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Abstract
In this article it is shown that large systems with many interacting units 
endowing multiple phases display self-oscillations in the presence of linear 
feedback between the control and order parameters, where an Andronov–
Hopf bifurcation takes over the phase transition. This is simply illustrated 
through the mean field Landau theory whose feedback dynamics turn out to 
be described by the Van der Pol equation and it is then validated for the fully 
connected Ising model following heat bath dynamics. Despite its simplicity, 
this theory accounts potentially for a rich range of phenomena: here it is 
applied to describe in a stylized way (i) excess demand-price cycles due to 
strong herding in a simple agent-based market model; (ii) congestion waves 
in queuing networks triggered by user feedback to delays in overloaded 
conditions; and (iii) metabolic network oscillations resulting from cell growth 
control in a bistable phenotypic landscape.

Keywords: phase transitions, self-oscillations, Ising model, agent-based 
models, queuing networks, metabolic networks

(Some figures may appear in colour only in the online journal)

Introduction

From clocks to motors [1], many musical instruments [2, 3] (including our throat [4]), pump-
ing hearts [5], and firing neurons [6], many oscillatory systems are self-sustained [1]. Despite 
their many applications [7] to describe natural and engineering systems, a thorough physical 
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understanding of self-oscillations is lacking [8], in particular their emergence as a collec-
tive behavior in large systems, like the ones studied by statistical mechanics. This in turn 
hampers thermodynamic analysis, an aspect that has puzzled scholars since the first seminal 
articles on the subject, where self-oscillations were provokingly regarded as a form of per-
petual motion [9]. Oscillatory collective behaviors of many interacting units have been mainly 
investigated from the point of view of their synchronization where the interacting units are 
already assumed as linear oscillators [10, 11] or self-oscillators [12, 13]. In this work a differ-
ent route is taken and a general criterion will be given for the onset of self-oscillations in large 
systems in a fully self-organized way, without postulating that the elementary units are oscil-
lators. Rigorous criteria exist for the development of self-oscillations in dynamical systems 
[14]. From a more physical viewpoint, in particular in the context of electrical engineering, 
self-oscillations are triggered for a workload corresponding to the ‘negative resistance’ part of 
the current–voltage characteristic curve of active devices [1]. The key idea of this work is that 
systems with many interacting degrees of freedom that show phase coexistence, upon treating 
the equation of states on equal footing of characteristic curves, develop self-oscillations in 
the presence of feedback between the control and order parameters that try to force them on 
thermodynamically unstable branches. This is illustrated in a Gedankenexperiment in the next 
section where the feedback dynamics of the Landau mean field theory turn out to be described 
by the Van der Pol oscillator, a prediction that is successfully tested for the fully connected 
Ising model subject to heat bath dynamics. While in the Ising model the feedback is artificially 
introduced for illustrative purposes, in the following sections several different phenomena are 
considered in a stylized way in which the feedback is fully dynamically justified, namely (i) 
excess demand-price cycles due to strong herding in a simple agent-based market model; (ii) 
congestion waves in queuing networks triggered by user feedback to delays in overloaded 
conditions; (iii) metabolic network oscillations resulting from cell growth control in a bistable 
phenotypic landscape. In the conclusion results are summarized and several interesting out-
looks that stem from this work are pointed out.

Self-oscillating Ising model

Consider the following simple gedankenexperiment: we have a magnet in equilibrium in a 
given external magnetic field h and thermal bath of temperature T < Tc (where Tc is the 
critical temperature for the para-ferromagnetic transition) and we measure its magnetization 
m(T , h). Can we control and set it to m = 0 by tuning the external magnetic field with simple 
linear negative feedback dh ∝ −mdt , at fixed temperature? 

