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Abstract
Given a triangulation of a point set in the plane, a flip deletes an edge e whose removal
leaves a convex quadrilateral, and replaces e by the opposite diagonal of the quadri-
lateral. It is well known that any triangulation of a point set can be reconfigured to any
other triangulation by some sequence of flips. We explore this question in the setting
where each edge of a triangulation has a label, and a flip transfers the label of the
removed edge to the new edge. It is not true that every labelled triangulation of a point
set can be reconfigured to every other labelled triangulation via a sequence of flips,
but we characterize when this is possible. There is an obvious necessary condition:
for each label l, if edge e has label l in the first triangulation and edge f has label
l in the second triangulation, then there must be some sequence of flips that moves
label l from e to f , ignoring all other labels. Bose, Lubiw, Pathak and Verdonschot
formulated the Orbit Conjecture, which states that this necessary condition is also
sufficient, i.e. that all labels can be simultaneously mapped to their destination if and
only if each label individually can be mapped to its destination. We prove this conjec-
ture. Furthermore, we give a polynomial-time algorithm (with O(n8) being a crude
bound on the run-time) to find a sequence of flips to reconfigure one labelled triangu-
lation to another, if such a sequence exists, and we prove an upper bound of O(n7)
on the length of the flip sequence. Our proof uses the topological result that the sets
of pairwise non-crossing edges on a planar point set form a simplicial complex that
is homeomorphic to a high-dimensional ball (this follows from a result of Orden and
Santos; we give a different proof based on a shelling argument). The dual cell complex
of this simplicial ball, called the flip complex, has the usual flip graph as its 1-skeleton.
We use properties of the 2-skeleton of the flip complex to prove the Orbit Conjecture.
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1 Introduction

The flip operation is fundamental to the study of triangulations of point sets in the
plane. A flip removes one edge and replaces it by the opposite diagonal of the result-
ing quadrilateral, so long as that quadrilateral is convex. Lawson [21] proved the
foundational result that any triangulation can be transformed into any other triangula-
tion of the same point set via a sequence of flips. His second proof of this result [22]
used the approach that is more widely known—showing that any triangulation can be
flipped to the Delaunay triangulation, which then acts as a “hub” through which we
can flip any triangulation to any other.

The result that every triangulation canbeflipped to every other is captured succinctly
by saying that the flip graph is connected, where the flip graph has a vertex for each
triangulation of the given point set, and an edge when two triangulations differ by
one flip. The special case of a point set in convex position has been very thoroughly
studied. In this case triangulations correspond to binary trees, and a flip corresponds
to a rotation. The flip graph in this case is the 1-skeleton of a polyhedron called the
associahedron.

The use of flips to reconfigure triangulations is relevant to the study of associahe-
dra [31] and mixing [25]. Flips are also important in practice for mesh generation and
for finding triangulations that optimize certain quality measures [3,14]. The survey by
Bose and Hurtado [6] discusses these and many other aspects of flips.

Despite the extensive work on flips, it is only recently that the question of where
edges go under flip operations has been investigated. This can be formalized by attach-
ing a label to each edge in a triangulation. Throughout, we fix a set P of n points in
general position, and we identify triangulations with their edge sets (i.e., a triangula-
tion of P is a maximal set T of pairwise non-crossing edges spanned by P). A labelled
triangulation T of P is a pair (T , �)where T is a triangulation of P and � is a labelling
function that maps the edges of T one-to-one onto the labels 1, 2, . . . , tP . Here tP is
the number of edges in any triangulation of P . When we perform a flip operation on
T , the label of the removed edge is transferred to the new edge.

We can now capture “where an edge goes” under flip operations. We say that edges
e and f lie in the same orbit if we can attach label l to e in some triangulation and
apply some sequence of flips to arrive at a triangulation in which edge f has label l.
The orbits are exactly the connected components of a graph that Eppstein [15] called
the quadrilateral graph—this graph has a vertex for every one of the possible

(n
2

)

edges formed by point set P , with e and f being adjacent if they cross and their four
endpoints form a convex quadrilateral that is empty of other points. In particular, this
implies that there is a polynomial-time algorithm to find the orbits. The orbits can be
very different depending on P . For a point set in convex position, all the edges not in
the convex hull are in a single orbit [7], but at the other extreme, a point set with no
empty convex pentagon has the property that in any triangulation, the edges are all in
distinct orbits [15].
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Fig. 1 Five flips swap the edge labels (a and b) of two diagonals of a convex pentagon. In the flip graph
these five flips form a 5-cycle

Orbits tell us where each individual edge label can go, but not how they combine.
The main question we address in this paper is: when is there a sequence of flips to
reconfigure one labelled triangulation of point set P to another labelled triangulation
of P? A necessary condition is that, for each label l, the edges with label l in the two
triangulations must lie in the same orbit. Bose et al. [7] conjectured that this condition
is also sufficient. As our main result we prove this “Orbit Conjecture,” and strengthen
it by providing a polynomial-time algorithm and a bound on the length of the flip
sequence.

Theorem 1.1 (Orbit Theorem) Given two edge-labelled triangulations T1 and T2 of
a point set, there is a flip sequence that transforms one into the other if and only
if for every label l, the edges of T1 and T2 having label l belong to the same orbit.
Furthermore, there is a polynomial-time algorithm that tests whether the condition is
satisfied, and if it is, computes a flip sequence of length O(n7) to transform T1 to T2.

The orbit theorem is stated for triangulations T1 and T2 that may have different edge
sets, but—sincewe knowhow to use flips to change the edge set—the crux of thematter
is the special case where the two triangulations have the same edge set T but different
label functions �1 and �2. In other words, we are given a permutation of the edge labels
of a triangulation, and we seek a flip sequence to realize the permutation. Furthermore,
since every permutation is a composition of transpositions, we concentrate first on
finding a flip sequence to transpose (or “swap”) two labels. This idea of reducing the
problem to the case of swaps appears in [7].

