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ABSTRACT
Problems involving quantum impurities, in which one or a few particles are interacting with a
macroscopic environment, represent a pervasive paradigm, spanning across atomic, molecular, and
condensed-matter physics. In this paperwe introducenewvariational approaches toquantum impu-
rities and apply them to the Fröhlich polaron – a quasiparticle formed out of an electron (or other
point-like impurity) in a polar medium, and to the angulon – a quasiparticle formed out of a rotat-
ing molecule in a bosonic bath. We benchmark these approaches against established theories,
evaluating their accuracy as a function of the impurity-bath coupling.
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1. Introduction

The concept of quasiparticle is one of the most fertile
and far-reaching concepts in condensed-matter physics.
When thinking in terms of quasiparticles one aims to
describe collective excitations of a many-body system as
effective emergent particles, hence the name [1].

One of the most well-known examples of quasiparti-
cles is the Fröhlich polaron, introduced by Landau [2],
Pekar [3], and Fröhlich [4] to describe the motion of
electrons dressed by phonons in a polarisable medium.
Over the years, the polaron became one of the standard,
textbookmodels of condensed-matter physics, which has
been studied using (and thereby spurred the development
of) many theoretical approaches. Among those are per-
turbative techniques [5], canonical transformations [6],
the Landau-Pekar strong-coupling approach [7], Feyn-
man’s variational path integral method [8,9], as well as
numerical techniques based on Monte Carlo [10,11] and
renormalisation group [12].

CONTACT Giacomo Bighin giacomo.bighin@ist.ac.at IST Austria (Institute of Science and Technology Austria), Am Campus 1, Klosterneuburg 3400,
Austria

Notably, the polaron concept has proven useful far
beyond the original physics problem (electrons in crys-
tals), and was successfully applied to systems as diverse as
electrons on the surface of liquid helium [13,14], doped
antiferromagnetic Mott insulators [15], magnetic semi-
conductors [16], and ultracold gases [9]. In the quasipar-
ticle picture, the polaron accounts for the effect of the
many-body environment on the quantum impurity by
means of the renormalisation of the particle parameters –
such as its energy and mass. In such a way, the effect of
∼ 1023 particles of the bath can be understood in terms of
a handful of renormalised parameters – a drastic simpli-
fication, which in many cases allows to obtain extremely
accurate results.

All quantum impurities described by the Fröhlich
polaron model are structureless (such as electrons) or
can be considered structureless (such as atoms whose
electronic structure is not perturbed by their surround-
ings). A compelling question is whether molecules
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and – in general – more complex quantum systems can
be described as quantum impurities using the quasi-
particle approach. Recently, a new quasiparticle, the
angulon, has been introduced to describe a molecule
interacting with a bosonic many-body field, such as
a superfluid [17–19]. While angulons can be thought
of as ‘rotational analogues’ of polarons, there are sev-
eral important differences. First, as opposed to transla-
tional motion, rotations in three-dimensional space are
described by a non-Abelian SO(3) algebra, which leads
to intricate theoretical machinery of angular momentum
addition. Furthermore, anisotropic molecular geometry
results in anisotropic impurity-boson coupling, which
renders many-body interactions explicitly dependent on
the molecular orientation. The unique properties of such
a system motivated the introduction of new analyti-
cal [18,20,21] and numerical techniques [22], which can
be applied to the Fröhlich polaron as well.

In this paper, inspired by the recent advances in
polaron theory [12,23–25] as well as by the recent devel-
opments concerning angulons [17,18,26], we introduce
new variational methods for the Fröhlich polaron and for
the angulon. In particular, we introduce two variational
approaches based on a single-phonon expansion either
over the ground-state or after a canonical transformation,
leading to two different non-perturbative descriptions of
the Fröhlich polaron, as well as a diagonalisation tech-
nique based on the well-known Pekar ansatz [3], that
we dub ‘Pekar diagonalisation’. The results we obtain are
benchmarked against Feynman’s all-coupling theory [27]
and against the Pekar ansatz [3].

The paper is organised as follows. In Section 2, we first
briefly introduce the Fröhlich Hamiltonian. Then, we
introduce two new variational ansaetze for the polaron
problem. Namely, in Section 3 we study a variational
ansatz based on a single-phonon excitation over the
ground state, and in Section 4 we discuss a variational
ansatz based on a single-phonon excitation on top of a
bosonic coherent state, in order to extend the descrip-
tion to the intermediate- and strong-coupling regimes.
In Section 5 we introduce a new diagonalisation method
based on the Pekar ansatz and apply it to the Fröhlich
polaron and to the angulon. The conclusions of the paper
are drawn in Section 6.

