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a b s t r a c t

Our focus here is on the infinitesimal model. In this model, one or several quantitative traits are described
as the sum of a genetic and a non-genetic component, the first being distributed within families as a
normal random variable centred at the average of the parental genetic components, and with a variance
independent of the parental traits. Thus, the variance that segregates within families is not perturbed
by selection, and can be predicted from the variance components. This does not necessarily imply that
the trait distribution across the whole population should be Gaussian, and indeed selection or population
structuremay have a substantial effect on the overall trait distribution. One of ourmain aims is to identify
some general conditions on the allelic effects for the infinitesimal model to be accurate. We first review
the long history of the infinitesimal model in quantitative genetics. Then we formulate the model at the
phenotypic level in terms of individual trait values and relationships between individuals, but including
different evolutionary processes: genetic drift, recombination, selection, mutation, population structure,
. . . .We give a range of examples of its application to evolutionary questions related to stabilising selection,
assortative mating, effective population size and response to selection, habitat preference and speciation.
Weprovide amathematical justification of themodel as the limit as the numberM of underlying loci tends
to infinity of a model with Mendelian inheritance, mutation and environmental noise, when the genetic
component of the trait is purely additive. We also show how the model generalises to include epistatic
effects. We prove in particular that, within each family, the genetic components of the individual trait
values in the current generation are indeed normally distributedwith a variance independent of ancestral
traits, up to an error of order 1/

√
M . Simulations suggest that in some cases the convergence may be as

fast as 1/M .
© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The infinitesimal model is a simple and robust model for the
inheritance of quantitative traits, in which these are the sum of
a genetic and a non-genetic (environmental) component, and the
genetic component of offspring traits follows a normal distribution
around the average of the parents; this distribution has a variance
that is independent of the parental trait values, and, in a large
outcrossing population, the variance remains constant despite se-
lection. With inbreeding, the variance decreases in proportion to
relatedness. Of course, selection may cause the distribution across
the whole population to deviate from normality. The crucial point
is that under the infinitesimal model, the distribution of genetic
components within families remains normal, with variance that
evolves in a way that is entirely determined by relatedness.
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This model has its roots in the observations of Galton (1877,
1885, 1889), and their analysis by Pearson (1896, 1897). Fisher
(1918) showed that trait values and their (co)variances can be bro-
ken down into components, and that the phenotypic observation of
constant within-family variance is consistent with a large number
of Mendelian factors, with additive effects. The limiting infinites-
imal model can be extended to include all the main evolutionary
processes: recombination, mutation, random sampling drift, mi-
gration and selection. The model is hardly new, yet there seems
to be no agreement onwhat precisely is meant by the infinitesimal
model, nor on the conditions under which it is expected to apply.
Moreover, although it has long been central to practical breeding,
where it forms the genetic basis for the animalmodel, it is relatively
little used in evolutionary modelling (see Kruuk, 2004; Hill and
Kirkpatrick, 2010 for a review).

This paper provides a summary of the model, together with
a rigorous derivation, including control over its accuracy as an
approximation. We show that its predictions about within-family
variance can be accurate even with epistasis. The reason can be
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understood intuitively, as follows. The classical theory of quantita-
tive genetics gives a remarkably general description of evolution,
in which the covariance in the values of a trait across individuals
is a linear combination of a set of variance components, with coef-
ficients determined by the probability of identity of sets of genes.
Selection rapidly changes the trait mean, at a rate proportional to
the additive genetic variance. However, when the trait depends on
large numbers of genes, each of which makes a small contribution,
selection has a negligible effect on the variance contributed by any
individual locus. At the individual level, conditioning on the trait
value hardly alters the distribution of effects of any one gene, at
least in the short term; therefore, this distribution can be assumed
constant. Importantly, it is not that allele frequencies donot change
under the infinitesimal model: allele frequencies may change sub-
stantially due to random drift, mutation and migration; the key
assumption is that selection only slightly perturbs the neutral
distribution at any particular locus (Fisher, 1918; Robertson, 1960;
Kimura, 1983, Ch. 6).

Our results here incorporate not only selection, but also muta-
tion, random drift, population structure and some forms of epis-
tasis. Dominance is left to future work. The evolutionary forces at
work are captured by the actual pedigree of the population. Indeed,
selection and structure pick out a particular pedigree, biased ac-
cording to the trait values and the possible interactions between
individuals. Thus, by conditioning on this pedigree and on the trait
values in all previous generations, we are able to capture arbitrary
forms of selection and population structure. The distribution of
traits within families in the population is a multivariate normal
distribution in which covariance is determined entirely by the
pedigree and is independent of ancestral trait values. If some part
of the pedigree or ancestral traits is unknown, then averaging with
respect to the expected ancestral distribution, this multivariate
normality is preserved. For example, it follows directly that con-
ditioning on knowing just some of the trait values in the pedigree
shifts the mean trait values in other families by a linear function
of the conditioned values, but leaves variances within families
unaltered.

After outlining the history of the infinitesimal model, we de-
fine it directly as a model for the distribution of phenotypes in a
population; such a formal definition seems to be new. Initially, we
implicitly assume an additive trait, but include all the usual evo-
lutionary processes. For simplicity, we neglect linkage throughout.
Having explained the phenotypic model, not only defining it at the
level of the individual, but also showing how it can be simulated
at the level of the population, we outline some of its applications.
We then show that we can derive this infinitesimal model as the
limit of a model of Mendelian inheritance, showing the conditions
under which it is accurate and obtaining explicit bounds on the
error. Finally, we show how the infinitesimal model extends to
allow for epistasis, before presenting simulations that illustrate the
main results.

We emphasise that our derivation of the infinitesimal model
is distinct from earlier work, which used multi-locus models to
analyse the effects of selection on complex traits (e.g. Bürger,
2000; Turelli and Barton, 1994; Kirkpatrick et al., 2002). The aim
there was to connect population with quantitative genetics, and
specifically, to find ways to approximate the effects of selection on
the genetic variance, given a finite number of loci. In particular,
Turelli and Barton (1994) investigated whether the trait distri-
bution across the whole population could be approximated by a
normal distribution. In contrast, here we aim to show that in the
infinitesimal limit, the trait distributionwithin families is normally
distributed, with a variance that is determined by the variance in
the ancestral population and the pedigree relating individuals in
those families,withoutmaking any detailed assumptions about the
genetic basis of the trait, or about the form of the distribution of
the trait across the population. Thus, we aim to recover the radical
simplicity of quantitative genetics.

2. The classical model

2.1. History

Although the infinitesimal model is named for its justification
as the limit of infinitely many Mendelian genes, it can be defined
purely phenotypically, and its origins trace back well before the
rediscovery of Mendel’s work in 1900. Here, we summarise the
origins of the infinitesimal model, after which we will formulate a
precise definition at the phenotypic level, with no explicit genetic
assumptions.

In one of the earliest quantitative discussions of heredity,
Fleeming Jenkin (1867) argued that blending inheritance could
have no effect in the long term: a white man stranded on an in-
habited tropical island would leave offspring who, over successive
generations, would approach ever closer to the dark-skinned na-
tive population. Davis (1871) pointed out that in a large and stable
population, an individual is expected to leave two children, four
grandchildren, and so on, so that his total expected contribution
is constant through time. Nevertheless, if offspring are precisely
intermediate between their parents, the range of variation in the
populationmust necessarily decrease. Darwin saw this as a serious
problem for his theory, which required a source of variation to
counter blending inheritance. (See Bulmer, 2004, for a detailed
discussion of Jenkin’s argument.)

Francis Galton gathered extensive data on the inheritance of
continuous traits, and introduced many ideas that are now cen-
tral to quantitative genetics. In experiments with sweet peas, he
showed that seeds of offspring grown from seeds of different
weights followed a normal distribution with a mean that reverted
towards the population mean, and with variance independent of
the parents’ weight: ‘‘I was certainly astonished to find the family
variability of the produce of the little seeds to be equal to that
of the big ones, but so it was, and I thankfully accept the fact,
for if it had been otherwise, I cannot imagine, from theoretical
considerations, how the problem could be solved’’ (Galton, 1877,
p. 513). (In Galton’s experiments with sweet peas, plants were
self-fertilised, so that the variance in families is, in fact, expected
to decrease.) He saw a similar pattern for human height, and
showed that the joint distribution of offspring and mid-parent is
bivariate normal (Galton, 1885). Moreover, he understood that the
variance of the population could remain stable under the joint
influence of random mating, reversion of offspring towards the
population mean, and generation of variance amongst offspring.
Galton (1877) calculated the equilibrium variance, allowing for
Gaussian stabilising selection, a calculation next made by Bulmer
(1971) and Cavalli-Sforza and Bodmer (1971), nearly a century
later.

Galton (1885, 1889) tried to explain his observations by for-
mulating his ‘law of ancestral heredity’, which divided an individ-
ual’s phenotype into geometrically declining contributions from
parents, grandparents, great-grandparents, . . . ; he interpreted this
contribution from distant ancestors as being due to inherited fac-
tors which have some probability, p, of being expressed in each
generation. Bulmer (1998) shows that Galton’s law is equivalent to
the quantitative genetics of an additive trait, with p being replaced
by the heritability, h2

= VA/VP (where VP is the total phenotypic
variance andVA the additive genetic variance of the trait); however,
h2 may vary from trait to trait, whereas Galton assumed that it
is a constant parameter of the mechanism of inheritance. Gal-
ton’s model explains reversion of offspring towards the population
mean as being due to expression of factors inherited from earlier
generations (Lush, 1937, p. 47). In contrast, underMendelian inher-
itance, reversion to the mean arises because selection acts on the
phenotypic variance, VP , whereas only additive genetic variation,
VA, is passed on; the deviation of offspring is therefore h2

= VA/VP
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times that of the selected parents. Pearson (1896, 1897) introduced
matrix algebra and multiple regression, to put Galton’s ancestral
lawon a firmmathematical basis. However, he treated the problem
as the statistical description of a population of relatives, rather than
following Galton in devising a mechanistic explanation of heredity
(Magnello, 1998).

After 1900, there was a bitter dispute between those studying
theMendelian inheritance of discrete characters, and those biome-
tricians who studied the inheritance of continuous traits (Provine,
1971). Pearson (1904a, 1904b, 1909) understood that Mendelian
factors could account for continuous variation, but found that if
there were complete dominance, correlations between relatives
did not agree with observations (see Magnello, 1998). Yule (1902,
1907) showed that if incomplete dominance and random ‘environ-
mental’ variation are included, then arbitrary correlations could be
explained. However, these ideas were not developed further until
Fisher’s definitive (1918) paper.

During the following years, quantitative genetics developed
quite separately from the population genetics of discrete genes.
Fisher and Wright established the basic theory for correlation
between relatives and for the effects of inbreeding, Wright was
involved in practical animal breeding, and Haldane (1931) showed
how selection on a trait affects the constituent alleles. However,
the bulk of their work was on the evolution of single loci, and
even the basic theory for the response of continuous traits to
selection developed slowly. The change over one generation is
implicit in Galton’s regression of offspring on mid-parent, and
the multivariate version is given by Pearson (1896). However, the
classic ‘breeders’ equation’ was only written in its modern form
by Lush (1937); see Hill and Kirkpatrick (2010). Fisher’s (1918)
analysis of genetic variance was developed into a sophisticated
theory in the 1950’s (e.g. Cotterman, 1940; Henderson, 1953;
Cockerham, 1954; Kempthorne, 1954; see Hill, 2014), but this did
not become widely known. Quantitative genetics came back into
contact with evolutionary questions through Robertson (1966),
who formulated the ‘secondary theorem’,which states that the rate
of change of a trait’s mean due to selection equals its covariance
with relative fitness. Robertson (1960) also showed that under the
infinitesimal model, the ultimate cumulative response to selection
equals the response in the first generation, multiplied by twice the
effective population size; he showed that this can be understood
through the increase in fixation probability of individual alleles
caused by weak selection (Ns ≪ 1). (We discuss this in more
detail when we discuss applications of the infinitesimal model
in Section 2.3.) Bulmer (1971) and Lande (1975) investigated the
effect of stabilising selection and mutation on trait variance. It
is striking that though these methods trace back to Galton and
Pearson, they did not become widely used in evolutionary biology
for more than 70 years. Indeed, the sophisticated ‘animal model’,
widely used in animal breeding, has only been applied to analyse
natural populations over the past 15 years (Kruuk, 2004).

Despite the revival of interest (both theoretical and empirical)
in ‘evolutionary quantitative genetics’ in recent decades, the in-
finitesimal model itself has received little attention. Indeed, its
origins are lost in the mists of time (M. Bulmer, W.G. Hill, pers.
comm.). Bulmer (1971) showed that assuming a large number of
unlinked loci with additive effects, the joint distribution of a set of
relatives is multivariate normal, conditional on the parents; Lange
(1978) gave amore detailed derivation. His aimwas to find general
mathematical conditions underwhich a polygenicmodel, based on
a large number of loci, each having a small additive impact on a
trait, implies a multivariate normal distribution for trait values of
individuals in a group. Assuming either no inbreeding or no domi-
nance variance, he provides conditions for a central limit theorem
for polygenic-trait values in a pedigree. He assumes that all loci
are in linkage equilibrium, that there is no assortative mating or

epistasis and that the number of chromosomes goes to infinity. In
contrast to our work here, he considers only one generation of re-
production and he does not control the rate of convergence, nor the
impact of conditioning on trait values of parents. Again assuming
additivity, Dawson (1997) showed that certain kinds of linkage
disequilibrium could cause the distribution amongst offspring to
depend on the parental values. Bulmer (1974) and Santiago (1998)
extended the infinitesimal model to allow for linkage. Appendix B
of Turelli and Barton (1994) gave a general treatment of epistasis,
which allows for linkage and multiple alleles. They showed that
provided that kth order epistatic coefficients scale correctly with
the number of loci, M , then the effect of selection on the trait
depends only on the variance of effects at each locus, and the
linkage disequilibria between them. The additive genetic variance
will change slowly under selection, and can be assumed constant
for o(

√
M) generations. However, their treatment did not include

mutation, population structure, or random drift.

2.2. Definition of the phenotypic model

We begin by defining the infinitesimal model in terms of the
phenotypic distribution. In Section 3.1, we derive it as the limit of
a large number of Mendelian alleles with additive effects, and that
underlying additivity will be implicit in our discussion in this sec-
tion. However, in Section 3.2 we show that under some conditions
themodel can be extended to include epistasis and the phenotypic
model will, just as in the classical case which we now describe, be
determined by systems of recursions for the segregation variance
between siblings.

For simplicity, in this section, we ignore non-genetic contri-
butions to the trait; an environmental noise will be explicitly
incorporated in our derivations in Section 3.1. We also consider
a single trait, but it is straightforward to extend the analysis to
multiple traits.

2.2.1. The basic model
Consider first the simplest case, of a purely additive trait in a

large outcrossing population. Then, the infinitesimal model states
that offspring follow a Gaussian distribution around the mean of
the two parents, with a variance V0, that is constant, independent
of the parents’ values. With random mating, the population as a
whole rapidly converges to a Gaussian with variance 2V0. To see
this, note that if the variance in the parental population is V1, then
that of the mean of two parents sampled at random is V1/2, and so
that of the offspring generation is V1/2+ V0: at equilibrium, V1 =

2V0; that is half the variance is between families, and half within
them. Selection can readily generate arbitrary non-Gaussian distri-
butions: for the population as a whole, we are free to choose any
distribution of phenotypes (but within families the distribution
remains Gaussian). However, in the absence of selection such a
distribution rapidly relaxes back to a Gaussian with variance 2V0;
the k th order cumulants decay by a factor 21−k per generation, for
k ≥ 3 (Bulmer, 1980). This is illustrated in Fig. 1.

2.2.2. Haploids versus diploids
In this simplest case, it makes no difference whether we follow

haploids or diploids. However, the distinction becomes evident
when we consider inbreeding and random drift. We can choose
to follow haploid individuals, which mate to produce diploids
that immediately undergo meiosis to produce the next haploid
generation. Alternatively, we can follow diploid individuals, which
produce haploid gametes via meiosis, and then immediately fuse
to produce the next diploid generation. This results in two distinct
approaches to modelling, both of which we describe below.

