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Elastic Alfven waves in elastic turbulence
Atul Varshney 1,2 & Victor Steinberg 1,3

Speed of sound waves in gases and liquids are governed by the compressibility of the

medium. There exists another type of non-dispersive wave where the wave speed depends

on stress instead of elasticity of the medium. A well-known example is the Alfven wave,

which propagates through plasma permeated by a magnetic field with the speed determined

by magnetic tension. An elastic analogue of Alfven waves has been predicted in a flow of

dilute polymer solution where the elastic stress of the stretching polymers determines the

elastic wave speed. Here we present quantitative evidence of elastic Alfven waves in elastic

turbulence of a viscoelastic creeping flow between two obstacles in channel flow. The key

finding in the experimental proof is a nonlinear dependence of the elastic wave speed cel on

the Weissenberg number Wi, which deviates from predictions based on a model of linear

polymer elasticity.
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A small addition of long-chain, flexible, polymer molecules
strongly affects both laminar and turbulent flows of
Newtonian fluid. In the former case, elastic instabilities

and elastic turbulence (ET)1–5 are observed at Reynolds number
Re � 1 and Weissenberg number Wi � 1, whereas in the latter,
turbulent drag reduction (TDR) at Re � 1 and Wi � 1 has been
found about 70 years ago but its mechanism is still under active
investigation6. Here both Re= ρUD/η and Wi= λU/D are
defined via the mean fluid speed U and the vessel size D, and ρ, η
are the density and the dynamic viscosity of the fluid, respectively,
and λ is the longest polymer relaxation time. ET is a chaotic,
inertialess flow driven solely by nonlinear elastic stress generated
by polymers stretched by the flow, which is strongly modified by a
feedback reaction of elastic stresses7. The only theory of ET based
on a model of polymers with linear elasticity predicts elastic
waves that are strongly attenuated in ET, but elastic waves may
play a key role in modifying velocity power spectra in TDR7,8.
Using the Navier-Stokes equation and the equation for the elastic
stresses in uniaxial form of the stress tensor approximation, one
can write the polymer hydrodynamic equations in the form of the
magneto-hydrodynamic (MHD) equations8. Then, by analogy
with the Alfven waves in MHD9,10, one gets the elastic wave

linear dispersion relation as ω ¼ ðk � n̂Þ tr σ ij

� �
=ρ

h i1=2
with the

elastic wave speed7,8 cel= [tr(σij)/ρ]1/2, where ω and k are fre-
quency and wavevector, respectively, σij is the elastic stress tensor,
and n̂ is the major stretching direction, similar to the director in
nematics. Such an evident difference between the elastic stress
tensor characterized by the director and the magnetic field that is
the vector, however, does not alter the similarity between the
elastic and Alfven waves, since only uniaxial stretching inde-
pendent of a certain direction is a necessary condition for the
wave propagation determined by the stress value7.

A simple physical explanation of both the Alfven and elastic
waves can be drawn from an analogy of the response of either
magnetic or elastic tension on transverse perturbations and an
elastic string when plucked. As in the case of elastic string, the
director is sufficient to define the alignment of the stress. Thus, to
excite either Alfven or elastic waves the perturbations should be
transverse to the propagation direction, unlike longitudinal sound
waves in plasma, gas, and fluid media11. The detection of the
elastic waves is of great importance for a further understanding of
ET mechanism and TDR, where turbulent velocity power spectra
get modified according to ref. 7. Moreover, cel provides unique
information about the elastic stresses, whereas the wave ampli-
tude is proportional to the transversal perturbations, both of
which are experimentally unavailable otherwise8.

Numerical simulations of a two-dimensional Kolmogorov flow
of a viscoelastic fluid with periodic boundary conditions reveal
filamented patterns in both velocity and stress fields of ET12.
These patterns propagate along the mean flow direction in a wavy
manner with a speed cel≃U/2, nearly independent of Wi. In
subsequent studies, extensive three-dimensional Lagrangian

simulations of a viscoelastic flow in a wall-bounded channel with
a closely spaced array of obstacles show transition to a time-
dependent flow, which resembles the elastic waves13. Further, the
elastic stress field around the obstacles demonstrates similar
traveling filamental structures12,13 in ET, interpreted as elastic
waves7,8. However, in both studies neither the linear dispersion
relation nor the dependence of wave speed cel on elastic
stress–primary signatures of the elastic waves–were examined.
Moreover, cel was found to be close to the flow velocity, contra-
dicting the theory7,8. Strikingly, an indication of the elastic waves,
in numerical studies, originates from observed frequency peaks in
the velocity power spectra above the elastic instability12,13. Ana-
logous frequency peaks in the power spectra of velocity and
absolute pressure fluctuations above the instability were also
reported in experiments of a wall-bounded channel flow in a
creeping viscoelastic fluid, obstructed by either a periodic array of
obstacles14 or two widely-spaced cylinders15,16. These observa-
tions were in agreement with numerical simulations17 and were
associated with noisy cross-stream oscillations of a pair of vortices
engendered due to breaking of time-reversal symmetry.