One insight to be gained from previous work is that empty convex pentagons in
the point set seem to be crucial for swapping edge labels. Certainly, an empty convex
pentagon provides a label swap—Fig. 1 shows how the edge labels of two diagonals
of an empty convex pentagon can be swapped by a sequence of five flips. In the other
direction, the special cases of the orbit theorem that were proved by Bose et al. [7]
for convex and spiral polygons involved moving pairs of labels into empty convex
pentagons and swapping them there. Furthermore, Eppstein [15] showed that in a
triangulation of a point set with no empty convex pentagons, no permutations of edge
labels are possible via flips.

The foundation of our proof is to make this intuition about empty convex pentagons
rigorous. In particular, we show that the only elementary operation that is needed for
label permutation is to transpose two labels by moving them into an empty convex
pentagon and swapping them there. More formally, given a labelled triangulation
T = (T , �), an elementary swap of edges e and f in T is a transposition of the labels
of e and f that is accomplished as follows: perform a sequence, σ , of flips on T to
get to a triangulation T ′ in which the labels �(e) and �( f ) are attached to the two
diagonals of an empty convex pentagon; then perform the 5-flip sequence, π , that
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transposes these two labels; then perform the sequence σ−1. We say that the sequence
σπσ−1 realizes the elementary swap. Observe that the effect of σπσ−1 on T is to
transpose the labels of e and f while leaving all other labels unchanged. Also notice
that any other flip sequence that exchanges the labels of e and f must, by Theorem 1.2
below, be a sequence of elementary swaps. We will prove that an elementary swap
can always be realized by a flip sequence of length O(n6), and furthermore, that such
a sequence can be found in polynomial time.

One of our main results is the following, from which the Orbit Theorem can readily
be derived:

Theorem 1.2 In a labelled triangulation T , two edges are in the same orbit if and only
if there is an elementary swap between them.

In order to prove Theorem 1.2, we use the following key result:

Theorem 1.3 (Elementary Swap Theorem)Given a labelled triangulation T , any per-
mutation of the labels that can be realized by a sequence of flips can be realized by a
sequence of elementary swaps.

This theorem is proved using topological properties of the flip complex, whose 1-
skeleton is the flip graph. A result of Orden and Santos [27] can be used to show that the
flip complex has the topology of a high-dimensional ball.1 We give an alternate proof
of this. We use the 2-skeleton of the flip complex, and show that its 2-cells correspond
to cycles in the flip graph of two types: quadrilaterals, which do not permute labels;
and pentagons, which correspond precisely to the 5-cycles of flips shown in Fig. 1.
Then we prove the Elementary Swap Theorem by translating it into a result about
decomposing closed walks in the flip graph into simpler elementary walks.

Although there is a rich literature on associahedra and on cell complexes associated
with triangulations of point sets, we are not aware of any previous combinatorial results
on triangulations that require topological proofs, as our proof of the Orbit Theorem
seems to.

We now briefly describe the rest of our method after the Elementary Swap Theorem
is established. In order to prove Theorem 1.2, we need one more ingredient about the
structure of elementary swaps: we will show that any sequence of elementary swaps
that moves the label of edge e to edge f can be “completed” to get the label of f back
to e, and that, in fact, the resulting sequence provides an elementary swap of e and f .

The high-level idea of our proof of Theorem 1.2 is then as follows: From our
hypothesis that two edges e and f lie in the same orbit, we show that there is a
sequence of flips that permutes the labels of triangulation T , taking the label of e to
f . The Elementary Swap Theorem then gives us a sequence of elementary swaps to
do the same (this is the significant step of the proof). Finally, from the structure of
elementary swaps we can then find an elementary swap of e and f .

Our paper is organized as follows. In Sect. 3 we prove the Elementary Swap Theo-
rem using topological methods. In Sect. 4 we prove the properties of elementary swaps
that were mentioned above. In top-down fashion, we begin in Sect. 2 by expanding on
the high-level ideas, and proving the Orbit Theorem assuming the results in the later
sections.

1 Technically speaking, the flip complex is homotopy equivalent to a ball.
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1.1 Background

The diameter of the flip graph of a point set gives the worst-case number of flips
required to reconfigure one triangulation to another. For unlabelled triangulations,
the diameter of the flip graph is known to be �(n2), with the upper bound proved
by Lawson [21] and the lower bound proved by Hurtado et al. [17]. For the special
case of points in convex position, there is an exact bound of 2n − 10 [29,31]. The
problem of finding the distance in the flip graph between two given triangulations of
a point set is NP-hard [23], and even APX-hard [28]. It has recently been shown to be
fixed-parameter tractable [20]. The problem remains NP-hard for triangulations of a
polygon [1], but the complexity status is open for the case of points in convex position.
For further results on flips, see the survey by Bose and Hurtado [6].

The labelled flip graph of a point set has a vertex for every labelled triangulation
of the point set and an edge between two labelled triangulations that differ by a flip.
Bose et al. [7] formulated the Orbit Conjecture and proved it for the special case of
triangulations of any convex polygon, showing that the labelled flip graph has a single
connected component (ignoring convex hull edges, which cannot flip), and giving a
tight bound of�(n log n) on its diameter. Araujo-Pardo et al. [2] independently proved
the Orbit Conjecture for convex polygons, and introduced “colorful associahedra”
which generalize associahedra to the setting of labelled (or coloured) triangulations.
Bose et al. also proved theOrbit Conjecture for spiral polygons. In this case the labelled
flip graph may be disconnected but each connected component has diameter O(n2),
which is a tight bound.

The best known lower bound on the diameter of a connected component of the
labelled flip graph for a point set is �(n3) [7]. There is a large gap between this lower
bound and our upper bound of O(n7).

The Orbit Theorem holds for combinatorial triangulations [7], and for pseudotri-
angulations [8]. In both these cases there is a single orbit, so the labelled flip graph
is connected. There are also some related results using variants of the flip operation,
for example, Cano et al. [10] reconfigured edge-labelled non-maximal plane graphs
by “rotating” edges around one of their endpoints; again there is a single orbit. A
related result where there are multiple orbits is an analogue of the Orbit Theorem
for labelled (or “ordered”) bases of a matroid—one labelled basis can be turned into
another labelled basis via basis exchange steps if and only if elements with the same
label lie in the same connected component of the matroid [24].

