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Abstract
We consider the problem of expected cost analysis over non-
deterministic probabilistic programs, which aims at auto-
mated methods for analyzing the resource-usage of such pro-
grams. Previous approaches for this problem could only han-
dle nonnegative bounded costs. However, in many scenarios,
such as queuing networks or analysis of cryptocurrency pro-
tocols, both positive and negative costs are necessary and
the costs are unbounded as well.
In this work, we present a sound and efficient approach

to obtain polynomial bounds on the expected accumulated
cost of nondeterministic probabilistic programs. Our ap-
proach can handle (a) general positive and negative costs
with bounded updates in variables; and (b) nonnegative costs
with general updates to variables. We show that several nat-
ural examples which could not be handled by previous ap-
proaches are captured in our framework.
Moreover, our approach leads to an efficient polynomial-

time algorithm, while no previous approach for cost analysis
of probabilistic programs could guarantee polynomial run-
time. Finally, we show the effectiveness of our approach us-
ing experimental results on a variety of programs for which
we efficiently synthesize tight resource-usage bounds.

CCS Concepts • Theory of computation → Logic and
verification; Automated reasoning.

Keywords Program Cost Analysis, Program Termination,
Probabilistic Programs, Martingales

1 Introduction
In this work, we consider expected cost analysis of nonde-
terminisitic probabilistic programs, and present a sound and
efficient approach for a large class of such programs. We
∗A conference version of this paper appears in [97].
†Corresponding Author
‡Recipient of a DOC Fellowship of the Austrian Academy of Sciences (ÖAW)

start with the description of probabilistic programs and the
cost analysis problem, and then present our contributions.
Probabilistic programs. Extending classical imperative pro-
grams with randomization, i.e. generation of random values
according to a predefined probability distribution, leads to
the class of probabilistic programs [45]. Probabilistic pro-
grams are shown to be powerful models for a wide variety
of applications, such as analysis of stochastic network pro-
tocols [40, 65, 88], machine learning applications [26, 44,
81, 83], and robot planning [91, 92], to name a few. There
are also many probabilistic programming languages (such
as Church [42], Anglican [93] and WebPPL [43]) and auto-
mated analysis of such programs is an active research area
in formal methods and programming languages (see [1, 16,
18, 22, 37, 66, 67, 74, 96]).
Nondeterministic programs. Besides probability, another
important modeling concept in programming languages is
nondeterminism. A classic example is abstraction: for effi-
cient static analysis of large programs, it is often infeasible
to keep track of all variables. Abstraction ignores some vari-
ables and replaces them with worst-case behavior, which is
modeled by nondeterminism [32].
Termination and cost analysis. The most basic liveness
question for probabilistic programs is termination. The basic
qualitative questions for termination of probabilistic pro-
grams, such as, whether the program terminates with proba-
bility 1 or whether the expected termination time is bounded,
have been widely studied [18, 22, 66, 67]. However, in pro-
gram analysis, the more general quantitative task of obtain-
ing precise bounds on resource-usage is a challenging prob-
lem that is of significant interest for the following reasons:
(a) in applications such as hard real-time systems, guarantees
of worst-case behavior are required; and (b) the bounds are
useful in early detection of egregious performance problems
in large code bases. Works such as [48, 49, 53, 54] provide
excellent motivation for the study of automated methods to



obtain worst-case bounds for resource-usage of nonproba-
bilistic programs. The same motivation applies to the class
of probabilistic programs as well. Thus, the problem we con-
sider is as follows: given a probabilistic program with costs
associated to each execution step, compute bounds on its
expected accumulated cost until its termination. Note that
several probabilistic programming languages have observe
statements and conditioning operators for limiting the set
of valid executions. In this work, we do not consider condi-
tioning and instead focus on computing the expected accu-
mulated cost over all executions. See Remark 1.

Previous approaches.While there is a large body of work
for qualitative termination analysis problems (see Section 9
for details), the cost analysis problem has only been con-
sidered recently. The most relevant previous work for cost
analysis is that of Ngo, Carbonneaux and Hoffmann [74],
which considers the stepwise costs to be nonnegative and
bounded. While several interesting classes of programs sat-
isfy the above restrictions, there are many natural and im-
portant classes of examples that cannot be modeled in this
framework. For example, in the analysis of cryptocurrency
protocols, such as mining, there are both energy costs (posi-
tive costs) and solution rewards (negative costs). Similarly,
in the analysis of queuing networks, the cost is proportional
to the length of the queues, which might be unbounded. For
concrete motivating examples see Section 3.

Our contribution. In this work, we present a novel ap-
proach for synthesis of polynomial bounds on the expected
accumulated cost of nondeterministic probabilistic programs.

1. Our sound framework can handle the following cases:
(a) general positive and negative costs, with bounded
updates to the variables at every step of the execu-
tion; and (b) nonnegative costs with general updates
(i.e. unbounded costs and unbounded updates to the
variables). In the first case, our approach obtains both
upper and lower bounds, whereas in the second case
we only obtain upper bounds. In contrast, previous
approaches only provide upper bounds for bounded
nonnegative costs. A key technical novelty of our ap-
proach is an extension of the classical Optional Stop-
ping Theorem (OST) for martingales.

2. We present a sound algorithmic approach for the syn-
thesis of polynomial bounds. Our algorithm runs in
polynomial time and only relies on standard tools such
as linear programming and linear invariant generation
as prerequisites. Note that no previous approach pro-
vides polynomial runtime guarantee for synthesis of
such bounds for nondeterministic probabilistic pro-
grams. Our synthesis approach is based on application
of results from semi-algebraic geometry.

3. Finally, we present experimental results on a variety
of programs, which are motivated from applications
such as cryptocurrency protocols, stochastic linear

recurrences, and queuing networks, and show that
our approach can efficiently obtain tight polynomial
resource-usage bounds.

We start with preliminaries (Section 2) and then present a
set of motivating examples (Section 3). Then, we provide
an overview of the main technical ideas of our approach
in Section 4. The following sections each present technical
details of one of the steps of our approach.

2 Preliminaries
In this section, we define some necessary notions from prob-
ability theory and probabilistic programs. We also formally
define the expected accumulated cost of a program.

2.1 Martingales
We start by reviewing some notions from probability theory.
We consider a probability space (Ω,F ,P) where Ω is the
sample space, F is the set of events and P : F → [0, 1] is
the probability measure.
Random variables. A random variable is an F -measurable
function X : Ω → R ∪ {+∞,−∞}, i.e. a function satisfying
the condition that for all d ∈ R ∪ {+∞,−∞}, the set of all
points in the sample space with an X value of less than d
belongs to F .
Expectation. The expected value of a random variable X ,
denoted by E(X ), is the Lebesgue integral ofX wrt P. See [98]
for the formal definition of Lebesgue integration. If the range
of X is a countable set A, then E(X ) =

∑
ω ∈A ω · P(X = ω).

Filtrations and stopping times.A filtration of the probabil-
ity space (Ω,F ,P) is an infinite sequence {Fn}∞n=0 such that
for every n, the triple (Ω,Fn ,P) is a probability space and
Fn ⊆ Fn+1 ⊆ F . A stopping time wrt {Fn}∞n=0 is a random
variableU : Ω → N ∪ {0,∞} such that for every n ≥ 0, the
eventU ≤ n is in Fn . Intuitively,U is interpreted as the time
at which the stochastic process shows a desired behavior.
Discrete-time stochastic processes.A discrete-time stochas-
tic process is a sequence Γ = {Xn}

∞
n=0 of random variables in

(Ω,F ,P). The process Γ is adapted to a filtration {Fn}
∞
n=0, if

for all n ≥ 0, Xn is a random variable in (Ω,Fn ,P).
Martingales.Adiscrete-time stochastic process Γ = {Xn}

∞
n=0

adapted to a filtration {Fn}
∞
n=0 is a martingale (resp. su-

permartingale, submartingale) if for all n ≥ 0, E(|Xn |) <
∞ and it holds almost surely (i.e., with probability 1) that
E(Xn+1 |Fn) = Xn (resp. E(Xn+1 |Fn) ≤ Xn , E(Xn+1 |Fn) ≥

Xn ). See [98] for details.
Intuitively, a martingale is a discrete-time stochastic pro-

cess, in which at any time n, the expected value E(Xn+1 |Fn)

in the next step, given all previous values, is equal to the
current value Xn . In a supermartingale, this expected value
is less than or equal to the current value and a submartingale
is defined conversely. Applying martingales for termination
analysis is a well-studied technique [16, 18, 24].
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2.2 Nondeterministic Probabilistic Programs
We now fix the syntax and semantics of the nondeterministic
probabilistic programs we consider in this work.

Syntax. Our nondeterministic probabilistic programs are
imperative programs with the usual conditional and loop
structures (i.e. if and while), as well as the following new
structures: (a) probabilistic branching statements of the form
“if prob(p) . . . ” that lead to the then part with probability
p and to the else part with probability 1 − p, (b) nondeter-
ministic branching statements of the form “if ⋆ . . . ” that
nondeterministically lead to either the then part or the else
part, and (c) statements of the form tick(q) whose execution
triggers a cost of q. Moreover, the variables in our programs
can either be program variables, which act in the usual way,
or sampling variables, whose values are randomly sampled
from predefined probability distributions each time they are
accessed in the program.

Remark 1. We remark two points about the probabilistic
programs considered in this work:

• Probability Distributions.We do not limit our sampling
variables to any specific type of distributions. Our ap-
proach supports any predefined distribution, including
but not limited to Bernoulli and binomial distributions,
which are used in our examples.

• Conditioning. We do not consider conditioning and
observe statements in this work. Note that as shown
in [75], in many cases of probabilistic programs con-
ditioning can be removed. Moreover, our focus is on
computing the expected accumulated cost of a pro-
gram over all executions, while conditioning is used
to limit the set of valid executions.

Formally, nondeterministic probabilistic programs are gen-
erated by the grammar in Figure 1. In this grammar ⟨pvar⟩
(resp. ⟨rvar⟩) expressions range over program (resp. sam-
pling) variables. For brevity, we omit the else part of the
conditional statements if it contains only a single skip. See
Appendix B for more details about the syntax.

An example program is given in Figure 2 (left). Note that
the complete specification of the program should also include
distributions from which the sampling variables are sampled.

Labels. We refer to the status of the program counter as a
label, and assign labels ℓin and ℓout to the start and end of
the program, respectively. Our label types are as follows:

• An assignment label corresponds to an assignment
statement indicated by := or skip. After its execution,
the value of the expression on its right hand side is
stored in the variable on its left hand side and control
flows to the next statement. A skip assignment does
not change the value of any variable.

• A branching label corresponds to a conditional state-
ment, i.e. either an “if ϕ . . . ” or a “while ϕ . . . ”, where

⟨stmt ⟩ ::= ‘skip’ | ⟨pvar ⟩ ‘:=’ ⟨expr ⟩
| ‘if’ ⟨bexpr ⟩ ‘then’ ⟨stmt ⟩ ‘else’ ⟨stmt ⟩ ‘fi’
| ‘if’ ‘prob’ ‘(’p‘)’ ‘then’ ⟨stmt ⟩ ‘else’ ⟨stmt ⟩ ‘fi’
| ‘if’ ‘⋆’ ‘then’ ⟨stmt ⟩ ‘else’ ⟨stmt ⟩ ‘fi’
| ‘while’ ⟨bexpr ⟩ ‘do’ ⟨stmt ⟩ ‘od’
| ‘tick’‘(’⟨pexpr ⟩‘)’ | ⟨stmt ⟩ ‘;’ ⟨stmt ⟩

⟨literal⟩ ::= ⟨pexpr ⟩ ‘≤’ ⟨pexpr ⟩ | ⟨pexpr ⟩ ‘≥’ ⟨pexpr ⟩
⟨bexpr ⟩ ::= ⟨literal⟩ | ‘¬’⟨bexpr ⟩

| ⟨bexpr ⟩ ‘or’ ⟨bexpr ⟩ | ⟨bexpr ⟩ ‘and’ ⟨bexpr ⟩
⟨pexpr ⟩ ::= ⟨constant ⟩ | ⟨pvar ⟩ | ⟨pexpr ⟩ ‘∗’ ⟨pexpr ⟩

| ⟨pexpr ⟩ ‘+’ ⟨pexpr ⟩ | ⟨pexpr ⟩ ‘−’ ⟨pexpr ⟩
⟨expr ⟩ ::= ⟨constant ⟩ | ⟨pvar ⟩ | ⟨rvar ⟩ | ⟨expr ⟩ ‘∗’ ⟨expr ⟩

| ⟨expr ⟩ ‘+’ ⟨expr ⟩ | ⟨expr ⟩ ‘−’ ⟨pexpr ⟩

Figure 1. Syntax of nondeterministic probabilistic programs.

ϕ is a condition on program variables, and the next
statement to be executed depends on ϕ.

• A probabilistic label corresponds to an “if prob(p) . . . ”
with p ∈ [0, 1], and leads to the then branch with
probabilityp and the else branch with probability 1−p.

• A nondeterministic label corresponds to a nondetermin-
istic branching statement indicated by “if ⋆ . . . ”, and
is nondeterministically followed by either the then
branch or the else branch.

• A tick label corresponds to a statement tick(q) that
triggers a cost of q, and leads to the next label. Note
that q is an arithmetic expression, serving as the step-
wise cost function, and can depend on the values of
program variables.

Valuations. Given a set V of variables, a valuation over V
is a function v : V → R that assigns a value to each variable.
We denote the set of all valuations on V by ValV .
Control flow graphs (CFGs) [6]. We define control flow
graphs of our programs in the usual way, i.e. a CFG contains
one vertex for each label and an edge connects a label ℓi to
another label ℓj , if ℓj can possibly be executed right after ℓi
by the rules above. Formally, a CFG is a tuple(

Vp,Vr, L,→
)

(1)

where:
• Vp andVr are finite sets of program variables and sam-
pling (randomized) variables, respectively;

• L is a finite set of labels partitioned into (i) the set La
of assignment labels, (ii) the set Lb of branching labels,
(iii) the set Lp of probabilistic labels, (iv) the set Lnd
of nondeterministic labels, (v) the set Lt of tick labels,
and (vi) a special terminal label ℓout corresponding to
the end of the program. Note that the start label ℓin
corresponds to the first statement of the program and
is therefore covered in cases (i)–(v).
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1 : while x ≥ 1 do
2 : x := x + r ;
3 : y := r ′;
4 : t i ck (x ∗ y)

od
5 :

x ≥ 1 x← x+ r

tick(x ∗ y)

1 2 3

4

x
<

1

5

y
←

r ′

Figure 2. An example program with its labels (left), and its
CFG (right). We have ℓin = 1 and ℓout = 5.