Our early attempts to excite the elastic waves both in a cur-
vilinear flow and in an elongation flow of polymer solutions at
Re � 1 were unsuccessful18. In the ET regime of the curvilinear
channel flow, either an excitation amplitude was insufficient and/
or an excitation frequency was too high. The reason we chose the
elongation flow, realized in a cross-slot micro-fluidic device, is a
strong polymer stretching in a well-defined direction along the
flow. However, the elongation flow generated in the cross-slot
geometry has the highest elastic stresses in a central vertical plane
parallel to the flow in the outlet channels–analogous to a stret-
ched vertical elastic membrane. The transverse periodic pertur-
bations in the experiment were applied in a cross-stream
direction from the top wall18, however a more effective method
would be to perturb it in a span-wise direction that was difficult
to realize in a micro-channel. A higher frequency range of per-
turbations, compared to that found in the current experiment,
was used that lead to the wave excitation with wave numbers in
the range of high dissipation.

Here we report evidence of elastic waves observed in elastic
turbulence of a dilute polymer solution flow in a wake between
two widely-spaced obstacles, hindering a channel flow. The cen-
tral finding in the experimental proof of the elastic wave obser-
vation is a power-law dependence of cel on Wi, which deviates
from the prediction based on a model of linear polymer elasti-
city7. The distinctive feature of the current flow geometry is a
two-dimensional nature of the ET flow, in the mid-plane of the
device, in contrast to other flow geometries studied earlier.

Results
Flow structure and elastic turbulence. The schematic of the
experimental setup is shown in Fig. 1, where two-widely spaced
obstacles hinder the channel flow of a dilute polymer solution (see

Nitrogen gas
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Fig. 1 Schematic of experimental setup. It consists of a linear channel of dimension L ×w × h= 45 × 2.5 × 1 mm3 with two cylindrical obstacles (shown as
two black dots), diameter 2R= 0.3 mm and separated by a distance between the obstacles centers e= 1 mm, embedded at the center line of the channel.
The polymer solution is driven by Nitrogen gas and injected through the inlet into the channel. The fluid exiting the channel outlet is weighed
instantaneously as a function of time. An absolute pressure sensor, marked as P, after the downstream cylinder is employed to detect pressure fluctuations
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Methods section for the experimental setup, solution preparation
and its characterization). The main feature of the flow geometry
used is the occurrence of a pair of quasi-two-dimensional
counter-rotating elongated vortices, in the region between the
obstacles, as a result of the elastic instability15 at Re � 1 and Wi
> 1; Re ¼ 2R�uρ=η and Wi ¼ λ�u=2R, where obstacles’ diameter 2R
and average flow speed �u are defined in Methods section.
The frequency power spectra of cross-stream velocity v fluctua-
tions show oscillatory peaks at low frequencies15,16 below λ−1.
Above the elastic instability, the main peak frequency fp grows
linearly with Wi, characteristic to the Hopf bifurcation15. The two
vortices form two mixing layers with a non-uniform shear velo-
city profile and with further increase of Wi their dynamics
become chaotic, exhibiting ET properties, with vigorous pertur-
bations that intermittently destroy vortices16 and seemingly excite
the elastic waves. The ET flow in the region between the obstacles
is shown through long-exposure particle streaks imaging in
Supplementary Movies 1–3 for three different Wi.

Characterization of low frequency oscillations. To investigate
the nature of these oscillations we present time series of the
streamwise u(t) and cross-stream v(t) velocity components and

