck,n
0,0 = σn−k

Γ(1− k
n)

nν
1−k/n
n

. (4.32)

Vertex-edge pairs. Next we count the intervals of type (0, 1) or, equivalently, the regular
vertex-edge pairs. For this, we need the expectation of Uk,n

0,1 : picking two random points
on the unit sphere in Rn−k+1 and projecting them to R1 ↪→ Rn−k+1, this is the expectation
when we get the k-th power of the distance between the projected points, if they lie on
the same side of the origin, and we get 0, otherwise. Writing u′

0, u′
1 ∈ [−1, 1] for the pro-

jected points and x = |u′
0|, y = |u′

1| for their absolute values, we note that the signs and
magnitudes are independent. It follows that we get zero with probability 1

2 , so the desired
expectation is

E[Uk,n
0,1 ] = 1

2E[|x − y|k] = E[(x − y)k1x>y]. (4.33)
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We can therefore restrict our attention to the half of the unit sphere that projects to [0, 1].
To integrate over this hemisphere, we use that x2 and y2 are by Lemma 2.1.2 independent
Beta-distributed random variables. Setting a = x2 and b = y2, we have

E[Uk,n
0,1 ] = 1

B
(

n−k
2 , 1

2

)2

1∫
a=0

a∫
b=0

[
√

a −
√

b]ka− 1
2 (1 − a)

n−k−2
2 b− 1

2 (1 − b)
n−k−2

2 da db (4.34)

= 4

B
(

n−k
2 , 1

2

)2

1∫
x=0

x∫
y=0

[x − y]k(1 − x2)
n−k−2

2 (1 − y2)
n−k−2

2 dx dy (4.35)

=
Γ(k + 1)Γ

(
n−k+1

2

)2

2k
√

πΓ
(

n−k
2

) · 3F̃2
(

1
2 , 1, k−n+2

2 ; k+3
2 , n+2

2 ; 1
)

, (4.36)

in which 3F̃2 is the regularized hypergeometric function deϐined in Section 2.1 and we use
the Mathematica software to get from (4.35) to (4.36). As mentioned at the end of this ap-
pendix, k+3

2 + n+2
2 > 1

2 +1+ k−n+2
2 is a sufϐicient condition for the convergence of the inϐinite

sum that deϐines the value of the regularized hypergeometric function. This is equivalent
to n > 0, which is always satisϐied. Plugging (4.36) into (4.4), we get an expression for the
corresponding constant:

Ck,n
0,1 =

σ2
n−k+1σkΓ

(
2 − k

n

)
4nν

2−k/n
n

Γ(k + 1)Γ
(

n−k+1
2

)2

2k
√

πΓ
(

n−k
2

) · 3F̃2
(

1
2 , 1, k−n+2

2 ; k+3
2 , n+2

2 ; 1
)

. (4.37)

Critical edges.Nextwe count the intervals of type (1, 1) or, equivalently, the critical edges.
Here the expectation of Uk,n

1,1 is relevant: picking two points on the unit sphere in Rn−k+1

and projecting them to R1 ↪→ Rn−k+1, this is the expectation in which we get the k-th
power of the distance between the projected points, if they lie on opposite sides of the
origin, and we get 0, otherwise. Using again that the signs and magnitude of the projected
points are independent, we note that this expectation is E[Uk,n

1,1 ] = 1
2E[(x + y)k]. Setting

a = x2, b = y2, and integrating as before, we get

E[Uk,n
1,1 ] = 1

B
(

n−k
2 , 1

2

)2

1∫
a=0

1∫
b=0

[√
a +

√
b
]k

a− 1
2 (1 − a)

n−k−2
2 b− 1

2 (1 − b)
n−k−2

2 da db (4.38)

= 1

B
(

n−k
2 , 1

2

)2

1∫
a=0

1∫
b=0

k∑
i=0

(
k

i

)
a

i−1
2 b

k−i−1
2 (1 − a)

n−k−2
2 (1 − b)

n−k−2
2 da db (4.39)

= 1

B
(

n−k
2 , 1

2

)2

k∑
i=0

(
k

i

)
B
(

n−k
2 , i+1

2

)
B
(

n−k
2 , k−i+1

2

)
. (4.40)

Plugging (4.40) into (4.4), we get the expression for the corresponding constant:

Ck,n
1,1 =

σ2
n−k+1σkΓ

(
2 − k

n

)
8nν

2−k/n
n B

(
n−k

2 , 1
2

)2

k∑
i=0

(
k

i

)
B
(

n−k
2 , i+1

2

)
B
(

n−k
2 , k−i+1

2

)
. (4.41)
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4.5.2 Constants in low dimensions

Projection to a line. We now investigate the constants for k = 1. From (4.32), (4.37),
(4.41) we get

C1,n
0,0 = C1,n

1,1 = σn−1Γ(1− 1
n)

nν
1−1/n
n

, (4.42)

C1,n
0,1 = σ2

n−1
√

πΓ(2− 1
n)

n(n−1)ν2−1/n
n

[
2Γ(n−1)
Γ(n− 1

2) − Γ(n−1
2 )

Γ(n
2 )

]
. (4.43)

Equation (4.16) provides values

D1,n
0 = C1,n

0,0 + C1,n
0,1 (4.44)

D1,n
1 = C1,n

1,1 + C1,n
0,1 . (4.45)

Of course, these two values are the same. Note however, thatwhenwe introduce the radius
threshold, the numbers of vertices and edges diverge; see Theorem 13. Some values are
computed in Table 2.3. This case can actually be analyzed purely geometrically; see [30].

Projection to a plane. In k = 2 dimensions, the formulas provide sufϐicient information
to compute all constants governing the expectations of the six types of intervals. We get
three constants from (4.32), (4.37), (4.41):

C2,n
0,0 =

σn−2Γ
(
1 − 2

n

)
nν

1−2/n
n

, (4.46)

C2,n
0,1 =

σ2
n−1

√
πΓ
(
2 − 2

n

)
4nν

2−2/n
n

Γ
(

n−1
2

)2

Γ
(

n−2
2

) · 3F̃2
(

1
2 , 1, 4−n

2 ; 5
2 , n+2

2 ; 1
)

, (4.47)

C2,n
1,1 =

σ2
n−1Γ

(
2 − 2

n

)
π

2nν
2−2/n
n

·

 1
n − 1

+
Γ
(

n−1
2

)2

πΓ
(

n
2

)2

 . (4.48)

The critical simplices satisfy theMorse relation (4.15):C2,n
0,0 −C2,n

1,1 +C2,n
2,2 = 0, which gives

us the constant for the critical triangles. Relation (4.13) and (4.16) give further: C2,n
0,2 +

C2,n
1,2 + C2,n

2,2 = 2(C2,n
0,0 + C2,n

0,1 + C2,n
0,2 ). Finally, we get a relation for the number of weighted

Delaunay triangles from (4.12), which we restate for k = 2:

D2,n
2 = 2σn+1

3nσn−1

Γ
(

3n−1
2

)
Γ
(

3n−2
2

) Γ
(

n+2
2

)3− 2
n

Γ
(

n+1
2

)2

Γ
(
3 − 2

n

)
Γ
(

n−1
2

) . (4.49)

Combining C2,n
0,2 + C2,n

1,2 + C2,n
2,2 = D2,n

2 with the two linear relations mentioned above, we
get

C2,n
0,2 = −C2,n

0,0 − C2,n
0,1 + 1

2D2,n
2 , (4.50)

C2,n
1,2 = C2,n

0,0 + C2,n
0,1 − C2,n

2,2 + 1
2D2,n

2 , (4.51)
C2,n

2,2 = −C2,n
0,0 + C2,n

1,1 . (4.52)

Explicit expressions are complicated, so we give numerical approximations in Table 2.4.



5. Poisson–Delaunay, Poisson–Cƽech
and weighted Poisson–Delaunay
complexes

In this chapter we prove three theorems stated in Chapter 2, namely Theorem 9, Theorem
11 and Theorem13Note that Theorem9 is a special case k = n of Theorem13, sowe start
with proving the latter.

5.1 Expected size of the weighted Delaunay complex

Recall that to count the type (ℓ, m) intervals, we focus our attention by restricting the cen-
ter of the Delaunay sphere to a regionΩ ⊆ Rk and the radius to be less than or equal r0. By
Lemma 1.5.4, any sequence x = (x0, x1, . . . , xm) of m + 1 points in X ⊆ Rn deϐines such
an interval if it satisϐies the following conditions:

1. the smallest anchored sphere passing throughx is empty, andwewriteP∅(x) for the
probability of this event;

2. the center z of this sphere lies in Ω, and we write 1Ω(x) for the indicator;

3. the radius r of this sphere is bounded from above by r0, and we write 1r0(x) for the
indicator;

3. exactly m − ℓ facets of the projection x′ of the m-simplex x are visible from z, and
we write 1m−ℓ(x′) for the indicator.

