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Energy Contribution of a Point-Interacting
Impurity in a Fermi Gas

Thomas Moser and Robert Seiringer

Abstract. We give a bound on the ground-state energy of a system of
N non-interacting fermions in a three-dimensional cubic box interact-
ing with an impurity particle via point interactions. We show that the
change in energy compared to the system in the absence of the impurity
is bounded in terms of the gas density and the scattering length of the
interaction, independently of N . Our bound holds as long as the ratio of
the mass of the impurity to the one of the gas particles is larger than a
critical value m∗∗ ≈ 0.36, which is the same regime for which we recently
showed stability of the system.

1. Introduction

Quantum systems of particles interacting with forces of very short range allow
for an idealized description in terms of point interactions. The latter are charac-
terized by a single number, the scattering length. Originally point interactions
were introduced in the 1930s to model nuclear interactions [4,5,12,28,29], but
later they were also successfully applied to many other areas of physics, like
polarons (see [20] and references there) or cold atomic gases [30].

It was already known to Thomas [28] that the spectrum of a bosonic
many-particle system depends strongly on the range of the interactions, and
that an idealized point-interacting system with more than two particles is
inherently unstable, i.e., the energy is not bounded from below. This collapse
can be counteracted by the Pauli principle for fermions with two species (e.g.,
spin states). In this paper, we are interested in the impurity problem where
there is only one particle for one of the species.

Given N ≥ 1 fermions of one type with mass 1 and one particle of another
type with mass m > 0, a model of point interactions gives a meaning to the
formal expression

− 1
2m

Δy − 1
2

N∑

i=1

Δxi
+ γ

N∑

i=1

δ(xi − y) (1.1)
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for γ ∈ R. We note that because of the antisymmetry constraint on the wave-
functions there are only interactions between particles of different species.
Expression (1.1) is ill-defined in d ≥ 2 dimensions since H1(Rd), the form
domain of the Laplacian, contains discontinuous functions for which the mean-
ing of the δ-function as a potential is unclear. In the following, we restrict our
attention to the case d = 3, but we note that also two-dimensional systems
exhibit interesting behavior [10,11,15,16,18,19]. For d ≥ 4, there are no point
interactions as the Laplacian restricted to functions supported away from the
hyperplanes of interactions is essentially self-adjoint.

A mathematically precise meaning to (1.1) in three dimensions was given
in [10,13,21], and we will work with the model introduced there. Our analysis
will start from this well-defined model, but we note that the question whether
the model can be obtained as a limit of Schrödinger operators with genuine
interaction potentials of shrinking support is still open. (See, however, [1] for
the case N = 1, and [2] for models in one dimension.)

In this paper, we study the energy contribution of the point-interacting
impurity. We confine the N + 1 particles to a box (0, L)3 and investigate the
ground-state energy of the system. In particular, our goal is to show that at
given mean particle density ρ̄ = N/L3, the difference between the ground-
state energies of the interacting and the non-interacting system is bounded
independently of the system size.

Previous work on this model was mostly concerned with stability and
hence studied the model without confinement. For example, it is possible to
analyze the 2 + 1 model, i.e., two fermions of one kind and one impurity of
another kind, in great detail [3,6–8,10,21–24]. It turns out that the mass of
the impurity plays an important role for stability. It was shown in [6] that for
the 2 + 1 system there is a critical mass m∗ ≈ 0.0735 such that the system is
stable for m ≥ m∗ and unstable otherwise. This critical mass does not depend
on the strength of the interaction, i.e., the scattering length.

Building on these results, it was shown in [25] that a similar statement
holds for the N + 1 system. In particular, it was proven that there is a critical
mass m∗∗ ≈ 0.36 such that the system is stable for all m ≥ m∗∗, independently
of N . This bound is presumably not sharp, and stability is still open for m ∈
[m∗,m∗∗). Recently also the stability of the 2 + 2 system was proved in a
suitable mass range [26]. The general case with N + M particles still poses an
open problem, however.

In all cases where stability of the system was established, the ground-
state energy in infinite volume is actually zero in case the scattering length is
negative, and there are no bound states. For positive scattering length there
are bound states, but one still expects that only a finite number of particles
can bind to the impurity. In particular, the ground-state energy of the N + 1
system is bounded from below independently of N [25]. Intuitively, one would
expect that if one confines the system to a box in order to have a nonzero mean
particle density, the interaction with the impurity should again only affect a
finite number of particles, and hence the energy change compared to the non-
interacting system should be O(1), independently of N . This is what we prove
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here. We note that it is sufficient to derive a lower bound on the ground-state
energy, as point interactions are always attractive, i.e., they lower the energy.

Even for regular interaction potentials, it is highly non-trivial to show
that an impurity causes only an O(1) change to the energy of a non-interacting
Fermi gas. For fixed, i.e., non-dynamical impurities, this was established in [14]
as a consequence of a positive density version of the Lieb–Thirring inequality.
The result in [14] applies to systems in infinite volume, as well as to systems
in a box with periodic boundary conditions. In the appendix, we provide an
extension to Dirichlet boundary conditions, since this result will be an essential
ingredient in our proof.

Compared to [14], we face here two additional difficulties: the impurity
is dynamic and has a finite mass, and the interaction with the gas particles is
through singular point interactions. Besides the methods of [14] and [25], a key
ingredient in our analysis is a proof of an IMS type formula for the quadratic
form defining the model, which allows for a localization of the particles into
regions close and far away from the impurity. It has the same form as the IMS
formula for regular Schrödinger operators (see [9, Theorem 3.2]), but is much
harder to prove.

1.1. The Point Interaction Model

We consider a system of N fermions of mass 1, interacting with another particle
of mass m > 0. Let

HN
0 = − 1

2m
Δ0 − 1

2

N∑

i=1

Δi (1.2)

be the non-interacting part of the Hamiltonian, acting on L2(R3) ⊗ L2
as(R

3N ),
where L2

as denotes the totally antisymmetric functions in ⊗NL2(R3). The N +
1 coordinates we denote by x0, x1, . . . , xN ∈ R

3 and throughout this paper
we will use the notation �x = (x1, . . . , xN ). If we want to exclude a set of
coordinates labeled by A ⊆ {1, . . . , N} we use x̂A = (xi)i�∈A and for short
x̂i = x̂{i}. If we want to restrict to certain coordinates we write �xA = (xi)i∈A.

For μ > 0, we define Gμ as the resolvent of HN
0 in momentum space, i.e.,

Gμ(k0,�k) :=
(

1
2m

k2
0 +

1
2
�k2 + μ

)−1

. (1.3)

We denote by Fα,N the quadratic form used in [6,25] describing point inter-
actions between N fermions and the impurity. Its domain is given by

D(Fα,N ) = {ψ = φμ + Gμξ |φμ ∈ H1(R3) ⊗ H1
as(R

3N ),

ξ ∈ H1/2(R3) ⊗ H1/2
as (R3(N−1))} (1.4)

where Gμξ is defined via its Fourier transform (denoted by a ·̂ ) as

Ĝμξ(k0,�k) = Gμ(k0,�k)
N∑

i=1

(−1)i+1ξ̂(k0 + ki, k̂i). (1.5)

The space H1
as(R

3N ) contains all totally antisymmetric functions in H1(R3N ).
For a given ψ ∈ D(Fα,N ) and μ > 0, the splitting ψ = φμ +Gμξ is unique. We
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point out that while φμ depends on the choice of μ, ξ is independent of μ. We
will call φμ the regular part and ξ the singular part of ψ. Note that D(Fα,N )
is independent of the choice of μ, and so is the quadratic form Fα,N defined as

Fα,N (ψ) :=
〈
φμ

∣∣HN
0 + μ

∣∣φμ

〉− μ ‖ψ‖2
L2(R3(N+1)) + Tα,μ,N (ξ) (1.6)

Tα,μ,N (ξ) := N

(
2m

m + 1
α ‖ξ‖2

L2(R3N ) + Tμ,N
dia (ξ) + Tμ,N

off (ξ)
)

(1.7)

where

Tμ,N
dia (ξ) :=

∫

R3N

|ξ̂(�k)|2Lμ,N (�k) d�k (1.8)

Tμ,N
off (ξ) := (N − 1)

∫

R3(N+1)
ξ̂∗(k0 + k1, k̂1)ξ̂(k0 + k2, k̂2)Gμ(k0,�k) dk0 d�k

(1.9)

Lμ,N (�k) := 2π2

(
2m

m + 1

)3/2(
k2
1

2(m + 1)
+

1
2
k̂2
1 + μ

)1/2

. (1.10)

The quadratic form Fα,N describes N fermions interacting with an impurity
particle via point interactions with scattering length a = −2π2/α, with α ∈ R.
The non-interacting system is recovered in the limit α → +∞.

Notation. Throughout the paper, we will use the following notation. We
define the relation � by

x � y ⇐⇒ ∃C > 0: x ≤ Cy (1.11)

where C is independent of x and y. In the obvious way, we define �. In case
that x � y and y � x we write x ∼ y.

2. Main Result for Confined Wavefunctions

Let us assume that supp ψ ⊂ CN+1
L , where CL = (0, L)3 for some L > 0.

The mean particle density will be denoted by ρ̄ = N/L3. Let ED
N be the

ground-state energy of − 1
2

∑N
i=1 Δi for wavefunctions in H1

as(R
3N ) with Dirich-

let boundary conditions on ∂CL. It equals the sum of the N lowest eigenvalues
of the Dirichlet Laplacian on CL, and it is easy to see that

ED
N ∼ Nρ̄2/3. (2.1)

A natural question is how the interactions affect this energy. From [25, Theo-
rem 2.1], we know that there is a mass-dependent constant Λ(m) [25, Eq. (2.8)],
given in Eq. (4.53) below, such that if Λ(m) < 1 then Fα,N is bounded from
below independently of N by

Fα,N (ψ)
‖ψ‖2

2

≥ m + 1
2m

⎧
⎪⎨

⎪⎩

0 α ≥ 0

−
(

α

2π2(1 − Λ(m))

)2

otherwise.
(2.2)
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(The additional factor (m + 1)/(2m) compared to [25, Theorem 2.1] results
from the separation of the center-of-mass motion used in [25].) It was also
shown in [25] that Λ(m) < 1 if m > m∗∗ ≈ 0.36.

For particles confined to the cube CL with mean density ρ̄, we can show
that under the condition Λ(m) < 1 the correction to ED

N is small, i.e., it is
O(1) independently of N . Our main result is the following.

