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Abstract 

Antibiotic resistance can emerge spontaneously through genomic mutation and render 
treatment ineffective. To counteract this process, in addition to the discovery and 
description of resistance mechanisms, a deeper understanding of resistance evolvability and 
its determinants is needed. To address this challenge, this thesis uncovers new genetic 
determinants of resistance evolvability using a customized robotic setup, explores 
systematic ways in which resistance evolution is perturbed due to dose-response 
characteristics of drugs and mutation rate differences, and mathematically investigates the 
evolutionary fate of one specific type of evolvability modifier - a stress-induced mutagenesis 
allele.  
We find several genes which strongly inhibit or potentiate resistance evolution. In order to 
identify them, we first developed an automated high-throughput feedback-controlled 
protocol which keeps the population size and selection pressure approximately constant for 
hundreds of cultures by dynamically re-diluting the cultures and adjusting the antibiotic 
concentration. We implemented this protocol on a customized liquid handling robot and 
propagated 100 different gene deletion strains of Escherichia coli in triplicate for over 100 
generations in tetracycline and in chloramphenicol, and compared their adaptation rates. 
We find a diminishing returns pattern, where initially sensitive strains adapted more 
compared to less sensitive ones.  Our data uncover that deletions of certain genes which do 
not affect mutation rate, including efflux pump components, a chaperone and several 
structural and regulatory genes can strongly and reproducibly alter resistance evolution. 
Sequencing analysis of evolved populations indicates that epistasis with resistance 
mutations is the most likely explanation. This work could inspire treatment strategies in 
which targeted inhibitors of evolvability mechanisms will be given alongside antibiotics to 
slow down resistance evolution and extend the efficacy of antibiotics. 
We implemented a stochastic population genetics model, to verify ways in which general 
properties, namely, dose-response characteristics of drugs and mutation rates, influence 
evolutionary dynamics. In particular, under the exposure to antibiotics with shallow dose-
response curves, bacteria have narrower distributions of fitness effects of new mutations. 
We show that in silico this also leads to slower resistance evolution. We see and confirm 
with experiments that increased mutation rates, apart from speeding up evolution, also lead 
to high reproducibility of phenotypic adaptation in a context of continually strong selection 
pressure. Knowledge of these patterns can aid in predicting the dynamics of antibiotic 
resistance evolution and adapting treatment schemes accordingly. 
Focusing on a previously described type of evolvability modifier – a stress-induced 
mutagenesis allele – we find conditions under which it can persist in a population under 
periodic selection akin to clinical treatment. We set up a deterministic infinite population 
continuous time model tracking the frequencies of a mutator and resistance allele and 
evaluate various treatment schemes in how well they maintain a stress-induced mutator 
allele. In particular, a high diversity of stresses is crucial for the persistence of the mutator 
allele. This leads to a general trade-off where exactly those diversifying treatment schemes 
which are likely to decrease levels of resistance could lead to stronger selection of highly 
evolvable genotypes. 
In the long run, this work will lead to a deeper understanding of the genetic and cellular 
mechanisms involved in antibiotic resistance evolution and could inspire new strategies for 
slowing down its rate.  
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1 Introduction 

Some parts of this chapter are heavily inspired by the published review article (Lukačišinová 
and Bollenbach, 2017). 

1.1 Resistance to antibiotics occurs as a result of genomic mutation 

Antibiotics are clinically useful molecules that can kill bacteria or inhibit their growth. This is 
often achieved by targeting structures or functions which are specific to bacterial cells. Such 
targets include the cell wall (e.g. betalactams), the bacterial ribosome, RNA polymerase, and 
specific metabolic enzymes such as dihydrofolate reductase in the case of trimethoprim 
(Kohanski et al., 2010; Walsh, 2003; Yonath, 2005). By being specific to bacterial cells and 
not toxic for humans and animals, they are ideal for the treatment of bacterial infections. 
Medical uses of antibiotics are becoming more challenging due to the rise of drug resistance 
(Blair et al., 2015; Levy and Marshall, 2004). In order to successfully fight bacterial infections 
despite antibiotic resistance development, the process of resistance acquisition and spread 
needs to be understood in detail.  

Mutations are changes in the genetic makeup of the cell. By modifying the DNA, the changes 
get inherited by the next generation, potentially causing lasting changes to whole 
populations. Initially, mutations happen spontaneously due to DNA damage or erroneous 
replication. Mutations can be single nucleotide polymorphisms (SNPs), deletions or 
insertions of just one or few nucleotides, but also larger rearrangements when long pieces 
of DNA get deleted, inverted or inserted/duplicated, either from another place in the 
genome, from the environment or from another cell (Koonin et al., 2001). In this thesis, I will 
focus on mutations that do not require the uptake of foreign DNA.  

In the classical paradigm, mutations happen spontaneously and randomly and do not 
depend on the environment (Luria and Delbrück, 1943). Most mutations are neutral with 
respect to growth rate and survival (Eyre-Walker and Keightley, 2007a). In harsh conditions, 
rare variants with strong beneficial effects can establish in populations at the expense of 
others, producing the impression of an orchestrated response to challenges (Luria and 
Delbrück, 1943).  

Rare beneficial mutations which can render bacterial cells resistant to antibiotics can do so 
through several main mechanisms (Blair et al., 2015). Target modification mutations change 
the target protein in such a way that the antibiotic cannot bind (Palmer et al., 2015). 
Antibiotic degrading enzymes can deactivate the drug (Jacoby, 2009). Certain mutations 
modify structures on the membrane and cause a decrease in influx of antibiotic (e.g. 
mutations in outer membrane porins), or an increase of efflux (e.g. increased expression of 
efflux pumps) which decreases the intracellular concentration of the antibiotic (Fernandez 
and Hancock, 2012). 

A particularly common mechanism of resistance against many antibiotics and other harmful 
molecules is the elevated expression or modification of efflux pumps. Efflux pumps are 
protein complexes spanning the bacterial membranes. They are powered either by ATP or 
the proton motive force to pump out harmful molecules out of the cell (Du et al., 2018). The 
deletion of certain pumps has little effect on growth or survival in conditions where few 
toxins are present. However, in a range of stresses including ethidium bromide, ribosomal or 
cell-wall synthesis inhibitors, the deletion of any of the pump components (e.g. the 



 

 

AcrA/B-TolC pump) causes severe fitness defects (Nichols et al., 2011). In studies 
investigating resistance acquisition in the lab and in the clinic, mutations related to the 
AcrA/B-TolC and other efflux pumps repeatedly come up spontaneously (Anes et al., 2015; 
Fernandez and Hancock, 2012). What is more, the mutations do not confer resistance only 
to the antibiotic that the population has been exposed to, but to a wider range of drugs 
(Lázár et al., 2014). 

The level of antibiotic resistance conferred by resistance mutations is typically measured by 
the minimal inhibitory concentration (MIC) for a given antibiotic and bacterial strain. The 
MIC is the minimal concentration of antibiotic at which the given bacterial strain does not 
grow. An increase in resistance occurs when the population can grow in higher 
concentrations of antibiotic. Another common measure of resistance is the IC50 (50% 
inhibitory concentration), which is the concentration at which the exponential growth rate 
of the strain is half of what it is without any antibiotic present. When the whole dose-
response curve is measured, this provides the entire growth rate (and death rate in the case 
of bactericidal drugs) profile corresponding to a wide antibiotic concentration gradient 
(Regoes et al., 2004). To extract summary parameters from these curves, most often a hill 
function  

𝑔 =
𝑔max

1 + (
𝑐
𝑐0

)
𝑛 

is used, where 𝑔𝑚𝑎𝑥 corresponds to the maximal growth rate in the absence of drug, 𝑛 
roughly determines the steepness of the sigmoidal function and 𝑐0 denotes the IC50. One 
advantage of using the whole growth profile along the antibiotic gradient is that concrete 
predictions can be made about the population dynamics of mixed populations during 
particular treatment regimens (Yu et al., 2018). 

Although resistance is by definition a genetic trait, the level of resistance is often not 
entirely determined genetically, but can be heterogeneous within a population, depend on 
the environment, on the population structure, or on the physiological state of the cell. In 
addition, usual methods of resistance measurements make it difficult to distinguish 
between resistance and other forms of decreased sensitivity to antibiotics including 
tolerance and persistence (Brauner et al., 2016). In this thesis, the focus is on the classic 
narrow definition of resistance brought about by mutation, causing a lasting heritable 
growth advantage in the presence of antibiotic. 

1.2 Antibiotic resistance acquisition can be studied using experimental 
evolution 

Experimental evolution is a research approach taken to study evolutionary processes in real-
time and consists of propagating experimental populations in defined conditions for many 
generations and measuring changes which occurred as a result (Kawecki et al., 2012). Its 
roots can be traced all the way to breeding efforts in agriculture or with domesticated 
animals, where selective conditions (particularly selection of individuals for mating) were 
designed in a controlled way. The goal in breeding was to channel the changes happening in 
domesticated organisms to suit particular needs of the breeder.  Later, similar approaches 
were taken to elucidate basic research questions. For example the Illinois long-term 
selection experiment attempts to test the limits of selection for oil and protein content in 
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maize, and has been running almost without interruption since 1896 (Dudley and Lambert, 
2010). In these early experiments, the focus was mainly on measuring phenotypes, 
describing their changes and exploring selection limits.  

The re-discovery of Mendel’s laws and its reconciliation with Darwin’s theory of natural 
selection turned the mainly descriptive study of natural variation into a research field of 
detailed mechanistic explanations and testable quantitative predictions (Huxley et al., 
2009). The transition was aided, for example, by controlled experimentation with fruit flies 
by Morgan focusing on the mechanisms of heredity (Morgan, 1915) and rigorous 
mathematical treatment of population genetics pioneered by Wright, Haldane, Fisher and 
others (Crow, 1987). The modern synthesis paved the way for quantitative genetics 
becoming an established field. With the advent of advanced genotyping technologies 
including whole-genome sequencing a whole new class of theoretical predictions were 
ready to be put to the test by controlled laboratory experiments (Desai, 2013; Kawecki et 
al., 2012). 

Due to their short generation times, small genomes, large population sizes and relative ease 
of handling and genetic manipulation, microbes have been especially suited for observing 
evolutionary processes in the laboratory and testing long-standing theoretical predictions 
(Van den Bergh et al., 2018). Questions such as the plausibility of parallel evolution, rules 
governing the effects of mutation combinations, the spontaneous occurrence and success of 
hyper-mutators, the advantages of sexual reproduction or evolution of multicellularity and 
cooperation, have all been investigated by evolution experiments in microbes (Kawecki et 
al., 2012). 

The same experimental evolution techniques which can be used to systematically 
investigate general evolutionary phenomena can also be used to study the evolution of 
antibiotic resistance. The general setup of such an experiment is to expose a bacterial 
population to an antibiotic for an extended period of time and observe its adaptation by 
measuring its fitness (in competition with ancestor, or by measuring other related 
parameters such as survival rate, exponential growth rate and resistance level)(Hegreness et 
al., 2008; Toprak et al., 2012). By combining phenotypic measurements with inexpensive 
whole-genome sequencing of evolved strains, a detailed description of antibiotic resistance 
evolution emerges, and questions of its reproducibility, speed, molecular origins, and 
constraints can be addressed in a systematic fashion (Lukačišinová and Bollenbach, 2017; 
MacLean et al., 2010). 

The simplest experimental evolution protocol that is useful for studying resistance evolution 
is the serial transfer protocol (Elena and Lenski, 2003). In this protocol, bacterial cultures 
grow in flasks or on microtiter plates and are diluted into fresh medium by a fixed factor at 
regular time intervals (e.g. every 24 hours). These experiments can be continued virtually 
indefinitely: Richard Lenski’s seminal long-term evolution experiment (Good et al., 2017) has 
exceeded 60 thousand generations in 28 years and is still ongoing. Due to the relative 
simplicity of a serial transfer protocol, it is feasible to run hundreds of evolution 
experiments in parallel. Together with increasingly inexpensive whole genome sequencing 
techniques (Baym et al., 2015), this opens the door for a statistical investigation of the 
intrinsically stochastic evolutionary dynamics and for identifying general principles 
governing microbial evolution (Desai, 2013; Levy et al., 2015). A drawback of serial transfer 
protocols is their inability to keep key parameters that affect the evolutionary process well-



 

 

controlled: the population size fluctuates considerably and cultures differ in the time they 
spend in stationary phase and in their growth rates; this complicates the quantitative 
investigation of the evolutionary process and its comparison among different cultures. 
Furthermore, it is not straightforward how the antibiotic concentration should be chosen to 
gain maximum insight into the process of resistance evolution: if it is too low, there is 
virtually no selection for resistance; if it is too high, cells cannot grow at all, preventing them 
from evolving at a significant rate. 

Recently developed techniques in which bacteria are exposed to increasing antibiotic 
concentrations solve this problem. Theoretical work suggested that temporal and spatial 
selection gradients can facilitate the sequential emergence and fixation of multiple 
resistance mutations leading to increasingly higher resistance levels (Greulich et al., 2012; 
Hermsen et al., 2012). Consequently, advanced protocols that gradually increase antibiotic 
concentrations in time or space have been developed (Baym et al., 2016a; Toprak et al., 
2013). A notable example is the “morbidostat”: this feedback-controlled device keeps 
cultures growing in exponential phase and automatically increases the antibiotic 
concentration during the experiment such that they keep growing at a pre-defined rate 
despite their increasing resistance. In this way, strong selection pressure for resistance is 
constantly maintained. For some antibiotics, this protocol enabled the highly reproducible 
evolution of a ~1000-fold resistance increase in just a few weeks (Toprak et al., 2012).  

Spatial antibiotic gradients have also been used to speed up evolution experiments. A recent 
study followed evolution on a huge, meter-scale agar plate (the “MEGA plate”) (Baym et al., 
2016a). In contrast to small agar plates where rapid diffusion quickly destroys spatial drug 
concentration gradients, they remain relatively stable on this larger plate. Further, the size 
of the plate allows for large bacterial population sizes that should accelerate the occurrence 
of resistance mutations. Fast resistance evolution reaching extremely high levels within 
weeks was observed for different antibiotics (Baym et al., 2016a).  

Apart from experiments where the antibiotic concentration increases monotonously, 
resistance evolution has been studied under different temporal sequences of single 
antibiotics or in various combinations. For example, an evolution experiment where bacteria 
were exposed to an antibiotic for defined lengths of time interspersed with periods of 
uninhibited growth enabled the evolution of antibiotic tolerant strains, which developed 
longer lag times before starting exponential growth which matched the length of antibiotic 
exposure. This was an extremely successful survival strategy, since the antibiotic used only 
kills growing cells (Fridman et al., 2014). Several studies also explored the evolution of 
strains exposed to antibiotic exposure regimes combining various drugs simultaneously 
(Hegreness et al., 2008) or in sequence (Kim et al., 2014). 

A challenge remains to combine the rigor of setups with highly controlled evolutionary 
parameters, such as the morbidostat, with the statistical power of simple serial transfer 
protocols, in order to successfully perform truly controlled evolutionary screens. 

1.3 Mutation and selection are the main forces determining evolutionary 
dynamics 

In this thesis, we are mainly concerned with mechanisms affecting the evolvability of 
antibiotic resistance. Evolvability, in this context, is the ability of a particular genotype to 
develop antibiotic resistance under antibiotic selection. To understand the ways in which a 
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genotype can affect resistance evolvability, we need to describe the major forces that affect 
adaptation. 

Evolutionary dynamics in general are influenced by the forces of mutation, selection, and 
random drift. Their interplay in particular conditions can be described using mathematical 
models, and quantitative measurements. Both are heavily used in researching antibiotic 
resistance in order to describe, predict and eventually control its spread (Furusawa et al., 
2018; Lukačišinová and Bollenbach, 2017; Palmer and Kishony, 2013). 

The speed of resistance evolution can be defined at the phenotypic and genotypic levels. 
The rate of phenotypic adaptation can be measured as the change in fitness over time 
(Wilke, 2004). In the context of resistance evolution, this would be the change in 
competitive advantage, growth rate or survival under antibiotic exposure. The speed of 
evolution at the genotypic level is given by the fixation or substitution rate. Fixation is the 
event of a new mutation reaching 100% frequency in a population. The fixation (or 
substitution) rate is the rate at which fixation events occur (Hartl and Clark, 2007). This 
measure is related to the phenotypic adaptation rate, though their values can be very 
different. As will be explained below, populations under no selection pressure at all, would 
still have a substitution rate and possibly high (Kimura, 1962). Briefly, this is because pure 
randomness in the number of surviving offspring (termed genetic drift) can cause a relative 
increase in the frequency of a particular genotype which, in the long-run, can lead to a 
fixation event. 

 Mutation rate strongly influences evolutionary dynamics 1.3.1

An important factor that sets the speed of evolution is mutational supply. Spontaneously 
generated genetic variants provide the “raw material” of adaptation. The supply of 
mutations is simply the product of the per-individual mutation rate µ and the population 
size 𝑁. This product is important in determining the rate of adaptation under most 
conditions (Hall et al., 2010; Wahl et al., 2002) 

In the absence of selection (under the neutral model of evolution), the mutation rate sets 
the speed of adaptation independently of population size (Hartl and Clark, 2007). Under the 
neutral model, random fluctuations in progeny numbers and the irreversibility of 
extinction/fixation of any particular mutation can cause the genetic makeup of the whole 
population to change over time. In this case, the fixation probability, i.e. the probability the 
mutation will reach 100% frequency, for any particular mutation is given by its frequency in 
the population. For new spontaneous mutations as they occur, this is 1/N. Since one 
individual mutates with rate µ, the population sees new mutations at the rate Nµ and the 
rate of fixation of new mutations in the population is µ. So under the neutral model, the 
rate of evolution (more precisely fixation of new mutations) is exactly set by the mutation 
rate. 

High mutation rates, however, can also slow down fixation rates. When mutation supply is 
too high, especially when µ is comparable to 1/N or higher, clonal interference occurs 
(Gerrish and Lenski, 1998). Clonal interference means there is competition among lineages 
with beneficial mutations which are spreading through the population. This competition can 
prevent a particular fixation event if, during the spreading of a mutation through the 
population, a fitter mutation appears in a different lineage and overtakes. Such dynamics 
can lead to a situation where, for stretches of time no mutations fix, followed by a fixation 



 

 

of a particular lineage with one or more strong beneficial mutations. Due to the high 
mutation rate, it is common that the successful lineage would carry many other mutations 
apart from the beneficial one(s). Mutations which fix on the background of a different 
beneficial mutation are termed hitchhiker mutations (Barton, 2000; Lang et al., 2013; 
Raynes et al., 2012; Tenaillon et al., 1999). 

Since high mutation rates also mean high deleterious mutation rates, in the extreme case, 
they can cause an extinction of the population by disrupting functions essential for survival 
in every individual. This phenomenon is called error catastrophe and has been described 
theoretically as well as observed empirically in certain viruses (Crotty et al., 2001; Eigen and 
Schuster, 1977; Pariente et al., 2005). 

 

Figure 1 Scheme of resistance evolution dynamics 

A clonal bacterial population becomes genotypically diverse due to mutations. Depeding on the environment 
and genetic background, the fitness effects of these new mutations come from a corresponding distribution of 
fitness effects (DFE). In the scheme, fitness goes from grey (unfit) to orange (fit). Due to selection, more fit 
individuals increase in frequency at the expense of less fit individuals. 

 The distribution of fitness effects strongly influences evolutionary 1.3.2
dynamics 

The second major force determining evolutionary dynamics apart from mutation is 
selection. The relation between mutation and selection is given by the distribution of fitness 
effects (Figure 1).  The distribution of fitness effects (DFE) is the distribution determining the 
probability of a new mutation having a certain effect on survival and/or growth (fitness) 
(Eyre-Walker and Keightley, 2007b). In particular, it gives the proportion of lethal, 
deleterious, neutral and beneficial mutations available to a population. The DFE is defined 
for a particular genotype in a particular environment. Although its form can vary 
considerably, and can be prohibitively laborious to determine, several simplifications are 
common to assume (Orr, 2005). 

One common framework for determining characteristics of the DFE is Fisher’s Geometric 
Model (FGM). In this framework, mutations represent small steps in a multi-dimensional 
phenotypic space. In this space a simple smooth concave fitness function is defined (Fisher, 
1930). In particular, there is one combination of phenotypic values which represents the 
optimal phenotype (maximal fitness). The further one is from the optimum, the lower the 
fitness. In this model, the distribution of fitness effects would be given by the immediate 
neighborhood of a point in the phenotype space and the corresponding fitnesses. In other 
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words, mutations generally cause a predictable change in phenotype, which can then be 
translated to fitness through a smooth function. It can be shown in this framework, that as 
populations approach an optimum, the proportion of beneficial mutations decreases. Also, 
given the concave shape of the phenotype-fitness function, as populations approach the 
optimum, mutational effect sizes tend to decrease. FGM has been successfully used to 
describe this dynamic in microbial evolution experiments (Harmand et al., 2016; Tenaillon, 
2014; Trindade et al., 2012). 

The shape of the DFE, in particular its width was shown to affect the rate of evolution. In 
particular, Fisher’s fundamental theorem states that “The rate of increase in fitness of any 
organism at any time is equal to its genetic variance in fitness at that time” (Fisher, 1930; Li, 
1967). The genetic variance in a population is intimately linked to the fitnesses of mutations 
available to it. If the DFE is extremely narrow, the variance in fitness will be severely limited. 
If the DFE is wide, the more extreme fitnesses will be possible, speeding up adaptation 
(Chevereau et al., 2015; Li, 1967).  

A study argued, that for asexual populations, there is little importance in the particular type 
of underlying distribution, and the effect on adaptation rate can be condensed into one 
parameter (Hegreness et al., 2006). In either case, the typical increase in fitness depends on 
the mutational effects available to the population and is characterized either by the 
variance or its mean effect (Hegreness et al., 2006; Li, 1967). 

In the context of antibiotic resistance, although some DFEs have been experimentally 
measured (Jacquier et al., 2013; Schenk et al., 2012), a systematic study comparing the DFEs 
for various drugs has been lacking. 

1.4 Both mutation rates and the distribution of fitness effects are partly 
determined by the genotype 

The basic parameters of evolution which we focus on here, namely mutation rate and the 
distribution of fitness effects, depend on genotype. Some genotypes which affect resistance 
evolvability are described here, but there may be many more that remain to be discovered. 

 The genotype can determine the mutation rate 1.4.1

Mutation rates can vary by orders of magnitudes for different bacterial species (Lynch, 
2010) but also for different genotypes within the same species. Mutations which increase 
mutation rate can be commonly found in clinical, environmental and laboratory settings 
(Sniegowski et al., 1997; Taddei et al., 1997). Most often these are loss of function 
mutations in mismatch repair genes, for example mutS and mutL. Mismatch of bases 
between the two DNA strands happens often due to damage of one of the strands, 
mismatch repair recognizes such places and exchanges the appropriate base. When 
mismatch repair has a defect, the wrong base from the damaged strand copies into the 
other and cements in the mutation, which can now also be inherited to the next 
generations. In such a way, defects in mutS and mutL genes can cause mutation rates to 
increase 100 to 1000-fold (Schofield and Hsieh, 2003). 

Despite the costs of high mutation rate, mutators can have a strong advantage in certain 
situations and achieve high frequencies in a population (Chao and Cox, 1983). Mutators 
have the greatest advantage in contexts when the population is maladapted to the 
environment, i.e. when mutations can bring a large fitness benefit. When a strong beneficial 



 

 

mutation happens in a mutator background, and rate of recombination is very low (or zero, 
in purely asexual populations), the mutator allele can hitchhike with the beneficial mutation 
and increase in frequency (Tenaillon et al., 2001).  

The dynamics of adaptation as a function of mutation rate has been studied in various 
contexts. However, little attention has been given to the variability of evolutionary outcome 
as a function of mutation rate.  

 Stress-induced mutagenesis is a type of mutation rate variation with 1.4.2
unique potential to influence antibiotic resistance evolution 

There are multiple known mechanisms that result in elevated rates of general mutagenesis 
or an increase in the rate of specific genetic changes during stress. These mechanisms are 
often referred to as stress-induced mutagenesis (SIM) (Bjedov et al., 2003; Rosenberg, 
2001). When encountering a range of environmental stresses, several species of bacteria 
activate SOS responses that – in addition to stimulating various repair mechanisms – 
activate error-prone DNA polymerases, which have been linked to a faster evolution of 
antibiotic resistance (Bjedov et al., 2003; Cirz et al., 2005; Do Thi et al., 2011). This activation 
of error-prone DNA polymerases in response to a wide range of environmental stresses is a 
thoroughly studied SIM mechanism (Bjedov et al., 2003; Devon M. Fitzgerald et al., 2017). 
This mechanism has been linked to faster evolution of antibiotic resistance (Cirz et al., 
2005). 

Since higher mutation rates are beneficial especially when adaptive potential is high, stress-
induced mutagenesis has the potential of providing higher mutation rates when they are 
beneficial, but not incurring them when organisms are well adapted (not stressed) and the 
cost of high mutation is greater. This intriguing dynamic can be especially relevant for 
antibiotic resistance evolvability, since many antibiotics upregulate known SIM mechanisms 
(Cirz et al., 2005). The evolutionary dynamics of such alleles are underexplored, especially in 
the context of more complex antibiotic treatment schemes. 

 Mutational effects depend on genetic background 1.4.3

The DFE generally depends on the genetic background; it can thus change as soon as the 
first mutation has occurred. The general phenomenon where the effect of mutations 
depends on the presence of other mutations is termed “epistasis” (Poelwijk et al., 2016). 
Epistasis can be “global” and affect the whole distribution of fitness effects in a systematic 
way (Kryazhimskiy et al., 2014; Otwinowski et al., 2018). It can also happen among individual 
pairs or small groups of mutations largely independently of other mutations. Measuring the 
extent of epistasis is important for evolutionary predictions because pervasive epistasis 
often leads to multiple fitness peaks and can prevent a population from reaching the global 
fitness maximum (de Visser and Krug, 2014); in particular, this is the case for reciprocal sign 
epistasis where the effect of a mutation changes sign depending on the background 
(Poelwijk et al., 2011). It can also constrain phenotypic adaptation to reproducible outcomes 
(Kryazhimskiy et al., 2014). 