With no selection, whetherwe track haploids or diploidsmakes
no fundamental difference. However, when we select, we condi-
tion the individual’s full genotype on the value of a polygenic trait;
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Fig. 1. Under the infinitesimal model, changes in the shape of the trait distribution
across the population are due to linkage disequilibrium. Top: A large random-
mating population at equilibrium, in the absence of selection. The genetic com-
ponent of trait values follow a normal distribution, with variance divided equally
within and between families. Middle: After disruptive viability selection (fitness
shown by the dashed line), followed by random mating, the distribution of trait
values is bimodal (blue), with increased mean. The underlying genic component
of the distribution (red), which would be reached at linkage equilibrium, has the
same (increased) mean, but a variance unchanged from the initial value. Bottom:
After a further round of random mating, with no selection, allele frequencies, and
hence the genic component (red) are the same. The distribution of trait values (blue)
has relaxed towards this underlying normal distribution, as linkage disequilibria
decrease as a result of segregation. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

it is then clearly important whether we measure the trait at the
haploid or the diploid stage. In principle, selection could act at both
stages, but we do not consider this complication. For simplicity, in
our derivation in Section 3 we concentrate on the haploid case.

2.2.3. Identity by descent and the segregation variance
In this section, we show how to incorporate inbreeding into the

infinitesimal model. We explain this in modern terms, referring to
genes, but emphasise that the formal definition of the infinitesimal
model does not require that discrete genes be specified — only
inbreeding coefficients, which can be calculated from the pedigree,
are required.

As before, the mean trait value in offspring is the midpoint of
the parents’ trait values. Variation between siblings is generated
by the random segregation of genes from the parental genotypes.
To the extent that the genomes that come together in meiosis are
related, this segregation variance will be reduced in proportion to
the fraction of genes that they share. Imagine an ancestral popula-
tion, whose members are all unrelated. We suppose that after one
round of reproduction all families segregate with variance V0. The
current population descends from this reference population via an
arbitrary pedigree. The relation between haploid individuals i, j is
described by Fi,j, the probability that homologous genes descend
from the same ancestral gene — that is, are identical by descent
from the reference population. Since we are ignoring linkage, and
the trait is additive, the variance amongst the haploid offspring
from haploid parents i, j, is just V0(1− Fi,j).

For diploids, Fi,j is defined to be the probability of identity
between two genes, one from i, and one from j ; when i = j, Fi,i is

defined to be the probability of identity by descent of two distinct
genes in the diploid individual i. Meiosis in i generates segregation
variance proportional to

(
1− Fi,i

)
. The value of an additive trait

in a diploid is the sum of equal contributions from each haploid
gamete, and so the segregation variance is V0

(
1−

(
Fi,i + Fj,j

)/
2
)
.

To see this, one can note that segregation occurs independently to
create the two parental gametes and, for each of them, conditional
on not being identical by descent, the ancestral genes are two
independent samples from the initial population with variance V0.
This yields an expression for the segregation variance of the form

1
4
(1− Fi,i)2V0 +

1
4
(1− Fj,j)2V0 = V0

(
1−

(Fi,i + Fj,j)
2

)
.

We have defined the infinitesimal model in terms of a constant
genetic variance, V0, in a reference population, together with a
matrix of identity by descent. The entries in the matrix increase
over time, until they are all one, and all variation is lost. How-
ever, we could instead follow the matrix of segregation variance
between pairs of individuals. This process evolves with time, but
it is Markovian (i.e., depends only on the current state), and it has
the advantage that it does not require that we define an ancestral
reference population at some arbitrary time in the past. Aswe shall
see below, when we derive the infinitesimal model as a limit of
a model of Mendelian inheritance, it is also convenient when we
introduce mutation. For haploids, we define Ci,j as the variance
amongst offspring from two haploid parents, Ci,j = V0

(
1− Fi,j

)
.

For diploids, as we saw above, the variance between siblings de-
pends only on the identity between distinct genes in the parents,
and not on the relationship between the two diploid parents.
We define Ci,j = V0

(
1− Fi,j

)
, just as for haploids, but now, the

variance amongst the diploid offspring of diploid individuals i, j is(
Ci,i + Cj,j

)/
2.

Although Fi,j is defined through the probability of identity by
descent of discrete genes, it can (in principle) be measured purely
through phenotypic measurements of the variance amongst off-
spring; this is perhaps clearer if we work with the Ci,j. The classical
infinitesimalmodel is based on the assumption that the Ci,j depend
only on the pedigree relationship between i and j, and are inde-
pendent of which trait is measured (to within the constant factor
V0), and (given the pedigree) of the trait values of the parents. In
general, we think of a trait as being the sum of a genotypic value
and an environmental deviation, independent of the underlying
genetic values. We shall explicitly incorporate this non-genetic
variation when we derive the infinitesimal model as a limit of
Mendelian inheritance in Section 3. For the moment, we assume
additivity and ignore environmental variation, so that the trait
value is equal to the genotypic value, which in turn equals the
breeding value. The breeding value of an individual is defined to be
twice themeandeviation from the averagephenotypic value,when
it is crossed with a randomly chosen individual. The genotypic
value can, in principle, be measured as the mean of large numbers
of cloned individuals, and the breeding value can be measured
through the mean of offspring from crosses made with randomly
chosen mates. So, the infinitesimal model can be defined without
identifying any specific genes.

2.2.4. Recursions for identity by descent
In a randomly mating population of N haploid individuals,

reproducing under theWright–Fishermodel, the expected identity
is F = 1 − (1 − 1/N)t after t generations. However, we consider
the general case, where Fi,j may vary arbitrarily between pairs. For
haploids, Fi,i = 1 by definition. The recursion for F can bewritten in
terms of a pedigree matrix, Pi,k(t), which gives the probability that
a gene in i in generation t came from parent k in the generation
(t − 1) ; each row has two non-zero entries each with value 1/2,
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unless the individual is produced by selfing, in which case there is
a single entry with value 1. Thus,

Fi,j(t) =
∑
k,l

Pi,k(t)Pj,l(t)Fk,l(t − 1) (i ̸= j), Fi,i(t) = 1. (1)

For diploids, the corresponding recursion for F is

Fi,j(t) =
∑
k,l

Pi,k(t)Pj,l(t)F∗k,l(t − 1), (2)

where

F∗k,l = Fk,l if k ̸= l, F∗k,k =
1
2

(
1+ Fk,k

)
.

The quantity F∗k,l is the probability of identity of two genes drawn
independently from k, l ; if k = l, then the probability of drawing
the same gene twice is one half.

If we work with the segregation variances, Ci,j, then the recur-
sion for haploids is

Ci,j(t) =
∑
k,l

Pi,k(t)Pj,l(t)Ck,l(t − 1) (i ̸= j), Ci,i(t) = 0, (3)

and for diploids is

Ci,j(t) =
∑
k,l

Pi,k(t)Pj,l(t)C∗k,l(t − 1),

where

C∗k,l = Ck,l if k ̸= l, C∗k,k =
1
2
Ck,k.

Note that the variance in the base population, V0, does not appear
explicitly: the future dynamics are entirely determined by the
variation that is released through recombination between any pair
of genomes. Although the precise recursions that we have written
down are particular to the additive model, analogous recursions
characterise the segregation variance in our more complexmodels
that incorporate house of cards mutation and epistasis. The key
fact will be that it is the pedigree relatedness between individuals
that drives the recursions. As long as the variances in the parental
population are sufficiently large relative to the effect of individual
alleles, knowing the trait values of the parents has a negligible
effect on the segregation variance; in otherwords, the infinitesimal
model remains valid.

2.2.5. Simulating the infinitesimal
The infinitesimal model can be simulated either at the level of

the individual, or the population. An individual-based simulation
must follow the breeding values of each individual, zi, and the
relatedness between individuals, Fi,j. Extension to multiple traits
would require that we follow vectors of breeding values. Since the
main computational effort is in calculating thematrix of identities,
this is not much extra burden. The matrix of identities can be
iterated efficiently by representing Eqs. (1) and (2) in matrix form,
but the size of the population is ultimately limited by the memory
needed to store Fi,j. However, in large populations Fi,j typically
approaches the same small value between almost all pairs; thus,
it can be approximated as a constant plus a sparse matrix that
tracks close relatives. Populations of many thousands can then be
simulated (e.g. Barton and Etheridge, 2011).

Provided that the pedigree determined by the matrix Fi,j is
not too skewed towards large contributions from particular in-
dividuals, then we can also simulate very large populations by
following the distribution of the trait and the average value of Fi,j
through time. To do this, first, the continuous trait distribution
must be approximated by a discrete vector; selection on the trait
is represented by multiplying the trait distribution by the fitness.
Since reproduction involves a convolution between the parents’

distributions and the Gaussian distribution of offspring, it is con-
venient to follow the (discrete) Fourier transform: convolution of
distributions corresponds tomultiplication of their transforms (e.g.
Polechova and Barton, 2005) In each generation, there must be
a conversion between the distribution and its transform, which
can be done efficiently using the fast Fourier transform algorithm
(Gauss, 1866; Cooley and Tukey, 1965). Evidently, the approxima-
tion that all individuals are related by the same Fi,j will not always
be realistic, in which case an individual based approach becomes
essential.

2.2.6. Mutation
Pragmatically, for traits determined by a very large number of

loci, mutation can be included by scaling the recursion to account
for alleles that are replaced by mutants and adding a constant,
which may depend on t , to every element of the matrix Ci,j in each
generation to account for the variance introduced by mutation
(Wray, 1990). Mutation may be biased: in particular, we expect
mutation to decrease traits that have been under directional se-
lection, and so to decrease fitness. This can be described by scaling
the mean of the offspring, by a constant (1−µ) say, and shifting it
by another constant δµ . Under this extension to the infinitesimal
model, µ is assumed constant and the distribution of offspring,
conditional on their parents, is assumed Gaussian. Segregation
variance is partitioned into portions attributed to the variance
present in the base population and that attributed to mutations
arising in successive generations. We shall see that we can obtain
such amodel by introducing ‘house of cards’mutation to ourmodel
of an additive trait determined by a large number of Mendelian
factors. The recursion for the segregation variance is then given by

Ci,j(t) ≈ (1− 2µ)
∑
k,l

Pi,k(t)Pj,l(t)Ck,l(t − 1)+ µVm

(see Eq. (13)), whereµVm can be interpreted as the additive genetic
variance introduced by new mutations in each generation. Here µ
is the probability of amutation at a given locus in a given individual
in one generation of reproduction and so can be expected to be very
small. In order for mutation to have an appreciable effect on the
overall trait over a small number of generations, we must assume
that Vm, the variance of the sum of the allelic effects of the new
mutations arising in a given generation, is large. Here we see a
tradeoff: the larger the allelic effect of mutations, the less accurate
an approximation the infinitesimal model becomes.

2.2.7. Population structure and gene flow
When defined in terms of individual trait values and relation-

ships, the infinitesimalmodel automatically incorporates arbitrary
population structure. For example, a well-mixed reference pop-
ulation may split into separate demes, so that the probability of
identity F between genes from within the same population would
increase relative to that between populations. If the demic struc-
ture were permanent, then it would be more natural simply to
follow the segregation variance Ci,j, which would be higher from
crosses between populations than within them. If, for whatever
reason, the sub-populations in different demes diverge, then the
distribution of trait values within a single deme will not be Gaus-
sian, even though, under the infinitesimal model, the distribution
amongst offspring of given parents will always be Gaussian. The
same is true for any pedigree which is not ‘well-mixed’; the key
point is that parental trait values determine the mean trait value
among offspring, but the segregation variances that determine
the variance of offspring traits within each family are completely
determined by the pedigree, which can reflect arbitrary mating
patterns, family structure, and spatial subdivision.

The power of the infinitesimal model in capturing population
structure comes at a price; for a large population it may not be
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practicable to trace the breeding values and relatedness of all indi-
viduals. In that case, one could try to approximate the infinitesimal
model, for example by assuming that the trait distribution within
populations is approximately Gaussian, or that relationships (or
equivalently, segregation variance) between individuals within
subpopulations are homogeneous. Such approximations may be
delicate, since they might need to take account of the reduction
in effective migration rate, and the increase in the rate of random
drift, due to selection. However, it is important to realise that the
infinitesimal model itself can be defined at the level of individuals,
even when trait distributions across the whole population are far
from Gaussian, and relationships are heterogeneous.

2.2.8. Multivariate normality
Even though the trait distribution across the whole population

may be far from Gaussian, the multivariate normal will play a
central rôle in our analysis. The deviations of individual trait values
from their mid-parent value will be described by a multivariate
normal whose variance–covariance matrix is independent of the
parental traits.We establish this result conditional on knowing the
pedigree and all ancestral traits within that pedigree, but equally
we could have conditioned on the values of any subset of relatives
and the same would hold true: expected trait values would be
a linear functional (determined by the pedigree) of the values
on which we conditioned, but segregation variances would be
unchanged.

Bulmer (1971) and Lange (1978) showed that the unconditional
joint distribution of traits converges to a multivariate normal.
Lange also allows for some linkage among loci by allowing in-
heritance to be dependent among loci at distance at most q from
one another. We do not include linkage in our analysis, although
as long as recombination is sufficiently fast, our results should
hold true, but whereas the rate of convergence to the infinitesimal
model whenwe have unlinked loci is 1/

√
M , with linkage it will be

1/
√
M∗, whereM∗ is an ‘effective’ number of loci. Bulmer assumed

random mating, while Lange’s proof is for individuals related
through a given pedigree. However, as Lange remarks, his result
gives no control of the rate of convergence. This is essential if we
wish to approximate the conditional distribution, knowing some
ancestral trait values. It is also needed in assessing the accuracy of
the infinitesimalmodel as an approximation, and is the focus of our
derivation.

2.2.9. Epistasis
Thus far, we have defined the infinitesimal model for the addi-

tive case. Evidently we cannot extend it to arbitrary epistatic inter-
actions. For example, if Z is a purely additive trait, then Z2 is a sum
of additive and pairwise epistatic components. Since the square of
a normally distributed randomvariable is not normally distributed,
the infinitesimal model must clearly break down. However, under
some conditions (which we lay out in Section 3.2), even though
there can be significant variance due to epistatic components, and
the mean trait value among offspring in a family will no longer
be the average of the parental traits, the key prediction of the
infinitesimal model still holds with epistasis: the variance of the
trait distribution within a family will depend only on the pedigree
and the variance in the ancestral population.

In general, with epistasis the individual phenotype is

z = z0 +
∑
U

ηU + E, (4)

where the sum is over the average effects ηU of all setsU of distinct
loci, and E is a random non-genetic component that is assumed
to have a distribution independent of genotype, and independent
between individuals (see e.g. Chapter 7 in Lynch andWalsh, 1997).

The sets of genesU descend fromahomologous set in the base pop-
ulation, which in general will be scattered over many individuals.
The ηU are defined as themarginal effects of the set of genesU , that
remain after accounting for the effects of all subsets ofU . If the base
population is in linkage equilibrium, then the ηU are uncorrelated.
The sum of the variances contributed by sets of size |U | = k is the
k th order epistatic variance,

∑
|U |=kVU = VA(k). In contrast to the

additive case, we see correlations between the deviations∆Z from
themid-parental trait values of distinct individuals. The covariance
between two distinct individuals is

cov(∆Z, ∆Z ′) =
∑
|U |≥2

VUFU , (5)

where FU is the probability that the set of genes U in the two
individuals are all identical by descent. If loci are unlinked, then
this depends only on the number of genes in the set, so that FU = Fk
where k = |U |; Fk is given by a recursion on the pedigree similar to
that described above for pairwise identities (corresponding to F1).
It is more complicated, because we need to track the probability
of identity for genes in up to 2k individuals. However, if identity
at different loci is uncorrelated, then Fk = F k

1 , where F1 is the
pairwise recursion defined above. Unless inbreeding is intense, this
is typically a good approximation (Barton and Turelli, 2004).

This partition of genetic variance into components applies re-
gardless of the number of loci. Crucially, however, if the joint
distribution of the components of trait values across the pedigree
is multivariate normal, then the mean and covariance completely
define that distribution. In the following, we outline the proof that
the distribution of trait values is indeedmultivariate normal in the
case when we allow just pairwise epistatic interactions, provided
that the total allelic effect of anyparticular gene is not too large, and
indicate how this could be extended to also include higher order
interactions.