Theorem 2.1. Let ψ ∈ D(Fα,N ), supported in (0, L)3(N+1), with ‖ψ‖ = 1. Let
ρ̄ = NL−3, and assume that Λ(m) < 1. Then

Fα,N (ψ) ≥ ED
N − const.

(
ρ̄2/3

(1 − Λ(m))9/2
+

α2
−

(1 − Λ(m))2

)
(2.3)

where the constant is independent of ψ,m,N,L and α, and α− denotes the
negative part of α, i.e., α− = 1

2 (|α| − α).

Theorem 2.1 shows that the presence of the impurity affects the ground-
state energy by a term that is bounded independently of N . Bound (2.3) is an
extension of (2.2) in the sense that if we take L → ∞ in (2.3) we recover (2.2)
up to the value of the constant.

Remark. For α → ∞, one would expect that the optimal lower bound con-
verges to the ground-state energy of the non-interacting Hamiltonian HN

0 with
Dirichlet boundary conditions. This is not the case for (2.3), which is indepen-
dent of α for α ≥ 0. This is due to our method of proof; in particular, the
utilized localization technique introduces an error which is independent of the
interaction strength.

Using various types of trial states, the ground-state energy of point-
interacting systems is extensively discussed in the physics literature (see [20]
and references there). We note that with this method it is only possible to
derive upper bounds, while Theorem 2.1 gives a lower bound on the ground-
state energy.

From a physics perspective, it would of course be interesting to extend
Theorem 2.1 to the case of several (or even many) impurities [30]. However,
even the basic question of stability, i.e., boundedness of the energy from below,
is open for more than one impurity.

2.1. Proof Outline

For the proof of Theorem 2.1, we first prove in Sect. 3 an IMS type formula,
which allows to localize the impurity in a small box, of side length � indepen-
dent of L. In a second step, we localize all of the remaining particles to be
either close to the impurity or separated from it. Doing this, we partly violate
the antisymmetry constraint on the wavefunctions, which makes it necessary
to first extend the quadratic form Fα,N to F̃α,N . The latter does not require
the antisymmetry, but coincides with Fα,N on D(Fα,N ).

In Sect. 4, we give a rough lower bound on the energy in case the wave-
function is compactly supported in a box (0, �)3. This lower bound is of the
order N5/3/�2, as expected, but with a non-sharp prefactor. We shall introduce
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a quadratic form F per
α,N with periodic boundary conditions and show that it is

equivalent to Fα,N for confined wavefunctions. The reason we work with peri-
odic boundary conditions instead of Dirichlet ones is that the simpler form of
the Greens function for the Laplacian allows to perform explicit computations
in momentum space.

Because the ground-state energy of the confined non-interacting N -
particle system is strictly positive, we are allowed to choose μ negative in
the definition of F per

α,N . Applying the method of [25] then leads to the lower
bound on F per

α,N in Theorem 4.1. The downside of working with F per
α,N will be

that because of the discrete nature of momentum space for periodic functions,
we have to work with sums instead of integrals, and the difference between the
sum and the integral versions will have to be carefully controlled.

In Sect. 5, we give the proof of Theorem 2.1. Using the IMS formula of
Proposition 3.1, we localize the particles either in a small box with side length
� ∼ ρ̄−1/3 containing the impurity, or in the large complement. In the small
box, we use Theorem 4.1 for a lower bound, whereas in the large complement
we use Theorem A.2, which is a version of the positive density Lieb–Thirring
inequality in [14] adapted to our setting of Dirichlet boundary conditions,
and which is proved in the appendix. When optimizing over the distribution
of particles, we shall conclude from these bounds that only O(ρ̄�3) = O(1)
particles will be in the small box. This allows us to improve the rough bound
of Theorem 4.1 and show Theorem 2.1.

3. Properties of the Quadratic Form

In this section, we will first extend the quadratic form Fα,N to functions that
are not required to be antisymmetric in the last N variables. Afterward, we
shall discuss how the splitting ψ = φμ +Gμξ is affected when multiplying ψ by
a smooth function (which need not be symmetric under permutations). This
will be utilized in the last part of this section where an IMS formula for the
(extended) quadratic form is shown.

3.1. Extension to Functions Without Symmetry

To prove our main theorem, we want to localize the particles in different subsets
of the cube CL = (0, L)3. Hence, it is necessary to extend the quadratic form
Fα,N by removing the antisymmetry constraint. To this aim, we define

D(F̃α,N ) =
{

ψ = φμ +
N∑

i=1

Gμξi |φμ ∈ H1(R3(N+1)),

ξi ∈ H1/2(R3N ) ∀ i, 1 ≤ i ≤ N
}

(3.1)

where

Ĝμξi(k0,�k) = Gμ(k0,�k)ξ̂i(k0 + ki, k̂i). (3.2)
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The quadratic form F̃α,N is defined as

F̃α,N (ψ) :=
〈
φμ

∣∣HN
0 + μ

∣∣φμ

〉− μ ‖ψ‖2
L2(R3(N+1)) + T̃α,μ,N (�ξ) (3.3)

T̃α,μ,N (�ξ) :=
2m

m + 1
α

N∑

i=1

‖ξi‖2
L2(R3N ) + T̃μ,N

dia (�ξ) + T̃μ,N
off (�ξ) (3.4)

where �ξ = (ξi)N
i=1 and

T̃μ,N
dia (�ξ) :=

N∑

i=1

∫

R3N

|ξ̂i(�k)|2Lμ,N (�k) d�k (3.5)

T̃μ,N
off (�ξ) := −

∑

i�=j
1≤i,j≤N

∫

R3(N+1)
ξ̂∗
i (k0 + ki, k̂i)ξ̂j(k0 + kj , k̂j)Gμ(k0,�k) dk0 d�k.

(3.6)

Each ξi in (3.2) corresponds to a function supported on the hyperplane x0 = xi.
The only overlap between hyperplanes for i �= j is on the set xi = x0 = xj

(of zero measure in R
3N ), which implies that

∑N
i=1 ξ̂i(k0 + ki, k̂i) has a unique

decomposition into (ξi)N
i=1, and thus the splitting ψ = φμ +

∑N
i=1 Gμξi is

unique. To stress the dependence on ψ, we will sometimes use the notation φψ
μ

and ξψ
i below.
In the case that ψ is antisymmetric in the last N coordinates, the unique-

ness of the decomposition ψ = φμ +
∑N

i=1 Gμξi shows that there exists a
function ξ ∈ H1/2(R3) ⊗ H

1/2
as (R3(N−1)) such that ξi = (−1)i+1ξ, and hence∑N

i=1 Gμξi = Gμξ, which is defined in (1.5). Furthermore, we have

T̃μ,N
dia (�ξ) = NTμ,N

dia (ξ), T̃μ,N
off (�ξ) = NTμ,N

off (ξ) (3.7)

in this case, which shows that F̃α,N (ψ) = Fα,N (ψ) for ψ antisymmetric in the
last N coordinates. In particular, F̃α,N is an extension of Fα,N , and for a lower
bound it therefore suffices to work with F̃α,N .

In the following, it will be convenient to introduce the notation

∇̃ :=
(

1√
2m

∇0,
1√
2
∇1, . . . ,

1√
2
∇N

)
(3.8)

as well as

Hμ :=HN
0 + μ = −∇̃2 + μ. (3.9)

3.2. Localization of Wavefunctions

An important ingredient in the proof of Theorem 2.1 will be to localize the
particles. For this purpose, we will study in this subsection how the splitting
ψ = φψ

μ +
∑N

i=1 Gμξψ
i is affected when multiplying ψ by a smooth function.

Lemma 3.1. For J ∈ C∞(R3(N+1)) bounded and with bounded derivatives, we
define J�ξ = (Jξi)N

i=1 by

(Jξi)(xi, x̂i) = J(xi, �x)ξi(xi, x̂i). (3.10)
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Then, ξi �→ [J,Gμ]ξi := JGμξi − GμJξi is a bounded map from L2(R3N ) to
H1(R3(N+1)). In particular

ξJψ
i = Jξψ

i (3.11)

and the regular part φJψ
μ of Jψ is given by

φJψ
μ = Jφψ

μ +
N∑

i=1

[J,Gμ]ξψ
i . (3.12)

Remark. We clarify that J acts on functions on R
3(N+1), and in particular on

φψ
μ and Gμξψ

i , as a multiplication operator, whereas on functions in L2(R3N )
it acts as in (3.10), i.e., as multiplication by the function restricted to the
relevant plane {xi = x0}. Hence, the commutator [J,Gμ] has no meaning here
independently of its application on �ξ and is only used as a convenient notation.

Proof. We first argue that [J,Gμ]ξψ
i ∈ H1(R3(N+1)) implies (3.11) and (3.12).

We have

Jψ −
N∑

i=1

GμJξψ
i = Jφψ

μ +
N∑

i=1

[J,Gμ]ξψ
i . (3.13)

Since Jφψ
μ and [J,Gμ]ξψ

i are in H1(R3(N+1)), the uniqueness of the decompo-
sition of Jψ into regular and singular parts implies (3.11) and (3.12).

It remains to show that [J,Gμ]ξi ∈ H1(R3(N+1)) for ξi ∈ L2(R3N ). In
order to do so, we shall in fact show that

[J,Gμ]ξi = H−1
μ [HN

0 , J ]Gμξi = H−1
μ (−2∇̃ · (∇̃J) − (∇̃2J))Gμξi , (3.14)

where we used the notation introduced in (3.8) and (3.9). From (3.14), the H1

property readily follows, using that

‖Gμξi‖2
L2(R3(N+1)) =

∫

R3(N+1)
Gμ(k0,�k)2|ξ̂i(k0 + ki, k̂i)|2 dk0 d�k

�
(

m

m + 1

)3/2

μ−1/2 ‖ξi‖2
L2(R3N ) . (3.15)

In the last step, we did an explicit integration over 1
m+1k0− m

m+1ki, the variable
canonically conjugate to x0 − xi.

