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Materials and Methods 

Subject and surgeries 
Four male long-Evans rats (3 5 months old, 300 400 g at implantation, housed and food deprived 
as described previously (26) were implanted with 16 independently movable tetrodes under deep 
anesthesia using isoflurane (0.5% 3%), oxygen (1 2 l/min), and an initial dose of buprenorphine 5 
(0.1 mg/kg). Our tetrodes were arranged in a drive with two bundles: one targeting the CA1 region 
of the hippocampus and the other the medial entorhinal cortex (MEC). All procedures involving 
experimental animals were carried out in accordance with Austrian animal law (Austrian federal 
Law for experiments with live animals) under a project license approved by the Austrian Federal 
Science Ministry.10 

Each tetrode consisted of four 12 µm tungsten wires twisted together with their tip gold plated to 
reduce electrode impedance to 200  Surgical implantations of electrodes were conducted 
following procedures previously described (26). In brief, MEC and CA1 bundles consisted of 8 
tetrodes each. MEC bundles were positioned on the medio-lateral (ML) axis at [4.0 mm to 5.7 mm] 
lateral to the midline and, on the antero-posterior (AP) axis, [-7.4 mm to -8.8 mm] posterior to 15 
bregma. CA1 coordinates were ML [2.7 mm to 3.7 mm] and AP      [-2.7 mm to -3.7 mm].
Electrodes were implanted 0.9 mm below dura at a 10-degree angle, relative to the skull. 

Data acquisition
General data acquisition procedures have been described previously (26). In brief, after a recovery 
period of 1 week, tetrodes were progressively lower in maximum steps of 200 µm per day until 20 
reaching CA1 pyramidal layer and MEC superficial layers while the animals were trained on the 
cheeseboard maze (see behavioral training procedures below).

Apparatus
The cheeseboard maze is similar to what has been described previously (15). It consisted of a PVC 
circular board (120 cm in diameter, 2 cm in thickness) with a total of 177 food wells (2.5 cm in 25 
diameter, 1.5 cm in depth) drilled into the surface of the maze in evenly spaced parallel rows and 
columns (8 cm between the centers of each well). A PVC grey start-box (27 cm long, 19 cm wide 
and 59 cm high) was equipped with a door (35 cm high and placed along the edge of the board 
perpendicular to the rows of food wells. The top of the box was open to allow tracking the animal 
inside. A small glass-made cup (2.5 cm in diameter) was placed inside the start-box. 30 

Three out of four animals were also trained on a familiar open field (OF) arena very similar to the 
cheeseboard maze and, in most sessions, consisting of a plain circular environment of the same 
diameter and the same material, without food wells drilled in it. In two sessions, we used a 
rectangular environment. The same start box was used for both environments.

All environments were surrounded by black curtains and polarized by a 30 cm wide white cue card 35 
attached to the curtain.

Training procedures
Training procedures were similar to what has been described previously (15). In brief, rats were 
pre-handled before surgical procedures. Following the postoperative recovery period, they were 
food-deprived so that their weight was reduced and maintained at 85% of their age-matched 40 
preoperative weight. They were first habituated to retrieve pellets in the open field while electrodes 
were lowered to the region of interest. Once coverage of the open field was satisfactory, animals 
were trained to retrieve hidden pellets on the cheeseboard. First, the rat was allowed to freely 
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explore the whole cheeseboard for at least 30 min for 3 days. Then, the rat was trained to chase for 
food-rewards and come back to the start-box. Three groups of visible food pellets (MLab rodent 
tablet 45 mg, TestDiet) were spread out on the surface of the cheeseboard maze while the rat was 
inside the start box. For each trial, the door was temporarily opened, the animal was allowed to 
exit the box and retrieve all the rewards while another additional reward was placed in the glass-5 
made cup situated within the start-box. Once all the rewards had been collected, the door was re-
opened, and the rat was gently conducted back to the start box to find and consume the additional 
food reward within the start box. That procedure was repeated until the rat started to return back 
consistently on its own after having collected all the rewards within the board (~3 4 days). A 
similar procedure was applied over the following days, this time with three hidden rewards (i.e., 10 
one food pellet per baited location) within the cheeseboard maze (~2 3 days). The same baited 
locations were used from one day to the other.