Epistasis can be analyzed using discrete fitness landscapes which are a powerful concept for 
assessing the constraints and predictability of mutational paths in evolution experiments 
(Palmer et al., 2015; Weinreich et al., 2006). A discrete fitness landscape is a graph in which 
the vertices are genotypes, and two genotypes are connected by an edge if they are a single 
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mutational event apart. The landscape is completed by assigning a fitness value to all 
genotypes. Paths on the landscape are accessible by natural selection if they represent 
sequences of genotypes with monotonically increasing fitness, i.e. all mutations along the 
path are beneficial. If only few of the possible paths are accessible, evolutionary trajectories 
become more constrained and predictable. The fitness of all mutations and their 
combinations is experimentally inaccessible due to the astronomically large number of 
possible genotypes, even for short sequences. Therefore, studies have focused on full 
landscape reconstructions of just a few mutations relevant for drug resistance 
(Gabryszewski et al., 2016; Palmer et al., 2015) and proposed biophysical models to predict 
epistatic interactions from protein structure and function (Figliuzzi et al., 2016; Rodrigues et 
al., 2016). 

Certain specific ways in which epistasis affects resistance evolution have been described 
(Gifford et al., 2018; Vogwill et al., 2016). However, a more systematic exploration of how 
various cellular mechanisms can interact with potential beneficial mutations and thus 
constrain adaptation is needed. 

 Aims of this thesis 1.4.4

 Develop a method to quantitatively compare dozens of different genotypes in how 

well they can evolve resistance to antibiotics (Chapter 2) 

 Identify genes that strongly modulate resistance evolvability (Chapter 2) 

 Use population genetic simulations to explore the effects of general dose-response 

characteristics and mutation rate on the evolvability of antibiotic resistance 

(Chapter 3) 

 Find conditions under which a specific evolvability modifier (a stress-induced 

mutagenesis allele) can persist in a bacterial population exposed to periodic stresses. 

(Chapter 4) 

  



 

 

2 Genetically perturbing the evolvability of antibiotic resistance 

2.1 Introduction 

A promising but under-developed approach to counter antibiotic resistance evolution is the 
identification of genetic determinants and cellular mechanisms that do not immediately 
increase a pathogen’s resistance but increase its ability to evolve. In general, evolvability, 
the ability of a genotype to evolve resistance when exposed to antibiotics, can be compared 
among different genotypes by exposing them to the same well-defined selection pressure 
and comparing their evolutionary outcomes. These outcomes can depend strongly on the 
mutation rate of the starting genotype or the distribution of fitness effects of new 
mutations in that particular background.  

A prominent example of a mutation rate altering mechanism which can be inhibited to 
decrease evolvability is stress-induced mutagenesis. It is a mechanism in which bacteria 
increase their mutation rate when exposed to certain stresses including antibiotics (Cirz et 
al., 2005; Devon M. Fitzgerald et al., 2017). Furthermore, highly-mutating strains have often 
been observed in experimental evolution or even clinical settings, with abundant evidence 
that higher mutation rates can significantly speed up resistance evolution (Méhi et al., 2013, 
2014; Sniegowski et al., 1997). In principle, targeted genetic perturbations could affect the 
fitness effects of mutations just like they affect the mutation rate. However, the systematic 
investigation of genetic determinants that alter the evolvability of antibiotic resistance 
beyond mutation rate has so far been limited (Gifford et al., 2018; Vogwill et al., 2016). 

It is clear that mutational effects of new mutations often depend on genetic background – 
the additive model of mutation effects is, although useful as a null hypothesis, a 
simplification. It is not clear to what extent these effects vary in systematic, predictable 
ways, and how this is relevant in particular to antibiotic resistance evolution. One type of 
global epistasis is diminishing returns epistasis, where effects of beneficial mutations 
weaken as fitness approaches a maximum. This is a type of antagonistic epistasis, where 
beneficial mutations have a smaller beneficial effect on backgrounds with higher fitness, 
which would also explain the common pattern from evolution experiments where fitness 
seems to level-off with time, albeit not exactly reaching a plateau (Wiser et al., 2013). Such a 
pattern could be explained by the “running-out” of beneficial mutations where the most 
potent are more likely to fix first. Alternatively, the same beneficial mutations can have a 
lower effect when appearing on a fitter background – diminishing returns epistasis. Several 
recent studies confirm the second explanation in various contexts, including antibiotic 
resistance evolution (Barrick et al., 2010; Couce and Tenaillon, 2015; Kryazhimskiy et al., 
2014). Also, the diminishing returns pattern among beneficial mutations along an adaptive 
trajectory as well as among randomly generated mutations has been observed (Schenk et 
al., 2013; Schoustra et al., 2016). Diminishing returns epistasis is a pervasive phenomenon 
and a type of “global epistasis” which, if well characterized, allows predictions of 
evolutionary outcomes without prohibitively painstaking evaluation of all possible 
mutations and their combined effects.  

A specific cellular mechanism that can have a large effect on the fitness effects of many 
mutations and consequently on evolvability is protein folding. The effects of mutations in 
protein coding sequences often act through a change of the structure of the resulting 
protein and this in turn depends to a large extent on the activity of protein-folding 
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chaperones (Rutherford and Lindquist, 1998). In particular, chaperones provide a buffering 
mechanism, by enabling the folding of peptide chains into their usual conformations despite 
variability in sequence. Their main role in evolvability is thus thought to be through masking 
phenotypic variability (Queitsch et al., 2002; Rutherford, 2003). In certain conditions, the 
chaperones may not fold efficiently, for example in cases of severe heat shock, when 
protein misfolding is more abundant. When the chaperone action is insufficient to fold 
proteins properly, the masked variability is exposed for selection to act on it, possibly 
increasing the speed of adaptation (Rutherford, 2003). Apart from serving as phenotypic 
buffers, chaperones also contribute to the folding of proteins into a functional conformation 
and without them these proteins could become irreparably dysfunctional. In other words, 
the deletion of a chaperone can expose beneficial phenotypic variation, but can also heavily 
skew phenotypes of coding mutations to loss of function. Both have been observed in 
experimental studies (Aguilar-Rodríguez et al., 2016; Kadibelban et al., 2016). 

Apart from the more systematic epistasis phenomena, several idiosyncratic accounts of 
epistatic interactions with beneficial mutations with considerable effect on the course of 
adaptation have been reported in various microbial evolution experiments. One of the 
reported phenomena is that a mutation with relatively small beneficial effect (or even a 
cost) provides a background on which some mutations have a disproportionately strong 
positive effect, sometimes leading to a higher fitness than can be achievable without it 
(Blount et al., 2008). Particular examples relating to antibiotic resistance include several 
strong sign-epistasis interaction between mutations in particular genes important for drug 
resistance: Beta-lactamase (Jacquier et al., 2013) and DHFR (Palmer et al., 2015). Another 
notable example is the observation that the deletion of a global transcriptional regulator 
ampR decelerates adaptation to ceftazidime in Pseudomonas Aeruginosa (Gifford et al., 
2018). It is conceivable that, similarly to the case in Gifford et al. there exist many more 
perturbations to transcriptional regulators which, by changing the expression profile of the 
cell, also modify the phenotypes of many possibly crucial mutations. To extend these 
accounts and discover new mechanisms which modify resistance evolvability, a protocol 
that can, in high-throughput, compare evolutionary outcomes of a broad range of starting 
genotypes is needed. 

A quantitative investigation of antibiotic resistance that could be used to fairly compare a 
broad range of mutants in how well they evolve, requires high replication and protocols that 
tightly control key evolution parameters. A morbidostat-like protocol (see Section 1.2) is 
well-suited to this purpose, especially if done in higher throughput. Firstly, the population 
size and growth rate are tightly controlled as opposed to simpler serial transfer protocols. 
The disadvantages of a simple serial transfer setup include that it is difficult to control the 
population size precisely and thus also the mutational availability. In addition, the 
population is in a complex dynamic environment, often including lag phase, exponential 
growth and entry to stationary phase, as well as severe bottlenecks. Therefore, selection is 
complex and thus mutational effects can be hard to analyze. In the morbidostat, cells are 
growing exponentially throughout the experiment, allowing for a more tightly controlled 
environment, which is likely to lead to higher reproducibility. Second, the protocol tightly 
constrains selection to be purely for antibiotic resistance and thus allows fairer comparison 
between different strains and along longer evolutionary trajectories. A common problem in 
protocols with a fixed antibiotic concentration is that the first resistance mutation comes up 
quickly, increases the growth rate to close to no-drug levels, and then the selection pressure 



 

 

for resistance is comparable to the pressure to grow better in the medium itself. In a 
morbidostat protocol, since the antibiotic concentration is tuned to increase the pressure as 
resistance develops, longer mutational paths can be observed and compared. The 
disadvantage of a classical morbidostat is that it is relatively difficult to perform in high-
throughput since each experiment is a tube which needs to be fabricated and maintained 
separately with its accessories and measuring equipment (Toprak et al., 2013). Biofilms 
often form on the sides of the flask, introducing undesired spatial structure. A realistic 
number of experiments that can be done in parallel is in the lower tens. However, with the 
use of a liquid-handling robot a similar protocol is conceivable in 96-well plates increasing 
the throughput (and size of screen) drastically. 

Here, we aim to identify genes that affect drug resistance evolution, new mutational paths 
to resistance, and ways of blocking or unlocking these paths. To this end, we developed a 
high-throughput experimental evolution protocol that tightly controls both population size 
and selection pressure. We quantified the evolvability of ~100 Escherichia coli single gene 
deletion strains and revealed a general trend of “diminishing returns” where more sensitive 
genotypes increase in resistance faster than resistant ones. We identified several genes that 
have a drastic effect on antibiotic resistance evolvability via altering epistatic relationships 
with common resistance mechanisms.  Our approach lays the foundation for improved drug 
treatments with slower resistance evolution. 

 

2.2 Results 

 Automated high-throughput evolution protocol reproducibly measures 2.2.1
evolvability in highly controlled conditions 

To quantify the dynamics of evolution for many different genotypes and replicates, we 
developed an automatized experimental evolution platform using a dedicated robotic 
system that keeps hundreds of cultures in tightly controlled and monitored conditions 
(Figure 2). In order to maintain high selection pressure for antibiotic resistance over longer 
periods of time, antibiotic concentration is periodically adjusted. Every 3-5 hours, cultures 
are transferred to new 96-well plates where the volumes of medium, drug and culture are 
individually tuned to keep each population in exponential phase and at 50% inhibited 
growth (Figure 2). Keeping the cultures in rich medium and in exponential phase assures 
that the populations are not under nutrient limitation. This together with continually 
adjusting the antibiotic concentration assures that the selection pressure is strong and very 
specifically aimed at faster growth in the antibiotic.  The strong selection pressure allows 
relatively rapid evolution, where up to 100-fold increases in resistance can be observed over 
a period of 10 days.  
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Figure 2 High-throughput lab evolution with controlled population size and selection pressure leads to 
reproducible fast evolution of antibiotic resistance.  

A) Scheme of lab evolution protocol. 96-well plates are shaken in the incubator, the absorbance is measured 
every 10-15min in a plate reader, and the cultures transferred to new plates every 3-5h. When diluting, the 
volumes of culture, drug and medium are individually tuned based on the OD values, such that the OD after 
dilution and the growth rate is always close to the predetermined level (Methods). B) Each dilution, the target 
antibiotic concentration ctarget is calculated based on a dose response curve that maintains the same shape as 
the dose response curve of the ancestral population, but shifts on the log drug concentration axis as the 
population gets resistant. The growth rate since the last dilution and antibiotic concentration in the given well 
(gcurrent and ccurrent) then define the curve from which ctarget can be calculated.  C) Background subtracted OD 
values a log scale over the course of the experiment for 82 wells from a 96-well plate. The cultures are clearly in 
exponential phase continuously. D) Growth rates fitted to the OD during the experiment. Values are normalized 
to growth of the parental strain in no drug. E) The TET concentration in the wells of the parent strain replicates 
during the experiment. The same replicate of the parent strain of the Keio collection is highlighted in black on 
all three plots (C-E). All values are from plate 1 of experiment M1 (See Methods) 

Despite simplifying assumptions used in the protocol, the setup is successful at keeping the 
OD and growth rate within tight bounds throughout the experiment. The antibiotic 
concentration is adjusted at every dilution step based on the assumption that mutations, 
initial single gene deletions as well as mutations acquired during the experiment, only 
change the level of resistance (IC50), but otherwise leave the dose-response curve 
unchanged. The wild-type values are used for the other two parameters of the assumed hill-
shaped dose-response curve, namely, growth rate without drug and the hill-coefficient or 
“steepness” parameter n. The robustness of the steepness of the dose-response curve to 
genetic perturbation is experimentally well-supported (Chevereau et al., 2015; Woods et al., 
2006) and even if a particular strain we are using or particular resistance mutation would 
greatly influence it, the effect would only be that it would take a few more dilutions to get 
to the correct antibiotic concentration. The monotonicity of the curve used to calculate the 
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next antibiotic concentration assures that it will converge to the right value despite small 
errors in the assumed shape of the curve. The success of this protocol can be seen directly 
by looking at how much the measured growth rate throughout the experiment departs from 
the target. The starting strains were chosen to avoid strains with large growth rate defects 
in no drug. Small departures from the wildtype gmax parameter should not affect the 
accuracy of the concentration update greatly, but do affect the effective strength of 
selection pressure for resistance and therefore need to be carefully considered when 
evaluating the speed of adaptation of specific mutants.  

The output of the evolution experiment is a real-time estimate of resistance for each culture 
over the course of the experiment.  Since the antibiotic concentration is continually adjusted 
to reflect the growth rate in the drug and to maintain a 50% inhibition, simply the 
concentration in the well is a good estimate of the IC50. This “on-the-fly” measurement of 
the IC50 agrees well with a standard IC50 measurement performed in a drug concentration 
gradient after the evolution experiment (Figure 3).  

Interestingly, even though evolution is fundamentally a stochastic process, how resistance 
changes over time for evolutionary replicates starting from the same genotype is often very 
reproducible (Figure 3). One reason for this could be a high mutational supply of beneficial 
mutations (Nicoloff and Andersson, 2013; Perfeito et al., 2007), eliminating long waiting 
times for beneficial mutations. Further, the usual bottleneck size is around 1:10 and that is 
close to the calculated optimum for such experiments to minimize loss of beneficial 
mutations (Wahl and Gerrish, 2001). 

 

 

 

Figure 3 Resistance level read out from highly controlled evolution experiment is reproducible and accurate. 

Left: The lacA deletion strain is used as a control in this experiment (M3). The plot shows, on a log scale, the TET 
concentration in the wells of all replicate evolutions starting from the lacA deletion strain. Since the 
concentration is constantly adjusted to yield a 50% reduction in growth rate, the concentration itself is an IC50 

estimate. Middle: Resistance increase (given by TET concentration in the well) is shown for the mutL deletion 
strain, which is a strain with DNA repair defect, causing an increase in mutation rate. Notably, the resistance 
trajectories become very reproducible. Right: The concentration of TET in the well at the end of the experiment 
for many wells is plotted against the fitted IC50 values from measuring the growth rate of the same populations 
in a wide range of TET concentrations (see Methods). The correlation coefficient calculated from the log values 
of the two measurements is given in the title of the plot. 
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 Mutations acquired during evolution largely affect efflux pump 2.2.2
expression and do not depend on genetic background 

Generally, mutations gained during the experiment repeatedly hit the same genes. From 
149 sequenced population samples from approximately the 100th generation, 84% percent 
of all (444) mutations identified were either amplifications including a particular genome 
region, or hit one of the four most often hit genes. The most often hit genes were lon and 
marR. In close succession, comes the amplification of a genome region which includes the 
acrA/B operon (“pumps” in Figure 4), then mutations in the coding region of acrR and 
several mutations in the ybaO (decR) gene. All mutations are consistent with literature apart 
from the ybaO mutations, which we have not found described earlier. In addition to these 
very common mutations, there were 9 types of mutations which appeared in more than one 
sample and 39 other mutations which only happened in one sample each. 

The mutations related to the Lon protease were almost exclusively IS element insertions in 
the promoter. These mutations are known to happen at high frequency in response to 
tetracycline and have been described previously (Nicoloff and Andersson, 2013). The 
resistance benefit is thought to arise from a lowered expression of the Lon protease, which 
increases the expression level of its client MarA, leading to a higher expression of efflux 
pumps.  

In the marR locus, various types of mutations were seen, SNPs, small indels, as well as IS 
element insertions (Figure 4). For 50% of the mutations in marR, especially the IS insertions 
and indels a clear loss of function phenotype would be expected. The SNP effects were less 
clear, though also there, some of the SNPs clearly resulted in a premature stop codon, 
presumably resulting in a loss of function phenotype. MarR is a transcriptional repressor 
known to be involved in multiple antibiotic resistance (Alekshun and Levy, 1997). It is the 
transcriptional repressor of the marA gene, which in turn activates over 30 genes involved in 
oxidative stress response, heavy metal resistance, and also antibiotic resistance (Alekshun 
and Levy, 1999). Importantly, MarA activates several genes coding for efflux pumps, 
including the one most relevant for tetracycline resistance, the AcrA/B-TolC efflux pump 
(Figure 4). A loss of function mutation in this gene therefore causes an upregulation of efflux 
through MarA. 

Next, amplifications in the region from the lon gene to the ybdK gene were detected in over 
40% of the samples. This region includes the acrA/B operon coding for efflux pumps and 
thus is expected to lead to higher levels of transcription due to higher dosage. These and 
similar amplifications have been reported previously (Roemhild et al., 2015; Sandegren and 
Andersson, 2009). In contrast to the other detected mutations, in the case of gene 
amplifications, our sequencing approach (see Methods) cannot distinguish between many-
copy amplifications in a subpopulation and lower copy number amplifications in the entire 
population. Therefore, even though the other mutations described in this section can be 
considered fixed in the population, the amplifications are at unknown frequency. Due to the 
possible fast rate of extension and disappearance of amplifications, back-mutations might 
be much more frequent in this case (Sandegren and Andersson, 2009). Therefore, it might 
even be the case that when we sequence at the end of the experiment, a previously fixed 
amplification is already deleted in a part of the population.  

 



 

 

 

 

Figure 4 Mutations often hit the same genes involved in regulation of efflux pump expression.  

A) Counts and types of fixed mutations found in evolved strains grouped by gene locus where they occurred. 
Only genes which were hit at least twice in our dataset are shown. B) Histogram of number of mutations 
detected in each evolved sample. The gray bars represent the number of mutations found in control strains i.e. 
the keio parent strains or the lacA strain. The typical number of fixed mutations for control strains is 3 or 4. 
Since the selection sent for sequencing was biased toward slowly evolving strains, the overall counts are biased 
to fewer mutations. C) The loci of the five most common mutations are shown in this scheme as stars. 
Amplification of a genome region is shown as several yellow lines across the region with a star attached. Big 
arrows are genes, squares with pointing arrows are transcriptional activators, squares with blunt arrows are 
transcriptional repressors and the Pacman shape is a protease cleaving the transcription factor.  The top of the 
diagram shows an AcrA/B-TolC pump in the membrane. 

AcrR is another transcriptional repressor of the AcrA/B pumps and of the mar operon and 
35% of the sequenced samples had a mutation in the acrR coding region. The acrR gene is 
right next to the acrA/B operon on the genome, but transcribed in the opposite direction 
(Figure 4). They have overlapping promoters, but also, the binding region of marA overlaps 
with the acrR coding sequence. This means, that mutations close to the start of the coding 
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sequence could interfere with MarA binding and lower efflux pump expression, whereas 
loss of function mutations in the later part of the sequence would increase efflux pump 
expression by interfering with AcrR function, without incurring the cost of disrupting the 
MarA binding site. Consistent with this prediction, the mutations observed are only in the 
coding region and avoid the 5’ end of the coding sequence. The proximity of acrR to acrA/B 
also means that the acrR gene is amplified together with the pumps when gene 
amplification happens. This means that the acrR mutation is extremely unlikely to happen 
after the amplification, since it would have to hit both (or more) copies of the gene to have 
an effect. Consistent with this idea, almost none of the samples where the “pump” 
amplification is present have an acrR mutation. This sole consideration does not explain 
though, why samples where acrR mutations occurred first, did not subsequently amplify this 
genomic region. 

The gene which is next in the order of number of mutations which hit it is ybaO (or decR). 
This transcription factor only has one known binding site, which is within the promoter of 
the cyuP operon coding for cysteine detoxification genes. We are not aware of this mutation 
having been reported as a resistance mutation previously or seen in comparable lab 
evolution experiments (Toprak et al., 2012). The exact mutations are interestingly very 
reproducible. One example is a one base pair insertion in the promoter, which is probably a 
result of slippage, where a stretch of 7 adenines is extended to 8. This mutation occurs 
within the promoter (σ70 binding site) of ybaO, possibly prohibiting transcription initiation. 
Another common mutation occurs within the coding region of the gene. It is an in-frame 9 
nucleotide insertion within the conserved DNA-binding HTH domain, presumably affecting 
the activity of the regulator. Several non-synonymous SNPs are also present, some of them 
(like T18P and T33P) occur repeatedly, and several are clearly loss-of-function mutations 
(premature stop codons). Since about 15% of the mutations are clearly loss of function 
(frame-shifting insertion or premature stop codons), we speculate that the ones with 
unclear effects are also loss of function. The effect of these mutations will therefore likely 
be comparable to a deletion of the gene. 

Loss of function mutations in the outer membrane porin gene ompF also happened 
repeatedly, though much less often compared to the previous five (Figure 4). Mutations in 
this gene have been reported before and are thought to reduce the uptake of tetracycline 
into the cell, decreasing the intracellular concentration of the drug (Fernandez and Hancock, 
2012). 

Generally, the great majority of mutations detected in our lab evolution experiments have 
been described before (with the notable exception of ybaO mutations) and most of them 
are known to cause increased expression of AcrA/B efflux pumps. Therefore, in the 
tetracycline experiments, what we describe as “resistance” is, mechanistically, to a large 
extent the expression level of efflux pumps. 

 Diminishing returns epistasis in evolution experiments using constant 2.2.3
antibiotic concentration 

In experiments where populations adapt to fixed antibiotic concentrations, a diminishing 
returns dynamic would be expected, where less fit genotypes see higher relative increases 
in fitness compared to more fit genotypes (Couce and Tenaillon, 2015). Our preliminary 
experiments confirm this.  



 

 

We conducted simple serial transfer experiments in trimethoprim in M9 supplemented 
medium and in LB medium (see Methods). In both cases, one could see the diminishing 
returns dynamic (Figure 5). In these experiments, evolution starts from a selection of single 
gene knockouts, which is chosen to represent the whole scale of antibiotic sensitivity levels. 
As the separate populations have time to adapt to the medium – spontaneous mutations 
arise and fix – the growth rate of the population increases. The faster the growth rate, the 
smaller potential there is for increasing it further and the fitness levels off. 

The data suggests that the negative epistasis relationship holds between random (single 
gene deletions) vs beneficial mutations as well as among the beneficial mutations that fix 
during the experiment. This can be seen comparing the initial growth rate of the deletion 
strains vs their fitness increases as shown in Figure 5, and comparing that to a relationship 
between early increase and late increase in growth rate. The latter plot corresponds to a 
well-known pattern from lab evolution experiments, where fitness increases level off when 
given enough time.  

A simple explanation for this phenomenon could come directly from the DFE and dose-
response relations described in (Chevereau et al., 2015). It was shown, based on exhaustive 
measurements of all single-gene deletion strains, that the distribution of resistance effects is 
more stereotypical than the distribution of fitness effects. It follows, that when predicting 
the adaptation of the population, one would consider that a new mutation moves a 
predictable step in resistance space. This would be consistent with a 1-dimensional version 
of a Fisher’s geometric model. If the magnitude of the step taken in resistance space does 
not change as populations adapt, the changes in associated fitness (growth rate) would 
change, simply because of the shape of the dose response curve (see Chapter 3). In general, 
the shallower the dose response curve, the narrower the DFE. As populations adapt to a 
constant antibiotic concentration, they “move up” the sigmoidal dose-response curve, 
causing a decrease in DFE width. This, in turn, decreases the expected benefit of a new 
mutation, explaining the diminishing returns dynamic.  

 

Figure 5 Hallmark of diminishing returns during adaptation to a fixed concentration of trimethoprim.  

A-B) Initial growth rate in doublings per hour vs. fold increase in growth rate over approximately 7 days. Each 
data point is a mean value of three replicate evolution experiments starting from the same initial genotype and 
plotted on a log-log axis. Clear decreasing trend shows that strains with lower initial growth rate increase their 
growth rate more than strains starting with a higher growth rate. A) and B) use data from experiments in M9 
supplemented medium and LB medium respectively. C) Growth rates over generations from the LB-TMP 
experiment. Three example curves are shown in black to highlight the saturating shape. Growth rates 
normalized to the growth rate in no drug for that particular strain. 
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 Diminishing returns epistasis is observed at the level of antibiotic 2.2.4
resistance 

In experimental evolution protocols akin to a “morbidostat”, there are no grounds for 
observing a diminishing returns dynamic based on growth rate, such as in the previous 
section which would be due to the population nearing a growth rate optimum. In 
“morbidostat” experiments, antibiotic pressure is dynamically adjusted to counteract the 
resistance that evolves. That is, when growth rate increases due to resistance mutations, 
the protocol, by changing antibiotic concentration effectively returns the growth rate to its 
original distance from the optimum. Therefore, a diminishing returns dynamic would not 
necessarily be expected. 