In order to show (3.14), we note that since J is smooth, H−1
μ JHμ is a

bounded operator. In the sense of distributions, we have

(HμGμξi) (x0, �x) = ξi(xi, x̂i)δ(x0 − xi) (3.16)

and hence H−1
μ JHμGμξi = GμJξi. In particular,

[J,Gμ]ξi =
(
J − H−1

μ JHμ

)
Gμξi (3.17)

which indeed equals (3.14). This completes the proof of the lemma. �

Corollary 3.1. Assume that ψ ∈ D(F̃α,N ) satisfies suppψ ⊆ Ω0 × · · · × ΩN ,
where Ωj ⊆ R

3 for 0 ≤ j ≤ N . Then,

supp ξψ
i ⊆ (Ω0 ∩ Ωi) × Ω1 × · · · × Ωi−1 × Ωi+1 × · · · × ΩN . (3.18)
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Proof. Let J ∈ C∞(R3(N+1)) such that J(x0, �x) = 1 for (x0, �x) ∈ Ω0×· · ·×ΩN .
Using Lemma 3.1 we get that

ξψ
i (xi, x̂i) = ξJψ

i (xi, x̂i) = J(xi, �x)ξψ
i (xi, x̂i). (3.19)

Since this holds for all J with the above property, the claim follows. �

3.3. Alternative Representation of the Singular Part

The following Lemma gives an alternative representation of the singular part
of the quadratic form, defined in (3.4). It will turn out to be useful in the proof
of the IMS formula in the next subsection.

Lemma 3.2. For �ξ = (ξi)N
i=1 with ξi ∈ H1/2(R3N ), the function

I(ν) :=
∥∥∥∥
∑N

i=1
Gνξi

∥∥∥∥
2

L2(R3(N+1))

− π2

(
2m

m + 1

)3/2 1√
ν

N∑

i=1

‖ξi‖2
L2(R3N )

(3.20)
is integrable on [μ,∞) for any μ > 0, and we have

T̃α,μ,N (�ξ)=

(
2m

m + 1
α + 2π2

(
2m

m + 1

)3/2 √
μ

)
N∑

i=1

‖ξi‖2
L2(R3N ) −

∫ ∞

μ

dν I(ν).

(3.21)

Proof. For any 1 ≤ i ≤ N , we have

‖Gνξi‖2
L2(R3(N+1)) =

∫

R3(N+1)
Gν(k0,�k)2|ξ̂i(k0 + ki, k̂i)|2 dk0 d�k

=
(

2m

m + 1

)3/2 ∫

R3N

π2

√
k2

i

2(1+m) + 1
2 k̂2

i + ν
|ξ̂i(ki, k̂i)|2 dk0 d�k.

(3.22)

In particular,

‖Gνξi‖2
L2(R3(N+1)) −

(
2m

m + 1

)3/2
π2

√
ν

‖ξi‖2
L2(R3N ) ≤ 0 (3.23)

and we have

−
∫ ∞

μ

dν

(
‖Gνξi‖2

L2(R3(N+1)) −
(

2m

m + 1

)3/2
π2

√
ν

‖ξi‖2
L2(R3N )

)

=
∫

R3N

|ξ̂i(�k)|2Lμ,N (�k) d�k − 2π2

(
2m

m + 1

)3/2 √
μ ‖ξi‖2

L2(R3N ) . (3.24)

For the terms i �= j, on the other hand, we have
∫ ∞

μ

dν 〈Gνξi|Gνξj〉

=
∫ ∞

μ

dν

∫

R3(N+1)
ξ̂∗
i (k0 + ki, k̂i)ξ̂j(k0 + kj , k̂j)Gν(k0,�k)2 dk0 d�k
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=
∫

R3(N+1)
ξ̂∗
i (k0 + ki, k̂i)ξ̂j(k0 + kj , k̂j)Gμ(k0,�k) dk0 d�k. (3.25)

Here, the exchange of the order of integration is justified by Fubini’s theorem,
since the integrand in the first line on the right is absolutely integrable for
ξi ∈ H1/2. This completes the proof. �

3.4. IMS Formula

In this subsection, we will prove the following Lemma.

Proposition 3.1. Given M ≥ 1 and (Ji)M
i=1 with Ji ∈ C∞(R3(N+1)) and∑M

i=1 J2
i = 1, we have

F̃α,N (ψ) =
M∑

i=1

F̃α,N (Jiψ) −
M∑

i=1

∥∥∥(∇̃Ji)ψ
∥∥∥

2

(3.26)

for all ψ ∈ D(F̃α,N ).

Proof. By using the polarization identity, we can extend F̃α,N to a sesquilinear
form, denoted as F̃α,N (ψ1, ψ2). It suffices to prove that

F̃α,N (J2ψ,ψ) + F̃α,N (ψ, J2ψ) − 2F̃α,N (Jψ, Jψ) = −2
∥∥∥(∇̃J)ψ

∥∥∥
2

(3.27)

for smooth functions J , since then

F̃α,N (ψ) =
1
2

M∑

i=1

(
F̃α,N (J2

i ψ,ψ) + F̃α,N (ψ, J2
i ψ)
)

(3.27)
=

M∑

i=1

F̃α,N (Jiψ, Jiψ) −
M∑

i=1

∥∥∥(∇̃Ji)ψ
∥∥∥

2

. (3.28)

Recall the definition Hμ = HN
0 + μ. The left side of (3.27) equals

〈φJ2ψ
μ |Hμ|φψ

μ 〉 + 〈φψ
μ |Hμ|φJ2ψ

μ 〉 − 2〈φJψ
μ |Hμ|φJψ

μ 〉
+ T̃α,μ,N (�ξJ2ψ, �ξψ) + T̃α,μ,N (�ξψ, �ξJ2ψ) − 2T̃α,μ,N (�ξJψ, �ξJψ) (3.29)

where we introduced the sesquilinear form T̃α,μ,N (�ξ1, �ξ2) corresponding to the
quadratic form (3.4). We use Lemma 3.1 to identify the regular and singular
parts of the various wavefunctions. For the quadratic form T̃α,μ,N , we utilize
representation (3.21), which together with (3.11) implies that

T̃α,μ,N (�ξJ2ψ, �ξψ) + T̃α,μ,N (�ξψ, �ξJ2ψ) − 2T̃α,μ,N (�ξJψ, �ξJψ)

=
∫ ∞

μ

dν

N∑

i,j=1

(
2〈GνJξψ

i |GνJξψ
j 〉 − 〈GνJ2ξψ

i |Gνξψ
j 〉 − 〈Gνξψ

i |GνJ2ξψ
j 〉
)

.

(3.30)

Since GνJξψ
i = H−1

ν JHνGνξψ, as shown in the proof of Lemma 3.1, we can
rewrite the terms in the integrand as
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2〈GνJξψ
i |GνJξψ

j 〉 − 〈GνJ2ξψ
i |Gνξψ

j 〉 − 〈Gνξψ
i |GνJ2ξψ

j 〉
=
〈
Gνξψ

i

∣∣2HνJH−2
ν JHν − H−1

ν J2Hν − HνJ2H−1
ν

∣∣Gνξψ
j

〉
. (3.31)

Using that (∂/∂ν)Gνξψ
i = −H−1

ν Gνξψ
i as well as [J, [Hν , J ]] = 2|∇̃J |2, one

readily checks that this further equals

(3.31) = −2
∂

∂ν

〈
Gνξψ

i

∣∣∣[J,Hν ]H−1
ν [Hν , J ] − |∇̃J |2

∣∣∣Gνξψ
j

〉
. (3.32)

The operator Aν := [J,Hν ]H−1
ν [Hν , J ] − |∇̃J |2 is bounded, uniformly in ν for

ν ≥ μ > 0. Since ‖Gνξψ
i ‖2 → 0 as ν → ∞, we have limν→∞〈Gνξψ

i |Aν |Gνξψ
j 〉

= 0. In particular, from (3.30)–(3.32) we conclude that

T̃α,μ,N (�ξJ2ψ, �ξψ) + T̃α,μ,N (�ξψ, �ξJ2ψ) − 2T̃α,μ,N (�ξJψ, �ξJψ)

=
N∑

i,j=1

(
2
〈
Gμξψ

i

∣∣[J,Hμ]H−1
μ [Hμ, J ]

∣∣Gμξψ
j

〉
− 2〈Gμξψ

i ||∇̃J |2Gμξψ
j 〉
)

.

(3.33)

For the regular part, we use (3.12) to rewrite the first line in (3.29) as

〈φJ2ψ
μ |Hμ|φψ

μ 〉 + 〈φψ
μ |Hμ|φJ2ψ

μ 〉 − 2〈φJψ
μ |Hμ|φJψ

μ 〉

= −2〈φψ
μ ||∇̃J |2φψ

μ 〉 − 2
N∑

i,j=1

〈[J,Gμ]ξψ
i |Hμ|[J,Gμ]ξψ

j 〉

− 4Re
N∑

i=1

〈[J,Gμ]ξψ
i |Hμ|Jφψ

μ 〉 + 2Re
N∑

i=1

〈[J2, Gμ]ξψ
i |Hμ|φψ

μ 〉. (3.34)

The second term on the right side equals

−2
N∑

i,j=1

〈
Gμξψ

i

∣∣[J,Hμ]H−1
μ [Hμ, J ]

∣∣Gμξψ
j

〉
,

as (3.14) shows. Also the last line in (3.34) can be evaluated with the aid of
(3.14), with the result that

− 4Re
N∑

i=1

〈[J,Gμ]ξψ
i |Hμ|Jφψ

μ 〉 + 2Re
N∑

i=1

〈[J2, Gμ]ξψ
i |Hμ|φψ

μ 〉

= −4Re
N∑

i=1

〈Gμξψ
i ||∇̃J |2φψ

μ 〉. (3.35)

In combination, (3.33), (3.34) and (3.35) imply the desired identity (3.27).
This completes the proof of the lemma. �
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4. A Rough Bound

In this section, we give a rough lower bound on the ground-state energy of
Fα,N when restricted to wavefunctions ψ ∈ D(Fα,N ) that are supported in
CN+1

� with C� = (0, �)3 for some � > 0. This lower bound has the desired
scaling in N and �, i.e., it is proportional to N5/3�−2, but with a non-sharp
prefactor. For its proof, we will first reformulate the problem using periodic
boundary conditions, and then apply the methods previously introduced in
[25] to show stability in infinite space.

The statement of the following theorem involves three positive constants
cT , cL and cΛ, which are independent of m,N, � and α and which will be
defined later. In particular, cT is defined in Eq. (4.44), cL in Eq. (4.84) and cΛ

in Lemma 4.7.

Theorem 4.1. Let ψ ∈ D(Fα,N ) with ‖ψ‖ = 1 and suppψ ⊂ (0, �)3(N+1) for
some � > 0. Given m > 0 and κ > 0 such that

1 − κ/cT > Λ(m) (4.1)

let N0 = N0(m,κ) be defined as

N0(m,κ) =
(

(1 − κ/cT − Λ(m))
m(1 − κ/cT )2

cΛ

)−9/2

. (4.2)

For N > N0, we have

Fα,N (ψ) ≥ κN5/3�−2 − 1
4π4

m + 1
2m

[α − cL�−1]2−
(1 − κ/cT − Λ(m))2(1 − (N0/N)2/9)2

.