We emphasise that the components of phenotype, ηU , and the
corresponding variances, VU , are defined relative to the base popu-
lation. In any particular descendant population, the trait mean will
differ as a result of mutation (which we exclude from our analysis
in the epistatic case), selection and randomdrift.With epistasis, the
effects relative to the new population will be different, and so the
variance components defined for this descendant population will
also differ. This can lead to the ‘conversion’ of epistatic variance
into additive variance (Barton and Turelli, 2004). We do not con-
sider this issue here, since we always define variance components
relative to the base population. However, it is straightforward to
change the reference point.

2.3. Applications of the infinitesimal model

We have defined the infinitesimal model in terms of individ-
ual trait values and relationships between individuals, without
referring explicitly to discrete genes. This is essentially the ‘animal
model’, which is the basis for practical animal breeding, though
extended to includemutation. In practical applications, the ‘animal
model’ is typically applied to a given pedigree, and is used to
estimate breeding values and genetic variances conditional on that
pedigree (Hill, 2014). In recent years, it has also been applied to
parameter estimation in natural populations (Kruuk, 2004). How-
ever, it has been surprisingly little used for addressing evolutionary
questions. Here, we illustrate the power of the infinitesimal model
as a tool for understanding aspects of evolution, by presenting
a range of examples related to stabilising selection, assortative
mating, effective population size and response to selection, habitat
preference and speciation.

Perhaps the simplest non-trivial application of the infinitesi-
mal model is to understand stabilising selection (Galton, 1877;
Slatkin, 1970; Bulmer, 1971; Cavalli-Sforza and Feldman, 1976;
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Lande, 1975). Suppose that the distribution of a trait in a parental
population is Gaussian with mean z̄ and variance Vg . If fitness is a
Gaussian function of trait value, withmean z0 and variance Vs, then
after selection the new trait distribution is obtained bymultiplying
the density of a trait by the fitness of that trait and renormalising
to have total mass one, resulting in a Gaussian with mean

z̄ + (z0 − z̄)
Vg

Vg + Vs
,

and variance
VsVg

Vs + Vg
.

After random mating and reproduction under the infinitesimal
model (without mutation), the mean remains the same, and the
variance is(
V0 +

VsVg

2
(
Vs + Vg

)) ,

where V0 is the segregation variance, and VsVg
2(Vs+Vg)

is the variance
of the mean of two randomly mated parents. Therefore, at equilib-
rium, the genetic variance across the population immediately after
reproduction is

Vg =
Vs

4

⎛⎝2
(
V0

Vs

)
+

√
1+ 12

(
V0

Vs

)
+ 4

(
V0

Vs

)2

− 1

⎞⎠ , (6)

which decreases from 2V0 (the value we obtained for a neutral
population) when stabilising selection is weak (Vs ≫ V0), to V0
when stabilising selection is so strong as to eliminate all variation
(Vs ≪ V0).

The effect of assortative mating is more surprising. Suppose
that the relative contribution to the next generation of pairs of
individuals with trait values z1, z2 is proportional to

exp

(
−

(z1 − z2)2

2Va
+

(
z21 + z22

)
2ω

)
,

where ω is chosen so that there is no direct selection on indi-
viduals (i.e., there is no marginal effect of the trait on individual
fitness; see, for example, Appendix 4 of Polechova and Barton,
2005 for an expression for the ω that achieves this). The mean
does not change, but assortment results in a higher variance in the
mid-parent value than under random mating. (Fisher, 1918; Crow
and Felsenstein, 1968). To understand this, note that because the
contribution of pairs of individuals is greater for individuals with
similar trait values, more extreme traits are less likely to be pulled
towards the mean; indeed in the most extreme case, individuals
would only reproduce with others with an identical trait value
and so the distribution of mid-parent values would have the same
variance as that of the whole parental population. Provided that
assortment is not too strong (Va > 4V0), there is an equilibrium
genetic variance across the population 2V0 (Va − 2V0) /(Va − 4V0).
However, if assortment is very strong, ( Va < 4V0 ), the variance
increases without limit. In reality, either the infinitesimal model
would break down as genetic limits to the trait are approached, or
stabilising selection would prevent indefinite divergence.

This simple model makes the important point that assortative
mating alone can lead to indefinite divergence, and, ultimately,
speciation (Polechova and Barton, 2005). The infinitesimal model
can also be extended to model the joint evolution of habitat
preference and viability in two different niches, both being rep-
resented as continuous traits (Barton, 2010). Assortative mating,
and eventual reproductive isolation, then arise as a by-product of
preferences for different habitats, provided mating occurs within
those habitats (Diehl and Bush, 1989).

In a random-mating population of effective size Ne of diploid
individuals, the segregation variance decreases by a factor
(1− 1/2Ne) per generation. The infinitesimal model predicts that
the response to steady directional selection will decrease at the
same rate and so, summing over generations (a geometric sum),
Robertson (1960) found the total response to selection to be just
2Ne times the change in the first generation. He also found an alter-
native derivation of the same result (for Nes small), by considering
the increase in fixation probability of neutral alleles. Hill (1982)
extended Robertson’s work to include mutation that introduces
genetic variance at a rate Vm. The genetic variance then reaches
an equilibrium between mutation and random drift, Vg = 2NeVm,
and the response to directional selection is proportional to this
variance. In large populations, selectionwill tend to reduce genetic
variance that is due to alleles with large Nes; however, some
component of the genetic variance will be due to more weakly
selected alleleswithNes small. In a survey of selection experiments,
Weber and Diggins (1990) showed that the ratio of the response to
selection after fifty generations to that after just one generation is
somewhat less than predicted by the infinitesimal model. Zhang
and Hill (2005, Fig. 6) showed that, at least for Drosophila experi-
ments, this reduced response can be explained either by alleles of
large effect or by linkage. Thus in these experiments the response
to selection is largely explained by the infinitesimal model.

Selection on heritable traits can greatly inflate the rate of ran-
dom drift: genes that find themselves in a fit genetic background
in one generation will tend to be in a fitter background in sub-
sequent generations, even if all loci are unlinked; this correlation
in fitness across generations increases the rate of sampling drift
(Robertson, 1961). The infinitesimalmodel can be used to estimate
this inflation, by finding the variance in reproductive value (Barton
and Etheridge, 2011), and the decrease in fixation probability of
favourable alleles (Weissman and Barton, 2012).

Apart from these few examples, the infinitesimal model has
hardly been used in evolutionary modelling. It should not be
confused with two other models that have been used more ex-
tensively. Kimura (1965) investigated the distribution of effects
of alleles at a single locus, and approximated this continuum-of-
alleles model by a Gaussian; Lande (1975) developed this model
to investigate maintenance of variation by mutation, despite sta-
bilising selection. This is a quite different approach from the in-
finitesimal model, which requires no strong assumptions about
the distribution of effects at each locus, and which does not as-
sume a Gaussian distribution of trait values. A second model that
bears a superficial resemblance to the infinitesimal model is the
hypergeometric or symmetric approximation, which assumes that
the trait is determined by additive loci of equal effect, and that
all genotypes that give the same trait value are equally frequent
(Kondrashov, 1984; Doebeli, 1996; Barton and Shpak, 2000). This is
a very strong assumption; the symmetry between genotypes may
hold under disruptive selection, but is unstable under stabilising
selection, when any one of the many optimal genotypes tends to
fix (Wright, 1935).

3. The infinitesimal model as the limit of Mendelian inheri-
tance

In this section, we turn to a justification of the infinitesimal
model as a limit of a model of Mendelian inheritance, when trait
values are determined by a large number of Mendelian factors,
each of small effect. By performing the analysis carefully, we de-
termine the accuracy of the infinitesimal approximation as the
number of loci tends to infinity. We start in the classical setting,
in which traits are additive. Using the same arguments we also
include ‘house of cards’ mutation, but we see a tradeoff: for the
infinitesimal model to apply with mutation, there must be a large



N.H. Barton et al. / Theoretical Population Biology 118 (2017) 50–73 57

number of mutant loci each of small effect, but the overall effect
is then proportional to the probability of mutation per locus, per
individual, per generation, which should typically be very small.
We then indicate how the results can be extended to include some
forms of epistasis. In all cases, observed trait values are assumed
to be composed of a genetic component plus an independent
environmental noise. It is the genetic component that follows the
infinitesimalmodel, that is forwhich the distribution of trait values
within families follows a multivariate normal distribution with a
variance that depends on the pedigree, but not on the trait values of
ancestors in the pedigree. The observed trait values will not follow
the infinitesimal model, but in the special case where the noise is
itself normally distributed, the observed traits within families will
be asymptotically normally distributed as the number of loci tends
to infinity, andwe shall write down recursions for themean vector
and the variance–covariance matrices.

In all cases, the key issue is this: knowing the segregation vari-
ance V0 in our base population and the pedigree F (or, equivalently,
the matrices C of segregation variances in previous generations),
how close is the segregation variance of the offspring of parents
i and j to being independent of the trait values of those parents?
It is important to note that this does not say that the pedigree
is independent of the trait value; indeed, for a population un-
dergoing artificial selection, for example, one can expect a strong
dependence between trait values and pedigree.We also emphasise
that trait values across the whole population can be very far from
normal; it is the offspringwithin families that follow amultivariate
normal distribution.

One necessarily expects some dependence of segregation vari-
ance on trait values: if the possible trait values are bounded, with a
single genotype giving the largest value, say, thenmeiosis between
two copies of this most extreme haploid type, or the products of
meiosis from a diploid with the most extreme value, would have
zero variance. For any trait values that are close to the extremes of
what is possible, so that few genotypes produce these values, seg-
regation variance will be radically reduced; the derivation of the
infinitesimal model depends on there being a very large number of
genotypes compatiblewith each trait value, so that conditioning on
the trait does not give significant information about the underlying
genotype frequencies.

In order to understand why for ‘typical’ trait values, knowing
the trait value for an individual provides very little information
about the allelic effect at a particular locus, it is instructive to
consider a simple example. The argument we use is similar to that
on p. 402 of Fisher (1918), where it is expressed in terms of a
regression. Suppose that a particular trait is determined by the sum
of allelic effects at M independent loci, with the allelic effect at
the l th locus being ηl/

√
M = ±1/

√
M with equal probability.

Now suppose that we condition on the trait value being k/
√
M .

For definiteness, we take M and k both to be even. What is the
conditional probability that η1 = 1? An application of Bayes’ rule
gives

P

[
η1 = 1

⏐⏐⏐⏐ M∑
l=1

ηl
√
M
=

k
√
M

]

=

P
[∑M

l=1 ηl = k
⏐⏐⏐⏐η1 = 1

]
P
[∑M

l=1 ηl = k
] P [η1 = 1]

=

P
[∑M

l=2 ηl = k− 1
]

P
[∑M

l=1 ηl = k
] P [η1 = 1]

=

1
2M−1

1
2M

( M−1
(M+k−2)/2

)( M
(M+k)/2

) P [η1 = 1]

=

(
1+

k
M

)
P [η1 = 1] .

For largeM , a ‘typical’ value for k is O(
√
M), and then this calcula-

tion says that, for any particular locus, the chance that it ‘notices’
the conditioning is O(

√
M/M) = O(1/

√
M). On the other hand, at

the extremes of what is possible (k = ±M) the value of the trait
gives complete information about the allelic effect at each locus.

As we see below, essentially the same argument applies to
much more general models for the allelic effects at each locus: for
the infinitesimal model to be a good approximation, the observed
parental trait values must not contain toomuch information about
the allelic effect at any given locus, and for this to hold true, the
parental traits must not be too extreme.

3.1. The additive case with mutation and environmental noise

Once we have established our notation, we shall set out the
derivation in the strictly additive case. To simplify notation we
omitmutation in this outline, only indicating its effect on the state-
ment of the results. The details of the proofs are provided in the
appendices, where we do incorporate (house of cards) mutation.
We also suppose that the observed trait value is a combination
of a genetically determined component and an environmental
noise which, for simplicity, we take to be an independent draw
from a mean zero Gaussian distribution for each individual in the
population.

Laying out this argument carefully enables us to identify condi-
tions under which our results can be modified to include epistasis,
which we illustrate through a simple example. In this case, even
for the genetic component of the trait, the mean value among
offspring in a family will not simply be the average of the parental
values; what we can prove is that the variance of trait values
within the family is independent of the parental trait values and
is determined by the segregation variance in the base population
plus the pedigree.

Throughout we concentrate on the haploid case, although, at
the expense of more complicated notation and formulae, the ap-
proach extends to the diploid case. Indeed, following Lange (1978)
and Abney et al. (2000), we anticipate also being able to include
dominance. A more detailed study of epistasis and dominance is
deferred to later work.

The formulae that follow are, at first sight, a little daunting. To
make them slightly easier to navigate, we impose some conven-
tions in our notation. Table 1 summarises all our notation.

Assumptions and Notation

We reserve the indices i and j for individuals in our population,
whereas l andm are used for loci, of which there areM . Generation
number will be indexed by t (but will mostly be implicit). The total
population size in generation t is Nt .

1. Allelic effect at locus l. We denote the allelic effect at locus l
in the jth individual by η

j
l/
√
M . We centre η

j
l relative to the

mean allelic effect at locus l in the ancestral population. The
scaling of 1/

√
M ensures that the additive genetic variance

is of order one. The random variable η
j
l is assumed to be uni-

formly bounded over all loci, with |ηj
l| ⩽ B. We sometimes

refer to it as the scaled allelic effect.
2. Genetic component of the trait value. The genetic component

of the trait value in the j th individual in the present genera-
tion will be denoted by Z j. It will always be written as z̄0, its
average value in the ancestral population, plus a sum over
loci of allelic effects. That is, in the notation just defined, the
genetic component of the trait of the j th individual is

Z j
= z̄0 +

M∑
l=1

1
√
M

η
j
l. (7)



58 N.H. Barton et al. / Theoretical Population Biology 118 (2017) 50–73

Table 1
Notation.

Phenotypic model
F Matrix of expected identity by descent, Eqs. (1), (2)
C Matrix of segregation variances, Eq. (3)

Traits
ηl (or η

j
l ) Scaled allelic effect at locus l (in individual j )

η̂l ’’ in ancestral population
η̌l ’’ after mutation
z̄0 Mean trait value in ancestral population

z̄µ z̄0 + E[
∑M

l=1η̌l/
√
M]

σ̂ 2
M

∑M
l=1Var(̂ηl)/M → σ̂ 2

σ̌ 2
M

∑M
l=1Var(η̌l)/M → σ̌ 2

Z j Genetic component of trait in individual j
E j Environmental component of trait in individual j

Z̃ j
= Z j
+ E j Observed trait of individual j

ηlm Scaled epistatic effect of loci {l,m}
ZA(2) Total pairwise epistatic effect

Inheritance
j[1] , j[2] Labels of first and second parents of individual j

X j
l Indicator random variable that individual j inherits locus l from ‘first

parent’
Mj

l Indicator random variable that there is a mutation at locus l in
individual j

µ Mutation probability per locus per generation

Conditioning
P(t) The pedigree up to generation t

Z̃(t) Observed traits of all individuals up to generation t
Rj Z j

− µz̄µ − (1− µ)(Z j[1]
+ Z j[2])/2 (in main text µ = 0)

ΣM
t , ΣM,µ

t Variance–covariance matrix of Rj , Eqs. (11) and (24)

Σt , Σ
µ
t Limit asM →∞ of ΣM

t , ΣM,µ
t respectively

C(σ 2, |z|) c.f. Eq. (12)

3. Environmental noise and observed trait value. We suppose
that the observed trait value is

Z̃ j
= Z j
+ E j,

where the E j are independent normally distributed random
variables with mean zero and variance σ 2

E . The assumption
of normality is not compulsory here. It has the advantage
that the observed trait value will also follow a normal dis-
tribution in the limit as M → ∞, which we can therefore
characterise easily by its mean and variance.