Combining these conditions with the Slivnyak–Mecke formula (Lemma 1.6.1), we get an
integral expression for the expected number of type (ℓ, m) intervals, which we partially
evaluate using Theorem 20 and Lemma 2.1.1:

E[ck,n
ℓ,m(r0)] = 1

(m+1)!

∫
x∈(Rn)m+1

P∅(x)1Ω(x)1r0(x)1m−ℓ(x′) dx (5.1)

= ∥Ω∥∥Lk
m∥ρm+1 m!k−m+1

(m+1)!

∫
r≤r0

e−ρνnrn

rα dr
∫

u∈(S)m+1

1m−ℓ(u′)Volm(u′)k−m+1 du (5.2)

= ∥Ω∥ρ
k
n m!k−m

m+1 ∥Lk
m∥γ(m+1− k

n
; ρνnrn

0 )
nν

m+1− k
n

n

∫
u∈(S)m+1

1m−ℓ(u′)Volm(u′)k−m+1 du (5.3)
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= Ck,n
ℓ,m · γ(m+1− k

n
; ρνnrn

0 )
Γ(m+1− k

n) · ∥Ω∥ρ
k
n . (5.4)

Speciϐically, we get (5.2) by noting P∅(x) = e−ρνnrn , applying Theorem 20 to the right-
hand side of (5.1), collapsing the indicators, using rotational invariance, and writing S for
the unit sphere in Rm+n−k. We get (5.3) from (5.2) by applying Lemma 2.1.1 with j =
α + 1 = n(m + 1) − k, c = ρνn, p = n, t0 = r0, which asserts that the integral over the
radius evaluates to the fraction involving the incomplete Gamma function. We get (5.4) by
deϐining the constant

Ck,n
ℓ,m = m!k−m∥Lk

m∥Γ(m+1− k
n)

(m+1)nν
m+1− k

n
n

∫
u∈(S)m+1

1m−ℓ(u′)Volm(u′)k−m+1 du. (5.5)

We ϐinish noticing that the last integral is by deϐinition in (4.2) equal to σm+1
m+n−kEk,n

ℓ,m, justi-
fying that (4.4) and (5.5) indeed deϐine the same constant.

5.2 Expected size of the Poisson–Čech complex

Recall the characterization of intervals of Cƽech complex in Lemma 1.5.3. It stated that any
sequence x = (x0, x1, . . . , xm) of m + 1 points in X ⊆ Rn deϐines such an interval if it
satisϐies the following conditions:

1. the ball, bounded by the smallest (n−1)-sphere passing throughx, has exactlym−ℓ
points of X in its interior, and we write Pm−ℓ[x] for the probability of this event;

2. the center z of this sphere lies in Ω, and we write 1Ω(x) for the indicator;

3. the radius r of this sphere is bounded from above by r0, and we write 1r0(x) for the
indicator;

3. no facets of x are visible, and we write 10(x′) for the indicator.

Similarly to (5.1) we thus get for the number of Cƽech (ℓ, m)-intervals with the smallest
enclosing ball having center in Ω and radius not greater than r0:

E[čn
ℓ,m(r0)] = 1

(ℓ+1)!ρ
ℓ+1

∫
x∈(Rn)ℓ+1

Pm−ℓ[x] 10(x) 1Ω(x) 1r0(x) dx,

where Pm−ℓ[x] = (ρνnrn)m−ℓ

(m−ℓ)! e−ρνnrn is the probability that there are exactly m − ℓ points
inside the ball. The complete analysis (5.1)-(5.4) carries over and, recalling that Cn

ℓ,m =
Cm,n

ℓ,m , we obtain for the expected number of (ℓ, m)-intervals

E[čn
ℓ,m(r0)] = Cn

ℓ,ℓ

γ(m; ρνnrn
0 )

(m−ℓ)!Γ(ℓ) ρ∥Ω∥.

Note that we express the number of Cƽech intervals in terms of the number of Delaunay (or
Cƽech) critical simplices. This is so, because by Lemma1.5.3 the geometric characterization
of Cƽech intervals is similar to the critical Delaunay simplices. Using notation similar to the
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notation used in the Delaunay case, we write for the expected density of (ℓ, m)-intervals
of Č(X, ∞):

Čn
ℓm = Cn

ℓ,ℓ

Γ(m)
Γ(ℓ)(m − ℓ)!

= Cn
ℓ,ℓ

(
m − 1
ℓ − 1

)
,

E[čn
ℓ,m(r0)] = Čn

ℓm

γ(m; ρνnrn
0 )

Γ(m)
= Cn

ℓ,ℓ

(
m − 1
ℓ − 1

)
γ(m; ρνnrn

0 )
Γ(m)

.

For ℓ > n we have Čn
ℓm = 0.

Čech simplices. If we use Lemma 1.5.1, we get the expected total number of j-simplices
in Čechr0X restricted to Ω as

min{j,n}∑
ℓ=0

∞∑
m=j

(
m − ℓ

j − ℓ

)
čn

ℓ,m(r0) =
min{j,n}∑

ℓ=0
Cn

ℓ,ℓ

∞∑
m=j

(
m − ℓ

j − ℓ

)(
m − 1
ℓ − 1

)
γ(m, ρνnrn

0 )
Γ(m)

Wewant to show that this sum converges for r0 < ∞ to justify that we can change the or-
der of summation and take expectations. It can be either obtained by an asymptotic anal-
ysis or by the following argument, which claims that the sum should indeed be ϐinite. The
expected number of Cƽech j-simplices, whose smallest enclosing ball has radius not greater
than r0 and intersects the boundary of Ω is not more than the number of (j + 1)-ples of
points, that are located inside a ball of radius r0 in the r0-neighborhood of ∂Ω. In general,
the expected number of (j + 1)-ples of points, whose smallest enclosing ball intersect any
Borel regionH is not more than

1
(j+1)!

∫
x0∈Hr0

∫
x1,...,xj∈B(x0,2r0)

1 ρj+1 dx0 . . . dxj ≤ C 1
(j+1)!r

n·j
0 ρj+1∥Hr0∥,

where Hr0 is the r0-neighborhood of H. Setting H = ∂Ω, we get that the number of j-
simplices intersecting it is 1

(j+1)!(ρrn
0 )(j+1)o(∥Ω∥). Hence for a ϐixed j the answer does not

depend on the way we restrict the complex to Ω up to o(∥Ω∥), and since this little-oh is
uniform over j, it happens for all j simultaneously; compare with Section 5.3.

As opposed to the Delaunay case, the convergence is not uniform over the radius, so
the argument does not work for r0 = ∞.

5.3 Boundary effect on Poisson–Delaunay mosaics

Recall that K0 is the nerve of the Voronoi diagram restricted to Ω, and K1 ⊆ K0 contains
all Delaunay simplices whose Delaunay spheres have the center inside Ω. In this section,
we show that the difference betweenK0 andK1 is small whenΩ is a ball. For simplicitywe
workwith the unweighted Poisson–Delaunay complex here, but similar statements can be
achieved for other complexes as well.

Big spheres. We need an auxiliary lemma implying that only a vanishing fraction of the
n-simplices in the Poisson–Delaunaymosaic have Delaunay spheres with radii larger than
some positive threshold. Note that for n-simplices the Delaunay sphere is the unique cir-
cumscribed sphere. To simplify the discussion, we call the closed ball bounded by the De-
launay sphere of an n-simplex its Delaunay ball. Letting H ⊆ Rn be bounded and r0 > 0,
we write #(H, r0) for the number of n-simplices in the Poisson–Delaunay mosaic whose
Delaunay spheres have center inH and radius larger than r0.
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Lemma 5.3.1 (Big spheres). There exist positive constants c, α, β, all depending only on n,
such that for any bounded Borel setH ⊆ Rn and any ϔixed r0 > 0,E[#(H, r0)] ≤ c∥H∥e−αρrβ

0 .

Proof. Arguing as in Section 5.1, with the only difference that z is now integrated over H
and r from r0 to inϐinity and the sphere is not anchored, we can write

E[#(H, r0)] = c0∥H∥
∫ ∞

r=r0
e−ρrnνnrn2−1 dr = c′

0∥H∥Γ(n, ρrn
0 νn),

in which c0 and c′
0 are constants that depends only on n, and Γ(n, x) = Γ(n) − γ(n, x) is

the upper incomplete Gamma function. Noticing that Γ(n, ρrn
0 νn) = o

(
e−0.9ρrn

0 νn

)
, see for

example [61], completes the proof.

Size of boundary.We are now ready to give an upper bound on the number of simplices
inK0 that are not inK1, whichwe need for bound on the Euler characteristic ofK1; see the
deϐinition of K1 on page 15. Every simplex Q ∈ K0 \ K1 corresponds to an intersection of
Voronoi domains, Vor(Q), that has points inside as well as outside Ω. Let x ∈ Vor(Q) ∩ Ω
and y ∈ Vor(Q) \ Ω. We argue that both points are contained in the union of Delaunay
balls of the n-simplices that share Q. Indeed, all these Delaunay balls contain all points
of Q, and for each q ∈ Q there is a vertex of Vor(Q) that is closer to x than to q, so the
Delaunay ball centered at this vertex contains x. The same argument applies to y. Since
the union contains points on both sides of ∂Ω, at least one of these Delaunay balls has a
non-empty intersection with ∂Ω.