In the following it will be shown that this is not the case at least for the mean field case. In 
order to address the question formally, we consider the Landau expansion of the free energy 
density in the magnetization m  [15] with parameters β = 1/T  and h:

f (m) ∼ −1
2
(β − 1)m2 − mh +

1
12

m4 + . . . .� (1)

Equilibrium relaxation dynamics approximately follow the phenomenological equation (lin-
ear response, where the time unit coincides with the typical one) [16]

ṁ = − ∂f
∂m

.� (2)

The extrema of the free energy are thus equilibrium states of the system: without an exter-
nal magnetic field h = 0 we have m = 0 as the unique stable equilibrium point (node) as 
soon as β < 1, whereas for β > 1 this becomes unstable while the other two nodes appear at 
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m = ±
√

3(β − 1) which are stable equilibrium points (spontaneous symmetry breaking). Let 
us now add the linear negative feedback between the external field and the magnetization with 
timescale τ , i.e. τ ḣ = −m. We have the dynamical system

ṁ = h + (β − 1)m − m3

3
� (3)

τ ḣ = −m.� (4)

It is easy to see that for β > 1 this system has no stable steady states. Upon differentiating 
equation (3) and substituting the value of ḣ from equation (4) (Lienard transformation) we 
have the equivalent second-order system

m̈ − (β − 1 − m2)ṁ +
1
τ

m = 0.� (5)

Figure 1.  Weakly sinusoidal oscillations in the fully connected Ising model, β = 1.2, 
τ = 30, N = 104. Top: magnetization as a function of time. Bottom: limit cycle in the 
plane (m, h). From Monte Carlo simulations (points) and analytical calculations (lines).
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This is an instance of the Van der Pol equation [17], which is known to display self-oscillations 
for β > βc = 1 and the phase transition has been substituted by an Andronov–Hopf bifur-
cation. This prediction has been tested in the simplest microscopic setting, that is the fully 
connected Ising model. This is composed of N  spin variables si = ±1 interacting through 
pairwise homogeneous ferromagnetic couplings of strength J whose energy E  in an external 
magnetic field h is (M =

∑
i si)

E = −J/2NM2 − hM� (6)

and whose equilibrium configurations are given by the Boltzmann–Gibbs distribution

P(s) ∝ exp(−βE).� (7)

We will consider single spin flip heat bath dynamics, i.e. at each time step we choose one spin 
si uniformly at random and set its new state, given the magnetization density m = M/N , with 
probability

Figure 2.  Relaxation oscillations in the fully connected Ising model, β = 3, τ = 30, 
N = 104. Top: magnetization as a function of time. Bottom: limit cycle in the plane 
(m, h). From Monte Carlo simulations (points) and analytical calculations (lines).
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p(si = +1) =
1

e−β(Jm+h) + 1
� (8)

p(si = −1) =
1

eβ(Jm+h) + 1
� (9)

and update the external field with the prescribed feedback rule (∆t = 1/N)

∆h = −m/(Nτ).� (10)

Analytical insights can be obtained by means of a Van Kampen system size expansion along 
the following lines. Upon considering the induced evolution for the magnetization M from 

Figure 3.  The variance of the magnetization σ2 as a function of time along a cycle in 
the fully connected feedback Ising model with β = 1.2, τ = 30 from analytical Van 
Kampen calculations and Monte Carlo simulations. The magnetization trend is also 
superimposed to show that variance peaks correspond to tipping points.

Figure 4.  Oscillation period T  as a function of the feedback time τ  in the fully 
connected feedback Ising model with β = 1.2 and β = 3. A square root and linear fits 
are also shown.
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the heat bath dynamics of the single spins, this performs a random walk in the interval [−N, N] 
with step size −2, 0, 2 and the (normalized) rates

	 •	�W(M → M + 2) = N 1−m
2

1
e−β(Jm+h)+1θ(1 − m)

	 •	�W(M → M − 2) = N 1+m
2

1
eβ(Jm+h)+1θ(1 + m)

	 •	�W(M → M) = N − W(M → M − 2)− W(M → M + 2).