4. Ancestral population. Although it is not strictly necessary,
we assume that in generation zero, the individuals that
found the pedigree are unrelated. They are sampled from
an ancestral population in which all loci are assumed to be
in linkage equilibrium. The genetic component of the trait
value in the j th individual in generation zero is written as

Z j
= z̄0 +

M∑
l=1

1
√
M

η̂
j
l, (8)

where the η̂
j
l are independent for different values of j, with

the same distribution as η̂l where E[̂ηl] = 0 for all l. The
random variables η̂l are assumed to be independent but not
necessarily identically distributed.
We shall write

σ̂ 2
M =

1
M

M∑
l=1

Var(̂ηl)

and assume that σ̂ 2
M converges to a finite limit σ̂ 2 as M →

∞.
5. Parents. To distinguish the parents of an individual we order

them. The symbols [1] and [2] will refer to the first and
second parents of an individual, respectively. Thus η

j[1]
l is the

scaled allelic effect at locus l in the first parent of the j th in-
dividual. Similarly, Z j[1] will denote the genetic component
of the trait value of the first parent of individual j. Note that
we allow selfing, in which case parents 1 and 2 are identical.

Centring allelic effects relative to their mean in the ancestral
populationmay seem unnatural, since these are quantities that we
could never hope tomeasure, but in fact it is simply amathematical
convenience: only the variances of these quantities appear in our
results.

Inheritance

We use Bernoulli random variables to encode the parent from
which a locus inherits its allelic type. Thus we write X j

l = 1 if the
allelic type at locus l in the j th individual is inherited from the ‘first
parent’ of that individual; otherwise it is zero. In particular, under
Mendelian inheritance, P[X j

l = 1] = 1/2 = P[X j
l = 0].

Of course, really there are independent Bernoulli random vari-
ables capturing the inheritance in each generation, but, since we
only discuss transitions one generation at a time, we suppress that
in our notation.

Conditioning

We shall useP(t) to denote the pedigree relationships between all
individuals up to and including generation t and Z̃(t) will denote
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the observed traits of all individuals in the pedigree up to and
including the t ’th generation. We shall be deriving the distribution
of trait values in generation t conditional on knowing P(t) and
Z̃(t − 1). We distinguish P from the matrix of identities F , because
conditional on Z̃(t), it is no longer true that tracing back through
the pedigree, an allele is equally likely to come from either parent;
indeed proving that this is almost the case is a key part of our
derivation.

We note that, since selection acts on the trait, both the effect
of selection and that of population structure is captured by the
pedigree. Moreover, althoughwe obtain our result by conditioning
on knowing both the pedigree and all the observed traits of individ-
uals in that pedigree up to and including the parental generation,
exactly the same argument shows that we can condition on a
subset of the trait values in the pedigree up to time (t−1) and still
obtain a multivariate normal for the distribution of traits within
families in generation t , where the mean values are shifted by
a linear function of the conditioned values, but variances within
families will be unaltered.

Main result in the additive case

Our first aim is to understand, in the additive case, the genetic
component of the traits, conditional on P(t) and Z̃(t − 1). The
classical infinitesimal model deals with the genetic component of
the traits. There, themean traitwithin a familywill be themidpoint
of the parental traits, with a variance that is independent of their
trait values. In our setting, since we only condition on the observed
traits Z̃(t−1) = z, the conditioned quantities Z j[1] and Z j[2] are still
random and sowemust be slightly careful in stating our result.We
will show that conditional on P(t) and Z̃(t − 1) = z,(
Rj)

j=1,...,Nt
:=

(
Z j
−

Z j[1]
+ Z j[2]

2

)
j=1,...,Nt

(9)

converges (in distribution) to a multivariate normal random vari-
able with mean zero and diagonal covariance matrix Σt , with j
th diagonal entry (Σt )jj given by the segregation variance among
offspring of the parents of individual j.

More precisely, we show that, writing Φ for the cumulative
distribution function of a standard normal random variable,⏐⏐⏐⏐⏐⏐P
⎡⎣Z j
−

Z j[1]+Z j[2]
2√

(ΣM
t )jj

≤ y
⏐⏐P(t), Z̃(t − 1) = z

⎤⎦−Φ(y)

⏐⏐⏐⏐⏐⏐
≤

t
√
M

C
(
ΣM

t , ∆̄M
t (z)

)
, (10)

where

(ΣM
t )jj =

1
4M

M∑
l=1

E
[(

η
j[1]
l − η

j[2]
l

)2⏐⏐P(t)
]

, (11)

is the segregation variance among the offspring of the parents j[1]
and j[2] of individual j in generation t conditional only on the
pedigree (not the traits), ΣM

t is the minimum segregation variance
of any family in the pedigree up to generation t , ∆̄M

t (z) is the
maximum over the pedigree up to time t − 1 of⏐⏐⏐⏐z j − z j[1] + z j[2]

2

⏐⏐⏐⏐,
and

C
(
σ 2, |z|

)
=

C ′|z|√
σ 2
E + σ 2

+
C ′′

σp(σ 2
E + σ 2, |z|)

(
1+

1
σ 2

)
, (12)

where p(σ 2
E +σ 2, x) is the density at x of aN (0, σ 2

E +σ 2) distributed
random variable. The constants C ′, C ′′ depend only on B, our bound
on the scaled allelic effects.

In other words, we establish that the genetic components of the
vector of traits in generation t follows the infinitesimalmodel with
an error of order t/

√
M . Moreover, we see that the approximation

breaks down if the segregation variance is too small in any family
in our pedigree, or if the trait of an individual somewhere in the
pedigree is too extreme in a way that is quantified by Eq. (12).
Letting M →∞ in (11), (ΣM

t )jj converges to (Σt )jj, corresponding
to V0(1 − Fj), where Fj is the probability of identity of the two
parents of the j th individual, and so we recover Eq. (3).

We shall present an outline of the proof which is given in detail
in the appendices. We start with the ancestors in the pedigree at
generation zero and then work recursively through the pedigree.
Crucially, we shall keep track of the rate of convergence to multi-
variate normality at each stage, as it is this that allows us to move
from one generation to the next.

Mutation

To keep formulae simple, in the outline that follows we shall
ignore mutation, but in the detailed derivation in the appendices
we include house of cards mutation. Here we indicate how this
changes the statement of the result. We suppose that themutation
probability per locus, per generation, is µ (independent of l). If
there is a mutation at locus l, then the scaled allelic effect of the
mutant is given by the random variable η̌l (also assumed to be
bounded in modulus by B). We write z̄µ = z̄0 + E[

∑M
l=1η̌l/

√
M]

and

σ̌ 2
M =

1
M

M∑
l=1

Var(η̌l),

and we suppose that σ̌ 2
M → σ̌ 2 asM tends to infinity.

The convergence in (10) is now of(
Z j
− µz̄µ − (1− µ)

Z j[1]
+ Z j[2]

2

)
j=1,...,Nt

.

The segregation variance of the family of parents of individual j
takes the form

(ΣM,µ
t )jj = (1− 2µ)(ΣM

t )jj + 2µ
1
M

M∑
l=1

E[(̂ηl − η̌l)2]
2

, (13)

where, since µ (the mutation rate per locus per generation) is
typically very small we have dropped terms of orderµ2, and ∆̄M

t (z)
is replaced by ∆̄

M,µ
t (z), the maximum over the pedigree up to time

t of⏐⏐⏐⏐zj − µz̄µ − (1− µ)
zj[1] + zj[2]

2

⏐⏐⏐⏐.
3.1.1. Genetic component of the trait distribution in generation zero

The first step in our derivation is to show that as the number
of loci tends to infinity, the distribution of the genetic component
(Z1, . . . , ZN0 ) of the traits in generation zero converges to that of
a multivariate normal with mean vector (z̄0, . . . , z̄0) and variance–
covariance matrix σ̂ 2 Id, where Id is the identity matrix.

To prove this, it is enough to show that for any choice of β =
(β1, . . . , βN0 ) ∈ RN0 ,
N0∑
j=1

βjZ j
→ Zβ ,

where Zβ is normally distributedwithmean z̄0
∑N0

j=1βj and variance
σ̂ 2∑N0

j=1β
2
j . Of course, the result will follow from the Central Limit

Theorem, but we need to have some control over the rate of this
convergence if we are to pass from one generation to the next.
Moreover, although in the ancestral population the allelic effects
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η̂i
l are independent, they do not all have the same distribution, and

so we need an extension of the classical Central Limit Theorem.
The version that we use is Theorem A.2, due to Rinott (1994). It is
convenient to write ∥β∥1 =

∑N0
j=1|βj| and ∥β∥22 =

∑N0
j=1β

2
j . For

generation zero, Theorem A.2 yields⏐⏐⏐⏐⏐P
[∑N0

i=1 βi(Z i
− z̄0)

∥β∥2σ̂M
≤ z

]
−Φ(z)

⏐⏐⏐⏐⏐
≤

C

∥β∥2
√
Mσ̂M

(
1+

1
∥β∥22 σ̂ 2

M

)
(14)

where Φ is the cumulative distribution function of a standard nor-
mal random variable and the constant C has an explicit expression
(depending only on B, the bound that we imposed on the scaled
allelic effects, and ∥β∥1). The details of the proof are in Appendix B.
In particular, taking βk = 0 for k ̸= j and βj = 1, we read off the
rate of convergence to the normal distribution of Z j as the number
of loci tends to infinity.

3.1.2. Strategy of the derivation
Our proof will be recursive. Suppose that we have our result for

generation (t−1). The key step is then to show that for individual j
in generation t , conditioning on knowingP(t) and Z̃(t−1) provides
negligible information on the values η

j[1]
l , ηj[2]

l of the scaled allelic
effects of locus l in its parents. Through an application of Bayes’
rule, just as in our toy example at the beginning of the section, this
will essentially boil down to showing that⏐⏐⏐⏐⏐⏐
P
[̃
Z j[1]
= z1

⏐⏐ηj[1]
l = x,P(t)

]
P
[̃
Z j[1] = z1

⏐⏐P(t)
] − 1

⏐⏐⏐⏐⏐⏐ ≤ t
√
M

C
(
ΣM

t , ∆̄M
t (z)

)
, (15)

where, since Z̃ is a continuous random variable, the ratio on the
left should be interpreted as a ratio of probability density func-
tions, and the quantity C on the right was defined in (12). The
proof depends crucially on knowing the rate of convergence of the
distribution of the parental trait values to a multivariate normal.

What (15) allows us to deduce (via Bayes’ rule) is that knowing
the trait of an individual gives very little information about the
allelic state at a single locus. Although intuitively clear, since all loci
have a small effect on the trait, this is slightly delicate and, indeed,
as we saw in our toy example at the beginning of the section
(c.f. (12)), will break down if the segregation variance somewhere
in our pedigree is small or if a trait in the pedigree is too extreme.
Armedwith (15), we can approximate the distribution of the allelic
effects conditioned on P(t) and Z̃(t − 1) by those conditioned
just on P(t) and then it is an easy matter to identify the limiting
variance–covariance matrix of the random variables (Rj)j=1,...,Nt
(that we defined in (9)) in generation t .

Convergence of the vector of the genetic components of the
trait values in generation t to a multivariate normal is then an
application of Theorem A.2. Knowing the rate of this convergence
allows us to prove the analogue of (15) for generation (t + 1), and
so on.

3.1.3. One generation of reproduction
We have already proved the asymptotic normality for gener-

ation zero. To begin the recursion, we consider the first round of
mating.

We suppose that, for each j, we know the parents of individual
j and their observed trait values, Z̃ j[1], Z̃ j[2]. In the notation defined
above, this is precisely P(1) and Z̃(0) = z. Then we claim that
knowing this information,(
Z j
−

Z j[1]
+ Z j[2]

2

)
j=1,...,N1

converges in distribution to a mean zero multivariate normal ran-
domvariablewith diagonal variance–covariancematrixΣ1, whose
on-diagonal entries are given by (Σ1)jj, the segregation variance
among offspring of the parents of j th individual. By definition, for
a given individual j in the first generation, we have

Z j
= z̄0 +

1
√
M

M∑
l=1

{
X j
lη

j[1]
l + (1− X j

l )η
j[2]
l

}
and so

Rj =
1
√
M

M∑
l=1

((
X j
l −

1
2

)
η
j[1]
l +

(
(1− X j

l )−
1
2

)
η
j[2]
l

)
.

Since X j
l is independent of P(1) and Z̃(0), the random variable Rj

satisfies E[Rj
|P(1), Z̃(0)] = 0.Wemust calculate its variance. First,

we use the normal approximation to the distribution of ancestral
traits to show that⏐⏐⏐P [ηj[1]

l = x
⏐⏐P(1), Z̃(0) = z

]
− P[ηj[1]

l = x]
⏐⏐⏐

≤
1
√
M

C(σ̂ 2
M , ∆̄M

1 (z)),

where C was defined in (12). Since individuals in the ancestral pop-
ulation are assumed to be unrelated, ηj[1]

l and η
j[2]
l are independent

(provided the parents are distinct), and combining the calculation
above with the symmetric one for η

j[2]
l we can calculate that (for

some α ∈ [−1, 1])(
ΣM

1

)
jj := E

[(
Rj)2 ⏐⏐P(1), Z̃(0) = z

]
= E

[(
Rj)2 ⏐⏐P(1)

]
+

α
√
M

C
(
σ̂ 2
M , ∆

(
zj
))

→
1
4

lim
M→∞

1
M

M∑
l=1

E
[(

η
j[1]
l − η

j[2]
l

)2]
,

which is the limit of (11) with t = 1. The details are in Appendix D.
Since the Bernoulli random variables that describe inheritance
in different individuals are independent, it is easy to check that
E[RiRj

|P(1), Z̃(0) = z] = 0.
To verify convergence to a multivariate normal, we mimic

what we did in the ancestral population: for an arbitrary vector
β = (β1, . . . , βN1 ) we show that

∑N1
j=1βjRj converges to a normal

random variable as M → ∞ . The details (including the effects of
mutation) are in Appendix D.

3.1.4. Generation t
We now proceed to the general case. We want to show that

conditionally on P(t) and Z̃(t − 1) = z, Rj given by (9) converges
in distribution as M → ∞ to a mean zero, normally distributed
random variable with diagonal variance–covariance matrix Σt
given by the limit of (11). Independence of the Bernoulli random
variables that determine inheritance in different individuals once
again guarantees that for i ̸= j, E[RiRj

⏐⏐P(t), Z̃(t − 1) = z] = 0. As
in generation one, the key is to show that

(ΣM
t )jj := E

[
(Rj)2

⏐⏐P(t), Z̃(t − 1) = z
]

is almost independent of z. Convergence to (Σt )jj given by the limit
of the expression in (11) is then straightforward (see Appendix E).

The involved step is to estimate

P
[
η
j[1]
l = x

⏐⏐P(t), Z̃(t − 1) = z
]
,

which, again by Bayes’ rule, reduces to checking (15). At first sight,
it seems that knowing the trait value of all the pedigree ancestors
of the j th individual should give us much more information about
η
j
l than just knowing the parental traits gave us in generation one.
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In Appendix E we show that this is not really the case. The key
is that the differences in trait values between individuals that are
identical by descent at locus l are independent of the scaled allelic
effect at locus l, so we do not accumulate any more information
by observing all of these individuals than by observing just one of
them.

We can perform entirely analogous calculations for the condi-
tional joint law of η

j[1]
l and η

j[2]
l . This enables us to identify the

mean and the variance of the limiting distribution of traits in the
population and, once again, Theorem A.2 can be used to establish
that it is indeed a multivariate normal. In particular,⏐⏐⏐⏐⏐⏐P
⎡⎣Z j
−

Z j[1]+Z j[2]
2√

(ΣM
t )jj

≤ y
⏐⏐⏐⏐P(t), Z̃(t − 1) = z

⎤⎦−Φ(y)

⏐⏐⏐⏐⏐⏐
≤

t
√
M

C
(
ΣM

t , ∆̄M
t (z)

)
.

In other words, we have established that the genetic components
of the vector of traits follows the infinitesimal model with an error
of order 1/

√
M per generation.

Adding an environmental component to the observed traits in
the population makes the model more realistic; it also serves a
mathematical purpose. As we explain in Remark C.1, without envi-
ronmental noise, some extra conditions are required to guarantee
a rate of convergence of order 1/

√
M (which is the best possible)

to the limiting Gaussian distribution. If they are satisfied, then
the calculations that we have just performed are unchanged if we
condition on Z(t − 1), the genetic components of the trait values
of individuals in the pedigree up to time (t − 1), instead of the
observed values. Our assumption that the environmental noise is
Gaussian is certainly unnecessarily restrictive (it would serve the
same mathematical purpose if it had any smooth density). It has
the advantage that we will be able to obtain explicit formulae for
the distribution of observed traits.

