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Summary 17 
 18 

The plant hormone auxin plays crucial roles in almost all aspects of plant growth and 19 

development. Varied auxin concentrations across different tissues mediate distinct 20 

developmental outcomes, and contribute to the remarkable functional diversity of auxin, 21 

but the underlying mechanisms of such auxin activities are poorly understood. Here we 22 

identify a novel auxin signalling mechanism that acts in parallel to the canonical 23 

TIR1/AFB receptor-based auxin pathway1,2 to interpret cellular auxin levels and 24 

mediate differential growth during apical hook development. It operates at the concave 25 

side of the apical hook and involves auxin-mediated C-terminus cleavage of 26 

Transmembrane Kinase 1 (TMK1). The cytosolic/nucleus translocated C-terminus of 27 

TMK1 (TMK1C) specifically interacts with and phosphorylates two non-canonical 28 

Aux/IAAs transcriptional repressors (IAA32 and IAA34), thereby regulating ARF 29 

transcription factors. In contrast to the auxin-TIR1/AFB-dependent degradation of 30 

canonical Aux/IAAs, the auxin-TMK1-dependent mechanism stabilizes the non-31 

canonical Aux/IAAs to regulate gene expression and ultimately inhibit growth. This 32 

novel auxin signalling pathway originates at the cell surface, is triggered by high auxin 33 

levels, and converges with TIR1/AFB signalling pathway on the partially overlapping 34 

set of transcription regulators. This allows a distinct interpretation of different cellular 35 

auxin concentrations, and thus enables this versatile signalling molecule to mediate 36 

complex developmental outcomes. 37 

 38 



In both animals and plants, the cellular concentrations of signalling molecules impact 39 

their biological roles: distinct activities over a range of concentrations contribute to 40 

their functional diversity3. In plants, auxin has been repeatedly discussed to have a 41 

morphogen-like property that appears to form gradients across tissues and act in a 42 

concentration-dependent manner4,5. Differential auxin distribution is mediated by local 43 

biosynthesis6 and directional intercellular transport7 but the mechanisms, by which 44 

auxin gradient mediates various developmental outputs remain largely unclear. Apical 45 

hook development in dicotyledonous plants represents a classical model involving 46 

differential auxin concentrations. Its development in Arabidopsis thaliana consists of 47 

three sequential steps: formation, maintenance and opening8,9. Auxin asymmetrically 48 

accumulates at the concave side during the formation stage10 (Extended Fig. 1a-c) 49 

which correlates with inhibition of cell elongation, and differential growth alongside 50 

the hook further leads to its bending9,11,12.  51 

 52 

To obtain insight into the mechanism by which auxin regulates apical hook 53 

development, we analysed the yuc1-D and wei8-3tar2-1 mutants with increased13 and 54 

decreased14,15 auxin biosynthesis, respectively. Both mutants abolished the differential 55 

growth of the apical hook but in different ways: auxin overproduction was accompanied 56 

by growth inhibition at the convex side, whereas decreased auxin correlated with the 57 

release of growth inhibition at the concave side (Extended data Fig. 1d-g). Therefore, 58 



while auxin typically promotes cell elongation in shoots16, in the context of the apical 59 

hook, its local accumulation is correlated with growth inhibition.  60 

 61 

To uncover the mechanism underlying this particular growth inhibition, we analysed 62 

Arabidopsis mutants defective in auxin signalling. Notably, the mutant defective in 63 

TMK1, a Transmembrane Kinase implicated in auxin signalling at the cell surface17, 64 

also displayed disrupted apical hook development (Fig. 1a-b, Extended data Fig. 1h). 65 

The growth inhibition at the concave side was released in the tmk1 mutant, and the 66 

resulting hook maintenance phenotype was rescued by the TMK1 genomic fragment 67 

(Fig. 1c-d). Furthermore, while three tmk1 mutant alleles (tmk1-1, tmk1-2, tmk1-3) had 68 

similar phenotype in apical hook maintenance (Extended data Fig. 2a-d), other tmk 69 

mutants (tmk2-1, tmk3-1, tmk4-1) did not show any obvious defect (Extended data Fig. 70 