• → is a transition relation whose every member is a
triple of the form (ℓ,α , ℓ′) where ℓ is the source and
ℓ′ is the target of the transition, and α is the rule that
must be obeyed when the execution goes from ℓ to
ℓ′. The rule α is either an update function Fℓ : ValVp ×

ValVr → ValVp if ℓ ∈ La, which maps values of program
and sampling variables before the assignment to the
values of program variables after the assignment, or a
conditionϕ overVp if ℓ ∈ Lb, or a real numberp ∈ [0, 1]
if ℓ ∈ Lp, or⋆ if ℓ ∈ Lnd, or a cost function Rℓ : ValVp →

R if ℓ ∈ Lt. In the last case, the cost function Rℓ is
specified by the arithmetic expression q in tick(q) and
maps the values of program variables to the cost of
the tick operation.

Example 2.1. Figure 2 provides an example program and
its CFG. We assume that the probability distributions for
the random variables r and r ′ are (1,−1) : (1/4, 3/4) and
(1,−1) : (2/3, 1/3) respectively. In this program, the value
of the variable x is incremented by the sampling variable r ,
whose value is 1 with probability 1/4 and −1 with probability
3/4. Then, the variable y is assigned a random value sampled
from the variable r ′, that is 1 with probability 2/3 and −1
with probability 1/3. The tick command then incurs a cost
of x · y, i.e. x ∗ y is used as the cost function.

Runs and schedulers. A run of a program is an infinite
sequence {(ℓn , vn)}∞n=0 of labels ℓn and valuations vn to pro-
gram variables that respects the rules of the CFG. A scheduler
is a policy that chooses the next step, based on the history of
the program, when the program reaches a nondeterministic
choice. For more formal semantics see Appendix C.
Termination time [38]. The termination time is a random
variable T defined on program runs as T ({(ℓn , vn)}∞n=0) :=
min{n | ℓn = ℓout}. We define min ∅ := ∞. Note that T is a
stopping time on program runs. Intuitively, the termination
time of a run is the number of steps it takes for the run to
reach the termination label ℓout or ∞ if it never terminates.
Types of termination [18, 38, 67]. A program is said to al-
most surely terminate if it terminates with probability 1 using
any scheduler. Similarly, a program is finitely terminating if
it has finite expected termination time over all schedulers.
Finally, a program has the concentration property or concen-
tratedly terminates if there exist positive constants a and b

such that for sufficiently largen, we have P(T > n) ≤ a ·e−b ·n

for all schedulers, i.e. if the probability that the program takes
n steps or more decreases exponentially as n grows.

Termination analysis of probabilistic programs is a widely-
studied topic. For automated approaches, see [1, 16, 18, 71].

2.3 Expected Accumulated Cost
The main notion we use in cost analysis of nondeterministic
probabilistic programs is the expected accumulated cost until
program termination. This concept naturally models the total
cost of execution of a program in the average case. We now
formalize this notion.
Cost of a run.We define the random variableCm as the cost
at them-th step in a run, which is equal to a cost function
Rℓ if them-th executed statement is a tick statement and is
zero otherwise, i.e. given a run ρ = {(ℓn , vn)}∞n=0, we define:

Cm(ρ) :=
{
Rℓm (vm) if ℓm ∈ Lt
0 otherwise

Moreover, we define the random variable C∞ as the total
cost of all steps, i.e. C∞(ρ) :=

∑∞
m=0Cm(ρ). Note that when

the program terminates, the run remains in the state ℓout
and does not trigger any costs. Hence, C∞ represents the
total accumulated cost until termination. Given a scheduler
σ and an initial valuation v to program variables, we define
Eσv (C∞) as the expected value of the random variable C∞

over all runs that start with (ℓin, v) and use σ for making
choices at nondeterministic points.

Definition 2.2 (Expected Accumulated Cost). Given an ini-
tial valuation v to program variables, themaximum expected
accumulated cost, supval(v), is defined as supσ Eσv (C∞), where
σ ranges over all possible schedulers.

Intuitively, supval(v) is the maximum expected total cost
of the program until termination, i.e. assuming a scheduler
that resolves nondeterminism to maximize the total accumu-
lated cost. In this work, we focus on automated approaches
to find polynomial bounds for supval(v).

3 Motivating Examples
In this section, we present several motivating examples for
the expected cost analysis of nondeterministic probabilis-
tic programs. Previous general approaches for probabilistic
programs, such as [74], require the following restrictions:
(a) stepwise costs are nonnegative; and (b) stepwise costs are
bounded. We present natural examples which do not satisfy
the above restrictions. Our examples are as follows:

1. In Section 3.1, we present an example of Bitcoin min-
ing, where the costs are both positive and negative,
but bounded. Then in Section 3.2, we present an exam-
ple of Bitcoin pool mining, where the costs are both
positive and negative, as well as unbounded, but the
updates to the variables at each program execution
step are bounded.
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2. In Section 3.3, we present an example of queuing net-
works which also has unbounded costs but bounded
updates to the variables.

3. In Section 3.4, we present an example of stochastic
linear recurrences, where the costs are nonnegative
but unbounded, and the updates to the variable values
are also unbounded.

3.1 Bitcoin Mining
Popular decentralized cryptocurrencies, such as Bitcoin and
Ethereum, rely on proof-of-work Blockchain protocols to
ensure a consensus about ownership of funds and validity of
transactions [73, 95]. In these protocols, a subset of the nodes
of the cryptocurrency network, called miners, repeatedly try
to solve a computational puzzle. In Bitcoin, the puzzle is
to invert a hash function, i.e. to find a nonce value v , such
that the SHA256 hash of the state of the Blockchain and the
nonce v becomes less than a predefined value [73]. The first
miner to find such a nonce is rewarded by a fixed number of
bitcoins. If several miners find correct nonces at almost the
same time, which happens with very low probability, only
one of them will be rewarded and the solutions found by
other miners will get discarded [12].

Given the one-way property of hash functions, one strat-
egy for a miner is to constantly try randomly-generated
nonces until one of them leads to the desired hash value.
Therefore, a miner’s chance of getting the next reward is
proportional to her computational power. Bitcoin mining
uses considerable electricity and is therefore very costly [34].
Bitcoin mining can be modeled by the nondeterministic

probabilistic program given in Figure 3. In this program, a
miner starts with an initial balance of x and mines as long
as he has some money left for the electricity costs. At each
step, he generates and checks a series of random nonces.
This leads to a cost of α for electricity. With probability p,
one of the generated nonces solves the puzzle. When this
happens, with probabilityp ′ the current miner is the only one
who has solved the puzzle and receives a reward of β units.
However, with probability 1 − p ′, other miners have also
solved the same puzzle in roughly the same time. In this case,
whether the miner receives his reward or not is decided by
nondeterminism. Since we are modeling the total cost from
the point-of-view of the miner, getting a reward has negative
cost while paying for electricity has positive cost. The values
of parameters α , β,p, and p ′ can be found experimentally in
the real world. Basically, α is the cost of electricity for the
miner, which depends on location, β is the reward for solving
the puzzle, which depends on the Bitcoin exchange rate, and
p and p ′ depend on the total computational power of the
Bitcoin network, which can be estimated at any time [87]. In
the sequel, we assume α = 1, β = 5000,p = 0.0005,p ′ = 0.99.

Remark 2. Note that in the example of Figure 3, the costs
are both positive (tick(α)) and negative (tick(−β)), but bounded

while x ≥ α do
x := x − α ; t i ck (α) ;
i f prob (p ) then

i f prob (p′ ) then t i ck (−β)
e l se i f ⋆ then t i ck (−β)

f i f i f i od

Figure 3. Bitcoin mining

by the constants |α | and |β |. Also all updates to the program
variable x are bounded by |α |.

3.2 Bitcoin Pool Mining
As mentioned earlier, a miner’s chance of solving the puzzle
in Bitcoin is proportional to her computational power. Given
that the overall computational power of the Bitcoin network
is enormous, there is a great deal of variance in miners’
revenues, e.g. a miner might not find a solution for several
months or even years, and then suddenly find one and earn
a huge reward. To decrease the variance in their revenues,
miners often collaborate in mining pools [80].

A mining pool is created by a manager who guarantees a
steady income for all participating miners. This income is
proportional to the miner’s computational power. Any miner
can join the pool and assign its computational power to
solving puzzles for the pool, instead of for himself, i.e. when
a puzzle is solved by a miner participating in a pool, the
rewards are paid to the pool manager [23]. Pools charge
participation fees, so in the long term, the expected income
of a participating miner is less than what he is expected to
earn by mining on his own.
A pool can be modeled by the probabilistic program in

Figure 4. The manager starts the pool with y identical min-
ers1. At each time step, the manager has to pay each miner
a fixed amount α . Miners perform the mining as in Figure 3.
Note that their mining revenue now belongs to the pool
manager. Finally, at each time step, a small stochastic change
happens in the number of miners, i.e. a miner might choose
to leave the pool or a new miner might join the pool. The
probability of such changes can also be estimated experimen-
tally. In our example, we have that the number of miners
increases by one with probability 0.4, decrease by one with
probability 0.5, and does not change with probability 0.1
(y := y + (−1, 0, 1) : (0.5, 0.1, 0.4)).

Remark 3. In contrast to Figure 3where the costs are bounded,
in Figure 4, they are not bounded (tick(α ∗y)). Moreover, they
are both positive (tick(α ∗ y)) and negative (tick(−β)). How-
ever, changes to the program variables i and y are bounded.

1This assumption does not affect the generality of our modeling. If the
miners have different computational powers, a more powerful miner can
be modeled as a union of several less powerful miners.
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while y ≥ 1 do
t i ck (α ∗ y) ; i := 1 ;
while i ≤ y do

i f prob (p ) then
i f prob (p′ ) then t i ck (−β)
e l se i f ⋆ then t i ck (−β)
f i f i f i ; i := i + 1 od ;
y := y + (−1, 0, 1) : (0.5, 0.1, 0.4) od

Figure 4. Bitcoin pool mining

3.3 Queuing Networks
A well-studied structure for modeling parallel systems is
the Fork and Join (FJ) queuing network [10]. An FJ network
consists of K processors, each with its own dedicated queue
(Figure 5). When a job arrives, the network probabilistically
divides (forks) it into one or more parts and assigns each
part to one of the processors by adding it to the respective
queue. Each processor processes the jobs in its queue on
a first-in-first-out basis. When all of the parts of a job are
processed, the results are joined and the job is completed.
The processing time of a job is the amount of time it takes
from its arrival until its completion.
FJ networks have been used to model and analyze the

efficiency of a wide variety of parallel systems [10], such as
web service applications [72], complex network intrusion de-
tection systems [9], MapReduce frameworks [35], programs
running on multi-core processors [52], and health care ap-
plications such as diagnosing patients based on test results
from several laboratories [8].

An FJ network can be modeled as a probabilistic program.
For example, the program in Figure 6 models a network with
K = 2 processors that accepts jobs for n time units. At each
unit of time, one unit of work is processed from each queue,
and there is a fixed probability 0.02 that a new job arrives.
The network then probabilistically decides to assign the job
to the first processor (with probability 0.2) or the second
processor (with probability 0.4) or to divide it among them
(with probability 0.4). We assume that all jobs are identical
and for processor 1 it takes 3 time units to process a job,
while processor 2 only takes 2 time units. If the job is divided
among them, processor 1 takes 2 units to finish its part and
processor 2 takes 1 time unit. The variables l1 and l2 model
the length of the queues for each processor, and the program
cost models the total processing time of the jobs.

Note that the processing time is computed from the point-
of-view of the jobs and does not model the actual time spent
on each job by the processors, instead it is defined as the
amount of time from the moment the job enters the network,
until the moment it is completed. Hence, the processing
time can be computed as soon as the job is assigned to the
processors and is equal to the length of the longest queue.

1

2

K

Figure 5. A Fork and Join network with K processors

l1 := 0; l2 := 0; i := 1;
while i ≤ n do

i f l1 ≥ 1 then l1 := l1 − 1 f i ;
i f l2 ≥ 1 then l2 := l2 − 1 f i ;
i f prob ( 0.02 ) then

i f prob ( 0.2 ) then
l1 := l1 + 3

e l se i f prob ( 0.5 ) then
l2 := l2 + 2

e l se
l1 := l1 + 2; l2 := l2 + 1

f i f i ;
i f l1 ≥ l2 then t i ck (l1) e l se t i ck (l2) f i

f i ; i := i + 1 od

Figure 6. A FJ-network Example with K = 2 Processors

Remark 4. In the example of Figure 6, note that the costs,
i.e. tick(l1) and tick(l2), depend on the length of the queues
and are therefore unbounded. However, all updates in pro-
gram variables are bounded, i.e. a queue size is increased by
at most 3 at each step of the program. The maximal update
appears in the assignment l1 := l1 + 3.

3.4 Stochastic Linear Recurrences
Linear recurrences are systems that consist of a finite set
x of variables, together with a finite set a1, a2, . . . , am of
linear update rules. At each step of the system’s execution,
one of the rules is chosen and applied to the variables. For-
mally, if there are n variables, then we consider x and each
of the ai ’s to be a vector of length n, and applying the rule
ai corresponds to the assignment x := ai · x. This process
continues as long as a condition ϕ is satisfied. Linear recur-
rences are well-studied and appear in many contexts, e.g. to
model linear dynamical systems, in theoretical biology, and
in statistical physics (see [7, 77, 78]). A classical example is
the so-called species fight in ecology.
A natural extension of linear recurrences is to consider

stochastic linear recurrences, where at each step the rule to
be applied is chosen probabilistically. Moreover, the cost of
the process at each step is a linear combination c · x of the
variables. Hence, a general stochastic linear recurrence is a
program in the form shown in Figure 7.

We present a concrete instantiation of such a program in
the context of species fight. Consider a fight between two
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while ϕ do
i f prob (p1 ) then

x : = a1 · x
e l se i f prob (p2 ) then

x : = a2 · x
...

e l se i f prob (pm ) then
x : = am · x

f i . . . f i ;
t i ck (c · x)

od

Figure 7. A general stochastic linear recurrence

while a ≥ 5 and b ≥ 5 do
t i ck (a + b) ;
i f prob ( 0.5 ) then b := 0.9 ∗ b ; a := 1.1 ∗ a
e l se b := 1.1 ∗ b ; a := 0.9 ∗ a f i

od

Figure 8. A species fight example

types of species, a and b, where there are a finite number of
each type in the initial population. The types compete and
might also prey upon each other. The fitness of the types de-
pends on the environment, which evolves stochastically. For
example, the environment may represent the temperature,
and a type might have an advantage over the other type in
warm/cold environment. The cost we model is the amount
of resources consumed by the population. Hence, it is a lin-
ear combination of the population of each type (i.e. each
individual consumes some resources at each time step).