For more general problems of reconfiguring one structure to another via elementary
steps, see [18,33].

1.2 Preliminaries and Definitions

Most definitions were given above, but we fill in a few missing details. Throughout,
we assume a set of n points in general position in the plane. A point set determines(n
2

)
edgeswhich are the line segments between pairs of points. Two edges cross if they

intersect in a point that is interior to at least one of the two edges. An empty convex
k-gon is a subset of k points that forms a convex polygon with no point of P in its
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interior. A diagonal of a convex polygon is an edge joining two points that are not
consecutive on the polygon boundary.

Several times in our proofswewill use the result that if two unlabelled triangulations
of the same point set have a subset, S, of constrained edges in common, then there is a
sequence of flips that transforms one triangulation into the other, without ever flipping
any edge of S, i.e. the edges in S remain fixed throughout the flip sequence. This
was first proved by Dyn et al. [13], and can alternatively be proved using constrained
Delaunay triangulations [3].

2 Proof of the Orbit Theorem

In this section we prove the Orbit Theorem assuming the Elementary Swap Theorem
(Theorem1.3, proved in Sect. 3), and assuming the following two results on elementary
swaps. The first result shows that every elementary swap can be realized by a relatively
short flip sequence that can be found efficiently, and the second result gives us a way
to combine elementary swaps so that, after moving e’s label to f , we can get f ’s label
back to e. These lemmas will be proved in Sect. 4.

Lemma 2.1 If there is an elementary swap between two edges in a triangulation T
then there is a flip sequence of length O(n6) to realize the elementary swap, and,
furthermore, this sequence can be found in polynomial time.

Lemma 2.2 Let T be a labelled triangulation containing two edges e and f . If there
is a sequence of elementary swaps on T that takes the label of edge e to edge f , then
there is an elementary swap of e and f in T .

Aswe show in Sect. 4, a simple group-theoretic argument suffices to prove aweaker
version of Lemma 2.2, namely, that under the stated assumptions, there is a sequence
of elementary swaps exchanging the labels of e and f in T . Proving the stronger
version, which we need for our bounds on the length of flip sequences, requires using
the properties of elementary swaps.

We prove the Orbit Theorem in stages, first Theorem 1.2 (the case of swapping two
labels in a triangulation), then the more general case of permuting edge labels in a
triangulation, and finally the full result.

Proof of Theorem 1.2 The “if” direction is clear, so we address the “only if” direction.
Suppose that T = (T , �) is the given edge-labelled triangulation and that e and f are
edges of T that are in the same orbit. Then there is a sequence of flips that changes T
to an edge-labelled triangulation T ′ = (T ′, �′)where T ′ contains f and �′( f ) = �(e).
We now apply the result that any constrained triangulation of a point set can be flipped
to any other. Fix edge f and flip T ′ to T . Applying the same flip sequence to the
labelled triangulation T ′ yields an edge-labelling of triangulation T in which edge f
has the label �(e). Thus we have a sequence of flips that permutes the labels of T and
moves the label of e to f .

By the Elementary Swap Theorem (Theorem 1.3) there is a sequence of elementary
swaps whose effect is to move the label of edge e to edge f . By Lemma 2.2 there is
an elementary swap of e and f in T . ��
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Theorem 2.3 (Edge Label Permutation Theorem) Let T be a triangulation of a point
set with two edge-labellings �1 and �2 such that for each label l, the edge with label l
in �1 and the edge with label l in �2 are in the same orbit. Then there is a sequence of
O(n) elementary swaps to transform the first labelling to the second. Such a sequence
can be realized via a sequence of O(n7) flips, which can be found in polynomial time.

Proof The idea is to effect the permutation as a sequence of swaps. If every edge has
the same label in �1 and �2 we are done. So consider a label l that is attached to a
different edge in �1 and in �2. Suppose �1(e) = l and �2( f ) = l, with e �= f . By
hypothesis, e and f are in the same orbit. By Theorem 1.2 there is an elementary
swap of e and f in (T , �1) which results in a new labelling �′

1 that matches �2 in one
more edge (namely the edge f ) and still has the property that for every label l, the
edge with label l in �′

1 and the edge with label l in �2 are in the same orbit. Thus we
can continue this process until all edge labels match those of �2. In total we use O(n)

elementary swaps. These can be realized via a sequence of O(n7) flips by Lemma 2.1.
Furthermore, the sequence can be found in polynomial time. ��

We can now prove the Orbit Theorem.

Proof of Theorem 1.1 The necessity of the condition is clear, and we can test it in
polynomial timebyfinding all the orbits, soweaddress sufficiency.The idea is to recon-
figure T1 to have the same underlying unlabelled triangulation as T2 and then apply
the previous theorem. The details are as follows. Let T1 = (T1, �1) and T2 = (T2, �2).
There is a sequence σ of O(n2) flips to reconfigure the unlabelled triangulation T1 to
T2, and σ can be found in polynomial time. Applying σ to the labelled triangulation
T1 yields a labelled triangulation T3 = (T2, �3). Note that for every label l, the edges
of T1 and T3 having label l belong to the same orbit. This is because flips preserve
orbits (by definition of orbits). Thus by Theorem 2.3 there is a flip sequence τ that
reconfigures T3 to T2, and this flip sequence can be found in polynomial time and has
length O(n7). The concatenation of the two flip sequences, στ , reconfigures T1 to T2,
has length O(n7), and can be found in polynomial time. ��

3 Proof of the Elementary Swap Theorem

As mentioned in the introduction, we prove the Elementary Swap Theorem using
topological properties of the flip complex, whose 1-skeleton (i.e. vertices and edges)
is the flip graph. In fact, we will only need the 2-cells of the flip complex, not any
higher-dimensional structure.Wewill show that 2-cells of the flip complex correspond
to 4- and 5-cycles in the flip graph.