their temporal auto-correlation functions A(u)= 〈u(t)u(t+ τ)〉t/〈|
u(t)|2〉t and A(v)= 〈v(t)v(t+ τ)〉t/〈|v(t)|2〉t in Fig. 2a–d. Distinct
oscillations in v(t) contrary to weak noisy oscillations in u(t)
indicate flow anisotropy. Further, the cross-stream velocity power
spectra Sf (v) as a function of normalized frequency λf for five Wi
values in the ET regime are shown in log-lin and log-log coor-
dinates in Fig. 3a, b, respectively. The power spectra Sf (v) exhibit
the oscillation peaks at low frequencies up to λf ≤ 40 with an
exponential decay of the peak values (Fig. 3a). These low fre-
quency oscillations look much more pronounced on a linear scale
(Supplementary Fig. 1a). Further, these oscillations are also
observed in the power spectra of pressure fluctuations S(P) versus
λf, though not so regular (Supplementary Fig. 1b). The expo-
nential decay of Sf (v) at λf ≤ 40 implies that only a single fre-
quency (or time) scale is identified for each Wi (Fig. 3a). This
frequency fd, for each Wi, is obtained by an exponential fit to the
data, i.e., Sf (v) ~ exp(−f/fd). The variation of fd with Wi is shown
in the inset in Fig. 3b; it varies from 0.7 to 2.5 Hz in the range of
Wi from 75 to 200, which is comparable to oscillation peak fre-
quency fp (Fig. 4) and larger than λ−1. Strikingly, on normal-
ization of f with fd for each Wi, Sf (v) for all Wi collapse on to each
other (Fig. 3b). At higher frequencies up to λf ≤ 100, Sf (v) decay as
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Fig. 2 Streamwise and cross-stream components of velocity and corresponding autocorrelation functions. Time series of a streamwise velocity u and
b cross-stream velocity v, obtained at (x/R, y/R)= (2.3, 0.03), corresponding to the location near the line connecting the centers’ of obstacles and close to
the center region between the obstacles, for three values of Wi. c, d Their respective temporal autocorrelation functions A(u) and A(v)
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the power-law with the exponent αf=−3.4 ± 0.1 typical for ET5

(Fig. 3c). Contrary to a general case, where the power-law decay of
Sf (v) corresponding to ET3–5 commences at λf ≈ 1, the low fre-
quency oscillations cause the power-law spectra start to decay at
higher frequencies 10 < λf < 40, perhaps due to an additional
mechanism of energy pumping into ET associated with the low
frequency oscillations. In addition, S(P) exhibit the power spectra
decay in the high frequency range 10 < λf < 100 with the exponent
close to−3 (see the bottom inset in Fig. 2 in ref. 16), characteristic to
the ET regime19. It should be emphasized that the power spectra of
the streamwise velocity Sf (u) do not show the low frequency
oscillations and decays with a power-law exponent α ≤ 2.

Figure 4 shows the dependence of fp in a wide range of Wi. The
first elastic instability, characterized as the Hopf bifurcation,
occurs at low Wi, where fp grows linearly with Wi–in accord with
our early results15. At higher Wi in the ET regime, fp(Wi)
dependence becomes nonlinear at Wi ≥ 60. In the inset in Fig. 4,
we present the same data for fp as a function of Wiint. Here, the
Weissenberg number of the inter-obstacle velocity field is defined
as Wiint ¼ λ _γ and _γ ¼ ∂u=∂yh it

� �
is the time-averaged shear-rate

in the cross-stream direction in the inter-obstacle flow region.
The parameter Wiint is relevant to the description of elastic waves

in ET flow between the obstacles’ region. The inset in Fig. 5b
shows a linear dependence of Wiint on Wi.

Dependence of elastic wave speed on Wiint. Figure 5a shows a
family of temporal cross-correlation functions Cv(Δx, τ)= 〈v(x, t)
v(x+ Δx, t+ τ)〉t/〈v(x, t)v(x+ Δx, t)〉t of v between two spatially
separated points, with their distance being Δx, located on a
horizontal line at y/R= 0.18 for Wi= 148.4. A gaussian fit to
Cv(Δx, τ) in the vicinity of τ= 0 yields the peak value τp at a given
Δx. A linear dependence of Δx on τp (e.g., Fig. 5a inset for Wi=
148.4) provides the perturbation propagation velocity as cel=
Δx/τp. The variation of cel as a function of Wiint is presented in
Fig. 5b together with nonlinear fit of the form
cel ¼ A Wiint �Wicint

� �β
, where A= 8.9 ± 1.2 mm s−1, β= 0.73 ±

0.12, and onset value Wicint ¼ 1:75 ± 0:2. The same data of cel is
plotted against Wi (see Supplementary Fig. 3) and fitted as cel ~
(Wi−Wic)β that yields the onset value Wic= 59.7 ± 1.8.