3.1.5. Observed traits
In the presence of environmental noise, we cannot directly

observe the genetic component of the trait. The infinitesimalmodel
as stated above does not apply to the observed trait values. To see
why, we write(
∆Z̃ j)

j=1,...,Nt
:=

(
Z̃ j
− µz̄µ − (1− µ)

Z̃ j[1]
+ Z̃ j[2]

2

)
j=1,...,Nt

=

(
Rj
+ E j
− (1− µ)

E j[1]
+ E j[2]

2

)
j=1,...,Nt

,

where µ = 0 in the case with no mutation considered above.
We have already checked that (Rj)j=1,...,Nt is a multivariate Gaus-
sian vector which is (almost) independent of Z̃(t − 1), and by
assumption the same holds true for (E j)j=1,...,Nt . The difficulty is
that the environmental components E j[1], E j[2] are not independent
of the observed traits in generation (t − 1). However, under our
assumption that the environmental noise is normally distributed,
(∆Z̃ j)j=1,...,Nt is still asymptotically normally distributed and we
can derive recursions for themean vector and variance–covariance
matrices.

In what follows we assume that we are already in the asymp-
totic regime in which the genetic components of the traits follow
a multivariate normal distribution. In fact we are accumulating
errors of order 1/

√
M per generation in so doing.

To find the distribution of the observed traits in generation
(t + 1) conditional on P(t + 1) and Z̃(t), we need to calculate
the conditional distribution of the vector (E j)j=1,...,Nt . Evidently this
vector is independent of Z̃(t−1) and, granted that we have already
calculated the corresponding conditional distributions for the en-
vironmental noise in generation (t−1), calculating the conditional

distribution of (E j)j=1,...,Nt is reduced to applying standard results
on conditioning multivariate normal random variables on their
sum. In particular, the conditioned vector is still a multivariate
normal.

We write Ec(t) = (E j
c(t))j=1,...,Nt for the random vector

(E1, . . . , ENt )
⏐⏐P(t), Z̃(t).

Notice that in contrast towhatwent before, we are conditioning on
knowing all observed trait values up to and including generation t .
We derive a recursion for themean vectors Ac(t) and the variance–
covariance matrices ΣE

c (t) of these conditioned random vectors.
Since environmental noise is not transmitted from parent to off-
spring, this is considerablymore straightforward than our previous
recursions.

In order to keep track of generations, we suppose that in gen-
eration t we condition on Z̃ j

= z̃ j(t). In this notation, the mean of
E j
c(0) is determined by

Aj
c(0) =

(
σ 2
E

σ̂ 2 + σ 2
E

)
(̃z j(0)− z̄0),

and the variance–covariance matrix of E(0) is

ΣE(0) =
(

σ̂ 2σ 2
E

σ̂ 2 + σ 2
E

)
Id.

Now suppose that we have calculated Ac(t − 1) and ΣE
c (t − 1).

Then to find Ac(t), ΣE
c (t), we first calculate the mean vector and

the variance–covariance matrix for ∆Z̃(t) conditional on P(t) and
Z̃(t−1). Denoting the corresponding quantities byM(t) andΣBB(t)
respectively, the recursion which allows us to pass to the next
generation reads

Ac(t) =
(
σ 2
E (ΣBB(t))−1

(
∆̃z j(t)−M(t)

))
j=1,...,Nt

,

and, for the variance–covariance matrix,

ΣE
c (t) = σ 2

E Id− σ 4
E (ΣBB(t))−1.

The details of this derivation can be found in Appendix F. Al-
though not as simple as the expressions one obtains for the genetic
component of the trait alone, one can now read off themultivariate
normal distribution of the observed trait values in generation t
conditional on P(t) and Z̃(t − 1). Notice, in particular, that there
will be correlations among individuals.

Accuracy of the infinitesimal model as an approximation

The infinitesimal model does not just say that the trait distri-
butions in the population can be approximated by a multivariate
normal random variable, but it also asserts that the variance of
the genetic components of the traits is approximately independent
of the trait values of the parents. What our calculations show is
that in approximating ΣM

t conditional on P(t) and Z̃(t − 1) by the
same quantity conditioned only on P(t) (that is the right hand side
of (11)), we are making an error of order (recall (15) in particular)
t
√
M

C
(
ΣM

t , ∆̄M
t

)
.

In other words, the infinitesimal model remains valid for O(
√
M)

generations, provided that the minimum segregation variance in
the pedigree is not too small and none of the traits are too extreme,
where both of these caveats are quantified by Eq. (12).

3.2. Beyond additivity: epistasis

In this section we outline how we can extend the infinitesimal
model to capture some forms of epistasis. Unlike the additive
setting, the mean value of the genetic component of the trait
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across a family will no longer be at the mean value of the genetic
components of the parents’ traits as it will also depend on epistatic
components. In this sense, the classical infinitesimal model cannot
apply. However, under some conditions, it will still be the case that
the variance of the trait distribution within a family will depend
only on the pedigree (and the segregation variance in the ancestral
population) and not on the observed traits.

We illustrate by considering only pairwise epistatic effects. We
also ignore mutation and environmental noise. We write the trait
in individual j as

Z j
= z̄0 +

1
√
M

M∑
l=1

η
j
l +

1
M

∑
1≤l<m≤M

η
j
lm. (16)

First observe that it cannot always be the case that the epistatic
component of the trait is asymptotically normal. To see why, just
take an additive trait, ZA, which is asymptotically normally dis-
tributed and square it. Then (ZA)2 is of the form (16), but obviously
does not have an asymptotically normal distribution.

On the other hand, one canwrite down easily interpretable con-
ditions under which a quadratic form will be asymptotically nor-
mal. We do this before turning to general pairwise epistatic effects
(for which writing down a precise result is more mathematically
involved). Suppose that X1, X2, . . . , XM are independent identically
distributed random variables with mean zero, unit variance and
finite fourth moment. Define

ZA(2) =
∑

1≤l≤m≤M

almXlXm,

for some real constants alm. We set alm = aml and write AM for the
real symmetric matrix AM = (alm)1≤l,m≤M . We assume that

lim
M→∞

σ−4M Tr(A4
M ) = 0, lim

M→∞
σ−2M max

l

M∑
m=1

a2lm = 0, (17)

where σ 2
M =

1
2Tr(A

2
M ) is the variance of ZA(2). The first condition

ensures that the fourth moment condition is satisfied, that is

E

[
Z4
A(2)

σ 4
M

]
→ 3 as M →∞.

The second condition ensures that no single locus has too much
influence on the value of the trait. Under these conditions, Propo-
sition 3.1 of Chatterjee (2008) tells us that the Kantorovich–
Wasserstein distance (see Appendix A) between the distribution
of ZA(2)/σM and that of a standard normal distribution is bounded
above by(
Tr(A4

M )
2σ 4

M

) 1
2

+
5

2σ 3
M

M∑
l=1

(
M∑

m=1

a2lm

)3/2

.

If σ 2
M is order one and we assume further that |alm| ≤ B/M

uniformly in l,m, and |
∑M

m=1alm| ≤ B/
√
M uniformly in l, for some

constant B, which ensures that the total allelic effect of locus l is
bounded in the same way as in our analysis of the additive case,
then the rate of convergence is of order 1/

√
M .

The form almXlXm is not particularly natural for the epistatic
effect of the loci l and m, but this result can be extended. For M
unlinked loci, the genetic component of an arbitrary trait can be ex-
pressed as a function f (χ1, . . . , χM ) where the χl are independent
(not necessarily identically distributed) random variables repre-
senting the underlying allelic states. In Appendix A, we explain the
Hoeffding decomposition of a general function of this form, but
here we focus on functions corresponding to traits with additive
and pairwise epistatic effects only.

First recall that for a function flm(χl, χm), the conditional
expectation E[flm(χl, χm)|χl] is a function of χl, and similarly
E[flm(χl, χm)|χm] is a function of χm. Writing

αlm(χl, χm) = flm(χl, χm)− E[flm(χl, χm)|χl]

−E[flm(χl, χm)|χm] + E[flm(χl, χm)],

any trait involving pairwise epistatic interactions can be written in
the form

Z = z̄0 +
M∑
l=1

αl +
∑

1≤l≤m≤M

αlm,

where

E[αlm|χl] = 0 = E[αlm|χm]. (18)

The sumoverαlm is called a degenerateU-statistic of order two and
a Central Limit Theorem due to de Jong (1990) provides conditions
under which it is asymptotically normally distributed as M →

∞. Döbler and Peccati (2017) establish the rate of convergence
in the de Jong Central Limit Theorem. Some more detail is given
in Appendix A. To apply their result in this context, let us write
σ 2
lm = Var(αlm) and σ 2

M = Var(
∑

1≤l≤m≤Mαlm), then provided

ρ(M)2 := σ−2M max
1≤l≤M

M∑
m=1

σ 2
lm → 0 asM →∞,

and

E

⎡⎣( 1
σM

∑
1≤l≤m≤M

αlm

)4
⎤⎦→ 3 asM →∞,

de Jong’ result tells us that the sum
∑

1≤l≤m≤Mαlm is asymptotically
normal. Just as in our example above, if we suppose that σ 2

M is
order 1 andαlm = ηlm/M with |ηlm| and |

∑M
m=1ηlm/

√
M| uniformly

bounded, then one can check that the rate of convergence is order
1/
√
M . In fact the results of Döbler and Peccati (2017) are much

more general than this andwould allowus to state an analogous re-
sult for a trait involving higher order epistatic interactions, but the
statement of the result becomes more mathematically involved.

The justification of the infinitesimal model follows a familiar
pattern. What we have so far is enough to prove asymptotic nor-
mality in generation 0. The analogue of (15) follows essentially
exactly as before. By analogy with what went before we write

∆Z j
=

1
√
M

M∑
l=1

(
η
j
l −

η
j[1]
l + η

j[2]
l

2

)

+
1
M

∑
1≤l≤m≤M

(
ηlm −

η
j[1]
lm + η

j[2]
lm

4

)
.

But when we pass to later generations, we encounter two compli-
cations. First, it is no longer the case that E[∆Z j

] = 0. Nonetheless,
as we explain in more detail in Appendix G, a coupling argument,
which exploits the fact that conditional on the parental traits, the
allelic states have almost the same distribution as the uncondi-
tioned one, combinedwith (18) implies that its expectation is order
1/
√
M .

The second complication is that the∆Z j ’s are no longer asymp-
totically uncorrelated. In the first generation, correlation comes
about if two individuals share the same parents, are identical by
descent at two distinct loci {l,m} and neither individual inherited
the alleles at both l and m from the same parent. To see this, the
chance that they did inherit both loci from the same parent, j[1]
say, is 1/4 and then this term is cancelled by the corresponding
centring term, ηj[1]

lm . If for both individuals the two loci are inherited



N.H. Barton et al. / Theoretical Population Biology 118 (2017) 50–73 63

from different parents, then no such cancellation takes place. In
particular, such correlation only arises because there are two loci
involved in ηlm, which is why it did not appear in the additive case.
In later generations, correlation again comes from identity at two
distinct loci, but there may be multiple different routes through
the pedigree that result in this, so we no longer require that i[1]
and i[2] are the same as j[1] and j[2]. However, just as in generation
one, for a given pair of loci {l,m}, the contribution to the correlation
will be zero if the individuals share no pedigree ancestry or if one
of the individuals inherited both loci from the same parent. Thus
the contribution from the loci {l,m} takes the form
1
4
Var(̂ηlm)F2(i[1], i[2], j[1], j[2])

:=
1
2
Var(̂ηlm){F (i[1], j[1])F (i[2], j[2])

+ F (i[2], j[1])F (i[1], j[2])},

where F (a, b) is the probability that individuals a and b are identical
by descent at a given locus and again we have exploited the fact
that, knowing the pedigree, the pattern of inheritance is almost
unchanged by knowing trait values. Summing over pairs of loci
{l,m}, we obtain that for i ̸= j, (in the limit asM →∞),

(Σt )ij =
1
2
F2(i[1], i[2], j[1], j[2])VA(2)(0).

A similar calculation shows that, in the limit as M → ∞, the
epistatic component contributes(
1+

1
8
(1+ F (j[1], j[2])2)−

1
4
(1+ F (j[1], j[2]))2

)
VA(2)(0)

to (Σt )jj. Although notationally complicated, the ideas are the same
as in the additive case and we can conclude that conditionally on
Z(t − 1) and P(t), the vector (∆Z1(t), . . . ∆ZNt (t)) converges in
distribution as M → ∞ to a multivariate Gaussian with mean
zero and variance–covariance matrix Σt . Armed with the speed of
convergence (which is again order 1/

√
M) and Bayes’ rule, we can

prove that conditioning on trait values (in fact even conditioning
on zA, zA(2)) provides little information about the allelic state at
any particular locus and then use the unconditioned distribution
of allelic states to estimate the variance–covariance matrix for the
next generation, and so on.

3.3. Numerical examples

In this section, we illustrate our results with some numerical
examples. We focus on cases with no environmental noise or
mutation. We begin with an example that shows how the genetic
variance is much less sensitive to selection than the mean. We
then showhow the genetic variance scaleswith the number of loci,
and finally, show that the variance amongst offspring depends only
weakly on the parents’ trait values.

All our examples are based on simulations of a Wright–Fisher
model of 100 haploid individuals. With the exception of Fig. 4,
which investigates how rapidly the infinitesimal limit is ap-
proached as the number of loci increases, we set the number
of loci M = 1000. Our choice of parameters is constrained by
computational limits. We mostly simulated equal ‘main’ effects,
corresponding to |ηl| in our derivation of Section 3 all taking the
same constant value, because the infinitesimal limit is then ap-
proachedwith aminimal number of loci. Exponentially distributed
effects might be more realistic, but require an order of magnitude
more loci to approach the infinitesimal limit (see Fig. 4).

Simulation of larger populations would be challenging, if very
large numbers of loci are followed. (As noted above, simulation
of the infinitesimal is possible for large N provided that the re-
latedness is approximated as the same for all pairs.) Following

Robertson (1960), we expect that the infinitesimal model will
break down when Ns per locus becomes large.

We also consider pairwise epistasis. One situation in which we
expect the infinitesimal model to be an accurate approximation
is if the epistatic effects are sufficiently sparse. Our example is
constructed in two stages. First, independently for each ordered
pair (l,m) of loci with l ̸= m, with probability 1/M we declare it to
have a non-zero epistatic effect. Then, each non-zero interaction
is assigned an independent value γ , sampled from a normal dis-
tribution with mean zero and standard deviation 4/

√
M . With this

constructionγlm ̸= γml. The trait is nowdefined as z = δ·α+δ·γ ·δT ,
where the entries in the vector δ, which records the genotype, are
±1/2, the vector α records the absolute magnitude of the allelic
effects at each locus and ‘·’ is dot product. The epistatic and main
effects were scaled with respect to the number of loci, M , so that
both the additive and epistatic variances are of order 1.

We chose N = 100 haploid individuals, in order to be able
to follow the matrix of identities. Since we have no mutation,
variation then dissipates over about N = 100 generations. We ran
simulations either with no selection, or with directional selection
β = 0.2, so that fitnessW is proportional to eβz . Simulations were
startedwith allele frequencies drawn from a Beta distributionwith
mean p = 0.2 and variance 0.2pq.

With selection on a heritable trait, fitness is also heritable,
which speeds up the loss of genetic variance due to random drift
(Robertson, 1961); the variance declines in proportion to 1/Ne per
generation, where Ne is somewhat less than the census number.
However, in our examples, the variance in fitness, β2VG, is small,
and so the relatedness, F , is not appreciably increased by selection.

Fig. 2 shows how selection affects the mean and the compo-
nents of the variance of a trait that is determined byM = 1000 loci,
in a population ofN = 100 haploid individuals. It is natural towork
with the dimensionless quantities z/

√
VA and β

√
VA (where VA is

the initial additive variance). Selection on an additive trait changes
the mean by 4.5 genetic standard deviations over 100 generations
whilst the additive genetic variance decreases by a factor 0.355
(top row). This is almost the same as the decreasewith no selection,
0.364, and close to the neutral expectation (1 − 1/N)100 = 0.366.
In fact, selection is expected to alter the pedigree and thus the rate
of loss of diversity, but the effect actually seems very small. The
bottom row shows an example with sparse pairwise epistasis. The
additive variance is much higher, and the mean now changes by
10.9
√
VA (where VA is again taken at time 0) over 100 generations.