Figure 8 provides an explicit example, in which with prob-
ability 1/2, the environment becomes hospitable to a, which
leads to an increase in its population, and assuming that a
preys on b, this leads to a decrease in the population of b. On
the other hand, the environment might become hostile to a,
which leads to an increase in b’s population. Moreover, each
individual of either type a or b consumes 1 unit of resource
per time unit. We also assume that a population of less than
5 is unsustainable and leads to extinction.

Remark 5. Note that in Figure 8, there are unbounded costs
(tick(a+b)) and unbounded updates to the variables (e.g. a :=
1.1 ∗ a). However, the costs are always nonnegative.

4 Main Ideas and Novelty
In this work, our main contribution is an automated ap-
proach for obtaining polynomial bounds on the expected
accumulated cost of nondeterministic probabilistic programs.
In this section, we present an outline of our main ideas, and
a discussion on their novelty in comparison with previous

approaches. The key contributions are organized as follows:
(a) mathematical foundations; (b) soundness of the approach;
and (c) computational results.

4.1 Mathematical Foundations
The previous approach of [74] can only handle nonnegative
bounded costs. Their main technique is to consider potential
functions and probabilistic extensions of weakest precondi-
tion, which relies on monotonicity. This is the key reason
why the costs must be nonnegative. Instead, our approach is
based on martingales, and can hence handle both positive
and negative costs.

Extension of OST. A standard result in the analysis of mar-
tingales is the Optional Stopping Theorem (OST), which pro-
vides a set of conditions on a (super)martingale {Xn}

∞
n=0 that

are sufficient to ensure bounds on its expected value at a stop-
ping time. A requirement of the OST is the so-called bounded
difference condition, i.e. that there should exist a constant
number c , such that the stepwise difference |Xn+1 − Xn | is
always less than c . In program cost analysis, this condition
translates to the requirement that the stepwise cost function
at each program point must be bounded by a constant. It is
well-known that the bounded difference condition in OST
is an essential prerequisite, and thus application of classical
OST can only handle bounded costs.

We present an extension of the OST that provides certain
new conditions for handling differences |Xn+1 − Xn | that
are not bounded by a constant, but instead by a polynomial
on the step number n. Hence, our extended OST can be
applied to programs such as the motivating examples in
Sections 3.1, 3.2 and 3.3. The details of the OST extension
are presented in Section 5.

4.2 Soundness of the Approach
For a sound approach to compute polynomial bounds on
expected accumulated cost, we present the following results
(details in Section 6):

1. We define the notions of polynomial upper cost su-
permartingale (PUCS) and polynomial lower cost sub-
martingale (PLCS) for upper and lower bounds of the
expected accumulated cost over probabilistic programs,
respectively (see Section 6.1).

2. For the case where the costs can be both positive and
negative (bounded or unbounded), but the variable up-
dates are bounded, we use our extended OST to estab-
lish that PUCS’s and PLCS’s provide a sound approach
to obtain upper and lower bounds on the expected
accumulated cost (see Section 6.2).

3. For costs that are nonnegative (even with unbounded
updates), we show that PUCS’s provide a sound ap-
proach to obtain upper bounds on the expected accu-
mulated cost (see Section 6.3). The key mathematical
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result we use here is the Monotone Convergence the-
orem. We do not need OST in this case.

4.3 Computational Results
By our definition of PUCS/PLCS, a candidate polynomial h is
a PUCS/PLCS for a given program, if it satisfies a number of
polynomial inequalities, which can be obtained from the CFG
of the program. Hence, we reduce the problem of synthesis
of a PUCS/PLCS to solving a system of polynomial inequali-
ties. Such systems can be solved using quantifier elimination,
which is computationally expensive. Instead, we present the
alternative sound method of using a Positivstellensatz, i.e. a
theorem in real semi-algebraic geometry that characterizes
positive polynomials over a semi-algebraic set. In partic-
ular, we use Handelman’s Theorem to show that given a
nondeterministic probabilistic program, a PUCS/PLCS can
be synthesized by solving a linear programming instance of
polynomial size (wrt the size of the input program and invari-
ant). Hence, our sound approach for obtaining polynomial
bounds on the expected accumulated cost of a program runs
in polynomial time. The details are presented in Section 7.

4.4 Novelty
The main novelties of our approach are as follows:

1. Positive and Negative Costs. In contrast to previous
approaches, such as [74], that can only handle pos-
itive costs, our approach can handle both positive
and negative costs. In particular, approaches that are
based on weakest pre-expectation require the one-
step pre-expectation of the cost to be non-negative
(due to monotonicity conditions). This requirement
is enforced by disallowing negative costs. In contrast,
our approach can even handle cases where the one-
step pre-expectation is negative, e.g. see lines 4–5 in
Figure 3 (Section 3.1) and lines 5–6 in Figure 4 (Sec-
tion 3.2) where the cost is always negative. As shown
by these examples, many real-world scenarios contain
both costs and rewards (negative costs). We provide
the first approach that can handle such scenarios.

2. Variable-dependent Costs. Previous approaches, such
as [74], require the one-step costs to be bounded con-
stants. A major novelty of our approach is that it can
handle unbounded variable-dependent costs. This al-
lows us to consider real-world examples, such as the
ubiquitous Queuing Networks of Section 3.3, in which
the cost depends on the length of a queue.

3. Upper and Lower Bounds.While previous approaches,
such as [74], could only present sound upper bounds
with positive bounded costs, our approach for positive
and negative costs, with the restriction of bounded
updates to the variables, can provide both upper and
lower bounds on the expected accumulated costs. Thus,
for the examples of Sections 3.1, 3.2 and 3.3, we ob-
tain both upper and lower bounds. This is the first

approach that is able to provide lower bounds for ex-
pected accumulated cost.

4. Efficiency.Wepresent a provably polynomial-time com-
putational approach for obtaining bounds on the ex-
pected accumulated costs. The previous approach in [74]
has exponential dependence on size of the program.

5. Compositionality.Our approach directly leads to a com-
positional approach. For a program P , we can annotate
P with {G}P{H } meaning that G and H are functions
of a PUCS/PLCS at the start and end program counter.
Then, by applying the conditions of PUCS/PLCS to
the program syntax, one can directly establish a proof
system for proving the triple {G}P{H }.

4.5 Limitations
We now discuss some limitations of our approach.

1. As in previous approaches, such as [20, 74], we need
to assume that the input program terminates.

2. For programswith both positive and negative costs, we
handle either bounded updates to variables or bounded
costs. The most general case, with both unbounded
costs and unbounded updates, remains open.

3. For unbounded updates to variables, we consider non-
negative costs, and present only upper bounds, and not
lower bounds. However, note that our approach is the
first one to present any lower bounds for cost analysis
of probabilistic programs (with bounded updates to
variables), and no previous approach can obtain lower
bounds in any case.

4. Our approach assumes that linear invariants at every
point of the program are given as part of the input (see
Section 6.1). Note that linear invariant generation is a
classical problemwith several efficient tools (e.g. [82]).

5 The Extension of the OST
The Optional Stopping Theorem (OST) states that, given a
martingale (resp. supermartingale), if its step-wise difference
Xn − Xn+1 is bounded, then its expected value at a stopping
time is equal to (resp. no greater than) its initial value.

Theorem 5.1 (Optional Stopping Theorem (OST) [36, 98]).
Consider any stopping time U wrt a filtration {Fn}

∞
n=0 and

any martingale (resp. supermartingale) {Xn}
∞
n=0 adapted to

{Fn}
∞
n=0 and let Y = XU . Then the following condition is suf-

ficient to ensure that E (|Y |) < ∞ and E (Y ) = E(X0) (resp.
E (Y ) ≤ E(X0)):

• There exists an M ∈ [0,∞) such that for all n ≥ 0,
|Xn+1 − Xn | ≤ M almost surely.

It is well-known that the stepwise bounded difference con-
dition (i.e. |Xn+1 −Xn | ≤ M) is an essential prerequisite [98].
Below we present our extension of OST to unbounded dif-
ferences.
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Theorem 5.2 (The Extended OST). Consider any stopping
time U wrt a filtration {Fn}

∞
n=0 and any martingale (resp.

supermartingale) {Xn}
∞
n=0 adapted to {Fn}

∞
n=0 and let Y =

XU . Then the following condition is sufficient to ensure that
E (|Y |) < ∞ and E (Y ) = E(X0) (resp. E (Y ) ≤ E(X0)):

• There exist real numbers M, c1, c2,d > 0 such that (i)
for sufficiently large n ∈ N, it holds that P(U > n) ≤

c1 · e
−c2 ·n and (ii) for all n ∈ N, |Xn+1 − Xn | ≤ M · nd

almost surely.

Intuition and proof idea. We extend the OST so that the
stepwise difference |Xn+1 − Xn | need not be bounded by a
constant, but instead by a polynomial in terms of the step
counter n. However, we require that the stopping time U
satisfies the concentration condition that specifies an expo-
nential decrease in P(U > n). We present a rigorous proof
that uses Monotone and Dominated Convergence Theorems
along with the concentration bounds and polynomial differ-
ences to establish the above result. For technical details see
Appendix D.1.

Remark 6. We note several points about our extended OST:
1. It can handle unbounded difference.
2. While the original proof for OST ([98]) is restricted to

bounded-difference, our proof for the extended OST
(Appendix D.1) uses a novel condition, i.e. that the stop-
ping time has exponentially-decreasing probabilities,
to handle unbounded difference.

3. We show that the new condition in our extended OST
formulation corresponds to program termination. Thus,
our extension provides a sound method for cost analy-
sis of terminating programs.

6 Polynomial Cost Martingales
In this section, we introduce the notion of polynomial cost
martingales, which serve as the main tool for reducing the
cost analysis problem over nondeterministic probabilistic
programs to the analysis of a stochastic process.

6.1 Definitions
Below, we fix a probabilistic program and its CFG of form (1).
In order to apply our extended OST for cost analysis of the
program, it should first be translated into a discrete-time
stochastic process. This is achieved using the concept of cost
martingales. To define cost martingales, we first need the
notions of invariants and pre-expectation.

Definition 6.1 (Invariants and linear invariants). Given a
program, its set L of labels, and an initial valuation v∗ to
program variables Vp, an invariant is a function I : L →

P(ValVp ) that assigns a set I (ℓ) of valuations overVp to every
label ℓ, such that for all configurations (ℓ, v) that are reach-
able from the initial configuration (ℓin, v∗) by a run of the
program, it holds that v ∈ I (ℓ). The invariant I is linear if
every I (ℓ) is a finite union of polyhedra.

Intuition. An invariant I is an over-approximation of the
reachable valuations at each label of the program. An invari-
ant is called linear if it can be represented by a finite number
of linear inequalities.

Remark 7. In the sequel, we compute polynomial bounds
that are applicable to every initial valuation that satisfies the
linear invariants. To obtain concrete bounds, we fix a single
initial valuation v∗ and choose polynomial bounds that are
as tight as possible wrt v∗. Nevertheless, these polynomial
bounds are valid upper/lower bounds for all other valid initial
valuations, too.

Example 6.2. Figure 9 (top), shows the same program as in
Example 2.1, together with linear invariants for each label of
the program. The invariants are enclosed in square brackets.

Definition 6.3 (Pre-expectation). Consider any function
h : L × ValVp → R. We define its pre-expectation as the
function preh : L × ValVp → R by:

• preh(ℓ, v) := h(ℓ, v) if ℓ = ℓout is the terminal label;
• preh(ℓ, v) := Eu[h(ℓ′, Fℓ(v, u))] if ℓ ∈ La is an assign-
ment label with the update function Fℓ , and the next la-
bel is ℓ′. Note that in the expectationEu[h(ℓ′, Fℓ(v, u))],
the values of ℓ′ and v are treated as constants and u
observes the probability distributions specified for the
sampling variables;

• preh(ℓ, v) := 1v |=ϕ · h(ℓ1, v) + 1v ̸ |=ϕ · h(ℓ2, v) if ℓ ∈ Lb
is a branching label and ℓ1, ℓ2 are the labels for the
true-branch and the false-branch, respectively. The
indicator 1v |=ϕ is equal to 1 when v satisfies ϕ and
0 otherwise. Conversely, 1v ̸ |=ϕ is 1 when v does not
satisfy ϕ and 0 when it does;

• preh(ℓ, v) :=
∑

(ℓ,p, ℓ′)∈→ p · h(ℓ′, v) if ℓ ∈ Lp is a prob-
abilistic label;

• preh(ℓ, v) := Rℓ(v) + h(ℓ′, v) if ℓ ∈ Lt is a tick label
with the cost function Rℓ and the successor label ℓ′;

• preh(ℓ, v) := max(ℓ,⋆,ℓ′)∈→ h(ℓ′, v) if ℓ ∈ Lnd is a non-
deterministic label.

Intuition. The pre-expectation preh(ℓ, v) is the cost of the
current step plus the expected value of h in the next step of
the program execution, i.e. the step after the configuration
(ℓ, v). In this expectation, ℓ and v are treated as constants.
For example, the pre-expectation at a probabilistic branching
label is the averaged sum over the values of h at all possible
successor labels.

Example 6.4. In Figure 9 (top) we consider the same pro-
gram as in Example 2.1. Recall that the probability distri-
butions used for sampling variables r and r ′ are (1,−1) :
(1/4, 3/4) and (1,−1) : (2/3, 1/3), respectively. The table in
Figure 9 (bottom) provides an example function h and the
corresponding pre-expectation preh . The gray part shows
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1 : [x ≥ 0] while x ≥ 1 do
2 : [x ≥ 1] x := x + r ;
3 : [x ≥ 0] y := r ′ ;
4 : [x ≥ 0 ∧ −1 ≤ y ≤ 1] t i ck (x ∗ y) od
5 : [0 ≤ x ≤ 1]

n h(ℓn, x, y) preh (ℓn, x, y)

1 1
3x

2 + 1
3x

1x≥1 · h(ℓ2, x, y) + 1x<1 · h(ℓ5, x, y) =
1x≥1 · ( 1

3x
2 + 1

3x ) + 1x<1 · 0

2 1
3x

2 + 1
3x

1
4h(ℓ3, x + 1, y) + 3

4h(ℓ3, x − 1, y) =
1
3x

2 + 1
3x

3 1
3x

2 + 2
3x

2
3h(ℓ4, x, 1) + 1

3h(ℓ4, x, −1) =
1
3x

2 + 2
3x

4 1
3x

2 + xy + 1
3x

x · y + h(ℓ1, x, y) =
1
3x

2 + xy + 1
3x

5 0 h(ℓ5, x, y) = 0

Figure 9. A program together with an example function h
and the corresponding pre-expectation function preh .

the steps in computing the function preh and the black part
is the final result2.