The basic idea is as follows. We will translate the Elementary Swap Theorem to a
statement about walks in the flip graph. The hypothesis of the Elementary Swap Theo-
rem is that we have a sequence of flips that permutes the edge labels of a triangulation
T . In the flip graph, this sequence corresponds to a closed walk w that starts and ends
at triangulation T . Our main topological result is that the flip complex has a trivial
fundamental group, which will imply that such a closed walk w can be decomposed
into simpler elementary walks. Each elementary walk starts at T , traces a path in the
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(a) (b)

Fig. 2 (a) Triangulations that differ in the diagonals of two internally disjoint quadrilaterals form an ele-
mentary 4-cycle in the flip graph. The cycle does not permute the labels (shown as red and blue). (b)
Triangulations that differ in the diagonals of a convex pentagon form an elementary 5-cycle in the flip
graph. This cycle permutes labels as shown in Fig. 1

flip graph, then traverses the edges of a 2-cell, then retraces the path back to T . The
edge-label permutation induced by an elementary walk depends on the 2-cell. If the
2-cell is a 4-cycle, the permutation is the identity; and if the 2-cell is a 5-cycle, then the
permutation is a transposition, and the elementary walk corresponds to an elementary
swap. Altogether, this implies that the permutation induced by the closed walk w can
be expressed as a composition of elementary swaps, which proves the Elementary
Swap Theorem.

Before stating our main topological theorem, we first define the special cycles that
will be shown to correspond to 2-cells of the flip complex. In the sameway that an edge
of the flip complex corresponds to two triangulations that differ on one edge, every
2-cell of the flip complex corresponds to a set of triangulations that differ on two edges.
Define an elementary 4-cycle to be a cycle of the flip graph obtained in the following
way. Take a triangulation T and two edges e, f ∈ T whose removal leaves two
internally disjoint convex quadrilaterals in T . Each quadrilateral can be triangulated
in two ways, which results in four triangulations that contain F := T \ {e, f }. These
four triangulations form a 4-cycle in the flip graph, as shown in Fig. 2(a). Observe that
a traversal of the cycle corresponds to a sequence of flips that returns edge-labels to
their original positions.

Define an elementary 5-cycle to be a cycle of the flip graph obtained in the following
way. Take a triangulation T and two edges e, f ∈ T whose removal leaves a convex
pentagon in T . There are five triangulations that contain F := T \ {e, f }, and they
form a 5-cycle in the flip graph, as shown in Fig. 2(b). Observe that the sequence of
flips around such a cycle permutes labels of e and f as shown in Fig. 1.

As a side remark, note that it can be shown that, in fact, any cycle in the flip graph
of length less than 6 is an elementary 4- or 5-cycle. However, we will not need this in
what follows.
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Our main topological theorem is the following.

Theorem 3.1 Let P be a set of n points in general position in the plane. There is a
high-dimensional cell complexX = X(P), which we call the flip complex, such that:

1. The 1-skeleton of X is the flip graph of P;
2. There is a one-to-one correspondence between the 2-cells ofX and the elementary

4-cycles and elementary 5-cycles of the flip graph of P;
3. X has the topology of (i.e., is homotopy equivalent to) a high-dimensional ball;

therefore its fundamental group, π1(X), is trivial.

In what follows, we will use a number of notions from combinatorial topology;
some of these we will recall along the way, but others we will only describe infor-
mally or leave undefined and instead refer the reader to standard textbooks for further
background (in particular, we refer the reader to [5, Appendix 4.7] and [16] for back-
ground on regular cell complexes, shellability, and piecewise linear balls and spheres,
to [32] for background on the fundamental group of cell complexes, and to [16,26] for
background on dual complexes; we will provide more detailed references for specific
results below).

Theorem 3.1 follows from a result of Orden and Santos [27], see Remark 3.9 at the
end of Sect. 3.3 below for more details; we are grateful to F. Santos for bringing this
reference to our attention.

Before becoming aware of the work of Orden and Santos, we found a different
proof of Theorem 3.1 that starts out by considering the simplicial complexT = T(P)

whose faces are the sets of pairwise non-crossing edges (line segments) spanned by P .
This complex T is shown to be a shellable simplicial ball (by an argument based on
constrainedDelaunay triangulations), andX is then constructed as the dual complex of
T. We hope that this alternative proof of Theorem 3.1 is of some independent interest
and present it in Sects. 3.2 and 3.3 below. Before that, in Sect. 3.1, we show how to
derive the Elementary Swap Theorem from Theorem 3.1.

3.1 FromTopology to the Elementary Swap Theorem

In this section we use Theorem 3.1 to prove the Elementary Swap Theorem. We begin
by defining elementary walks. A walk in the flip graph is a sequence T0, T1, . . . , Tk
of triangulations (possibly with repetitions) such that Ti−1 and Ti differ by a flip. We
will refer to T0 and Tk as the start and the end of the walk, respectively. A walk is
closed if it starts and ends at the same triangulation. If w1 and w2 are walks such that
the end of w1 equals the start of w2 then we can define their composition w1w2 in the
obvious way. Furthermore, if w = (T = T0, T1, . . . , Tk) is a walk, we will use the
notation w−1 = (Tk, Tk−1, . . . , T0) for the inverse walk.

Fix a triangulation T0. An elementary quadrilateral walk is a closed walk of the
form wzw−1, where z is an elementary 4-cycle in the flip graph, and w is a walk from
T0 to some triangulation on z. An elementary pentagonal walk is defined analogously,
with z an elementary 5-cycle.

It is straightforward to check the effect of these elementary walks on labellings:
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Lemma 3.2 Let (T0, �) be a labelled triangulation. An elementary quadrilateral walk
does not permute the labels. An elementary pentagonal walk swaps the labels of two
edges (e and f in Fig. 2(b)) and leaves all other labels fixed; this corresponds exactly
to the notion of an elementary swap introduced earlier.

Another operation that does not affect the permutation of labels induced by a closed
walk is the following. A spur ww−1 starting and ending at T is an arbitrary walk w

starting at T , immediately followed by the inverse walk. If w1 and w2 are walks in
the flip graph such that w1 ends at a triangulation T and w2 starts there, and if s is a
spur at T , then we say that the walk w1sw2 differs from w1w2 by a spur insertion.
The inverse operation is called a spur deletion.