In both the additive and epistatic examples, averaging the per-
generation scaled s.d. β

√
VA over 100 generations gives a good

prediction of the change in (scaled) mean per generation. With
epistasis, but no selection, the additive variance decreases only by
a factor 0.548 over 100 generations (upper dashed line at bottom
right), because non-additive variance is ‘converted’ into additive
variance. Now, selection does substantially reduce the additive
variance, after about 30 generations.

A cornerstone of our derivation of the infinitesimal model was
the result that the distribution of allele frequencies is hardly af-
fected by selection. Fig. 3 shows the change in allele frequency over
time. In the presence of epistasis, the marginal effect of an allele
on the trait depends on current allele frequencies at other loci. In
particular, alleles that have a positive effect on the trait in the initial
population may have a different effect in the final generation.
In order to determine whether the allele frequency spectrum is
substantially biased towards alleles that have a positive overall
effect on the trait, in the presence of epistasis we recalculate the
marginal effects of each allele at the final generation and relabel
them accordingly. Over 100 generations, random drift fixes alleles
that are rare or common, leaving a flat distribution of frequencies
of segregating alleles (grey lines at middle and bottom). Selection
shifts the distribution in favour of alleles with a positive effect
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Fig. 2. The effect of selection on the mean and variance components. Each panel contrasts directional selection, β = 0.2 , on a trait (solid line) with the neutral case (dashed
line); shaded areas indicate ±1 standard deviation. The top row shows the additive case, with equal effects but random sign, η = ± 1

√
M

; in this example, M = 1000 loci,
N = 100 haploid individuals. The lower row shows an example of sparse pairwise epistasis, as described in the text. The left column shows the change in mean from its
initial value, and the right column shows the additive variance, VA , and with epistasis, the additive× additive variance, VAA (lower pair of curves at bottom right). Only the
genic components of variance are shown; random linkage disequilibria produce substantial fluctuations, but make no difference on average (results not shown). Initial allele
frequencies are drawn from a U-shaped Beta distribution with mean p = 0.2 and variance 0.2pq. Individuals are produced byWright–Fisher sampling, from parents chosen
with probability proportional to W = eβz . For each example, ten sets of allelic and epistatic effects are drawn and, for each of those, ten populations are evolved; this gives
100 replicates in all.

on the trait. In the additive case, the shift is symmetrical, so that
there is virtually no change in the additive genetic variance: E[pq]
stays the same. In contrast, selection on an epistatic trait reduces
the overall frequency of segregating alleles. This may be because
with epistasis, allelic effects vary with allele frequency, so that
alleles experience an additional random fluctuation that reduces
diversity.

With no selection, the rate of decrease of variance,−∂t log(VA),
is close to 1/N , independently of the number of loci (compare
small dots with dashed line in Fig. 4). With selection on a small
number of loci (M = 30; left of Fig. 4), the additive variance
declines much faster, as favourable alleles are swept to fixation.
The excess rate of decrease is inversely proportional to the number
of loci:−N∂t log(VA)− 1 = O(1/M); the exponent on the relation,
estimated by regression on a log–log scale, is −1.007, −1.019,
−0.965 for the three examples of equal effects, exponentially
distributed effects, and equal effects plus epistasis. Note that as in
Fig. 2, the additive variance is much more sensitive to selection in
the presence of epistasis (compare upper large dots with medium
black dots). However, in both cases the additive variance scales as
close to 1/M .

This is a much faster approach to the infinitesimal model than
the upper bound of 1/

√
M set by ourmathematical results. By con-

sidering the argument at the beginning of Section 3 for the additive
model with equal main effects, we can see that the rate 1/

√
M

cannot be improved upon in our general result (which applies even
when we consider individual families and condition on ancestral
traits). However, when, as in Fig. 4, we consider the variance across

the whole population, we can expect faster convergence. We can
understand why this is as follows. The genic component of the
additive variance is VA =

∑M
l=1α

2
l plql. Since the rate of change

of the allele frequency at locus l due to directional selection β

on the trait is βαlplql, we have −∂tVA = β
∑M

l=1α
3
l plql (pl − ql)

(ignoring the change in the marginal allelic effect due to epistasis).
We assumed that αl has random sign, so that the expected initial
rate of change is zero; indeed, when we sample replicates with
different effects, α, the rate of decrease measured over the first
10 generations is closely correlated with β

∑M
l=1α

3
l plql(pl − ql),

and fluctuates in sign (results for M = 30 not shown); the
standard deviation of this initial rate scales as 1/M . However,
the rates of decrease measured over 100 generations are almost
all positive, and vary much less than does the initial prediction
β
∑M

l=1α
3
l p0,lq0,l(p0,l − q0,l), based on the initial allele frequencies.

This consistently positive rate of decrease arises because the allele
frequencies pl become correlated with the allelic effect, αl: with no
mutation, favourable alleles eventually become common, so that
the additive variance decreases as they move to fixation.

For the rest of our examples, we simulated a population of
N = 100 haploid individuals with M = 1000 loci. The main allelic
effects at each locus are taken to be 1/

√
M , and examples with

sparse epistatic interactions are constructed exactly as above. Sim-
ulations were run for 100 generations, tracking the full pedigree.
We then calculated the matrix of pairwise identity by descent, F ,
relative to the initial population, and also relative to generation 80.
We assume that the probability that two pairs of genes at different
loci are both identical by descent is F 2.
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Fig. 3. Allele frequency distributions for the examples in Fig. 2. The horizontal
axis shows the number of copies of the +allele (0, . . . ,N) in a population of size
N = 100. The vertical axis is the proportion of theM = 1000 loci with that number
of + alleles. Top: Initial allele frequency distribution, which is independent of allelic
effect. Middle: Additive case, after 100 generations, with no selection (grey) or with
selection β = 0.2 (black). Bottom: With epistasis, after 100 generations where an
allele is defined to be + if its marginal effect in the final generation is positive (see
main text).

In Fig. 5, we plot the mean and variance within families of
the additive and non-additive components against the average of
the corresponding components in the two parents; parameters
are as in the epistatic example shown in Fig. 2. We choose pairs
of unrelated parents so that under the infinitesimal model the
variances should be constant across pairs. Even in the presence
of epistasis, the mean of the additive component in the offspring
must be precisely the mean of the additive component in the
parents (top left). The mean additive× additive component in the
offspring equals half of the mid-parental value of that component,
plus a random component that varies between pairs of parents.
The slope of the regression line in the top right panel is 0.58,
reasonably close to the expectation. The variance of the additive
and non-additive components amongst offspring is independent
of the mean parental components (bottom row).

50 100 500 1000
0.5

1

5

10

50

Fig. 4. The effect of selection on the genetic variance decreases with the number of
loci, M . The rate of decrease of additive genetic variance, multiplied by population
size,N∂t log(VA), is plotted againstM on a log–log scale. The neutral rate of decrease
of variance is indicated by the dashed line at N∂t log(VA) = 1. Small dots show
the neutral case, with equal and additive effects and random sign, α = ±1/

√
M .

Medium black dots show directional selection β = 0.2, again with equal and
additive effects, α = ±1/

√
M . Medium grey dots show β = 0.2, with additive

effects drawn from an exponential distribution with mean α = 1/
√
M and random

sign. Large dots show β = 0.2 , with equal allelic effects α = ±1/
√
M , plus

sparse pairwise epistasis, as described in the text. Initial allele frequencies are
drawn as in Fig. 2. The rate of decrease of variance is estimated by regression
over 100 generations, VA being averaged over 10 replicates. These replicates are
evolved independently, starting from the same randomly chosen allelic effects, α,
γ , and initial allele frequencies. Only the genic component of the additive variance
is shown.

Finally, in Fig. 6, we plot the decline of the additive and non-
additive variance with relatedness, F . Under the infinitesimal
model, the within-family additive variance is VA

2 (1 − F ), where
F is the probability of identity between the genomes that unite
at meiosis. With sparse pairwise epistasis, the within-family non-
additive variance is VAA

4 (1 − F )(3 + F ) (this expression can be
obtained by the same analysis as in Section 3.2, wherewe compute
the non-additive variance due to groups of genes inherited from
different parents). Fig. 6 is based on a population of 100, simulated
for 20 generations under selection β = 0.2, as for Fig. 5; the aver-
age relatedness is then F = 0.18 ≈ 1−(1−1/N)20. The theoretical
predictions shownby the solid curves are based on the additive and
non-additive variance components in the base population. There
is a small deviation from these predictions, because the observed
genetic variances include random linkage disequilibria amongst
the 100 sampled individuals, whereas the predictions are based on
the allele frequencies in the base population.

4. Discussion

Typically, the distribution of a quantitative trait amongst off-
spring is Gaussian, with amean intermediate between the parents’
trait values, and a variance that is independent of those values.
This observation goes back to Galton (1877), and was explained by
Fisher (1918) as being the result of a large number of unlinked loci
with additive effects. The variance amongst offspring depends on
the relatedness of the parents, which can be predicted from the
pedigree. This infinitesimal model thus provides a complete de-
scription of the short-term evolution of quantitative traits, which
is independent of any knowledge of the genetics.

We have set out a rigorous justification for the infinitesimal
model, which clarifies some of the conditions under which it
holds. These are surprisingly general. In the additive case, we can
include arbitrary selection and population structure, provided that
the segregation variance is not too small and traits are not too
extreme in a sense that is made precise by Eq. (12). The derivation
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Fig. 5. The mean and variance of offspring traits, plotted against components of the parents’ trait values. Top left: Additive component of offspring, AO , against the mean of
the parents’ additive component, AP . The line represents AO = AP . Top right: The same, but for the additive× additive components. The line shows a linear regression. Bottom
left: Additive variance amongst offspring, VA,O against the mean additive components of the parents, AP . Bottom right: Additive× additive variance of offspring against the
mean additive× additive component of the parents. Lines in the bottom row show quadratic regressions. The example shows a non-additive trait under selection β = 0.2 ,
withM = 1000 loci and N = 100 haploid individuals, as in Fig. 2 (bottom row). At generation 20 , 100 pairs of minimally related parents (F = 0.16) were chosen, and 1000
offspring were generated for each pair. For each offspring, the components of trait value were calculated relative to the allele frequencies, p in the base population. Defining
genotype by X ∈ {0, 1}, these components are A = ζ .(α + (γ + γ T ).(p− 1

2 )), AA = ζ .γ .ζ T , where ζ = X − p, and the allelic effects α, γ are drawn as for Fig. 2.

Fig. 6. Additive and non-additive variance amongst offspring declines with pairwise relatedness between parents. Solid lines show the theoretical expectations: VA
2 (1− F ),

VAA
4 (1 − F )(3 + F ). Values are based on a population of 100 individuals, generated as in Fig. 5. The 4950 distinct pairs of parents are pooled according to their relatedness,

and the variance amongst offspring is estimated from 1000 offspring produced by each pair.

includes (house of cards) mutation and environmental noise. Most
surprising, the argument that the variance of the distribution of
the trait amongst offspring is insensitive to selection carries over to
allow some forms of epistasis.With epistasis, wemust now specify
a set of variance components, which predict the variance amongst
offspring on an arbitrary pedigree. In all cases, the mathematical
analysis shows that the infinitesimal model holds up to an error
which is at most of the order of 1/

√
M , where M is the number of

loci, while Fig. 4 suggests that in some cases the error could be as
small as order 1/M .

We have not considered dominance here. With dominance, the
variance components no longer suffice to predict the offspring
distribution: more complex quantities are involved (Barton and
Turelli, 2004). Nonetheless, the proof of convergence of trait values
on a given pedigree to amultivariate normal given by Lange (1978)

does include dominance and we anticipate that our central result
still holds in the limit of a large number of loci: the variance of the
traits among offspring is independent of the parents’ trait values,
and hence insensitive to selection. This, along with a more thor-
ough mathematical investigation of the most general conditions
under which epistatic interactions do not disrupt the infinitesimal
model, will be the subject of future work.

We have assumed throughout that all loci are unlinked. This is
of course inconsistentwith assuming a very large number of loci on
a finite genetic map. Linkage will reduce the rate at which segre-
gation variance will be released, and more seriously, the breeding
value andwithin-family variance are no longer sufficient to predict
the evolution of the population: associationswill build up between
linked loci, andwill only slowly be dissipated. However, in the limit
of a long genetic map, selection still has negligible effect on the
genetic variance (Bulmer, 1974; Santiago, 1998).
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One can imagine an extension of the infinitesimal model
to linear genomes, which can readily be implemented in an
individual-based simulation. Imagine two long genomes of map
length R, which initially have a certain total effect on the trait,
z1([0, R]), z2([0, R]). Recombination between these genomes gen-
erates a gamete that is a mosaic of blocks derived from one
or other parent, {z1([0, x1)), z2([x1, x2)), . . .}. Conditional on the
breakpoints, the values associated with the segments zi([xi, xi+1)),
form a multivariate Gaussian, conditioned on the sum zi([0, R]). At
the level of the population, this model is implicit in studies of the
effects of background selection, in which heritable fitness variance
due to deleterious mutations is spread over the genome (e.g. Good
and Desai, 2014).

The infinitesimalmodel requires that a sufficient number of loci
contribute to the trait. With strong inbreeding, the number of con-
tributing loci may become too small for the model to be accurate.
This may be a particular problem if variance is contributed by rare
recessive alleles: only a few such alleles may contribute in a cross
between two close relatives. Thus, the infinitesimal model may
break down under strong inbreeding between particular individ-
uals or in particular subpopulations.

For how long can we expect the infinitesimal model to be
accurate? The wide use of the model in animal breeding suggests
that it is accurate (or at least, useful) for many tens of generations.
Indeed, the sustained response to artificial selection that is typi-
cally seen is the strongest support for the infinitesimal approxima-
tion (Barton and Keightley, 2002). Remarkably, Weber and Diggins
(1990, Fig. 4) found that for a wide range of traits and model
organisms, the response to selection over 50 generations is close
to the infinitesimal prediction. Responses tend to be slightly below
the prediction, suggesting that selection is reducing the variance
faster than expected by random drift, but the closeness of the fit
implies that most of the selection response is due to alleles that
are influenced mainly by random drift (i.e., that Nes < 1 or less).

This evidence comes from relatively small populations, and
short timescales. In the longer term,mutation becomes significant,
and the infinitesimalmodel predicts a genetic variance in a balance
between mutation and drift of NeVm for a haploid population. This
cannot plausibly explain observed heritabilities in large natural
populations, since genetic variances do not show a strong increase
with population size. (Though, we note that sequence diversity
also shows a weaker increase with census population size than
expected from naive neutral theory. It is not clear whether quan-
titative genetic variance increases in proportion with sequence
diversity; Frankham, 1996; Willi et al., 2006.) It is widely believed
that genetic variance is due to a balance between mutation and
selection against deleterious mutations. However, it is not clear
whether selection acts on the trait or on the pleiotropic effects of
the alleles involved, and the contribution of balancing selection
of various kinds is unknown (Johnson and Barton, 2005). The
infinitesimal model may remain accurate at least for times shorter
than 1/s; however, the effects of selection at the underlying loci
need further theoretical investigation. Estimates of the distribution
of fitness effects (largely based on evidence from Drosophila) sug-
gest that theremay be a significant fraction of veryweakly selected
alleles (e.g. Loewe and Charlesworth, 2006); if these contribute to
traits as well as to fitness, then the infinitesimal model may hold
for long times. However, Charlesworth (2015) concluded that the
quantitative genetics of fitness variation in Drosophila can only
be reconciled with estimates of fitness effects from population
genomics ifmost fitness variance is either due to relatively strongly
selected mutations (Nes ≫ 1), or to the side-effects of balancing
selection.