To prevent the use of an odor-guided search strategy during these experiments, food pellet dust 
was scattered across the maze before each experiment, the board was periodically wiped (using 
the towel used to handle the rat daily) and the board was rotated relative to the start-box between 15 
learning trials and between rest and probe sessions. This initial phase of the experiment ended 
when the rat was familiar with the whole procedure.

Behavioral paradigm: cheeseboard spatial memory test
The animals were housed in a separate holding room and were taken to the recording room each 
day prior to the experiments. Each daily experiment consisted of a sequence of five recording 20 

- -
- -

15~20 min) were never rewarded. After both the pre-probe and the 
learning sessions, rats were allowed to settle down within the start box for the rest sessions (~25 
min). During the learning session, rats were given successive trials (~40 trials) to find the three 25 
hidden rewards placed in randomly selected food wells.

Three out of four animals were also exposed daily to a familiar open field (OF) arena. In that case 
the rat was let free to explore (15~20 min) the familiar open field environment before the beginning 
or after the end of the above described experimental procedure. Pellet dust and pellet crumbs were 
scattered on the disk.30 

In all, 13 sequences of probe rest learning rest probe in four animals were analyzed, with a total 
of 490 CA1 pyramidal cells and 262 MEC principal cells. 9 out of 13 sessions (3 rats) also had the 
OF exploration before the pre-probe or after the post-probe exploration, with a total of 370 CA1 
pyramidal cells and 209 MEC principal cells.

DATA ANALYSIS 35 
Spike sorting
The spike detection in the local field potential and sorting was performed as previously described 
(27). Action potentials were extracted by first computing power in the 800 9000 Hz range within 
a in a sliding window (12.8 ms). Action potentials with a power of >5 SD from the baseline mean 
were selected and spike features were then extracted by using principal components analyses. The 40 
detected action potentials were then segregated into putative multiple single units by using the 
Klustakwik automatic clustering software (28) (http://klustakwik.sourceforge.net/). These clusters 
were then manually refined by a graphical cluster cutting program (27). Only units with clear 
refractory periods in their autocorrelation and well-defined cluster boundaries were used for 
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further analysis. We further confirmed the quality of cluster separation by calculating the 
Mahalanobis distance (28) between each pair of clusters. Periods of waking spatial exploration, 
immobility, and sleep were clustered together and the stability of the isolated clusters was 
examined by visual inspection of the extracted features of the clusters over time. Pyramidal cells 
and interneurons in the CA1 region were discriminated by their autocorrelations, firing rate 5 
(average 0.1~5 Hz) and waveforms, as previously described. Putative MEC principal cells were 
identified by their firing rate: they had to keep a stable average firing over the entire recording day 
between 0.1 and 7 Hz. In this way we were able to identify the activity of 262 putative excitatory 
MEC neurons (209 with OF), as well as 490 CA1 pyramidal units (370 with OF).

Histology and reconstruction of recording positions10 
Electrodes were not moved after the final recording session. The rats were killed with an overdose 
of pentobarbital and were transcardially perfused with 0.9% saline (wt/vol) followed by 4% 
formaldehyde (wt/vol). The brains were extracted and stored in 4% formaldehyde. At least 24 h 

stained with cresyl violet (Nissl). Every section in the area of the tetrode trace was retained. The 15 
positions of the tips of the recording electrodes were determined from digital pictures of the brain 
sections. The laminar locations of the recording electrodes in MEC and CA1 were determined on 
the basis of cytoarchitectonic criteria (29), as well local field potential sharp-wave response during 
rest (30).

Behavioral performance20 

25 

Occupancy maps30 
Position estimates were based on tracking the middle positions between LEDs on the head stage. 
The x y plane of the cheeseboard was divided into bins of 3 cm × 3 cm and occupancy-maps were 
calculated during exploratory epochs (speed >3 cm/s) measuring the amount of time spent in each 
spatial bin by the animal, based on the tracking data. The number of periods ( = 25.6ms) spent in 
each bin were counted using a Triweight Kernel (31) with a bandwidth of  = 3cms and centered 35 
at the center of each spatial bin : 

where 

40 

Spatial firing rate maps
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The x y plane of the cheeseboard was divided into bins of 3 cm × 3 cm and rate-maps were 
calculated during exploratory epochs (speed >3 cm/s) by dividing the number of spikes recorded 
in each bin by the occupancy and then smoothed with a Gaussian filter with a standard deviation 
(SD) of two bins. Bins with less than 250 ms occupancy time were not considered. The number of 
spikes in each bin were counted using a Triweight Kernel with a bandwidth of 3 cm. The peak rate 5 
was defined as the rate in the bin with the highest rate in the firing rate map. Normalized firing 
rate maps were the original firing rate maps divided by the peak firing rate (unless otherwise 
specified). Z-score normalized maps were the original firing rate maps to which the mean firing 
rate was subtracted and divided by the map SD.