The master equation

Ṗ(M) =− P(M)(W(M → M − 2) + W(M → M + 2))
+ P(M − 2)W(M − 2 → M) + P(M + 2)W(M + 2 → M)

�
(11)

can be expanded in the system size [18], i.e. upon considering a decomposition of M under a 
scaling hypothesis in terms of the auxiliary variables

Figure 5.  Monte Carlo simulation snapshots of the Ising model with feedback in a 2D 
square lattice (100 × 100) for times t = 0, 1, 2, 3, 4, 5, 6, 7, 25, 26, 27, 28, 29, 30, 31, 32 
(from top left to bottom right). Inverse temperature β = 3, feedback strength τ = 30.
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M = Nφ+
√

Nz,� (12)

performing an expansion of the master equation in the parameter 1/
√

N  and neglecting higher 
order terms, we have, upon considering

W+ =
1 − φ

1 + e−β(Jφ+h) W− =
1 + φ

1 + eβ(Jφ+h)� (13)

α1(φ) = W+ − W− α2(φ) = 2(W+ + W−)� (14)

on one hand a deterministic equation for φ

φ̇ = α1(φ)� (15)

on the other a linear Fokker–Planck equation for z

∂P(z)
∂t

= α′
1(φ)

∂(zP(z))
∂z

+
1
2
α2(φ)

∂2P(z)
∂z2

� (16)

where both depend on the external parameter h, which can be considered varying in time and 
subject to the negative feedback

τ ḣ = −φ.� (17)

Monte Carlo simulations as well as analytical calculations obtained by the Van Kampen 
expansion clearly confirm the predictions, in particular

	 •	� for β ∼ 1, the system shows approximately harmonic oscillations where the amplitude 
adjusts itself making the damping term negligible, i.e. m2 ∼ β − 1 (figure 1).

	 •	� for β � 1 it performs relaxation oscillations: approximately, in the phase space (m, h), 
dynamical trajectories follow the isocline curve (where dh

dm → ∞) up to the tipping unstable 
points, where they follow straight horizontal lines corresponding to sudden jumps (figure 2).

Furthermore, the Van Kampen approximation analytically highlights a typical trend for 
the variance that turns out to have its maxima in correspondence to the tipping points. A 
deterministic equation for this term can be worked out from the linear Fokker–Planck equa-
tion (16) by considering the equivalent Ito stochastic differential equation (where W(t) is a 
Wiener process)

dz = −α′
1(φ(t))dt +

√
α2(φ(t))dW� (18)

and upon differentation

dz2 = 2zdz + α2(φ(t))dt� (19)

from which we obtain the linear equation for the variance (σ2 = 〈z2〉)

dσ2

dt
= −α′

1(φ(t))σ
2 + α2(φ(t)).� (20)

This fluctuation term from the Van Kampen expansion has been compared to simulation 
results, finding a good agreement (see figure 3 below). The mean field approach (in particular 
equation (5)) predicts that the oscillatory time period scales as T ∝

√
τ  for β � βc = 1 and as 

T ∝ τ  for β � 1, in good agreement with numerical results (see figure 4).
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It is worth noting that the onset of self-oscillations in the Ising model is not limited to 
infinite dimensional graphs. Monte Carlo simulations give evidence of self-oscillations in a 
2D square lattice (figure 5) if feedback is provided between local external fields and single 
spins, i.e.

τ ḣi = −si ∀i.� (21)

Although the feedback has been introduced artificially here for illustrative purposes, the 
analyzed dynamics could have interesting applications to the study of magnetic refrigeration 
cycles by magnetocaloric effect [19].