2. Fröhlich Hamiltonian

The Fröhlich Hamiltonian, describing an impurity
immersed in a bosonic bath, is given by:

ĤF = P̂
2

2m
+
∑
k

ω(k)b̂†
kb̂k

+
∑
k

V(k)
(
e−ik·x̂b̂†

k + eik·x̂b̂k
)
. (1)

Here the first term represents the kinetic energy of
an impurity with mass m. The second term, with∑

k ≡ ∫
d3k/(2π)3, corresponds to the kinetic energy of

the bosons, as parametrised by the dispersion relation
ω(k). The bosonic creation and annihilation operators,
b̂†
k and b̂k, obey the commutation relation [b̂k, b̂

†
k′] =

(2π)3δ(k − k′). Finally, the last term is the impurity-
bath interaction, where V(k) determines the coupling
strength, and x̂ is the position operator of the impurity
with respect to the laboratory frame.

In what follows, we use Fröhlich’s original parame-
ters, i.e. a constant dispersion relation for gapped optical
phonons, ω(k) = ω0, and the coupling strength,

V(k) =
√
23/2πα

k2
, (2)

α being the electron-phonon coupling constant in units
of m = ω0 = � ≡ 1. The Hamiltonian of Equation (1)
possesses translational symmetry, which follows from the
fact that the total linear momentum of the system,

�̂ = P̂ +
∑
k

kb̂†
kb̂k, (3)

commutes with the Hamiltonian (1). Conservation of the
total linear momentum allows us to label the polaron
quasiparticle with the momentum quantum number.

3. Single phonon expansion

Inspired by the so-called ‘Chevy ansatz’, originally intro-
duced for an imbalanced Fermi-gas [28–30], we expand
the state vector up a single phonon excitation. Taking into
account the conservation of the total linear momentum,
we write down the following variational ansatz:

|ψp〉 =
√
Zp |p〉 |0〉 +

∑
k

βp(k) |p − k〉 b̂†
k |0〉 , (4)

where
√
Zp and βp(k) are variational parameters with the

normalisation condition
√
Zp′ ∗

√
Zp +∑

k βp′(k)∗βp(k)
= δ(p′ − p). Minimization of the functional 〈ψp′ | ĤF −
E |ψp〉 with respect to the parameters

√
Zp

∗ and βp(k)∗
yields the following coupled equations

∂F
∂
√
Zp

∗ = |Zp|
(
p2

2m
− E

)
+
∑
k

βp(k)V(k) = 0, (5)

∂F
∂βp(k)∗

= βp(k)

((
p − k

)2
2m

+ ω(k)− E

)

+
√
ZpV(k) = 0. (6)
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If we substitute βp(k) from Equation (6) into Equation
(5), we obtain the Dyson equation

E = p2

2m
−	p(E), (7)

which can be solved to obtain the variational energy E.
The self-energy is given by

	p(E) =
∑
k

V(k)2

(p − k)2/(2m)+ ω(k)− E
, (8)

which can be solved self-consistently. Combining the
variational energy E, the normalisation condition,
Equation (5) and Equation (6), one can obtain the val-
ues of variational coefficients

√
Zp and βp(k). We note

that the self-energy of Equation (8) coincides with that
obtained by means of field-theoretical approaches in Ref.
[12].

In the iterative solution toEquation (7), the leading-
order term is given by E(1) = p2/(2M), and the second-
order term reads E(2) = p2/(2M)−	p(E(1)), which
matches the result of second order perturbation theory.
Therefore, the variational energy (7) is non-perturbative
as it corresponds to resummation over all diagrams
describing single-phonon excitations, see Refs. [18,20]
for further details.

Figure 1(a) shows the Fröhlich polaron energy as cal-
culated fromEquation (7). A comparisonwith Feynman’s
all-coupling theory [27] shows that, despite the inher-
ently non-perturbative nature of a Chevy-like ansatz, in
the case of the Fröhlich polaron its effectiveness in deter-
mining the ground state energy is limited to the weak-
coupling region. In addition to this, Figure 1(b), present
results for the renormalised polaron massm∗, defined by

1
m∗ = ∂2E

∂p2

∣∣∣∣
p=0

. (9)

Here, except for very small values of the coupling
α, our Chevy-like ansatz deviates from the classical
perturbation-theory result m∗/m = 1 + α/6, tending to
a constant value for sufficiently large α. The scope of
applicability of the present treatment, however, in the
light of the results for the energy presented in Figure 1(a),
should not be extended to that region.