2e-f). The apical hook defect at the maintenance stage in the tmk1 mutant was different 71 

from the formation defects in the auxin transport mutants9,18. Its defect was rather 72 

similar to that in wei8-3tar2-1 (Extended data Fig. 1d-g), however, while exogenous 73 

auxin (Indole-3-acetic acid, IAA) treatment rescued the apical hook defect of the wei8-74 

3tar2-1 mutant, it was ineffective in tmk1-1 (Extended data Fig. 2g-h). These 75 

observations reveal that TMK1 participates in auxin-mediated growth inhibition during 76 

apical hook development; presumably not by regulating auxin transport or levels. 77 

Therefore, we focused on the hypothesis that TMK1 functions in the downstream auxin 78 

signal transduction.  79 



 80 

To gain additional insights into the role of TMK1 in auxin-mediated growth inhibition 81 

during apical hook development, we analysed in vivo TMK1 protein distribution pattern 82 

by immunostaining using anti-TMK1 C-terminus antibody (Extended data Fig. 2b). We 83 

observed a cytosolic and nuclear distribution of TMK1 specifically at the concave side 84 

of the apical hook during the maintenance stage, not earlier during the formation or 85 

later during the opening stages (Fig. 1e-f, Extended data Fig. 3a-e). We also detected 86 

TMK1 proteins within the apical hook by western blot and revealed a substantial 87 

amount of truncated TMK1 protein abundance at approximately 50 kDa during the 88 

maintenance phase (Fig. 1g). Mass spectrometry (MS) analysis of the truncated TMK1 89 

band detected peptides from the C-terminus of TMK1 (TMK1C) spanning 511aa-942aa 90 

(Extended data Fig. 4a-b). This suggests that TMK1 is specifically cleaved and 91 

internalized at the concave side during the maintenance phase. 92 

 93 

The spatial-temporal pattern of TMK1 cleavage correlated with asymmetric auxin 94 

accumulation in the apical hook. To test whether increased auxin levels lead to TMK1 95 

cleavage, we first analysed wei8-3tar2-1 and found that TMK1 cleavage was reduced 96 

in this mutant (Fig. 1g, Extended data Fig. 4c). Furthermore, the auxin biosynthesis 97 

inhibitor yucasin19 also reduced TMK1 cleavage, while the effect was reversed when 98 

the auxin levels were restored (Extended data Fig. 4d-e). We further confirmed that 99 

TMK1 cleavage was promoted by auxin in a dose-dependent manner (Fig. 1h, Extended 100 



data Fig. 4f). Notably, this cleavage does not appear to require canonical TIR1 auxin 101 

signalling1 since the TIR1 pathway antagonist PEO-IAA20 did not have an obvious 102 

effect on auxin-promoted TMK1 cleavage (Extended data Fig. 4g-h). Similarly, 103 

ethylene, another major regulator of apical hook development8,18, did not obviously 104 

alter TMK1 cleavage nor the tmk1 mutant showed altered response to ethylene 105 

precursor ACC (1-aminocyclopropane-1-carboxylic acid) treatment (Extended data Fig. 106 

4i-j). These observations suggest that local auxin accumulation at the concave side leads 107 

to specific cleavage of the TMK1 C-terminus (TMK1C).  108 

 109 

To link auxin-mediated TMK1 cleavage to local growth inhibition at the concave side 110 

of the apical hook, we expressed TMK1C-GFP driven by the TMK1 promoter in tmk1-111 

1. The majority of TMK1C-GFP accumulated in the cytosol and nucleus (Extended data 112 

Fig. 5a), similar to the intracellular localization of TMK1 (Fig. 1e). Importantly, 113 