Sparsity measure and spatially selective cells labelling10 
Sparsity measure represents the proportion of the environment in which a cell fires, corrected for 
occupancy time. It is formally defined as 

where  is the probability of the rat occupying bin i and  is the firing rate in bin i. Hippocampal 
place cells were screened for their spatial tuning using a sparsity value of no more than 0.3, 15 
whereas entorhinal spatially modulated cells were selected using a sparsity threshold of 0.6. This 
discrepancy is due to the fact that entorhinal cells usually present multi-field firing patterns, giving 
rise to a higher sparsity score even when spatially modulated.

Shuffling procedure for cell labelling
To keep the firing structure of each cell while disrupting the link between firing and spatial position 20 
we used a spike list wrapping shuffling procedure (32). In brief, considering a spike train with time 
span [0, END], a random time between 20 sec and END -20 sec was picked and added to all the 
spiking times. The spiking times which resulted above END were brought to the beginning by 

was repeated 200 times for each cell in each environment independently.25 

Spatial autocorrelograms
The autocorrelogram represents the map of shifted self-coherence and was calculated as in (32).
For any regularly spaced grid of gaussian bumps one expects to obtain again the same regular grid 
as autocorrelogram, because the coherence will be high when the shift lets the peaks overlap again.

Grid score30 
The grid score represents the amount of rotational coherence of a certain map. It was calculated 
similarly to (33): From a spatial rate autocorrelogram whose center was excluded, we considered 
the Pearson correlation of the autocorrelogram rotated by 30, 60, 90, 120 and 150 degrees (±3 
degrees offsets). Only bins closer to the center than a radius s were considered. The grid score 
using this particular radius s, was defined as the difference between the average of the maximum 35 
correlations around 60 and 120 degrees (±3 degrees offsets) and the average of the minimum 
correlations around 30, 90 and 150 degrees (±3 degrees offsets). Eventually, the final grid score of 
the cell was defined as the maximum grid score over values of s ranging from twenty to forty bins, 
computed at intervals of one bin width. A small amount of ellipticity (among the axes ratios 1, 1.1 
and 1.2) was also allowed in order to correct for possible deformations in the grid structure (33).40 

Grid cells labelling



21

A cell was labelled as grid cell only when its grid score was higher than the 95th percentile of the 
distribution of scores coming from a spike list wrapping-shuffling procedure (see above). The 
threshold was calculated separately for each cell in each single environment. The cells were 
classified as grid cells based on their score in the open field familiar and stable environment (3 out 
of 4 animals). The scores in pre-probe were used only when the open field data was not present (1 5 
out of 4 animals). With this procedure a total of 56 cells were identified.

Head-direction modulation 

10 

Accumulation of firing at goal locations 

15 

20 

Downsampling procedure
To verify that the observed effects were not due to the fact that the rat spent more time close to 
goal locations in post-probe, we used a random downsampling procedure.

Each cell was associated with a list (position_t, spike_t), where position_t represents the (x,y)25 
coordinate of the animal at a particular time point and spike_t the number of spikes the cell emitted 
in that particular time bin. Each point was then associated to its own spatial bin in a map with 10 
x 10 spatial bins (15 cm size).

To correct for uneven sampling between pre and post-probe, we randomly sampled while allowing 
repetitions, for each map, a number of events corresponding to the minimum occupancy of the 30 
two. Using the downsampled data, we calculated new rate maps using the same procedures as 
described above. This was repeated 200 times for each cell. 