We now define the central notion of cost martingales. For
algorithmic purposes, we only consider polynomial cost mar-
tingales in this work.We start with the notion of PUCSwhich
is meant to serve as an upperbound for the expected accu-
mulated cost of a program.

Definition 6.5 (Polynomial Upper Cost Supermartingales).
A polynomial upper cost supermartingale (PUCS) of degree d
wrt a given linear invariant I is a function h : L× ValVp → R
that satisfies the following conditions:
(C1) for each label ℓ, h(ℓ) is a polynomial of degree at most

d over program variables;
(C2) for all valuations v ∈ ValVp , we have h(ℓout, v) = 0;
(C3) for all non-terminal labels ℓ ∈ L \ {ℓout} and reachable

valuations v ∈ I (ℓ), we have preh(ℓ, v) ≤ h(ℓ, v).

Intuition. Informally, (C1) specifies that the PUCS should
be polynomial at each label, (C2) says that the value of the
PUCS at the terminal label ℓout should always be zero, and
(C3) specifies that at all reachable configurations (ℓ, v), the
pre-expectation is no more than the value of the PUCS itself.
Note that if h is polynomial in program variables, then

preh(ℓ,−) is also polynomial if ℓ is an assignment, proba-
bilistic branching or tick label. For example, in the case of
assignment labels, Eu[h(ℓ′, Fℓ(v, u))] is polynomial in v if
both h and Fℓ are polynomial.

Example 6.6. By Definition 6.5, the function h given in
Example 6.4 is a PUCS. For every label ℓ of the program,
h(ℓ,−) is a polynomial of degree at most 2, so h satisfies
condition (C1). It is straightforward to verify, using the table
in Figure 9 (bottom), that h satisfies (C2) and (C3) as well.
2The reason for choosing this particular h will be clarified by Example 6.6.

We now define the counterpart of PUCS for lower bound.
Definition 6.7 (Polynomial Lower Cost Submartingales).
A polynomial lower cost submartingale (PLCS) wrt a linear
invariant I is a function h : L × ValVp → R that satisfies
(C1) and (C2) above, and the additional condition (C3’) below
(instead of (C3)):
(C3’) for all non-terminal labels ℓ , ℓout and reachable valu-

ations v ∈ I (ℓ), we have preh(ℓ, v) ≥ h(ℓ, v);
Intuitively, a PUCS requires the pre-expectation preh to

be no more than h itself, while a PLCS requires the converse,
i.e. that preh should be no less than h.
Example 6.8. As shown in Example 6.6, the function h
given in Example 6.4 (Figure 9) satisfies (C1) and (C2). Using
the table in Figure 9, one can verify that h satisfies (C3’) as
well. Hence, h is a PLCS.

In the following sections, we prove that PUCS’s and PLCS’s
are sound methods for obtaining upper and lower bounds
on the expected accumulated cost of a program.

6.2 General Unbounded Costs and Bounded Updates
In this section, we consider nondeterministic probabilistic
programs with general unbounded costs, i.e. both positive
and negative costs, and bounded updates to the program
variables. Using our extension of the OST (Theorem 5.2), we
show that PUCS’s and PLCS’s are sound for deriving upper
and lower bounds for the expected accumulated cost.
Recall that the extended OST has two prerequisites. One

is that, for sufficiently large n, the stopping time U should
have exponentially decreasing probability of nontermination,
i.e. P(U > n) ≤ c1 · e−c2 ·n . The other is that the stepwise
difference |Xn+1−Xn | should be bounded by a polynomial on
the numbern of steps. We first describe how these conditions
affect the type of programs that can be considered, and then
provide our formal soundness theorems.
The first prerequisite is equivalent to the assumption

that the program has the concentration property. To en-
sure the first prerequisite, we apply the existing approach of
difference-bounded ranking-supermartingale maps [18, 22].
We ensure the second prerequisite by assuming the bounded
update condition, i.e. that every assignment to each program
variable changes the value of the variable by a bounded
amount. We first formalize the concept of bounded update
and then argue why it is sufficient to ensure the second
prerequisite.
Definition 6.9 (Bounded Update). A program P with in-
variant I has the bounded update property over its program
variables, if there exists a constant M > 0 such that for ev-
ery assignment label ℓ with update function Fℓ , we have
∀v ∈ I (ℓ) ∀u ∀x ∈ Vp |Fℓ(v, u)(x) − v(x)| ≤ M .

The reason for assuming boundedupdate.A consequence
of the bounded update condition is that at the n-th execu-
tion step of any run of the program, the absolute value of
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any program variable x is bounded byM · n + x0, whereM
is the constant bound in the definition above and x0 is the
initial value of the variable x . Hence, for large enough n, the
absolute value of any variable x is bounded by (M + 1) · n.
Therefore, given a PUCS h of degree d , one can verify that
the step-wise difference of h is bounded by a polynomial
on the number n of steps. More concretely, h is a degree-d
polynomial over variables that are bounded by (M + 1) ·n, so
h is bounded byM ′ ·nd for some constantM ′ > 0 . Thus, the
bounded update condition is sufficient to fulfill the second
prerequisite of our extended OST.
Based on the discussion above, we have the following

soundness theorems:

Theorem 6.10 (Soundness of PUCS). Consider a nondeter-
ministic probabilistic program P , with a linear invariant I and
a PUCS h. If P satisfies the concentration property and the
bounded update property, then supval(v) ≤ h(ℓin, v) for all
initial valuations v ∈ I (ℓin).

Proof Sketch. We define the stochastic process {Xn}
∞
n=0 as

Xn := h(ℓn , vn), where ℓn is the random variable repre-
senting the label at the n-th step of a program run, and
vn is a vector of random variables consisting of compo-
nents vn(x) which represent values of program variables
x at the n-th step. Furthermore, we construct the stochastic
process {Yn}∞n=0 such that Yn = Xn +

∑n−1
k=0Ck . Recall that

Ck is the cost of the k-th step of the run and C∞ =
∑∞

k=0Ck .
We consider the termination time T of P and prove that
{Yn}

∞
n=0 satisfies the prerequisites of our extended OST (The-

orem 5.2). This proof depends on the assumption that P
has concentration and bounded update properties. Then by
applying Theorem 5.2, we have that E(YT ) ≤ E(Y0). Since
YT = XT +

∑T
k=0Ck = C∞, we obtain the desired result. For

a more detailed proof, see Appendix D.3. □

Example 6.11. Given that the h in Example 6.4 is a PUCS,
we can conclude that for all initial values x0 and y0, we have
supval(x0,y0) ≤ h(ℓ1,x0,y0) =

1
3x

2
0 +

1
3x0.

We showed that PUCS’s are sound upper bounds for the
expected accumulated cost of a program. The following the-
orem provides a similar result for PLCS’s and lower bounds.

Theorem 6.12 (Soundness of PLCS, Proof in Appendix D.4).
Consider a nondeterministic probabilistic program P , with a
linear invariant I and a PLCSh. If P satisfies the concentration
property and the bounded update property, then supval(v) ≥
h(ℓin, v) for all initial valuations v ∈ I (ℓin).

Example 6.13. Given that the h in Example 6.4 is a PLCS,
we can conclude that for all initial values x0 and y0, we have
supval(x0,y0) ≥ h(ℓ1,x0,y0) =

1
3x

2
0 +

1
3x0.

Remark 8. Putting together the results from Examples 6.11
and 6.13, we conclude that the expected accumulated cost of
Example 6.4 is precisely 1

3x
2
0 +

1
3x0.

Remark 9. Themotivating examples in Sections 3.1, 3.2 and
3.3, i.e. Bitcoin mining, Bitcoin pool mining and FJ queuing
networks, have potentially unbounded costs that can be both
positive and negative. Moreover, they satisfy the bounded
update property. Therefore, using PUCS’s and PLCS’s leads
to sound bounds on their expected accumulated costs.

6.3 Unbounded Nonnegative Costs and General
Updates

In this section, we consider programs with unbounded non-
negative costs, and show that a PUCS is a sound upper bound
for their expected accumulated cost. This result holds for
programs with arbitrary unbounded updates to the variables.

Our main tool is the well-known Monotone Convergence
Theorem (MCT) [98], which states that if X is a random
variable and {Xn}

∞
n=0 is a non-decreasing discrete-time sto-

chastic process such that limn→∞Xn = X almost surely, then
limn→∞ E(Xn) = E(X ).
As in the previous case, the first step is to translate the

program to a stochastic process. However, in contrast with
the previous case, in this case we only consider nonnegative
PUCS’s. This is because all costs are assumed to be nonneg-
ative. We present the following soundness result:

Theorem 6.14 (Soundness of nonnegative PUCS). Consider
a nondeterministic probabilistic program P , with a linear in-
variant I and a nonnegative PUCS h. If all the step-wise costs
in P are always nonnegative, then supval(v) ≤ h(ℓin, v) for all
initial valuations v ∈ I (ℓin).

Proof Sketch. We define the stochastic process {Xn}
∞
n=0 as in

Theorem 6.12, i.e. Xn := h(ℓn , vn). By definition, for all n,
we have E(Xn+1) + E(Cn) ≤ E(Xn), hence by induction, we
get E(Xn+1) +

∑n
m=0 E(Cm) ≤ E(X0). Given that h is non-

negative, E(Xn+1) ≥ 0, so
∑n
m=0 E(Cm) ≤ E(X0). By apply-

ing the MCT, we obtain E(C∞) = E(limn→∞

∑n
m=0Cm) =

limn→∞

∑n
m=0 E(Cm) ≤ E(X0), which is the desired result.

For a more detailed proof, see Appendix D.5. □

Remark 10. The motivating example in Section 3.4, i.e. the
species fight stochastic linear recurrence, has unbounded
nonnegative costs. Hence, nonnegative PUCS’s lead to sound
upper bounds on its expected accumulated cost.

Remark 11. We remark two points about general updates:
• As in Theorem 6.14, our approach for general updates
requires the PUCS to be nonnegative. However, note
that our approach for bounded updates (Section 6.2),
does not have this requirement.

• Since we are considering real-valued variables, un-
bounded updates cannot always be replacedwith bounded
updates and loops. (e.g. consider x := 3.1415 · x .)

7 Algorithmic Approach
In this section, we provide automated algorithms that, given
a program P , an initial valuation v∗, a linear invariant I and a

11



constant d , synthesize a PUCS/PLCS of degree d . For brevity,
we only describe our algorithm for PUCS synthesis. A PLCS
can be synthesized in the same manner. Our algorithms run
in polynomial time and reduce the problem of PUCS/PLCS
synthesis to a linear programming instance by applying Han-
delman’s theorem.

In order to present Handelman’s theorem, we need a few
basic definitions. Let X be a finite set of variables and Γ ⊆

R[X ] a finite set of linear functions (degree-1 polynomials)
over X . We define ⟨Γ⟩ ⊆ ValX as the set of all valuations v
to the variables in X that satisfy дi (v) ≥ 0 for all дi ∈ Γ. We
also define the monoid set of Γ as

Monoid(Γ) :=

{
t∏
i=1

дi | t ∈ N ∪ {0} ∧ д1, . . . ,дt ∈ Γ

}
.

By definition, it is obvious that if д ∈ Monoid(Γ), then for
every v ∈ ⟨Γ⟩, we have д(v) ≥ 0. Handelman’s theorem
characterizes every polynomial д that is positive over ⟨Γ⟩.

Theorem7.1 (Handelman’s Theorem [50]). Letд ∈ R[X ]

and д(x) > 0 for all x ∈ ⟨Γ⟩. If ⟨Γ⟩ is compact, then

д =
s∑

k=1
ck · fk (†)

for some s ∈ N, c1, . . . , cs > 0 and f1, . . . , fs ∈ Monoid(Γ).

Intuitively, Handelman’s theorem asserts that every poly-
nomial д that is positive over ⟨Γ⟩ must be a positive linear
combination of polynomials in Monoid(Γ). This means that
in order to synthesize a polynomial that is positive over ⟨Γ⟩
we can limit our attention to polynomials of the form (†).
When using Handelman’s theorem in our algorithm, we fix
a constant K and only consider those elements ofMonoid(Γ)
that are obtained by K multiplicands or less.
We now have all the required tools to describe our algo-

rithm for synthesizing a PUCS.

PUCS Synthesis Algorithm. The algorithm has four steps:
(1) Creating a Template for h. Let X = Vp be the set of pro-

gram variables. According to (C1), we aim to synthesize
a PUCS h, such that for each label ℓi of the program,
h(ℓi ) is a polynomial of degree at most d over X . Let
Md (X ) = { f̄1, f̄2, . . . , f̄r } be the set of all monomials of
degree at most d over the variables X . Then, h(ℓi ) has to
be of the form

∑r
j=1 ai j · f̄j for some unknown real values

ai j . We call this expression a template for h(ℓi ). Note
that by condition (C2) the template for h(ℓout) is simply
h(ℓout) = 0. The algorithm computes these templates at
every label ℓi , treating the ai j ’s as unknown variables.

(2) Computing Pre-expectation. The algorithm symbolically
computes a template for preh using Definition 6.3 and
the template obtained for h in step (1). This template will
also contain ai j ’s as unknown variables.

(3) Pattern Extraction. The algorithm then processes condi-
tion (C3) by symbolically computing polynomials д =

h(ℓi ) − preh(ℓi ) for every label ℓi . Then, as in Handel-
man’s theorem, it rewrites each д on the left-hand-side
of the equations above in the form (†), using the linear
invariant I (ℓi ) as the set Γ of linear functions. The non-
negativity ofh is handled in a similar way. This effectively
translates (C3) and the nonnegativity into a system S of
linear equalities over the ai j ’s and the new nonnegative
unknown variables ck resulting from equation (†).