(4.3)

We note that this result gives a lower bound only for particle numbers
N > N0(m,κ). In the case that N ≤ N0, we can still use (2.2), however.

The remainder of this section contains the proof of Theorem 4.1. An
important role will be played by a reformulation using periodic boundary con-
ditions. We will start by introducing the functional F̃ per

α,N which is defined for
periodic functions. In Lemma 4.2, we will show that it is in fact equivalent
to the original quadratic form F̃α,N when applied to wavefunctions with com-
pact support in CN+1

� . Working with periodic boundary conditions comes with
the inconvenience of having to work with sums, rather than with integrals, in
momentum space. In particular, this makes the explicit form of the singular
part of F̃ per

α,N rather complicated; we shall compare it with the singular part of
F̃α,N in Lemma 4.4 and bound the difference. It comes with the big advantage
of allowing us to choose μ negative, however, which will be essential to show
a positive lower bound to the energy. This latter property would also be true
for Dirichlet boundary conditions; the simpler form of the Greens function of
the Laplacian makes periodic ones more convenient, however. In particular,
it allows to apply the method of [25], which gives positivity of the singular
part of F per

α,N for μ ≥ −κN5/3�−2 for small enough κ, under a condition of the
form Λ̃(m,κ) < 1. In Lemmas 4.5–4.7, we investigate the difference between
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Λ̃(m,κ) and Λ(m). In the last subsection, we combine these results to prove
Theorem 4.1.

4.1. Periodic Boundary Conditions

Given ψ ∈ D(F̃α,N ) such that suppψ ⊂ CN+1
� , we extend ψ to a periodic

function ψper, defined as

ψper(x0, . . . , xN ) = ψ(τ(x0), . . . , τ(xN )) (4.4)

with

τ(x) = (τ(x1), τ(x2), τ(x3)), τ(s) := inf ((s + �Z) ∩ R+) for s ∈ R.
(4.5)

In the following, we shall rewrite the functional F̃α,N (ψ) in terms of ψper.
Compared to Dirichlet boundary conditions, periodic ones have the advantage
that one can work easily in the associated momentum space, similar to the
unconfined case. For this purpose, we define the lattice in momentum space as

L :=
2π

�
Z

3. (4.6)

The function ψper is then determined by its Fourier coefficients ψ̂per(k0,�k),
which can be viewed as a function L

N+1 → C.
Corollary 3.1 implies that supp ξi ⊂ CN

� for all 1 ≤ i ≤ N . Hence, we
can extend it in a similar way as ψ to a periodic function ξper. In momentum
space, we can write it as ξ̂per : L

N → C. For periodic functions, Gμψper does
not make sense anymore, but instead choosing Gper

μ as the Greens function of
the Laplacian with periodic boundary conditions allows us to define Gper

μ ξper
i

by the Fourier coefficients

Ĝper
μ ξper

i (k0,�k) = Gμ(k0,�k)ξ̂per
i (k0 + ki, k̂i). (4.7)

In order to motivate the quadratic form introduced below, we note that
the expression Lμ,N (�k) in (1.10) originates from the limit

Lμ,N (�k) = lim
R→∞

(
8πmR

m + 1
−
∫

|t|≤R

1

H̃0(k1, t, k̂1) + μ
dt

)
(4.8)

where H̃0 is the non-interacting Hamiltonian in momentum space, expressed
in terms of center-of-mass and relative coordinates for the pair (k0, k1), i.e.,

H̃0(s, t, k̂1):= ĤN
0

(
m

m + 1
s + t,

1
m + 1

s − t, k̂1

)

=
1

2(m + 1)
s2 +

1 + m

2m
t2 +

1
2
k̂2
1. (4.9)

More generally, we have

Lemma 4.1. Let τ be a nonnegative function in C∞
0 (R3) such that τ̂(0)

= 1, τ̂(p) ≥ 0 for all p ∈ R
3 and
∫

R3
|t|−2τ(t) dt = 4π. (4.10)
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Then,

Lμ,N (�k) = lim
R→∞

[
8πmR

m + 1
−
∫

R3

1

H̃0(k1, t, k̂1) + μ
τ̂(t/R) dt

]
. (4.11)

Proof. Let γ = 1
2(m+1)k

2
1 + 1

2 k̂2
1 + μ. Using (4.10) we observe that (4.11) is

equivalent to

lim
R→∞

∫

R3

γ((
1+m
2m

)
t2 + γ

) (
1+m
2m

)
t2

τ̂(t/R) dt = Lμ,N (�k). (4.12)

Since τ̂(0) = 1 and τ̂(t) ≤ 1 for all other t, the result follows from dominated
convergence. �

When replacing integrals by sums, we have to keep in mind that a change
of coordinates from (k0, k1) to s = k0 + k1 and t = m

m+1k1 − 1
m+1k0 changes

the domain over which we have to take the sums. Whereas s ∈ L, we have
to sum for a fixed s the variable t over L

s := L + ms
m+1 . Let τ be chosen as in

Lemma 4.1, and define

Lper
μ,N (�k) := lim

R→∞

⎛

⎝8πmR

m + 1
−
(

2π

�

)3 ∑

p∈L
k1

1

H̃0(k1, p, k̂1) + μ
τ̂(p/R)

⎞

⎠ . (4.13)

We shall see below that this definition is actually independent of τ . For us
it will be important that τ has compact support; hence, a sharp cutoff in
momentum space would not be suitable.

We shall now define F̃ per
α,N with domain

D(F̃ per
α,N ) =

{
ψper = φper

μ +
N∑

i=1

Gper
μ ξper

i | φper
μ ∈ H1

per(CN+1
� ),

ξper
i ∈ H1/2

per (CN
� ) ∀ i, 1 ≤ i ≤ N

}
, (4.14)

where H1
per(CN+1

� ) and H
1/2
per (CN

� ) denotes the spaces of functions defined by
Fourier coefficients in �2(L, (1 + p2))⊗(N+1) and �2(L, (1 + p2)1/2)⊗N , respec-
tively. The quadratic form is given by

F̃ per
α,N (ψper) :=

∫

CN+1
�

(
|∇̃φper

μ |2 + μ|φper
μ |2

)
− μ ‖ψper‖2

L2(CN+1
� )

+ T̃ per
α,μ,N (�ξper)

(4.15)

T̃ per
α,μ,N (�ξper) :=

N∑

i=1

2m

m + 1
α ‖ξper

i ‖2
L2(CN

� ) + T̃ per,μ,N
dia (�ξper) + T̃ per,μ,N

off (�ξper) (4.16)

where �ξper = (ξper
i )N

i=1, ∇̃ is defined in (3.8), and the singular parts of the
quadratic form are given by

T̃ per,μ,N
dia (�ξper) :=

N∑

i=1

(
2π

�

)3N ∑

�k∈LN

|ξ̂per
i (�k)|2Lper

μ,N (�k) (4.17)
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T̃ per,μ,N
off (�ξper)

:= −
∑

i�=j
1≤i,j≤N

(
2π

�

)3(N+1) ∑

k0∈L,�k∈LN

ξ̂per
j

∗
(k0 + kj , k̂j)ξ̂

per
i (k0 + ki, k̂i)Gμ(k0,�k).

(4.18)

We also define F per
α,N as the restriction of F̃ per

α,N to functions antisymmetric
in the last N coordinates. Further, we define T per,μ,N

dia , T per,μ,N
off and T per

α,μ,N in
the natural way similar to Tμ,N

dia , Tμ,N
off and Tα,μ,N originating from T̃μ,N

dia , T̃μ,N
off

and T̃α,μ,N , respectively (compare with (1.7) and (3.7)).

Lemma 4.2. Let ψ ∈ D(F̃α,N ) be such that suppψ ⊂ CN+1
� . Then,

F̃ per
α,N (ψper) = F̃α,N (ψ). (4.19)

Proof. Recall the splitting of ψ into its regular and singular parts, and similarly
for ψper:

ψ = φμ +
∑

i

Gμξi , ψper = φper
μ +

∑

i

Gper
μ ξper

i . (4.20)

Recall also definition (3.9). In the sense of distributions, we can apply Hμ to φμ,
and in particular Hμφμ ∈ H−1(R3(N+1)) as φμ ∈ H1(R3(N+1)). In this sense,
we can write the regular part of F̃α,N as 〈φμ|Hμφμ〉. Because supp ψ ⊂ CN+1

�

(and C� is open by definition) we have ε := dist(suppψ, ∂C�) > 0. Let χ be
a smooth cutoff function such that χ(x) = 1 if x ∈ C�−ε := [ε/2, � − ε/2]3

and χ(x) = 0 if x ∈ Cc
� . As supp(HμGμξ) ⊆ CN+1

�−ε and suppψ ⊆ CN+1
�−ε also

supp(Hμφμ) ⊆ CN+1
�−ε , and therefore

〈φμ|Hμφμ〉 = 〈χφμ|Hμφμ〉. (4.21)

We use the identity χφμ = χφper
μ + χ

∑N
i=1 Gper

μ ξper
i − χ

∑N
i=1 Gμξi as well as

the fact that Hμφμ = Hμφper
μ on CN+1

�−ε to obtain

(4.21) = 〈χφper
μ |Hμφper

μ 〉 +
N∑

i=1

〈χ(Gper
μ ξper

i − Gμξi)|Hμφper
μ 〉

=
∫

CN+1
�

(
|∇̃φper

μ |2 + μ|φper
μ |2

)
+

N∑

i=1

〈χ(Gper
μ ξper

i − Gμξi)|Hμφper
μ 〉.
(4.22)

Note that Hμχ(Gper
μ ξper

i − Gμξi) is supported on C� \ C�−ε, and ψper vanishes
on this set. Hence,

N∑

i=1

〈χ(Gper
μ ξper

i − Gμξi)|Hμφper
μ 〉 = −

N∑

i,j=1

〈Gper
μ ξper

i − Gμξi|χHμGper
μ ξper

j 〉.