TMK1p-TMK1C-GFP could partially complement the tmk1-1 apical hook development 114 

defect (Extended data Fig. 5b-c), suggesting that auxin-mediated TMK1 cleavage at the 115 

concave side is part of the mechanism for auxin-mediated growth inhibition. 116 

 117 

To address the question of how auxin-triggered TMK1 cleavage inhibits growth at the 118 

concave side, we identified potential interaction partners of TMK1C using a yeast two-119 

hybrid screen. Among the TMK1C candidate interactors, we focused on the IAA32 120 

protein since it is a member of the Aux/IAA transcription repressors typically associated 121 



with TIR1/AFB auxin signalling pathway21. An unbiased yeast two-hybrid assay for all 122 

combinations of the 29 Aux/IAA proteins and the C-terminus of all four TMK family 123 

members revealed that only TMK1C and TMK2C specifically interact with IAA32 and 124 

IAA34 but not with other IAA proteins (Fig. 2a, Extended data Fig. 6a-b), yet TMK2 125 

is not expressed in the apical hook22. Using pull-down and co-immunoprecipitation 126 

assays, we confirmed the specific interaction of TMK1C with IAA32/34, but not with 127 

other IAAs (Extended data Fig. 6d-e). Phylogenetic tree analyses revealed that 128 

IAA32/34 belong to the same sub-family of non-canonical IAA proteins (Extended data 129 

Fig. 6c) lacking domain II23 (Fig. 2b), which is required for interaction with the TIR1 130 

receptor. Therefore, IAA32/34 did not interact with TIR1 with or without auxin, while 131 

auxin promoted interaction between TIR1 and canonical IAAs24,25 (Fig. 2c). This 132 

suggests that TMK1 and TIR1 may interact with different subsets of Aux/IAA 133 

transcriptional repressors and therefore facilitate auxin signalling by distinct 134 

mechanisms.   135 

 136 

To gain insight into the biological roles of these non-canonical Aux/IAAs targeted by 137 

TMK1C, we used IAA32/34 promoter driven GUS (pIAA32/34-GUS) and IAA32/34-138 

GFP (pIAA32/34-IAA32/34-GFP) to visualize their expression patterns and subcellular 139 

localization. Notably, both IAA32 and IAA34 were detected at the apical hook 140 

(Extended data Fig. 7a-c) in a spatial and temporal pattern similar to both auxin 141 

distribution and TMK1 cleavage. IAA32/34 also showed a subcellular localization 142 



pattern overlapping with TMK1C in the cytosol and nucleus (Extended data Fig. 7d). 143 

To address the function of IAA32/34 in apical hook development, we generated iaa32 144 

and iaa34 mutants using CRISPR-Cas9 technology (Extended data Fig. 8a-b). 145 

Although the single knockout mutants did not show obvious phenotype (data not 146 

shown), the iaa32iaa34 double mutant exhibited a similar apical hook maintenance 147 

defect as seen in tmk1, which was complemented by the genomic fragment of IAA32/34 148 

fused with GFP, confirming the redundant function of IAA32/34 in regulating apical 149 

hook maintenance (Fig. 3a-b, Extended data Fig. 8c). Accordingly, IAA32/34 were also 150 

required for growth inhibition at the concave side of the apical hook (Extended data Fig. 151 

8d-e). 152 

 153 

The interaction of TMK1C with the Aux/IAA transcriptional regulators suggests that 154 

this pathway regulates gene transcription. Therefore, we compared the apical hook 155 

transcriptome in tmk1 and iaa32iaa34 mutants to the wild-type. The majority of genes 156 

were upregulated in both tmk1 and iaa32iaa34 mutants (Fig. 3c-d). Notably, 69.4% 157 

(186/268) of upregulated genes and 56.0% (47/84) of downregulated genes in 158 

iaa32iaa34 overlapped with those in tmk1 (Fig. 3d) and about half of those co-regulated 159 

genes contained auxin response elements (AuxRE)26 (Extended data Fig. 9a). The co-160 

regulated genes were mainly related to auxin responses such as SAUR family genes, or 161 

light signalling that was related to apical hook opening27 (Fig. 3e). Furthermore, 162 