Writing #(∂Ω) for the number of n-simplices whose Delaunay balls have a non-empty
intersectionwith ∂Ω, we prove that it grows slower than the number ofn-simpliceswhose
Delaunay balls are centered inside Ω. The discussion above implies that the difference
between two complexes is |K0 \ K1| < 2n+1#(∂Ω), so to get |K0 \ K1| = o(ρ∥Ω∥), it is
enough to prove the following.

Lemma 5.3.2 (Boundary size). Let X be a Poisson point process with density ρ in Rn. Let
Ω = B(R) be a ball of radius R centered at the origin. Then E[#(∂Ω)] = o(1)ρ∥Ω∥ as R →
∞.

Proof. Without loss of generality assume ρ = 1. Fix 0 < δ < 1. It sufϐices to count the
n-simplices with Delaunay centers outside Ω and to prove that the number of such n-
simplices whose Delaunay balls intersect ∂Ω is O(Rn−1+δ). Assume R > 1 and let A be
the set of points at distance at most Rδ from ∂Ω. For a ball with center z outside Ω to in-
tersect Ω, one of the following must happen:

1. z ∈ A;
2. z ∈ B(2R) \ A and its radius exceeds Rδ;
3. z ̸∈ B(2R) and its radius exceeds R.

As proved in [67] and reproved in Section 5.1, the expected number ofn-simplices inDelX
with Delaunay center in A is O(∥A∥) = O(Rn−1+δ). This settles Case 1. Applying Lemma
5.3.1, we see that the expected number of n-simplices with Delaunay center in B(2R) and
Delaunay radius larger than Rδ is O(Rne−αRδβ ), in which α and β are positive constants.
This settles Case 2. Finally,wedecompose the complement ofB(2R) into annuli of the form
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Hi = B(iR + 2R) \ B(iR + R), for i ≥ 1. To intersect Ω = B(R), a ball centered insideHi

must have radius exceeding iR. Writing H = ∪∞
i=1 Hi for the union of annuli and #(H, Ω)

for the number of n-simplices with Delaunay center in H whose Delaunay ball intersects
Ω, we get an upper bound on the expected number:

E[#(H, Ω)] ≤
∞∑

i=1
E[#(Hi, iR)]

≤
∞∑

i=1
c∥Hi∥e−α(iR)β (5.6)

≤ c′Rne−αRβ
∞∑

i=0
ine−αiβ

, (5.7)

where we use Lemma 5.3.1 to get (5.6), and ∥Hi∥ = O(inRn) as well as α(iR)β ≥ αiβ to
get (5.7). Since the last sum converges, we get E[#(H, Ω)] = O(Rne−αRβ ), which settles
Case 3.

RĊĒĆėĐĘ. (1) Besides |K0 \ K1| = o(1)ρ∥Ω∥, Lemma 5.3.2 implies that the number of ver-
tices of K0 outside Ω is o(1)ρ∥Ω∥.

(2) Actually, we have proved that for any ε > 0, E[#(∂Ω)] = o(1)ρ∥∂Ω∥1+ε. Also, one
can apply the Markov’s inequality to show that the convergence happens in probability.
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6. Poisson–Delaunay complexes of
higher order

In this chapter we spend most of the time characterizing faces of order-k Delaunay and
Voronoi mosaics and developing the discrete Morse theory, which can be applied to count
them. Theorems16 and 15will be proved in the ϐirst and the last sections correspondingly.

6.1 Faces of higher order Voronoi diagrams and skeleta
volumes

Recall that the order-k Voronoi diagram of X ⊆ Rn is deϐined as the collection of order-k
Voronoi domains, which are identiϐied by the closest k points of X . In the order-1 case,
we could thus say that a point p ∈ Rn belongs to the Voronoi domain of a point x ∈ X
if the unique open ball bounded by the sphere centered at p and passing through x does
not contain any points of X . It gives an alternative description for Delaunay simplices as
simplices having an empty circumscribed sphere. We want to generalize this description
for the order-k case. We start with the order-k Voronoi polyhedra, which will be trans-
formed into equivalent characterization of the order-k Delaunay cells in the next section.
Also, Theorem 16 will follow from these considerations.

Delaunayspheres.LetX ⊆ Rn be locally ϐinite. For apoint p ∈ Rn andapositive integerk,
the order-k Delaunay sphere of p, denoted Σk(p), is the smallest sphere centered at p ∈ Rn

such that the number of points of X that lie inside or on the sphere is at least k. It will be
convenient to have short notation for the points strictly inside and on the sphere, as well
as their numbers. Observing that conv Σk(p) is the closed ball with boundary Σk(p), we
deϐine

In(p) = X ∩ int conv Σk(p) and in(p) = |In(p)|, (6.1)
On(p) = X ∩ Σk(p) and on(p) = |On(p)|. (6.2)

By deϐinition, in(p) + on(p) ≥ k, and by minimality of the radius, on(p) ≥ 1 and in(p) ≤
k − 1. The in(p) points in In(p) are the unique in(p) nearest points to p, the on(p) points
in On(p) are all at the same distance from p, while all other points of X are further. This
gives a following characterization of the order-k Voronoi domains:

Lemma 6.1.1 (Incident Voronoi domains). Let X ⊆ Rn be locally ϔinite and in general
position, and let Q ⊆ X with |Q| = k. A point p ∈ Rn belongs to domk(Q) iff In(p) ⊆ Q ⊆
In(p) ∪ On(p).
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Equivalence relation.Wewant to strengthen the previous lemma by including polyhedra
other than the Voronoi domains. Recall that the interiors of the order-k Voronoi polyhedra
partition Rn. To reconstruct this partition, we say that p, q ∈ Rn are equivalent if their
order-k Delaunay spheres identify the same subsets of X . More formally, we distinguish
between the cases in which there are k or more than k points inside or on the Delaunay
sphere:

p ∼X q if
{

In(p) ∪ On(p) = In(q) ∪ On(q) for in(p) + on(p) = in(q) + on(q) = k,
In(p) = In(q), On(p) = On(q) for in(p) + on(p) = in(q) + on(q) > k.

We claim that the equivalence classes of ∼X are precisely the (relative) interiors of the
order-k Voronoi polyhedra.

Lemma 6.1.2 (Interiors of order-k Voronoi polyhedra). Let X ⊆ Rn be locally ϔinite and
in general position. Then p, q ∈ int F , for a common face F of Vor(k)(X), iff p ∼X q.

Proof. We ϐirst show that p ∼X q implies that the two points belong to the interior of
a common order-k Voronoi polyhedron. In the ϐirst case, when in(p) + on(p) = in(q) +
on(q) = k, this is clear because Q = In(p) ∪ On(p) = In(q) ∪ On(q) is the unique set of
k nearest points in X , so p, q ∈ int domk(Q), which is an order-k Voronoi n-polyhedron.
In the second case, when in(p) + on(p) = in(q) + on(q) > k, we let i = in(p) = in(q)
and note that i < k. The points in In(p) = In(q) are the unique i nearest points, and
we can add any k − i points from On(p) = On(q) to get a complete set of k nearest points.
There are

(
on(p)
k−i

)
=
(

on(q)
k−i

)
such choices, andbyLemma6.1.1 each gives anorder-k Voronoi

domain, that together exhaust the domains that contain p or q on their boundaries. The
set of points at equal distance from on(p) = on(q) points of X is a plane of dimension
n + 1 − on(p) = n + 1 − on(q), which implies that this is also the dimension of the order-k
Voronoi polyhedron whose interior contains p and q.

We second show that p �X q implies that p and q belong to the interiors of different
order-k Voronoi polyhedra. Assume the contrary.We note that the dimension of the order-
k Voronoi polyhedronwhose interior contains p isn, if in(p)+on(p) = k, andn+1−on(p), if
in(p) + on(p) > k, and similar for q. In the ϐirst case, we would thus need in(q) + on(q) = k
to match the dimensions of the domains, but then In(p) ∪ On(p) ̸= In(q) ∪ On(q), so p
and q belong to different domains. In the second case, we would need on(q) = on(p) to
have the same dimension of the polyhedra. Hence, In(p) ̸= In(q) or In(p) = In(q) and
On(p) ̸= On(q). In either case, we get a different collection of order-k Voronoi domains
for p than for q.