(4.23)
We claim that (4.23) is equal to the difference T̃ per

α,μ,N (�ξper) − T̃α,μ,N (�ξ).
Let τ be given as in Lemma 4.1. We approximate the distribution
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(χHμGper
μ ξper

j )(x0, �x) = ξj(xj , x̂j)δ(xj − x0) by the sequence of functions
(ξjτR)(x0, �x) = ξj((mxj +x0)/(1+m), x̂j)τR(xj −x0) with τR(x) = R3τ(Rx).
We assume that R is large enough such that τR is supported in a ball of radius
ε/2, and hence ξjτR is supported in CN+1

� . Because Gper
μ ξper

i −Gμξi is actually
a smooth function, as Hμ(Gper

μ ξper
i − Gμξi) = 0 on CN+1

� , we conclude that
(4.23) is equal to

(4.23) = − lim
R→∞

N∑

i,j=1

〈Gper
μ ξper

i − Gμξi|ξjτR〉. (4.24)

For the terms with i �= j, we can use dominated convergence in momentum
space to conclude that

lim
R→∞

∑

i�=j

〈Gper
μ ξper

i − Gμξi|ξjτR〉 = T̃μ,N
off (�ξ) − T̃ per,μ,N

off (�ξper). (4.25)

For the terms with i = j, we can further write
N∑

i=1

〈Gper
μ ξper

i − Gμξi|ξiτR〉

=

N∑

i=1

(
〈Gper

μ ξper
i |ξiτR〉 − 8πmR

m + 1
‖ξi‖2

2

)
−

N∑

i=1

(
〈Gμξi|ξiτR〉 − 8πmR

m + 1
‖ξi‖2

2

)
.

(4.26)

Lemma 4.1 implies that the limit of the last two terms exists, is independent
of the choice of τ and is equal to T̃μ,N

dia (�ξ). Because also (4.23) does not depend
on τ , we conclude that

lim
R→∞

N∑

i=1

(
〈Gper

μ ξper
i |ξiτR〉 − 8πmR

m + 1
‖ξi‖2

2

)
(4.27)

exists and is independent of τ . Comparing with (4.13) and (4.17), we see that
it actually equals T̃ per,μ,N

dia (�ξper). Combining the above, we obtain

〈φμ|Hμφμ〉 =
∫

CN+1
�

(
|∇̃φper

μ |2 + μ|φper
μ |2

)
+ T̃ per

α,μ,N (�ξper) − T̃α,μ,N (�ξ). (4.28)

This completes the proof of the lemma. �

For fermions, described by wavefunctions ψper that are antisymmetric
in the last N variables, the expression Gper

μ ξper in (4.7) is also well defined
for negative μ as long as μ > −Eper

N−1, where Eper
N−1 denotes the ground-state

energy of the non-interacting Hamiltonian for N − 1 fermions with periodic
boundary conditions on ∂C�. (Note than Gμξ, on the other hand, is only defined
for μ > 0.) The following lemma shows that for such μ the quadratic form F per

α,N

is actually independent of μ.

Lemma 4.3. For ψ ∈ D(F per
α,N ) and μ > −Eper

N−1, the expression F per
α,N (ψper) is

well defined and independent of μ.
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Proof. We first note that Gper
μ ξper is well defined for μ > −Eper

N−1, because of
the antisymmetry of ξper in the last N − 1 variables, which implies that N − 1
of the variables (k1, . . . , kN ) in Gμ(k0,�k) in (4.7) are actually different. For
ν, μ > −Eper

N−1, we have

φper
μ = φper

ν + Gper
ν ξper − Gper

μ ξper. (4.29)

Using the resolvent identity, we see that the regular part of the quadratic form
satisfies∫

CN+1
�

(
|∇̃φper

μ |2 + μ|φper
μ |2

)
=
∫

CN+1
�

(
|∇̃φper

ν |2 + ν|φper
ν |2

)
+ (μ − ν) ‖φper

ν ‖2

+ 2(μ − ν)Re〈Gper
ν ξper|φper

ν 〉
+ (μ − ν)〈Gper

ν ξper|Gper
ν ξper − Gper

μ ξper〉.
(4.30)

A straightforward computation using definitions (4.13)–(4.16) shows that

T per
α,μ,N (ξper) − T per

α,ν,N (ξper) = (μ − ν)〈Gper
ν ξper|Gper

μ ξper〉. (4.31)

Combining both statements yields the desired identity
∫

CN+1
�

(
|∇̃φper

μ |2 + μ|φper
μ |2

)
− μ ‖ψper‖2 + T per

α,μ,N (ξper)

=
∫

CN+1
�

(
|∇̃φper

ν |2 + ν|φper
ν |2

)
− ν ‖ψper‖2 + T per

α,ν,N (ξper). (4.32)

�

4.2. Approximation by Integrals

In the previous subsection, we have shown that the original and the periodic
formulations of the energy functionals, F̃α,N and F̃ per

α,N , agree if applied to
functions ψ compactly supported in CN+1

� . One complication in the periodic
form is that Lper

μ,N is not given as explicitly as Lμ,N . The following lemma gives
a bound on the difference.

Lemma 4.4. Given μ and �q such that

Q2
μ :=

1
2

N∑

i=2

q2
i + μ > 0 (4.33)

we have

|Lper
μ,N (q1, q̂1) − Lμ,N (q1, q̂1)| ≤ c′

L

1
Q2

μ�3
(4.34)

where the constant c′
L is independent of N, �q,m, � and μ.

Proof. We recall the definitions of Lμ,N and Lper
μ,N for some arbitrary τ fulfilling

the requirements of Lemma 4.1:

Lμ,N (�q) = − lim
R→∞

(∫
1

H̃0(q1, s, q̂1) + μ
τ̂(s/R) ds − 8πmR

m + 1

)
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Lper
μ,N (�q) = − lim

R→∞

((
2π

�

)3 ∑

s∈Lq1

1
H̃0(q1, s, q̂1) + μ

τ̂(s/R) − 8πmR

m + 1

)
(4.35)

with H̃0 defined in (4.9). For simplicity, we assume that q1 is such that L
q1 =

L, but all other cases work analogously as a shift in momentum space only
introduces a phase factor in configuration space, which vanishes when taking
absolute values. In the following, we denote f∞(s) = (H̃0(q1, s, q̂1) + μ)−1 and
fR(s) = f∞(s)τ̂(s/R) and suppress the dependence on �q for simplicity.

We can express the difference between the Riemann sum and the integral
using Poisson’s summation formula

(
2π

�

)3∑

s∈L

fR(s) −
∫

R3
fR(s) ds =

(2π)3

�3

∑

s∈L

fR(s) − (2π)3/2f̂R(0)

= (2π)3/2
∑

z∈�Z3

z �=0

f̂R(z). (4.36)

For short we write γ := 1
2(1+m)q

2
1 + 1

2 q̂2
1 + μ, which is bounded from below by

Q2
μ and hence is positive, by our assumption (4.33). The function f∞ and its

Fourier transform are given by

f∞(t) =
1

1+m
2m t2 + γ

, f̂∞(z) =
√

π

2
2m

1 + m

e−( 2m
m+1 )

1/2√
γ|z|

|z| . (4.37)

Moreover,
f̂R(z) = (2π)−3/2(R3τ(R · ) ∗ f̂∞)(z). (4.38)

We will show that f̂R(s) is summable over �Z3 \ {0}. In fact for |z| � �,

(2π)3/2|f̂R(z)| =
∫

R3
R3τ(Rw)f̂∞(z − w) dw

≤
∫

|w|>|z|/2

R3τ(Rw)f̂∞(z − w) dw

+
∫

|z−w|>|z|/2

R3τ(Rw)f̂∞(z − w) dw

≤ f̂∞(z/2)
∫

R3τ(Rw) dw = f̂∞(z/2) (4.39)

where we assumed that R is large enough such that τ(Rw) = 0 for |w| > |z|/2,
and used that

∫
τ = 1, which was required by Lemma 4.1. As f̂∞ is summable

over �Z3 \ {0}, we get by dominated convergence that

lim
R→∞

∑

z∈�Z3\{0}
|f̂R(z)| =

∑

z∈�Z3\{0}
f̂∞(z). (4.40)

We bound the sum over f̂∞(z) by

∑

z∈�Z3\{0}
f̂∞(z) =

∑

n∈Z3\{0}

√
π

2
2m

1 + m

e−( 2m
m+1 )

1/2√
γ�|n|

�|n| � 1
γ�3

(4.41)



Energy Contribution of a Point-Interacting Impurity

using
∑

n∈Z3\{0}
e−η|n|/|n| �

∑

n∈N

ne−ηn =
e−η

(1 − e−η)2
≤ 1

η2
(4.42)

for η = (2m/(m + 1))1/2√γ�. Combining (4.36), (4.40) and (4.41) and using
that γ ≥ Q2

μ, we conclude that

lim
R→∞

∣∣∣∣∣
(2π)3

�3

∑

s∈L

fR(s) −
∫

R3
fR(s) ds

∣∣∣∣∣ ≤
c′
L

γ�3
≤ c′

L

Q2
μ�3

(4.43)

for some constant c′
L > 0. This completes the proof of the lemma. �

4.3. Bound on the Singular Parts

The strategy for obtaining a lower bound on F per
α,N is to find a μ such that

T per
α,μ,N ≥ 0, in which case we obtain the lower bound F per

α,N (ψper)≥ −μ‖ψper‖2.
Hence, we want to choose μ as negative as possible. We shall use the method
of [25], which yields the desired positivity of T per

α,μ,N (for large enough m) as
long as μ ≥ −κN5/3�−2 for κ small enough. (More precisely, −μ will be equal
to the right side of (4.3).)

If we define Q2 = 1
2

∑N
i=2 q2

i for N > 2, we observe that there exists a
constant cT > 0 such that

Q2 ≥ cT N5/3�−2 (4.44)

if all qi ∈ L are different. We are only interested in values of �q = (q1, . . . , qN )
where ξper(�q) is nonzero, which requires all the qi for i ≥ 2 to be different since
ξper is antisymmetric in these variables. (We note that in comparison with [25]
Q2 is defined with an additional factor 1/2 here.) From now on, we restrict μ
to satisfy μ ≥ −κN5/3�−2 for some κ < cT . This implies that

Q2
μ = Q2 + μ ≥ (1 − κ/cT )Q2 ≥ (cT − κ)N5/3�−2. (4.45)

In particular, Lemma 4.4 yields the bound

T per,μ,N
dia (ξper) ≥

(
2π

�

)3N ∑

�q∈LN

Lμ,N (�q)|ξ̂per(�q)|2 − 1
N5/3�

c′
L

cT − κ
‖ξper‖2

2

(4.46)
on the diagonal term of the singular part of F per

α,N . Following the same steps as
in [25], we can obtain the following lower bound for the off-diagonal term.