However, one could observe diminishing returns dynamics if the optimized phenotype is not 
growth rate, but resistance, which is what a morbidostat setup selects for. The observation 
that resistance increases seem to level off in setups which challenge cells with ever-
increasing concentrations has been made for some antibiotics (Toprak et al., 2012). This 
implies that cells with existing strong beneficial resistance mutations have less potential to 
adapt. The leveling off effect could simply be due to the “running out” of strong resistance 
mutations. There could also be a hidden phenotype in which the mutational changes tend to 
have a stereotypical “step size”. This phenotype is then mapped to resistance in a similar 
way to how resistance is mapped to growth rate in the previous section. In this way, many 
simple monotonic functions which would link the hidden phenotype to resistance would 
produce a diminishing returns pattern at the level of resistance. 

To test whether a general trend of diminishing returns epistasis can be observed at the level 
of resistance, we made a selection of 100 different gene deletion strains and compared their 
increase in resistance when propagated in the same automatic experimental evolution 
setup. The selection contains strains with defects in a broad range of cellular mechanisms 
(Figure 6). About half of the genes were chosen because the mechanism impaired is 
expected or speculated to have an effect on evolvability. This hypothesis-driven selection 
includes deletions of genes with altered mutation rates: DNA mismatch repair (Jolivet-
Gougeon et al., 2011), SOS response (Cirz et al., 2005), and oxidative stress response (Méhi 
et al., 2014).  Further, it includes deletions of known resistance mechanisms (efflux pumps) 
and other functions that are thought to interfere with the distribution of fitness effects of 
available mutations: protein folding, transcription factors, membrane composition (see 
section 2.1). The rest of the deletion strains were chosen to represent a broad range of 
pathways expressed in rich medium and deletions of which have negligible fitness costs. The 
latter is important, because a lower growth rate in no drug (maximal growth rate of the 
dose response curve) would translate to a weaker selection pressure on resistance, which 
would slow down the expected adaptation rate for reasons different from the ones we are 
interested in here. 

We used the automated setup described in Section 2.2.1 to evolve tetracycline resistance 
for the selection of single-gene deletion strains and we observed a hallmark of diminishing 
returns epistasis at the level of drug resistance: Strains with higher initial resistance undergo 
lower resistance increases during the experiment compared to strains with lower initial 
resistance Figure 6. Many gene deletions alter antibiotic resistance (Chevereau et al., 2015; 
Nichols et al., 2011). Thus, the evolution experiment is started from many different initial 
resistance levels represented by different deletion strains. However, after 180 hours of 



 

 

intensive antibiotic exposure in our evolution setup, these differences largely evened out: 
Strains with an x-fold lower initial resistance (IC50) than the wild type tend to increase their 
resistance by x-fold more in the evolution experiment Figure 6. This pattern supports the 
existence of a relatively hard upper bound for the absolute resistance level, which limits the 
relative resistance increase that is achievable as populations approach this upper bound.  

 

Figure 6 Diminishing returns at the level of antibiotic resistance when comparing resistance increases in a 
broad selection of single gene deletion strains.  

A) Cellular mechanisms represented in the deletion strain selection. B) Gene names which were selected. The 
arrangement in A) and B) is the same for easy lookup of genes and their functions. C) Mean fold resistance 
increase after 180 hours of running the experiment plotted against the mean initial resistance for each deletion 
strain. The strains are named by the gene which is deleted (‘lacA’ is ΔlacA). The final and initial resistance 
measures for each replicate are the mean TET concentrations for appropriate time windows (~12-24h for initial 
and ~170-180h for final resistance). Only those data points were used where the normalized growth rate was 
between 0.3 and 0.7. A line proportional to y=x

-1
 is shown to indicate the steepness of the slope the points 

would fall on if all experiments reached the same maximum resistance level irrespective of starting conditions. 
D) Fold resistance over time for replicates of three strains highlighted in C.) The control (lacA) resistance over 
time trajectories are plotted in gray for comparison. To compute the relative increase, the resistance values 
were divided by the mean initial resistance values of all replicate evolutions of that strain. This figure uses data 
from experiment M2 (see Methods). 

 Several outliers to the diminishing returns trend represent particular 2.2.5
ways to strongly perturb resistance evolution 

Many deletion strains follow the diminishing returns dynamics trend, but several strains are 
strong outliers: their different increases in resistance could not be explained by their initial 
resistances. These would be those that perturb resistance evolvability in a particular way 
and represent cellular pathways, which, when inhibited, could modulate the potential of 
bacteria to evolve resistance. In particular, mutators, strains with perturbations to efflux 
pumps and their regulation, strains with chaperone deletions and a few idiosyncratic 
mutants were observed to strongly affect resistance evolution. 

To confirm the effects of these mutants, which, in the first experiments were only evolved in 
triplicate, the experiment was repeated with a selection of the most interesting strains in 8-
12 replicates. We also added a few chaperones and efflux pump related deletion strains. 

A 
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Generally, the outcomes from the two experiments matched very well. In the following 
sections, the results will include data from both experiments. 

 

Figure 7 Overall diminishing returns pattern sees several strong outliers.  

A) This is the same plot as in Figure 6C. The highlighted examples represent outliers. B) Fold resistance increase 
over time (on a log scale) for selected highlighted outliers. Control (lacA) resistance over time trajectories are 
plotted in gray for comparison. The strains are named by the gene which is deleted (‘lacA’ is ΔlacA). To compute 
the relative increase, the resistance values were divided by the mean initial resistance values of all replicate 
evolutions of that strain. This figure uses data from experiment M2 (see Methods). 

 Genetic perturbation of efflux pumps drastically reduces the 2.2.6
evolvability of resistance to tetracycline 

Considering that the great majority of mutations were related to the regulation of multi-
drug efflux pumps, we were curious to find out what happens when the composition or 
regulation of these is perturbed. One could imagine several scenarios. Generally, when 
efflux pump expression or function is compromised, the bacteria are much more sensitive to 
tetracycline. So, based on the diminishing returns dynamic observed for other genes, it 
would be expected the cells are much further from the imagined optimum resistance, and 
adaptation would thus proceed faster. On the other hand, deleting a gene crucial for this 
particular resistance mechanism could effectively block the whole resistance scenario and 
force the cells to either find a different (likely with more modest resistance gains) path or 
not evolve at all. This would also mean that the main (or even only) path to resistance of our 
strains in our setup is fragile enough to be blocked by the perturbation of a single gene. 

Indeed, the resistance to tetracycline can effectively be blocked by deleting single genes 
acrA or tolC coding for components of the major AcrA/B-TolC efflux pump. The most drastic 
effect can be observed for ΔtolC in tetracycline, where all 7 replicates of the evolution 
experiment saw no increase in resistance. Only one fixed mutation was detected in one of 
the replicates. This was a single base-pair substitution in the promoter of the yhdJ gene, 
which also happens to be the terminator sequence of the neighboring fis gene. Since the 
replicate showed no increase in resistance, and no other sequenced sample had a mutation 
in that locus, we do not expect this mutation to be a resistance mutation.  For ΔacrA, we 
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observed one replicate (out of 5) which evolved to a relevant resistance level. This mutant 
had a IS element insertion close to the acrE promoter region and an amplification including 
the acrE and neighboring acrF genes, in addition to the typical lon and marR mutations. This 
could have led to the upregulation of acrE/F genes. The gene acrE has 65% sequence 
similarity with the acrA gene and the product also forms an efflux pump with AcrF and TolC 
(Jellen-Ritter and Kern, 2001; Kobayashi et al., 2001). This is an example of an alternative 
resistance path when acrA is deleted. This alternative path has been observed in 
experiments previously (Kobayashi et al., 2001). The existence of such alternative paths for 
other deletions, highlights the uniqueness of ΔtolC, for which no resistance evolution was 
detected. 

We also tested the deletions of other efflux pump systems, some of which share the 
regulation with AcrA/B-TolC and could therefore contribute to resistance. None of these 
deletions seemed to significantly perturb resistance evolution (Appendix Figure 27). 

The deletion of marR causes the cells to be initially more resistant to tetracycline and adapt 
slower. The initial resistance is expected, since MarR is a negative regulator of MarA, which 
is the main activator of several efflux pumps including the AcrA/B-TolC pump, so its deletion 
causes transcriptional upregulation of the pumps. Also, many of the evolved strains have 
loss of function mutations in this gene. Under the experimental evolution protocol, it gains 
mutations in the same (remaining) genes as the other strains and the final resistance levels 
are also comparable to the control strains. This suggests that the deletion mimics one of the 
expected mutations and evolution proceeds the same as in most other strains, just with the 
marR mutation always happening first. 

The deletion of marA causes a slight increased sensitivity to tetracycline initially, followed by 
only modest increases in resistance. Since MarA is an important activator of efflux pump 
expression, albeit not the only one, a slight decrease in resistance as a result of the deletion 
is expected. The resistance increases are variable, with two replicates almost incapable of 
adapting and four replicates reaching relatively low but significant resistant levels. The four 
replicates which evolve more all have a soxR mutation whereas the ones that do not evolve 
don’t have it. Since SoxS (repressed by SoxR) is a transcription factor with a large target 
overlap with MarA, and the mutation in soxR is relatively rare for other ancestral strains, it is 
likely that these mutations are compensatory mutations. Still, even with the compensatory 
mutation, the final resistance levels reached are significantly lower than those that control 
strains can reach. The very common and potent loss of function mutation in marR is 
expected to have an effect on resistance through the de-repression of marA. By deleting 
marA, it is expected that the cells do not gain any marR mutations anymore and thus have 
limited available fitness gains. It is of interest though, that the observed increase in 
resistance of the ΔmarA strain is smaller on average than the increase in resistance of the 
ΔmarR strain, so the hindrance in adaptation cannot be purely due to the missing marR 
mutation. Indeed, the evolved populations also did not fix the ybaO or acrR mutations which 
could be due to the fact that this as well is only beneficial in presence of MarA activators. It 
is likely that deleting marA also lowers the beneficial effects of other mutations.  

The deletion of acrR causes an initial sensitivity to tetracycline and compromises resistance 
evolution. It may seem paradoxical that a loss of function mutation in acrR is very common 
in the evolved strains, but a deletion of the gene causes the cells to be more sensitive. This 
discrepancy can be explained by the fact, that the N-terminal region of the acrR coding 
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sequence contains the promoter for the neighboring acrA/B genes (Figure 4). Thus, the 
deletion of the whole gene has a combined effect of deleting a repressor (acrR), but also an 
activator binding site. In line with this observation, the loss of function mutations happen 
closer to the C-terminal region of the gene, compromising AcrR function, but keeping the 
promoter intact. In terms of adaptation rate, we speculate that the relatively modest 
increase in resistance is due to the smaller effect of the same resistance mutations. For 
example, with a missing MarA binding site in the acrA/B promoter, the marR mutations can 
only increase efflux pump expression by regulating other pump components, for example, 
TolC. In addition, AcrR is also a repressor of marA, so the deletion strain might have lower 
marA expression, further interfering with mutations which act through MarA. 

The Lon protease deletion strain initially has a higher resistance to tetracycline on average, 
but then reaches very similar resistance levels compared to controls. This points to a similar 
scenario as in the ΔmarR strain. The populations behave the same as in controls, except that 
the lon mutation happened first. 

 

Figure 8 Strains with deletions of efflux pump components or regulators show reproducibly impaired 
adaptation.  

Fold resistance over time for several strains with deletions of genes related to efflux pumps. The control (lacA) 
resistance over time trajectories are plotted in gray for comparison. To compute the relative increase, the mean 
initial resistance values of all replicate evolutions of that particular strain were used. The text in the upper left 
of the plot indicates loci of mutations found in the evolved strains written in order of frequency. Larger font 
indicates a more common mutation: font size is equal to 8 + (x*4), where x is the proportion of sequenced 
strains which had a mutation in the given locus. Gray lines show resistance over time for control (lacA) replicate 
experiments. The number of sequenced samples is given in the lower right corner of each plot. 



 

 

 Perturbing chaperones can slow down resistance evolution 2.2.7

The deletion of genes for certain chaperones, especially dnaK, coding for the bacterial 
Hsp70 chaperone, consistently hinders the evolution of resistance. As explained in Section 
2.1, chaperones play a role in various different hypotheses for how evolution rate can be 
changed. In general, the expectation is that since chaperones are responsible for folding 
proteins, interfering with their function can strongly influence the effects of mutations in 
coding regions. If they normally mask mutations by folding proteins to the usual 
conformation despite mutations, perturbing their function may mean that new mutations 
are uncovered and evolution could proceed faster. We do not see evidence of this in our 
experiments. We do see, however, a major slowdown in evolution for the deletion strain of 
dnaK and a modest slowdown for the deletion of its co-chaperone DnaJ. This is likely to be 
due to epistasis with the available resistance mutations. Outer membrane proteins are 
enriched among clients of dnaK and tolC is among them. The possible link could therefore 
be that a portion of expressed efflux pumps do not get folded into a working conformation 
and thus the same mutations have beneficial, but weaker effects. This is also consistent with 
a smaller number of fixed mutations on average in these evolved strains. 

The ΔhslU and ΔhtpG strains do not show extremely different adaptation trajectories. The 
hslU gene codes for a protein with combined protease and chaperone activity. The deletion 
strain has slight sensitivity to tetracycline to begin with and keeps this difference in 
sensitivity until the end of the experiment. The htpG gene codes for the Hsp90 chaperone 
often cited in the context of mutational buffering (Karras et al., 2017; Rutherford, 2003). The 
deletion of htpG seems to have no effect in our experiment. It shows that not all chaperones 
affect resistance evolution greatly, but the DnaK/J system is a special case.  

 

Figure 9 Perturbing chaperones can slow down resistance evolution. 

Resistance (IC50 in µg/ml) over time as estimated by the tetracycline concentration in the well during in the 
automatized evolution protocol is shown for four chaperone deletion strains from experiment M3. The text in 
the upper left of the plot indicates loci of mutations found in the evolved strains written in order of frequency. 
Larger font indicates a more common mutation: font size is equal to 8 + (x*4), where x is the proportion of 
sequenced strains which had a mutation in the given locus. Gray lines show resistance over time for control 
(lacA) replicate experiments. The number of sequenced samples is given in the lower right corner of each plot. 



25 

 

 Interference with lipopolysaccharide synthesis and protein transport 2.2.8
can hinder evolution 

Lipopolysaccharide (LPS) is a major component of the outer membrane in gram-negative 
bacteria and perturbations of it can lead to increased permeability of the membrane (Gunn, 
2001). Two strains with deletions in genes coding for different steps in the LPS synthesis 
pathway (ΔlpcA and ΔlpxM) start off slightly sensitive and then reach significantly lower 
levels of resistance than controls. In addition to sensitizing strains to antibiotics, 
perturbations of the composition of the membrane could also influence efflux activity and 
thus could interfere with the effects of resistance mutations. A recent study indicates that 
just perturbing the assembled LPS layer does not change efflux activity (Misra et al., 2015). 
Another speculative link to efflux could also be that some efflux pumps are used to 
transport LPS precursors and the pumps could be “clogged” by incorrect products of the LPS 
synthesis pathway. Either way, a mechanistic explanation would require further 
experiments. 

The ΔlpcA strain evolved only approximately two-fold resistance to tetracycline, despite 
fixing several mutations. In all replicates of the ΔlpcA strain, the antibiotic concentration in 
the well seemed to be imprecise compared to the other strains (Figure 10). The reason for 
this could be that the strain has a several hours long lag in reacting to the antibiotic. Also, it 
could be that the real dose response curve of the mutant is steeper than assumed in the 
protocol. Whichever the reason, the level of inhibition remained 50% on average and 
despite this, much lower resistance levels were reached than for the other strains (Figure 
10). 

 

Figure 10 Lipopolysaccharide synthesis mutants impede resistance evolution.  

A) and B) Resistance (IC50 in µg/ml) over time in the automatized evolution setup for the lpcA and lpxM deletion 
strains is shown. The text in the upper left of the plot indicates loci of mutations found in the evolved strains 
written in order of frequency. Larger font indicates a more common mutation: font size is equal to 8 + (x*4), 
where x is the proportion of sequenced strains which had a mutation in the given locus. The gray lines show 
resistance over time for the control (lacA) strains. Data is pooled from experiments M2 and M3. C) Growth rate 
(blue) normalized to control strain in no drug and tetracycline concentration in well in µg/ml (red) is shown for 
the lpcA deletion strain. 
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 Deletions of genes involved in mismatch repair and the deletion of 2.2.9
ybaO reproducibly leads to faster adaptation 

If adaptation rate is limited by the waiting time for the next beneficial mutation, an increase 
in mutation rate will lead to faster adaptation. In many of the adaptation trajectories, 
resistance increases tend to be step-like. This suggests that indeed, some time is spent 
waiting for the next mutation to arrive. Using the ΔmutL and ΔmutT strains, one can test this 
and see if increasing the mutation rate is helpful for speeding up adaptation. The mutator 
strains evolve about as fast as the fastest controls (Figure 11). Therefore, on average, higher 
mutation rates speed up adaptation in our set up, they do not, however, display adaptation 
rates that go beyond what is observed for the control strain. 

The ybaO deletion strain shows signs of positive epistasis with the usual resistance 
mutations. The ybaO gene was a common target of mutation in the sequenced samples 
(Figure 4) and some of the mutations were clearly loss of function (see Appendix). 

 

Figure 11 Examples of strains which on average adapt faster than controls.  

IC50 (TET concentration in well during experiment) over time is shown for mutT, mutL and ybaO deletion strains. 
For the ybaO strain, also the mutations detected in the evolved strains are shown. These correspond extremely 
well to the mutations in evolved controls. 

 

 Evolution in chloramphenicol shows similar trends to tetracycline 2.2.10
experiments 

In order to test the generality of our results from the experiment in tetracycline, we have 
extended our experiments with a lab evolution protocol in chloramphenicol. The two drugs 
both target the ribosome, although tetracycline targets the 30S and chloramphenicol the 
50S subunit. In terms of resistance mutations which occur in lab evolution experiments, 
both antibiotics prevalently see mutations related to efflux pumps. Apart from the ones that 
occur for tetracycline, there are also mutations within the coding region of acrB, potentially 
making the efflux pump more permeable to the drug and mutations that potentially 
increase the expression of the mdfA (or cmr) pump. It is interesting to note that populations 
evolved to CHL are also resistant to tetracyclines to a comparable level to those populations 
evolved to tetracyclines and populations evolved to a tetracycline also have significant 
resistance to chloramphenicol (Lázár et al., 2014; Toprak et al., 2012), confirming the 
similarity of the respective resistance mechanisms. There is a large contrast though, in terms 
of how resistant E.coli can get over 2-3 weeks in morbidostat-type experiments. Whereas 
the usual IC50 changes achieved with tetracycline are around 10 to 50-fold, the resistance 
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gains observed for chloramphenicol can be up to 1000-fold (Toprak et al., 2012). Therefore, 
the two drugs are comparable in terms of mechanism of action and resistance, but there is 
reason to believe their evolutionary dynamics to be radically different.  

 

Figure 12 Mutations found in samples evolved to chloramphenicol.  

A) Counts and types of fixed mutations found in evolved strains grouped by gene locus where they occurred. 
Only genes which were hit at least twice in our dataset are shown. “Several” refers to amplifications of regions 
which include more than one gene. B) Histogram of number of mutations detected in each evolved sample. The 
gray bars represent the number of mutations found in the control (lacA) strain. 

The overall pattern of CHL resistance evolution in our experiment is a fast and relatively 
steady increase (Figure 13B). This is in stark contrast to the evolution of TET resistance, 
where a clear slow-down in resistance increase is noticeable for a majority of strains Figure 
6. Therefore, it is unclear whether the diminishing returns pattern would also be noticeable 
for this very different dynamic. Indeed, no clear negative trend can be seen when plotting 
increase over initial resistance, and the average fold increase over the second half of the 
experiment is not lower than the average fold increase over the first half of the experiment 
(data not shown). 

These results are still consistent with chloramphenicol mutations exhibiting diminishing 
returns epistasis, despite not observing the pattern in our data. Considering the 
non-saturating resistance increases for a great majority of strains, the experiment was 
probably simply not run long enough to start seeing the diminishing returns effect. 



 

 

 

Figure 13 Experimental evolution in CHL does not show clear signs of diminishing returns.  

A) Mean fold resistance increase after 180 hours of running the experiment plotted against the mean initial 
resistance for each deletion strain. Mean values are taken over replicates of same deletion strain. The final and 
initial resistance measures for each replicate are the mean CHL concentrations for appropriate time windows 
(~12-24h for initial and ~170-180h for final resistance). Only those data points were used where the normalized 
growth rate was between 0.3 and 0.7. A line proportional to y=x

-1
 is shown to indicate the steepness of the 

slope the points would fall on if all experiments reached the same maximum resistance level irrespective of 
starting conditions. Mutator strains and control lacA strain is highlighted. B) Resistance increase over time for 
lacA strain in CHL shows steady increase over the timeframe of the experiment. Replicates which were also sent 
for sequencing are highlighted in black.  

The chloramphenicol experiment consisted of comparing the same 98 Keio collection 
mutants which were used in the TET experiment, in triplicates, in our automated setup for 
10 days. The effects in the two drugs were correlated (Correlation coefficient 0.77). The 
correlation was especially driven by the extremes, which were common to both antibiotics: 
mutator strains (ΔmutT and ΔmutL) adapted faster and previously mentioned strains such as 
ΔtolC, ΔdnaK and ΔmarR adapted less in both antibiotics (Figure 14).  

Interestingly, the resistance increase seems to be larger for the ΔmutT strain than for ΔmutL 
although both of them have been reported as similarly strong mutators. This is likely to be 
due to the importance of mutational spectra in resistance evolution (Couce et al., 2013). 
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Figure 14 Similar strain-specific effects on adaptation can be seen in CHL as were seen in TET.  

Upper left: fold increases in resistance normalized to the mean fold increase in resistance for the control strain 
(lacA) shown in black. The correlation coefficient is given in the title of the plot. The remaining plots show 
examples of resistance increase over time for CHL for strains highlighted in the upper left plot. Even though the 
mutT plot seems to show a saturation of the resistance, this is not what happened, the concentration needed to 
keep the strains inhibited simply reached the stock concentration used on that day. 

 Quantitative model suggests that differences in extent of adaptation 2.2.11
are mainly due to epistasis between the deleted gene and the 
resistance mutations 

Our speculations that epistasis with resistance mutations is the driver of our strongest 
evolution inhibiting effects need to be further supported. One way to do this is to use the 
plentitude of sequencing data combined with the resistance levels measured in our 
experiment and attempt to predict the resistance benefit of each mutation. Having 
estimated the usual benefit brought about by the mutations, we can then find the deletion 
strains on whose background these mutations have a smaller (or larger) than expected 
resistance benefit. This will point to magnitude epistasis between the deletion and the 
acquired mutations. 

To first obtain the predicted resistance benefits of the most common mutations, we 
constructed a simple linear regression model to predict resistance effects from sequence. 
The main simplifying assumption we have made, is that all mutations that happen in the 
same gene and all amplifications (of a similar region) have the same effect on resistance 
and, for the purposes of this model, we consider them to be the same mutation. Further we 
assume that those mutations that happen only once have no effect on resistance, i.e. 
resistance can be predicted well from the presence or absence of the 5 most common 
mutations. 



 

 

The null expectation is that the effects of mutations on resistance are additive on a log 
scale, i.e. each mutation brings a fixed relative resistance increase irrespective of which 
other mutations are present. Therefore, the log resistance y can be expressed as a linear 
model: 

𝑦⃗ = 𝑏0 + 𝑏⃗⃗ ∙ 𝑥⃗ + 𝜖, 

where 𝑦⃗ is the log of the increase in resistance observed for the individual evolving 
populations, 𝑏0 is a fitted coefficient corresponding to the resistance increase common to all 

evolved populations not predicted by the 5 most common mutations,  𝑏⃗⃗ is the vector of 
fitted coefficients which correspond to the effects of the individual mutations, 𝑥⃗ is a vector 
of 1s or 0s determining the presence or absence of that particular mutation in the given 
evolved population. 

Using the mutations from the complete collection of our sequenced strains evolved in 
tetracycline and predicting the log increase in resistance, our simple model can account for 
55 percent of the variance (see Methods). The unexplained variance can stem from three 
major sources apart from measurement error. The first is the deviation from our assumption 
that mutations in the same gene really have the same effects. The second is that even if the 
different mutations that occur in the same gene are indistinguishable, they can interact 
either with the initial deletion or among each other, and therefore have different effects in 
different contexts. And the third is the contribution of mutations which are not included in 
the model, and, if present, their potential beneficial effects get falsely attributed to the 
common mutations we model or to the first fitted coefficient, which represents the 
resistance increase with no mutations. 

Related to the third source of error, we indeed see the first coefficient (𝑏0) is non-zero and 
the fitted value is around 1.35 which is the same order of magnitude as the fitted 
mutational effects. It represents the average effect of the idiosyncratic mutations which do 
not occur repeatedly in the samples, but are still likely to have significant effects on 
resistance. Possibly, this value can also include increases in resistance due to longer-term 
gene expression changes which are not the result of mutations.  

Despite these limitations, we can look at the approximate predictions of the effects of each 
mutation and see whether they correspond to what we would expect. The marR mutation is 
predicted to have the largest effect of the mutations included in the regression and it is also 
one of the two most common mutations.  The lon and ybaO mutations are also predicted to 
have pretty strong effects and their p-values suggest their effect on resistance is significant 
(10-9 and 10-5 respectively). Interestingly, the fits of the acrR and pump amplification 
mutations do not have significant p-values despite occurring very frequently. A version of 
the regression analysis which included the ompF mutation (which occurred in 8 evolved 
samples) also did not attribute a significant p-value (p>0.1 Student’s t-test) to the effect of 
this mutation. It is very unlikely that mutations which happened repeatedly would bring no 
resistance benefit, it is therefore puzzling that no significant effect was found in this 
analysis. It shows that indeed, the simple linear model of mutational effects of only the 
most common mutations is a gross simplification. 
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Figure 15 Linear regression model fitting resistance increase shows epistatic effects between resistance 
mutations and initial genotypes.  