Proof of Theorem 16. Recall that the proof of Lemma 6.1.2 determines the dimension of
the order-k Voronoi polyhedron whose interior contains a point p ∈ Rn as n, if in(p) +
on(p) = k, and as n + 1 − on(p), if in(p) + on(p) > k. Equivalently, p belongs to the interior
of an order-k Voronoi ℓ-polyhedron iff

ℓ = n and in(p) + on(p) = k or (6.3)
0 ≤ ℓ ≤ n − 1 and on(p) = n − ℓ + 1 and k + ℓ − n ≤ in(p) ≤ k − 1. (6.4)

These relations sufϐice to extend the analysis in [67] from skeletons of order-1 to skeletons
of order-k Voronoi tessellations. For 0 ≤ ℓ ≤ n−1, they can be obtained as in [67, Theorem
10.2.4], which is the special case k = 1 of Theorem 16. The sole difference is that we use
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the probability that there are i points in the interior of the ball instead of 0, and sum over
all admissible values of i, thus getting Γ

(
n − ℓ + i + ℓ

n

)
/i! instead of Γ

(
n − ℓ + ℓ

n

)
in the

numerator. This is precisely the expression in the statement of Theorem 16. For ℓ = 0 this
gives the expected number of vertices in the order-k Poisson–Voronoi mosaic. The case
ℓ = n is trivial: we obviously have E[η(k,n)

n ] = η(k,n)
n = 1. Theorem 16 is thus proved.

6.2 Faces of higher order Delaunay mosaics

In this section, we are more speciϐic about the dual of the order-k Voronoi tessellation. As
mentioned in Section 1.4, each vertex of the order-k Delaunaymosaic is the average of the
k points that generate a non-empty order-k Voronoi domain. Each (n − j)-polyhedron of
Vor(k)(X) is sharedby anumber of Voronoi domains, each domain corresponds to a vertex,
and the polyhedron corresponds to the j-cell in Del(k)X that is the convex hull of these
vertices. Since Vor(k)(X) is not necessarily normal, Del(k)X is not necessarily simplicial.

Barycenter polytopes. We introduce a class of convex polytopes that is slightly richer
than the class of simplices. As we will see later, this class contains all polytopes we gener-
ically encounter in order-k Delaunay mosaics. Let ∆n be an n-dimensional simplex and
recall that it has

(
n+1

g

)
faces of dimension g − 1, for 1 ≤ g ≤ n + 1. The corresponding

generation-g barycenter polytope is the convex hull of the barycenters of all (g − 1)-faces,
denoted ∆n

g . For g = n + 1 the corresponding polytopes consist of a single point, but
for other values of g they are n-dimensional. For g = 1 and g = n the polytopes are n-
simplices, namely the convex hull of the n + 1 vertices, ∆n

1 = ∆n, and the convex hull of
the barycenters of the n + 1 (n − 1)-faces, ∆n

n. For 2 ≤ g ≤ n − 1, the barycenter polytope
is not a simplex, and the ϐirst such case is ∆3

2, which is an octahedron; see Figure 6.1.

Characterization. IfX is in general position, which we assume, then every cell ofDel(k)X
is a barycenter polytope. To prove this, we consider a u-dimensional cell G of Del(k)X and
recall that all interior points of its dual (n − u)-dimensional polyhedron F of Vor(k)(X)
are equivalent. In other words, there are sets I = In(F ) and U = On(F ) that uniquely
determine F as the polyhedron whose interior points p satisfy I = In(p) and U = On(p).

Figure 6.1: Three barycenter polytopes inR3: the generation-1 tetrahedron, the generation-2
octahedron, and the generation-3 tetrahedron.
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We rewrite (6.3) and (6.4) to get constraints on the sizes of the two sets:

|I| + |U | = k if u = 0, (6.5)
|U | = u + 1 and k − u ≤ |I| ≤ k − 1 if u > 0. (6.6)

The vertices of Del(k)X are governed by a different relation, (6.5), from the remainder
of the cells. Focusing on the cells of dimension 0 < u ≤ n, we note that (6.6) allows
for a range of u possible sizes of the set I . These correspond to the generations of the
barycenter polytopes, as we now explain. Let i = |I| and deϐine g = k − i, noting that
(6.6) implies 1 ≤ g ≤ u. By Lemma 6.1.2, F is the intersection of

(
u+1

g

)
order-k Voronoi

domains corresponding to Q = I ∪ Uin , in which Uin ⊆ U with |Uin| = g. So its dual cell
G is the convex hull of the centers of masses xQ of these sets, as discussed in Section 1.4.
Writing xQ as

xQ = 1
k

[∑
x∈I

x +
∑

x∈Uin
x
]

= k−g
k

xI + g
k
xUin , (6.7)

we see that the convex hull of the xQ is therefore a translated and scaled copy of a genera-
tion-g barycenter polytope, namely the convex hull of the points xUin . Since |U | = u+1, this
polytope is u-dimensional, as expected. To summarize, we have a complete description of
the cells in an order-k Delaunay mosaic.

Lemma6.2.1 (Order-kDelaunay cells). LetX ⊆ Rn be locally ϔinite and in general position,
and let I, U ⊆ X with I ∩ U = ∅. If |I| + |U | = k, then there is a point p ∈ Rn with
In(p) ∪ On(p) = I ∪ U iff xI∪U is a vertex of Del(k)X . If |I| + |U | ≥ k + 1, then there is a
point p ∈ Rn with In(p) = I and On(p) = U iff the u-dimensional generation-g barycenter
polytope deϔined by I and U belongs to Del(k)X , in which u = |U | − 1 and g = k − |I|.

6.3 Relaxed discrete Morse theory

In the previous section we found out that all cells of the order-k Delaunay mosaic are de-
ϐined by the order-k Delaunay spheres of points in the dual Voronoi face. This description
is not unique though: several spheres can deϐine the same cell. We want to resolve this
non-uniqueness by choosing the unique smallest one. This rather informal description is
a starting point for developing a version of discrete Morse theory, which would generalize
the standard discrete Morse theory [36, 37, 8] to the order-k case.

Radius function. Recall that every j-cell G ∈ Del(k)X corresponds to an (n − j)-polyhed-
ron F of Vor(k)(X). By Lemma 6.1.2, for any point p ∈ int F , the Delaunay sphere Σk(p)
passes through the same j+1pointsOn(p) = On(F ), andG is a scaled and translated copy
of a barycenter polytope deϐined by On(p). Since this is the smallest sphere centered at p
such that the closed ball it bounds contains at least k points of X , the deϐinition does not
depend onF , and its radius, rk(p), is continuous as function of p. Noting thatF is compact,
we can therefore introduce Rk : Del(k)X → R deϐined by

Rk(G) = min{rk(p) | p ∈ F and F dual to G},

and call it the radius function of Del(k)X . We further call the point p ∈ F , which attains
the minimum, the center of G. This agrees with the deϐinitions used in the statement of
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Theorem15. Note that if the center p ofG lies in the interior of a Voronoi faceF ′, then rk(p)
is the radius of Σk(p), which determines F ′ in the sense of Lemma 6.1.2. A very important
observation is that On(F ) ⊆ On(p) = On(F ′) and In(F ′) ⊆ In(F ) ⊆ In(F ′) ∪ On(F ′),
because all k-tuples of points of X , whose order-k Voronoi domains intersect in F , are
involved in formingF ′. With this it is also easy to ϐind out, which Voronoi polyhedra of any
ϐixed dimension, not necessarily n, intersect in F ′.

Figure 6.2: The radius function partitions the order-2 Delaunay mosaic of the three points
into four relaxed intervals: three contain a vertex each, and the fourth relaxed interval contains
the triangle together with its three edges.

The discrete Morse theory of [36] requires that level sets of the radius function are
singletons and pairs, while the generalized discrete Morse theory of [37] allows intervals,
which are maximal sets of faces of a cell that share a common face. The level sets of Rk

are not necessarily of this type, as we now show. Let X consist of three points spanning
an equilateral triangle with unit length edges in the plane. The order-2 Delaunay mosaic
consists of the triangle spanned by the midpoints of the three edges, together with its
edges and vertices. Observe that r0 = 1/2 is the radius assigned to its three vertices, and
r1 =

√
3/3 is assigned to the triangle together with its three edges; see Figure 6.2. In-

deed, the closed disks of radius r centered at the points in X have pairwise intersections
iff r ≥ r0, and they have a non-empty common intersection iff r ≥ r1. Each vertex of the
order-2 Delaunay mosaic has its own center in the interior of the corresponding Voronoi
2-polyhedron, but the triangle and its three edges share the center at the circumcenter of
the triangle. The triangle together with its edges is not an interval, so Rk is not a general-
ized discrete Morse function, and we refer to it as a relaxed discrete Morse function. This
function indeed contains some topological meaning, see [32], so the term is not chosen
randomly.

Relaxed intervals.The radius functionRk ismonotonic, bywhichwemean thatRk(G) ≤
Rk(G′) whenever G is a face of G′. Equality is possible, namely when the order-k Voronoi
face F ′, dual to G′, contains the center of G, which lies in F \ int F . By deϐinition, a relaxed
interval of Rk is a maximal collection of cells in Del(k)X that share the center, and hence
the function value. Thus, every level set of Rk is a disjoint union of relaxed intervals.