Proposition 4.1. Assume that μ ≥ −κN5/3�−2 for some κ < cT . Then for all
ξper ∈ H

1/2
per (C3

� ) ⊗ H
1/2
as,per(C3(N−1)

� ), we have

T per,μ,N
off (ξper) ≥ − Λ̃(m,κ)

1 − κ/cT

(
2π

�

)3N ∑

�q∈LN

Lμ,N (�q)|ξ̂per(�q)|2 (4.47)

where

Λ̃(m,κ) := inf
δ>0

sup
s̃,K∈R

3

Q2
μ>(cT −κ)N5/3�−2

(
2π

�

)3 ∑

t̃∈L+AK

λs̃,Qμ,K,m,δ(t̃) (4.48)
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with A := 1/(2 + m) and

λs̃,Qμ,K,m,δ(t̃)

:=
(s̃ − AK)2 + 2Q2

μ + Nδ�−2

π2(1 + m)

(
m(m + 2)
(m + 1)2

s̃2 +
m

m + 1
(2Q2

μ + AK2)
)−1/4

× 1
(t̃ − AK)2 + δ�−2

(
m(m + 2)
(m + 1)2

t̃2 +
m

m + 1
(2Q2

μ + AK2)
)−1/4

×
∣∣s̃ · t̃

∣∣
[
s̃2 + t̃2 + m

1+m (2Q2
μ + AK2)

]2
−
[

2
(1+m) s̃ · t̃

]2 . (4.49)

Proof. The proof works in almost the exact same way as in [25]; hence, we
will not spell out the details. The main difference is that we now have to write
sums instead of integrals, and in particular this implies that we have to choose
the weight function h(s, q̂1) (see [25, Eq. (4.12)]) differently, namely as

h(s, q̂1) = (s2 + δ�−2)
N∏

i=2

(q2
i + δ�−2). (4.50)

For comparison, δ = 0 was used in [25]. Following the proof in [25, Sect. 4],
this choice gives a lower bound to the off-diagonal term of the form

T per,μ,N
off (ξper) ≥ −Λ̃δ,μ(m)

(
2π

�

)3N ∑

�q∈LN

Lμ,N (�q)|ξ̂per(�q)|2 (4.51)

with a prefactor Λ̃δ,μ(m) equal to

sup
s̃,K∈R3,Q2>cT N5/3�−2

(
2π

�

)3 ∑

t̃∈L+AK

(s̃ − AK)2 + 2Q2 + Nδ�−2

π2(1 + m)

×
(

m(m + 2)
(m + 1)2

s̃2 +
m

m + 1
(2Q2 + 2μ + AK2)

)−1/4

× 1
(t̃ − AK)2 + δ�−2

(
m(m + 2)
(m + 1)2

t̃2 +
m

m + 1
(2Q2 + 2μ + AK2)

)−1/4

×
∣∣s̃ · t̃∣∣

[
s̃2 + t̃2 + m

1+m (2Q2 + 2μ + AK2)
]2

−
[

2
(1+m) s̃ · t̃

]2 . (4.52)

Since (4.45) holds under our assumption on μ, we can use Q2 ≤ Q2
μ(1 −

κ/cT )−1 in the first numerator in (4.52) to conclude that infδ>0 Λ̃δ,μ(m) ≤
(1 − κ/cT )−1Λ̃(m,κ), which yields the desired result. �

4.4. A Bound on Λ̃(m, κ)

We will not evaluate Λ̃(m,κ) directly, but we will compare it with Λ(m), which
is defined in [25, Eq. (2.8)] and which was already referred to in (2.2) above.
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The expression Λ(m) can be written as

Λ(m) := sup
s̃,K∈R

3

Q2
μ>0

∫

R3
λs̃,Qμ,K,m,0(t̃) dt̃

= sup
s̃,K∈R

3

Q2
μ>(cT −κ)N5/3�−2

∫

R3
λs̃,Qμ,K,m,0(t̃) dt̃. (4.53)

The additional constraint on Qμ in the latter supremum has no effect
because of the scaling properties of λs̃,Qμ,K,m,0, specifically λνs̃,νQμ,νK,m,0(νt̃)
= ν−3λs̃,Qμ,K,m,0(t̃) for any ν > 0, which allows to fix one of the parame-
ters when taking the supremum. Expression (4.48) differs from (4.53) by the
nonzero value of δ, as well as the sum instead of an integral. In the following
lemmas, we will compare the two.

The next Lemma gives a pointwise bound on λs̃,Qμ,K,m,δ. For its state-
ment, it will be convenient to define C�(s) as the cube with side length 2π/�
centered at s ∈ R

3, i.e.,

C�(s) =
[
−π

�
,
π

�

]3
+ s. (4.54)

Lemma 4.5. For m � 1, we have for t ∈ L \ {0}

λs̃,Qμ,K,m,δ(t̃) � 1
m

1
t5/2

s2 + 2Q2
μ + Nδ�−2

(s2 + 2Q2
μ)1/4

1
s2 + t2 + 2Q2

μ

(4.55)

where s̃ = s + AK and t̃ = t + AK. Moreover,

�−3
∑

t̃∈L+AK

max
τ∈C�(t̃)

λs̃,Qμ,K,m,δ(τ) � 1
m

(
1 +

Nδ

�2Q2
μ

+
1

δ�Qμ
+

N

�3Q3
μ

)
. (4.56)

Proof. For the pointwise bound (4.55), we will proceed similarly to[25, Sect. 6].
Using the Cauchy-Schwarz inequality, we have

|t̃ · s̃| ≤ 1
2

[
s̃2 + t̃2 +

m

1 + m
(2Q2

μ + AK2)
]

(4.57)

and also
[
s̃2 + t̃2 +

m

1 + m
(2Q2

μ + AK2)
]2

−
[

2
(1 + m)

s̃ · t̃

]2

≥ m(m + 2)
(1 + m)2

[
s̃2 + t̃2 +

m

1 + m
(2Q2

μ + AK2)
]2

. (4.58)

By minimizing over K, we find that

s̃2 + t̃2 +
m

1 + m
(2Q2

μ + AK2) ≥ m(2 + m)
2 + 4m + m2

[
s2 + t2 + 2Q2

μ

]
(4.59)

and
m(m + 2)
(m + 1)2

s̃2 +
m

m + 1
(2Q2

μ + AK2) ≥ m

m + 1
(
s2 + 2Q2

μ

)
. (4.60)
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By combining these bounds we get for (4.49) the pointwise bound

λs̃,Qμ,K,m,δ(t̃) ≤
(

m + 1
m

)3/2
m2 + 4m + 2
2π2m(m + 2)2

(
s2 + 2Q2

μ + Nδ�−2
)

× (s2 + 2Q2
μ

)−1/4 1
t2 + δ�−2

(
t2 + 2Q2

μ

)−1/4 1
s2 + t2 + 2Q2

μ

(4.61)

from which (4.55) readily follows.
We denote the right side of (4.55) by λ>(t) = λ>

s,Qμ,K,m,δ(t), and we will
write λ(t̃) = λs̃,Qμ,K,m,δ(t̃) in the following. That is, (4.55) reads λ(t̃) � λ>(t).
First, we treat the term t̃ = AK in (4.56). Using (4.61), we can bound

�−3λ(t̃) � 1
mδ�Qμ

s2 + 2Q2
μ + Nδ�−2

s2 + t2 + 2Q2
μ

� 1
m

(
1

δ�Qμ
+

N

�3Q3
μ

)
(4.62)

for any t̃ and hence, in particular, for t̃ ∈ C�(AK). For the case 0 �= t ∈ L, we
note that for τ1, τ2 ∈ C�(t) the bound |τ1| ≤ √

11|τ2| holds, and hence

λ>(τ1) ≤ 119/4λ>(τ2). (4.63)

In particular, the maximal value of λ> in C�(τ) is dominated by the average
value, and therefore

�−3
∑

t̃∈L+AK

max
τ∈C�(t̃)

λ(τ) � �−3
∑

t∈L

t�=0

λ>(t) +
1
m

(
1

δ�Qμ
+

N

�3Q3
μ

)

�
∑

t∈L

t�=0

∫

C�(t)

λ>(t) dt +
1
m

(
1

δ�Qμ
+

N

�3Q3
μ

)

�
∫

R3
λ>(t) dt +

1
m

(
1

δ�Qμ
+

N

�3Q3
μ

)
. (4.64)

As a last step, we explicitly evaluate the integral, which results in the bound
∫

R3
λ>(t) dt � 1

m

(
1 +

Nδ

�2Q2
μ

)
. (4.65)

This completes the proof of the lemma. �

Lemma 4.6. For m � 1, we have
∣∣∣∣∣∣

∫

R3
λs̃,Qμ,K,m,δ(t̃) dt̃ −

(
2π

�

)3 ∑

t̃∈L+AK

λs̃,Qμ,K,m,δ(t̃)

∣∣∣∣∣∣

� 1
m

(
1

�Qμ
+

1
δ1/2

)(
1 +

Nδ

�2Q2
μ

+
1

δ�Qμ
+

N

�3Q3
μ

)
. (4.66)

Proof. As in the proof of the previous Lemma, we denote λ(t̃)=λs̃,Qμ,K,m,δ(t̃),
and write it as
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λ(t̃) = c5((s̃ − AK)2 + 2Q2
μ + Nδ�−2)(c1s̃

2 + c2Q
2
μ + c3K

2)−1/4

× 1
(t̃ − AK)2 + δ�−2

(c1t̃
2 + c2Q

2
μ + c3K

2)−1/4

× |s̃ · t̃|
(s̃2 + t̃2 + c2Q2

μ + c3K2)2 − (c4s̃ · t̃)2
(4.67)

with appropriate coefficients c1, c2, c3, c4, c5 depending on m. Its gradient
equals

∇λ(t̃) = −2
t̃ − AK

(t̃ − AK)2 + δ�−2
λ(t̃)

︸ ︷︷ ︸
I

− 1
2

c1t̃

c1t̃2 + c2Q2
μ + c3K2

λ(t̃)

︸ ︷︷ ︸
II

− 4t̃(s̃2 + t̃2 + c2Q
2
μ + c3K

2) − 2c2
4s̃(s̃ · t̃)

(s̃2 + t̃2 + c2Q2
μ + c3K2)2 − (c4s̃ · t̃)2 λ(t̃)

︸ ︷︷ ︸
III

+
s̃

t̃ · s̃
λ(t̃)

︸ ︷︷ ︸
IV

. (4.68)

We can quantify the difference between the Riemann sum and the integral by
∣∣∣∣∣∣

∫

R3
λ(t̃) dt̃ −

(
2π

�

)3 ∑

t̃∈L+AK

λ(t̃)

∣∣∣∣∣∣
� �−4

∑

t̃∈L+AK

max
τ∈C�(t̃)

|∇λ(τ)|. (4.69)