Excess demand-price cycle: herding in a simple agent-based model

The Ising model is a paradigm for the study of collective behaviors with applications extend-
ing beyond physics. In particular much research has been devoted in recent times to using con-
cepts and methods from the statistical mechanics of the Ising model to analyze agent-based 
models (ABMs) for social and economic phenomena [20], in particular oscillatory behavior 
and synchronization transition in crisis waves by means of macroeconomic ABM [21, 22]. 
In this section we will illustrate the emergence of business cycles [23] in a simple ABM as a 
consequence of the proposed theory. We will focus here on a simple model sharing similarity 
with minority games [24], where N  agents shall choose one of two possible actions, i.e. the 
state of agent i is given by a spin variable si = ±1. Upon identifying in a stylized way these 
two states as the propensity to sell or buy a given good, the magnetization M = N+ − N− is 
called the excess demand and phenomenologically price dynamics shall follow (if more agents 
sell than buy, the price rises and vice versa)

ḣ ∝ −M� (22)

where the price has been called h in order to point out the analogies with the Ising model; this 
equation is thus equivalent to the feedback introduced in the previous section. Given a refer-
ence price that we will set for simplicity to zero, we will assume that agents update their state 
with a certain frequency ν  stochastically with probability (bounded rationality)

p(s = −1)/p(s = +1) = e−h.� (23)

That takes into account the fact that agents have larger propensity to buy (sell) if they perceive 
that the price is below (above) the reference value. It can be easily seen that this simple model 
has a stable Gaussian fixed point. On the other hand, it is known that economical and social 
agents can often make decisions based on the imitation of neighbors in their social network. 
The cumulative effect of this imitation (herding) is known to account for instabilities in the 
underlying dynamics [25]. We will explore this issue of network embeddedness and herding 
by recasting the aforementioned model in terms of the co-evolving network models studied in 
[26], where social links are created and destroyed among the agents, in turn reinforcing their 
beliefs, specifically:

	 •	�Links are created with rate η (per agent) among agents sharing the same state.
	 •	�Links are destroyed with rate 1.

We will consider a regime of strong herding (that is the zero temperature limit also considered 
in [26]), i.e.

	 •	� Agents update their state upon looking at the price only if they are isolated.

D De Martino﻿J. Phys. A: Math. Theor. 52 (2019) 045002
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At fixed h the equation of the state of the system can be worked out approximately with the 
methods of [26].

The approximate population dynamics equations for the density of agents with k connec-
tions in state σ read:

ṅk,σ = (k + 1)nk+1,σ − knk,σ + xσ(nk−1,σ − nk,σ) k > 0� (24)

xσ = η
∑

k

nk,σ� (25)

ṅ0,σ = n1,σ − xσn0,σ + ν−σn0,−σ − νσn0,σ .� (26)

If we consider the generating function Gσ(s) =
∑

k nk,σsk we have in the steady state 
Gss

σ (s) = n0,σexσs and the self-consistent equations

ν+n0,+ = ν−n0,−� (27)

xσ/η = n0,σexσ� (28)

x+ + x− = η.� (29)

If we parametrize ν−/ν+ = eh and consider m = x+−x−
η  we have finally the equation of the 

state

h = −ηm + log
1 + m
1 − m

� (30)

that shows a second-order critical point at (ηc = 2, hc = 0). Upon considering phenomeno-
logically the relaxation and considering the price feedback dynamics (with timescale τ ) we 
finally have the system

ṁ = ηm + h − log
1 + m
1 − m

� (31)

τ ḣ = −m.� (32)

This prediction is tested against Monte Carlo simulations where a good agreement is found 
(see figure 6). Interestingly, in this case the whole network of interactions is oscillating in 
time, assuming the form of a Poissonian tree-like random graph (Erdos–Renyi) whose average 
degree oscillates. This can be seen as an instance of a self-oscillating temporal network [27].