Lemma 3.3 If two closed walksw andw′ in the flip graph differ only by a finite number
of spur insertions and deletions then they yield the same permutation of edge labels.

Proof A flip immediately followed by its inverse flip has no effect on labels. The
lemma follows by induction on the length of a spur and the number of spur insertions
and deletions. ��

By Lemmas 3.2 and 3.3, the Elementary Swap Theorem directly reduces to the
following, which we prove using Theorem 3.1:

Proposition 3.4 Let w be a closed walk in the flip graph starting and ending at T0.
Then, up to a finite number of spur insertions and deletions, w can be written as the
composition of finitely many elementary walks.

Proof We use the well-known fact that the fundamental group of a cell complex can be
defined combinatorially in terms of closed walks in the 1-skeleton and this definition
is equivalent to the usual topological definition in terms of continuous loops, see [30,
Chap. 7] or [32, Chap. 4]. In particular, in a cell complex with trivial fundamental
group any two closed walks in the 1-skeleton starting at the same vertex are related
by a finite number of spur insertions, deletions and so-called 2-cell relations.

We describe the combinatorial definition of the fundamental group of the flip com-
plexX in detail. By Theorem 3.1, the 1-skeleton ofX is the flip graph of P . Fix a base
triangulation T0, and, for every triangulation T , fix a walk pT from T0 to T . Given
two triangulations T1, T2 that differ by a flip, we form the closed walk wT1,T2 in the
flip graph, called a generating walk, that goes from T0 to T1 along pT1 , then flips to
T2, and then returns to T0 along p−1

T2
. It is easy to see that, up to a finite number of spur

insertions and deletions, every closed walk starting and ending at T0 can be written as
a composition of generating walks.

We say that walksw andw′ are 2-cell related if we can express them asw = w1w2
and w′ = w1zw2, where z is a closed walk traversing the boundary of a 2-cell (an
elementary cycle) exactly once in either orientation. Notice that w1w2 and w1zz−1w2
differ only by the spur zz−1, hence, up to spur insertion and deletion, being 2-cell
related is symmetric.

Also, notice the precomposition property: if w and w′ are 2-cell related as above
and if w = w1w2 is precomposed with the closed walk w1zw

−1
1 then the result

w′′ = (w1zw
−1
1 )w = w1z(w

−1
1 w1)w2 differs from w′ only by the spur w−1

1 w1. By
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Theorem 3.1, a boundary of a 2-cell is an elementary 4- or 5-cycle and so the walk
w1zw

−1
1 above is an elementary walk.

Two walks in the flip graph are called equivalent if they differ by a finite number
of spur insertion and/or deletions and by applying a finite number of 2-cell relations.
It is not hard to check that this defines an equivalence relation, and the fundamental
group π1(X) is given as the set of equivalence classes of closed walks starting and
ending at T0.

By Theorem 3.1, the fundamental group of the flip complex X is trivial. This
translates into the fact that every closed walk starting and ending at T0 is equivalent to
the trivial walk. By the precomposition property, this means that, up to a finite number
of spur insertions and deletions, every closed walk is a composition of finitely many
elementary walks. ��

3.2 The Simplicial Complex of Plane Graphs

In this section and the following one, we give a proof of Theorem 3.1. This section
is about the simplicial complex T = T(P) whose faces are the sets of pairwise
non-crossing edges (line segments) spanned by P .

Let P be a set of n points in general position in the plane, i.e., no three points lie
on a line and no four points lie on a common circle. Let E be the set of edges (closed
line segments) spanned by P . Two edges e, f ∈ E are said to be non-crossing if they
are disjoint or if they intersect in a single point of P that is an endpoint of both edges.
We say that a subset F ⊆ E is non-crossing if every pair of distinct edges e, f ∈ F is
non-crossing. If G is non-crossing and F ⊆ G then F is non-crossing as well. Thus,
the non-crossing sets of edges form an abstract simplicial complex

T = T(P) := {F : F ⊆ E, F non-crossing},

which we call the complex of plane graphs on P . We collect some basic properties of
T:

1. The facets (inclusion-maximal faces) of T are exactly the triangulations of P
(every non-crossing set of edges F ⊆ E can be extended to a triangulation). Thus,
the simplicial complexT is of dimension m − 1, where m is the number of edges
in any triangulation of P , and it is pure, i.e., every face ofT is contained in a face
of dimension m − 1.

2. Every face F ofT of dimension m − 2 is contained in either one or two triangula-
tions. In the latter case, F corresponds to a flip between these two triangulations.

We will show that the topology of T is particularly simple, namely that T is
homeomorphic to an (m − 1)-dimensional ball. Furthermore, there is a combinatorial
certificate (shellability) for this homeomorphism. This implies that the homeomor-
phism is particularly nice and that T is a piecewise-linear ball, which means that
there is a subdivisionT′ ofT such thatT′ is simplicially isomorphic to a subdivision
B′ of the d-dimensional simplex �d . The only property of piecewise-linearity that
we will need is that it ensures that the construction of the dual cell complex T∗ is
well-behaved (see Proposition 3.8 below and Footnote 3 preceeding it).
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We refer to [9,16,19] and [5, Appendix 4.7] for more details and further references
on shellability and piecewise-linear balls, spheres, and manifolds.

We recall that a pure d-dimensional simplicial complexK is shellable if there exists
a total ordering of its facets F1, F2, . . . , FN (called a shelling order) such that, for
every 2 ≤ j ≤ N , the intersection of Fj with the simplicial complex generated by the
preceding facets is pure of dimension d − 1, i.e., for every i < j and F := Fi ∩ Fj ,
there exists some k < j such that G := Fj ∩ Fk is of dimension d − 1 and F ⊆ G.

We will need the following result (which appears implicitly in [4], and explicitly
in [11]; see [5, Prop. 4.7.22] for a short proof).