Linear nonlinear model and Poisson simulations
To assure that the change observed in the rate maps were not due to behavioral differences, we 35 
used a linear nonlinear (LN) model for the entorhinal cells that takes into consideration position, 
heading and speed of the animal. The model has been used for entorhinal cells by (16) and is 
described there in detail. In brief, this model has been used to quantify the dependence of spiking 
on a combination of variables (position, heading and speed): it allows to estimate the firing rate of 
a cell during a time bin as an exponential function of the sum of the relevant value of each variable 40 
projected onto a corresponding set of parameters. Once the LN model was fitted to the data 
observed in pre-probe, the expected firing rate were computed based on the behavior of post-probe. 
Using the instantaneous expected firing rate, we simulated the firing of a cell in post-probe as a 
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non-homogeneous Poisson process (31). This procedure was repeated 200 times for each cell and 
is referred through the text as linear-nonlinear Poisson spiking (LNP) model.

Firing-by-vicinity score 

5 

10 

Firing field detection
It has been recently shown that firing fields of grid cells present different firing intensities, so a 
thresholding procedure is not suitable to detect grid fields (31). To detect grid fields independently 
of their firing intensities, we employed a Laplacian-of-Gaussian (LoG) filter blob detection 15 
algorithm (31). This algorithm consists of convolving the image with a LoG kernel. The Laplacian 
filter measures the local curvature of a surface and is defined as the sum of the unmixed second 
derivatives of a (possibly multidimensional) real function and can be thought in 2D as a measure 
of local curvature of a surface. The convolved image emphasizes areas of high curvature of a 
gaussian-smoothed version of the image and will have negative peaks where the peaks of the fields 20 
are (fig. S7). The gaussian kernel, used before the Laplacian filter, had the standard deviation of a 
gaussian bell fit on the central peak of the autocorrelogram. This measure was also used as the 
average dimension of the fields of a map. The detected peaks were then filtered using the following 
criteria:

Intensity: the intensity had to be higher than the 75th percentile of the distribution of 25 
intensities of the map. 

Overlap: if two fields overlapped, only the one with the strongest intensity was considered. 

all the fields detected less than 10 cm from the border were discarded. 

30 

Firing fields matching
To study the movement of individual grid fields between pre and post-probe, we paired them based 
on their spatial overlap and distance between centers. Once the fields were detected in pre- and 
post-probe, the pairing worked as follows:

We calculated the distance of each field in pre-probe to each field in prost-probe. 35 

Fields were matched starting from the pair with the biggest overlap (smallest distance). 
Once matched they were then excluded. 

The fields were paired up until reaching a maximum distance of 20 cm. 

The threshold of 20 cm is given by the fact that the average spacing between fields in our dataset 
was 35 cm and the average field size was about 15 cm.40 
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Significant movement towards a goal 

5 

10 

15 

Attraction strength
In order to quantify the movement of the fields towards the goal locations, we measured the relative 
movement of each field and weighted it by a directionality score. 

If we denote with d_pre the distance of the field from a goal in pre-probe and d_post the same in 
post probe, the attraction strength was defined as:20 

att = (d_pre ost) / (d_pre + d_post) * | cos (theta) |

where theta is the angle between the vector of movement and the vector pointing from the field to 
the goal location.

Inferred attraction strength
To verify the hypothesis that attraction is stronger on fields located close to goals, we used an 25 
algorithm that tests for the best fit between pre- and post-probe when moving the firing fields 
towards a goal location. For each pre-probe map, we detected the firing fields and then moved 
them towards one (or more) goal location(s). Each field was free to move towards any goal (or 
combination of goals) by any percentage of the distance that separated it from the goal it was 
moving towards. We then measured the correlation between the post probe map and the modified 30 
pre-probe maps, using any combination of movements towards any of the wells, and selected the 
one that correlated best. The inferred attraction for each field was the percentage of movement of 
the map that fitted best the post-probe map, and we scatter-plotted it against the distance of the 
fields in pre-probe in order to carry out a correlation test.

Field deformation, size and spacing35 
To check whether the fields were more deformed on the cheeseboard, we fitted a (diagonal) 2D 
gaussian bell on each field detected in the open field, in pre- and post-probe; and computed a 
deformation score. The score was computed as the absolute value of the difference of the two 
standard deviations divided by the sum of the two. As such we had a score ranging from 0 to 1, 
where 0 means perfectly round and 1 means perfectly flat. The mean size of the fields was 40 
computed as the standard deviation of a perfectly symmetric 2D gaussian bell fitted on the central 
blob of the autocorrelogram, whereas the mean spacing between fields (i.e. grid scale) as the 
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distance between the central blob and the one outside the center with the highest intensity of the 
autocorrelogram. 