The real vs fitted log resistance increase is shown. For the prediction, the 5 most common mutations were 
considered in this order (coefficients b2-b6): marR, lon, pumps, acrR, ybaO. The black circles represent control 
(lacA) strains. ybaO, lpcA and dnaK samples are highlighted to show that their predicted effects systematically 
depart from predictions. 

Using this model, we can now compare the expected and real resistance increases based on 
the acquired mutations for each sample. Interestingly, those deletions which we identified 
as slow evolvers (ΔdnaK, ΔlpcA) consistently show lower resistance increases compared to 
the model prediction and one notable outlier which evolved faster than expected (ΔybaO) 
consistently shows higher resistance values than expected based on the mutations it 
acquired. This points to epistasis between the gene deletions and the mutations which they 
acquired, which may explain the differences in adaptation we observed.  

 Adding diminishing returns slightly but significantly improves the 2.2.12
prediction power of the model 

We extended the model to enable a comparison between the simple additive model and 
one which includes diminishing returns epistasis. To do this, known outliers from the 
diminishing returns pattern were excluded from this analysis, in addition to strains with 
fitness defects stronger than 15% (Δfis, ΔdedD, ΔtolC, ΔacrA, ΔacrB, ΔdnaK, ΔmutL, ΔybaO, 
ΔlpcA, ΔdnaJ). Also, instead of the relative log resistance increase, the absolute final 
resistance was predicted. This way, the model included information about the initial 
resistance of that particular strain, which also goes into the diminishing returns prediction. It 
is of note that the samples chosen for sequencing were not chosen randomly and were also 
not chosen to represent a large range of initial resistance, therefore, no large improvement 
in the prediction is expected. 

Diminishing returns was modelled by channeling all the linear terms through a simple 
monotonically increasing concave function and simultaneously fitting all parameters. Two 
functions were used. One was an exponential function with exponent smaller than 1. The 
other was a Michaelis Menten equation (see Methods). All parameters were fitted 



 

 

simultaneously, the explained variance improved from 0.667 to 0.683 (power law model) 
and 0.687 (Michaelis-Menten model).  The p-values (Student’s t-test) of the exponent in the 
power law and the parameters of the Michaelis-Menten model were all significant 
(p<<0.001). 

 

 

Figure 16 Including diminishing returns in regression model improves resistance prediction.  

First model (upper left) assumes each mutation (regardless of locus) has the same effect on resistance. The 
constant and slope are fitted, representing the resistance increase without mutation and the benefit of a 
mutation (equal for all mutations). This model results in the worst fit, with an R

2
 of 0.274. Upper right: 

Measured vs fitted values for log resistance using a simple linear model. The model tested is one where only the 
5 most common mutations are modelled, each has a different coefficient fitted. The predicted response variable 
is log resistance (as opposed to fold log resistance increase in the previous model). The fit also uses the initial 
resistance of each particular modelled strain (see Methods). Lower left: Measured vs fitted values of log 
resistance for a power law diminishing returns model. The linear model is channeled through a power law and 
an exponent and constant are fitted in addition to the five mutational effects coefficients. The p-values of the 
exponent and constant are <<0.001 and the variance explained increased modestly. Lower right: Measured vs 
fitted values of log resistance for a Michaelis Menten diminishing returns model. In all plots the black circles 
represent lacA samples. 
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2.3 Conclusions and discussion 

Using automated high-throughput evolution experiments, we identified general patterns 
guiding resistance evolution and examples of particular genes that perturb antibiotic 
resistance evolvability most drastically. 

We were able to establish a high-throughput experimental evolution protocol that keeps 
hundreds of cultures in parallel in exponential phase under controlled selection pressure. 
The protocol enabled us to see a wide dynamic range of rates of adaptation which were also 
very reproducible.  

A limitation of our high-throughput evolution protocol is the inability to correctly adjust 
selection pressure for genotypes exhibiting strong fitness defects. The reason for this is that 
the same formula for the dose-response curve (dynamically fitting only the half-inhibitory 
concentration parameter) is used for the antibiotic concentration adjustment in each 
culture. The dose response curve has three parameters: 𝑐0  (the half-inhibitory 
concentration), 𝑔𝑚𝑎𝑥 (the growth rate without drug) and n (the hill coefficient determining 
the steepness of the curve). Measuring the hill coefficient requires many measurements on 
a concentration gradient and comes with rather large error. In contrast, measuring gmax 
during the experiment for each culture would be possible, thus catering to the differences in 
the dose-response curve for each individual genotype as well as for how the curve changes 
during evolution (when cultures experience a fitness cost associated with resistance 
mutations).  

We identified particular genes which had a strong effect on resistance evolvability. Our 
analysis suggests epistasis with resistance mutations is the main mode of evolvability 
modulation. However, more empirical data is needed to confirm this. For example, deleting 
the candidate evolvability modifying genes (ΔdnaK, ΔlpcA, etc.) in resistant strains and 
comparing the effect on resistance of the deletions alone, the resistant strains alone and 
those with all mutations to quantify any departures from additivity. 

An extension of our screen to many more genotypes would lead to a comprehensive map of 
genetic determinants of resistance evolvability and provide a list of possible targets which 
could be chemically inhibited to increase the long-term efficacy of antibiotics. 

2.4 Methods 

 Whole genome sequencing analysis 2.4.1

Whole genome sequencing was successfully performed for 380 samples altogether as listed 
in Table 3 in the appendix. For all evolved population samples, also the ancestral clone was 
sent for sequencing and mutations analyzed, to distinguish clearly between mutations 
acquired before and during the experiment. Genomic DNA was purified directly from 
thawed glycerol stocks using the GenElute 96 Well Tissue Genomic DNA Purification Kit. 
Library preparation, multiplexing, and sequencing were performed by LGC Genomics GmbH. 
The samples were sequenced on an Illumina NextSeq500 V2 (paired-end sequencing, 150bp 
read length, ~230-fold coverage on average, but ranging from about 70 to about 800 fold 
due to the multiplexing protocol). Sequencing data were analyzed using Breseq (Barrick et 
al., 2014) (Version 0.32.0). Reads were aligned to the deposited Keio parent reference 
(Accession: CP009273) using Bowtie2. The mutations identified by Breseq were manually 
inspected for false positives; all validated mutations are listed in Table 3 and Table 4 in the 



 

 

Appendix. Even though the samples were expected to be heterogeneous (they were not 
isolated clones), the “clonal” mode of Breseq was used. Therefore, the mutations detected 
only represent fixed mutations. Amplifications were noted if the coverage of a multi-genic 
region exceeded twice the average coverage of that sample. Since an IS insertion in the lon 
promoter region was very commonly among the “unassigned new junction evidence” but at 
very high frequency, this type of mutation was assumed to be fixed if the frequency 
exceeded 90%. For each evolved sample, it was verified whether the gene which should be 
deleted is indeed deleted. If any reads in the deletion locus were present, which would 
suggest a cross-contamination with another strain, however small, the sample was excluded 
from the analysis.  

 Automatized experimental evolution 2.4.2

The chosen starting deletion strains from the Keio collection (Baba et al., 2006) as listed in 
Table 1 were all streaked for single colonies and clonal cultures frozen with 15% glycerol 
at -80°C. The glycerol stocks were used to assemble the starting 96-well plates. Each plate 
had at least 12 empty wells which were filled with clear medium, and handled like the other 
wells throughout the experiment to monitor cross-contamination. Replicates of the same 
ancestor, if on the same plate, were placed far from each other. Every plate contained at 
least two replicates (usually more) of the control strain (either the Keio parent or the ΔlacA 
strain). 

Table 1 Lists of strains used in evolution experiments 

Experiment 
code 

Deletion strains from the Keio collection 

M1 acrA, ΔacrR, ΔahpC, ΔampG, ΔatpF, ΔazoR, ΔcedA, ΔcodB, ΔcspE, ΔcysA, 
Δdam, ΔdedD, ΔdinB, ΔdnaK, Δfis, ΔfrdA, Δfur, ΔgalT, Δhda, ΔhisI, Δhns, ΔhslU, 
ΔhtpG, ΔhupA, ΔilvA, ΔkdpE, Δlon, ΔlpcA, Δlpp, ΔlpxM, ΔmarR, ΔmdtC, ΔmutL, 
ΔmutT, Δndh, parent, ΔpolB, ΔppiD, ΔproQ, ΔrecA, ΔrelA, ΔrfaG, Δrng, ΔrpoS, 
ΔrpsF, ΔseqA, ΔsodB, ΔtatC, ΔtolC, ΔumuC, ΔyccV 

M2 acrA, ΔacrR, Δacs, ΔadhE, ΔagaR, ΔahpC, Δamn, ΔampG, ΔastC, ΔatpF, ΔazoR, 
ΔbolA, ΔcaiC, ΔcedA, ΔchbB, ΔcodB, ΔcpdA, ΔcspE, ΔcysA, Δdam, ΔdedD, 
ΔdinB, ΔdnaK, ΔfdnH, Δfis, ΔfrdA, ΔfumA, Δfur, ΔgalF, ΔgalT, ΔgltB, Δhda, 
ΔhelD, ΔhisI, Δhns, ΔhslU, ΔhtpG, ΔhupA, ΔilvA, ΔiscR, ΔkdpE, ΔlacA, Δlon, 
ΔlpcA, Δlpp, ΔlpxM, ΔltaE, ΔlysS, ΔmanX, ΔmarR, ΔmdtC, ΔmutL, ΔmutT, Δndh, 
ΔnfnB, ΔnudE, ΔnuoG, ΔompA, ΔompR, Δpepb, ΔphoB, ΔpldB, ΔpntB, ΔpolB, 
ΔppiD, ΔproQ, ΔpurA, ΔpyrB, ΔrcsB, ΔrecA, ΔrelA, ΔrfaG, Δrna, Δrng, Δrob, 
ΔrpiA, ΔrplA, ΔrpoS, Δrpoz, ΔrpsF, ΔrsuA, ΔsdhA, ΔseqA, ΔsmpA, ΔsodB, Δsra, 
ΔstpA, ΔtatC, Δtig, ΔtktA, ΔtktB, ΔtnaB, ΔtolC, Δtrxa, ΔtufA, ΔulaA, ΔumuC, 
ΔyccV, ΔyfgA 

M3 acrA, ΔacrE, ΔacrR, Δcmr, ΔdedD, ΔdnaJ, ΔdnaK, ΔemrB, Δfis, ΔgalT, Δhda, 
ΔhslU, ΔhtpG, ΔlacA, Δlon, ΔlpcA, Δlpp, ΔlpxM, ΔmarA, ΔmarR, ΔmdtC, ΔmdtE, 
ΔmutL, ΔompF, ΔrecA, ΔseqA, ΔtatC, Δtig, ΔtktA, ΔtolC, ΔybaO 

M4 acrA, ΔacrB, ΔacrR, Δacs, ΔadhE, ΔagaR, ΔahpC, Δamn, ΔampG, ΔastC, ΔatpF, 
ΔazoR, ΔbolA, ΔcaiC, ΔcedA, ΔchbB, Δcmr, ΔcodB, ΔcpdA, ΔcspE, ΔcysA, Δdam, 
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ΔdedD, ΔdinB, ΔdnaJ, ΔdnaK, ΔfdnH, Δfis, ΔfrdA, ΔfumA, Δfur, ΔgalF, ΔgalT, 
ΔgltB, Δhda, ΔhelD, ΔhisI, Δhns, ΔhslU, ΔhtpG, ΔhupA, ΔilvA, ΔiscR, ΔkdpE, 
ΔlacA, Δlon, ΔlpcA, Δlpp, ΔlpxM, ΔltaE, ΔlysS, ΔmanX, ΔmarA, ΔmarR, Δmdh, 
ΔmdtC, ΔmutL, ΔmutT, Δndh, ΔnfnB, ΔnudE, ΔnuoG, ΔompA, ΔompF, ΔompR, 
Δpepb, ΔphoB, ΔpldB, ΔpntB, ΔpolB, ΔppiD, ΔproQ, ΔpurA, ΔpyrB, ΔrcsB, 
ΔrecA, ΔrelA, ΔrfaG, Δrna, Δrng, Δrob, ΔrpiA, ΔrplA, ΔrpoS, Δrpoz, ΔrpsF, 
ΔrsuA, ΔsdhA, ΔseqA, ΔsmpA, ΔsodB, Δsra, ΔstpA, ΔtatC, Δtig, ΔtktB, ΔtnaB, 
ΔtolC, Δtrxa, ΔtufA, ΔulaA, ΔumuC, ΔyccV, ΔyfgA 

 

The protocol was performed using the Tecan Freedom Evo 150 liquid handling platform. The 
200µl cultures were kept in 96-well plates (Nunc, transparent flat-bottom) in a shaking 
incubator (Liconic Storex, 30°C, >95% humidity, 720rpm). Every 10-15min, each plate was 
transferred to a plate reader (Tecan Infinite F500) using a robotic manipulator arm (RoMa) 
and the absorbance (600nm) was measured. Every 3-5h, the cultures were transferred to 
new plates. They were not diluted in the same plates due to large errors in volumes left in 
the wells after pipetting out most of the culture. The new plate was filled in three steps. 
First, pure LB medium (𝑣𝑚𝑒𝑑) was pipetted, than medium with antibiotic (𝑣𝑎𝑏) and last the 
culture (𝑣𝑐𝑢𝑙𝑡𝑢𝑟𝑒) from the previous plate. Each culture had a dedicated 200µl disposable tip 
for a day, which was washed in ethanol after every dilution. LB medium and antibiotic stock 
were multi-pipetted into the new plates using 1000µl tips. All tips were exchanged once a 
day. The reservoirs with media had lids that were only taken off using the RoMa arm just 
before usage. 

Every day of the experiment, the penultimate plates of that day were left in the incubator to 
grow out: the next day 70µl of 50% glycerol was added to each well and frozen at -80°C. 
Fresh antibiotic stocks and medium reservoirs were filled. There were always two different 
concentrations of antibiotic stocks available, the protocol always only chose one of the 
available stocks to pipette from. The concentrations of the antibiotic stocks were chosen 
each day depending on how resistant the populations became. 

Every 3-5h the cultures from each plate were transferred to new plates using the Air LiHa 
robotic arm. The appropriate volumes of culture, medium and antibiotic to use were 
calculated at each dilution step and for each culture using the OD values obtained since the 
last dilution. The growth rate was obtained from 18 consecutive OD measurements by 
obtaining the slope of the least squares linear fit (numpy.polyfit function) to the log2 of 
those background subtracted OD values which were between 0.01-0.1. All growth rates 
were normalized to growth rate without inhibition (1.7 doublings per hour). The volumes in 
µl were calculated separately for each well using the last background subtracted OD 
measurement (𝑑), normalized fitted growth rate (𝑔𝑐𝑢𝑟𝑟𝑒𝑛𝑡), concentration of antibiotic stock 
(𝑐𝑠𝑡𝑜𝑐𝑘), current antibiotic concentration in the well (𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑡) and hill coefficient of the dose 
response curve (𝑛𝑇𝐸𝑇 = 1.8, 𝑛𝐶𝐻𝐿 = 2.4) in order to reach the target OD (𝑑𝑡𝑎𝑟𝑔𝑒𝑡 = 0.01), 

growth rate (𝑔𝑡𝑎𝑟𝑔𝑒𝑡 = 0.5) and total volume (𝑣𝑡𝑜𝑡𝑎𝑙 = 200) according the equations:  

𝑣𝑐𝑢𝑙𝑡𝑢𝑟𝑒 = 𝑣𝑡𝑜𝑡𝑎𝑙 ∗ 𝑑𝑡𝑎𝑟𝑔𝑒𝑡/𝑑 

𝑐𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑡(
𝑔𝑐𝑢𝑟𝑟𝑒𝑛𝑡

1 − 𝑔𝑐𝑢𝑟𝑟𝑒𝑛𝑡
)

1
𝑛 

𝑣𝑎𝑏 = (𝑣𝑡𝑜𝑡𝑎𝑙 ∗ 𝑐𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑏 ∗ 𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑡)/𝑐𝑠𝑡𝑜𝑐𝑘 



 

 

𝑣𝑚𝑒𝑑 = 𝑣𝑡𝑜𝑡𝑎𝑙 − 𝑣𝑐𝑢𝑙𝑡𝑢𝑟𝑒 − 𝑣𝑎𝑏 

Several measures were implemented to deal with atypical input values. If the concentration 
𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is zero, 𝑐𝑡𝑎𝑟𝑔𝑒𝑡 is set to a default concentration of 0.1µg/ml for tetracycline and 

0.5µg/ml for chloramphenicol. If the sum of squared residuals from the fit to obtained the 
growth rate is greater than 0.8 then 𝑐𝑡𝑎𝑟𝑔𝑒𝑡 is set to 𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑡. If the measured normalized 

growth rate is larger than 0.9, it is set to 0.9 to avoid very large or undefined values 
for 𝑐𝑡𝑎𝑟𝑔𝑒𝑡. If the calculated volume 𝑣𝑎𝑏 is smaller than 5µl, 𝑣𝑎𝑏  is set to zero (only medium 

is used to dilute the culture) and concentrations are updated accordingly. 𝑣𝑐𝑢𝑙𝑡𝑢𝑟𝑒 is capped 
at 140µl, to assure accurate pipetting from the small 200µl culture. There were two 
available reservoirs of antibiotic stocks, the higher concentration was only used if, for the 
lower stock concentration 𝑣𝑎𝑏 > 𝑣𝑡𝑜𝑡𝑎𝑙 − 𝑣𝑐𝑢𝑙𝑡𝑢𝑟𝑒. 

 

Table 2 Differences between instances of the automatized evolution experiments 

 M1 M2 M3 M4 

Antibiotic TET TET TET CHL 

Number of different strains 51 99 31 104 

Replicates of strains 3 3 8-12 3 

Control strain Keio parent ΔlacA ΔlacA ΔlacA 

Replicates of control 10 22 11 23 

Medium LB LB+50µg/ml kan LB+50µg/ml kan LB+50µg/ml kan 

 

 Serial transfer experiments with constant antibiotic concentration 2.4.3

Overnight cultures were inoculated from a selection of 84 deletion strains from the Keio 
collection. The cultures were assembled in a 96-well “selection” plate and frozen with 
glycerol (final concentration 15%). The first day, ~0.2µl from each well was transferred 
(using the VP 408 pinner) to several fresh plates with 150µl medium with or without 
antibiotic. The conditions depend on the experiment (Table 2). Every 24hours, the OD was 
measured in a plate reader and all cultures transferred with the VP 408 pinner to fresh 
plates with the same conditions as the previous day. 65µl of 50% glycerol was added to all 
the wells and the plates were frozen at -80°C. The growth rate of all the cultures in the same 
conditions as they were evolved in was then measured on the same day using the liquid 
handling robot as described in (Chevereau and Bollenbach, 2015). 

 Antibiotic stocks 2.4.4

Tetracycline stock solutions of 7mg/ml were prepared by diluting tetracycline hydrochloride 
in 90% ethanol at room temperature. Chloramphenicol stocks of 10mg/ml were prepared by 
diluting powder in 99% ethanol. Trimethoprim was dissolved in ethanol to prepare 10mg/ml 
solution. All stocks were stored at -20°C. 
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 Regression model of mutational effects 2.4.5

Mutations from all sequenced samples evolved in Tetracycline which passed contamination 
and quality control (145) were included in the analysis from Figure 15. The selection was 
biased toward mutants that evolved slower than expected. The function fitnlm (Matlab 
R2016b) was used to fit different models of mutational effects. The predicting variables 
were the presence and absence of mutations in the 5 most commonly hit genes (marR, lon, 
pump amplification, acrR, ybaO), the fitted parameters were the multiplicative effects of 
mutations in those loci and the response variable was the log resistance increase over the 
course of the experiment.  

 Estimate SE tStat pValue 

b0  1.3476 0.19756 6.821 2.55E-10 

b1 (marR) 1.1539 0.17973 6.4201 2.00E-09 

b2 (lon) 1.1439 0.18006 6.3528 2.81E-09 

b4 (pumps) 0.26567 0.19734 1.3462 0.18042 

b5 (acrR) 0.35865 0.19679 1.8225 0.070526 

b6 (ybaO) 0.80957 0.18072 4.4798 1.55E-05 

 

In a variation of the analysis, another predictor variable was added (and replaced one of the 
fitted parameters) which corresponded to the measured initial resistance (IC50 from the 
concentration of antibiotic in the well in the first hours of the experimental evolution 
protocol) of the ancestral clone and the final absolute log resistance level instead of the 
relative increase was predicted. To model diminishing returns, the whole linear formula was 
channeled through a nonlinear function: either f(x)=a*xb  or f(x)=(a*x)/(b+x). 
  



 

 

3 Quantitatively predicting the evolutionary dynamics of antibiotic 
resistance based on mutation rate and dose-response characteristics 

This chapter is partly based on (Chevereau et al., 2015). The simulations, the whole-genome 
sequencing analysis and the experimental evolution of mutator strains were done by ML. 
The growth rate experiments and analysis of dose response curves, distributions of fitness 
effects and their relationship, which represent the bulk of the published paper were done by 
Guillaume Chevereau. The analysis of mutational diversity was done by Tobias Bollenbach. 
The “morbidostat” evolution experiments of E.coli in nitrofurantoin and chloramphenicol 
were performed by Tugce Batur, Aysegul Guvenek, Dilay Hazal Ayhan, and Erdal Toprak (and 
published in (Chevereau et al., 2015)). 

3.1 Introduction 

The dynamics of resistance evolution differs greatly between antibiotics and explanations 
remain elusive. For example, spontaneous resistance to chloramphenicol evolves steadily 
and rapidly under laboratory conditions, but resistance to trimethoprim seems much to 
develop in large steps with long waiting times in between (Toprak et al., 2012). It is 
intriguing to investigate whether differences in evolution can be explained by systematic 
differences in the inherent properties of the antibiotics.  

Highly mutating strains pose a threat to successful treatment and understanding their 
behavior is crucial for attempts to avoid them (Jolivet-Gougeon et al., 2011). The mutation 
rate of bacteria profoundly affects the dynamics of resistance evolution, in terms of speed, 
genetic and phenotypic reproducibility and eventual fate of resistance alleles (Sniegowski et 
al., 1997).  

Quantitative population genetic models, coupled with highly controlled experimental 
evolution, provide a way to investigate general relationships between measureable 
antibiotic or bacterial parameters and resistance evolution outcome. On the one hand, 
classic theoretical results shed light on general behaviors; on the other hand, targeted 
models closely following the conditions under which populations evolve in the laboratory 
can provide more specific almost mechanistic insight into antibiotic and bacteria specific 
dynamics. In this chapter, with the help of quantitative models and experimental evolution, 
we investigate the ways in which antibiotic dose-response characteristics and bacterial 
mutation rates affect evolutionary dynamics and reproducibility. 

A basic functional measure of antibiotic action is the concentration needed to inhibit 
bacteria. The most common measure is the MIC, which is the minimum concentration 
needed to inhibit bacterial growth (over ~24hours). Another common measure is the IC50, 
which is the concentration at which bacteria grow at half their uninhibited rate. This 
measure differs greatly among antibiotics as well as bacterial strains, and when a certain 
strain exceeds an agreed on clinical threshold, it is considered resistant. The MIC and IC50 do 
not give any information on how sensitive cell growth would be to small change in 
concentration. 

The detailed relationship of how cell growth depends on changes in concentration is given 
by the dose-response curve. The dose-response curve is simply a measurement of growth 
rates for a range of concentrations of antibiotic, capturing the whole range from uninhibited 
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growth to no growth, for bactericidal drugs even extending to negative (or death) rates. To 
summarize the curve in just a few parameters, a hill function fit is often used: 

𝑔 =
𝑔𝑚𝑎𝑥

1 + (
𝑐
𝑐0

)
𝑛 

In this form, 𝑔𝑚𝑎𝑥is the uninhibited growth rate, c0 is the IC50 concentration and n is the hill 
coefficient, roughly representing the slope of the curve, or the sensitivity to changes in 
dose. 

Antibiotics can be very different in their dose sensitivity (Figure 17). Several beta-lactam 
antibiotics have extremely steep dose response curves, where very slight changes to 
concentration mean bacteria go from full to no growth; in contrast, trimethoprim has an 
extremely shallow dose response curve, and therefore small value for n. 

 

 

Figure 17 Antibiotics differ in the hill coefficient of their dose response curves.  

Figure adapted from Figure 3 in (Chevereau et al., 2015). Dose-response curves are shown for 8 different 
antibiotics: trimethoprim (TMP), tetracycline (TET), chloramphenicol (CHL), nitrofurantoin (NIT), ciprofloxacin 
(CPR), cefoxitin (FOX), mecillinam (MEC) and ampicillin (AMP). Response is given by the growth rate normalized 
to growth rate in now drug. The drug concentration is shown on a log-scale in arbitrary units. The curves are 
shifted on the concentration axis to better show the differences in their shape. The fitted hill-coefficient (n) is 
given for each curve in the upper right corner of the plot. 

It is useful to note that the steepness of the dose-response curve is a robust property of the 
antibiotic rather than the particular bacterial strain. This is supported by an experiment, 
where the dose-response curve was measured for a selection of 78 E.coli single gene 
deletion strains (Chevereau et al., 2015). When the growth rates where rescaled to the 
growth rates without drug and the concentrations to the respective IC50, the curves 
generally collapsed onto one curve, showing that the shape is conserved despite the genetic 
perturbations (Figure 18). Another way to formulate the result is that the dose sensitivity 
remains approximately constant for a range of bacterial mutants. 