Discussion
In the light of the predictions7, it is surprising to observe the
elastic waves in the ET regime due to their anticipated strong
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Fig. 3 Cross-stream velocity power spectra versus normalized frequency in elastic turbulence. a Cross-stream velocity power spectra Sf (v) in log-lin
coordinates to emphasize an exponential decay of the oscillation peak values at low frequencies λf≤ 40. An exponential decay is shown by the dashed line,
e.g., for the case of Wi= 197.5. b Sf (v) for different Wi collapse on to each other upon normalization of f with fd. Inset: variation of fd with Wi. The error
bars on fd are estimated based on standard deviation (s.d.) of exponential fit of Sf (v) versus f, and for Wi they are calculated based on the s.d. from the
mean value of fluid discharge rate Q (see Methods section). c Sf (v) in log-log coordinates, for different Wi, to demonstrate the power-law decay at high
frequencies ~10 < λf≤ 100. The spectra are obtained at (x/R, y/R)= (5.2, 0.56), which is close to the downstream obstacle and to the center of the upper
large vortex. The dashed line in c is a fit to the data at high frequencies with the power-law exponent αf≃−3.4 ± 0.1, typical to the ET regime. Sf (v) of
steady flow is shown by gray lines in a, c
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attenuation. An estimate of the wave number k= ω/cel= 2πfp/cel
from cel (Fig. 5b) and fp (Fig. 4) provides k in the range between
0.63 and 1.3 mm−1 (Supplementary Fig. 2). The corresponding
wavelengths (~2π/k) are significantly larger than the inter-
obstacle spacing e− 2R= 0.7 mm. The spatial velocity power
spectra Sk is limited by a size of the observation window of about
0.7 mm that gives kx ≈ 9 mm−1, much larger than the wave
numbers calculated above. Thus, the low kx part of Sk(v), where
the elastic wave peaks can be anticipated, is not resolved by the
spatial velocity spectra (Supplementary Fig. 4b). The power-law
decay with αk ≈−3.3 is found at low kx followed by a bottleneck
part and a consequent gradual power-law decay with an exponent
~−0.5 at higher kx (Supplementary Fig. 4b), unlike Sf (v), where
the peaks appear at low f and the steep power-law decay with the
exponent αf=−3.4 at higher f (see Fig. 3b). The spatial stream-
wise velocity power spectra Sk(u), obtained at the same Wi and
near the center line y/R= 0.01, are similar to Sk(v) at low kx and
decays gradually with exponent ~−0.3 at higher kx (Supple-
mentary Fig. 4a).

The observed nonlinear dependence of cel on Wiint differs from
the theoretical prediction based on the Oldroyd-B model7,8. The
expression for the elastic wave speed in the model20 gives cel= [tr
(σij)/ρ]1/2 ≈ (N1/ρ)1/2, where N1 ¼ 2Wi2intη=λ is the first normal
stress difference. Then one obtains cel= (2η/ρλ)1/2Wiint. First, cel
is proportional to Wiint and second, the coefficient in the
expression for the parameters used in the experiment is estimated
to be (2η/ρλ)1/2= 4.5 mm s−1. Taking into account that the
model7,8 and the estimate of elastic stress are based on linear
polymer elasticity20, whereas in experiments polymers in ET flow
are stretched far beyond the linear limit21, thus it is not surprising
to find the quantitative discrepancies between them. Indeed, the
value of the coefficient found from the fit (8.9 mm s−1) and
estimated theoretical value (4.5 mm s−1) differ almost by a factor
of two (see Fig. 5b). Moreover, for the maximal value of cel= 17
mm s−1 (at Wiint ≈ 4) obtained in the experiment, an estimate of
elastic stress gives σh i ¼ c2elρ ¼ 0:37 Pa that is lower but com-
parable with 〈σ〉 ≈ 1 Pa obtained from the experiment on
stretching of a single polymer T4DNA molecule at similar con-
centrations21. Thus, both the cel dependence on Wiint and the
coefficient value indicate that the Oldroyd-B model based on
linear polymer elasticity cannot quantitatively describe the elastic

wave speed and so the elastic stresses. Another aspect of this
result is the Mach number Ma � �u=cel; the maximum value
achieved in the experiment is Mamax ¼ �umax=cel � 0:3, contrast to
what is claimed in refs.22,23 due to a wrong definition based on
the elasticity El=Wi/Re instead of elastic stress σ used for the
estimation of cel and Ma.

We discuss two possible reasons related to the detection of the
elastic waves. As indicated in the introduction, the key feature of
the current geometry is a two-dimensional nature of the chaotic
flow, at least in the mid-plane of the device (see Fig. 4SM in
Supplemental Material of ref. 16), that makes it analogous to a
stretched elastic membrane. This flow structure is different from
three-dimensional elastic turbulence in other studied flow geo-
metries and thus may explain the failure in the earlier attempts to
observe the elastic waves. Another qualitative discrepancy with
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the theory7,8 is the predicted strong attenuation of the elastic
waves in ET. Below we estimate the range of the wave numbers
with low attenuation for the elastic waves and compare with the
observed values.