The previous example begs the question how much more general the relaxed inter-
vals are compared to the intervals. Each relaxed interval has a unique upper bound, which
is a cell G ∈ Del(k)X , whose dual Voronoi polyhedron, F , contains the center p of G in
its interior. Write U = On(p) and u = |U | − 1. The dimension of G is thus u, unless
in(p) + on(p) = k, in which case it is 0. Considering any partition of U into three sets,
U = Uin ∪ Uon ∪ Uout with Uon ̸= U , we can slightly perturb the sphere Σk(p) into a sphere
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Σ, withΣ∩X = Uon and int Σ∩X = Uin ∪ In(p). If the sizes of these two sets satisfy the re-
quirements for the order-k Delaunay sphere, they deϐine a cell ofDel(k)X , which is a face of
G. On the other hand, every face ofG induces such a partition.We thus get a corresponding
between such partitions and faces ofG, which is one-to-one unless |Uin ∪ Uon ∪ In(p)| = k,
otherwise we get the same vertex for different partitions with the same Uin ∪ Uon . We are
particularly interested in distinguishing the faces that share the center, p, from the other
faces of G. The crucial concept is again the visibility of facets of conv U from p, as deϐined
in Section 1.5.

Recall that the center p of G lies in the interior of the dual Voronoi polyhedron by as-
sumption. It follows that p lies in the afϐine hull ofU . Equivalently, the u-spherewith center
p that passes through the u + 1 points of U = On(p) is a great-sphere of Σk(p), and Σk(p)
is the smallest circumscribed sphere of U . The convex hull of U is a u-simplex, and recall
that we say that a facet ofU is visible from p if the afϐine hull of the facet, which is a (u−1)-
plane, separates p from conv U within the afϐine hull of U , which is a u-plane. Let V be the
intersection of all visible facets of U , and write |V | = v + 1. In particular, V = U if there
are no visible facets. Notice that v is also the number of invisible facets minus 1, because a
vertex belongs to V iff the facet opposite to the vertex is invisible, and observe that v ≥ 1
because the u + 1 points of U lie on a sphere around p; compare also with Lemma 4.3.3.
With these notions, we can identify the partitions of U corresponding to faces of G that
belong to the same relaxed interval.
Lemma 6.3.1 (Visibility and relaxed intervals). Let X ⊆ Rn be locally ϔinite and in general
position. Let G ∈ Del(k)X with corresponding order-k Delaunay sphere Σk(p) be the upper
bound of a relaxed interval of the radius function. A face G′ of G belongs to the same relaxed
interval iff the partitionOn(p) = Uin ∪Uon ∪Uout induced byG′ satisϔiesUin ⊆ V ⊆ Uin ∪Uon .

Proof. Write U = On(p). Let q be the center of G′, and recall that G, G′ belong to the same
relaxed interval iff p = q. The following two conditions must hold, else p ̸= q.
(i) If an invisible face of conv U contains Uon , then the opposite vertex must be in Uin .
(ii) If a visible face of conv U contains Uon , then the opposite vertex must be in Uout .
To see (i), we would move the center, p, normal to and slightly toward the facet while ad-
justing the radius so the sphere keeps passing through all vertices of the facet. This gen-
erates a smaller sphere for the same partition ofU , hence p ̸= q. The symmetric argument
proves (ii). Now (i) is equivalent to Uin ⊆ V , and (ii) is equivalent to U \ V ⊆ Uout . Hence
p = q implies Uin ⊆ V ⊆ Uin ∪ Uon . The converse is also true because the two conditions
prohibit a smaller sphere in the normal directions of all facets. These directions span all
directions in the afϐine hull of U .

The only casewhen the induced decomposition is not necessarily unique, is whenG′ is
a vertex. In particular, if the upper bound cellG is a vertex itself, an additional requirement
that V = U appears, because otherwise we would get that some of its faces, namely itself,
belong to a different relaxed interval.

6.4 Counting intervals and simplices

In this section,we count the cells in the relaxed intervals that arise in thepartitionof order-
k Delaunay mosaics. We then use the result to prove Theorem 15.
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Cells in relaxed intervals.As explained in the previous section, every relaxed interval has
a uniqueupper bound,which is a cellG ∈ Del(k)X whose center, p ∈ Rn, is contained in the
interior of the dual Voronoi polyhedron. The order-k Delaunay sphere of this point, Σk(p),
completely determines G; see (6.7). Ignoring the case in which G is a vertex, we assume
that in(p) + on(p) ≥ k + 1, in which case u = on(p) − 1 ≥ 1 is the dimension of G and
g = k − in(p) is its generation. To get the number of vertices of G, we count the partitions
U = Uin ∪Uout ofU = On(p)with |Uin| = g, wherewe artiϐicially moveUon intoUin because
we are interested only in their union; compare with (6.5). To get the number of j-faces,
for 0 < j < u, we count the partitions U = Uin ∪ Uon ∪ Uout that satisfy |Uon| = j + 1 and
g − j ≤ |Uin| ≤ g − 1; compare with (6.6). To further limit the number to the cells in the
relaxed interval of G, we restrict to Uin ⊆ V ⊆ Uin ∪ Uon , in which V ⊆ U with |V | = v + 1
contains the vertices that belong to all visible facets of U .

For j = 0, the last condition is equivalent to Uin = V . So, we have Nu
v,g(0) = 1 if

g = v + 1 and 0 otherwise. When j > 0 the dimension requirement is that |Uon| = j + 1.
Writing t = |Uin|, we can formulate the question purely combinatorially, ϐirst choosing the
unionUin ∪Uon ⊆ U such that V ⊆ Uin ∪Uon and second choosingUin ⊆ V : howmany ways
are there to pick (t + j + 1) − (v + 1) from (u + 1) − (v + 1) points and then t from v + 1
points?

Nu
v,g(j) =

t1∑
t=t0

(
u − v

t + j − v

)(
v + 1

t

)
, (6.8)

in which t0 = max{0, v − j, g − j} and t1 = min{v + 1, u − j, g − 1} are obtained from
0 ≤ t ≤ v + 1, 0 ≤ j − v + t ≤ u − v, and g − j ≤ t ≤ g − 1. The ϐirst two conditions assert
that the binomial coefϐicients make sense, while the last one is the geometric requirement
for the number of points inside the sphere.

Intrinsic characterization of relaxed intervals. Let U ⊆ X ⊆ Rn with |U | = u + 1 ≤
n + 1 be a simplex, such that the smallest circumscribed sphere Σ of U has at most k − 1
and at least k − u − 1 points inside. Letting p be the center of this sphere, we notice that
Σ = Σk(p) and On(p) = U . If on(p) + in(p) > k, it deϐines a cell G of Del(k)X , which is a
barycenter polytope of type ∆u

g , for g = k − in(p). By Lemma 6.3.1, this cell is the upper
bound of a relaxed interval of the radius function Rk, which contains the cells that share
p as their center. The lemma also asserts that the interval is fully described by the the set
of vertices of U that belong to all visible facets. Writing V for this set and v = |V | − 1 for
its dimension, we call (v, u, g) the type of the relaxed interval. It is fully deϐined by U .

If on(p) + in(p) = k, then p belongs to the interior of the order-k Voronoi domain of
On(p) ∪ In(P ). By Lemma 6.3.1 and the remark after it, p is the center of this domain iff it
lies in the interior ofU . In this case, we get a critical vertex, with V = U and g = u+1. The
type of this interval is thus deϐined as (u, u, u + 1). This should not be confusing because
vertices with different relaxed interval types are really different kinds of vertices in the
mosaic.

Proof of Theorem 15. We now apply the developed theory to get the expected number
of j-cells in the Poisson–Delaunay mosaic of order k. Let X be a stationary Poisson point
process with density ρ inRn. Using the intrinsic characterization, we want to compute the
expected numbers of intervals of type (v, u, g), while restricting the radius from above.
Write s(k,n)

v,u,g(r0) for the number of tuples ofu+1points inX , whose smallest circumspheres
have k −g points inside, have their center in some regionΩ ⊆ Rn, and have radius at most
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r0. As the previous discussion shows, it is the same as the number c(k,n)
v,u,g(r0) of intervals of

type (v, u, g) with center in Ω and radius at most r0, when 1 ≤ g ≤ max{u, k} or v = u =
g − 1. For u > 0, the Slivnyak–Mecke formula (Lemma 1.6.1) helps to take advantage of
such description and express the expected number of such intervals as

E[s(k,n)
v,u,g(r0)] = 1

(u+1)!