Proposition 3.5 Suppose K is a finite d-dimensional simplicial complex that is a
pseudomanifold, i.e., K is pure and every (d − 1)-dimensional face of K is con-
tained in at most two d-faces. If K is shellable then K is either a piecewise-linear
ball or a piecewise-linear sphere. The former case occurs iff there is at least one
(d − 1)-dimensional face that is contained in only one d-face ofK, in which case the
pseudomanifold is said to have nonempty boundary.2

Theorem 3.6 T is a shellable (m − 1)-dimensional pseudomanifold with nonempty
boundary, and hence a piecewise-linear ball.

Proof We observed earlier that T is a pure (m − 1)-dimensional simplicial complex,
and that every (m − 2)-dimensional face of T is contained in at most two (m − 1)-
dimensional faces, henceT is a pseudomanifold.Moreover, if T is a triangulation of P
and if e ∈ T is a non-flippable edge (e.g., if e is a convex hull edge) then F := T \ {e}
is an (m−2)-dimensional face ofT that is contained in a unique (m−1)-face, namely
T . Hence, T has nonempty boundary.

Thus, by Proposition 3.5, it suffices to show that T is shellable, i.e., to exhibit a
shelling order for the facets of T.

With every triangulation T of P , we associate the sorted vector of angles α(T ) =
(α1(T ), α2(T ), . . . , α3t (T )), where α1(T ) ≤ α2(T ) ≤ · · · ≤ α3t (T ) are the angles
occurring in the triangulation T . We order the triangulations of P by sorting the
corresponding angle vectors α(T ) lexicographically from largest to smallest. Since
we assume P to be in general position, this defines a total ordering

T1, T2, . . . , TN , α(T1) >LEX α(T2) >LEX · · · >LEX α(TN ), (1)

where N is the number of triangulations of P .
It is well known (see, for example, [12, Chap. 3.4]) that in this ordering, T1 is the

Delaunay triangulation of P . Moreover, if we consider only triangulations containing
a particular plane subgraph corresponding to a face F of T and the corresponding
subsequence of the angle vectors, the first of these vectors corresponds to the Delaunay
triangulation constrained to F .

We claim that the triangulation ordering (1) defines a shelling. We need to prove
that for every i < j ≤ N and F := Ti ∩ Tj , there exists some k < j such that
G := Tk ∩ Tj is of dimension m − 2 and F ⊆ G.

2 We remark that the property of being a shellable pseudomanifold (which is a combinatorial and algorith-
mically verifiable condition) is strictly stronger than being a piecewise-linear ball or sphere, which in turn
is strictly stronger than being a simplicial complex homeomorphic to a ball or sphere.
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To see this, consider the subsequence Tk1 , Tk2 , . . . of the sequence (1) consisting
only of those triangulations that contain the edge set F . Then Tk1 is the constrained
Delaunay triangulation with respect to the edge set F , and Ti and Tj both appear in that
subsequence; in particular, Tj �= Tk1 since Ti precedes it. Since every triangulation
containing F can be transformed to the constrained Delaunay triangulation Tk1 , (see,
e.g., the description of the Lawson flip algorithm in [12]) there must exist an edge
e ∈ Tj \ Tk1 such that flipping e (a Lawson flip) increases the angle vector; thus, the
triangulation resulting from flipping e is some Tk with k < j and satisfies F ⊆ Tk ∩Tj

as desired. ��
Finally, we need a characterization of interior versus boundary faces of T. Let B

be a piecewise-linear ball of dimension d. By definition, the boundary ∂B ofB is the
subcomplex ofB consisting of all faces F for which there exists a (d−1)-dimensional
face G of B, with F ⊆ G, such that G is contained in a unique d-dimensional face
of B, see, for example, [9,19]. (In the case B = T, the latter condition means that
G = T \ {e} for some triangulation T and some edge e ∈ T that is not flippable.) A
face F of B that does not lie in ∂B is called an interior face.

For the proof of Theorem3.1we need properties of interior faces ofT of dimensions
m − 1, m − 2 and m − 3. The following proposition characterizes interior faces more
generally.

Proposition 3.7 LetT be the simplicial complex of plane graphs on the point set P. A
non-crossing set of edges F on P is an interior face of T if and only if the following
conditions hold:

(i) F contains all convex hull edges of P,
(ii) Every bounded region in the complement of the plane graph (P, F) is convex.

Proof Note that a polygon is non-convex iff it has a reflex vertex. More generally, a
bounded region in the complement of the plane graph (P, F) is non-convex iff there
is an interior point p of P and a half-plane H through p with no edge of F from p to
a point interior to H—in this case we say that p “has no edge in a half-plane”. The
statement of the proposition is then equivalent to the following: F is a boundary face
if and only if F misses a convex hull edge or there is an interior point p of P with no
edge in a half-plane. We prove this statement.

For the forward direction, suppose that F is a boundary face. Then there is a
triangulation T , F ⊆ T , and an edge e ∈ T − F such that e is not flippable in T . If
e is a convex hull edge, then F does not contain all convex hull edges. Otherwise e
is a diagonal of a non-convex quadrilateral in T . Set p to be the reflex vertex of the
non-convex quadrilateral and H to contain the other end of e but not the two other
vertices of the quadrilateral. Then p has no edge in the half-plane H .

For the other direction, first note that if F misses a convex hull edge then F is a
boundary face. For the other case, suppose there is a non-convex hull point p of P
that has no edge in the half-plane H . Augment F to a maximal set F ′ of non-crossing
edges without using any edge from p into H . This will not yet be a triangulation
(because in a triangulation p is surrounded by triangles and they have angles bounded
by π ). Now augment F ′ further to a triangulation T . Then T − F ′ contains some edge
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e incident to p, and e is not flippable otherwise we could have further augmented F ′.
Thus F is a boundary face. ��

3.3 The Dual Flip ComplexX

To define the flip complex X, we need the notion of dual cells and the dual cell
decomposition of a piecewise-linear ball; for the precise definition, we refer to [16,
Sect. I.6] or [26, §64 and §70].3 Here, we simply collect the properties that we will
need:

Proposition 3.8 Let B be a d-dimensional piecewise-linear ball.

1. For each interior k-dimensional face F of B, one can define a dual cell F∗ (a
certain subcomplex of the barycentric subdivision of B that is a piecewise-linear
ball of dimension d − k [16, Lem. I.19]).