In this Section, we have shown that the variational
ansatz of Equation (4) yields a good prediction of ground
energy in weak coupling region through a simple, fully
analytical calculation. Moreover, working with a varia-
tional ansatzmakes the underlying physics clear: the vari-
ational coefficient

√
Zp is the quasiparticle weight, i.e. a

measure of the overlap between the dressed impurity and
a bare particle, whereas the variational coefficient βp(k)
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Feynman variational
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Figure 1. (a) Thepolaronenergy as a functionof the Fröhlich cou-
pling constant, α, for the Chevy ansatz, Equation (4) (red solid
line), coherent state on top of single phonon excitation, Equa-
tions (12) and (16) (blackdotted line), and theFeynmanvariational
method [27] (orange dash-dotted line). (b) Renormalization of the
polaron mass as a function of the Fröhlich coupling constant, α,
for the Chevy ansatz (red solid line), coherent state on top of sin-
gle phonon excitation (black dot line), and the weak coupling
theory [24] (purple circles). See the text (Colour online).

contains information about the occupation of phonon
states.

4. Coherent state on top of single phonon
excitation

Recently a new variational ansatz has been introduced in
order to tackle the angulon problem [26] in the limit of a
slowly-rotating impurity. This method is based on single
phonon excitation expansion after a coherent state trans-
formation that brings theHamiltonian to a diagonal form
in the limit of a slowly rotating impurity. Aiming to use
thismethod for the Fröhlich polaron, we start by applying
the Lee-Low-Pines transformation [6],

T̂ = exp

(
−ix̂ ·

∑
k

kb̂†
kb̂k

)
, (10)
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after which the FröhlichHamiltonian then can be written
as

Ĥ′
F = T̂−1ĤFT̂ = 1

2m

(
P̂ −

∑
k

kb̂†
kb̂k

)2

+
∑
k

ω(k)b̂†
kb̂k +

∑
k

V(k)
(
b̂†
k + b̂k

)
, (11)

commuting with P̂, i.e. [Ĥ′
F , P̂] = 0. Then, the corre-

sponding state vector can be written as a product state,

|
p〉 = |ϕ〉 ⊗ |p〉 , (12)

a similar approach having been used in Ref. [31]. Here
the state vector |p〉, with p being the total momentum
number of the impurity-bath system in the laboratory-
frame, corresponds to the impurity wave function, while
the bosonic state |ϕ〉 refers to the bosonic part of the
following Hamiltonian

Ĥ′
F = p2

2m
+
∑
k

ω̃(k)b̂†
kb̂k

+
∑
k

V(k)
(
b̂†
k + b̂k

)
+ 1

2m
�̂, (13)

where ω̃(k) = ω(k)− k · p/m + k2/(2m), and �̂ =∑
k,k′ k · k′b̂†

kb̂
†
k′ b̂kb̂k′ . In the limit ofm → ∞, theHamil-

tonian (13) can be diagonalised using the following
coherent state transformation

Û = exp

(
−
∑
k

V(k)
ω̃(k)

(b̂†
k − b̂k)

)
. (14)

After applying this transformation to Equation (13) we
obtain

ĤF
′′ = Û−1Ĥ′

FÛ = p2

2m
+
∑
k

ω̃(k)b̂†
kb̂k

−
∑
k

V(k)2

ω̃(k)
+ 1

2m
Û−1�̂Û. (15)

Next we introduce the following variational ansatz for
the bosonic state:

|ϕ〉 = g |0〉 +
∑
k

α(k)b̂†
k |0〉 . (16)

Then, minimisation of the functional F = 〈ϕ| ĤF
′′ −

E |ϕ〉 with respect to the parameters g∗ and α(k)∗ gives

the following system of equations

∂F
∂g∗ = −gẼ − 1

m

∑
k,k′

α(k)
(
V(k′)
ω̃(k′)

)2 V(k)
ω̃(k)

k · k′ = 0

(17)

∂F
∂α(k)∗

= − g
m

∑
k′

(
V(k′)
ω̃(k′)