Congestion waves in queuing networks

In this section we will test the theory in the context of out-of-equilibrium systems. This is a 
very rich topic, difficult to study given the lack of general established variational principles, 
like maximum entropy, leading to the Boltzmann–Gibbs measure characterizing their equilib-
rium counterpart. Perhaps one of the simplest yet general class of processes displaying phase 
transitions in this context are the so-called zero-range processes [28]. Broadly speaking, these 
are models of particles hopping among nodes in a graph whose hopping rates depend only 
on the number of particles present on the departure and arrival nodes. This very short range 
interaction permits factorization of the steady-state probability that is amenable for analytical 
calculations [28]. Among them, we have queuing networks [29], which are known to be sub-
ject to a congestion phase transition [30, 31]. In these systems, used to model communication 
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networks in engineering studies, packets of information are injected into the network by users 
for processing purposes and stored in queues at the nodes. If the load that the network experi-
ences overcomes its processing capabilities, queues will start to grow congesting the system. 
In a stylized way, upon calling n the number of packets in the network, p the packet injection 
rate (‘load’) and considering a function f (n) that encodes for the network processing rate, we 
have the average rate equation:

ṅ = p − f (n).� (33)

The function f (n) depends on the chosen model, in general f (0) = 0 , f � 0, 
limn→∞ f (n) = µ < ∞. If p > µ we will have a steady growing solution ṅ � p − µ, while 
stationary solutions are given by ns = f−1( p) and are stable if f ′(ns) > 0. Generally unstable 
fixed points come with coexisting stable ones in this setting.

Traditional work on queuing network theory focused on the stationary regime while 
recent observations of traffic in large networks spurred an increasing interest in the congested 

Figure 6.  Top: self-oscillations in the plane (excessdemandm, priceh) for a simple 
agent-based market model in the presence of herding. Bottom: social network 
oscillations, number of links, and isolated agents as a function of time. From Monte 
Carlo simulations and mean field analytics, η = 2.5, τ = 100, N = 103.
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regime. However, traffic data seem to show rather more complex phenomena with respect to 
simple steady growing queues, including waves and intermittent behaviors [32], and it has 
been pointed out that one of the key ingredients accounting for the latter relies on the level of 
user feedback to overloaded conditions [33]. In the most simple setting this is naturally imple-
mented within our scheme by introducing linear feedback dynamics for the load p: users have 
typical reaction times τ , they strive for a desired load pd, and they reduce the load if queues 
are longer (linear negative feedback of strength c):

ṅ = p − f (n)� (34)

τ ṗ = −( p − pd)− cn.� (35)

In the presence of the feedback the dynamics could present no stable steady states but self-
oscillations and it will be shown that this is the case in the presence of a simple rule of traffic 
control. Previous studies have shown that traffic control, mimicking known Internet protocols 
like TCP/IP, can enhance the processing capabilities of the system, increasing the free-flow 
region but at the price of introducing non-linearities that trigger congestion transition in a 
discontinuous way, with hysteresis and coexistence [34, 35] that are reflected in a non-monot-
onous f (n). In correspondence of these points we expect the linear feedback to induce self-
oscillations that shall be thus specific to cases in which traffic is controlled.

These predictions have been successfully tested on a Jackson or open queuing network, 
consisting of N  nodes such that:

	 •	�each node i is endowed with a first-in-first-out queue with unlimited waiting places (it can 
be arbitrarily long).

	 •	�The delivery of a packet from the front of i follows a Poisson process with a certain 
frequency ti(service rates), and

	 –	�the packet exits the network with some probability µi, or
	 –	�it goes on the ‘back’ of another queue j with probability qij.
	 •	�Packets are injected in each queue i from external sources by a Poisson stream with 

intensity pi.