 

 

Figure 18 Dose response curves of a range of deletion strains collapse on one curve after linear rescaling 

 Figure adapted from Figure 3 in (Chevereau et al., 2015). Left: Mecillinam dose-response curves for 78 
arbitrary deletion mutants (purple, see Methods) and 17 WT replicates (black).  Right: Same data with 
concentration rescaled to IC50 and growth rate response rescaled to g0 (Materials and Methods). 

Both mutation rate and dose-response characteristics could have a systematic impact on 
evolutionary dynamics. In this chapter, the relationship between these determinants and 
speed and/or reproducibility of adaptation will be explored with experimental evolution and 
population genetic simulations closely matching experimental conditions. 

3.2 Results 

 Population genetic simulations model evolution in a morbidostat 3.2.1

In order to predict and better interpret results from evolution experiments with dynamically 
increasing antibiotic dose similar to those described in Section 2.2.1, we developed 
stochastic population genetic simulations which model this scenario. They take the mutation 
rate and the distribution of resistance effects of mutations as input and, as output, give the 
corresponding resistance increase over time. 

The simulation scheme was adapted from (Fogle et al., 2008) and it is a discrete generation, 
fixed population size stochastic model which models drift explicitly. The population is 
modelled as a set of subpopulations, representing different genotypes, each with its own 
resistance level. The antibiotic dose is adjusted every generation based on the mean growth 
rate of the population, so that the new mean growth rate of the population is expected to 
be a fixed value (usually 0.5 of the wild type growth rate). For each subpopulation, the 
number of individuals, growth rates and resistances are tracked. Each generation, the 
population is approximately halved, in a way where for each individual the probability of 
survival into the next generation is weighed by their current growth rate, but on average 
0.5. This is done to model the effects of drift and selection. To keep the population size 
approximately constant, the whole population is then doubled irrespective of fitness. In the 
next step, mutations occur and found new genotypes. The way the new fitness of each 
mutation is selected is based on the results in (Chevereau et al., 2015). Each mutation first 
has an effect on resistance (or IC50) according to a given lognormal distribution, which is 
then translated into fitness using the dose-response curve typical for the appropriate drug 
(see Figure 19 or Figure 2B) and the current antibiotic concentration. The antibiotic 
concentration (common for the whole population) is then adjusted so that the mean growth 
rate of the population is equal to the fixed growth rate selected (usually 0.5 of the wild 
type). 

 Analysis of high-throughput experiments shows clear relationship 3.2.2
between dose-sensitivity and DFE width 

Based on the experiments in (Chevereau et al., 2015) a clear correlation can be seen 
between the dose sensitivity (hill coefficient 𝑛 of the dose-response curve) and the width of 
the DFE. The DFE in this case was estimated by measuring the growth rate of the whole 
single-gene deletion library (Baba et al., 2006) in a given drug concentration.  The widths of 
these distributions varied considerably among antibiotics. 
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In contrast to the DFE, the distribution of resistance effects of the gene deletion library 
exhibited a stereotypical width. The distribution of resistance effects was estimated by 
computing the “effective concentration” of antibiotic that the population senses when 
growing at a particular rate in a particular concentration  (for details see (Chevereau et al., 
2015)). This knowledge is interesting in its own right, suggesting that the steps that 
mutations take are more stereotypical in terms of resistance changes rather than fitness 
changes. This is in line with the idea of Fisher’s Geometric Model (FGM), which assumes 
mutations represent steps in a multi-dimensional phenotype space. 

Given that the changes in effective drug concentration caused by mutations are similarly 
strong in many antibiotics, the widths of the DFEs can be explained by a simple mapping 
through their respective dose-response curve (Figure 19). In cases of high dose sensitivity 
(and steep dose-response curve), a narrow distribution on the concentration axis translates 
to wide distribution on the growth rate (fitness) axis and conversely, a shallow dose 
response curve leads to a narrow DFE given the same distribution on the concentration axis.  

 

Figure 19 Steeper dose response curves lead to wider DFEs  

A) Schematics of two different dose response curves: the left curve is steep, i.e. the growth rate is sensitive to 
small changes in drug concentration; the right curve is shallow. Mutations cause shifts in the effective drug 
concentration a bacterium experiences; the typical magnitude of these shifts is surprisingly similar for diverse 
antibiotics (Chevereau et al., 2015). The distribution of effective drug concentrations resulting from many 
different mutations is shown in gray. These mutations produce distributions of growth rates (fitness) that are 
wide for the steep dose-response curve (left) and narrow for the shallow dose-response curve (right).B) Figure 
adapted from Figure 3 (Chevereau et al., 2015). Fitted hill coefficients of dose response curves (dose-sensitivity 
n) for different antibiotics plotted against the interquartile range of their DFEs. 

 Simulations predict faster evolution to antibiotics with steeper dose-3.2.3
response curves 

Together with classical evolutionary biology results, specifically, Fisher’s Fundamental 
Theorem, it is expected that a wider DFE would lead to faster evolution. We used the 
population genetic simulations which model an experimental setup with dynamically 
increasing antibiotic doses to test if steeper dose-response curves lead to faster evolution 
also in this testable context. We find that, indeed, higher values of dose-sensitivity (n) lead 
to faster resistance evolution in a morbidostat setting (Figure 20). 

Even though the distribution of resistance changes of new mutations was observed to be 
stereotypical for various drugs (Figure 19), there were also differences observed. In 
particular, the distribution for the drug nitrofurantoin was considerably narrower than for 
the other drugs tested (Chevereau et al., 2015). Assuming, the same steepness of the dose-
response curve, a narrow distribution of resistance effects is expected to lead to a narrower 
distribution of fitness effects and therefore slower adaptation.  
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Figure 20 Higher dose-sensitivity leads to faster adaptation.  

Left: The increase in dose (mimicking resistance increase over time, since the dose increases in a way to keep 
the mean growth rate inhibited by 50%) for two dose-response curve shapes. High dose sensitivity (n=7) is 
shown in blue-green and low dose sensitivity (n=1.1) is shown in orange and red. Right: Fold increase in 
resistance after 200 generations for a range of dose sensitivities.  

 Experimental evolution in morbidostats is consistent with population 3.2.4
genetic simulations in two antibiotics with different evolutionary 
determinants 

Nitrofurantoin and chloramphenicol represent a drug pair for which the estimates for the 
dose sensitivity (n) are essentially the same, but the distribution of resistance effects vary 
significantly (Chevereau et al., 2015). Therefore, they are good candidates for testing the 
relevance of our pre-measured evolutionary determinants for experimental evolution.  

The dynamics of resistance adaptation to the two drugs were compared using the 
morbidostat protocol (Toprak et al., 2012). In this protocol (similarly to the one described in 
Chapter 2), the antibiotic concentration is continually adjusted to keep the culture 50% 
inhibited. In this way, the dynamics can be observed over a longer time frame and 
differences can be seen more clearly than in a protocol with fixed concentration. 

We observed that evolution of chloramphenicol resistance followed a steadily increasing 
trajectory, whereas the evolution of nitrofurantoin resistance consisted of an initial fast 
increase followed by a more modest increase. A possible reason for this difference in 
dynamics can be inferred from whole genome sequencing data. The initial increase in 
resistance to nitrofurantoin can be ascribed to a handful of very reproducible mutations 
which arise within the first 10 days. Among these mutations, there are loss of function 
mutations of nfsA and nfsB. These two enzymes are responsible for modifying nitrofurantoin 
into its active form. Loss of function mutations in them are known to provide large 
resistance benefits (Breeze and Obaseiki-Ebor, 1983). In contrast, adaptation to 
chloramphenicol sees a higher diversity of mutations throughout the experiment. 

We adjusted our simulations to incorporate these few very beneficial mutations which can 
strongly influence adaptation. To cater for the strong mutations, the DFE could be modelled 
as a smooth distribution with a very long tail, but in that case, also the effects of the fixed 
mutations would vary enormously between replicates. Instead, we decided to update the 
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model with explicitly adding a few extremely strong mutations (see Methods). After this 
modification, the simulation predictions match experimental data very well Figure 21. 

 

 

 

Figure 21 Resistance variability affects the dynamics of adaptation  

A) Simulation results from a theoretical model of resistance evolution in a morbidostat: IC50 increase over time 
for a drug with narrow distribution of resistance effects and two available large-effect mutations; light lines are 
sample runs; dark lines are mean of 15 runs (Materials and Methods). (B) Same as in panel A for wider 
distribution of resistance effects (Methods). (C, D) Results from morbidostat laboratory evolution experiments: 
IC50 increase over time for nitrofurantoin (C) and chloramphenicol (D); light lines are individual runs; dark lines 
are mean, error bars standard deviation; shaded region in C indicates early phase during which large-effect 
mutations fix (Methods). (E) Mutated loci in nitrofurantoin (left) and chloramphenicol (right)-resistant clones 
after 10 and 21 d, respectively. Filled pie segments show evolution replicates in which genes were mutated; (P) 
indicates promoter mutations. Bar chart shows diversity (entropy) of mutations under nitrofurantoin (magenta) 
and chloramphenicol (gray); p < 0.002 (**) and p < 0.0003 (***) from two-sample t test; error bars show 
jackknife standard error (Methods).  (C, D, E) are taken from (Chevereau et al., 2015) 

 

 Simulations predict higher phenotypic reproducibility for highly 3.2.5
mutating genotypes. 

By definition, higher mutation rates are associated with higher genetic variability, but also 
with more thorough sampling of genotypes, which can, counter-intuitively, lead to higher 
reproducibility of evolutionary outcomes. When following how a population becomes 
resistant over time, at the level of phenotype, one can observe several sources of 
randomness. One comes from random drift, where the size and eventual fate of mutations 
is influenced by random sampling effects. This could be regular dilutions in various 
experimental evolution setups, for example. Another source depends on mutational 
availability and the resulting variability in time until the next mutation appears. It is this 
second source of variability that is diminished with higher mutation rate. In the extreme 
case of “perfect” mutational availability, all possible mutations would be present at all times 

A B 



 

 

and, at each point in time, one of the strongest available would win. In a context of no 
epistasis, this would lead to reproducible phenotypic outcomes. 

To verify this intuition, we used the simulations described in the previous sections to model 
evolution in the morbidostat for a range of mutation rates. The results indeed show a 
decrease in the variability of adaptation rates as mutation rates increase (Figure 22). 

 

 

 

Figure 22 Increased mutation rates bring about more reproducible phenotypic adaptation.  

Population genetic simulations were performed with varying mutation rates (Methods). Left: The IC50 increase 
over time for two different mutation rates: 10

-7
 and 10

-5
. Grey lines represent individual simulation runs; the 

blue line is the mean over 20 replicate runs. Middle: The coefficient of variance of the log values of IC50 from 
generation 200 is given for different mutation rates. Higher mutation rates lead to lower variability of outcome. 
Right: Example from evolution experiment M3 in increasing antibiotic concentration (see Methods of Chapter 
2). Fold increase in IC50 (given as antibiotic concentration in well during dynamically adjusted evolution 
experiment) for a highly mutating strain (mutL deletion in orange) and control (lacA deletion strain). 

 Predictions of reproducibility are largely confirmed by experimental 3.2.6
evolution 

As part of the experiments in Chapter 2, we tested deletion strains of DNA mismatch repair 
which are known to increase mutation rates around 100-fold (mutT and mutL). In line with 
simulation predictions, the adaptation trajectories of these strains show an increase in 
adaptation rate and decrease in the variability of adaptation (Figure 22). 

 

3.3 Conclusions 

In this chapter, we have presented a population genetic model which is specially catered to 
predict or analyze outcomes of morbidostat-type experiments. Into it, we incorporated a 
recently established framework, which predicts evolutionary determinants from dose-
response characteristics of drugs. Using this framework, we illustrate that steepness of the 
dose-response curve can increase adaptation speed. In addition we show that the 
distribution of resistance effects, and in particular its variance, can determine the speed of 
adaptation. We illustrate this with simulations as well as experimental evolution results and 
find that in this case, a lower width of the distribution of resistance effects can lead to more 
reproducible genotypic adaptation. We further model the effects of mutation rate on the 

Resistance 
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reproducibility of phenotypic adaptation and see that higher mutation rates can lead to 
higher phenotypic reproducibility. 

3.4 Methods 

 Population genetic simulations 3.4.1

Simulations were setup in a similar manner to those in (Fogle et al., 2008). For each 
genotype that exists, its resistance, their growth rate and the number of individuals which 
belong to it are being saved. A fixed population size and synchronized generations are 
assumed. Every generation, the population is essentially halved: the probability of being 
chosen into the next generation for each individual is weighted by their growth rate, but 0.5 
on average. To make the calculation more efficient, for larger subpopulations (>300 
individuals), the number of individuals surviving to the next generation is taken from a 
Poisson distribution with the mean 0.5*ni*gi/<g>. Then all subpopulations are exactly 
doubled. This scheme ensures an approximately fixed population size, a realization of fitness 
effects and random drift. The next step which also happens every generation, are 
mutations. First, the number of mutations is drawn from a Poisson distribution with mean 
corresponding to the mutation rate. Then the cumulative probability that each 
subpopulation experiences a mutation is calculated (ni*µ). For each mutation, a random 
number is drawn, which is used to sample the cumulative distribution function and 
determine which subpopulation the mutation happened in. Then, for each mutation, one 
individual is subtracted from the parental subpopulation and one new subpopulation 
consisting of one individual is founded. A new resistance (c0) is drawn from a log-normal 
distribution centered on the c0 of the parental genotype, for the newly created genotype. 
Based on the dose response curve (with given parameters n and the new c0), and the 
current antibiotic dose (c), the growth rate or fitness (g) is calculated for each genotype 
(g=1/(1 + (c./c0).^n)).Then the antibiotic dose is adjusted according to the same dose 
response curve such that the mean growth rate of the entire population is 0.5. 

 Whole genome sequencing analysis 3.4.2

Five clones were isolated from each of the six replicates and their dose response curves 
compared with those of the evolved populations. Whole genome sequencing was 
performed for one clone from each population for which the resistance matched the 
population and also for the MG1655 ancestor. Genomic DNA was purified from overnight 
cultures using the Promega Wizard Genomic DNA Purification Kit (catalogue number 
A1120). Library preparation, multiplexing, and sequencing were performed at the EMBL 
GeneCore facility. The samples were sequenced on an Illumina HiSeq2000 (paired-end 
sequencing, 100bp read length, ~140-fold coverage). Sequencing data were analyzed using 
Breseq (Barrick et al., 2014) (Version 0.25) and Geneious (Kearse et al., 2012) (Version 7, 
http://www.geneious.com). Reads were aligned to the deposited MG1655 reference 
(NC_000913) using Bowtie2. The mutations identified by Breseq were manually inspected 
for false positives; regions with ambiguous evidence were further examined in Geneious; all 
validated mutations are listed in Table S2. We identified several mutations in the ancestor 
(Table S3); these were included in the reference sequence and reads from the ancestor 
realigned to this new reference until no additional mutations were identified by Breseq. A 
nitrofurantoin resistant clone from day 21 was sequenced in duplicate to verify 



 

 

reproducibility of sequencing results; the mutations identified in both sequencing replicates 
agreed perfectly. 

 Experimental evolution of mutator strains 3.4.3

Experiments were done as described in Section 2.4.2. 
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4 Stress-induced mutagenesis: Stress diversity facilitates the persistence of 
mutator genes 

This chapter has been published in PLOS Computational Biology (Lukačišinová et al., 2017), 
where Sebastian Novak gave equal contribution as ML. The analytical treatment of the 
dynamical system was done by Sebastian Novak. The simulation code, analysis, writing and 
conceptualization were done in collaboration with Sebastian Novak and Tiago Paixão. 

4.1 Introduction 

New mutations are the ultimate source of the variation that fuels adaptation. Accordingly, 
any mechanism that affects the rate at which new mutations are produced will impact a 
population’s ability to adapt. In a constant environment, well adapted populations are 
expected to evolve to lower mutation rates (Altenberg and Feldman, 1987), while 
maladapted populations (e.g. under stress) frequently evolve mutator phenotypes (Taddei 
et al., 1997). These mutator phenotypes rise due to the short-term benefit of hitchhiking 
with beneficial mutations they induce, but suffer a penalty as the population approaches a 
fitness peak and the availability and/or effect of beneficial mutations decreases (Tenaillon et 
al., 2001). Consequently, elevated mutation rates persist most easily when selection 
pressure can be sustained despite adaptation. This is the case when populations experience 
fluctuating selection, which includes cells experiencing bursts of stresses during antibiotic 
treatment or cancer chemotherapy. Intuitively, if there exist mechanisms that increase 
mutation rates specifically during periods of stress, they could be selected since they 
provide the benefits of elevated mutations rates under stress while not incurring an 
additional mutation load in times when the population is well adapted. 

There are multiple known mechanisms that result in elevated rates of general mutagenesis 
or an increase in the rate of specific genetic changes during stress. These mechanisms are 
often referred to as stress-induced mutagenesis (SIM). When encountering a range of 
environmental stresses, several species of bacteria activate SOS responses that—in addition 
to stimulating various repair mechanisms—activate error-prone DNA polymerases, which 
have been linked to a faster evolution of antibiotic resistance (Bjedov et al., 2003; Cirz et al., 
2005; Do Thi et al., 2011). This activation of error-prone DNA polymerases in response to a 
wide range of environmental stresses is a thoroughly studied SIM mechanism (Bjedov et al., 
2003; Devon M. Fitzgerald et al., 2017). The mutations are incorporated in proximity to DNA 
double-strand breaks under the condition that both the DNA damage activated SOS 
response and general stress response are active (Ponder et al., 2005). This mechanism has 
been linked to faster evolution of antibiotic resistance (Cirz et al., 2005). 

Several other such mechanisms have been identified. It has been shown that Streptococcus 
pneumoniae activates the expression of competence genes when treated with various 
antibiotics (Prudhomme et al., 2006). These genes allow the bacteria to take up DNA from 
the environment and incorporate it into its genome. Another example is the beneficial 
excision of a genomic region in the plant pathogen Pseudomonas syringae in response to 
the host’s immunity (Pitman et al., 2005). Similar mechanisms that link certain stresses to an 
increase of mutation rates have been found in Drosophila melanogaster (Agrawal and 
Wang, 2008) and yeast (Heidenreich, 2007). 

Several hypotheses may explain the prevalence of stress-induced mutagenesis. The first is a 
pleiotropic argument, presuming that SIM mechanisms are primarily due to first order 



 

 

selection for faster repair or nutritional gain (uptake of foreign DNA); then, the elevation of 
mutation rates is a side effect (Torres-Barceló et al., 2015). MacLean et al. (MacLean et al., 
2013) suggest an alternative hypothesis to explain the stress-linked induction of error-prone 
DNA polymerases: DNA polymerases that are linked to specific stress situations and that are 
used less often may be subject to weaker selection, and become error-prone by 
accumulation of slightly deleterious mutations. Another hypothesis, the second-order 
selection hypothesis, states that stress-induced mutagenesis has evolved due to its 
advantage of combining elevated mutation rates with those situations when they give most 
benefit (Ram and Hadany, 2012; Rosenberg, 2001). An allele that causes elevated mutation 
rates hitchhikes with the beneficial mutations it produces. By keeping mutation rates down 
at times of no stress, it reduces mutational load from excessive deleterious mutations 
compared to unconditionally increased mutation rates. There is no reason to think that only 
one of these hypotheses is correct; it is plausible that the interplay of these factors is 
responsible for the prevalence of SIM mechanisms in many organisms. 

We explore the basic principle behind the second-order selection hypothesis of stress-
induced mutagenesis: under which conditions and at what levels can a mechanism that 
increases mutation rates under stress be sustained in a population? What stress patterns 
and regimes promote it most? The relevance of these questions is imminent: stress-induced 
mutagenesis facilitates the adaptation of a population subjected to changing conditions. 
This is critical for cancer therapy or antibiotic treatment. Much effort goes into identifying 
strategies that keep the treatment effective for as long as possible, i.e., that impede the 
evolution of resistance (Bollenbach, 2015; Bonhoeffer et al., 1997). If second-order selection 
is a key factor in the emergence and maintenance of SIM genes, however, different 
treatment regimes also affect the evolution of mutagenesis, and thus the evolvability 
towards resistance in the long term. It is therefore essential to understand to what extent 
different patterns of changing conditions cause second-order selection on stress-induced 
mutagenesis. 

Previous studies have analyzed the evolution of mutator alleles by second-order selection in 
constant and variable environments. Some have focused on the evolution of mutation rates 
and the fate of constitutive mutator alleles (Ishii et al., 1989; Sniegowski et al., 1997), which 
are predicted to be lost in constant and persist in fluctuating environments (Tanaka et al., 
2003). Closer to the system we study here, several models have investigated the evolution 
of fitness-dependent mutagenesis, where a decrease in fitness due to any deleterious 
mutation causes mutation rate to increase (Agrawal, 2002; Ram and Hadany, 2012; 
Tenaillon et al., 2004). Interestingly, fitness-dependent mutator alleles are predicted to 
persist under a wide range of parameters in variable as well as constant environments (Ram 
and Hadany, 2012). To complement existing studies, we explore the persistence of a SIM 
allele which is strictly conditional on a stressful environment and cannot be triggered by a 
genetic change, since we focus on those SIM mechanisms which are dependent on 
environmental stress responses (Devon M. Fitzgerald et al., 2017; Mamun et al., 2012; 
Prudhomme et al., 2006). 

We apply a mathematical model to investigate the plausibility of the second-order 
hypothesis for the evolution and maintenance of stress-induced mutagenesis (SIM). We 
show that populations subjected to diverse stresses can maintain SIM alleles as long as the 
period between exposure to these stresses is below a critical threshold. We provide 
analytical expressions for this critical threshold and show that there is an upper limit to the 
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prevalence of such an allele, irrespective of the number of stressful environments a 
population is exposed to. Finally, in the context of the evolution of antibiotic resistance, we 
evaluate different scheduling alternatives of antibiotic therapies for their ability to prevent 
the maintenance of SIM alleles. 

 

4.2 Results 

 A population genetic model for stress induced mutagenesis (SIM) alleles 4.2.1

We set up a model of a hypothetical stress-induced mutator (SIM) allele; its properties are 
based on the features of existing SIM mechanisms, yet focusing on the essence of a SIM 
mechanism independent of the molecular implementation. We are interested in exploring 
specifically the effectiveness of second-order selection in the evolution of a SIM allele. To do 
so, we need to isolate second-order selection from any direct benefit of the SIM system. 
Direct effects, for example faster DNA repair, are likely co-determinants of the persistence 
of SIM mechanisms in the wild, but such dynamics have also been extensively studied with 
existing evolutionary models, e.g. (Hegreness et al., 2006). We therefore assume that the 
SIM allele does not confer any direct fitness cost or benefit, and consider a population of 
haploid individuals with two non-recombining loci. At the first locus, the SIM allele can be 
present or absent (alleles M or m, respectively), and the second locus carries alleles that 
may or may not grant resistance to a given stress (alleles R or r). The resulting four possible 
genotypes are displayed in Figure 23. 

In the absence of stress, we assume that transitions between the genotypes are only due to 

mutations, as indicated by the arrows in Figure 23; thus in particular, we assume that there 

is no cost to being resistant. Individuals may lose or gain resistance at rates μR and νR, 

respectively. The SIM allele M may lose its function at rate μM; since we are interested in 

conditions for the ultimate loss of the SIM allele, we neglect back-mutation from m to M. 

In the stress environment, genotypes containing the resistance allele R have increased 

fitness w = 1 + s relative to susceptible genotypes. Furthermore, the Mr genotype increases 

all outgoing mutation rates by a factor σ > 1 due to stress-induced mutagenesis, see Figure 

23B. Key assumptions behind this modelling approach are: First, stress does not activate the 

SIM allele in resistant individuals. This is reasonable if, for example, the stressor is effective 

inside the cell but the resistant mutation makes the cell membrane impermeable to it. 

Second, the only cost of an active SIM allele is that it increases the rate of its own loss. This 

at best partially represents the detrimental effects of elevated mutation rates not 

considered in this model. However, artificially creating an idealized situation for the SIM 

allele allows us to keep the model tractable. 



 

 

  

Figure 23 Schematic illustration of the SIM dynamics. 

 A) Under no stress, all genotypes have the same fitness w = 1 and transitions between the states are solely due 
to mutations. Resistance is lost and gained at rates μR and νR, respectively. Furthermore, the SIM allele 
degrades at a rate μM. B) In the stress environment, individuals that are resistant to the stress gain a selective 
advantage s (fitness w = 1 + s). In addition, the genotype that is susceptible to the stress and carries the SIM 
allele (pMr) increases its outgoing mutation rates by a factor σ > 1. C) Periods of stress (S, red shading) and no 
stress (N, green shading) are alternated and the dynamics Eq (1) of genotype frequencies is simulated 
according to the schematic A) and B). During stress, resistant genotypes increase in frequency (red lines), and 
the SIM allele frequency pM hitch-hikes (black line). If there is no stress, both resistance and SIM allele 
frequency levels decay. Over time, the SIM allele frequency thus fluctuates, possibly converging to stable 
oscillations. We sample the SIM allele frequency pM at the end of each no-stress phase (black points), thus 
obtaining a discrete system in which the time between two successive measurements is given by the iteration 
of one cycle of stress and no stress. 