)2 V(k)
ω̃(k)

k · k′

+ α(k)

⎡
⎣−Ẽ + ω̃(k)+ 1

m

∑
k′

k · k′
(
V(k′)
ω̃(k′)

)2
⎤
⎦

+ 1
m

∑
k′
α(k′)k · k′V(k′)

ω̃(k′)
V(k)
ω̃(k)

= 0, (18)

where

Ẽ = E − p2

2m
+
∑
k

V(k)2

ω̃(k)

− 1
2m

∑
k,k′

k · k′
(
V(k)
ω̃(k)

)2 (V(k′)
ω̃(k′)

)2
. (19)

We further use the rotational symmetry of the problem,
and, without loss of generality, assume that p ‖ ẑ. Then,
solving α(k) from Equation (18) as function of g and
plugging into Equation (17) gives us Dyson equation

E = p2

2m
−	p(E), (20)

from which one can solve for the variational energy E.
The self-energy here has the following form

	p(E) =
∑
k

V(k)2

ω̃(k)
− 1

2m
I2z + AzIz . (21)

Moreover, we have defined

Iz =
∑
k

kz (V(k)/ω̃(k))2 (22)

and

Az = Iz
m

∑
k

k2z
m

(V(k)/ω̃(k))2

−Ẽ + ω̃(k)+ kzIz/m(
1 +

∑
k

k2z
m

(V(k)/ω̃(k))
−Ẽ + ω̃(k)+ kzIz/m

)−1

. (23)

Of course, in the limit of m → ∞, we obtain the defor-
mation energy of the bath, E = −∑k V(k)

2/ω(k).
InFigure 1(a), we study the resulting polaron energy as

a function of the Fröhlich coupling constant,α. The treat-
ment developed in the present Section provides an energy
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estimate remarkably better than the Chevy-like ansatz
introduced in the previous Section, and in particular the
energy is considerably close to Feynman’s all-coupling
theory [27] over a broad range of values of α. In addi-
tion to this, Figure 1(b) shows the renormalisation of
the polaron mass as a function of α, the result of the
approach developed in the present Section being consid-
erably larger than that obtained in previous Section, coin-
ciding with the the perturbation-theory result m∗/m =
1 + α/6 up to α ∼ 1.

5. Pekar diagonalisation

5.1. Polaron

The strong-coupling theory of the Fröhlich Hamiltonian
can be studied within the Pekar ansatz [3,24]:

|
P〉 = |ϕ〉 ⊗ |ξB〉 , (24)

where |ϕ〉 and |ξB〉 correspond to the impurity wave-
function and the bosonic state, respectively. The Pekar
treatment that we are now going to briefly review essen-
tially corresponds to the Born-Oppenheimer approxima-
tion. It is assumed that the phonons and the impurity
have two completely different timescales, or, more pre-
cisely, that the phonons can adjust instantaneously as the
slowly moving impurity changes its position. In order
to carry out this plan one takes the expectation value,
〈ϕ| ĤF |ϕ〉, the resulting effective bosonic Hamiltonian
can be diagonalised using the following coherent-state
transformation:

Û = exp

[
−
∑
k

V(k)
ω(k)

(
〈e−ik·x̂〉b̂†

k − H.c.
)]

, (25)

where 〈Â〉 ≡ 〈ϕ| Â |ϕ〉. The bosonic state minimising the
Pekar energy is given by |ξB〉 = Û |0〉, and the respective
ground-state energy is:

ε0 = 1
2m

〈P̂2〉 −
∑
k

|V(k)〈e−ik·x̂〉|2
ω(k)

. (26)

In general, the impurity wavefunction for the ground
state can be modelled by the following radial Gaussian
function [24]

ϕ(x) =
(
β

π

)3/4
e−βr

2/2. (27)

Minimization of the Pekar energy (26) with respect to the
variational parameter β yields [24]

ε0 = − α2

3π
. (28)

In what follows we present an extension of the Pekar
approach that we dub ‘Pekar diagonalisation’. For this

purpose, we introduce the following state vectors

|
n〉 = |ϕn〉 exp(−X̂nn) |0〉 , (29)

where

X̂nn =
∑
k

V(k)
ω(k)

(
〈e−ik·x̂〉nnb̂†

k − H.c.
)
, (30)

with 〈Â〉nm ≡ 〈ϕn| Â |ϕm〉 and 〈Â〉n ≡ 〈ϕn| Â |ϕn〉. Then,
the corresponding matrix element can be written as