(4) Solution via Linear Programming. The algorithm calls an
LP-solver to find a solution of S that optimizes h(ℓin, v∗).
If the algorithm is successful, i.e. if the obtained system

of linear equalities is feasible, then the solution to the LP
contains values for the unknowns ai j and hence, we get the
coefficients of the PUCS h. Note that we are optimizing for
h(ℓin, v∗), so the obtained PUCS is the one that produces the
best polynomial upper bound for the expected accumulated
cost of P with initial valuation v∗. We use the same algorithm
for PLCS synthesis, except that we replace (C3) with (C3’).

Theorem 7.2. The algorithm above has polynomial runtime
and synthesizes sound upper and lower bounds for the ex-
pected accumulated cost of the given program P .

Proof. Step (1) ensures that (C1), (C2) are satisfied, while step
(3) forces the polynomials h and д’s to be nonnegative, ensur-
ing nonnegativity and (C3). So the synthesized h is a PUCS.
Steps (1)–(3) are polynomial-time symbolic computations.
Step (4) solves an LP of polynomial size. Hence, the runtime
is polynomial wrt the length of the program. The reasoning
for PLCS synthesis is similar. □

Example 7.3. Consider the program in Figure 9 (Page 10).
Let the initial valuation be x0 = 100,y0 = 0. To obtain a
quadratic PUCS, i.e.d = 2, our algorithm proceeds as follows:
(1) A quadratic template is created forh, by settingh(ℓn ,x ,y) :=

an1 · x
2 + an2 · xy + an3 · x + an4 ·y

2 + an5 ·y + an6. This
template contains all monomials of degree 2 or less.

(2) A template for the function preh is computed in the same
manner as in Example 6.4, except for that the computa-
tion is now symbolic and contains the unknown variables
ai j . The resulting template is presented in Table 1.

(3) For each label ℓi , the algorithm symbolically computes
д = h(ℓi ) − preh(ℓi ). For example, for ℓ3, the algorithm
computes д(x ,y) = h(ℓ3,x ,y) − preh(ℓ3,x ,y) = (a31 −

a41) · x
2 + a32 · xy + (a33 −

1
3a42 − a43) · x + a34 ·y

2 + a35 ·

y + a36 − a44 −
1
3a45 − a46. It then rewrites д according

to (†) using Γ = {x}, i.e. д(x ,y) =
∑
ck · fk (x ,y). This is

because we need to ensure д ≥ 0 to fulfill condition (C3).
This leads to the polynomial equation

∑
ck · fk (x ,y) =

(a31−a41)·x
2+a32 ·xy+(a33−

1
3a42−a43)·x+a34 ·y

2+a35 ·y+

a36−a44−
1
3a45−a46. Note that both sides of this equation

are polynomials. The coefficients of the polynomial on
the LHS are combinations of ck ’s and those of the RHS
are combinations of ai j ’s. Given that two polynomials
are equal if and only if all of their corresponding terms
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Table 1. Template for preh of the program in Figure 9

n preh (ℓn, x, y)
1 1x≥1 · (a21 · x 2 + a22 · xy + a23 · x + a24 ·y2 + a25 ·y + a26)+ 1x<1 · 0
2 a31 ·x 2+a32 ·xy+(a33−a31)·x+a34 ·y2+(a35−

1
2a32)·y+a31−

1
2a33+a36

3 a41 · x 2 + ( 1
3a42 + c43) · x + a44 +

1
3a45 + a46

4 a11 · x 2 + (a12 + 1) · xy + a13 · x + a14 · y2 + a15 · y + a16
5 0

have the same coefficients, the equality above can be
translated to several linear equations in terms of the ck ’s
and ai j ’s by equating the coefficient of each term on both
sides. These linear equations are generated at every label.

(4) The algorithm calls an LP-solver to solve the system
consisting of all linear equations obtained in step (3).
Given that we are looking for an optimal upperbound on
the expected accumulated cost with the initial valuation
x0 = 100,y0 = 0, the algorithm minimizes h(ℓ1, 100, 0) =
10000 ·a11+100 ·a13+a16 subject to these linear equations.

In this case, the resulting values for ai j ’s lead to the same
PUCS h as in Figure 9. So the upper bound on the expected
accumulated cost is 1

3x
2
0 +

1
3x0 = 3366.6. The algorithm can

similarly synthesize a PLCS. In this case, the same function h
is reported as a PLCS. Therefore, the exact expected accumu-
lated cost of this program is 3366.6 and our algorithm is able
to compute it precisely. See Appendix E for more details.

8 Experimental Results
We now report on an implementation of our approach and
present experimental results. First, we compare our approach
with [74]. Then, we show that our approach is able to handle
programs that no previous approach could.
Implementation and Environment. We implemented our
approach in Matlab R2018b. We used the Stanford Invariant
Generator [82] to find linear invariants and the tool in [18] to
ensure the concentrated termination property for the input
programs. The results were obtained on a Windows machine
with an Intel Core i7 3.6GHz processor and 8GB of RAM.
Comparison with [74]. We ran our approach on several
benchmarks from [74]. The results are reported in Table 2. In
general, the upper bounds obtained by our approach and [74]
are very similar. We obtain identical results on most bench-
marks. Specifically, our leading coefficient is never worse
than [74]. The only cases where we get different bounds
are rdseql (our bound is worse by a small additive con-
stant), condand (our bound is better by a small additive con-
stant), pol04 (our bound is worse only in a non-leading
coefficient), pol05 (our bound is better in the leading coeffi-
cient). Moreover, note that we provide lower bounds through
PLCS, while [74] cannot obtain any lower bounds.
Experimental Results on New Benchmarks. Table 3 pro-
vides our experimental results over ten new benchmarks.
These include the four motivating examples of Section 3, our

running example, and five other classical programs. In each
case, we optimized the bounds wrt a fixed initial valuation v0.
We report the upper (resp. lower) bound obtained through
PUCS (resp. PLCS). Note that we do not have lower bounds
for the Species Fight example as its updates are unbounded.
See Appendix F for plots and details about the benchmarks.
In all cases of Table 3, the obtained lower and upper bounds
are very close, and in many cases they meet. Hence, our
approach can obtain tight bounds on the expected accumu-
lated cost of a variety of programs that could not be handled
by any previous approach. Moreover, the reported runtimes
show the efficiency of our algorithms in practice.

9 Related Work
Termination and cost analysis. Program termination has
been studied extensively [11, 28–30, 33, 68–70, 94]. Auto-
mated amortized cost analysis has also been widely stud-
ied [5, 18, 41, 47–49, 53, 55–59, 63, 64, 86]. Other resource
analysis approaches include: (a) recurrence relations for
worst-case analysis [2–4, 39, 46]; (b) average-case analysis by
recurrence relations [21] and (c) using theorem-proving [90].
These approaches do not consider probabilistic programs.
Ranking functions. Ranking functions have been widely
studied for intraprocedural analysis [13, 14, 19, 27, 31, 79, 84,
89, 99]. Most works focus on linear/polynomial ranking func-
tions and target non-probabilistic programs [27, 31, 79, 84, 89,
99]. They have been extended in various directions, such as:
symbolic approaches [15], proof rules for deterministic pro-
grams [51], sized types [25, 60, 61], and polynomial resource
bounds [85]. Moreover, [47] generates bounds through ab-
stract interpretation using inference systems. However all of
these methods are also for non-probabilistic programs only.
Ranking supermartingales. Ranking functions have been
extended to ranking supermartingales and studied in [1, 16–
18, 22, 24, 38]. Proof rules for probabilistic programs are
provided in [62, 76]. However, these works consider quali-
tative termination problems. They do not consider precise
cost analysis, which is the focus of our work.
Cost analysis for probabilistic programs.Themost closely-
related work is [74]. A detailed comparison has been already
provided in Section 4. In particular, we handle positive and
negative costs, as well as unbounded costs, whereas [74] can
handle only positive bounded costs. Another related work
is [20] which considers succinct Markov decision processes
(MDPs) and bounds for such MDPs. However, these MDPs
only have single while loops and only linear bounds are
obtained. Our approach considers polynomial bounds for
general probabilistic programs.
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Table 2. Comparison of our approach with [74].

Program Upper bound of [74] h(ℓin, v) in PUCS h(ℓin, v) in PLCS
ber 2 · n − 2 · x 2 · n − 2 · x 2 · n − 2 · x − 2
bin 0.2 · n + 1.8 0.2 · n + 1.8 0.2 · n − 0.2

linear01 0.6 · x 0.6 · x 0.6 · x − 1.2
prdwalk 1.14286 · n − 1.14286 · x + 4.5714 1.14286 · n − 1.14286 · x + 4.5714 1.14286 · n − 1.14286 · x − 1.1429
race 0.666667 · t − 0.666667 · h + 6 2

3 · t − 2
3 · h + 6 2

3 · t − 2
3 · h

rdseql 2.25 · x + y 2.25 · x + y + 2.25 2 · x
rdwalk 2 · n − 2 · x + 2 2 · n − 2 · x + 2 2 · n − 2 · x − 2
sprdwalk 2 · n − 2 · x 2 · n − 2 · x 2 · n − 2 · x − 2
C4B_t13 1.25 · x + y 1.25 · x + y x − 1
prnes 0.052631 · y − 68.4795 · n 0.05263 · y − 68.4795 · n −10 · n − 10
condand m + n m + n − 1 0
pol04 4.5 · x 2 + 7.5 · x 4.5 · x 2 + 10.5 · x 0
pol05 x 2 + x 0.5 · x 2 + 2.5 · x 0
rdbub 3 · n2 3 · n2 0
trader −5 · s2

min − 5 · smin + 5 · s2 + 5 · s −5 · s2
min − 5 · smin + 5 · s2 + 5 · s 0

Table 3. Symbolic upper and lower bounds, i.e. h(ℓin, v), obtained through PUCS and PLCS.

Program v0 h(ℓin, v) in PUCS h(ℓin, v) in PLCS Runtime (s)
Bitcoin Mining

(Figure 3) x0 = 100 1.475 − 1.475 · x −1.5 · x 9.24

Bitcoin Mining Pool
(Figure 4) y0 = 100 −7.375 · y2 − 41.62 · y + 49.0 −7.5 · y2 − 67.5 · y 27.81

Queuing Network
(Figure 6) n0 = 320 0.0492 · n − 0.0492 · i + 0.0103 · l 2

1 +

0.00342 · l 3
2 + 0.00726 · l 2

2 + 0.0492
0.0384 · n − 0.0384 · i − (1.76 × 10−4) · l 2

1 −

0.00854 · l1 · l 2
2 − (8.16 × 10−5) · l 3

2 −

0.00173 · l 2
2 + 0.0384

282.44

Species Fight
(Figure 8) a0 = 16, b0 = 10 40 · a · b − 180 · b − 180 · a + 810 – 16.30

Figure 2 x0 = 200 1
3 · x 2 + 1

3 · x 1
3 · x 2 + 1

3 · x − 2
3 6.00

Nested Loop i0 = 150 1
3 · i2 + i 1

3 · i2 − 1
3 · i 31.73

Random Walk x0 = 12, n0 = 20 2.5 · x − 2.5 · n 2.5 · x − 2.5 · n − 2.5 15.02
2D Robot x0 = 100, y0 = 80 1.728 · x 2 − 3.456 · x · y + 31.45 · x +

1.728 · y2 − 31.45 · y + 126.5
1.728 · x 2 − 3.456 · x · y + 31.45 · x +

1.728 · y2 − 31.45 · y
40.28

Goods Discount n0 = 200, d0 = 1 0.00667 · d · n − 0.7 · n − 3.803 · d +
0.00222 · d2 + 119.4

0.00667 · d · n − 0.7133 · n − 3.812 · d +
0.00222 · d2 + 112.4

16.89

Pollutant Disposal n0 = 200 −0.2 · n2 + 50.2 · n −0.2 · n2 + 50.2 · n − 482.0 19.53

10 Conclusion
We considered the problem of cost analysis of probabilistic
programs. While previous approaches only handled positive
bounded costs, our approach can derive polynomial bounds
for programs with both positive and negative costs. It is
sound for general costs and bounded updates, and general
updates with nonnegative costs. However, finding sound
approaches that can handle general costs and general updates
remains an interesting direction for future work. Another
interesting direction is finding non-polynomial bounds.
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A Conditional Expectation
Let X be any random variable from a probability space
(Ω,F ,P) such that E(|X |) < ∞. Then given any σ -algebra
G ⊆ F , there exists a random variable (from (Ω,F ,P)), con-
ventionally denoted by E(X |G), such that
(E1) E(X |G) is G-measurable, and
(E2) E (|E(X |G)|) < ∞, and
(E3) for all A ∈ G, we have

∫
A E(X |G) dP =

∫
A X dP.

The random variable E(X |G) is called the conditional ex-
pectation of X given G. The random variable E(X |G) is a.s.
unique in the sense that if Y is another random variable
satisfying (E1)–(E3), then P(Y = E(X |G)) = 1.
Conditional expectation has the following properties for

any random variablesX ,Y and {Xn}n∈N0 (from a same proba-
bility space) satisfyingE(|X |) < ∞,E(|Y |) < ∞,E(|Xn |) < ∞

(n ≥ 0) and any suitable sub-σ -algebras G,H :
(E4) E (E(X |G)) = E(X ) ;
(E5) if X is G-measurable, then E(X |G) = X a.s.;
(E6) for any real constants b,d ,

E(b · X + d · Y |G) = b · E(X |G) + d · E(Y |G) a.s.;

(E7) ifH ⊆ G, then E(E(X |G)|H) = E(X |H) a.s.;
(E8) if Y is G-measurable and E(|Y |) < ∞, E(|Y · X |) < ∞,

then

E(Y · X |G) = Y · E(X |G) a.s.;

(E9) if X is independent of H , then E(X |H) = E(X ) a.s.,
where E(X ) here is deemed as the random variable
with constant value E(X );

(E10) if it holds a.s that X ≥ 0, then E(X |G) ≥ 0 a.s.;
(E11) if it holds a.s. that (i) Xn ≥ 0 and Xn ≤ Xn+1 for all n

and (ii) lim
n→∞

Xn = X , then

lim
n→∞
E(Xn |G) = E(X |G) a.s.

(E12) if (i) |Xn | ≤ Y for all n and (ii) lim
n→∞

Xn = X , then

lim
n→∞
E(Xn |G) = E(X |G) a.s.

(E13) if д : R→ R is a convex function and E(|д(X )|) < ∞,
then д(E(X |G)) ≤ E(д(X )|G) a.s.

We refer to [98, Chapter 9] for more details.