The enormous efforts put into mapping quantitative trait loci
(QTL), andmore recently, to finding associations between genome-
wide markers and quantitative traits (GWAS), have identified

many QTL, but typically, have not explained much of the genetic
variance. There is no mystery about this ‘‘missing heritability’’:
it is to be expected if genetic variance is due to large numbers
of alleles of small effect. In addition, SNP markers may not be in
complete association with causal alleles, especially if the latter
are at more extreme frequencies (Yang et al., 2010). Thus, it may
only be possible to identify the small fraction of individual alleles
in the upper tail of the distribution of effects, even if the whole
genome and the whole population are sequenced (Boyle et al.,
2017). Nevertheless, a regression of trait on sequence can signif-
icantly improve predictions of breeding value, even when individ-
ual loci cannot be identified: this is the basis of ‘‘genomic selection’’
(Meuwissen et al., 2013). It may be that natural selection is in just
the same position as a breeder: selection may change the mean
rapidly and predictably, even when the probability distribution of
any particular allele frequency is hardly perturbed.
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Appendix A. Generalised central limit theorems

There is now a huge literature on rates of convergence in the
Central Limit Theorem, mostly dependent upon Stein’s method.
Here we present two forms. We use the first, due to Rinott (1994),
in the additive case. Although we do not use this property here,
it allows some dependency between elements in the sum, which
would be useful if we wanted to think of loci grouped on chro-
mosomes, for example. From our perspective it is convenient as,
not only does it allow non-identically distributed summands, but
also we can apply it without directly checking a fourth moment
condition. The second result, due to Döbler and Peccati (2016)
develops quantitative central limit theorems for degenerate U-
statistics that do not have the form of homogeneous sums. This is
what is required to go beyond the somewhat contrived example in
the main text in which pairwise epistatic effects are determined
by a quadratic form and are therefore amenable to the analysis
(developed in a completely different setting) of Chatterjee (2008).
Although this result would apply in the additive case, its applica-
tionwould require us to establish control of the rate of convergence
of the fourth moment of Rj to 3(Σt )2jj.

Firstwepresent a theorem fromRinott (1994). At the expense of
stronger conditions (which for us are fulfilled as a result of putting
a uniform bound on scaled allelic effects), this result improves the
rate of convergence in the corresponding result in Baldi and Rinott
(1989). In contrast to the classical result, it allows for sums of
non-identically distributed random variables with some local de-
pendence structurewhich ismost conveniently expressed through
what is known as a dependency graph.

Definition A.1. Let {Xl; l ∈ V} be a collection of random variables.
The graphG = (V, E),whereV and E denote the vertex set and edge
set respectively, is said to be a dependency graph for the collection
if for any pair of disjoint subsets A1 and A2 of V such that no edge
in E has one endpoint in A1 and the other in A2, the sets of random
variables {Xl; l ∈ A1} and {Xl; l ∈ A2} are independent.
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To establish the rate of convergence in Lange (1978) one would
take the connected components of the dependency graph to be the
chromosomes. The degree of a vertex in the graph is the number of
edges connected to it and the maximal degree of the graph is just
the maximum of the degrees of the vertices in it.

Theorem A.2 (Theorem 2.2, Rinott (1994)). Let Y1, . . . , YM be ran-
dom variables having a dependency graph whose maximal degree is
strictly less than D , satisfying |Yl − E[Yl]| ≤ B a.s., l = 1, . . . ,M ,
E[
∑M

l=1Yl] = λ and Var
(∑M

l=1Yl

)
= σ 2 > 0 . Then⏐⏐⏐⏐⏐P

[∑M
l=1 Yl − λ

σ
≤ w

]
−Φ(w)

⏐⏐⏐⏐⏐
≤

1
σ

{√
1
2π

DB+ 16
(

M
σ 2

)1/2

D3/2B2
+ 10

(
M
σ 2

)
D2B3

}
, (19)

where Φ is the distribution function of a standard normal random
variable.

In particular,whenD and B are order one andσ 2 is of orderM , as
is the case in our applications, this yields a bound of order 1/

√
M .

Although much of the appeal of this result is that it allows depen-
dence between the variables, we use it in the independent case,
when the dependency graph has no edges, and so the maximum
degree of any vertex is zero and we may take any D > 1.

Rate of convergence in de Jong’s CLT

We now turn to a version of the Central Limit Theorem due to
de Jong (1990) and its refinements (to include, in particular, the
rate of convergence) due to Döbler and Peccati (2017). This result
is particularly well-suited to the analysis of epistatic interactions.
Consider independent random variables χ1, χ2, . . . , χM on a prob-
ability space (Ω,F,P). Wewrite [M] = {1, 2, . . . ,M} and for each
I ⊆ [M], FI = σ ({Xi : i ∈ I}).

Suppose that W = f (χ1, . . . , χM ) satisfies E[W ] = 0 and
E[W 4

] <∞, then writing

WJ =
∑
L⊆J

(−1)|J|−|L|E[W |FL],

we have the Hoeffding decomposition

W =
∑
J⊆[M]

WJ , (20)

in which E[WJ ] = 0, E[W 2
J ] = σ 2

J < ∞ and E[WI |FJ ] = 0 unless
I ⊆ J . In the special case in which WJ = 0 unless |J| = d, W is
called a degenerate U-statistic of order d.

Suppose that W is a degenerate U-statistic of order d, nor-
malised to have variance one. Define

ρ(M)2 = max
1≤i≤M

∑
K϶ i,|K |=d

σ 2
K .

Then de Jong’s Central Limit Theorem (de Jong, 1990) says that if
E[W 4

] → 3 and ρ(M)2 → 0 as M → ∞ then W converges
to a standard normal random variable. Döbler and Peccati (2016)
establish the rate of this convergence. They also prove a multi-
dimensional version of the result showing, in particular, that for a
vector of degenerate U-statistics based on the same set of random
variables {χ1, . . . , χM}, joint convergence to normality follows
from convergence of the marginals. This result is precisely of the
right form to extend our results to more complicated epistatic
interactions. Since the statement of the multi-dimensional re-
sult is rather involved, we satisfy ourselves by stating the one-
dimensional result, that is the result applying to a singleU-statistic.

The rate of convergence is described in terms of the
Kantorovich–Wasserstein distance between the distribution of W

and a standard normal distribution. For two probability measures
µ and ν on the real line, this is defined as

dW (µ, ν) = sup
{⏐⏐⏐⏐∫ hdµ−

∫
hdν

⏐⏐⏐⏐
: h Lipschitz with Lipschitz constant ∥h∥Lip ≤ 1

}
.

This metric (sometimes called transport distance) is a very natural
way to compare the distributions of two random variables when
one is derived from the other by small non-uniform perturbations.
It is well known, see e.g. Shorack and Wellner (1986) p. 64, that if
the cumulative distribution functions corresponding toµ and ν are
F1, F2 respectively, then

dW (µ, ν) =
∫
∞

−∞

|F1(t)− F2(t)| dt.

TheoremA.3 (Döbler and Peccati (2017) , Theorem1.3). In the setting
above, there are universal (and explicit) constants C1 and C2 such that
writing Z for a standard normal random variable,

dW (W (M), Z) ≤ C1

√
|E[W (M)4] − 3| + C2ρ(M).

This is the analogue of Proposition 3.1 of Chatterjee (2008) for
more natural formulations of the epistatic interaction.

Appendix B. Trait distribution in the ancestral population

In this section, we show that as the number of loci tends to
infinity, the distribution of the traits (Z1, . . . , ZN0 ) in the ancestral
population converges to that of a multivariate normal with mean
vector (z̄0, . . . , z̄0) and covariance matrix σ̂ 2 Id. To this end, take
β = (β1, . . . , βN0 ) ∈ RN0 and recall our notation ∥β∥1 =

∑N0
j=1|βj|

and ∥β∥22 =
∑N0

j=1β
2
j . We consider Zβ =

∑N0
j=1βjZ j.

To apply Theorem A.2, we must first identify the mean and the
variance of Zβ . Since we are considering the ancestral population,
we have
N0∑
j=1

βjZ j
= z̄0

N0∑
j=1

βj +
1
√
M

N0∑
j=1

M∑
l=1

βĵη
j
l .

The double sum has mean zero and, since the summands are all
independent, variance

Var

⎛⎝ 1
√
M

N0∑
j=1

M∑
l=1

βĵη
j
l

⎞⎠ = 1
M

N0∑
j=1

M∑
l=1

β2
j Var(̂ηl) = ∥β∥22 σ̂ 2

M .

We shall apply Theorem A.2 to the quantities Yl =
∑N0

j=1βĵη
j
l . Since

they are independent, we can takeD = 2 and since, by assumption,
the scaled allelic effects are bounded by B, |

∑N0
j=1βĵηjl| ≤ B∥β∥1 for

all l. Then,⏐⏐⏐⏐⏐P
[∑N0

j=1 βj(Z j
− z̄0)

∥β∥2σ̂M
≤ z

]
−Φ(z)

⏐⏐⏐⏐⏐
≤

C

∥β∥2
√
Mσ̂M

(
1+

1
∥β∥22 σ̂ 2

M

)
, (21)

where Φ is the cumulative distribution function of a standard
normal random variable and the constant C has an explicit ex-
pression (depending on B and ∥β∥1), which can be read off from
Theorem A.2. In particular, in the special case when βj = 0 for all
j ̸= k and βk = 1, so that

∑N0
j=1βjZ j

= Zk, the genetic component
of the trait of the k th individual, the constant C is independent of
N0.

Since the vector β is arbitrary, this proves convergence of the
joint distribution of traits in the ancestral population to a multi-
variate normal with the given mean vector and covariance matrix.
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Appendix C. Observed traits and scaled allelic effects in the
ancestral population

Whenwe condition on the observed trait values in our pedigree,
we gain some information on the scaled allelic effect at each locus.
In order to control themagnitude of this effectwe use Bayes’ rule to
turn it into a question about the effect of knowing the allelic effect
at a given locus on the probability of observing a particular trait.
We then need to be able to control

P
[̃
Z j[1]
−

1
√
M

η
j[1]
l = z1 − x

√
M

]
P
[̃
Z j[1] = z1

] ,

where we are interpreting the probabilities as density functions.
We beginwith the case inwhich the parents are from the ances-

tral population. Using the result of Appendix B, the observed trait
in each individual is, up to an error of order 1/

√
M , (independently)

distributed according to the sum of a normal random variable with
mean z̄0 and variance σ̂ 2

M and an independent normal with mean
zero and variance σ 2

E .
Let us write p(σ 2, µ, y) for the density function of a normally

distributed random variable with mean µ and variance σ 2. Then,
taking βk = 0 for k ̸= j and βj = 1 gives⏐⏐P [̃Z j[1]

= z1
]
− p(σ 2

E + σ̂ 2
M , z̄0, z1)

⏐⏐ ≤ C
√
Mσ̂M

(
1+

1
σ̂ 2
M

)
.

Remark C.1. The Central Limit Theorem A.2 of Appendix B only
gives convergence of the cumulative distribution functions of the
genetic component of the ancestral traits with a rate 1/

√
M . If

there is a differentiable density function for each M then we can
deduce the same order of convergence for the density function. If,
for example, allelic effects are discrete, then additional conditions
would be required to approximate this ratio of probabilities by
the corresponding normal distribution with this degree of accu-
racy as we need a local limit theorem to hold. McDonald (2005)
surveys results in this direction. Without such conditions, the rate
of convergence can be shown to be at least 1/M1/4, but simple
counterexamples show that this is optimal. Convolution with the
environmental noise rescues us and gives the faster rate of conver-
gence of densities reported here.

The same result applied to Z̃ j[1]
− η

j
l/
√
M , gives, up to an error

of order 1/M which we ignore,⏐⏐⏐⏐P [̃Z j[1]
−

1
√
M

η
j
l[1] = z1 −

x
√
M

]
−p

(
σ 2
E + σ̂ 2

M , z̄0, z1 −
x
√
M

)⏐⏐⏐⏐
≤

C ′
√
Mσ̂M

(
1+

1
σ̂ 2
M

)
,

where we recall that z̄0 is the mean of the genetic component
of the trait in generation zero. Performing a Taylor expansion of
p(σ 2

E + σ̂ 2
M , z̄0, z1 − x/

√
M) around z1 − z̄0 and using that

p′(σ 2, 0, y)
p(σ 2, 0, y)

≤
|y|
σ 2 ,

we see that for parents of individuals in the first generation,⏐⏐⏐⏐⏐⏐
P
[̃
Z j[1]
−

1
√
M

η
j[1]
l = z1 − x

√
M

]
P
[̃
Z j[1] = z1

] − 1

⏐⏐⏐⏐⏐⏐ ≤ 1
√
M

C
(
σ̂ 2
M , |z1 − z̄0|

)
,

where C(σ 2, |z|) was defined in Eq. (12). Just as with our toy
model at the beginning of Section 3, we see that the approximation
requires that the trait we are sampling is not ‘too extreme’.

Appendix D. One generation of reproduction

In order to include (house of cards) mutation, we introduce
another collection of Bernoulli randomvariables.WewriteMj

l = 1
if there is a mutation at locus l in individual j ; otherwise it is zero.
Under our assumption of a constant probability of mutation across
all loci, we have P[Mj

l = 1] = µ = 1− P[Mj
l = 0].

We now establish that after one round of mating, conditional
on knowing P(1) and Z̃(0) = z,(
Z j
− µz̄µ − (1− µ)

Z j[1]
+ Z j[2]

2

)
j=1,...,N1

converges in distribution to a mean zero multivariate normally
distributed random variable with diagonal variance–covariance
matrix Σ

µ

1 with on-diagonal entries (Σµ

1 )jj given by the limit
of (13) (or rather the full version, Eq. (24), which includes terms
of order µ2 ).

The ‘remainder term’ Rj in (9) is given by

Rj
=

1
√
M

M∑
l=1

(
Mj

lη̌
j
l − µE[η̌l]

)
+

1
√
M

M∑
l=1

(
(1−Mj

l)X
j
l −

1− µ

2

)
η
j[1]
l

+
1
√
M

M∑
l=1

(
(1−Mj

l)(1− X j
l )−

1− µ

2

)
η
j[2]
l . (22)

The Bernoulli random variablesMj
l and X j

l are independent of both
P(1) and Z̃(0) and so E[Rj

|P(1), Z̃(0) = z] = 0. Moreover, since
the Bernoulli variables in different individuals are independent, for
i ̸= j ,E[RiRj

|P(1), Z̃(0) = z] = 0. To establishE[(Rj)2|P(1), Z̃(0) =
z], first we use Bayes’ rule to control the conditional distribu-
tion of η

j[1]
l . We condition on the whole vector of observed traits

Z̃(0) = z, but since individuals in our ancestral population are
assumed unrelated, from the perspective of ηj[1]

l , this is equivalent
to conditioning on the observed trait Z̃ j[1] of the first parent of the
j th individual. It is convenient to write z1 for the corresponding
coordinate of z.

P
[
η
j[1]
l = x

⏐⏐P(1), Z̃(0) = z
]
= P

[
η
j[1]
l = x

⏐⏐̃Z j[1]
= z1

]
=

P
[
η
j[1]
l = x, Z̃ j[1]

−
x
√
M
= z1 − x

√
M

]
P
[̃
Z j[1] = z1

]
= P

[
η
j[1]
l = x

] P
[̃
Z j[1]
−

1
√
M

η
j[1]
l = z1 − x

√
M

]
P
[̃
Z j[1] = z1

] ,

where we have used independence of inheritance at different loci
and the ratio on the right should be interpreted as a ratio of
probability density functions. We showed in Appendix C that the
ratio in the last line differs from one by at most
1
√
M

C(σ̂ 2
M , |z1 − z̄0|).

Since individuals in the ancestral population are assumed to be
unrelated, η

j[1]
l and η

j[2]
l are independent and so combining the

calculation abovewith the symmetric one for η
j[2]
l we can calculate

that for some α ∈ [−1, 1],

Σ
M,µ

1 := E
[
(Rj)2

⏐⏐P(1), Z̃(0) = z
]

= E
[
(Rj)2

⏐⏐P(1)
] (

1+
α
√
M

C(σ̂ 2
M , |z1 − z̄0|)

)
.

Noting that inheritance at different loci is independent, the
variance of Rj will be the sum of the variances at each locus. We
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consider the summand corresponding to a single locus, l say. Omit-
ting the factor of 1/M , the square of the first term, corresponding
to mutation, contributes

µ(1− µ)E[η̌l]
2
+ µVar(η̌l).