HF nm ≡ 〈
n| ĤF |
m〉 = e−�nm
2m

〈P̂2〉nm

+ e−�nm
∑
k

V(k)2

ω(k)

×
(
Nnm〈eik·x̂〉nn〈e−ik·x̂〉mm − 〈e−ik·x̂〉nm〈eik·x̂〉nn

−〈eik·x̂〉nm〈e−ik·x̂〉mm

)
, (31)

where we define Nnm ≡ 〈ϕn〉ϕm, and

�nm = 1
2

∑
k

(
V(k)
ω(k)

)2 (
〈e−ik·x̂〉nn〈eik·x̂〉mm

−〈eik·x̂〉nn〈e−ik·x̂〉mm

)
(32)

Naturally, the diagonal terms correspond to Equation
(26). We note that a similar technique has been applied
in ultracold fermionic and bosonic mixtures [32,33].

In order to use the diagonalisation technique (31),
we use the following ansatz for the impurity wave func-
tion [34]

ϕn(x) = Nn e−βr(1 + a1r + · · · anrn), (33)

corresponding to s-wave states. Here β and an are the
variational parameters with n labelling excited states.
After finding the optimum values of the variation
parameters for each excited state, we can diagonalise
Equation (31). In Figure 2, we show the correspond-
ing energy, where we use only 2 basis vectors. It can be
seen that the Pekar diagonalisation technique remarkably
improves the Pekar ansatz Equation (24) in the strong-
coupling region, and more rigorous results can be given
with larger matrix or with a better trial state ϕn(x).

5.2. Angulon

As a next step, we show that the Pekar diagonalisation we
have just introduced can be applied to the angulon, i.e.
a quasiparticle describing a quantummolecular impurity
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E
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Pekar diagonalization

Figure 2. The polaron energy as a function of the Fröhlich cou-
pling constant, α, for the Pekar ansatz, Equation (24) (blue dash
line), and the Pekar diagonalisation technique, Equations (29)
and (33) (green triangles). See the text (Colour online).

with rotational degrees of freedom. In order to do so, let
us introduce the angulon Hamiltonian [17,18]:

ĤA = BĴ2 +
∑
kλμ

ω(k)b̂†
kλμb̂kλμ

+
∑
kλμ

Uλ(k)
[
Y∗
λμ(�̂)b̂

†
kλμ + H.c.

]
(34)

describing a molecular impurity – schematised as a rigid
rotor exchanging angular momentum with a bosonic
many-body environment. Let us briefly discuss the struc-
ture of Equation (34). In the first term, expressing
the rotational kinetic energy of the molecular impu-
rity, B and Ĵ are the rotational constant and the angu-
lar momentum operator, respectively. The second term
of Equation (34) represents the kinetic energy of the
non-interacting bosonswith dispersion relationω(k); the
bosonic creation and annihilation operators, b̂†

k and b̂k,
are expressed in the angular momentum basis: b̂†

kλμ =
k(2π)−3/2 ∫ d�kb̂

†
ki
λY∗

λμ(�k), while λ and μ define the
boson angular mementum and its projection onto the
laboratory-frame z axis, see Ref. [18] for more details.
Finally, the third term of Equation (34) describes the
impurity-bath interaction, where the coupling poten-
tial, Uλ(k), parametrises the interaction of impurity
with bosons carrying angular momentum λ and linear
momentum k.

To apply the Pekar diagonalisation technique to the
angulon, we consider the following basis vector

|
jm〉 = |jm〉 exp[−X̂jm]|0〉, (35)

where the free rotor eigenstates, |jm〉, are labelled by the
angular momentum, j, and its projection, m, on the lab-
oratory z axis. Furthermore, in writing Equation (35) we
introduced X̂jm defined as follows

X̂jm =
∑
kλμ

Uλ(k)
ω(k)

[
〈jm|Y∗

λμ(�̂)|jm〉 b̂†
kλμ − H.c.

]
.