IAA32/34 interacted with a subset of ARF transcription factors (Extended data Fig. 9b) 163 



and could suppress the activity of both ARF2 and ARF7 28 (Extended data Fig. 9c-d). 164 

This further confirms that the TMK1C-interacting IAA32/34 repressors regulate gene 165 

transcription through regulation of ARF activity.   166 

 167 

Canonical Aux/IAAs are targeted by TIR1, which ultimately leads to their proteasome-168 

dependent degradation29. IAA32/34 are targeted by TMK1C but not TIR1, suggesting 169 

a distinct regulatory mechanism. When we treated 35S-IAA32/34-GFP seedlings with 170 

auxin, in contrast to auxin-mediated degradation of canonical Aux/IAAs, auxin 171 

promoted accumulation of IAA32/34 proteins over time (Fig. 4a-b, Extended data Fig. 172 

10a-b). In the tmk1-2 mutant, IAA32/34 protein amount strongly decreased, and auxin 173 

was entirely ineffective in promoting the IAA32/34 accumulation (Fig. 4a-b, Extended 174 

data Fig. 10a-b). We also found that as with TMK1 cleavage, PEO-IAA did not affect 175 

auxin-mediated IAA32/34 protein accumulation, consistent with IAA32/34 not being a 176 

target of TIR1 (Extended data Fig. 10c). This suggests that auxin stabilizes IAA32/34 177 

proteins via TMK1 - a regulatory mechanism opposite to the classic TIR1-dependent 178 

mechanism. Nevertheless, the TIR1 pathway regulated the IAA32/34 transcription 179 

(Extended data Fig. 10d). These observations imply that TMK1- and TIR1-based 180 

mechanisms regulate IAA32/34 at different levels, coordinately leading to asymmetric 181 

accumulation of IAA32/34 proteins that regulate gene expression and inhibit growth at 182 

the concave side of the apical hook. 183 

 184 



Furthermore, co-expression of TMK1C with IAA32/34 in protoplasts dramatically 185 

promoted IAA32/34 proteins accumulation. Treatment with CHX (cycloheximide; a 186 

protein synthesis inhibitor) revealed that IAA32/34 were unstable proteins that could 187 

be stabilized by TMK1C (Fig. 4c, Extended data Fig. 10e-f). Because TMK1C 188 

contained the kinase domain, we used a mutated TMK1C variant (K616E; inactive 189 

kinase) and showed that the kinase activity was essential for IAA32/34 protein 190 

stabilization (Fig. 4d, Extended data Fig. 10g). Consistently, the TMK1 promoter-191 

driven TMK1-K616E could not rescue the apical hook phenotype and the IAA32/34 192 

proteins stability in tmk1 mutant (Fig. 4e, Extended data Fig. 10h-j), which suggested 193 

that TMK1C acts via phosphorylation. Indeed, using an in vitro kinase assay, we 194 

detected the direct phosphorylation of IAA32/34 proteins by TMK1C (Fig. 4f). Taken 195 

together, these data suggest that TMK1C phosphorylates IAA32/34 via its kinase 196 

activity to increase IAA32/34 protein stability.  197 

 198 

Our observations uncover a novel, cell surface-originating transcriptional auxin 199 

signalling pathway, by which local auxin accumulations modulate asymmetric growth 200 

during apical hook development through regulation of transcription (Fig. 4g). Given 201 

the complex developmental defects of multiple tmk mutants and a battery of the 202 

identified potential TMK1C interactors, it would also be worthwhile to understand the 203 

full repertoire of the developmental processes beyond the apical hook controlled by this 204 

novel auxin signalling pathway.  205 



Figure 1. Auxin-mediated TMK1 cleavage during apical hook maintenance. 206 

a, Apical hook images in Col-0, tmk1-1 and gTMK1-flag;tmk1-1 lines (4/6 T3 207 

independent lines) at the maintenance phase (45 hours after germination, refer to the 208 

time course analysis in Extended Data Fig. 1h). b, Quantification of apical hook 209 

curvature at the corresponding time points. n=15, data are mean ± s.e.m. c, Cell 210 

elongation in the hook at the same phase (45 h). d, Quantification of cell length. Col-0 211 