B Detailed Syntax
In the sequel, we fix two countable sets of program variables
and sampling variables. W.l.o.g, these three sets are pairwise
disjoint.
Informally, program variables are variables that are di-

rectly related to the control-flow of a program, while sam-
pling variables reflect randomized inputs to the program.
Every program variable holds an integer upon instantiation,
while every sampling variable is bound to a discrete proba-
bility distribution.
The Syntax. Below we explain the grammar in in Figure 1.

• Variables. Expressions ⟨pvar⟩ (resp. ⟨rvar⟩) range over
program (resp. sampling) variables.

• Constants. Expressions ⟨const⟩ range over decimals.
• Arithmetic Expressions. Expressions ⟨expr⟩ (resp. ⟨pexpr⟩)
range over arithmetic expressions over both program
and sampling variables (resp. program variables). As a
theoretical paper, we do not fix the syntax for ⟨expr⟩
and ⟨pexpr⟩.

• Boolean Expressions. Expressions ⟨bexpr⟩ range over
propositional arithmetic predicates over program vari-
ables.

• Nondeterminism. The symbol ‘⋆’ indicates a nondeter-
ministic choice to be resolved in a demonic way.

• Statements ⟨stmt⟩. Assignment statements are indi-
cated by ‘:=’; ‘skip’ is the statement that does nothing;
conditional branches and nondeterminism are both in-
dicated by the keyword ‘if’; while-loops are indicated
by the keyword ‘while’; sequential compositions are
indicated by semicolon; finally, tick statements are
indicated by ‘tick’.

C Detailed Semantics
Informally, a control-flow graph specifies how values for
program variables and the program counter change along
an execution of a program. We refer to the status of the
program counter as a label, and assign an initial label ℓin and
a terminal label ℓout to the start and the end of the program.
Moreover, we have five types of labels, namely assignment,
branching, probabilistic, nondeterministic and tick labels.

• An assignment label corresponds to an assignment
statement indicated by ‘:=’, and leads to the next label
right after the statement with change of values spec-
ified by the update function determined at the right-
hand-side of ‘:=’. The update function gives the next
valuation on program variables, based on the current
values of program variables and the sampled values
for this statement.

• A branching label corresponds to a conditional-branching
statement indicated by the keyword ‘if’ or ‘while’ to-
gether with a propositional arithmetic predicateϕ over
program variables (as the condition or the loop guard),
and leads to the next label determined by ϕ without
change on values.

• A probabilistic label corresponds to a probabilistic-
branching statement indicated by the keywords ‘if’
and ‘prob(p)’ with p ∈ [0, 1], and leads to the labels
of the then-branch with probability p and the else-
branches with probability 1 − p, without change on
values.

• A nondeterministic label corresponds to a nondeterministic-
branching statement indicated by the keywords ‘if’
and ‘⋆’, and leads to the labels of the then- and else-
branches without change on values.
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• A tick label corresponds to a tick statement ‘tick(q)’
that triggers a cost/reward, and leads to the next label
without change on values. The arithmetic expression q
determines a cost function that outputs a real number
(as the amount of cost/reward) upon the current values
of program variables for this statement.

It is intuitively clear that any probabilistic program can be
transformed into a CFG. We refer to existing results [18, 22]
for a detailed transformation from programs to CFGs.
Based on CFGs, the semantics of the program is given

by general state space Markov chains (GSSMCs) as follows.
Below we fix a probabilistic programW with its CFG in the
form (1). To illustrate the semantics, we need the notions
of configurations, sampling functions, runs and schedulers as
follows.
Configurations. A configuration is a triple (ℓ,ν ) where ℓ ∈ L
and ν ∈ ValVp . We say that a configuration (ℓ,ν ) is terminal
if ℓ = ℓout; moreover, it is nondeterministic if ℓ ∈ Lnd. Infor-
mally, a configuration (ℓ,ν ) specifies that the next statement
to be executed is the one labelled with ℓ and the current
values of program variables is specified by the valuation ν .
Sampling functions. A sampling function ϒ is a function as-
signing to every sampling variable r ∈ Vr a (possibly con-
tinuous) probability distribution over R. Informally, a sam-
pling function ϒ specifies the probability distributions for
the sampling of all sampling variables, i.e., for each r ∈ Vr,
its sampled value is drawn from the probability distribution
ϒ(r ).
Finite and infinite runs. A finite run ρ is a finite sequence
(ℓ0,ν0), . . . , (ℓn ,νn) of configurations. An infinite run is an
infinite sequence {(ℓn ,νn)}n∈N0 of configurations. The intu-
ition is that each ℓn and νn are the current program counter
and respectively the current valuation for program variables
at the nth step of a program execution.
Schedulers. A scheduler σ is a function that assigns to every
finite run ending in a nondeterministic configuration (ℓ,ν )
a transition with source label ℓ (in the CFG) that leads to
the target label as the next label. Thus, based on the whole
history of configuration visited so far, a scheduler resolves
the choice between the then- and else-branch at a nonde-
terministic branch.

Based on these notions, we can have an intuitive descrip-
tion on an execution of a probabilistic program. Given a
scheduler σ , the execution starts in an initial configuration
(ℓ0,ν0). Then in every step n ∈ N0, assuming that the current
configuration is cn = (ℓn ,νn), the following happens.

• If ℓn = ℓout (i.e., the program terminates), then (ℓn+1,νn+1) =

(ℓn ,νn). Otherwise, proceed as follows.
• A valuation r on the sampling variables is sampledw.r.t
the probability distributions in the sampling function
ϒ.

• A transition τ = (ℓn ,α
∗, ℓ∗) enabled at the current

configuration (ℓn ,νn) is chosen, and then the next con-
figuration is determined by the chosen transition. In
detail, we have the following.
– If ℓn ∈ La, then τ is chosen as the unique transi-
tion from ℓn such that α∗ is an update function,
and the next configuration (ℓn+1,νn+1) is set to be
(ℓ∗,α∗(νn , r)).

– If ℓn ∈ Lb, then τ is chosen as the unique transition
such that νn satisfies the propositional arithmetic
predicate α∗, and the next configuration (ℓn+1,νn+1)

is set to be (ℓ∗,νn).
– If ℓn ∈ Lp with the probability p specified in its
corresponding statement, then τ is chosen to be the
then-branch with probability p and the else-branch
with probability 1 − p, and the next configuration
(ℓn+1,νn+1) is set to be (ℓ∗,νn).

– If ℓn ∈ Lnd, then τ is chosen by the scheduler σ . That
is, if ρ = c0c1 · · · cn is the finite path of configura-
tions traversed so far, then τ equals σ (c0c1 · · · cn),
and the next configuration (ℓn+1,νn+1) is set to be
(ℓ∗,νn).

– If ℓn ∈ Lt, then τ is chosen as the unique transition
from ℓn such that α∗ is a cost function, then the next
configuration (ℓn+1,νn+1) is set to be (ℓ∗,νn) and the
statement triggers a cost of amount α∗(νn).

In this way, the scheduler and random choices eventually
produce a random infinite run in a probabilistic program.
Then given any scheduler that resolves nondeterminism, the
semantics of a probabilistic program is a GSSMC, where the
kernel functions can be directly defined over configurations
and based on the transitions in the CFG so that they specify
the probabilities of the next configuration given the current
configuration.
Given a scheduler σ and an initial configuration c , the

GSSMC of a probabilistic program induces a probability
space where the sample space is the set of all infinite runs,
the sigma-algebra is generated from cylinder sets of infi-
nite runs, and the probability measure is determined by the
scheduler and the random sampling in the program.

D Proofs for Martingale Results
D.1 The Extended OST
In the proof of the extended OST, for a stopping timeU and a
nonnegative integer n ∈ N0, we denote byU ∧n the random
variable min{U ,n}.

Theorem5.2. (The Extended OST) Consider any stopping
time U wrt a filtration {Fn}

∞
n=0 and any martingale (resp.

supermartingale) {Xn}
∞
n=0 adapted to {Fn}

∞
n=0 and let Y =

XU . Then the following condition is sufficient to ensure that
E (|Y |) < ∞ and E (Y ) = E(X0) (resp. E (Y ) ≤ E(X0)):
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• There exist real numbers M, c1, c2,d > 0 such that (i)
for sufficiently large n ∈ N, it holds that P(U > n) ≤
c1 · e

−c2 ·n and (ii) for all n ∈ N, |Xn+1 − Xn | ≤ M · nd

almost surely.

Proof. We only prove the “≤” case, the “=” case is similar.
For every n ∈ N0,

|XU∧n | =

�����X0 +

U∧n−1∑
k=0

(Xk+1 − Xk )

�����
=

�����X0 +

∞∑
k=0

(Xk+1 − Xk ) · 1U >k∧n>k

�����
≤ |X0 | +

∞∑
k=0

|(Xk+1 − Xk ) · 1U >k∧n>k |

≤ |X0 | +

∞∑
k=0

|(Xk+1 − Xk ) · 1U >k | .

Then

E

(
|X0 | +

∞∑
k=0

|(Xk+1 − Xk ) · 1U >k |

)
= (By Monotone Convergence Theorem)

E (|X0 |) +

∞∑
k=0
E (|(Xk+1 − Xk ) · 1U >k |)

= E (|X0 |) +

∞∑
k=0
E (|Xk+1 − Xk | · 1U >k )

≤ E (|X0 |) +

∞∑
k=0
E

(
λ · kd · 1U >k

)
= E (|X0 |) +

∞∑
k=0

M · kd · P (U > k)

≤ E (|X0 |) +

∞∑
k=0

M · kd · c1 · e
−c2 ·k

= E (|X0 |) +M · c1 ·

∞∑
k=0

kd · e−c2 ·k

< ∞ .

Thus, by Dominated Convergence Theorem and the fact that
XU = lim

n→∞
XR∧n a.s.,

E (XU ) = E
(

lim
n→∞

XU∧n

)
= lim

n→∞
E (XU∧n) .

Finally the result follows from properties for the stopped
process {XU∧n}n∈N0 that

E (XU ) ≤ E (X0) .

□

D.2 An Important Lemma
In this part, we prove an important lemma. Below we define
the following sequences of (vectors of) random variables:

• v0, v1, . . . where each vn represents the valuation to
program variables at the nth execution step of a prob-
abilistic program;

• u0, u1, . . . where each un represents the sampled val-
uation to sampling variables at the nth execution step
of a probabilistic program;

• ℓ0, ℓ1, . . . where each ℓn represents the label at the nth
execution step of a probabilistic program.

Lemma D.1. Let h be a PUCS and σ be any scheduler. Let
the stochastic process {Xn}n∈N0 be defined such that Xn :=
h(ℓn , vn). Then for all n ∈ N0, we have E(Xn+1 +Cn |Fn) ≤

preh(ℓn , vn).

Proof. For all n ∈ N0, from the program syntax we have

Xn+1 = 1ℓn=ℓout
· Xn + Yp + Ya + Ynd + Yt + Yb

where the terms are described below:

Yp :=
∑
ℓ∈Lp

1ℓn=ℓ ·
∑

i ∈{0,1}
1Bℓ=i · h(ℓBℓ=i , vn)


where each random variable Bℓ is the Bernoulli random
variable for the decision of the probabilistic branch and
ℓBℓ=0, ℓBℓ=1 are the corresponding successor locations of ℓ.
Note that all Bℓ ’s and u ’s are independent of Fn . In other
words, Yp describes the semantics of probabilistic locations.

Ya :=
∑
ℓ∈La

1ℓn=ℓ · h(ℓ
′, Fℓ(vn , u))

describes the semantics of assignment locations where ℓ′ is
its successor label.

Ynd :=
∑
ℓ∈Lnd

1ℓn=ℓ · h(σ (ℓ, vn) , vn)

describes the semantics of nondeterministic locations, where
σ (−,−) here denotes the target location of the transition
chosen by the scheduler σ .

Yt :=
∑
ℓ∈Lt

1ℓn=ℓ · h(ℓ
′, vn)

describes the semantics of tick locations.

Yb :=
∑
ℓ∈Lb

1ℓn=ℓ ·
∑

i ∈{1,2}
1vn |=ϕi · h(ℓi , vn)


describes the semantics of branching locations, where ϕ1 =

ϕ,ϕ2 = ¬ϕ and ℓ1, ℓ2 are the corresponding successor loca-
tions. Then from properties of conditional expectation, one
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obtains:

E(Xn+1 +Cn |Fn)

= E(Xn+1 |Fn) + E(Cn |Fn)

= 1ℓn=ℓout
· Xn + Y

′
p + Y

′
a + Ynd + Yt + Yb

+1ℓn ∈Lt
·Cn

where

Y ′
p :=

∑
ℓ∈Lp

1ℓn=ℓ ·
∑

i ∈{0,1}
P(Bℓ = i) · h(ℓBℓ=i , vn)


and

Y ′
a :=

∑
ℓ∈La

1ℓn=ℓ · Eu(h(ℓ
′, Fℓ(vn , u)))

This follows from the facts that (i) 1ℓn=ℓout
· Xn , Ynd , Yt , Yb

are measurable in Fn ; (ii) E(Cn |Fn) = 1ℓn=Lt
·Cn ; (iii) for Yp

and Ya , their conditional expectations are resp. Y ′
p , Y ′

a .
From (C3), when ℓn ∈ Lp∪La∪Lb, we have preh(ℓn , vn) =

1ℓn=ℓout
·Xn+Y

′
p+Y

′
a+Yb .When ℓn ∈ Lt, we havepreh(ℓn , vn) =

Yt +Cn . Then we get:

E(Xn+1 +Cn |Fn) = preh(ℓn , vn) .

When ℓn ∈ Lnd, we haveE(Xn+1 +Cn |Fn) = Ynd ≤ preh(ℓn , vn).
Hence the result follows. □

D.3 Polynomial Upper Cost Supermartingales
(PUCSs)

Theorem 6.10. (Soundness of PUCS) Consider a nondeter-
ministic probabilistic program P , with a linear invariant I
and a PUCS h. If P satisfies the concentration property and
the bounded update property, then supval(v) ≤ h(ℓin, v) for
all initial valuations v ∈ I (ℓin).

Proof of Theorem 6.10. Fix any scheduler σ and initial valu-
ation v for a nondeterministic probabilistic program P . Let
T = min{n | ℓn = ℓout}. By our assumption, E(T ) < ∞ un-
der σ . We recall the random variablesC0,C1, . . . where each
Cn represents the cost/reward accumulated during the nth
execution step of P .