We cast the schematic dynamics of Figure 23 into two sets of differential equations for the 

variables p = {pmr, pMr, pmR, pMR}. Using the classical mutation-selection dynamics of 

population genetics, they take the form (Bürger, 2000) 

𝑝̇ = 𝑝(𝑤 − 𝑤̅) + 𝑀. 𝑝 

(1) 

where 𝑤 is the vector containing the marginal fitnesses of the genotypes, 𝑤̅ is the mean 

fitness of the population, and 𝑀 is a matrix encoding the mutation scheme (see Methods for 

the explicit set of equations). In order to make analytical progress, we make a number of 

simplifying assumptions. First, we assume that selection under stress is strong compared to 
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mutation. This is justified in treatment-like scenarios we consider here. Second, we assume 

that the mutation rate leading to a loss of a resistance mechanism is larger than the 

mutation rate leading to its gain. This is plausible, since by random genetic modifications it is 

more likely to disable a functional mechanism than to create one. Hence, it seems 

reasonable to assume the following hierarchy among the parameters: 

𝑠 ≫ (µ𝑀, µ𝑅) ≫ 𝜈𝑟=𝑅 

(2) 

Given this hierarchy, it can be shown that the SIM allele is not maintained in any of the two 

environments separately. Switching between the stress and no-stress environments, 

however, gives rise to non-trivial dynamics. During a stress phase, the SIM allele may 

increase in frequency along with the resistance mutations it produces. As resistance levels in 

the population rise, this effect weakens and the SIM allele frequency falls off because of 

mutations degrading the SIM mechanism. Periods of no stress allow resistance levels to 

decline, such that the SIM allele becomes effective again in the next stress phase. 

 SIM alleles are maintained at higher frequencies under diverse stresses 4.2.2

In order to obtain analytical insight into the dynamics of SIM alleles we first consider two 

extreme scenarios: the recurrent (R) and non-recurrent (NR) stress scenarios. In both 

scenarios, an infinitely large population is subjected to an environment that alternates 

between periods of stress (for τS time units) and of no stress (for τNS time units). In the 

recurrent scenario, the stress periods are assumed to be all the same (i.e. resistance 

acquired in the previous stress period carries over to the next stress period). In the non-

recurrent stress scenario we assume that each new stress period is different such that 

resistance acquired in previous stress periods is not beneficial in any subsequent stress 

period. 

In both regimes, the genotype frequencies evolve as described by the dynamical system in 

Equation 1 and according to the schematics in Figure 23. Iterating this procedure leads to 

oscillations in the SIM allele frequency pM = pMr + pMR as depicted in Figure 23C. We measure 

genotype frequencies at discrete time points directly before the onset of each stress period 

(bold points in Figure 23C). The long-term equilibria of this time series thus describe the 

long-term prevalence of the SIM allele, which we denote by 𝑝̂𝑀. Since our model assumes 

an effectively infinite population, the SIM allele cannot be lost within one cycle. 

Nevertheless, it is possible that the SIM allele frequency asymptotically declines to zero as 

the cycles are iterated (i.e., that 𝑝̂𝑀 = 0). 

We assume that during stress selection is strong relative to mutation, and that the effect of 

the SIM allele is large. As a consequence, the stress dynamics has two phases; during the 

rapid first phase, genotype frequencies are almost exclusively due to selection (s) and those 

mutation rates that are amplified by the SIM allele (σμM and σνR). At the end of the first 

phase, almost all individuals have acquired resistance to the stress. In the second, slower, 

phase, resistance levels remain high and the SIM allele slowly degrades due to mutation 

(μM). We further assume that stresses are of short duration, so that we may ignore this 



 

 

second phase. Mathematically, we replace s ↦ αs and σ ↦ ασ, rescale time by dt ↦ dt/α, 

divide by α, and let α → ∞ (see the Methods section for details). 

We aim to calculate the SIM allele frequencies pM = pMr + pMR before the onset of each 

stress period, i.e., at the end of each cycle of stress followed by no stress. Under stress, the 

relative proportions of the mR and MR genotypes are maintained except for an excess of 

MR genotypes being generated by amplified mutation from the Mr genotypes. This excess is 

νR/(s/σ + μM+νR). In the absence of stress, resistance levels relax to pR(τNS), which 

approaches mutation balance (νR/(μR + νR)) for long periods without stress (τNS → ∞). At the 

same time, the frequency of the SIM allele decays exponentially due to mutations from its 

initial value pM(0) to pM(0) exp(−μM τS). Heuristically, the SIM allele frequency before the 

next stress is thus obtained from the SIM allele frequency pM before the current stress as 

𝑝′𝑀 = 𝑝𝑀 𝑒−µ𝑀𝜏𝑁𝑆
1+𝜆

1+𝑝𝑀𝜆
 , 

(3) 

where λ = (1 − pR(τNS))/pR(τNS) νR/((s/σ + μM + νR). This intuitive derivation of the dynamics is 

made precise in Methods, where we also calculate pR(τNS) for the recurrent stress (R) 

scenario. In the non-recurrent (NR), we have pR(τNS) = νR/(μR + νR), since resistance levels to 

yet unknown stresses can be assumed to be at mutation balance. Solving Eq(3) for equilibria 

yields the long-term prevalences of the SIM allele in the (R) and (NR) scenarios as 

𝑝̂𝑀
(𝑅)

= 𝑚𝑎𝑥 {0, 𝑒−µ𝑀𝑡 − Г(1 − 𝑒−µ𝑀𝑡). (1 +
µ𝑅+𝜈𝑅

𝜈𝑅
(𝑒(µ𝑅+𝜈𝑅)𝑡 − 1)

−1
)}, 

(4) 

𝑝̂𝑀
(𝑁𝑅)

= 𝑚𝑎𝑥{0, 𝑒−µ𝑀𝑡 − Г(1 − 𝑒−µ𝑀𝑡)} 

(5) 

(see Appendix), where τ = τS + τNS is the length of one cycle of stress and no-stress, and 

Г =

𝑠
𝜎 + µ𝑅 + 𝜈𝑅

𝜈𝑅
 

(6) 

In particular, we thus see that the stress intensity s and the strength of the SIM allele σ 

enter the long-term SIM allele prevalences only via their ratio s/σ. 

To test our analytical predictions, we explicitly simulate the dynamics (Eq (1)) of a 

population experiencing stress and no-stress phases according to the schematics in Figure 

23 without the simplifications that lead to the above formulae. Figure 24A shows the 

long-term SIM prevalences as functions of the cycle length τ for a representative choice of 

the remaining parameters. For both the (R) and (NR) regimes, the simulated values (points) 

align well with the above formulae (solid lines). In the non-recurrent regime, the SIM allele 

is maintained in the population as long as stresses occur frequently enough; more precisely, 
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there is a critical cycle length τc such that the SIM allele is not maintained for cycle lengths 

exceeding τc, 

𝑝̂𝑀
(𝑁𝑅)

= 0   𝑖𝑓   𝜏 > 𝜏𝐶 =
1

µ𝑀
log (1 +

1

Г
) 

(7) 

Furthermore, in this regime there is a strictly monotone dependence between the steady 

state SIM allele frequency and the frequency of stress occurrence; in particular, the SIM 

allele becomes fixed in the population in the limit of infinitely rapid stress occurrence (i.e., 

𝑝̂𝑀
(𝑁𝑅)

→ 1 for 𝜏 → 1). 

In the recurrent regime, the dependence of the equilibrium SIM levels on the cycle length τ 

is less simple. If the rate of gaining resistance without the SIM allele is sufficiently low (i.e., 

νR ≪ 1, in particular νR ≪ μR), the SIM allele is not maintained in the population for any 

choice of τ (Figure 24A). Note that in general there are conditions that do lead to the 

maintenance of SIM alleles in the recurrent regime. Such cases, however, are not in 

concordance with our basic ranking of parameters, inequality Eq(2) . Furthermore, we show 

in Appendix that the non-recurrent regime generally maintains a higher SIM prevalence 

than the recurrent regime, i.e. 𝑝̂𝑀
(𝑁𝑅)

≥ 𝑝̂𝑀
(𝑅)

, for any choice of parameters. 

 

Figure 24 SIM prevalences increase with stress diversity. 

 A representative parameter set (σ = 100, s = 1, μM = 10
−3

, μR = 10
−2

, and νR = 10
−4

) was simulated for a range of 
values of τ/τc = (τS + τNS)/τc. The solid black lines represent the analytical predictions from Eq (4) for the (R) and 
(NR) regimes. For the numerical simulations, we chose τS = 10 and varied τNS accordingly. The simulation results 
of the (R) and (NR) regimes (black and grey points) fit their corresponding predictions well. The red, purple, and 
blue points represent simulation results for two, three, and four different stresses occurring cyclically. 
Increasing the number of stresses increases the SIM prevalences up to a maximum given by the prediction for 
the (NR) regime. (A) The critical cycle length τc determines the maximal stress re-occurrence time that allows 
for the maintenance of the SIM allele. (B) The minimal stress re-occurrence time that permits positive long-term 
SIM prevalences is determined by the time between identical stresses. This time is 2τ (3τ, 4τ) for two (three, 
four) stresses. 

We can extend our basic model to include additional biologically relevant factors, such as 

cost of resistance or the presence of lethal mutations (see Figure 25). These factors change 

the long-term SIM prevalences in intuitive ways, yet leave our qualitative statements 

unchanged. For example, maintaining a resistance mechanism in the absence of stress may 
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incur a fitness cost. Consequently, resistance levels decrease faster in the no-stress 

environment if resistance is costly, which increases the benefit of increased mutation rates 

to acquire resistance under stress. Accordingly, including a cost of resistance to our model 

increases the long-term SIM prevalences (see Figure 25). 

We observe the opposite effect if we consider a mutational load due to lethal mutations. 

The greater risk for mutator phenotypes to acquire deleterious mutations can be expected 

to cause indirect selection pressure against the SIM allele. Describing a gradual 

accumulation of deleterious mutations requires the consideration of multiple fitness classes, 

which is infeasible in our approach. Instead, we show in Figure 25 that lethal mutations 

translate into selection against the SIM allele and thus reduce long-term SIM prevalences. 

 

 

Figure 25 Long-term prevalence of the SIM allele when cost of resistance and lethal mutations are included 
in the model.  

A) Long-term prevalence of the SIM allele with a cost of resistance. The solid black line shows the long-term SIM 
prevalence in the (R) regime as a function of cycle length τ without a cost of resistance (c = 0). A cost of 
resistance causes resistance levels in the no-stress phase to decay more rapidly, which increases the benefit 
provided by the SIM allele. Consequently, we observe elevated equilibrium SIM frequencies (dashed and dotted 
lines for c = 0:0025 and c = 0:01, respectively). B) Long-term prevalence of the SIM allele with lethal mutations. 
The solid black lines show the long-term SIM prevalences in the (R) and (NR) regimes as functions of cycle 
length τ in the absence of lethal mutations (β = σδ = 0). Increased mutation rates during stress also increase the 
deleterious mutation load for the Mr genotype, hence reducing the equilibrium frequency of the SIM allele 
(dashed and dotted lines for β = 0.2 and β = 0.5, respectively).  

 SIM prevalence increases with number of sequentially applied stresses 4.2.3

We explore the prevalence of the SIM allele when subjected to a finite number of stresses. 

To this end, we simulate the full system as explained earlier for the (R) and (NR) regimes, 

but for a finite number χ of challenges. This is done by taking into account a separate 

resistance locus for every challenge. Each of these extra resistance loci is neutral during 

non-cognate environmental challenges. During this time period, their frequency changes 

only by mutational degradation or if they are associated to the resistance allele that is under 

selection. As in the (NR) regime, we assume no cross-resistance and there is complete 

linkage between all loci. Hence, there are 2χ+1 different genotypes to consider. The stresses 

are applied in a deterministically cycling manner. Each stress period is of constant length τS, 

and is followed by a no-stress period of length τNS. 
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The results interpolate between the (R) and (NR) regimes, where every increase in the 

number of stresses, χ, also increases the SIM allele equilibrium frequency and the parameter 

regime where it is maintained (Figure 24). In particular, the simulations suggest a simple 

classification of the possible dynamical regimes, based on the length of the stress periods 

(τ = τS + τNS). 

First, for small values of τ, we observe the loss of the SIM allele. The upper bound of this 

region is inversely proportional to the time it takes for the same stress to recur. Keeping the 

cycle length τ constant and increasing the number of challenges χ also increases this time 

and therefore allows for the maintenance of the SIM allele for smaller values of τ. The 

scaling with the time between two stresses of the same type can be seen clearly in Figure 

24B. We may deduce that a too frequent occurrence of the same stress is not beneficial for 

the SIM allele. This is not surprising; the SIM allele has no fitness advantage on its own and 

therefore can only rise in frequency if the relevant resistance levels in the population are 

low. When stresses re-occur frequently, resistance levels are kept high, preventing the SIM 

allele from hitchhiking. 

Second, if the number of different stresses is high enough, a SIM allele can be kept for 

intermediate frequencies of stress occurrence. The size of this region expands with 

increasing stress diversity up to the level of the (NR) regime of infinite stress diversity. The 

maximum allele frequency that can be kept also increases with increasing stress diversity, 

geometrically approaching the analytically determined value of the (NR) case. 

Third, if stresses occur too infrequently, the SIM allele is lost. The critical time between two 

consecutive stresses, above which the SIM allele is lost for any number of stresses χ, was 

calculated analytically as τc, see Eq (7) 

With χ different stresses, each particular stress occurs every χτ time units. Assuming that 

resistance alleles to different stresses do not interact, we thus may replace pR(τNS) by 

pR(χτNS) in the heuristic derivation of the recursion Eq (3) to obtain an approximation to the 

dynamics of SIM allele frequencies with χ different stresses. In our actual model, however, 

resistance mutations to different stresses do not evolve independently since they are linked 

to the genetic backgrounds they appear on and cross resistance against multiple stresses is 

possible. The approximation thus captures the qualitative behaviour of the long-term SIM 

allele frequencies for multiple stresses, yet overestimates the numerical results for the 

parameters used in our simulations, (see Appendix) 

To relax our assumption of stresses occurring in a strict cycle, we randomize our model by 

choosing one out of the χ stresses at each iteration of the simulation. Qualitatively, this 

leaves the picture unchanged, see Figure 26: The SIM prevalence levels  and the interval of 

stress occurrence times τ that maintain the SIM allele both increase with increasing stress 

diversity, though not as readily as in the deterministic case. However, a shift can be seen in 

which values of τ make maintenance of SIM possible, leading to a small interval of cycle 

lengths τ when randomization enables SIM allele maintanence. This happens because the 

effective time interval between two identical stresses is now a random variable, and there is 

some probability that the same stress is seen sooner than in the deterministic regime. This 



 

 

means that a cycle length, that in the deterministic regime is not conducive to the 

maintenance of the SIM allele, can now sustain it because there is some probability that the 

same stress is seen at an interval that does support it. One important point is that the 

minimum time interval between two identical stresses is the time of cycle. This means that 

the distribution of time intervals is right-skewed, which explains why the “shift” seen on the 

simulation curves is to the left (the simulations “sample” times to the right). 

 

Figure 26 The effect of stochasticity and grouping of stresses on SIM prevalences.  

(A) The solid lines represent the same data as Figure 24. In addition, we randomized the simulation by choosing 
the next stress randomly from the set of available stresses (instead of a deterministic periodic stress cycle). 
10,000 iterations of randomly chosen stress and no stress were performed, and the SIM prevalences over the 
last 1,000 were calculated (red, purple, and blue points for two, three, and four different stresses). The shaded 
areas indicate the standard deviations in the samples and there is a clear increase in SIM prevalence levels for 
increasing numbers of different stresses. However, the mean SIM prevalences are significantly lower than 
corresponding long-term SIM prevalences from deterministic simulations. (B) To mimic treatment regimes, we 
simulated the simultaneous versus sequential occurrence of four different stresses. We assumed that resistance 
to each stress confers a selective advantage s. If multiple stresses occur simultaneously, their effects add up 
such that, for instance, being resistant against two simultaneously occurring stresses provides an advantage of 
2s. If all four stresses occur simultaneously (combined treatment) every τ time units, the SIM allele is not 
maintained for our chosen set of parameters (black points). In contrast, if the four stresses are applied in 
sequence (sequential treatment) with τ/4 time units between consecutive stresses—such that one cycle through 
all stresses takes τ time units—the SIM allele is maintained at considerable frequency for a wide range of 
values of τ (blue points). Grouping the four stresses in two pairs and alternating those at half the previous rate 
(τ/2; each pair of stresses re-occurs every τ time units) leads to intermediate SIM allele maintenance levels (red 
points). (Parameters: σ = 100, s = 0.5, μM = 0.001, μR = 0.005, νR = 0.0001.) 

 Combination treatments prevent the rise of SIM alleles 4.2.4

For practical questions in antibiotic therapy, it is of interest to investigate treatment 

scenarios in which a set of pharmaceuticals is administered simultaneously or separately 

over a given period of time (combined versus sequential treatment (Bonhoeffer et al., 1997; 

D’Agata et al., 2008; Perron et al., 2013)). To this end, we simulate and compare four 

stresses either occurring simultaneously, being grouped in two pairs, or being applied 

separately. We assume that the stresses do not allow for cross-resistance mutations (i.e., 

single mutations that provide resistance to multiple stresses), that their effects on fitness in 

genotypes with multiple resistance mutations are additive, and that one cycle through all 

stresses or stress combinations takes τ time units in each case. The results of our 

simulations are depicted in Figure 26B: while applying all stresses at once does not maintain 
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the SIM allele for our choice of parameters (Figure 26B, black), the SIM allele prevalence 

increases if stresses occur more frequently, yet in a less clustered fashion (Figure 26B, red 

and blue). We have also measured the levels of multi-resistance in these scenarios 

(Appendix). Interestingly, we find that for short treatment cycles (in which the SIM allele is 

not expected to be maintained) a mixed strategy in which different sets of multiple stresses 

are applied sequentially seems to perform best at avoiding multi-resistance, even if at the 

cost of a higher prevalence of single resistant strains (see Appendix). 

4.3 Discussion 

Our study investigates the fate of a hypothetical stress-induced mutagenesis (SIM) 

mechanism under various schemes of environmental fluctuation. We assume that stress-

induced mutagenesis is brought about by an active mechanism that increases mutation 

rates as a response to stress, modeled by a modifier allele for stress-induced mutagenesis 

that is much easier lost than gained. As a consequence, it decays over time unless 

maintained by recurrent second-order selection due to changes in the environment. This is 

what would be expected under the adaptive hypothesis which we are testing. Our results 

indicate that there are plausible regimes under which the SIM allele could be kept purely by 

second-order selection under the adaptive hypothesis. What is needed is that the basic 

hierarchy of parameters outlined in Eq (2) is met. This is reasonable if one considers 

relatively strong stress episodes and a resistance mechanism such as an antibiotic degrading 

beta-lactamase enzyme, which is difficult to acquire, but easier to degrade by mutation 

(Schenk et al., 2012). Furthermore, a regime of environmental fluctuations is needed such 

that resistance levels are not kept very high between repeated strikes of the same stress, 

which can be aided in natural populations by fitness costs associated with resistance 

mutations (Andersson and Levin, 1999) (see also Appendix). Also, stresses in which SIM 

helps bring about a beneficial mutation need to occur frequently enough to prevent the 

degradation of SIM. Finally, stress diversity greatly facilitates the maintenance of SIM by 

requiring resistance mutations that are new or less prevalent in the population. Considering 

that bacteria in a human body can often experience starvation, acid stress, inflammation, or 

treatment induced antibiotic stress, these conditions are also plausible (Medzhitov and 

Janeway Jr., 1997; Weinstein et al., 2013). Although the maintanance of SIM due to second 

order selection is plausible, our model tends to underestimate SIM frequencies observed in 

natural populations which are close to 100% (Bjedov et al., 2003). Direct benefits of SIM 

mechanisms (Torres-Barceló et al., 2015) or a high cost of resistance mutations are common 

phenomena which are expected to increase the frequency of SIM alleles and could explain 

the higher frequency found in nature. 

Under our assumptions, environmental fluctuations are essential for the SIM allele to be 

maintained in the population: in the absence of environmental challenges (stresses), the 

SIM allele is lost due to the neutral accumulation of loss-of-function mutations. Repeatedly 

occurring stresses, however, give rise to second-order selection on the SIM allele. Under 

reasonable assumptions on the model parameters, c.f. Eq (2), we show that simple 

fluctuations caused by a repetitive stress generally fail to maintain the SIM allele. As the 

stress diversity—i.e., the number of different stresses available—increases, the SIM allele 



 

 

may be maintained at increasingly high levels (see Figure 24). In the limit of infinite stress 

diversity, the SIM allele is maintained for any frequency of stress occurrence above a given 

threshold, which we characterized analytically by τc. 

Interestingly, when a fixed number of stresses are applied in a random order, the 

prevalence levels of the SIM allele generally decrease, and the parameter region conducive 

to maintenance shifts: maintanence can happen at shorter time intervals, and τc is 

apparently reduced (Figure 26A). This is because in this scenario, the time between two 

stresses of the same kind is now stochastic: there is a probability distribution for the time a 

particular stress is re-applied. This effectively “smoothes” the deterministic expectation for 

the steady state frequency. This leads to the “shift” of the simulation curves seen in Figure 

25. 

It should be noted that we model the dynamics of an infinite population which prevents the 

examination of the stochastic effects introduced by genetic drift. In our model the SIM allele 

can never truly fix or be lost from the population. The first point is not very consequential, 

since it is natural to assume that deleterious mutation will always act to degrade the SIM 

mechanism and lower its frequency from fixation. However, the second point may be more 

important since mutations that reintroduce the SIM mechanism after it has been lost may 

be rare. However, our results can still provide some insights: if the frequency of the SIM 

allele drops below 1/N, where N is the population size, one can say that it is effectively lost. 

Furthermore, it is not clear if the rate of back-mutations in nature is effectively zero. If 

indeed there is some probability of reintroducing the SIM mechanism then our deterministic 

results provide an expectation for its long-term frequency. 

Our results focus on how the maintenance of a SIM allele depends on the frequency and 

diversity of stresses. We find that in the case of cycling a finite number of stresses, the SIM 

allele can only be maintained at intermediate stress frequencies. Irrespective of the number 

of available stresses, a lower bound for the stress frequency can be determined analytically 

as 1/τc. For the upper bound, we find that the time between two stresses of the same kind 

is crucial (Figure 24B). This could inform the choice of therapeutic strategies by identifying 

treatment schedules that exert extensive selection pressure to keep a SIM allele and 

possibly strengthen its effect. 

To date, various temporal treatment strategies have been investigated to counter the 

current antibiotic resistance crisis (Kim et al., 2014; Roemhild et al., 2015). To prevent the 

emergence of resistant strains, one approach is to inhibit known resistance mechanisms 

directly (Reading and Cole, 1977). Another is to use combinations of existing drugs in 

treatment regimes that are rationally designed to suppress resistance levels (Baym et al., 

2016b; Bergstrom et al., 2004). However, to keep drugs effective in the long term, it is 

desirable to develop strategies that not only decrease resistance levels, but also restrict 

evolvability. To this end, there have been efforts to directly inhibit SIM mechanisms (Alam et 

al., 2016; Cirz et al., 2005). Our study complements this approach by assessing how 

temporal treatment schemes prevent second-order selection on a SIM mechanism. We find 

that an increasing diversity of stresses encountered increases long-term SIM frequencies 
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(see Figure 24 and Figure 26B). This suggests a trade-off between controlling resistance and 

controlling evolvability when designing multi-drug therapies: in most proposed schemes, 

one tries to prevent the evolution of resistance by diversifying the stresses (antibiotics) (Kim 

et al., 2014; Roemhild et al., 2015). However, our findings suggest that this is precisely the 

scenario in which SIM alleles are more likely to persist and hence promote the evolvability 

of the population. Experimental work is needed to further characterize this trade-off and 

assess its relevance in a clinical setting. Currently, it is known that SIM mechanisms are 

common in bacteria, vary greatly in their potency (Bjedov et al., 2003) and can be lost due 

to a variety of mutations (Mamun et al., 2012). Selection pressures we describe here could 

therefore favor those strains that have a significantly higher mutation rate in stress also in 

the clinic. To confirm this relevance, studies measuring temporal dynamics of SIM alleles in a 

clinical setting are needed. Also, long-term microbial evolution experiments in a more 

controlled setting that would follow the prevalence of a synthetic or natural SIM allele over 

time under different treatment schemes are plausible. Our results may inform such 

experiments to confirm the suggested trade-off between the evolution and evolvability of 

resistance. 

It has been proposed that the simultaneous application of drugs that exhibit no cross-

resistance may be more effective against resistant strains than their sequential application 

(Bonhoeffer et al., 1997; D’Agata et al., 2008; Perron et al., 2013), but also the opposite 

(Obolski and Hadany, 2012). In our model, the same applies to reducing positive second-

order selection on SIM alleles. Exploring this finding further may provide a resolution of the 

trade-off between fighting resistance and evolvability, at least for those drug combinations 

that allow for simultaneous application despite common toxicity or dosage problems. 