∫
x∈(Rn)u+1

1Ω(x)1r0(x)1u−v(x)Pk−g(x)ρu+1 dx,

in which Pk−g(x) = (ρνnrn)k−ge−ρνnrn
/(k − g)! is the probability that the smallest cir-

cumsphere of x has k − g points of X inside, 1Ω(x) indicates whether the center of this
sphere belongs to Ω, 1r0(x) indicates whether its radius is at most r0, and 1u−v(x) indi-
cates whether x has u − v visible facets. This notation mimics the notation in Chapter 5,
in particular, we write x for a sequence of u + 1 points, which is better suited for integra-
tion than the set U of u + 1 points. This formula effectively differs from (5.1) only in the
way that we use Pk−g(x) instead of P0(x) = P∅(x), and k in (5.1) is equal to n. To avoid
redundancy, we do not rewrite the steps (5.1)–(5.4), but rather focus on the difference.
Speciϐically, instead of ∫ r0

r=0 rnk−1e−ρrnνn = γ(k; ρνnrn
0 )

n(ρνn)k in (5.2), we have
r0∫

r=0

rnu−1 (ρrnνn)k−g

(k − g)!
e−ρrnνn = (ρνn)k−g

(k − g)!
γ(u + k − g; ρνnrn

0 )
n(ρνn)u+k−g

= γ(u + k − g; ρνnrn
0 )

(k − g)!n(ρνn)u
.

Repeating (5.1)–(5.4), we get

E[s(k,n)
v,u,g(r0)] = γ(u + k − g; ρνnrn

0 )
(k − g)!Γ(u)

Cn
v,u · ρ∥Ω∥, (6.9)

in which the constant Cn
v,u is the same constant as deϐined in (4.3) The case u = 0 is ex-

ceptional, because the smallest circumscribed sphere of any single vertex has radius 0 and
has no points inside, so the only non-zero value is E[s(1,n)

0,0,1 (r0)] = ρ∥Ω∥ for all r0 ≥ 0, in-
dependent of the radius. Turning back to the number of relaxed intervals, we thus have
E[c(k,n)

v,u,g(r0)] = E[s(k,n)
v,u,g(r0)] for admissible values of parameters, i.e., for 1 ≤ g ≤ min{k, u}

or v = u = g − 1, and 0 otherwise. The result agrees with Theorem 9 for k = 1.
Now that we have expressions for the number of relaxed intervals of all types, it is not

difϐicult to count the j-cells in the order-k Delaunay mosaic whose value under the radius
function is at most r0:

E[d(k,n)
j (r0)] =

n∑
u=j

u∑
v=0

min{k,u+1}∑
g=1

Nu
v,g(j) · E[c(k,n)

v,u,g(r0)].

For j > 0, we can use (6.8) and (6.9) to get

E[d(k,n)
j (r0)] =

n∑
u=j

u∑
v=1

g1∑
g=1

t1∑
t=t0

(
v + 1

t

)(
u − v

t + j − v

)
γ(u + k − g; ρνnrn

0 )
(k − g)!Γ(u)

Cn
v,u · ρ∥Ω∥,

in which g1 = min{k, u}, t0 = max{0, v − j, g − j}, and t1 = min{v + 1, u − j, g − 1}, as
before. For j = 0 and k ≥ 2, we have to sum the numbers of all intervals with g = v + 1:

E[d(k,n)
0 (r0)] =

n∑
u=1

u∑
v=1

γ(u + k − v − 1; ρνnrn
0 )

(k − v − 1)!Γ(u)
Cn

v,u · ρ∥Ω∥.

This completes the proof of Theorem 15.



7. Random inscribed polytopes

In this chapter, we prove Theorem 17. It consists of an integral equation for the expected
number of intervals of a Poisson–Delaunay mosaic on Sn as a function of the maximum
geodesic radius, and an asymptotic version of the formula for ρ → ∞.

7.1 Integral equation

We begin with the proof of the ϐirst equation in the statement of Theorem 17. The main
tools are again the Slivnyak–Mecke formula, and the Blaschke–Petkantschin formula, this
time for the sphere (Theorem 21).

The Slivnyak–Mecke approach. Towrite this integral, we recall that x = (x0, x1, . . . , xm)
is a sequence of m + 1 points or m-simplex on Sn, that P∅ : (Sn)m+1 → R maps x to the
probability that its smallest circumscribed cap is empty, that1m−ℓ : (Sn)m+1 → R indicates
whether or not the number of facets visible from the Euclidean center of the smallest cir-
cumscribed cap is m − ℓ, and that 1η : (Sn)m+1 → R indicates whether or not RS(x) ≤ η.
Choosing points from a Poisson point process with density ρ > 0 on Sn, we use Slivnyak–
Mecke formula towrite the expectednumberof intervals of type (ℓ, m) andgeodesic radius
at most η0 as

E[cn
ℓ,m, η0] = ρm+1

(m+1)!

∫
x∈(Sn)m+1

P∅(x) · 1m−ℓ(x) · 1η0(x) dx, (7.1)

in which 0 ≤ ℓ ≤ m ≤ n. The probability that the smallest circumscribed cap of the m-
simplex is empty is P∅(x) = e−ρArea(η), with η the geodesic radius of the cap. To compute
the integral in (7.1), we apply the second equation in Theorem 21 with

f(x) = P∅(x)1m−ℓ(x)1η0(x).

The corresponding function from the statement of Theorem 21,

fr : (Sm−1)m+1 ⊆ (Rn+1)m+1 → R

is deϐined by
fr(u) = P∅(r)1m−ℓ(u)1η0(r),
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where we write P∅(r) = P∅(u) and 1η0(r) = 1η0(u) to emphasize that these expressions
depend only on the radius. The theorem then gives

∫
x∈(Sn)m+1

f(x) dx = σn+1
2 ∥Ln

m∥
1∫

t=0

t
mn−2

2 (1 − t)
n−m−1

2 P∅(
√

t)1η0(
√

t)

×
∫

u∈(Sm−1)m+1

1m−ℓ(u)[m!Vol(u)]n−m+1 du dt. (7.2)

Substitution and reformulation. To continue, we recall the notion En
ℓ,m from (4.1). It fol-

lows that the second integral on the right-hand side of (7.2) is m!n−m+1σm+1
m En

ℓ,m. Rewrit-
ing (7.1) using (7.2), we therefore get

E[cn
ℓ,m, η0] = ρm+1

(m+1)!
σn+1

2 ∥Ln
m∥m!n−m+1σm+1

m En
ℓ,m

s∫
t=0

t
mn−2

2 (1 − t)
n−m−1

2 P∅(
√

t) dt, (7.3)

= ρσn+1 · σm
n

2Γ(m)nm−1 · Cn
ℓ,m

s∫
t=0

ρmt
mn−2

2 (1 − t)
n−m−1

2 P∅(
√

t) dt, (7.4)

in which we absorb one indicator by limiting the range of integration to the square of the
maximum Euclidean radius, s = sin2 η0. To get (7.4) from (7.3), we cancel m!, move ρm

inside the integral, and use (4.1) and (4.3) to substitute Cn
ℓ,m for En

ℓ,m with appropriate
rescaling. This proves the integral equation in Theorem 17.

7.2 Asymptotic result

We continue with the proof of the asymptotic result in Theorem 17. We proceed in two
stages, ϐirst taking liberties and leaving gaps in the argument, and second ϐilling all the
gaps.

Argumentwith gaps.We are interested in the behavior of the integral in (7.4), when ρ →
∞. We observe that the probability of a cap to be empty vanishes rapidly with increasing
geodesic radius: P∅(r) = e−ρArea(η), in which r = sin η is the Euclidean radius. This implies
that the integrand is concentrated in the vicinity of 0. To make sense of the radius in the
limit, we re-scale bymapping η and ρ to the normalized radius, η̄ = ηρ1/n. To proceedwith
the informal computations, we assume that η is close to 0 and prepare two approximations
and one relation:

A. the squared Euclidean radius is roughly the squared geodesic radius: s = sin2 η ≈ η2;

B. the square of the height is 1 − s ≈ 1, which allows us to simplify the incomplete Beta
function:

Bs(n
2 , 1

2) =
∫ s

t=0
t

n
2 −1(1 − t)− 1

2 dt ≈
∫ s

t=0
t

n
2 −1 dt = 2

n
sn/2; (7.5)

C. the relation σn+1
σn

= B
(

n
2 , 1

2

)
implies σn+1

n
/B
(

n
2 , 1

2

)
= σn

n
= νn.
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Returning to the integral in (7.4), but without the factor ρn, we get∫ sin2 η0

t=0
t

mn−2
2 (1 − t)

n−m−1
2 P∅(

√
t) dt ≈

∫ η̄2
0/ρ2/n

t=0
t

mn−2
2 e−ρνntn/2 dt, (7.6)

in which we approximate the upper limit of the integration using A, and drop the middle
factor because it is close to 1 according to B. The probability of having an empty cap is
P∅(r) = e−ρArea(η), in which the area of the cap can be written in terms of Beta functions:

Area(η) = σn+1Bs(n/2,1/2)
2B(n/2,1/2) ≈ σn+1(2/n)sn/2

2B(n/2,1/2) = νnsn/2, (7.7)

using B for the approximation and C to get the ϐinal result, which we plug into the left-
hand side of (7.6) to get the approximation on its right-hand side. The exponential term
motivates us to change variables with τ = ρνntn/2. Plugging t = τ 2/n/(ρνn)2/n and dt =
[ 2

n
τ 2/n−1/(ρνn)2/n] dτ into the right-hand side of (7.6), we get∫ v

τ=0
τm−1(ρνn)−m

(
2
n

)
e−τ dτ = 2nm−1

ρmσm
n

· γ(v; m), (7.8)

in which the upper bound of the integration range is

v = ρνn(η̄2
0/ρ2/n)n/2 = η̄n

0 νn,

the power of τ is
2
n

mn−2
2 + 2

n
− 1 = m − 1,

and the power of ρσn is
− 2

n
mn−2

2 − 2
n

= −m.