Grid score degradation 

5 

Rate remapping 
10 

15 

Correlation with behavioral performance 

20 

Population vector
The population vector represents the simultaneous average activity of all the selected cells in a 
particular spatial bin, computed in a certain experimental session. In brief, all the spatial rate maps 
of the cells considered (here: CA1 place cells or MEC spatially selective cells) in a given session 
were stacked along the z-25 
vector for that particular (x,y) set of coordinates (18).  

Population vector similarity against distance from goals 
To analyze the dependence of population vector similarity on the distance from the goals, the 
spatial rate maps were z-scored and then stacked along the z-axis for pre and post-probe as 
described above. For each spatial bin (with an occupancy of at least 250 ms in both pre- and post-30 
probe), the Pearson correlation between the two firing rate vectors was calculated and then scatter 
plotted against the distance from the goal location. We then tested whether the firing rate similarity 
was positively correlated with the distance from the closest goal using both a one-sided (positive) 
correlation analysis, as well as with a Spearman correlation analysis. 

Flickering35 
To test the effectiveness of learning from a population point of view, we compared the 
instantaneous firing during learning with the average activity that we observed in pre- and post-
probe. The activity of each cell of the selected ensemble (CA1 pyramidal or MEC principal cells)
was binned into 125 ms windows and smoothed with a 1D gaussian filter with 250 ms SD. Each 
time-window overlapped 100 ms with the previous. We then measured the correlation between the 40 
instantaneous population activity in each time-window during learning with the population vector 
activity of pre- and post-probes. In this way, we obtained two time series expressing the similarity 
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of the instantaneous population activity with the representation observed during pre- and post-
probes. W -transform of the correlation coefficients and took their 
difference. We next compared the distribution of the z-scores against the scores coming from a 
cell-ID shuffling procedure, and then verified whether the two distributions were significantly 
different using a Kolmogorov-Smirnov test. Finally, we used a binomial test to check whether the 5 
number of scores outside the 95th percentile threshold (1.645) was higher than chance. This 
procedure was executed only on sessions that had at least 10 CA1 and 10 MEC units (10 out of 13 
sessions). 

Average flickering during learning trials 
10 
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Fig. S1. Histological verification of electrode positioning. Nissl-stained sagittal sections 
showing the medial entorhinal cortex and the CA1 region of the hippocampus with electrode tracks 
(red arrows) terminating respectively in the superficial layers (II/III) and in the pyramidal cell 
layer. Inserts show the entire region and the location of the delineation of the magnified regions 5 
(red boxes). (A) animal 1, (B) animal 2, (C) animal 3, (D) animal 4. The vast majority of the 
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entorhinal cells were recorded in the superficial layers (II/III). A minority of cells were recorded 
in LV (animal 3, one tetrode). 
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Fig. S2. Additional examples of grid cell spatial maps during pre-probe, learning and post-
probe. Spatial maps of five example MEC cells showing the accumulation of activity around goal 
location after learning. For each cell there are three panels of maps from top to bottom. Top panels 5 
show the firing rate maps, scale on the left of the raw and peak firing rate (Hz) in the upper right 
corner of each map. Middle panels represent the path of the animal (grey) with colored dots (blue: 
pre-probe; orange; learning; red: post-probe) representing the spikes of the cells. Bottom panels 
show the spatial autocorrelograms, scale is on the left of the raw going from -1 to +1. Purple areas 
on the right are divided in two panels: the upper panels show the differential heat rate maps with 10 
scale bar on the right and pre-(blue); the lower panels show the spike overlays of pre-probe (blue) 
and post-probe (red). The red circles highlight goals pulling strong attraction. 
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Fig. S3. Distribution of movement relative to goal among all spatial cells recorded.
(A) Distribution of grid cells according to the significant movement of their grid fields relative to 

5 
detected moving fields significantly moved closer to goals (6
fields presented a mixed behavior with some moving towards the goal and some not (20%), thus 
89 % grid cell show goal-
detected fields significantly 
fields moved significantly (4%). (B) Same as (A) but for entorhinal spatial cells. In the same order 10 
as above: 60%, 24%, 6%, 10%. (C) Same as (A) but for hippocampal place cells. In the same order
as above: 64%, 15%, 10%, 11%. (D) Same as (A) but with significance calculated against LNP
data. In the same order as above: 66%, 20%, 5%, 5%. (E) Same as (B) but with significance 
calculated against LNP data. In the same order as above: 68%, 18%, 3%, 11%. (F) Same as (C) 
but with significance calculated against LNP data. In the same order as above: 63%, 15%, 10%, 15 
12%. 
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Fig. S4. Influence of head-direction (HD) modulation on field movement. (A) Conjunctive 
grid-by-head-direction cell proportions at goals pre-learning (blue) and post-learning (red). 