With the aid of the triangle inequality, we can treat the terms I−IV separately.
We can bound I as

|I| ≤ 2√
(t̃ − AK)2 + δ�−2

λ(t̃) ≤ 2�

δ1/2
λ(t̃). (4.70)

For the second term, we obtain

|II| ≤ 1
2

√
c1

c2

1
Qμ

λ(t̃) =
1

23/2

√
m + 2
m + 1

1
Qμ

λ(t̃) � 1
Qμ

λ(t̃). (4.71)

For III, we use similar estimates as in Lemma 4.5 to get

|III| � |t̃| + |s̃|
s̃2 + t̃2 + c2Q2

μ + c3K2
λ(t̃) � 1

Qμ
λ(t̃). (4.72)

Finally, for IV we have to proceed slightly differently. If we use

|s̃| ≤ 1
2
√

c2Qμ
(s̃2 + t̃2 + c2Q

2
μ + c3K

2) (4.73)

instead of (4.57), we see that we can bound |III| from above by Q−1
μ times the

right side of (4.61). Using Lemma 4.5, we conclude that

(4.69) ≤ �−4
∑

t̃∈L+AK

max
τ∈C�(t̃)

(|I| + |II| + |III| + |IV|)

� 1
m

(
1

�Qμ
+

1
δ1/2

)(
1 +

Nδ

�2Q2
μ

+
1

δ�Qμ
+

N

�3Q3
μ

)
. (4.74)
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Here, we have used that bound (4.56) holds also with λs̃,Qμ,K,m,δ replaced by
the right side of (4.61), as shown in the proof of Lemma 4.5. This completes
the proof. �

Lemma 4.7. There exists a cΛ > 0 such that

Λ̃(m,κ) ≤ Λ(m) +
1
m

cΛ

(1 − κ/cT )2
N−2/9 (4.75)

whenever κ < cT and Λ(m) ≤ 1, where cT is defined in (4.44).

Proof. We first note that Λ(m) ≤ 1 implies m � 1. Moreover, from definition
(4.49) we have

λs̃,Qμ,K,m,δ(t̃) ≤
(

1 +
Nδ

2�2Q2
μ

)
λs̃,Qμ,K,m,0(t̃). (4.76)

Combining this with Lemma 4.6 and taking the supremum over s̃, K and
Q2

μ ≥ (cT − κ)N5/3�−2, we obtain

Λ̃(m, κ) − Λ(m)

� 1

m
inf
δ>0

sup
Q2

μ
≥(cT −κ)N5/3�−2

[
Nδ

�2Q2
μ

+

(
1

�Qμ

+
1

δ1/2

)(
1 +

Nδ

�2Q2
μ

+
1

δ�Qμ

+
N

�3Q3
μ

)]

(4.77)

where we also used that Λ(m) � m−1 for m � 1. The supremum over Qμ

is clearly achieved for Q2
μ = (cT − κ)N5/3�−2. For an upper bound, we shall

choose δ ∼ N4/9, which yields the desired bound

Λ̃(m,κ) − Λ(m) � 1
m

(cT − κ)−2N−2/9. (4.78)

�

4.5. Proof of Theorem 4.1

Using Proposition 4.1, Eq. (4.46) and Lemma 4.7, we get the lower bound

N−1T per
α,μ,N (ξper) ≥

(
2mα

m + 1
− 1

N5/3�

c′
L

cT − κ

)
‖ξper‖2

+
1

1 − κ/cT

(
1 − κ/cT − Λ(m) − cΛN−2/9

m(1 − κ/cT )2

)

×
(

2π

�

)3N ∑

�q∈LN

Lμ,N (�q)|ξper(�q)|2 (4.79)

for any 0 < κ < cT and μ ≥ −κN5/3/�2. Note that the coefficient in front of
the last sum is positive for all N > N0(κ,m), defined in (4.2). If α is large
enough such that also the first term on the right side of (4.79) is nonnegative,
we conclude that T per

α,μ,N (ξper) ≥ 0.
In case 2mα < (m + 1)c′

L(cT − κ)−1N−5/3�−1, on the other hand, we
need to dominate the first term on the right side of (4.79) by the second. We
use (4.44) to obtain the lower bound



Energy Contribution of a Point-Interacting Impurity

Lμ,N (�q) ≥ 2π2

(
2m

m + 1

)3/2

Qμ ≥ 2π2

(
2m

m + 1

)3/2√
μ + κN5/3�−2. (4.80)

In particular, if we choose

μ = − κN5/3�−2

+
1

4π4

m + 1
2m

(1 − κ/cT )2[α − (2m)−1(m + 1)c′
L(cT − κ)−1N−5/3�−1]2−

(1 − κ/cT − Λ(m) − cΛm−1(1 − κ/cT )−2N−2/9)2
(4.81)

we again conclude that T per
α,μ,N (ξper) ≥ 0.

Note that for our choice of μ, satisfying in particular μ ≥ −cT N5/3�−2,
we have ∫

CN+1
�

(
|∇̃φper

μ |2 + μ|φper
μ |2

)
≥ 0 (4.82)

for all φper
μ ∈ H1

per(CN+1
� ) that are antisymmetric in the last N variables.

Hence, the positivity of T per
α,μ,N (ξper) implies that F per

α,N (ψper) ≥ −μ‖ψper‖2.
In combination with Lemmas 4.2 and 4.3, this completes the proof of Theo-
rem 4.1. To simplify its statement, we have additionally used that

(1 − κ/cT )2[α − (2m)−1(m + 1)c′
L(cT − κ)−1N−5/3�−1]2−

≤ [α − (2m)−1(m + 1)c′
Lc−1

T �−1]2− (4.83)

for N ≥ 1, and defined

cL :=
m∗∗ + 1
2m∗∗

c′
L

cT
(4.84)

in Eq. (4.3), where m∗∗ ≈ 0.36 is chosen such that m ≥ m∗∗ for Λ(m) ≤ 1.
�

5. Proof of Theorem 2.1

In this section, we will give the proof of our main result, Theorem 2.1.
Let CL = (0, L)3 and C̄L =

⋃M
i C̄i a disjoint decomposition into cubes

Ci = (0, �)3 + zi with zi ∈ R
3. We will choose � such that L/� ∈ N in which

case M = (L/�)3. Let 1/4 > ε > 0 and let η ∈ C∞
0 (Bε(0)) be nonnegative,

with η(0) > 0, where we denote by Bε(0) the centered ball of radius ε. In
the following, we will assume that ε is a fixed constant independent of all
parameters (for example ε = 1/8 works). For x ∈ CL, define

Ji(x) =

( ∫
Ci

η(�−1(x − y)) dy
∫

CL
η(�−1(x − y)) dy

)1/2

. (5.1)

Note that since η is assumed to be strictly positive in a small ball around the
origin, the denominator in (5.1) is strictly positive for x ∈ C̄L, hence (5.1) is well
defined. We have suppJi ⊆ Ci + B�ε(0) and Ji(x) = 1 for x ∈ �(ε, 1 − ε)3 + zi.
Moreover,

∑M
i=1 J2

i (x) = 1 for x ∈ CL by construction. The derivative of Ji
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can be bounded uniformly in i and M by a constant cη depending only on η
(and hence ε) as

|∇Ji|2 ≤ cη

�2
. (5.2)

Let ψ ∈ D(Fα,N ) be such that suppψ ⊂ CN+1
L and ‖ψ‖2 = 1. We use

the IMS formula, Proposition 3.1, for the quadratic form Fα,N to localize
the impurity particle (with coordinate x0). With Jiψ denoting the function
(Jiψ)(x0, �x) = Ji(x0)ψ(x0, �x) we obtain

Fα,N (ψ) =
M∑

i=1

Fα,N (Jiψ) − 1
2m

M∑

i=1

∫
|∇Ji(x0)|2|ψ(x0, �x)|2 dx0 d�x. (5.3)

We note that the last term is bounded by
M∑

i=1

∫
|∇Ji(x0)|2|ψ(x0, �x)|2 ≤ cη

�2

M∑

i=1

∫

∂Ji

|ψ(x0, �x)|2 dx0 d�x ≤ 8cη

�2
(5.4)

since ε < 1/2, where ∂Ji = supp |∇Ji|. Recall the definition of the mean
density, ρ̄ = NL−3. We will choose � ∼ ρ̄−1/3 which means that (5.4) is of the
order ρ̄2/3.

In the next step, we want to localize the other particles, to be able to
distinguish whether they are close to the impurity or far from it. Because
we violate the antisymmetry constraint by doing so, we will work with the
extended quadratic form F̃α,N defined in (3.4). Let V ∈ C∞

0 (R3) satisfy 0
≤ V ≤ 1, with suppV ⊆ [−2ε, 1 + 2ε]3 and V (x) = 1 for x ∈ [−ε, 1 + ε]3. We
define Vi(x) = V ((x−zi)/�) and Ṽi(x) :=

√
1 − Vi(x)2. Figure 1 visualizes this

setup.
We localize all the remaining particles using the IMS formula in Propo-

sition 3.1, with the localization functions

(x1, . . . , xN ) �→
∏

j∈A

Vi(xj)
∏

k∈Ac

Ṽi(xk) (5.5)

for A ⊆ {1, . . . , N}, where Ac = {1, . . . , N}\A. For short we define

ϕi,A(x0, �x) := Ji(x0)
∏

k∈A

Vi(xk)
∏

j∈Ac

Ṽi(xj)ψ(x0, �x). (5.6)

A straightforward calculation using Proposition 3.1 and the fact that V 2
i + Ṽ 2

i

= 1 shows that

Fα,N (Jiψ) =
∑

A⊆{1,...,N}

(
F̃α,N (ϕi,A)

−1
2

N∑

j=1

∫ (
|∇Vi(xj)|2 + |∇Ṽi(xj)|2

)
|ϕi,A(x0, �x)|2 dx0 d�x

)
. (5.7)

Here, it is necessary to introduce the extended quadratic form F̃α,N since the
functions ϕi,A are not antisymmetric in all N variables (x1, . . . , xN ). They are
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ℓ

L

1

ℓℓℓ

Figure 1. A sketch of the setup, the partitions Ji, Vi, Ṽi and
their boxes of support

still separately antisymmetric in the coordinates in A and in the ones in Ac,
however.

In the next lemma, we will show that the energy F̃α,N (ϕi,A) splits up into
a non-interacting energy for the particles in Ac that are localized away from
the impurity, and in a point-interacting quadratic form for particles in A.