We get the right-hand side of (7.8) from the left-hand side using σn

n
= νn and γ(v; m) =∫ v

τ=0 τm−1e−τ dτ . Finally plugging the right-hand side into (7.4), we get

E[cn
ℓ,m, η0] = ρσn+1 · σm

n

2Γ(m)nm−1 · Cn
ℓ,m

∫ sin2 η0

t=0
ρmt

mn−2
2 (1 − t)

n−m−1
2 P∅(

√
t) dt (7.9)

= ρσn+1 · γ(v; m)
Γ(m) · Cn

ℓ,m + o(ρ), (7.10)

as claimed in Theorem 17. Making the unjustiϐied substitution v = η̄n
0 νn = ∞, we get

E[cn
ℓ,m] = ρσn+1 · Cn

ℓ,m + o(ρ), (7.11)

as claimed in Remark (4) after Theorem 17.

Formal justiϐications.We continue with the justiϐication of the asymptotic equivalences
claimed above. To recall, there is the approximation in (7.6) and the substitution η̄0 = ∞
after (7.10). Fixing a real number 0 ≤ δ ≤ 1, we introduce some notation to streamline
the computations:

α = mn−2
2 , α′ = n−m−1

2 , β = n
2 , β′ = 1

2 , c = σn

2 , (7.12)
g(s) = c

∫ s

t=0
tβ−1(1 − t)β′−1 dt, (7.13)

J0 = ρm
∫ 1

t=0
tα(1 − t)α′

e−ρg(t) dt, J1(δ) = ρm
∫ δ

t=0
tα(1 − t)α′

e−ρg(t) dt, (7.14)

J2(δ) = ρm
∫ δ

t=0
tαe−ρg(t) dt, J3(δ) = ρm

∫ δ

t=0
tαe−ρ c

β
tβ

dt. (7.15)
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We note that α, α′ ≥ −1
2 , β, β′ ≥ 1

2 , and g(s) is c = σn

2 times the incomplete Beta function.
Recall that σn+1

σn
= B

(
n
2 , 1

2

)
, which implies that g(s) is σn+1

2 times the ratio of incomplete
over complete Beta functions. Hence g(s) = Area(η), in which s = sin2 η; see (2.1). Note
also that J0 is the integral in (7.4) except that the integration range goes all the way to 1,
which corresponds to computing the number of intervals without restricting the radius.
For δ = 1, we have J1 = J0, and for δ = sin2 η0, J1 is ρm times the expression on the left-
hand side of (7.6). Finally, for δ = η̄2

0ρ−1/β , J3 is the integral on the right-hand side of (7.6),
which we computed in (7.8). Next, we list a sequence of observations:

I. The integral in (7.13) satisϐies
c
β
sβ ≤ g(s) = c

∫ s

t=0
t(n−2)/2(1 − t)−1/2 dt ≤ c

β
sβ + const · sβ+1,

for 0 ≤ s ≤ 1 on the left, and for 0 ≤ s ≤ 1
2 on the right. Indeed, we have 1 ≤

1/
√

1 − t for all 0 ≤ t ≤ 1 and 1/
√

1 − t ≤ 1 + const · t for all 0 ≤ t ≤ 1
2 .

II. The absolute difference between J0 and J1(δ) satisϐies

|J0 − J1(δ)| = ρm
∫ 1

t=δ
tα(1 − t)α′

e−ρg(t) dt ≤ ρme−ρ c
β

δβ

B(α + 1, α′ + 1),

because g(t) ≥ g(δ) throughout the integration domain, and g(δ) ≥ c
β
tβ by I. The

value of the Beta function is a constant independent of ρ.

III. For δ ≤ 1
2 , the absolute difference between J1 and J2 satisϐies

|J1(δ) − J2(δ)| ≤ ρm
∫ δ

t=0
[tα(1 − t)α′ − tα]e−ρg(t) dt ≤ const · δJ2(δ),

because |1 − (1 − t)α′| ≤ const · t for all 0 ≤ t ≤ 1
2 and α′ ≥ −1

2 .

IV. For δ ≤ 1
2 , the absolute difference between J2 and J3 satisϐies

|J2(δ) − J3(δ)| = ρm
∫ δ

t=0
tα
[
e−ρ c

β
tβ

− e−ρg(t)
]

dt (7.16)

≤ ρm
∫ δ

t=0
tαe−ρ c

β
tβ
[
1 − e−const·ρtβ+1] dt (7.17)

≤ J3(δ)
[
1 − e−const·ρδβ+1]

, (7.18)
in which we use the left inequality in I to get the right signs of the exponential terms
in (7.16), and the right inequality in I to get (7.17).

V. For η ≤ 1/
√

2, the absolute difference between J1 at the values sin2 η and η2 satisϐies

|J1(sin2 η) − J1(η2)| = ρm

η2∫
t=sin2 η

tα(1 − t)α′
e−ρg(t) dt ≤ 2ρm

η2∫
t=sin2 η

tα dt

≤ 2ρm

α+1 [η2α+2 − (η − η2)2α+2] ≤ 4ρmη2α+3,

in which we use (1 − t)α′ ≤ 2 for t ≤ 1
2 to get the ϐirst inequality. To get the second,

we use sin η > η − η2, which we glean from the Taylor series sin η = η − 1
6η3 + . . .,

and the binomial expansion of (η − η2)2α+2.
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As mentioned earlier, J1(sin2 η0) is ρm times the left-hand side of (7.6), and J3(η2
0) is ρm

times the right-hand side of (7.6). According to (7.8), ρm times this right-hand side is
(2nm−1/σm

n ) · γ(v; m), with v = η̄nνn, which is a positive constant; see Remark (3) af-
ter Theorem 17 where we ϐirst mentioned that this integral is bounded from 0 as well as
from ∞. Having established that there is a positive constant C = J3(η2

0), IV implies that

J2(η2
0) ≤ C + (1 − e−ρ c

β
η

2(β+1)
0 )C

is also bounded by a constant. Using III, IV, V, we get

|J1(sin2 η0) − J3(η2
0)| ≤ |J1(sin2 η0)−J1(η2

0)| + |J1(η2
0)−J2(η2

0)| + |J2(η2
0)−J3(η2

0)|
(7.19)

≤ 4ρmη2α+3
0 + const · η2

0J2(η2
0) + (1 − e−const·ρη

2(β+1)
0 )C. (7.20)

Letting ρ to to inϐinity, we observe

ρmη2α+3
0 = ρm

(
η̄0ρ

− 1
n

)mn+1
→ 0, (7.21)

ρη
2(β+1)
0 = ρ

(
η̄0ρ

− 1
n

)n+2
→ 0, (7.22)

implying the three terms in (7.20) go to 0. This ϐinally justiϐies the approximation (7.6) and
the argument proving Theorem 17.

Justiϐication of (7.11). We ϐinally prove that we can compute J0 by setting η̄0 to inϐinity
in (7.10) or, more formally, by replacing the incomplete gamma function in the expression
by the complete gamma function. Such a justiϐication is needed because so far we have
treated the geodesic radius as a constant in our computations. We now couple the bound
of the integration domain with the density by setting δ0 = ρ−1/(β+1/2). We reuse Equations
(7.6) and (7.10) to compute J3(δ0) = (2nm−1/σm

n ) ·γ(v; m), with v = ρνnδ
n/2
0 = νnρ1/(n+1).

The upper bound for the incomplete Gamma function thus goes to inϐinity and approaches
the complete Gamma function. We still have J3(δ0) bounded by a constant, so the rest of
the argument above goes through. We ϐinally use II, which shows |J0 − J1(δ0)| → 0. This
justiϐies (7.11).

7.3 Uniform distribution

In this section, we sketch the case of the uniform distribution on Sn. The sole difference
to the Poisson point process is that the number of points is prescribed rather than a ran-
dom variable. Setting this number to N = ρσn+1, it makes sense that in the limit, when N
and ρ go to inϐinity, the expected numbers of intervals of the radius function are the same
under both probabilistic models. This is indeed what we establish now more formally. By
linearity of expectation, the number of intervals of type (ℓ, m) and geodesic radius at most
η0 is

E[cn
ℓ,m, η0] =

(
N

m + 1

)
E[P∅(x) · 1m−ℓ(x) · 1η0(x)],
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in which x = (x0, x1, . . . , xm) is a sequence of m + 1 points on Sn, η is the geodesic ra-
dius of the smallest circumscribed cap of x, and P∅(x) = (1 − Area(η)/σn+1)N−m+1 is the
probability that this cap is empty. The analogue of (7.1) is therefore

E[cn
ℓ,m, η0] =

(
N

m + 1

)
1

σm+1
n+1

∫
x∈(Sn)m+1

P∅(x) · 1m−ℓ(x) · 1η0(x) dx.