There are two mechanisms of the elastic wave attenuation,
namely polymer (or elastic stress) relaxation and viscous
dissipation7,8. The former has scale-independent attenuation λ−1,
which at the weak attenuation satisfies the relation ωλ > 1, and the
latter provides low attenuation24 at ηk2/ρω < 1. The first condi-
tion leads to ks > 1, where s=Wiint(2ηλ/ρ)1/2 that provides
a minimum wave number in the ET regime as kmin > s−1= 6.3 ×
10−3 mm−1 for Wiint= 4. The maximum value kmax follows from
the second condition that gives kΛ < 1 at Λ= (Wiint)−1(ηλ/2ρ)1/2.
Thus, one obtains in the ET regime kmax <Λ−1= 0.2 mm−1 for
Wiint= 4 and therefore, the range of the wave numbers with the
low attenuation is rather broad 6.3 × 10−3 < k < 0.2 mm−1 and
lies far outside of the k-range of Sk(u) and Sk(v) presented in
Supplementary Fig. 4, where the range of the wave numbers of the
elastic waves is not resolved. However, the range of the observed
wave number 0.63 ≤ k ≤ 1.3 mm−1 of the elastic waves, shown in
Supplementary Fig. 2, is sufficiently close to the estimated upper
bound of k.

Methods
Experimental setup. The experiments are conducted in a linear channel of L ×
w × h= 45 × 2.5 × 1 mm3, shown schematically in Fig. 1. The channel is prepared
from transparent acrylic glass (PMMA). The fluid flow is hindered by two
cylindrical obstacles of 2R= 0.30 mm made of stainless steel separated by a dis-
tance of e= 1 mm and embedded at the center of the channel. Thus the geome-
trical parameters of the device are 2R/w= 0.12, h/w= 0.4 and e/2R= 3.3 (see
Fig. 1). The longitudinal and transverse coordinates of the channel are x and y,
respectively, with (x, y)= (0, 0) lies at the center of the upstream cylinder. The fluid
is driven by N2 gas at a pressure up to ~10 psi and is injected via an inlet into the
channel.

Preparation and characterization of polymer solution. As a working fluid, a
dilute polymer solution of high molecular weight polyacrylamide (PAAm, Mw=
18MDa; Polysciences) at concentration c= 80 ppm (c/c*≃ 0.4, where c*= 200 ppm
is the overlap concentration for the polymer used25) is prepared using a water-
sucrose solvent with sucrose weight fraction of 60%. The solvent viscosity, ηs, at
20 °C is measured to be 100 mPa · s in a commercial rheometer (AR-1000; TA
Instruments). An addition of the polymer to the solvent increases the solution
viscosity, η, of about 30%. The stress-relaxation method25 is employed to obtain
longest relaxation time (λ) of the solution and it yields λ= 10 ± 0.5 s.

Flow discharge measurement. The fluid exiting the channel outlet is weighed
instantaneously W(t) as a function of time t by a PC-interfaced balance (BA210S,
Sartorius) with a sampling rate of 5 Hz and a resolution of 0.1 mg. The time-
averaged fluid discharge rate �Q is estimated as ΔW=Δt. Thus, Weissenberg and
Reynolds numbers are defined as Wi ¼ λ�u=2R and Re ¼ 2R�uρ=η, respectively; here
�u ¼ �Q=ρwh and fluid density ρ= 1286 Kg m−3.

Imaging system. For flow visualization, the solution is seeded with fluorescent
particles of diameter 1 μm (Fluoresbrite YG, Polysciences). The region between the
obstacles is imaged in the mid-plane via a microscope (Olympus IX70), illuminated
uniformly with LED (Luxeon Rebel) at 447.5 nm wavelength, and two CCD
cameras attached to the microscope: (i) GX1920 Prosilica with a spatial resolution
1000 × 500 pixel at a rate of 65 fps and (ii) a high resolution CCD camera XIMEA
MC124CG with a spatial resolution 4000 × 2200 pixel at a rate of 35 fps, are used to
acquire images with high temporal and spatial resolutions, respectively. We per-
form micro particle image velocimetry26 (μPIV) to obtain the spatially-resolved
velocity field U= (u, v) in the region between the cylinders. Interrogation windows
of 16 × 16 pixel2 (26 × 26 μm2) for high temporal resolution images and 64 × 64
pixel2 (10 × 10 μm2) for high spatial resolution images, with 50% overlap are
chosen to procure U.

Data availability
The data that support the findings of this study are available from the corresponding
authors upon reasonable request.
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