We define the stochastic process {Xn}n∈N0 byXn = h(ℓn ,νn).
Then we define the stochastic process Y0,Y1, . . . by:

Yn := h(ℓn , vn) +
∑n−1
m=0Cm .

Furthermore, we accompany Y0,Y1, . . . with the filtration
F0,F1, . . . such that each Fn is the smallest sigma-algebra
thatmakes all randomvariables from {v0, . . . , vn}, {u0, . . . , un}
and {ℓ0, . . . , ℓn−1}measurable. Then by Lemma D.1, we have
E(Xn+1 +Cn |Fn) ≤ Xn .

Thus we get:

E(Yn+1 |Fn)

= E
(
Yn + h(ℓn+1, vn+1) − h(ℓn , vn) +Cn |Fn

)
= Yn +

(
E
(
h(ℓn+1, vn+1) +Cn |Fn

)
− h(ℓn , vn)

)
≤ Yn

Hence, {Yn}n∈N0 is a supermartingale. Moreover, we have
from the bounded-update property that

|Yn+1 − Yn | = |hn+1 +

n∑
m=1

Cm − hn −

n−1∑
m=1

Cm |

= |hn+1 − hn +Cn |

≤ |hn+1 − hn | + |Cn |

≤ M · nd + c ′′ · n

≤ M
d
· n

for someM > 0.
Thus, by applying Optional Stopping Theorem, we obtain
immediately that E(YT ) ≤ E(Y0). By definition,

YT = h(ℓT , vT ) +
∑T−1
m=1Cm =

∑T−1
m=1Cm .

It follows from (C2) that E(C∞) = E(
∑T−1
m=1Cm) ≤ E(Y0) =

h(ℓin, v). Since the scheduler σ is chosen arbitrarily, we ob-
tain that supval(v) ≤ h(ℓin, v). □

D.4 Polynomial Lower Cost Submartingales (PLCSs)
Theorem 6.12. (Soundness of PLCS) Consider a nondeter-
ministic probabilistic program P , with a linear invariant I
and a PLCS h. If P satisfies the concentration property and
the bounded update property, then supval(v) ≥ h(ℓin, v) for
all initial valuations v ∈ I (ℓin).

Proof of Theorem 6.12. We follow most definitions above. Fix
any scheduler σ and initial valuation v for a nondeterminis-
tic probabilistic program P . Let T = min{n | ℓn = ℓout}. By
our assumption, E(T ) < ∞ under σ . We recall the random
variables C0,C1, . . . where each Cn represents the cost/re-
ward accumulated during the nth execution step of P . We
define the stochastic process {Xn}n∈N0 by Xn = h(ℓn ,νn).
Then we define the stochastic process Y0,Y1, . . . by:

Yn := h(ℓn , vn) +
∑n−1
m=0Cm .

Furthermore, we accompany Y0,Y1, . . . with the filtration
F0,F1, . . . such that each Fn is the smallest sigma-algebra
thatmakes all randomvariables from {v0, . . . , vn}, {u0, . . . , un−1}

and {ℓ0, . . . , ℓn}measurable. Then by (C3’), we haveE(Xn+1 +Cn |Fn) ≥

h(ℓn , vn).
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Thus we get:

E(Yn+1 |Fn)

= E
(
Yn + h(ℓn+1, vn+1) − h(ℓn , vn) +Cn |Fn

)
= Yn +

(
E
(
h(ℓn+1, vn+1) +Cn |Fn

)
− h(ℓn , vn)

)
≥ Yn

Hence, {Yn}n∈N0 is a submartingale, so {−Yn}n∈N0 is a su-
permartingale. Moreover, we have from the bounded update
property that

| − Yn+1 − (−Yn)| = |Yn+1 − Yn |

= |hn+1 +

n∑
m=1

Cm − hn −

n−1∑
m=1

Cm |

= |hn+1 − hn +Cn |

≤ |hn+1 − hn | + |Cn |

≤ M · nd + c ′′ · n

≤ M
d
· n

for someM > 0.
Thus, by applying Optional Stopping Theorem, we obtain
immediately that E(−YT ) ≤ E(−Y0), so E(YT ) ≥ E(Y0). By
definition,

−YT = −h(ℓT , vT ) −
∑T−1
m=1Cm = −

∑T−1
m=1Cm .

It follows from (C2) that E(C∞) = E(
∑T−1
m=1Cm) ≥ E(Y0) =

h(v). Since the scheduler σ is chosen arbitrarily, we obtain
that supval(v) ≥ h(v).

□

D.5 Unbounded Nonnegative Costs and General
Updates

Theorem 6.14. (Soundness of nonnegative PUCS) Consider
a nondeterministic probabilistic program P , with a linear
invariant I and a nonnegative PUCS h. If all the step-wise
costs in P are always nonnegative, then supval(v) ≤ h(ℓin, v)
for all initial valuations v ∈ I (ℓin).

Proof of Theorem 6.14. We also followmost definitions above.
Fix any scheduler σ and initial valuation v for a nondeter-
ministic probabilistic program P . LetT = min{n | ℓn = ℓout}.
By our assumption, E(T ) < ∞ under σ . We recall the random
variables C0,C1, . . . where each Cn represents the cost/re-
ward accumulated during the nth execution step of P . Then
we define the stochastic process X0,X1, . . . by:

Xn := h(ℓn , vn) .

Furthermore, we accompany X0,X1, . . . with the filtration
F0,F1, . . . such that each Fn is the smallest sigma-algebra
thatmakes all randomvariables from {v0, . . . , vn}, {u0, . . . , un−1}

and {ℓ0, . . . , ℓn−1} measurable. Then by C3, we have

E(Xn+1 +Cn |Fn) ≤ Xn .

Thus we get:

E(Xn+1 +Cn |Fn) ≤ Xn

⇔ E(E(Xn+1 +Cn |Fn)) ≤ E(Xn)

⇔ E(Xn+1 +Cn) ≤ E(Xn)

⇔ E(Xn+1) + E(Cn) ≤ E(Xn)

(By Induction)

⇔ E(Xn+1) +

n∑
m=0
E(Cm) ≤ E(X0)

(By C2)

⇔

n∑
m=0
E(Cm) ≤ E(X0)

(By Monotone Convergence Theorem)

⇔ E(
n∑

m=0
Cm) ≤ E(X0)

The Induction is:

E(Xn) + E(Cn−1) ≤ E(Xn−1)

⇔ E(Xn) ≤ E(Xn−1) − E(Cn−1)

E(Xn−1) + E(Cn−2) ≤ E(Xn−2)

⇔ E(Xn−1) ≤ E(Xn−2) − E(Cn−2)

Then

E(Xn) ≤ E(Xn−1) − E(Cn−1)

⇔ E(Xn) ≤ E(X0) −

n−1∑
m=0
E(Cm)

Because all the PUCSs are nonnegative, we can getE(Xn+1) ≥

0. When n → ∞, we obtain

E(
∞∑

m=0
Cm) ≤ E(X0) .

Since the scheduler σ is chosen arbitrarily, we obtain that
supval(v) ≤ h(v).

□

E Details of Example 7.3
Since our algorithm is technical, we will illustrate the com-
putational steps of the our algorithms on the example in
Figure 2.

Example E.1 (Illustration of our algorithms). We consider
the example in Figure 2, and assign the invariant I as in
Figure 9.

Firstly, the algorithm sets up a quadratic template h for a
PUCS by setting h(ℓn ,x ,y) := an1 ·x

2+an2 ·xy+an3 ·x+an4 ·

y2 +an5 ·y +an6 for each ℓn(n = 1, . . . , 4) and h(ℓ5,x ,y) = 0
because ℓ5 = ℓout, where anp are scalar variables for n =
1, . . . , 4 and p = 1, . . . , 6.

Next we compute the pre-expectations of this example.
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• ℓ1 ∈ Lb,

preh(ℓ1,x ,y) = 1ℓ′=ℓ2 · h(ℓ2,x ,y) + 1ℓ′=ℓ5 · h(ℓ5,x ,y)

= 1ℓ′=ℓ2 · (a21 · x
2 + a22 · xy + a23 · x

+a24 · y
2 + a25 · y + a26) + 1ℓ′=ℓ5 · 0

• ℓ2 ∈ La,

preh(ℓ2,x ,y) = ER [h(ℓ3,x + r ,y)]

= ER [a31 · (x + r )
2 + a32 · (x + r )y

+a33 · (x + r ) + a34 · y
2 + a35 · y + a36]

= a31 · x
2 + a32 · xy + (a33 − a31) · x

+a34 · y
2 + (a35 −

1
2
a32) · y + a31

−
1
2
a33 + a36

• ℓ3 ∈ La,

preh(ℓ3,x ,y) = ER [h(ℓ4,x , r
′)]

= ER [a41 · x
2 + a42 · x · r ′ + a43 · x

+a44 · r
′2 + a45 · r

′ + a46]

= a41 · x
2 + (

1
3
a42 + a43) · x + a44

+
1
3
a45 + a46

• ℓ4 ∈ Lt,

preh(ℓ4,x ,y) = h(ℓ1,x ,y) + ER (x · y)

= a11 · x
2 + a12 · xy + a13 · x + a14 · y

2

+a15 · y + a16 + xy

= a11 · x
2 + (a12 + 1) · xy + a13 · x

+a14 · y
2 + a15 · y + a16

Let the maximal number of multiplicands t inMonoid(Γ)
be 2, the form of Eq. (♯) is as following:

• (label 1) (1)ℓ′ = ℓ2

Γ = {x ,x − 1}
u1 = 1,u2 = x ,u3 = x − 1,u4 = x2 − x ,

u5 = x2,u6 = x2 − 2x + 1;
д(x) = b1 + b2x + b3(x − 1) + b4(x

2 − x) + b5x
2

+b6(x
2 − 2x + 1)

= (b4 + b5 + b6)x
2 + (b2 + b3 − b4 − 2b6)x

+b1 − b3 + b6

(2)ℓ′ = ℓ5

Γ = {x , 1 − x}

u1 = 1,u2 = x ,u3 = 1 − x ,u4 = x − x2,

u5 = x2,u6 = 1 − 2x + x2;
д(x) = b7 + b8x + b9(1 − x) + b10(x − x2) + b11x

2

+b12(1 − 2x + x2)

= (b11 + b12 − b10)x
2 + (b8 − b9 + b10 − 2b12)x

+b7 + b12

for bi ≥ 0, i = 1, . . . , 12.
• (label 2)

Γ = {x − 1}
u1 = 1,u2 = x − 1,u3 = x2 − 2x + 1;

д(x) = c1 + c2(x − 1) + c3(x
2 − 2x + 1)

= c3x
2 + (c2 − 2c3)x + c1 − c2 + c3

for c j ≥ 0, j = 1, 2, 3.
• (label 3)

Γ = {x}

u1 = 1,u2 = x ,u3 = x2;
д(x) = d1 + d2x + d3x

2

= d3x
2 + d2x + d1

for dl ≥ 0, l = 1, 2, 3.
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• (label 4)

Γ = {x , 1 − y, 1 + y}
u1 = 1,u2 = x ,u3 = 1 − y,u4 = 1 + y,
u5 = x(1 − y),u6 = x(1 + y),u7 = (1 − y)(1 + y),
u8 = x2,u9 = (1 − y)2,u10 = (1 + y)2;

д(x) = e1 + e2x + e3(1 − y) + e4(1 + y) + e5x(1 − y)

+e6x(1 + y) + e7(1 − y)(1 + y) + e8x
2

+e9(1 − y)2 + e10(1 + y)2

= e8x
2 + (e6 − e5)xy + (e2 + e5 + e6)x

+(e9 + e10 − e7)y
2 + (e4 − e3 − 2e9 + 2e10)y

+e1 + e3 + e4 + e7 + e9 + e10

for em ≥ 0,m = 1, . . . , 10.
Then we extract instances conforming to pattern д =

h(ℓ,ν ) − preh(ℓ,ν ) from C3.
• (C3, label 1)
(1)ℓ′ = ℓ2

д(x) = h(ℓ1,x ,y) − preh(ℓ1,x ,y)

= h(ℓ1,x ,y) − h(ℓ2,x ,y)

= (a11 − a21)x
2 + (a12 − a22)xy + (a13 − a23)x

+(a14 − a24)y
2 + (a15 − a25)y + a16 − a26

(2)ℓ′ = ℓ5

д(x) = h(ℓ1,x ,y) − preh(ℓ1,x ,y)

= h(ℓ1,x ,y) − h(ℓ5,x ,y)

= a11 · x
2 + a12 · xy + a13 · x + a14 · y

2

+a15 · y + a16

• (C3, label 2)

д(x) = h(ℓ2,x ,y) − preh(ℓ2,x ,y)

= (a21 − a31)x
2 + (a22 − a32)xy

+(a23 − a33 + a31)x + (a24 − a34)y
2

+(a25 − a35 +
1
2
a32)y + a26 − a31 +

1
2
a33 − a36

• (C3, label 3)

д(x) = h(ℓ3,x ,y) − preh(ℓ3,x ,y)

= (a31 − a41)x
2 + a32xy + (a33 −

1
3
a42 − a43)x

+a34y
2 + a35y + a36 − a44 −

1
3
a45 − a46

• (C3, label 4)

д(x) = h(ℓ4,x ,y) − preh(ℓ4,x ,y)

= (a41 − a11)x
2 + (a42 − a12 − 1)xy + (a43 − a13)x

+(a44 − a14)y
2 + (a45 − a15)y + a46 − a16

So we can translate them into systems of linear equalities.
(I) For label 1,

a11 − a21 = b4 + b5 + b6

a12 − a22 = 0
a13 − a23 = b2 + b3 − b4 − 2b6

a14 − a24 = 0
a15 − a25 = 0
a16 − a26 = b1 − b3 + b6

and 

a11 = b11 + b12 − b10

a12 = 0
a13 = b8 − b9 + b10 − 2b12

a14 = 0
a15 = 0
a16 = b7 + b12

(II) For label 2,

a21 − a31 = c3

a22 − a32 = 0
a23 − a33 + a31 = c2 − 2c3

a24 − a34 = 0
a25 − a35 +

1
2a32 = 0

a26 − a31 +
1
2a33 − a36 = c1 − c2 + c3

(III) For label 3,

a31 − a41 = d3

a32 = 0
a33 −

1
3a42 − a43 = d2

a34 = 0
a35 = 0
a36 − a44 −

1
3a45 − a46 = d1

(IV) For label 4,

a41 − a11 = e8

a42 − a12 − 1 = e6 − e5

a43 − a13 = e2 + e5 + e6

a44 − a14 = e9 + e10 − e7

a45 − a15 = e4 − e3 − 2e9 + 2e10

a46 − a16 = e1 + e3 + e4 + e7 + e9 + e10

Our target function is h(ℓ1,x0,y0), where x0,y0 are the
initial inputs and we fix x0 to be a proper large integer, i.e.
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x0 = 100, and y0 to be 0.

min a11x
2
0 + a13x0 + a16

subject to (I ), (I I ), (I I I ), (IV )

bi , c j ,dl , em ≥ 0,∀i, j, l ,m
Finally, the algorithm gives the optimal solutions through

linear programming such that:

h(ℓ1,x ,y) =
1
3
· x2 +

1
3
· x

h(ℓ2,x ,y) =
1
3
· x2 +

1
3
· x

h(ℓ3,x ,y) =
1
3
· x2 +

2
3
· x

h(ℓ4,x ,y) =
1
3
· x2 + xy +

1
3
· x

To find a PLCS for this example, the steps are similar. The
algorithm sets up a quadratic template h′ for a PLCS with
the similar form of the above PUCS h. By the same way, we
get the optimal solutions of the template h′ and find they
are the same as the PUCS’s.