0.3, N=10. Binomial test: P=0.0127, N=10. As in fig. 1. Note that the non-5 
B) As 

in (A) for non-
0.0001. (C) Proportions of conjunctive grid-by-head-

fields present a mixed behavior with some moving towards the goal and some not (10%). Middle 10 

none of the detected fields move significantly (10%). Significance calculated against 
downsampled data. (D) As in (C) for non-
17%, 4%, 2%. 

15 



31

Fig. S5. Comparative dynamics of goal-encoding emergence during learning. (A) Proportions 
of grid cells with strongest firing at goals across learning-blocks. Spearman correlation, r=0.928, 
P=0.0025. (B) Same as (A) for entorhinal spatial cells, r=0.835, P=0.0193. (C) Same as (A) for 
hippocampal place cells, r=0.53, P=0.2193, first 4 blocks: r=0.99, P<0.00001. Orange shadows: 5 
standard-errors. The analyses used in fig. S1G (right) and S5A C are based on the selection of the 
strongest firing fields (top 20% strongest firing bins) moving from outside to inside goal locations. 
Yet, it did not include the firing fields with low firing rate or movement occurring outside or within 
goal locations. Thus, we computed a firing-by-vicinity score where we summed the firing field 
rates of cells near goals by multiplying the firing rate with three 2D kernel functions centered at 10 
the goal locations, see fig S1G (left) and S5D-G. (D) Evolution of firing-by-vicinity score in grid 
cells across behavioral paradigm. Left: average in pre-probe (blue bar +/  SEM). Middle: scores 
per sliding windows of seven trials (orange). Right: average in post-probe (red bar +/  SEM). 
Dashed line: level measured at the end of learning. Mann-Withney U test, pre- vs. post-probe: P< 
0.001. Regression test, trials 1 15: P > 0.98, trials 16 30: P < 0.0001. (E) Same as (D) for 15 
entorhinal spatial cells. Mann-Withney U test, pre- vs. post-probe: P< 0.001. Regression test, trials 
1 15: P > 0.9, trials 16 30: P < 0.001. (F) Same as (D) for hippocampal place cells. Mann-Withney 
U test, pre- vs. post-probe: P< 0.001. Regression test, trials 1 15: P < 0.0001, trials 16 30: P > 
0.81. (G) Comparison of firing-by-vicinity score (after baseline subtraction) across learning (seven 
trials sliding windows): CA1 place cells (brown), MEC spatial cells (dark green), MEC grid cells 20 
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(light green). (H) Average distribution of time (top) and area (bottom) per learning block (as 
presented in fig. S5A C).

Fig. S6. Longer-lasting map deformation in the MEC compared to CA1. (A) Proportion of 5 
grid cells around goal locations from previous day 

-probe, old vs. new wells: 
P=0.01756, N=43. Dashed bars show control data obtained with downsampled data following the 
same color code: light blue (before learning, old goal locations); bright blue (before learning, new 10 