We considered random walk routing qij = 1/kj where kj is the degree of the receiving node j, 
and completely homogeneous conditions pi = p, µi = µ, ti = t = 1. Traffic control has been 
included with the following simple rule [34]:

	 •	� The receiving node j starts to reject particles with probability η once its queue is longer 
than n∗

Results shown in figure 7 are obtained by simulations on an Erdos–Renyi random graph (aver-
age degree z = 5, size N = 103), desired load and absorbing rate pd = µ = 0.2, user feedback 
strength c = 2 · 10−6, and traffic control parameters η = 0.75, n∗ = 10. In the presence of 
feedback dynamics for p, we would expect now that upon loading the system by crossing f (n) 
in its decreasing part, this enforces self-oscillations and this is verified as we show in figure 8. 
It is worth noticing that the self-intersection of the trajectory in the plane (n, p) excludes by 
means of the Cauchy theorem a simple 2D mean field picture.

Autonomous metabolic network oscillations

In a biological context classical models in statistical physics are increasingly used to perform 
inference and analyze data: examples range from random walks and biopolymers [36], Ising 
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models and neural networks [37] to continuous spin models and flocking birds [38] to cite just 
a few. Standard flux balance analysis (FBA) approaches to model cell metabolism [39] share a 
formal analogy with the Gardner problem in statistical mechanics [40] and it has been recently 
shown that maximum entropy inference schemes [41] outperform FBA in modeling flux data 
of the catabolic core of E. coli [42]. The metabolism is the network of enzymatic reactions that 
sustains the free energy needs of the cell, strongly constrained by physico-chemical laws that 
in turn provide for suitable modeling. Metabolic dynamics give well-known examples of non-
linear self-oscillators in particular glycolytic oscillations [43], experimentally tested in living 
cells [44]. With regard to whole cell metabolism, recent findings in yeast indeed show intrinsic 
whole single-cell metabolic oscillations, autonomous from the cell cycle and potentially able 
to drive it [45]. In this section we will explore, within the proposed theory, the possibility 
that such oscillations are in general due to the effect of feedback in the presence of a bistable 
phenotypic landscape. Feedback mechanisms are needed in order to maintain cell size homeo-
stasis [46] and a bistable landscape has been observed in E. coli [47, 48], where it is at the 
core of persistence phenomena [49]. Furthermore it has been recently pointed out theoretically 

Figure 7.  Top: number of packets as a function of time. Bottom: limit cycle in the plane 
(n, p). From Monte Carlo simulations on an Erdos–Renyi Jackson queuing network 
with and without traffic control, average degree z = 5, N = 103. In the presence of 
traffic control the system develops self-oscillations.
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within the framework of constraint-based models that second-order moment constraints on the 
growth rate in general enable bistability [50]. These are stationary models of large chemical 
networks including in a realistic way the stoichiometry of known pathways and a phenomeno-
logical biomass growth reaction that is a function of the enzymatic fluxes λ = λ(v).

For a chemical reaction network in which M metabolites participate in N  reactions with the 
stoichiometry encoded in a matrix S = {Sµr}, the concentrations cµ change in time according 
to mass-balance equations

ċ = S · v� (36)

where vi is the flux of the reaction i (that is in general a function of the concentration lev-
els vi(c)). The steady state implies S · v = 0. In constraint-based modeling, apart from mass 
balance constraints, fluxes are bounded in certain ranges vr ∈ [vmin

r , vmax
r ] that take into 

account thermodynamic irreversibility, kinetic limits, and physiological constraints. The set 
of constraints

Figure 8.  Top: growth rate and cytochrome b activity as a function of time. Bottom: 
uptakes (nitrogen and phosphate) as a function of time. From Monte Carlo simulations 
of a maximum entropy model of the carbon catabolic core of E. coli in the presence 
of feedback for growth control in a bistable phenotypic landscape (γ = 50, τ = 100, 
λs = 0.4 h−1).
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S · v = 0,

vr ∈ [vmin
r , vmax

r ]
� (37)

defines a convex polytope P  in the space of reaction fluxes. We seek the states fixing the first 
two moments of the growth rate, given by the Boltzmann distributions:

p(v) ∝ exp (βλ(v) + γλ(v)2) v ∈ P.� (38)

They have been sampled by means of a hit-and-run Monte Carlo Markov chain with ellip-
soidal rounding [51] on the model of the catabolic core of E. coli from the genome scale 
reconstruction [52], including glycolysis, the pentose phosphate pathway, the Krebbs cycle, 
oxidative phosphorylation, nitrogen catabolism, and the biomass growth reaction, for a total 
of N = 95 reactions and M = 72 compounds, simulated in a glucose-limited aerobic minimal 
medium with a maximum glucose uptake of ug,max = 10 mmol/gdwh.