Since the variances of (1 −Mj
l)X

j
l and (1 −Mj

l)(1 − X j
l ) are both

(1− µ)(1+ µ)/4, the squares of the next two terms contribute

(1− µ2)
4

E[(ηj[1]
l )2 + (ηj[2]

l )2].

The cross terms are also non-trivial.

2E
[
(Mj

lη̌l − µE[η̌l])
(
(1−Mj

l)X
j
l −

1− µ

2
η
j[1]
l

)]
= −µ(1− µ)E[η̌l]E[η

j[1]
l ].

Similarly,

2E
[
(Mj

lη̌l − µE[η̌l])
(
(1−Mj

l)(1− X j
l )−

1− µ

2
η
j[2]
l

)]
= −µ(1− µ)E[η̌l]E[η

j[2]
l ].

Finally,

2E
[(

(1−Mj
l)X

j
l −

1− µ

2

)
η
j[1]
l

(
(1−Mj

l)(1− X j
l )−

1− µ

2

)
η
j[2]
l

]
= −

(1− µ)2

2
E[ηj[1]

l η
j[2]
l ].

Combining these, we obtain

µ(1− µ)E[η̌l]
2
+ µVar(η̌l)+

(1− µ)2

4
E[(ηj[1]

l − η
j[2]
l )2]

+µ(1− µ)
(
E[(ηj[1]

l )2] − 2E[η̌l]E[η
j[1]
l ] + E[η̌2

l ]

)
−µ(1− µ)E[η̌2

l ]

= µ2Var(η̌l)+
(1− µ)2

4
E[(ηj[1]

l − η
j[2]
l )2]

+µ(1− µ)E[(ηj[1]
l − η̌l)2]

and, since η
j[1]
l is sampled from the ancestral population and so is

a copy of η̂l, this yields

µ2Var(η̌l)+
(1− µ)2

4
E[(ηj[1]

l − η
j[2]
l )2] + µ(1− µ)E[(̂ηl − η̌l)2].

(Note that if the individual was produced by selfing, the second
term is 0.) It is immediate from this calculation that the variance of
our limiting distribution of traits is Σ

µ

1 , as claimed. To check that
the limit is a multivariate normal, we mimic what we did in the
ancestral population: for an arbitrary vector β = (β1, . . . , βN1 )
we show that

∑N1
j=1βjRj converges to a normal random variable as

M →∞. As before the strategy is to apply Theorem A.2. This time
N1∑
j=1

β
j
jR =

1
√
M

M∑
l=1

Yl,

where

Yl =

N1∑
j=1

βj

{
Mj

lη̌
j
l − µE[η̌l] +

(
(1−Mj

l)X
j
l −

1− µ

2

)
η
j[1]
l

+

(
(1−Mj

l)(1− X j
l )−

1− µ

2

)
η
j[2]
l

}
. (23)

Each such term is bounded by B∥β∥1 and inheritance is indepen-
dent at distinct loci and so Theorem A.2 yields convergence (in
law) of

∑M
l=1Yl/

√
M =

∑N1
j=1βjRj to a mean zero normal random

variable with variance
N1∑
j=1

β2
j (Σ

µ

1 )jj,

from which, since β was arbitrary, we deduce convergence of
(R1, . . . , RN1 ), conditional on knowing P(1) (the parents of each
individual in the population) and Z̃(0) (the observed traits of all
parents) to a multivariate normal with mean zero and diagonal
variance–covariance matrix with on-diagonal entries identically
equal to Σ1. More precisely, just as in (21),⏐⏐⏐⏐⏐⏐P
⎡⎣ ∑N1

j=1 βjRj√∑N1
j=1 β2

j (Σ
M,µ

1 )jj
≤ y

⏐⏐P(1), Z̃(0) = z

⎤⎦−Φ(y)

⏐⏐⏐⏐⏐⏐
≤

C ′√
M
∑N1

j=1 β2
j (Σ

M,µ

1 )jj

(
1+

1∑N1
j=1 β2

j (Σ
M,µ

1 )jj

)
×
(
1+ C(σ̂ 2

M , |z1 − z̄0|)
)
.

Appendix E. Generation t

We now provide the missing steps in the general case. We
proceed by induction.

Suppose that we have proved the asymptotic normality of the
vector of genetic components of trait values and (15) (that condi-
tioning on the pedigree and the observed ancestral traits provides
negligible information about the distribution of allelic types at a
given locus) for all generations up to and including (t−1).We have
already checked generation one.

We first prove (15). Let us write A ∼ η
j[1]
l to mean that A is the

set of individuals in P(t − 1) that are identical by descent at locus
l with the first parent of individual j in generation t . Note that A
depends on the pedigree and the Bernoulli random variables that
determine inheritance at the l th locus, but not on the value η

j[1]
l

and so partitioning on the set A,

P
[̃
Z(t − 1) = z

⏐⏐P(t), ηj[1]
l = x

]
=

∑
A

P
[̃
Z(t − 1) = z

⏐⏐A ∼ η
j[1]
l ,P(t), ηj[1]

l = x
]

×P
[
A ∼ η

j[1]
l

⏐⏐P(t)
]
.

We write a for the eldest individual in A and |a| for the generation
in which it lived. Evidently the trait values in P(t − 1) \ A do not
depend on η

j[1]
l . Moreover, if we further partition on the value of Za

(the genetic component of the trait of the eldest member of A ), we
see that for all a′ ∈ A \ a, the probability that Z̃a′

− za = za′ − za is
independent of the value of η

j[1]
l . In other words, the dependence

of the trait values in the pedigree on η
j[1]
l is entirely captured by

P
[̃
Za
= za

⏐⏐̃Z(|a| − 1),P(|a|), ηa
l = x

]
.

Since a lives at the latest in generation t − 1, we can use our
inductive hypothesis to write that

P
[̃
Za
= za

⏐⏐̃Z(|a| − 1) = z(|a| − 1),P(t), ηa
l = x

]
= P

[̃
Za
= za

⏐⏐̃Z(|a| − 1) = z(|a| − 1),P(t)
]

×

(
1+

α
√
M

C(ΣM
t , ∆̄M

t (z))
)

.

Since we have successfully eliminated all the conditioning on the
value of ηj[1]

l , we can now rearrange our calculations to give Eq. (15)
and
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P
[
η
j[1]
l = x

⏐⏐P(t), Z̃(t − 1) = z
]
= P

[
η
j[1]
l = x

⏐⏐P(t)
]

×

(
1+

α
√
M

C(ΣM
t , ∆̄M

t (z))
)

.

We can perform entirely analogous calculations for the joint law of
η
j[1]
l and η

j[2]
l .

Now consider the mean zero random variable Rj. That
E[RiRj

|P(t), Z̃(t−1)] = 0 for i ̸= j follows exactly as before and the
calculation of E[(Ri)2|P(t), Z̃(t − 1)] also proceeds almost exactly
as for generation one. The only distinction is that

E[ηj[1]
l |P(t)] = (1− µ)t−1E[̂ηl] + (1− (1− µ)t−1)E[η̌l],

and similarly

E[(ηj[1]
l )2|P(t)] = (1− µ)t−1E[̂η2

l ] + (1− (1− µ)t−1)E[η̌2
l ],

and so the contribution to E[(Ri)2|P(t), Z̃(t−1)] from the l th locus
becomes

(1− (1− µ)2)Var(η̌l)+
(1− µ)2

4
E[(ηj[1]

l − η
j[2]
l )2|P(t)]

+2µ(1− µ)t
(
E[(̂ηl − η̌l)2]

2
− Var(η̌l)

)
.

Summing over loci yields

(ΣM,µ
t )jj =

(1− µ)2

4
1
M

M∑
l=1

E
[(

η
j[1]
l − η

j[2]
l

)2⏐⏐P(t)
]

+ (1− (1− µ)2)σ̌ 2
M

+ 2µ(1− µ)t
1
M

M∑
l=1

(
E[(̂ηl − η̌l)2]

2
− Var(η̌l)

)
, (24)

which for small µ becomes (13).
Now, exactly as we did for generation one, we can fix

β1, . . . , βNt ∈ R and apply Theorem A.2 to Yl given by (23) (with
the same bound) to deduce that conditional onP(t) and Z̃(t−1) =
z,(
R1, . . . , RNt

)
→ N (0, Σ

µ
t ).

In particular,⏐⏐⏐⏐⏐⏐P
⎡⎣Z j
− µz̄µ − (1− µ) Z

j[1]
+Z j[2]

2√
(ΣM,µ

t )jj
≤ y

⏐⏐P(t), Z̃(t − 1) = z

⎤⎦−Φ(y)

⏐⏐⏐⏐⏐⏐
≤

1
√
M

C(ΣM
t , ∆̄

M,µ
t (z)). (25)

Appendix F. Environmental noise: conditioning multivariate
Gaussian vectors

In order to estimate the proportion of an observed trait that
is due to environmental noise, and thus make predictions about
offspring traits, we need a standard result for conditioning multi-
variate normal random vectors on their marginal values which, for
ease of reference, we record here.

Theorem F.1. Suppose that[
xA
xB

]
∼ N

([
µA
µB

]
,

[
ΣAA ΣAB
ΣBA ΣBB

])
.

Then

xA|xB ∼ N
(
µA +ΣABΣ

−1
BB (xB − µB), ΣAA −ΣABΣ

−1
BB ΣBA

)
.

The proof can be found e.g. in Brockwell and Davis (1996)
(Prop. 1.3.1 in Appendix A). We write Ec(t) = (E j

c(t))j=1,...,Nt for

the conditioned vector (E1, . . . , ENt )|P(t), Z̃(t). To see how Theo-
rem F.1 leads to a recurrence for the mean and variance of Ec(t),
we begin with generation zero. In this case there are just two
components to consider, (Rj)j=1,...,N0 and (E j)j=1,...,N0 , each of which
is (at least asymptotically) a mean zero Gaussian with diagonal
variance–covariancematrix.Wewish to calculate xA|xB where xA =
(E j)j=1,...,N0 and xB = (̃Z j

− z̄0)j=1,...,N0 . We have[
xA
xB

]
∼ N

([
µA
µB

]
,

[
ΣAA ΣAB
ΣBA ΣBB

])
where ΣAA = σ 2

E Id, ΣBB = (σ̂ 2
+ σ 2

E )Id and ΣAB = ΣBA = σ 2
E Id.

Applying Theorem F.1, (E j
c(0))j=1,...,N0 (as M → ∞ ) is a Gaussian

random variable with mean vector

Ac(0) =
(

σ 2
E

σ̂ 2 + σ 2
E
(̃zj − z̄0)

)
j=1,...,N0

and variance–covariance matrix

ΣE
c (0) =

σ̂ 2σ 2
E

σ̂ 2 + σ 2
E
Id.

For the recursive step, we now set

xA = (E j)j=1,...,Nt , xB = (∆Z̃ j(t))j=1,...,Nt .

Then, writing Ec to indicate that we are conditioning on P(t) and
Z̃(t − 1),

Ec[xA] = (0, . . . , 0), Ec[xB]

=

(
−(1− µ)

Aj[1](t − 1)+ Aj[2](t − 1)
2

)
j=1,...,Nt

,

ΣAA = σ 2
E Id, ΣAB = ΣBA = σ 2

E Id.

The more complex term is

ΣBB =
(
Cov(∆Z̃ i(t), ∆Z̃ j(t))|P(t), Z̃(t − 1)

)
i,j=1,...,Nt

.

We treat the cases i = j and i ̸= j separately. In the expression
below, i[a] is the a th parent of individual i (with a ∈ {1, 2}). First
suppose that i ̸= j, again conditionally on P(t) and Z̃(t − 1),

Ec[∆Z̃ i(t)∆Z̃ j(t)] − Ec[∆Z̃ i(t)]Ec[∆Z̃ j(t)]

= (1− µ)2Ec

[
(E i[1](t)+ E i[2](t))

2
(E j[1](t)+ E j[2](t))

2

]
− (1− µ)2Ec

[
E i[1](t)+ E i[2](t)

2

]
Ec

[
E j[1](t)+ E j[2](t)

2

]
=

(1− µ)2

4

∑
a,b∈{1,2}

Cov(E i[a]
c (t), E i[b]

c (t))

=
(1− µ)2

4

∑
a,b∈{1,2}

(ΣE
c (t − 1))i[a],j[b].

If i = j ,

Ec

[(
∆Z̃ i(t)

)2]
− Ec

[
∆Z̃ i(t)

]2
= σ 2

E +
(
Σt−1

)
ii

+ (1− µ)2Ec

[(
E i[1](t)+ E i[2](t)

2

)2
]

−(1− µ)2Ec

[
E i[1](t)+ E i[2](t)

2

]2
= σ 2

E +
(
Σt−1

)
ii +

(1− µ)2

4

∑
a,b∈{1,2}

(
ΣE

c (t − 1)
)
i[a],i[b].

Again applying Theorem F.1, we obtain that Ec(t) has mean vector

Ac (t) =
(

σ 2
E Σ−1BB

(
∆̃ztj + (1− µ)

Aj[1](t − 1)+ Aj[2](t − 1)
2

))
j=1,...,Nt

,
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and variance–covariance matrix

ΣE
c (t) = σ 2

E Id− σ 4
E Σ−1BB .

Appendix G. A coupling argument

We do not spell out all of the details of the proof of convergence
to a multivariate normal in the presence of epistasis. However, we
illustrate a useful coupling argument by explaining how to use it to
prove that in generation one, E[∆Z j

] is of order 1/
√
M . Recall that

∆Z j
=

1
√
M

M∑
l=1

(
η
j
l −

η
j[1]
l + η

j[2]
l

2

)

+
1
M

∑
1≤l≤m≤M

(
ηlm −

η
j[1]
lm + η

j[2]
lm

4

)
.

We use the notation 1U←j[1] for the Bernoulli random variable
which takes the value 1 when all the loci in U were inherited from
j[1]. Then

∆Z j
=

1
√
M

M∑
l=1

(
η
j
l −

η
j[1]
l + η

j[2]
l

2

)

+
1
M

∑
1≤l≤m≤M

(
η
j[1]
lm

(
1{l,m}←j[1] −

1
4

)
+ η

j[2]
lm

(
1{l,m}←j[2] −

1
4

))
+

1
M

∑
1≤l≤m≤M

η
j
lm

(
1− 1{l,m}←j[1] − 1{l,m}←j[2]

)
.

Because the Bernoulli randomvariables that determine inheritance
are independent of the parental allelic effects, the expectation of
the first sum is zero. A priori, the second term could be order one,
but we now argue that it is order 1/

√
M . The idea is a simple cou-

pling argument. The analogue of (15) tells us that even conditioned
on the values zA, zA(2) in the ancestral population, for any fixed pair
of loci {l,m}, the allelic state of the parents j[1], j[2] at those loci
have the original distribution χ̂ with probability 1 − O(1/

√
M).

We can couple the conditioned distributions of the allelic states
for the loci {l,m} in each parent in such a way that (independently
at the two loci), with probability 1− C/

√
M , χl (resp. χm) is drawn

from the unbiased distribution χ̂l (resp. χ̂m) and with probability
C/
√
M , χl (resp. χm) is drawn from some modified distribution χ∗l

(resp. χ∗m), which is independent of χ̂l, χ̂m. We now sum over all
admissible inheritance patterns.

E[ηj
lm

(
1− 1{l,m}←j[1] − 1{l,m}←j[2]

)
]

=
1
4
E
[
φlm(χ

j[1]
l , χ j[2]

m )
]
+

1
4
E
[
φlm(χ j[1]

m , χ
j[2]
l )

]
+

1
4

{(
1−

C
√
M

)2

E[φlm(χ̂l, χ̂m)]

+
C
√
M

(
1−

C
√
M

)
E[φlm(χ̂l, χ

∗

m)]

+
C
√
M

(
1−

C
√
M

)
E[φlm(χ∗l , χ̂m)] +

C2

M
E[φlm(χ∗l , χ∗m)]

}
.

The first term is zero by assumption and (18) guarantees that so
are the second and third terms.Wemustmultiply the final term by
1/M and sum over all loci. The uniform bound on

∑M
m=1ηlm/

√
M

is enough to guarantee that the result is a term of order at most
1/
√
M .
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