act tests: pre-probe, old 
vs. new wells: P<0.00001, N=4300. (B
tests: pre-probe, old vs. new wells: P=0.0047, N=122; pre-probe, old vs. new wells downsampled: 
P<0.00001, N=12200. (C) Same as (A) -
probe, old vs. new wells: P=0.432, N=183; pre-probe, old vs. new wells downsampled: P=0.07823, 15 
N=18300. 
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Fig. S7. Laplacian of Gaussian (LoG) based field detection and field-to-goal movement. A
D: Schematic of the field detection algorithm. (A) Example grid cell with uneven field rate. Up: 
rate map with peak rate in black. Bottom: spatial autocorrelogram with peak correlation in red. (B)
LoG kernel to convolve the image. (C) Up: same rate map as in (A) convolved with the LoG 5 
kernel, where  has been estimated as the standard deviation of a symmetric Gaussian bell fitted 
on the central peak of the autocorrelogram. Red dots: detected local minima (minimum distance 
of 5 bins). Bottom: Corresponding autocorrelogram of the convolved rate map. (D) Up: convolved 
rate map with the filtered field centers (fields too close to each other, with too low intensity or too 
close to the border were excluded). Bottom: original rate map with circles on top of the detected 10 
fields. E G: Proportions of spatial fields moving towards goals (left), not moving (middle) or 
away from goals (right) for grid cells (E), spatial MEC cells (F) and place cells (G). Left bars 
stratification represents proportions moving towards closest (1st), second closest (2nd) or furthest 
(3rd) goal. H J: Proportion of cells with fields presenting none (0 goal, left) or significant 
movement towards one (middle left), two (middle right) or three goals (right) between pre- and 15 
post-learning for grid (H), spatial MEC (I) and place cells (J). Note that for this analysis, one field 
may be attracted to several goals. K M: Proportion of cells whose individual fields showed 
strongest attraction towards one, two or three goals for grid cells (K) and spatial MEC cells (L). 
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Note that for this analysis, each individual field could only be attracted to one goal. Given that the 
vast majority of place cells presented only one field, this analysis was not performed for them. 

Fig. S8. Comparison grid properties across open field, pre- and post-probe. (A) Mean field 
radius across environments; one-way ANOVA, P=0.38638. (B) Mean grid spacing across 5 
environments; one-way ANOVA, P=0.12. (C) Mean field distortion-score across environments; 
one-way ANOVA, P=0.31242429. (D) Mean number of fields per grid across environments; one-
way ANOVA, P=0.59.
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Fig. S9 Attraction score and influence of various factors on attraction pulled by each reward 
well. (A) Schematic illustrating attraction score computation (see methods for details). Grid fields 
mean attraction strength to wells ordered by: (B) attraction strength, (C) time spent at the well 
during post-probe, (D) distance of the well to the start box, (E) time to reach a well during learning, 5 
(F) place in the sequence of learning and (G) time spent at the well during learning. First ordered 
well is dark purple (right bar), second well medium purple (middle bar) and third well light purple 
(left bar). Significance given by one-way ANOVA, B: P<0.00001 (***), P=0.0363. C: P=0.036 
(*), D: P=0.225 (NS: Non-significant), E: P=0.301 (NS), F: P=0.124 (NS), G: P=0.119 (NS). 
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Fig. S10 Rate remapping absence of influence on goal remapping. Rate remapping scores were 
computed for each firing field independently as the difference of firing rate in post- and pre-probe 
divided by the sum. (A) Rate remapping scores between pre- and post-probe in real data (purple 
bars) or in LNP post-probe maps (blank bars) generated using post-probe behavior and LNP 5 
spiking model based on pre-probe activity. Note a significant positive tail showing rate remapping 
for real data through an increase of rates in post-probe. Rank-sum test: P<0.0001, Levene test for 
Variance: P<0.0001. (B) Same as in (A) for [pre- vs. post-probe] real data (purple bars) compared 
to control [pre- vs. post-probe] downsampled data (blank bars). Note the absence of significant 
differences between the two distributions showing the independence of rate remapping from 10 
spatial sampling. Rank-sum test: P=0.87, Levene test: P=0.39, KS test: P=0.76. (C) Same as in 
(A) for [pre- vs. post-probe] real data (purple bars) compared to intrinsic variability in first vs. 
second half of pre-probe (blank bars). Note a significant positive tail showing positive rate 
remapping from pre- to post-probes, larger than the intrinsic rate variability within a session. Rank-
sum test: P<0.023, Levene test: P=0.0021. (D-H) Regression analyses showing the absence of 15 
correlation between rate remapping and various movement measures on a field-by-field basis. 
Regression analysis, all Ps>0.1. (D) Mean attraction score as a function of rate remapping score.
(E) Maximum attraction score as a function of rate remapping score. (F) Field movement as a 
function of rate remapping score over bins of 3 cm each. (G) Distance from well with strongest 
attraction as a function of rate remapping score. (H) Distance from well with strongest attraction 20 
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as a function of difference in peak firing rate. (I) Average coefficient of variation of firing field 
intensities across cells. one-way ANOVA, P>0.2. 