Upon counting the number of feasible states leading to the same growth rate by uniformly 
sampling P , the marginal growth rate distribution can be recast in terms of the rate function 
F(λ) (where we posed λmax = 1, the maximum growth rate in the model obtainable by linear 
programming, and we get a simplex-like entropic term with a � 20 for the carbon catabolic 
core of E. coli)

p(λ) ∝ eF(λ)� (39)

F(λ) = βλ+ γλ2 + a log(1 − λ).� (40)

It should be noted that such maximum entropy distribution can be the steady state of suited 
population dynamics, which for the case γ = 0 has been shown to be the logistic [53]. If we 
consider relaxation dynamics in the linear response regime and linear control through β, look-
ing for a desired λs, we have the dynamical system

λ̇ =
∂F
∂λ

= β + 2γλ− a
1 − λ

� (41)

τ β̇ = −(λ− λs)� (42)

that upon Lienard transformation is mapped into the second-order system

λ̈− (2γ − a
(1 − λ2)

)λ̇+
λ− λs

τ
= 0.� (43)

A sufficient condition to get self-oscillations is γ > a
2(1−λs)2. This is confirmed by simulations 

on a model of the catabolic core of E. coli (figure 8), where growth rate oscillations entrain 
correlated metabolic fluxes. Here, the activity of the enzyme cytochrome b oxidase and the 
nitrogen and phosphate uptakes are shown.

Conclusions

In this work it has been shown that self-oscillations arise in trying to control large systems that 
have been subjected to phase transitions. The oscillatory collective behavior emergent in this 
way does not depend on postulating oscillatory units, but it is fully self-organized. The key 
idea is that large systems endowing multiple phases develop self-oscillations in the presence 
of feedback that tries to force them on thermodynamically unstable branches, analogously to 
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active electrical devices controlled with a workload corresponding to ‘negative resistance’ 
parts of their characteristic curve. It has been shown that the feedback maps the Landau mean 
field theory into the Van der Pol oscillator and such behavior has been confirmed for the fully 
connected Ising model subject to heat bath dynamics. Further studies are needed to test the 
theory on finite dimensions as well as experimentally. Preliminary numerical results on a 
2D square lattice seem to show that self-oscillations are triggered by local feedback, while 
a global one triggers separation of magnetic domains. The theory is general and here it has 
been applied to describe in a stylized way (i) excess demand-price cycles due to strong herd-
ing effects in a simple agent-based market model; (ii) congestion waves in queuing networks 
triggered by user feedback to delays in overloaded conditions; (iii) metabolic network oscil-
lations resulting from cell growth control in a bistable phenotypic landscape. All of these 
would deserve further work on their own, in particular suited analysis to test them against 
data by means of promising independent component analysis-based methods [54, 55]. Apart 
from Andronov–Hopf, higher order bifurcations could be eventually connected to higher order 
terms of the self-interacting scalar field in the Landau approach and in turn connected to 
minimal lattice models whose interacting variables are ruled by less simple symmetry groups: 
tricritical Ising, Potts, etc. This would be a very exciting research program that would deserve 
further investigations. The theory could open the way to explore the thermodynamics and 
statistical physics of self-oscillations, and recent tools developed within stochastic thermody-
namics could play a key role in this respect [56, 57]. Finally, within the framework of control 
theory self-oscillations can be seen as an unwanted negative side effect and this theory could 
help shed light on the origin of this problem while controlling large complex networks [58].
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