By the definition of PUCS and PLCS (see Section 6), we can
conclude that this templateh is both PUCS and PLCS, and we
can get the accurate value of expected resource consumption
that E(C∞) = h(ℓ1,x0,y0) =

1
3x

2
0 +

1
3x0.

F Experimental Results
F.1 Benchmarks
We use ten example programs for our experimental results,
including (1) Bitcoin Mining (see Figure 3); (2) Bitcoin Min-
ing Pool (see Figure 4); (3) Queuing Network (see Figure 6);
(4) Species Fight (see Figure 8); (5) Simple Loop (see Figure 2);
(6) Nested Loop (see Figure 10); (7) Random Walk (see Fig-
ure 11); (8) 2D Robot (see Figure 12); (9) Goods Discount (see
Figure 13); and (10) Pollutant Disposal (see Figure 14).
We now provide a brief introduction about 2D Robot,

Goods discount, and Pollutant Disposal.
2D Robot.We consider a robot walking in a plane. Suppose
that the robot is initially located below the line y = x and
we want it to cross this line, i.e. the program continues until
the robot crosses the line. At each iteration, the robot prob-
abilistically chooses one of the following 9 directions and
moves in that direction: {0: North, 1: South, 2: East, 3: West, 4:
Northeast, 5: Southeast, 6: Northwest, 7: Southwest, 8: Stay}.
Moreover, the robot’s step size is a uniformly random vari-
able between 1 and 3. At the end of each iteration, a cost is
incurred, which is dependent on the distance between the
robot and the line y = x .
Goods Discount. Consider a shop that sells a specific type
of perishable goods with an expiration date. After a certain
number of days (30 days in our example), when the expiration
date is close, the goods have to be sold at a discount, which

will cause losses. Moreover, stocking goods takes up space,
which also incurs costs. On the other hand, selling goods
leads to a reward. In this example, we model this scenario
as follows: n is the number of goods which are on sale, d is
the number of days after the goods are manufactured and
each time one piece of goods is sold, d will be incremented
by a random variable r which has a uniform distribution
[1, 2] (This models the time it takes to sell the next piece).
The program starts with the initial value n = a , d = b
and terminates if d exceeds 30 days, which will eventually
happen with probability 1.

Pollutant Disposal. We consider a pollutant disposal fac-
tory that has two machines A and B. At first, the factory is
given an initial amount of pollutants to dispose of. At each
iteration, the factory uses machine A with probability 0.6
and machine B with probability 0.4. Machine A can dispose
of r1 units of pollutants, while creating r ′1 new units of pol-
lutants in the process. Similarly, machine B can dispose of r2
units by creating r ′2 new units of pollutants. The sampling
variables r1, r2 are integer-valued random variables which
have an equivalent sampling rate between 1 and 10. Simi-
larly, r ′1, r

′
2 are integer-valued random variables which have

an equivalent sampling rate between 2 and 8. There is a re-
ward associated with disposing of each unit of pollutants. On
the other hand, at the end of each iteration, a cost is incurred
which is proportional to the amount of remaining pollutants.

1 : while i ≥ 1 do
2 : x := i ;
3 : while x ≥ 1 do
4 : x := x + r ;
5 : y := r ′ ;
6 : tick(y)

od
7 : i := i + r ′′ ;
8 z := r ′′′ ;
9 : tick(−z ∗ i)

od
10 :

Figure 10. A Nested Loop Example
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P(r = 1) = 0.25,P(r = −1) = 0.75
while x ≤ n do

i f prob ( 0 . 6 ) then
x : = x+1

e l se
x : = x−1

f i ;
y = r ;
t i ck (y)

od

Figure 11. rdwalk

x : = a ; y : = b ;
while y ≤ x do

i f prob(0.2) then
y := y + r0

e l se i f prob(0.125) then
y := y − r1

e l se i f prob(0.143) then
x := x + r2

e l se i f prob(0.167) then
x := x − r3

e l se i f prob(0.2) then
x := x + r4 ;
y := y + r ′4

e l se i f prob(0.25)then
x := x + r5 ;
y := y − r ′5

e l se i f prob(0.333) then
x := x − r6 ;
y := y + r ′6

e l se i f prob(0.5) then
x := x − r7 ;
y := y − r ′7

e l se skip
f i f i f i f i f i f i f i f i ;
t i ck (0.707 ∗ (x − y))

od

Figure 12. 2D Robot

n : = a ; d : = 1 ;
while d ≤ 30 and n >= 1 do

n := n − 1 ;
t i ck (5) ;
d := d + r ;
t i ck (−0.01 ∗ n)

od ;
t i ck (−0.5 ∗ n)

Figure 13. Goods Discount

n : = a ;
while n ≥ 10 do

i f prob(0.6) then
x := r1 ;
n := n − x + r ′1 ;
t i ck (5 ∗ x)

e l se
y := r2 ;
n := n − y + r ′2 ;
t i ck (5 ∗ y)

f i ;
t i ck (−0.2 ∗ n)

od

Figure 14. Pollutant Disposal

F.2 Numeric Bounds and Plots
Table 4 shows the numeric upper and lower bounds obtained
for each benchmark over several initial valuations. In each
case, we report the upper bound obtained through PUCS,
the runtime of our PUCS synthesis algorithm, the lower
bound obtained through PLCS, and the runtime of our PLCS
synthesis algorithm. Moreover, we simulated 1000 runs of
each program with each initial value, computed the resulting
costs, and reported the mean µ and standard deviation σ of
the costs. Note that we do not have simulation results for
Bitcoin mining examples as they involve nondeterminism.
Also we do not have lower bounds for species fight example
as its updates are unbounded.
In another experiment, we set the time limit for simu-

lations to the time it takes for our approach to synthesize
a PUCS/PLCS. We also replaced the nondeterministic if ⋆
statements with probabilistic if prob(0.5). The results are
reported in Table 5.

In a third experiment, we simulated each example program
over 20 different initial valuations (1000 simulated executions
for each valuation) to experimentally compare upper and
lower bounds obtained using our approach with simulations
(Figures 15–24).
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Table 4. Experimental Results. All times are reported in seconds.

Benchmark v0 PUCS PLCS Simulation
Program h(ℓin, v0) T h(ℓin, v0) T µ σ

Bitcoin Mining x0 = 20 −28.03 4.69 −30.00 4.73 – –
(Figure 3) x0 = 50 −72.28 4.66 −75.00 4.63 – –

x0 = 100 −146.03 4.62 −150.00 4.62 – –
Bitcoin Mining Pool y0 = 20 −3.73 × 103 14.03 −4.35 × 103 13.73 – –

(Figure 4) y0 = 50 −2.05 × 104 13.78 −2.21 × 104 13.76 – –
y0 = 100 −7.79 × 104 13.96 −8.18 × 104 13.85 – –

Queuing Network n0 = 240 11.82 141.28 9.23 141.32 9.90 4.43
(Figure 6) n0 = 280 13.79 142.16 10.76 140.70 11.15 4.66

n0 = 320 15.76 141.02 12.30 141.42 12.99 5.29
Species Fight a0 = 12,b0 = 10 1.65 × 103 16.43 – – 817.40 379.28
(Figure 8) a0 = 14,b0 = 10 2.09 × 103 16.47 – – 971.86 453.89

a0 = 16,b0 = 10 2.53 × 103 16.30 – – 1.13 × 103 0.55 × 103

Figure 2 x0 = 100 3.37 × 103 3.05 3.37 × 103 3.03 3.41 × 103 0.90 × 103

x0 = 160 8.59 × 103 3.00 8.59 × 103 3.02 8.62 × 103 1.76 × 103

x0 = 200 1.34 × 104 3.00 1.34 × 104 3.00 1.35 × 104 0.25 × 104

Nested Loop i0 = 50 883.33 15.82 816.67 15.91 872.78 344.29
i0 = 100 3.43 × 103 16.13 3.30 × 103 15.89 3.43 × 103 0.90 × 103

i0 = 150 7.65 × 103 15.80 7.45 × 103 15.93 7.66 × 103 1.68 × 103

Random Walk x0 = 4,n0 = 20 −40.00 7.00 −42.50 7.07 −42.77 23.46
x0 = 8,n0 = 20 −30.00 6.96 −32.50 6.96 −32.32 21.27
x0 = 12,n0 = 20 −20.00 7.09 −22.50 7.93 −23.23 18.47

2D Robot x0 = 100,y0 = 40 8.23 × 103 20.11 8.11 × 103 20.03 7.96 × 103 5.83 × 103

x0 = 100,y0 = 60 4.15 × 103 20.16 4.02 × 103 20.13 4.01 × 103 3.64 × 103

x0 = 100,y0 = 80 1.45 × 103 20.15 1.32 × 103 20.13 1.36 × 103 2.00 × 103

Goods Discount n0 = 100,d0 = 1 46.30 8.42 37.89 8.45 41.45 4.22
n0 = 150,d0 = 1 11.63 8.43 2.56 8.43 6.33 3.84
n0 = 200,d0 = 1 −23.02 8.46 −32.77 8.43 −28.26 3.34

Pollutant Disposal n0 = 50 2.01 × 103 10.04 1.53 × 103 9.85 1.66 × 103 1.02 × 103

n0 = 80 2.74 × 103 9.78 2.25 × 103 9.88 2.42 × 103 1.13 × 103

n0 = 200 2.04 × 103 9.75 1.56 × 103 9.78 1.66 × 103 1.56 × 103
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Table 5. Experimental Results on Programs in which Nondeterminism is Replaced with Probability.

Benchmark v0 PUCS PLCS Simulation
Program h(ℓin, v0) T h(ℓin, v0) T µ σ

Modified Bitcoin Mining x0 = 20 −28.26 4.41 −29.75 4.24 −30.04 500.75
x0 = 50 −72.89 4.52 −74.38 4.33 −73.90 788.04
x0 = 100 −147.26 6.26 −148.75 6.12 −145.40 1.11 × 103

Modified Bitcoin Mining Pool y0 = 20 −3.77 × 103 14.62 −4.31 × 103 14.73 −4.26 × 103 7.00 × 103

y0 = 50 −2.06 × 104 14.88 −2.19 × 104 14.76 −2.27 × 104 1.86 × 104

y0 = 100 −7.85 × 104 14.93 −8.11 × 104 14.81 −7.92 × 104 3.93 × 104

Queuing Network n0 = 240 11.82 141.28 9.23 141.32 10.64 4.94
(Figure 6) n0 = 280 13.79 142.16 10.76 140.70 12.41 5.34

n0 = 320 15.76 141.02 12.30 141.42 14.17 5.69
Species Fight a0 = 12,b0 = 10 1.65 × 103 16.43 – – 808.20 379.91
(Figure 8) a0 = 14,b0 = 10 2.09 × 103 16.47 – – 978.48 458.93

a0 = 16,b0 = 10 2.53 × 103 16.30 – – 1.13 × 103 0.54 × 103

Figure 2 x0 = 100 3.37 × 103 3.05 3.37 × 103 3.03 3.36 × 103 0.92 × 103

x0 = 160 8.59 × 103 3.00 8.59 × 103 3.02 8.58 × 103 1.84 × 103

x0 = 200 1.34 × 104 3.00 1.34 × 104 3.00 1.34 × 104 0.26 × 104

Nested Loop i0 = 50 883.33 15.82 816.67 15.91 880.12 329.54
i0 = 100 3.43 × 103 16.13 3.30 × 103 15.89 3.40 × 103 0.92 × 103

i0 = 150 7.65 × 103 15.80 7.45 × 103 15.93 7.67 × 103 1.61 × 103

Random Walk x0 = 4,n0 = 20 −40.00 7.00 −42.50 7.07 −42.73 24.12
x0 = 8,n0 = 20 −30.00 6.96 −32.50 6.96 −32.43 20.86
x0 = 12,n0 = 20 −20.00 7.09 −22.50 7.93 −22.45 17.37

2D Robot x0 = 100,y0 = 40 8.23 × 103 20.11 8.11 × 103 20.03 8.17 × 103 6.19 × 103

x0 = 100,y0 = 60 4.15 × 103 20.16 4.02 × 103 20.13 4.08 × 103 3.85 × 103

x0 = 100,y0 = 80 1.45 × 103 20.15 1.32 × 103 20.13 1.36 × 103 2.07 × 103

Goods Discount n0 = 100,d0 = 1 46.30 8.42 37.89 8.45 41.43 4.23
n0 = 150,d0 = 1 11.63 8.43 2.56 8.43 6.48 3.76
n0 = 200,d0 = 1 −23.02 8.46 −32.77 8.43 −28.43 3.33

Pollutant Disposal n0 = 50 2.01 × 103 10.04 1.53 × 103 9.85 1.66 × 103 1.00 × 103

n0 = 80 2.74 × 103 9.78 2.25 × 103 9.88 2.38 × 103 1.11 × 103

n0 = 200 2.04 × 103 9.75 1.56 × 103 9.78 1.69 × 103 1.57 × 103
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Figure 15. Bitcoin Mining

Figure 16. Bitcoin Mining Pool

Figure 17. Queuing Network

Figure 18. Species Fight

Figure 19. Simple Loop

Figure 20. Nested Loop
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Figure 21. Random Walk

Figure 22. 2D Robot

Figure 23. Goods Discount

Figure 24. Pollutant Disposal
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