4.4 Methods 

 Differential equation model 4.4.1

Casting the schematic dynamics of Figure 23 into differential equations of the form Eq (1) 
yields 

𝑝̇𝑚𝑟 = µ𝑀𝑝𝑀𝑟 + µ𝑅𝑝𝑚𝑅 − 𝜈𝑅𝑝𝑚𝑟 

𝑝̇𝑀𝑟 = µ𝑅𝑝𝑀𝑅 − (µ𝑀 + 𝜈𝑅)𝑝𝑀𝑟 

𝑝̇𝑚𝑅 = 𝜈𝑅𝑝𝑚𝑟 + µ𝑀𝑝𝑀𝑅 − µ𝑅𝑝𝑚𝑅 

𝑝̇𝑀𝑅 = 𝜈𝑅𝑝𝑀𝑟 − (µ𝑀 + µ𝑅)𝑝𝑀𝑅 

(8) 

For the stress environment, we have 

 

𝑝̇𝑚𝑟 = −𝑠 𝑝𝑚𝑟(𝑝𝑚𝑅 +  𝑝𝑀𝑅) + 𝜎µ𝑀𝑝𝑀𝑟 − 𝜈𝑅𝑝𝑚𝑟 + µ𝑅𝑝𝑚𝑅 

𝑝̇𝑀𝑟 = −𝑠 𝑝𝑀𝑟(𝑝𝑚𝑅 +  𝑝𝑀𝑅) + 𝜎(µ𝑀 + 𝜈𝑅)𝑝𝑀𝑟 + µ𝑅𝑝𝑀𝑅 

𝑝̇𝑚𝑅 = 𝑠 𝑝𝑚𝑅(1 − 𝑝𝑚𝑅 −  𝑝𝑀𝑅) + 𝜈𝑅𝑝𝑚𝑟 − µ𝑅𝑝𝑚𝑅 + µ𝑀𝑝𝑀𝑅 

𝑝̇𝑀𝑅 = 𝑠 𝑝𝑀𝑅(1 −  𝑝𝑚𝑅 −  𝑝𝑀𝑅) + 𝜎𝜈𝑅𝑝𝑀𝑟 − (µ𝑅 + µ𝑀)𝑝𝑀𝑅 



 

 

(9) 

Assuming that stress is strong and of short duration, and that the SIM allele has a large 

effect, we may replace s ↦ αs, σ ↦ ασ, and rescale time dt ↦ dt/α. Dividing by α and letting 

α → ∞, Eq (8) simplifies and permits an approximation for the SIM allele frequency after a 

short period of stress. We write 𝑝𝑀
∗ = ℱ(𝑝𝑀) for the SIM allele frequency after stress; the 

mapping depends on whether stress is recurrent or non-recurrent (the (R) and (NR) 

regimes). Measuring genotype frequencies directly before each stress, we thus obtain a 

recursion for the SIM allele frequency pM as 

𝑝𝑀
′ = (𝒢 ∘ ℱ)(𝑝𝑀) 

which can be written as Eq (3). Solving this recursion for 𝑝𝑀
′ = 𝑝𝑀 leads to the long-term 

prevalences in Eq (4). 

 Simulations 4.4.2

Our numerical simulations were implemented using the software Mathematica. For a single 
recurrent stress (the (R) regime), we alternate periods of stress (dynamics Eq (9)) for τS time 
units with periods of no stress (dynamics Eq (8)) for τNS time units. Genotype frequencies are 
recorded before each stress period, and the procedure is stopped after 104 iterations or 
once the genotype values reach an equilibrium. To simulate the (NR) regime, we proceed 
likewise but replace the genotype frequencies {pmr, pMr, pmR, pMR} before every stress by 

{(1 − 𝜀)(𝑝𝑚𝑟 + 𝑝𝑚𝑅), (1 − 𝜀)(𝑝𝑀𝑟 + 𝑝𝑀𝑅)}, 𝜀(𝑝𝑚𝑟 + 𝑝𝑚𝑅), 𝜀(𝑝𝑀𝑟 + 𝑝𝑀𝑅)} 

before every new stress, where ε = νR/(μR + νR). Since the particular kind of stress has never 

occurred before, the probability of being resistant to it is given by the balance ε between 

the rates of gaining and losing resistance due to mutation. 

With χ > 1 different stresses, there are 2χ+1 different genotypes. We consider only single 

point mutations; the SIM allele is lost at rate μM, and each resistance allele is gained (lost) at 

rate νR (μR) independently. The fitness of genotypes is w = 1 under no stress. In the presence 

of a stress, the corresponding resistance mutation provides a selective advantage s > 0. If 

multiple stresses occur simultaneously (as is the case in Figure 25B), the fitness advantages 

due to resistance to the individual stresses are assumed to be additive. There are no cross-

resistances, i.e., each resistance allele confers resistance against exactly one stress. 
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5 Conclusions and discussion 

In this thesis, we have set out to find new determinants of antibiotic resistance evolution 
and quantify the evolutionary dynamics of those already known. We have succeeded in 
finding new genetic determinants of resistance evolution to tetracycline and 
chloramphenicol using a highly-controlled automatized evolution protocol (Chapter 2). 
Further, we quantitatively described the role of general determinants such as the dose-
response relationship of a drug and the mutation rate on the extent and reproducibility of 
resistance evolution and find that steeper dose-response curves lead to faster evolution, 
and higher mutation rates to more reproducible phenotypic trajectories (Chapter 3). We 
further focused on a particular previously described mechanism that increases evolvability: 
stress-induced mutagenesis and describe antibiotic treatment schemes that allow the 
evolvability allele to persist in a population despite providing no direct benefit to the 
population (Chapter 4). These results point to new ways in which the evolvability of 
resistance can be understood, directly inhibited or controlled.  

We have established an automatized high-throughput method well-suited to screen for 
genotypes with modified evolvability (Figure 2). We chose to implement a dynamically 
adjusting selection pressure in order to observe and compare multi-sweep evolution 
trajectories. Carefully controlling the population size and growth rate makes the 
evolutionary dynamics reproducible and directly comparable between genotypes (Figure 3). 
Due to idiosyncratic technical limitations (space on the deck of the robotic setup), we were 
only able to follow the evolution of cultures in four 96-well plates at a time. With slight 
modification, this could be extended to dozens, allowing the simultaneous comparison of 
thousands rather than hundreds of genotypes, opening the door to exhaustive library 
screens of genetic determinants of resistance. 

Using this method we observed a general pattern of diminishing returns, where more 
sensitive genotypes were able to undergo larger resistance increases in the course of our 
experiment compared to more resistant genotypes (Figure 6). It is particularly interesting 
that certain gene deletion strains were outliers to this pattern and did not evolve significant 
resistance despite being sensitive to the drug and continually exposed to strong selection 
pressure for resistance (Figure 7). These genes include efflux pump components and 
regulators, but also other mechanisms that were not expected to strongly influence 
evolution such as LPS synthesis, protein transport and one particular chaperone mechanism 
– DnaK/J (Figure 9). On the opposite side, the ybaO gene deletion strain evolved resistance 
faster than average, ata a similar rate as known mutator strains (Figure 11).  

Unlike for previously reported perturbations of evolvability, the most likely explanation for 
the differences in adaptation rate that we observe here are not mutation rate differences. 
Rather, epistatic interaction between the particular gene deletion and the resistance 
mutations can account for the change in adaptation rate. Although it is predicted that 
strong genetic interactions constrain evolution (Weinreich et al., 2006), the understanding 
of which mechanisms interact with antibiotic resistance mutations in particular and 
exploiting this knowledge to constrain resistance evolution has so far been limited (Gifford 
et al., 2018). The genes we successfully identified in this thesis can serve as motivation to 
expand this search and create a comprehensive mapping of cellular mechanisms which 
genetically interact with resistance mechanisms at a genome-wide scale.  By expanding also 
to more antibiotics and more organisms, one can envision the creation of a road-map which 



 

 

can, for a given drug and organism, provide a list of possible cellular functions which need to 
be inhibited to constrain resistance evolution. In the long-run, such a comprehensive map 
could inform how to combine antibiotics and other inhibitory molecules to most successfully 
cripple resistance evolution. 

Using population genetic simulations, we predict that steeper dose-response curves lead to 
faster resistance evolution (Figure 20). Experimental evidence supports the effect of dose-
response curve steepness on the distribution of fitness effects, which could lead to a change 
in evolutionary dynamics (Chevereau et al., 2015). It would be informative to test the 
relevance of this relationship by measuring the speed of adaptation to antibiotics with large 
differences in dose-sensitivity in natural settings. In addition, since shallower dose-response 
curves are predicted to result in slower adaptation, quantitative models of antibiotic action 
could be used to devise ways in which dose-response characteristics can be directly 
perturbed, presenting another strategy to inhibit resistance evolution (Greulich et al., 2015). 

Higher mutation rates lead to more reproducible phenotypic adaptation. We see this in 
population genetic simulations as well as in evolution experiments (Figure 22). Highly 
mutating bacterial strains are a threat to antibiotic therapies and tackling such infections 
presents unique challenges (Jolivet-Gougeon et al., 2011; Maciá et al., 2006). Predicting the 
long-term population dynamics of hyper-mutating strains is important for understanding 
their success in clinical contexts. Extensions of our model could include deleterious 
mutations (Orr, 2000) and differences in mutational spectra (Couce et al., 2013) which 
would provide a better basis to address questions about the reproducibility of mutator 
strain emergence in chronic infection (Oliver and Mena, 2010). 

We show that the exposure to diverse stresses enables the long-term persistence of stress-
induced mutagenesis alleles in a bacterial population (Figure 24). This theoretical result 
together with the indication that diversification of selective pressures leads to better 
resistance prevention (Kim et al., 2014; Roemhild et al., 2015) indicates the existence of an 
underappreciated trade-off, where precisely those treatment schemes which select against 
resistance, can select for highly evolvable genotypes which may represent a great obstacle 
to treatment in the long-run. The experimental verification of the relevance of such 
predictions by tracking the frequency of evolvable genotypes in clinical populations is 
needed to design treatment schemes that would not only inhibit bacterial growth but also 
prevent the rise of highly evolvable strains. 

Altogether, the environmental and genetic determinants of antibiotic resistance evolution 
are far from understood. This thesis exposes several new ways in which the dynamics of 
resistance evolution are modulated by genetic determinants and points to how these could 
be exploited to prolong the efficacy of antibiotic treatments. A comprehensive map of 
genetic determinants of resistance evolution together with dynamical in silico models will 
provide a powerful platform to predict resistance dynamics in the clinic. With the advent of 
increasingly affordable high-throughput sequencing and phenotyping technology, extremely 
precise tracking of natural populations can also test the clinical relevance of these 
predictions (Lyu et al., 2018; Quainoo et al., 2017). The combination of systematic lab-based 
and quantitative clinic-based approaches can then lead to highly effective personalized 
strategies to combat resistance evolution. 
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A. Appendix 1 

Table 3 Identified resistance mutations in Tetracycline 

Gene 
deleted in 
ancestral 

strain 
Mutation 

locus Mutation type A
m

p
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P
ro

m
o

te
r 

Lo
ss

 o
f 

fu
n

ct
io

n
 

Ex
p

er
im

en
t 

ID
 

ID Comment 

 

lacA lon IS 0 1 1 2 1   

lacA ybaO insertion 0 0 1 2 1   

lacA acrR IS 0 0 1 2 1   

lacA renD snp 0 0 0 2 1   

lacA marR IS 0 0 1 2 1   

lacA lon IS 0 1 1 2 2   

lacA ybaO insertion 0 0 0 2 2   

lacA acrR IS 0 0 1 2 2   

lacA ycjX snp 0 0 0 2 2   

lacA marR snp 0 0 1 2 2   

lacA pumps amplification 5 0 0 2 3   

lacA lon IS 0 1 1 2 3   

lacA ybaO snp 0 0 0 2 3   

lacA marR snp 0 0 1 2 3   

lacA pumps amplification 3 0 0 2 4   

lacA lon IS 0 1 1 2 4   

lacA ybaO insertion 0 0 0 2 4   

lacA marR deletion 0 1 0 2 4   

lacA pumps amplification 3 0 0 2 5   

lacA lon IS 0 1 1 2 5   

lacA ybaO insertion 0 1 0 2 5   

lacA marR deletion 0 0 1 2 5   

parent lon IS 0 1 1 1 6   

parent ybaO insertion 0 0 1 1 6   

parent marR deletion 0 0 1 1 6   

parent pumps amplification 2 0 0 1 7   

parent lon IS 0 1 1 1 7   

parent ydeO snp 0 0 0 1 7   

parent marR snp 0 0 1 1 7   
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parent pumps amplification 3 0 0 1 8   

parent lon IS 0 1 1 1 8   

parent marR unclear 0 1 0 1 8   

parent lon IS 0 1 1 1 9   

parent acrR IS 0 0 1 1 9   

parent marR deletion 0 0 1 1 9   

parent marR snp 0 0 1 1 10   

tktA pumps amplification 2 0 0 2 11   

tktA marR deletion 0 0 1 2 11   

tktA crp snp 0 0 0 2 11   

tktA acrR IS 0 0 1 2 12   

tktA marR insertion 0 0 1 2 12   

marR pumps amplification 6 0 0 2 13   

marR lon IS 0 1 1 2 13   

marR fadD snp 0 1 0 2 13   

marR argA snp 0 1 0 2 13   

marR lon IS 0 1 1 2 14   

marR acrB snp 0 0 0 2 14   

marR acrR IS 0 0 1 2 14   

marR pumps amplification 3 0 0 2 15   

marR lon IS 0 1 1 2 15   

acrR pumps amplification 3 0 0 1 16   

acrR envZ SNP 0 0 0 1 16   

acrR pumps amplification 3 0 0 1 17   

acrR cyoA SNP 0 1 0 1 17   

acrR pumps amplification 4 0 0 1 18   

acrR acrS deletion 0 0 1 1 18   

acrR gadW IS 0 1 0 1 18   

tolC yhdJ snp 0 1 0 2 19   

dnaK lon IS 0 1 1 1 20   

dnaK marR deletion 0 0 1 1 20   

dnaK lon IS 0 1 1 1 21   

ompR lon IS 0 1 1 2 22   

ompR acrR IS 0 0 1 2 22   

ompR marR snp 0 0 0 2 22   

ompR acrR IS 0 0 1 2 23   



 

 

ompR marR deletion 0 0 1 2 23   

dedD acrR IS 0 0 1 2 24   

dedD marR deletion 0 0 1 2 24   

dedD acrR IS 0 0 1 2 25   

dedD marR snp 0 0 0 2 25   

kdpE pumps amplification 2 0 0 2 26   

kdpE lon IS 0 1 1 2 26   

kdpE acrR IS 0 0 1 2 26   

kdpE marR IS 0 0 1 2 26   

kdpE pumps amplification 2 0 0 2 27   

kdpE lon IS 0 1 1 2 27   

kdpE marR snp 0 0 1 2 27   

kdpE ybaO deletion 0 0 0 2 28   

kdpE acrR IS 0 0 1 2 28   

kdpE marR snp 0 0 1 2 28   

tufA acrR IS 0 0 1 2 29   

tufA ompF insertion 0 0 1 2 29   

tufA marR insertion 0 0 1 2 29   

tufA pumps amplification 4 0 0 2 30   

tufA lon IS 0 1 1 2 30   

tufA marR IS 0 0 1 2 30   

cspE lon IS 0 1 1 2 31   

cspE marR snp 0 0 0 2 31   

cspE pumps amplification 4 0 0 2 32   

cspE lon IS 0 1 1 2 32   

cspE ybaO snp 0 0 0 2 32   

cspE marR IS 0 0 1 2 32   

astC lon IS 0 1 1 2 33   

astC acrR IS 0 0 1 2 33   

astC marR deletion 0 0 1 2 33   

astC lon IS 0 1 1 2 34   

astC ybaO insertion 0 1 0 2 34   

astC marR IS 0 0 1 2 34   

tatC bamA snp 0 0 0 2 35   

tatC acrR IS 0 0 1 2 35   

tatC allC snp 0 0 0 2 35   
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tatC rpoA snp 0 0 0 2 35   

tatC acrR IS 0 0 1 2 36   

tatC ompF IS 0 0 1 2 36   

tatC marR snp 0 0 0 2 36   

recA      1 37 No mutations  

recA      1 38 No mutations  

recA      1 39 No mutations  

tolC      2 40 No mutations  

acrA        2 41 No mutations   

acrA marR deletion 0 0 1 2 42 (A)6→5 coding 
(377/435 nt)  

 

acrA lon IS 0 0 1 2 42   

acrA acrS/acrE IS 0 0 0 2 42   

acrA yhhZ snp 0 0 0 2 42   

acrA      2 43 No mutations  

acrA      3 44 No mutations Earlier time point 

acrA      3 45 No mutations  

acrA      3 46 No mutations Earlier time point 

acrR lon IS 0 1 1 2 47   

acrR pumps amplification 3 0 0 2 47   

acrR marR snp 0 0 0 2 48 A→T D6V (GAT→GTT)  

acrR lon IS 0 1 1 2 48   

acrR yddK snp 0 0 0 3 49 T→G pseudogene (390/951
 nt) 

acrR marR deletion 0 1 0 3 49 Δ20 bp intergenic (-192/-1) 

acrR lon IS 0 1 1 3 49 unclear  

acrR pumps amplification 4 0 0 3 49 nested amplification  

acrR marR deletion 0 0 1 3 50 Δ1 bp coding (87/435 nt) 

acrR lon IS 0 1 1 3 50   

acrR pumps amplification 6 0 0 3 50   

acrR allE snp 0 0 0 3 51 G→A A47V (GCG→GTG)  

acrR ompF deletion 0 0 1 3 51 (T)6→5 coding (691/1089 nt) 

acrR eamA snp 0 0 0 3 51 G→A S167L (TCG→TTG 

acrR lon IS 0 1 1 3 51 unclear (70%)  

cspE marR snp 0 0 0 2 52 T→A V84E (GTG→GAG) 

cspE lon IS 0 1 1 2 52   

cspE marR snp 0 0 0 2 53 T→G L78R (CTG→CGG) 



 

 

cspE lon IS 0 1 1 2 53   

dinB acrR deletion 0 0 1 2 54 Δ5 bp coding (422-426/648 
nt) 

dinB dtpD IS 0 0 1 2 54 IS4 (+) +12 bp coding (790-801/1482
 nt) 

dinB marR snp 0 0 1 2 54 A→T K140* (AAG→TAG)  

dnaJ ybaO insertion 0 0 0 3 55 (GCGCCTGAA)1→2 coding (119/459 nt) 

dnaJ marR deletion 0 0 0 3 55 Δ34 bp coding (132-165/435 
nt) 

dnaJ lon IS 0 1 1 3 55 unassigned (98%)  

dnaJ acrR snp 0 0 0 3 56 A→G Y49C (TAC→TGC)  

dnaJ marR deletion 0 0 1 3 56 Δ1 bp coding (126/435 nt) 

dnaJ lon IS 0 1 1 3 56 unassigned (95%)  

dnaJ marR snp 0 0 0 3 57 T→A L33Q (CTG→CAG)  

dnaJ lon IS 0 1 1 3 57 unassigned (95%)  

dnaJ lon IS 0 1 1 3 58 IS186 (+) +6 bp :: Δ1 intergenic (+90/-93) 

dnaJ ybaO insertion 0 1 0 3 58 (A)7→8 intergenic (+135/-18) 

dnaJ marR snp 0 0 0 3 58 C→A R77S (CGC→AGC) 

dnaJ pumps amplification 2 0 0 3 58   

dnaK pumps amplification 3 0 0 2 59 nested amplification  

dnaK lon IS 0 1 1 2 59 unclear (60%)  

dnaK pumps amplification 2 0 0 2 60   

dnaK lon IS 0 1 1 2 60 unassigned (92%)  

dnaK pumps amplification 3 0 0 2 61 nested amplification  

dnaK marR insertion 0 1 0 3 62 (TATTATCCCCTGCAA
CTAATTACTTGCCAG
GGCAA)1→2 

intergenic (-206/-6) 

dnaK lon IS 0 1 1 3 62 unclear  

dnaK pumps amplification 3 0 0 3 62   

dnaK lon IS 0 1 1 3 63 unclear 
(combination of IS) 

 

dnaK pumps amplification 3 0 0 3 63   

dnaK marR IS 0 0 1 3 64 IS2 (+) +5 bp coding (81-85/435 nt) 

dnaK lon IS 0 1 1 3 64   

dnaK pumps amplification 3 0 0 3 64   

dnaK lon IS 0 1 1 3 65 unassigned(92%)  

dnaK pumps amplification 4 0 0 3 65   

dnaK envZ snp 0 0 0 3 66 C→G A102P (GCG→CCG)  

dnaK lon IS 0 1 1 3 66   
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dnaK pumps amplification 3 0 0 3 66 nested amplification  

fis marR snp 0 0 0 2 67 T→G V84G (GTG→GGG)  

fis ompF insertion 0 1 0 2 67 (A)5→6 intergenic (-185/+418
) 

fis lon IS 0 1 1 2 67 unassigned(70%)  

fis ecpE snp 0 0 0 2 68 C→T V143M (GTG→ATG) 

fis ompF insertion 0 0 1 2 68 +C coding (365/1089 nt) 

fis marR deletion 0 0 1 2 68 Δ1 bp coding (71/435 nt) 

fis lon IS 0 1 1 2 68 unassigned(93%)  

fis pumps amplification 2 0 0 2 68 nested?  

fis lon snp 0 0 0 3 69 A→T D445V (GAT→GTT) 

fis ybaO insertion 0 1 0 3 69 (A)7→8 intergenic (+135/-18) 

fis marR snp 0 0 0 3 69 G→T G69V (GGA→GTA)  

fis ars snp 0 0 0 3 69 G→A G58R (GGG→AGG) 

fis pumps amplification 2 0 0 3 69   

fis ybaO insertion 0 0 0 3 70 (GCGCCTGAA)1→2 coding (119/459 nt) 

fis marR snp 0 0 1 3 70 C→T Q117* (CAG→TAG) 

fis pumps amplification 2 0 0 3 70 nested amplification  

fis lon IS 0 1 1 3 70 95%  

fis lon snp 0 0 0 3 71 T→C S368P (TCC→CCC)  

fis marR snp 0 0 0 3 71 T→C F8L (TTC→CTC)  

fis several amplification 0 0 0 3 71 elsewhere  

fis pumps amplification 3 0 0 3 72   

fis several amplification 2 0 0 3 72 elsewhere  

fis rssB IS 0 0 1 3 72 IS1 (–) +9 bp coding (640-648/1014
 nt) 

fis wbbI IS 0 0 1 3 72 unassigned(97%)  

fis marR snp 0 0 0 3 73 T→A V84E (GTG→GAG) 

fis sdiA IS 0 1 0 3 73   

fis pumps amplification 3 0 0 3 73   

fis sdiA IS 0 1 0 3 74 IS5 (+) +4 bp intergenic (-60/+167) 

fis several amplification 2 0 0 3 74 elsewhere  

galT acrR snp 0 0 0 3 75 A→C Q26P (CAG→CCG)  

galT marR snp 0 0 0 3 75 G→A R77H (CGC→CAC)  

galT lon IS 0 1 1 3 75 unassigned (90%)  

galT ybaO insertion 0 0 0 3 76 (GCGCCTGAA)1→2 coding (119/459 nt) 

galT safA snp 0 1 0 3 76 A→G intergenic (-109/+139
) 



 

 

galT marR snp 0 0 0 3 76 A→G N89D (AAC→GAC)  

galT lon IS 0 0 0 3 76 unassigned(95%)  

galT acrR IS 0 0 0 3 76 unassigned(73%)  

lon acrR snp 0 0 0 2 77 C→A T5N (ACC→AAC)  

lon marR snp 0 0 1 2 77 G→A M1V (GTG→GTA)  † 

lon acrR IS 0 0 1 2 78 IS30 (–) +2 bp :: Δ2 coding (463-464/648 
nt) 

lon ybaO insertion 0 1 0 3 79 (A)7→8 intergenic (+135/-18) 

lon acrR snp 0 0 0 3 79 G→T W178C (TGG→TGT)  

lon ssuE IS 0 1 0 3 79 IS1 (–) +8 bp intergenic (-75/-274) 

lon marR IS 0 0 1 3 79 unassigned(93%)  

lon ybaO snp 0 0 0 3 80 A→C T18P (ACC→CCC)  

lon marR deletion 0 1 0 3 80 Δ20 bp intergenic (-180/-13) 

lon ybaO insertion 0 0 0 3 81 (GCGCCTGAA)1→2 coding (119/459 nt) 

lon acrR insertion 0 0 1 3 81 +T coding (71/648 nt) 

lon marR snp 0 0 1 3 81 C→A C47* (TGC→TGA)  

lon ybaO insertion 0 0 0 3 82 (GCGCCTGAA)1→2 coding (119/459 nt 

lon marR IS 0 0 1 3 82 unassigned(95%)  

lon pumps amplification 2 0 0 3 82   

lon ybaO snp 0 0 0 3 83 A→C T33P (ACC→CCC)  

lon acrR IS 0 0 1 3 83 Δ2 :: IS30 (+) +2 bp coding (463-464/648 
nt) 

lon marR snp 0 0 0 3 83 G→T R16L (CGC→CTC) 

lpcA several amplification 2 0 0 2 84 insH1-arcB has tolC 

lpcA rpoB snp 0 0 0 2 85 C→A A543E (GCA→GAA)  

lpcA acrR IS 0 0 1 3 86 IS5 (–) +4 bp coding (265-268/648 
nt) 

lpcA ybjE snp 0 1 0 3 86 A→C intergenic (-342/+153
) 

lpcA marR deletion 0 0 1 3 86 Δ5 bp coding (155-159/435 
nt) 

lpcA lpxT IS 0 0 0 3 86 unassigned(90%)  

lpcA marR deletion 0 0 1 3 87 Δ5 bp coding (140-144/435 
nt) 

lpcA dedA snp 0 0 1 3 87 A→T L61* (TTG→TAG)  

lpcA acrR IS 0 0 1 3 87 unassigned(50%)  

lpcA marR snp 0 0 0 3 88 G→T R94L (CGC→CTC)  

lpcA acrS snp 0 1 0 3 88 C→T intergenic (-105/-294) 
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lpcA lpxT IS 0 0 1 3 88 unassigned(90%)  

lpcA acrR IS 0 0 1 3 89 IS5 (–) +4 bp coding (217-220/648 
nt) 

lpcA intergenic snp 0 0 0 3 89 G→T intergenic (+47/+11) 

lpcA marR deletion 0 0 1 3 89 Δ15 bp coding (207-221/435 
nt) 

lpcA lpxT snp 0 0 1 3 89 C→T R218* (CGA→TGA)  

tolC yhdJ snp 0 1 0 2 90   

tolC   0 0 0 2 91 No mutations  

tolC   0 0 0 3 92 No mutations Earlier time point 

tolC   0 0 0 3 93 No mutations Earlier time point 

tolC   0 0 0 3 94 No mutations  

tolC   0 0 0 3 95 No mutations  

tolC   0 0 0 3 96 No mutations Earlier time point 

ybaO marR deletion 0 0 1 3 97 Δ1 bp coding (285/435 nt) 

ybaO lon IS 0 1 1 3 97 unassigned(92%)  

ybaO pumps amplification 3 0 0 3 97 nested  

ybaO marR snp 0 0 0 3 98 G→A G116S (GGC→AGC)  

ybaO lon IS 0 1 1 3 98   

ybaO pumps amplification 6 0 0 3 98   

ybaO acrR IS 0 0 1 3 99 IS1 (+) +9 bp coding (265-273/648 
nt) 

ybaO marR insertion 0 1 0 3 99 (TACTTGCCAGGGCA
ACTAAT)1→2 

intergenic (-211/-1) 

ybaO lon IS 0 1 1 3 99 unassigned(90%)  

ybaO pumps amplification 2 0 0 3 99   

ybaO marR snp 0 0 0 3 100 T→G L33R (CTG→CGG)  

ybaO pumps amplification 3 0 0 3 100   

ybaO marR snp 0 0 0 3 101 G→A G69E (GGA→GAA)  

ybaO lon IS 0 1 1 3 101 unassigned(96%)  

ybaO pumps amplification 3 0 0 3 101   

ybaO marR insertion 0 0 0 3 102 57 bp x 2 duplication 

ybaO lon IS 0 1 1 3 102   

ybaO pumps amplification 5 0 0 3 102   

lacA lon snp 0 0 0 3 103 C→A A381E (GCG→GAG)  

lacA ybaO snp 0 0 0 3 103 A→C T18P (ACC→CCC)  

lacA marR deletion 0 0 1 3 103 Δ1 bp coding (121/435 nt) 

lacA pumps amplification 3 0 0 3 103   



 