We apply the rotation-invariant Blaschke–Petkantschin formula from Theorem 21. This
gives

E[cn
ℓ,m, η0] = N !

(N−m−1)!σm
n+1

σm
n

2Γ(m)nm−1 · Cn
ℓ,m

sin2 η0∫
t=0

t
mn−2

2 (1−t)
n−m−1

2
(
1− Area(η)

σn+1

)N−m+1
dt,

in which η = η(t) = arcsin
√

t; compare with (7.4). To prepare the next step, we note that

(1 − Area(η(t))
σn+1

)N−m+1 ≈ e
− N

σn+1
Area(η(t))

as t → 0. From here on, we retrace the steps we took from (7.6) to (7.8). In particular,
we change variables with τ = N

σn+1
νntn/2, and we substitute η̄0ρ

−1/n for η0. Observing
N !

(N−m−1)! ≈ Nm+1, we simplify the expression and get

E[cn
ℓ,m, η̄0] = N · γ(v; m)

Γ(m) · Cn
ℓ,m + o(N)

for the expected number of intervals of the radius function of the Delaunay mosaic for N
points chosen uniformly at random on Sn, in which v = η̄n

0 νn. Comparing with the asymp-
totic result in Theorem 13, we see the same constants as for the Poisson point process.
However, the variance distinguishes the two cases, being smaller for the uniform distri-
bution than for the Poisson point process; see [70].



8. Future directions

The work is the ϐirst application of discrete Morse theory in the context of random mo-
saics. The results we were able to obtain using this approach indicate the power of a sim-
ple idea, namely that it might make a difference to characterize the mosaics using their
intrinsic properties instead of looking at all random mosaics at a common scale. In par-
ticular, changing the general deϐinition of the centroid of a face of a mosaic to take into
account the construction of the mosaic, allowed to obtain several new results for the ex-
pected number of faces in many important cases. It looks like this approach can give new
information when applied to any kind of random mosaics, and this work is the starting
point. We ϐinish with a list of open questions.

1. We computed the constants Ck,n
ℓ,m and Dk,n

j in many lower-dimensional cases. How-
ever, obtaining an explicit formula in all dimensions would be a great achievement.
The challenge lies in the spherical expectations, En

ℓ,m and Ek,n
ℓ,m, which remain the

main obstacle to the ultimate description of Poisson–Delaunay mosaics of all kind.
It would be exciting to get explicit values for these constants, but even a goodway of
computing them numerically is of interest. In any case, the asymptotic behavior as
n goes to inϐinity is another important question.

2. With the description of intervals of radius functions we get some topological infor-
mation about the complex, which is provided by the discrete Morse inequalities.
However, it only sheds some light on the homology, and the question if the results
can be extended to the Betti numbers and the framework of persistent homology
(see e.g. [12]) remains open. Indeed, the intervals of size larger than 1 correspond
to 0-persistent pairs, and it is natural to ask similar questions about the pairs with
positive persistence.

3. The slice construction implies a repulsive force among the vertices: the vertices of
theweighted Poisson–Delaunaymosaic aremore evenly spread than a Poisson point
process. For ϐixed k, the repulsion gets stronger with increasing n. The mosaic can
thus model some properties of real objects better than the Poisson–Voronoi mosaic.
Itwouldbe interesting to study this repulsive force and its consequences analytically.

4. A further interesting question is about the connection between the spherical and the
Euclidean case. As proved in this work, the ϐirst-order terms of the expected number
of intervals of the radius function donot distinguishSn fromRn. There are no further
terms in the Euclidean case, but what are they for Sn?

5. Projecting the convex hull of a ϐiniteX ⊆ Sn orthogonally onto a (k+1)-plane corre-
sponds to slicing the spherical Voronoi tessellation ofX with a k-dimensional great-
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sphere of Sn. What are the stochastic properties of these slices? Are they different
from weighted Poisson–Delaunay mosaics studied in this work?

6. The motivation for the spherical Poisson–Delaunaymosaics came from information
theory. The square of the Fisher information metric, studied here, agrees inϐinitesi-
mallywith the Kullback–Leibler divergence [47]. Themore general class of Bregman
divergences has recently come into focus in [34, 33].What are the stochastic proper-
ties of theBregmandivergences and their correspondingmetrics? Is the similarity to
the Euclideanmetric speciϐic to the Fisher informationmetric or is it a more general
phenomenon?

7. In Chapter 6 we developed the discrete Morse theory for order-k Voronoi diagrams.
However, itwas apurely combinatorial construction, and its topological implications
are to be investigated yet. It can be shown that k-intervals can be obtained by slicing
the real intervals, which span over different values of k, and that critical and non-
critical cases have similar effect on topology as in the k = 1 case; see the follow-up
paper [32]. Can similar extensions be also obtained for other complexes?
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l’Académie des Sciences de l’URSS. Classe des sciences mathématiques et na, pages 793–
800.

[21] Dey, T. K. (2011). Curve and Surface Reconstruction. Algorithms with Mathematical
Analysis. Cambridge Univ. Press, England.

[22] Drton, M., Massam, H., and Olkin, I. (2008). Moments of minors of Wishart matrices.
Ann. Statist., 36 no. 5,:2261–2283.

[23] Edelsbrunner, H. (1993). The union of balls and its dual shape. In Proceedings of
the Ninth Annual Symposium on Computational Geometry, SCG ’93, pages 218–231, New
York, NY, USA. ACM.

[24] Edelsbrunner, H. (2001). Geometry and Topology for Mesh Generation. Cambridge
Univ. Press, England.

[25] Edelsbrunner, H. (2003). Surface reconstruction by wrapping ϐinite sets in space.
In Aronov, B., Basu, S., Pach, J., and Sharir, M., editors, Discrete and Computational Ge-
ometry: The Goodman-Pollack Festschrift, pages 379–404. Springer Berlin Heidelberg,
Berlin, Heidelberg.

[26] Edelsbrunner, H. and Harer, J. L. (2010). Computational Topology. An Introduction.
Amer. Math. Soc., Providence, Rhode Island.

[27] Edelsbrunner, H. and Iglesias-Ham,M. (2016). Multiple coverswith balls II. weighted
averages. Electr. Notes Discrete Math., 54:169–174.

[28] Edelsbrunner, H. and Nikitenko, A. (2017a). Poisson–Delaunay mosaics of order k.
arXiv:1709.09380 [math.PR].

[29] Edelsbrunner, H. and Nikitenko, A. (2017b). Random inscribed polytopes have sim-
ilar radius functions as Poisson-Delaunay mosaics. arXiv:1705.02870 [math.PR].

[30] Edelsbrunner, H. and Nikitenko, A. (2017c). Weighted Poisson–Delaunay mosaics.
arXiv:1705.08735 [math.PR].

[31] Edelsbrunner, H., Nikitenko, A., and Reitzner, M. (2017a). Expected sizes of Poisson–
Delaunay mosaics and their discrete Morse functions. Adv. Appl. Prob., 49:745–767.

[32] Edelsbrunner, H. and Osang, G. (2017). Persistent homology in depth. Manuscript,
IST Austria, Klosterneuburg, Austria.



81

[33] Edelsbrunner, H., Virk, Zƽ ., and Wagner, H. (2017b). Smallest enclosing spheres in
Bregman geometry. Manuscript, IST Austria, Klosterneuburg, Austria.

[34] Edelsbrunner, H. and Wagner, H. (2017). Topological data analysis with Bregman
divergences. In Proc. 33rd Ann. Symp. Comput. Geom. To appear, arXiv:1607.06274
[cs.CG].

[35] Fejes Toth, G. (1976). Multiple packing and covering of the plane with circles. Acta
Math. Acad. Sci. Hung., 27:135–140.

[36] Forman, R. (1998). Morse theory for cell complexes. Adv. Math., 134:90–145.

[37] Freij, R. (2009). Equivariant discrete Morse theory. Discrete Math., 309:3821–3829.

[38] Gelfand, I. M., Kapranov, M., and Zelevinsky, A. (1994). Discriminants, Resultants, and
Multidimensional Determinants. Birkhäuser, Boston, Massachusetts.
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Morse complex, 9
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nerve theorem, 2
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simplicial complex, abstract, 1
simplicial complex, geometric, 1
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spherical polytope, 17
sublevel set, 9
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upper bound, 8, 67

Vietoris–Rips complex, 3
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visible from point, 10
Voronoi diagram, 3
Voronoi domain, 3
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Voronoi tessellation, 3
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weighted Delaunay mosaic, 5
weighted Voronoi diagram, 5
weighted Voronoi domain, 5
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