2. The construction reverses inclusion, i.e., for interior faces F, G of B, F ⊆ G iff
F∗ ⊇ G∗.

3. The dual cells of the interior faces of B form a regular cell complex, denoted B∗
and called the dual cell complex.B∗ need not be amanifold or pure d-dimensional,
but it is homotopy equivalent to B [26, Lem. 70.1].4

We define the flip complexX := T∗ as the dual complex of the simplicial complex
T.

Proof of Theorem 3.1 By Proposition 3.8, X = T∗ is a regular cell complex that is
homotopy equivalent to the ballT; consequently, the fundamental group π1(X) van-
ishes.

It remains to show the characterization of the vertices, edges, and 2-cells of X.
The vertices ofX correspond (are dual) to the faces ofT of the highest dimension

(m−1) = dimT, i.e., to the triangulations of P (these are automatically interior faces
of T).

The edges ofX correspond to interior (m−2)-dimensional faces F ofT, i.e., faces
F that are contained in two triangulations T and T ′ that differ by a flip. Thus, the
1-skeleton of X is exactly the flip graph of P .

Every 2-cell of X is the dual cell F∗ of an interior face F of T of dimension
m−3 = dim F . Consider an arbitrary triangulation T containing F , i.e., F is obtained
from T by deleting two edges e, f . By Proposition 3.7, e and f are both flippable in
T since they lie in a convex polygon in T .

If e and f are not incident to a common triangle in T , (or, equivalently, removing
both e and f from T creates two internally disjoint convex quadrilaterals) then there

3 In [26], the terminology dual blocks is used instead of dual cells, since the construction is described in a
more general setting (for arbitrary triangulated manifolds or homology manifolds) in which the dual blocks
F∗ need not be cells (homeomorphic to balls). However, in the setting of piecewise-linear manifolds, in
particular of piecewise-linear balls, as in our case, this technical issue does not arise.
4 More specifically, the dual complex of a piecewise-linear manifold with boundary is a deformation retrac-
tion of themanifold. Formanifoldswithout boundary, the dual complex is piecewise-linearly homeomorphic
to the original manifold.
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exist four triangulations containing F and these form an elementary 4-cycle in the flip
graph. It follows from the definition of X = T∗ that the 4-cycle is the boundary of
the dual cell F∗.

Otherwise, e and f are incident to a common triangle in T . By Proposition 3.7 the
union of the three triangles of T containing either e or f forms a convex polygon,
necessarily a pentagon. There are five triangulations containing F and these form an
elementary 5-cycle in the flip graph. It follows from the definition ofX = T∗ that the
5-cycle is the boundary of the dual cell F∗.

Hence, every 2-cell of X corresponds to an elementary 4- or 5-cycle of the flip
graph.

Conversely, every elementary 4- or 5-cycle of the flip graph gives rise to a 2-cell
F∗ of X: more precisely, F∗ corresponds to the intersection of the triangulations in
the elementary cycle. ��

Remark 3.9 As remarked above, the flip complex X and Theorem 3.1 are closely
related to a result of Orden and Santos [27]. Specifically, Orden and Santos showed
that for every point set P , there exist a simple polytopeY = Y(P) and a distinguished
face F0 of Y with the following properties: The vertices of Y that do not lie in the
distinguished face F0 are in one-to-one correspondence with the triangulations of P .5

More generally, the faces of Y that are disjoint from the distinguished face F0 are in
one-to-one correspondence with the non-crossing sets of edges of P that contain all
convex hull edges of P . Furthermore, the correspondence reverses inclusion.

It follows from this that the cell complex K = K(P) of all faces of Y disjoint
from F0 has the flip graph of P as its 1-skeleton, and the fundamental group of K is
trivial (since K is the complement of the star of a face in the boundary of a convex
polytope); analogously to the proof of Theorem 3.1, it can be shown that the 2-faces
of K correspond to the elementary 4-cycles and 5-cycles in the flip graph. Thus, the
complexK could be used instead of the flip complexX to prove the Elementary Swap
Theorem.

A different way of viewing the complexK is as follows: Let C be the set of convex
hull edges of P . Then C is a face of the complex T of plane graphs on P , and since
T is a shellable ball, the link L of C in T is a shellable (and hence piecewise-linear)
ball or sphere. The complex K of Orden–Santos is the dual cell complex of L.

4 Proofs of Properties of Elementary Swaps

In this section we prove Lemmas 2.1 and 2.2.
To prove Lemma 2.1, the idea is to look at paths in the double quadrilateral graph

GD that we will define below. Informally speaking, GD captures where pairs of non-
crossing edges can go via flips, similar to the way the quadrilateral graph captures
where a single edge can go via flips. We will show that there is an elementary swap

5 The vertices of F0, by contrast, correspond to pseudotriangulations with vertex set P that are not trian-
gulations. Here, a pseudotriangulation of P is a decomposition of the convex hull of P into peudotriangles,
i.e., possibly non-convex polygons with exactly three non-reflex vertices.
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between two labels in a triangulation if and only if there exists a path of certain type
in the double quadrilateral graph.

Proof of Lemma 2.1 Construct a graph GD called the double quadrilateral graph. Ver-
tices of the graphGD are pairs of non-crossing edges on the point set P , and we define
two vertices (e1, f1) and (e2, f2) of GD to be adjacent if either e1 = e2 and f1 and f2
are adjacent in the quadrilateral graph, or if f1 = f2 and e1 and e2 are adjacent in the
quadrilateral graph. (Recall that two edges a and b are adjacent in the quadrilateral
graph if a and b cross and their four endpoints form an empty quadrilateral.)

In the graphGD we identify some vertices as “swap vertices”. These are the vertices
(g, h) such that g and h are diagonals of some empty convex pentagon in the point
set. Note that the swap vertices can be identified in polynomial time.