 

lacA acrR IS 0 0 1 3 104 IS5 (+) +4 bp coding (217-220/648 
nt) 

lacA ompF IS 0 0 1 3 104 IS1 (+) +8 bp coding (12-19/1089 nt
) 

lacA marR insertion 0 1 0 3 104 (TACTTGCCAGGGCA
ACTAAT)1→2 

intergenic (-211/-1) 

lacA lon IS 0 1 1 3 104 unassigned(95%)  

lacA dsrB IS 0 0 1 3 104 unassigned(90%)  

lacA ybaO insertion 0 1 0 3 105 (A)7→8 intergenic (+135/-18) 

lacA acrR IS 0 0 1 3 105 IS5 (–) +4 bp coding (217-220/648 
nt) 

lacA marR snp 0 0 0 3 105 G→C V66L (GTC→CTC)  

lacA lon IS 0 1 1 3 105 unassigned(90%)  

lacA acrR IS 0 0 1 3 106 IS1 (+) +9 bp coding (265-273/648 
nt) 

lacA marR deletion 0 0 1 3 106 Δ1 bp coding (59/435 nt) 

lacA lon IS 0 1 1 3 106 unassigned(90%)  

lacA ybaO snp 0 0 0 3 107 A→C T33P (ACC→CCC)  

lacA marR insertion 0 0 0 3 107 (TATTATCCCCTGCAA
CTAATTACTTGCCAG
GGCAA)1→2 

intergenic (-206/-6) 

lacA lon IS 0 1 1 3 107 90%  

lacA ybaO insertion 0 0 1 3 108 (AGCGCCTGAAACGG
CTGGA)1→2 

coding (128/459 nt) 

lacA acrR snp 0 0 0 3 108 C→A A9E (GCG→GAG)  

lacA marR snp 0 0 1 3 108 G→T E10* (GAA→TAA)  

lacA lon IS 0 1 1 3 108 92%  

lacA ybaO insertion 0 0 0 3 109 (GCGCCTGAA)1→2 coding (119/459 nt) 

lacA marR snp 0 0 0 3 109 A→G K44E (AAG→GAG)  

lacA yjcF snp 0 0 1 3 109 C→T W353* (TGG→TAG) 

lacA lon IS 0 1 1 3 109 90%  

lacA pumps amplification 3 0 0 3 109   

recA acrR IS 0 0 1 2 110 IS5 (–) +4 bp coding (217-220/648 
nt) 

recA lon IS 0 1 1 2 110 unassigned  

recA soxR snp 0 0 0 2 111 G→T D137Y (GAC→TAC) 

recA lon IS 0 1 1 2 111 unassigned  

lpxM lon snp 0 0 0 3 112 T→G I391S (ATC→AGC)  

lpxM ybaO insertion 0 0 1 3 112 (A)6→7 coding (178/459 nt) 
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lpxM acrR snp 0 0 0 3 112 A→C I62L (ATC→CTC)  

lpxM marR insertion 0 0 1 3 112 (ATGACAA)1→2 coding (278/435 nt) 

lpxM ybaO snp 0 0 1 3 113 G→T E102* (GAA→TAA)  

lpxM marR deletion 0 0 1 3 113 Δ2 bp coding (90-91/435 nt) 

lpxM lon IS 0 1 1 3 113 unassigned  

lpxM pumps amplification 2 0 0 3 113   

marA envZ snp 0 0 0 3 114   

marA soxR snp 0 0 1 3 114   

marA lon IS 0 1 1 3 114   

marA pumps amplification 2 0 0 3 114   

marA pumps amplification 3 0 0 3 115   

marA crp snp 0 0 0 3 116   

marA pumps amplification 3 0 0 3 116   

marA ompR snp 0 0 0 3 117   

marA soxR snp 0 0 0 3 117   

marA lon IS 0 1 1 3 117   

marA ompF IS 0 0 1 3 118   

marA soxR snp 0 0 0 3 118   

marA livK snp 0 1 0 3 119   

marA soxR snp 0 0 0 3 119   

marR ybaO insertion 0 0 1 3 120   

marR lon IS 0 1 1 3 120   

marR pumps amplification 6 0 0 3 120   

marR yeaK snp 0 0 0 3 121   

marR lon IS 0 1 1 3 121   

marR ybaO snp 0 0 0 3 122   

marR acrR snp 0 0 0 3 122   

marR lon IS 0 1 1 3 122   

marR pumps amplification 2 0 0 3 122   

marR ybaO snp 0 0 0 3 123   

marR lon IS 0 1 1 3 123   

marR pumps amplification 5 0 0 3 123   

marR ybaO insertion 0 1 0 3 124   

marR acrR IS 0 0 1 3 124   

marR lon IS 0 1 1 3 124   

marR ybaO snp 0 0 0 3 125   



 

 

marR lon IS 0 1 1 3 125   

marR pumps amplification 6 0 0 3 125   

galT ybaO insertion 0 1 0 3 126 (A)7→8 intergenic (+135/-18) 

galT marR deletion 0 0 0 3 126 Δ3 bp coding (206-208/435 
nt) 

galT lon IS 0 1 1 3 126   

galT pumps amplification 2 0 0 3 126   

galT acrR IS 0 0 1 3 127   

galT marR IS 0 1 0 3 127   

galT lon IS 0 1 1 3 127   

galT ybaO snp 0 0 0 3 128   

galT marR deletion 0 0 1 3 128   

galT lon IS 0 1 1 3 128   

galT pumps amplification 2 0 0 3 128   

hslU acrR IS 0 0 1 2 129   

hslU marR snp 0 0 0 2 129   

hslU lon IS 0 1 1 2 129   

hslU acrR IS 0 0 1 2 130   

hslU lon IS 0 1 1 2 130   

hslU acrR IS 0 0 1 2 131   

hslU marR snp 0 0 0 2 131   

hslU dgoK snp 0 0 0 2 131   

hslU lon IS 0 1 1 2 131   

hslU ompF snp 0 0 1 3 132   

hslU lon IS 0 1 1 3 132   

hslU pumps amplification 3 0 0 3 132   

hslU marR snp 0 0 0 3 133   

hslU lon IS 0 1 1 3 133   

hslU acrR IS 0 0 1 3 133 unassigned  

hslU marR deletion 0 1 0 3 134   

hslU envZ snp 0 0 0 3 134   

hslU lon IS 0 1 1 3 134   

hslU marR deletion 0 0 1 3 135   

hslU lon IS 0 0 0 3 135   

htpG ybaO deletion 0 0 1 2 136   

htpG marR snp 0 0 0 2 136   

htpG lon IS 0 1 1 2 136   
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htpG pumps amplification 2 0 0 2 136   

htpG ybaO insertion 0 0 0 2 137   

htpG acrR IS 0 0 1 2 137   

htpG marR snp 0 0 1 2 137   

htpG ybaO insertion 0 0 0 2 138 (GCGCCTGAA)1→2 coding (119/459 nt) 

htpG marR snp 0 0 0 2 138 IS5 (–) +4 bp coding (217-220/648 
nt) 

htpG lon IS 0 1 1 2 138 G→A W83* (TGG→TAG) 

htpG ybaO snp 0 0 0 3 139   

htpG marR snp 0 0 0 3 139   

htpG acrR IS 0 0 1 3 139   

htpG ybaO insertion 0 0 0 3 140   

htpG marR insertion 0 1 0 3 140   

htpG lon IS 0 1 1 3 140   

htpG pumps amplification 5 0 0 3 140 (GCGCCTGAA)1→2 coding (119/459 nt) 

htpG lon snp 0 0 0 3 141 (TATTATCCCCTGCAA
CTAATTACTTGCCAG
GGCAA)1→2 

intergenic (-206/-6) 

htpG acrR IS 0 0 1 3 141 unassigned  

htpG marR snp 0 0 0 3 141   

htpG ybaO insertion 0 0 0 3 142   

htpG marR snp 0 0 0 3 142   

htpG lon IS 0 0 0 3 142   

htpG pumps amplification 5 0 0 3 142   

lpxM ybaO insertion 0 1 0 3 143   

lpxM marR snp 0 0 1 3 143   

lpxM lon IS 0 1 1 3 143   

lpxM pumps amplification 2 0 0 3 143   

lpxM ybaO insertion 0 1 0 3 144   

lpxM marR snp 0 0 1 3 144   

lpxM lon IS 0 1 1 3 144   

lpxM marR IS 0 0 1 3 145   

lpxM acrR IS 0 0 1 3 145   

lpxM lon IS 0 1 1 3 145   

lpxM marR snp 0 0 1 3 146   

lpxM ybaO insertion 0 0 0 3 147   

lpxM marR snp 0 0 0 3 147   



 

 

lpxM lon IS 0 1 1 3 147   

lpxM pumps amplification 2 0 0 3 147   

mdtC marR snp 0 0 1 2 148   

mdtC lon IS 0 0 0 2 148   

mdtC pumps amplification 2 0 0 2 148   

mdtC ybaO snp 0 0 0 3 149   

mdtC marR insertion 0 0 1 3 149   

mdtC hflK snp 0 1 0 3 149   

mdtC lon IS 0 1 1 3 149   

mdtC ybaO snp 0 0 0 3 150   

mdtC acrR IS 0 0 0 3 150   

mdtC lon IS 0 0 0 3 150 unassigned (60%)  

mdtC acrR IS 0 0 1 3 151   

mdtC rpoA snp 0 0 0 3 151   

mdtC lon IS 0 1 1 3 151   

mdtC lon IS 0 1 1 3 152   

mdtC pumps amplification 3 0 0 3 152   

mdtC lon IS 0 1 1 3 153   

mdtC marR IS 0 1 0 3 153   

mdtC lit insertion 0 1 0 3 154   

mdtC marR deletion 0 1 0 3 154   

mdtC lon IS 0 1 1 3 154   

mdtC acrR IS 0 0 1 3 154   

ompF rrsH snp 0 1 0 3 155   

ompF ybaO insertion 0 1 0 3 155   

ompF marR snp 0 0 0 3 155   

ompF lon IS 0 1 1 3 155   

ompF pumps amplification 4 0 0 3 155   

ompF ybaO insertion 0 1 0 3 156   

ompF marR snp 0 0 0 3 156   

ompF lon IS 0 1 1 3 156   

ompF pumps amplification 2 0 0 3 156   

ompF soxR deletion 0 1 0 3 157   

ompF lon IS 0 1 1 3 157   

ompF ybaO snp 0 0 0 3 158   

ompF treA snp 0 0 0 3 158   
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ompF lon IS 0 1 1 3 158   

ompF pumps amplification 3 0 0 3 158   

tatC acrR IS 0 0 1 3 159   

tatC marR insertion 0 0 1 3 159   

tatC acrR IS 0 0 1 3 160   

tatC marR deletion 0 0 1 3 160   

tatC yihU snp 0 0 0 3 160   

tatC acrR IS 0 0 1 3 161   

tatC nmpC deletion 0 0 1 3 161   

tatC marR snp 0 0 0 3 161   

tatC lon IS 0 1 1 3 161   

recA lon deletion 0 0 1 3 162   

recA acrR deletion 0 0 1 3 162   

recA marR IS 0 1 0 3 162   

recA lon snp 0 0 1 3 163   

recA acrR snp 0 0 0 3 163   

recA marR snp 0 0 0 3 164   

recA      3 165 No mutations  

acrR pumps amplification 5 0 0 3 166   

lpxM lon IS 0 1 1 3 167   

lpxM marR IS 0 1 0 3 167   

 

Table 4 Identified resistance mutations in Chloramphenicol 

Gene 
deleted in 
ancestral 

strain 
Mutation 

locus 
Mutation  

type A
m

p
lif

ic
at

io
n

 

P
ro

m
o

te
r 

Lo
ss

 o
f 

fu
n

ct
io

n
 

ID Comment 

 

acrA        1  No mutations  Earlier time point 

acrB        2  No mutations  Earlier time point 

acrB        3  No mutations  Earlier time point 

acrB several amplification 2 0 0 4 mdfA   

acrB        5  No mutations  Earlier time point 

acrR several amplification 3 0 0 6 acrAB   

acrR several amplification 4 0 0 7 acrAB  



 

 

acrR gyrB snp 0 0 0 7 C410G (TGC→GGC)  

acrR rpoC snp 0 0 0 7 R1140S (CGC→AGC)    

astC marR deletion 0 0 1 8 Δ1 bp coding (243/435 nt) 

astC cyaA snp 0 0 0 8     

astC lpxK snp 0 0 0 9   

astC marR snp 0 0 1 9 Q121* (CAA→TAA)   

cmr acrR IS 0 0 1 10 IS1 (+) +8 bp coding (526-533/648 nt) 

cmr marR insertion 0 1 0 10 (TACTTGCCAGGGCAACTA
AT)1→2 

intergenic (-211/-1) 

cmr acrB snp 0 0 0 11 G570S (GGC→AGC)   

cmr acrR IS 0 0 1 11 IS5 (+) +4 bp coding (217-220/648 nt) 

cmr nagA snp 0 0 0 11 E161A (GAA→GCA)   

cmr marR deletion 0 0 1 11 Δ1 bp coding (44/435 nt) 

cmr marR snp 0 0 0 12 R73H (CGT→CAT)   Earlier time point 

cspE acrB snp 0 0 0 13 S630T (TCC→ACC)    

cspE acrR snp 0 0 0 13 L174P (CTG→CCG)  

cspE marR snp 0 0 0 13 G69E (GGA→GAA)   

cspE acrR snp 0 0 0 14 R13S (CGC→AGC)   

cspE marR snp 0 0 0 14 W83G (TGG→GGG)   

cspE several amplification 3 0 0 14 mdfA   

cspE acrB snp 0 0 0 15 Q369L (CAG->CTG)  

cspE mdfA snp 0 1 0 15 intergenic (-273/-12)  

cspE marR snp 0 0 1 15 Q117* (CAG→TAG)    

dinB marR snp 0 0 0 16 T39A (ACC→GCC)    

dnaK marR deletion 0 0 1 17 Δ106 bp coding (255-360/435 nt) 

dnaK several amplification 2 0 0 17 insN-mhpC?   

dnaK several amplification 12 0 0 18 mdfA  

dnaK rrsA snp 0 0 0 18 T→G noncoding (1537/1542 n
t) 

dnaK yjbI snp 0 0 0 18 T→C pseudogene (61/75 nt) 

galT acrB snp 0 0 0 19 F136V (TTC→GTC)   

galT acrR IS 0 0 0 19 unclear  

galT marR snp 0 0 0 19 V45E (GTG→GAG)    

galT ycbK snp 0 0 0 20 R74H (CGC→CAC)   

galT marR snp 0 0 1 20 W83* (TGG→TAG)   

galT acrR IS 0 0 1 21 IS5 (–) +4 bp coding (217-220/648 nt) 

galT marR snp 0 0 1 21 S65* (TCG→TAG)   
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galT several amplification 6 0 0 21 mdfA-nfsA   

lacA acrR IS 0 0 1 22 IS5 (–) +4 bp coding (217-220/648 nt) 

lacA chiP snp 0 0 0 22 A92A (GCT→GCG)   

lacA marR snp 0 0 1 22 M1V (GTG→GTT)  †  

lacA several amplification 17 0 0 22 mdfA  

lacA several amplification 2 0 0 22 insN-mhpC?   

lacA acrR IS 0 0 1 23 IS1 (–) +9 bp coding (337-345/648 nt) 

lacA marR snp 0 0 0 23 T101I (ACC→ATC)  

lacA lon IS 0 1 0 23 unclear  

lacA marR snp 0 0 0 24 V84E (GTG→GAG)   

lacA acrR IS 0 0 0 24 unclear  

lacA several amplification 2 0 0 24 insN-mhpC?   

lacA acrR IS 0 0 1 25 IS5 (–) +4 bp coding (217-220/648 nt) 

lacA marR snp 0 0 1 25 Q113* (CAA→TAA)  

lacA ydjL deletion 0 0 1 25 Δ1 bp coding (108/1077 nt) 

lacA yhiM snp 0 0 0 25 S141N (AGC→AAC)   

lacA mdfA IS 0 1 0 25 unclear  

lacA several amplification 2 0 0 25 insN-mhpC   

lacA acrR IS 0 0 1 26 IS1 (–) +8 bp coding (362-369/648 nt 

lacA marR snp 0 0 0 26 D92E (GAC→GAG)  

lacA lon IS 0 1 0 26 unclear   

lacA marR snp 0 0 0 27 T101I (ACC→ATC)  

lacA lon IS 0 1 0 27 unclear  

lacA several amplification 2 0 0 27 acrAB   

lacA acrR snp 0 0 0 28 L86P (CTC→CCC)   

lacA marR snp 0 0 0 28 G69E (GGA→GAA)   

lacA mdfA IS 0 1 0 28 unclear  

lacA yeaR IS 0 0 0 28 unclear  

lacA several amplification 3 0 0 28 insN-mhpC?   

lon rrsH snp 0 0 0 29 A→G noncoding (864/1542 nt
) 

lon acrR snp 0 0 0 29 L174Q (CTG→CAG)   

lon mdfA IS 0 1 0 29 unclear  

lon marR IS 0 0 0 29 unclear   

lon acrR deletion 0 0 1 30 (G)5→4 coding (85/648 nt) 

lon marR snp 0 0 0 30 D6V (GAT→GTT)  

lon mdfA IS 0 1 0 30 unclear  



 

 

lon several amplification 5 0 0 30 mdfA   

lon rrsH snp 0 0 0 31 A→G noncoding (864/1542 nt
) 

lon mrdA snp 0 0 0 31 Q150P (CAG→CCG)  

lon soxR snp 0 0 0 31 G143D (GGT→GAT)   

lon mdfA IS 0 1 0 31 unclear  

lon several amplification 2 0 0 31 mdfA   

lpcA marR insertion 0 0 1 32 (ATTACCGCGGCACAGTTT
AA)1→2 

coding (131/435 nt) 

lpcA lpxT deletion 0 0 0 32 (T)5→4 coding (540/714 nt) 

lpcA acrR IS 0 0 1 32 unclear   

lpcA        33 No mutations  Earlier time point 

lpcA marR snp 0 0 0 34     

lpxM acrR IS 0 0 1 35 IS5 (+) +4 bp coding (217-220/648 nt) 

lpxM marR snp 0 0 1 35 Q117* (CAG→TAG)   

lpxM acrR IS 0 0 1 36 IS5 (–) +4 bp coding (217-220/648 nt) 

lpxM marR snp 0 0 1 36 Q23P (CAG→CCG)   

lpxM mdfA IS 0 1 0 36 unclear   

lpxM        37 No mutations  Earlier time point 

marA several amplification 2 0 0 37 acrAB  

marA acrR IS 0 0 1 37 IS5 (–) +4 bp coding (265-268/648 nt) 

marA fis deletion 0 0 1 37 Δ18 bp coding (262-279/297 nt) 

marA acrR deletion 0 0 0 38 Δ1 bp coding (545/648 nt) 

marA several amplification 2 0 0 38 acrAB   

ppiD acrB snp 0 0 0 39 T329S (ACC→AGC)   

ppiD acrR snp 0 0 0 39 S33L (TCG→TTG)   

ppiD marR IS 0 0 0 39 IS2 (+) +5 bp coding (48-52/435 nt) 

ppiD lon IS 0 1 0 39 unclear  

ppiD several amplification 4 0 0 39 hipA   

ppiD acrR deletion 0 0 1 40 Δ1 bp coding (469/648 nt) 

ppiD marR deletion 0 0 1 40 Δ150 bp coding (85-234/435 nt) 

ppiD mdfA IS 0 1 0 40 unclear   

proQ acrB snp 0 0 0 41 G288A (GGT→GCT)  

proQ mdfA snp 0 1 0 41 A→G intergenic (-247/-38) 

proQ marR IS 0 0 0 41 IS2 (+) +5 bp coding (81-85/435 nt) 

proQ lptG snp 0 0 0 41 L146P (CTC→CCC)    

proQ acrR IS 0 0 1 42 IS1 (+) +9 bp coding (52-60/648 nt) 
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proQ opgG deletion 0 0 0 42 Δ1 bp coding (1152/1536 nt) 

proQ marR insertion 0 0 0 42 (ACTGGTAAAACTTACCACC
GGCGGCGCGGCAATATG)1

→2 

coding (323/435 nt) 

proQ frlA IS 0 0 0 42 unclear   

recA ahpF snp 0 0 0 43 T343A (ACC→GCC)   

recA marR snp 0 0 0 43 D67G (GAC→GGC)   

recA lon IS 0 1 0 43 unclear   

recA marR snp 0 0 0 44 D76V (GAT→GTT)   

recA mdfA IS 0 1 0 44 unclear  

recA lon IS 0 0 0 44 unclear   

rfaG acrB snp 0 0 0 45 W634C (TGG→TGT)  

rfaG acrR IS 0 0 1 45 IS1 (+) +8 bp coding (452-459/648 nt) 

rfaG marR snp 0 0 0 45 A→C T72P (ACC→CCC)  

rfaG mtfA snp 0 0 0 45 S260S (TCG→TCC)    

rfaG acrB snp 0 0 0 46 V139F (GTT→TTT)   

rfaG acrR snp 0 0 0 46 I62L (ATC→CTC)   

rfaG marR snp 0 0 0 46 L46H (CTC→CAC)   

rfaG acrR snp 0 0 0 47 A9P (GCG→CCG)   

rfaG marR deletion 0 0 0 47 Δ18 bp coding (113-130/435 nt) 

rfaG intergenic insertion 0 0 0 47 (T)5→6 intergenic (+34/+22) 

sodB marR snp 0 0 0 48 E131V (GAA→GTA)   

sodB acrR IS 0 0 0 48 unclear  

sodB mdfA IS 0 1 0 48 unclear   

sodB acrB snp 0 0 0 49 A371T (GCC→ACC)  

sodB acrR IS 0 0 1 49 IS5 (+) +3 bp :: +C coding (266-268/648 nt) 

sodB marR snp 0 0 1 49 E122* (GAA→TAA)   

sodB mdfA IS 0 1 0 49 unclear  

sodB several amplification 2 0 0 49 mdf?   

sodB acrR snp 0 0 0 50 L34Q (CTG→CAG)  

sodB mdfA snp 0 1 0 50 G→A intergenic (-259/-26) 

sodB marR insertion 0 0 1 50 (AGAAAGATCGCCTGCTTA
AC)1→2 

coding (90/435 nt) 

sodB mdfA IS 0 1 0 50 unclear   

rplA acrR IS 0 0 1 51 IS5 (–) +4 bp coding (217-220/648 nt) 

rplA marR deletion 0 0 1 51 Δ10 bp coding (105-114/435 nt) 

rplA several amplification 2 0 0 51 unclear   

rplA acrR snp 0 1 0 52 A→G intergenic (-95/-47) 



 

 

rplA marR deletion 0 1 0 52 Δ20 bp intergenic (-192/-1) 

rplA menC snp 0 0 1 52 C→T W66* (TGG→TAG) 

rplA rpoA snp 0 0 0 52 G→C L290V (CTT→GTT) 

tatC mdfA IS 0 1 0 53 unclear   

tatC acrR IS 0 0 1 54 IS5 (+) +4 bp coding (217-220/648 nt) 

tatC marR snp 0 0 1 54 Q117* (CAG→TAG)    

tolC mdfA IS 0 1 0 55 unclear  

tolC mdfA deletion 0 1 0 55 Δ12 bp intergenic (-245/-29) 

tolC        56  No mutations Earlier time point 

tolC mdfA IS 0 1 0 57 unclear  

 

Figure 27 Deletions of efflux pumps other than acrA/B have limited effect on resistance evolution.  

 

Resistance (IC50 in µg/ml) over time as estimated by the tetracycline concentration in the well during in the 
automatized evolution protocol is shown for five efflux pump deletion strains from experiment M3. Gray lines 
show resistance over time for control (lacA) replicate experiments.  