Fig. S11 CA1 goal attraction strength compared to MEC: absence of influence of goal 
distance and weaker correlation with memory retention. (A) Average strength of attraction 5 
calculated for fields within a diameter of 30 cm around goals for grid (light green), MEC spatial 
(dark green) and CA1 place (brown) fields. one-way ANOVA, P=0.3873. (B) Same as (A) but for 
average strongest attraction. one-way ANOVA, P=0.4357. (C) Scatter plot of CA1 attraction 
strength against pre-
significant difference found from zero (t-test on each 10 cm window: all Ps>0.05). (D) Running 10 
average of mean CA1 inferred attraction as a function of distance to closest goal was not 
significantly different. Spearman correlation analysis, r=0.0207, P=0.748; shadow: standard 
deviation. (E) Memory retention (time at goals) against normalized mean CA1 firing rate increase 
at goals during the first 5 mins in post-probe. One dot per session. Red line: regression analysis: 
r=0.66, P=0.015. (F) Same as (D) except that the normalized mean firing rate increase was 15 
calculated over 10 mins. Regression analysis: r=0.38, P=0.201. Note that the correlation presented 
on figure 3F for MEC showed the mean firing rate increase at goals during the first 10 minutes in 
post-probe. Entorhinal increase of activity at goals also significantly correlated with the 5 minutes 
memory retention test (data not shown). 
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Fig. S12 Population vector and flickering analyses: focus on goal areas. (A B) Schemas 
illustrating population-vector computation for grid cells (A) and place cells (B). (C) Population 
vector similarity in MEC. Left: first vs. second half of pre-probe (light green bar). Middle: pre-
probe vs. post-probe (green bar). Right: downsampled pre-probe vs. post-probe (blank bar); t-tests: 5 
P<0.00001 for all. (D) Population vector similarity in CA1. Left: first vs. second half of pre-probe 
(light brown bar). Middle: pre-probe vs. post-probe (brown bar). Right: downsampled pre-probe 
vs. post-probe (blank bar); t-tests: P<0.00001 for all. (E) Local population vector similarity in 
MEC restricted around or outside goal locations. Pre-probe vs. post-probe for grid cells inside (left 
yellow-green bars) and outside (right dark green bars) goal area; t-tests: P=0.00033. (F) Same as 10 
(E) for CA1 populations. Pre-probe vs. post-probe for place cells inside (left yellow bars) and 
outside (right dark brown bars) goal area; t-tests: P=0.2001. (G) Comparison of distributions of
MEC flickering z-scores in the entire environment and restricted to goal areas. KS test: P<0.0001. 
Rank-sum test: P<0.0001. (H) Same as (G) for CA1 populations. KS test: P<0.0001. Rank-sum 
test: P<0.0001. Note an increase flickering in goal areas. (I) Average of the z-scores values during 15 
learning per trial across sessions in MEC (green) and CA1 (brown). Shades represent SEM. Note 
scales are different for MEC and CA1. Regression test, trials 1-16: MEC: r=0.91, P<0.0001, CA1: 
r=0.98, P < 0.00001; trials 15-30: MEC: r=0.93, P<0.00001, CA1: r=0.19, P=0.46. (J) Same as in 
(I) but restricted around goal locations. Regression test, trials 1-16: MEC: r=0.79, P=0.002, CA1: 
r=0.95, P<0.00001; trials 15-30: MEC: r=0.97, P<0.00001, CA1: r=0.09, P=0.76. (K) Same data 20 
as in (I) and (J) but scaled to allow different comparison between CA1 and MEC. Note that: though 
the passage from positive to negative flickering may be informative, we believe one should focus 
on the latency to reach a plateau. 
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Fig. S13. Additional examples of z-scores regression slopes. Examples of progression of z-score 
difference of MEC (up) and CA1 (down) populations activity similarity to pre- and post-probe 5 
representations during two example days spanning (from left to right): pre-probe, learning and 
post-probe. Z-score difference more similar to pre-probe are represented by blue bars and to post-
probe by red bars. Yellow line: smoothed score progression; black dashed line: regression analysis. 
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Fig. S14. Example of z-scores regression slopes at goal location during learning. Example 
from fig. 4. Top: analyses performed on whole cheeseboard. Bottom: analyses restricted to goal 
locations only. 