(n=15), tmk1-1 (n=15), gTMK1-flag;tmk1-1 (n=17); x, cell numbers; two-sided t-test; 212 

data are mean ± s.e.m.. e, Immunolocalization of TMK1 protein in the apical hook (left). 213 

Magnification of both concave and convex side (right), arrowheads indicate the nucleus. 214 

Green indicates TMK1 localization, red indicates DAPI. f, Quantification of relative 215 

nuclear signal intensity of TMK1. n=8; x, cell numbers; two-sided t-test; data are mean 216 

± s.e.m.. g, Western blot of TMK1 proteins at different apical hook stages in wild-type 217 

and wei8-3tar2-1. h, Western blot of TMK1 proteins treated with different 218 

concentrations of auxin. Arrow heads in g and h indicate the cleaved TMK1. Three 219 

biological repeats for g and h. (n denotes the number of biologically independent 220 

seedlings; dots show data distribution; Scale bars, 500 µm (a), 50 µm (c), 20 µm (e left), 221 

10 µm (e right)) 222 

223 



Figure 2. TMK1C specifically interacts with IAA32 and IAA34. 224 

a, Yeast two-hybrid assay of C-terminus of TMK proteins and IAA32/34. 30 mM 3-AT 225 

inhibits TMK4C auto-activation in yeast. Three biological repeats. b, Sequence 226 

alignment of domain II in Aux/IAAs. T-coffee program. c, Pull-down assay between 227 

plant-extracted TIR1-myc and E. coli-purified 6His-MBP-IAA recombinant proteins 228 

with or without auxin (10 µM IAA). Three biological repeats. 229 

  230 



Figure 3. IAA32 and IAA34 regulate apical hook maintenance like TMK1.   231 

a, Apical hooks phenotype in Col-0, iaa32iaa34, gIAA32-GFP;iaa32iaa34 (2 T3 lines) 232 

and gIAA34-GFP;iaa32iaa34 (2 T3 lines) as described in Fig. 1a (refer to the time 233 

course analysis in Extended Data Fig. 8c). Scale bars, 50µm. b, Quantification of apical 234 

hook curvature at corresponding time points. n=25 biologically independent seedlings; 235 

data are mean ± s.e.m.. c, RNAseq analysis in the apical hook of tmk1 and iaa32iaa34 236 

mutant compared to Col-0. Hierarchical clustering analysis of TMK1 and IAA32/34 237 

target genes. d, Overlap of TMK1-regulated and IAA32/34-regulated genes. Venn 238 

diagrams. e, GO analysis of commonly upregulated genes in tmk1 and iaa32iaa34 239 

mutant.  240 

  241 



Figure 4. An auxin - TMK1 - IAA32/IAA34 relay for apical hook maintenance. 242 

a, Western blot analysis of etiolated 35S-IAA34-GFP in either wild-type or tmk1 treated 243 

with auxin for indicated time points. b, Quantification of relative IAA protein levels in 244 

auxin treatment, n=3 biological repeats, data are mean ± s.e.m.. c, The protein stability 245 

of IAA34 with or without co-expression of 35S-TMK1C-HA. CHX treatment for 246 

indicated time periods. 35S-sGFP as control. Three biological repeats. d, The protein 247 

stability of IAA34 co-expressed with TMK1C or TMK1C K616E mutant in protoplast 248 

with or without CHX treatment for 40 minutes. Three biological repeats. e, Confocal 249 

microscopy of IAA34-GFP protein in apical hook of tmk1 mutant with pTMK1:TMK1-250 

flag or pTMK1:TMK1K616E-flag. Scale bars, 50 µm; three biological repeats. f, In vitro 251 

kinase assays of TMK1C on IAA32/34 proteins. Two biological repeats. g, Proposed 252 

model of auxin-TMK1-IAA32/34 signalling in apical hook development. A comparison 253 

to TIR1-dependent pathway is shown. 254 
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