(36)
Following the scheme outlined in Section 5, we obtain for
the angulon

〈j′m′|HA|jm〉
= B e−�j′m′ ,jm〈j′m′|Ĵ2|jm〉

+ e−�j′m′ ,jm
∑
kλμ

U2
λ(k)
ω(k)

×
[
〈j′m′|Yλμ(�̂)|j′m′〉〈jm|Y∗

λμ(�̂)|jm〉δj′jδm′m

− 〈j′m′|Y∗
λμ(�̂)|jm〉〈j′m′|Yλμ(�̂)|j′m′〉

− 〈j′m′|Yλμ(�̂)|jm〉〈jm|Y∗
λμ(�̂)|jm〉

]
(37)

where

�j′m′,jm = 1
2

∑
kλμ

(
Uλ(k)
ω(k)

)2

(
〈j′m′|Y∗

λμ(�̂)|j′m′〉〈jm|Yλμ(�̂)|jm〉

− 〈j′m′|Yλμ(�̂)|j′m′〉〈jm|Y∗
λμ(�̂)|jm〉

)
(38)

becomes zero due to the symmetry of Clebsch-Gordan
coefficients [36]. It is worth noting that this is due to the
basis vector we chose, see Equation (35), and would not
necessarily be zero for other choices of basis vectors.

As a simplifying assumption, here we ignore the
detailed structure of the anisotropic interaction potential,
introducing the following dimensionless impurity-bath
interaction parameters:

αλ =
∑
k

U2
λ(k)
ωkB

. (39)

and assuming Uλ(k) ≡ U(k), and therefore αλ ≡ α.
In Figure 3 we compare the results of the Pekar diag-

onalisation technique with the ‘standard’ Pekar approach
[3,35] and with the Chevy ansatz for the angulon [17,18].
One can see that, over the whole range of couplings we
consider, the Pekar diagonalisation technique leads to a
lower variational ground state-energy than the standard
Pekar approach, which only considers the diagonal term
of Hamiltonian, i.e. taking only j′ = j and m′ = m in
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Figure 3. The angulon ground state energy as a function of the
angulon coupling constant, α, for the Chevy ansatz [17,18] (red
solid line), the Pekar ansatz [35] (blue dashed line), and the Pekar
diagonalisation method of Equation (35) (green triangles). The
basis consists of the vectors with j= 0,1,2. See the text (Colour
online).

Equation (37). Figure 3 also shows that, beyond a criti-
cal coupling strength the technique gives a lower ground
state energy with respect to Chevy ansatz [17,37].

The Pekar diagonalisation technique, as compared
with the ‘standard’ Pekar approach, is particularly pow-
erful in the angulon case as a consequence of the non-
Abelian SO(3) algebra describing the coupling of angular
momenta. More precisely: a phonon coupling two impu-
rity states with angular momentum j and j′ will have
an angular momentum λ in the range {|j′ − j|, |j′ − j| +
1, . . . , j′ + j − 1, j′ + j}, thereby leading to a number of
nonzero off-diagonal terms in Equation (37). The tech-
nique we have introduced allows one to obtain more
accurate estimates since it accounts for these off-diagonal
entries, as opposed to the ‘standard’ Pekar treatment. This
is particularly evident when higher angular momenta are
considered; in Figure 3, j=0,1,2 and λ = 0, 1, 2, 3, 4 due
to the selection rules imposed by the Clebsch-Gordan
coefficients.

6. Conclusions

In this paper we introduced analytic approaches to quan-
tum impurity problems, namely two variational ansaetze
and a new diagonalisation approach that we called ‘Pekar
diagonalisation’. The results of the variational techniques
were compared with well-established benchmarks such
as the Pekar ansatz – as far as the strong-coupling regime
is concerned – and Feynman’s all-coupling variational
theory. As expected, an approach inspired by the Chevy
ansatz works accurately for smaller values of the coupling

whereas approaches based on the Pekar ansatz are reli-
able in the strong-coupling region. On the other hand,
the approximation involving a single-phonon excitation
on top of a coherent state transformation provides an esti-
mate remarkably close to Feynman’s all-coupling theory
in a wide parameter region. A promising future direc-
tion consists in using such an ansatz for other polaron
problems beyond the Fröhlich model, as well as for other
quantum impurity problems.

We have also exemplified the Pekar diagonalisation
technique by studying the ground energy of both the
polaron and the angulon quasiparticles. The results have
shown that the diagonalisation technique we devel-
oped here represents a an improvement compared to
the ‘standard’ Pekar ansatz over a wide range of cou-
pling strengths, especially in the strong-coupling region.
Pekar diagonalisation represents a promising approach to
quantum impurities, especially for systems – such as the
angulon – where the ‘standard’ Pekar approach can not
provide reliable results.
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