We claim that there is an elementary swap of e and f in the labelled triangulation
T = (T , �) if and only if there is a path in GD from vertex (e, f ) to a swap vertex.
For the forward direction, suppose there is such an elementary swap. It begins with
a sequence σ of flips from T to a labelled triangulation T ′ in which labels �(e) and
�( f ) are attached to two diagonals g and h of some empty convex pentagon. The
subsequence of σ consisting of those flips that apply to an edge whose current label
is �(e) or �( f ) corresponds to a path in GD from (e, f ) to the swap vertex (g, h).

For the other direction, letπ be a path inGD from (e, f ) to a swap vertex. It suffices
to show that the path π provides a sequence of flips, σ , that takes T to some labelled
triangulation T ′ in which labels �(e) and �( f ) are attached to two diagonals of an
empty convex pentagon, because the rest of the elementary swap is then determined.
Consider the first edge of π and suppose without loss of generality that it goes from
(e, f ) to (e, f ′) (the case when e changes is similar). Then e and f ′ are non-crossing.
Because f and f ′ are adjacent in the quadrilateral graph, they cross and form an
empty convex quadrilateral Q. Note that e does not intersect the interior of Q, since
Q is empty and e does not cross f or f ′. We apply the result that any constrained
triangulation can be flipped to any other with O(n2) flips. Fix edges e and f in T and
flip T to a labelled triangulation that contains the edges of Q. In this triangulation, we
can flip f to f ′, transferring �( f ) to f ′. We continue in this way to realize each edge
of π via O(n2) flips, arriving finally at a labelled triangulation in which labels �(e)
and �( f ) are attached to edges that are the diagonals of some empty convex pentagon
in the point set. Fixing the two diagonals, we can flip to a triangulation that contains
the edges of the convex pentagon, and at this point we are done.

Because the graph GD has O(n4) vertices, the diameter of any of its connected
components is O(n4). Thus, if there is an elementary swap that exchanges the labels
of edges e and f , then there is one corresponding to a path in GD of length O(n4). We
can explicitly construct GD and find such a path in polynomial time. As argued above,
every edge of GD can be realized by O(n2) flips. This proves that, for any elementary
swap, we can construct a sequence of O(n6) flips to realize it, and the construction
takes polynomial time. ��

As mentioned in Sect. 2, there is a group-theoretic argument proving a weaker
version of Lemma 2.2. The argument depends on the following claim: If a permutation
group is generated by transpositions and contains a permutation that maps element e to
f then the group contains the transposition of e and f . To prove this claim, notice that
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if the group contains transpositions (ab) and (bc), then it also contains transposition
(ac) = (ab)(bc)(ab); and apply induction.

To apply this claim in our situation, observe that by the Elementary Swap Theorem,
all label permutations achievable by flips in a triangulation T are compositions of
elementary swaps, hence, these label permutations indeed forma groupG generated by
transpositions. Moreover, by the assumption of Lemma 2.2, G contains a permutation
taking the label of edge e to edge f . Hence, by the above claim, the group G also
contains a permutation, which is a composition of elementary swaps, whose effect is
to transpose labels of edges e and f .

In order to prove the full result of Lemma 2.2, i.e., that the label transposition of e
and f can be done with a single elementary swap, we combine the techniques used in
the proof of the group theory claim above with the structure of elementary swaps.

Proof of Lemma 2.2 An elementary swap in triangulation T acts on two edges of T .
We define a graph GS called the elementary swap graph of T . GS has a vertex for
every edge of T , and we define vertices e and f to be adjacent in GS if there is an
elementary swap of e and f in T .

By hypothesis, there is a sequence of elementary swaps that takes the label of edge
e to edge f . Observe that no sequence of elementary swaps will take the label of edge
e outside the connected component of GS that contains e. Therefore e and f must
lie in the same connected component of GS . We will now show that each connected
component of GS is a clique. This implies that there is an elementary swap of e and
f , and completes our proof.
Consider a simple path (e0, e1), (e1, e2), . . . , (ek−1, ek) in GS . Let σi , i =

1, . . . , k, be a flip sequence that realizes the elementary swap (ei−1, ei ), and let
σ = σ1σ2 . . . σk−1. Observe that σ takes the label of e0 to ek−1, and does not change
the label of ek (by the assumption that the path is simple). By definition of an elemen-
tary swap, the flip sequence σk has the form ρπρ−1 where ρ is a sequence of flips that
moves the labels of ek−1 and ek into an empty convex pentagon, and π is the sequence
of five flips that exchanges the labels of ek−1 and ek .

Consider the flip sequence σσkσ
−1 = σρπρ−1σ−1 = σρπ(σρ)−1. The first part

of this flip sequence, σρ, moves the labels of e0 and ek into an empty convex pentagon;
the middle part, π , exchanges them; and the final part, (σρ)−1 reverses the first part.
Therefore this flip sequence realizes an elementary swap of e0 and ek . ��

5 Conclusions and Open Problems

We have characterized when two labelled triangulations of a set of n points belong to
the same connected component of the labelled flip graph, and proved that the diameter
of each connected component is bounded by O(n7). We conclude with some open
problems:

1. Reduce the gap between the upper bound, O(n7), and the best known lower bound
of O(n3) [7] on the diameter of a component of the labelled flip graph.

2. We have studied the case where each edge in a triangulation has a unique label, and
given a bound of O(n7) on the diameter of a component of the labelled flip graph.
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The case where edges are unlabelled can be viewed as the case where every edge
has the same label—in this case the bound becomes O(n2). A unifying scenario is
when the edges have labels and labels may appear on more than one edge. Is there
a bound on the diameter of connected components of the flip graph that depends
on the number of labels, or on the maximum number of edges with the same label?

3. We did not analyze the run-time of our algorithms in the main text. A crude
bound is O(n8), with the bottleneck being the explicit construction in the proof of
Lemma 2.1 of the double quadrilateral graph which has O(n4) vertices and thus
O(n8) edges. This bound can surely be improved.

4. What is the complexity of the following flip distance problem for labelled triangu-
lations: Given two labelled triangulations and a number k, is there a flip sequence
of length at most k to transform the first triangulation to the second one? This
problem is NP-complete in the unlabelled setting, but knowing the mapping of
edges might make the problem easier.
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