Lemma 5.1. We define the functions ϕ�pAc

i,A ∈ L2(R3(|A|+1)) and ϕp0,�pA

i,A

∈ L2(R3|Ac|) via their Fourier transforms as

ϕ̂�pAc

i,A (p0, �pA) = ϕ̂i,A(p0, �p) = ϕ̂p0,�pA

i,A (�pAc). (5.8)

Then,

F̃α,N (ϕi,A) =
∫

Fα,|A|(ϕ
�pAc

i,A ) d�pAc

+
∫ 〈

ϕp0,�pA

i,A

∣∣∣− 1
2

∑
i∈Ac

Δi

∣∣∣ϕp0,�pA

i,A

〉
d�pA dp0. (5.9)

Proof. We define ξj and φμ for some μ > 0 using the unique decomposition
ϕi,A = φμ +

∑N
j=1 Gμξj . Corollary 3.1 implies that ξj = 0 for j ∈ Ac. Hence

F̃α,N (ϕi,A) =

∫
d�pAc

[ ∫
|φ̂μ(p0, �p)|2

(
1

2m
p2
0 +

1

2
�p2 + μ

)
d�pA dp0

− μ

∫
|ϕ̂i,A(p0, �p)|2 d�pA dp0
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+
2m

m + 1
α
∑

i∈A

∫
|ξ̂i(pi, p̂i)|2 d�pA +

∑

i∈A

∫
Lμ,N (pi, p̂i)|ξ̂i(pi, p̂i)|2 d�pA

−
∑

i,j∈A
i�=j

∫
ξ̂∗

i (p0 + pi, p̂i)ξ̂j(p0 + pj , p̂j)
1

2m
p2
0 + 1

2
�p2 + μ

d�pA dp0

]
. (5.10)

Following the argumentation in the proof of Lemma 4.3, we see that the expres-
sion inside the integral over �pAc is independent of μ. In particular, this allows
us to shift μ → μ − �p2

Ac/2 for fixed �pAc , which gives

F̃α,N (ϕi,A)

=
∫

d�pAc

[∫
|φ̂μ−�p2

Ac
/2(p0, �p)|2

(
1

2m
p2
0 +

1
2
�p2

A + μ

)
d�pA dp0

−
(

μ − �p2
Ac

2

)∫
|ϕ̂i,A(p0, �p)|2 d�pA dp0

+
2m

m + 1
α
∑

i∈A

∫
|ξ̂i(pi, p̂i)|2 d�pA +

∑

i∈A

∫
Lμ,|A|(pi, �pA\{i})|ξ̂i(pi, p̂i)|2 d�pA

−
∑

i,j∈A
i�=j

∫
ξ̂∗
i (p0 + pi, p̂i)ξ̂j(p0 + pj , p̂j)

1
2mp2

0 + 1
2�p2

A + μ
d�pA dp0

]
(5.11)

where we used the fact that Lμ−�p2
Ac /2,N (pi, p̂i) = Lμ,|A|(pi, �pA\{i}). The result

then follows by noting that the Fourier transform of the regular part of ϕ�pAc

i,A for
fixed �pAc is equal to φ̂μ−�p2

Ac
( · , �pAc), and using the antisymmetry of ϕ�pAc

i,A . �

We can apply a similar decomposition also to the second term in (5.7).
For simplicity, let

Wi(x) =
1
2

(
|∇Vi(x)|2 + |∇Ṽi(x)|2

)
. (5.12)

Then, (5.7) and (5.9) imply that we can write

Fα,N (Jiψ) =
∑

A⊆{1,...,N}
‖ϕi,A‖2 [Ai,A + Bi,A] (5.13)

where

Ai,A = ‖ϕi,A‖−2

∫ (
Fα,|A|(ϕ

�pAc

i,A ) −
〈
ϕ�pAc

i,A

∣∣∣
∑

j∈A
Wi(xj)

∣∣∣ϕ�pAc

i,A

〉)
d�pAc

(5.14)
and

Bi,A = ‖ϕi,A‖−2

∫ 〈
ϕp0,�pA

i,A

∣∣∣
∑

j∈Ac

(− 1
2Δj − Wi(xj)

)∣∣∣ϕp0,�pA

i,A

〉
d�pA dp0.

(5.15)
To obtain a lower bound on Ai,A we can use Theorem 4.1, and for the

non-interacting part Bi,A we use the following proposition. We recall that the
energy ED

n on the box CL = (0, L)3 was defined in the beginning of Sect. 2 as
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the ground-state energy of the non-interacting Hamiltonian Hn
0 with Dirichlet

boundary conditions.

Proposition 5.1. For n ∈ N, let φ ∈ H1
as(R

3n) be supported in (0, L)3n, with
‖φ‖2 = 1, and let 1 ≤ i ≤ M . Then,

n∑

j=1

∫ (
1
2 |∇jφ|2 − Wi(xj)|φ|2) ≥ ED

n − const.
(

n1/3

�L
+ �−2 +

n�

L3

)
. (5.16)

Proof. The result follows in a straightforward way from Corollary A.1, which
is an adaptation of the Lieb–Thirring inequality at positive density derived in
[14]. We use that | supp(Wi)| � �3 and ‖Wi‖∞ � �−2. This allows us to bound
the right side of (A.54) as

∫

CL

(
n1/3

L
|Wi|2 + |Wi|5/2 +

n

L3
|Wi|

)
� n1/3

�L
+ �−2 +

n�

L3
(5.17)

from which the statement readily follows. �

Since ϕp0,�pA

i,A is an antisymmetric function supported in C|Ac|
L , Proposi-

tion 5.1 implies that
〈
ϕp0,�pA

i,A

∣∣∣
∑

j∈Ac

(− 1
2Δj − Wi(xj)

)∣∣∣ϕp0,�pA

i,A

〉

≥
(
ED

|Ac| − const.
(
ρ̄1/3�−1 + �−2 + ρ̄�

))
‖ϕp0,�pA

i,A ‖2 (5.18)

where we used |Ac| ≤ N in the error term. To minimize the error, we choose � ∼
ρ̄−1/3. The factor on the right side of (5.16) then equals ED

N−|A| − const. ρ̄2/3.
Because of the condition that L/� ∈ N we cannot choose � without restriction,
but it is always possible to choose a value such that � ∼ ρ̄−1/3. We define eN to
be the N -th eigenvalue of the one-particle Dirichlet Laplacian on CL = (0, L)3.
Then, ED

N−|A| ≥ ED
N −|A|eN . Moreover, we can bound eN � ρ̄2/3. In particular,

Bi,A ≥ ED
N − const. (|A| + 1) ρ̄2/3. (5.19)

We proceed with a lower bound on Ai,A. Theorem 4.1 can be used for a
lower bound on Fα,|A| only if |A| > N0, with N0 defined in (4.2). In case that
|A| ≤ 2N0 we use bound (2.2) originating form [25] instead, which implies that

Fα,|A|(ϕ
�pAc

i,A ) � − α2
−

(1 − Λ(m))2

∥∥∥ϕ�pAc

i,A

∥∥∥
2

(5.20)

using m � 1. In combination with ‖Wi‖∞ � ρ̄2/3, this gives the lower bound

Ai,A � − α2
−

(1 − Λ(m))2
− |A|ρ̄2/3 (5.21)

and hence

Ai,A + Bi,A ≥ ED
N − const.

(
α2

−
(1 − Λ(m))2

+ (N0 + 1)ρ̄2/3

)
(5.22)

in case |A| ≤ 2N0.
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For |A| ≥ 2N0, we use the bound in Theorem 4.1 on Fα,|A|(ϕ
�pAc

i,A ). Since
ϕ�pAc

i,A is an |A| + 1-particle wavefunction supported in a cube of side length
�(1 + 2ε), Theorem 4.1 implies that

Fα,|A|(ϕ
�pAc

i,A ) ≥
(

κ
|A|5/3

�2(1 + 2ε)2
− U

)
‖ϕ�pAc

i,A ‖2 (5.23)

with

U =
1

4π4

m + 1
2m

[α − cL�−1]2−
(1 − κ/cT − Λ(m))2(1 − 2−2/9)2

. (5.24)

In combination with (5.19) and ‖Wi‖∞ � ρ̄2/3, this yields the bound

Ai,A + Bi,A ≥ ED
N + κ

|A|5/3

�2(1 + 2ε)2
− const. (|A| + 1) ρ̄2/3 − U

≥ ED
N − U − const. κ−3/2ρ̄2/3 (5.25)

where we have minimized over |A| in the last step and used that ε � 1 and
� ∼ ρ̄−1/3.

We are still free to choose κ in such a way as to minimize the error terms.
We shall choose κ = cT ν(1 − Λ(m)) for some 0 < ν < 1 (e.g., ν = 1/2). Then,
N0 � (1 − Λ(m))−9/2, and hence (5.22) and (5.25) together yield the bound

Ai,A + Bi,A ≥ ED
N − const.

(
[α − cL�−1]2−
(1 − Λ(m))2

+
ρ̄2/3

(1 − Λ(m))9/2

)

≥ ED
N − const.

(
α2

−
(1 − Λ(m))2

+
ρ̄2/3

(1 − Λ(m))9/2

)
(5.26)

which is valid for all A ⊂ {1, . . . , N}. In combination with (5.3), (5.4) and
(5.13), this completes the proof of Theorem 2.1. �

Appendix A: Lieb–Thirring inequality in a box

In this appendix, we will follow the analysis of [14] to show a positive density
Lieb–Thirring inequality for a system of non-interacting fermions in a box with
Dirichlet boundary conditions. When reformulated via a Legendre transforma-
tion as a bound on the difference between the ground-state energies with and
without an external potential, we will see that this inequality in particular
implies Proposition 5.1. The analysis proceeds exactly as in [14], with minor
differences due to the fact that the eigenfunctions of the Dirichlet Laplacian do
not have constant modulus, which requires some modifications (in particular
in Eq. (A.31) et seq.).

Let CL = [−L/2, L/2]3 be the cube in R
3, and let Π−

L,μ := 11(−ΔL

≤ μ), where ΔL denotes the Dirichlet Laplacian on CL. For short we will
just write Π− for Π−

L,μ, and Π+ = 1 − Π−. For a density matrix γ, we denote
the corresponding density by ργ . Of particular relevance for us is the density
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corresponding to Π−, which we denote by ρ0. Differently to the case of periodic
boundary conditions (discussed in [14]), ρ0 is not a constant and is given by

ρ0(x) =
∑

p∈πN3/L

p2≤μ

|φp(x)|2 (A.1)

where φp are the eigenvectors of −ΔL to the eigenvalues p2, i.e.,

φp(x) =
(

2
L

)3/2 3∏

j=1

cos(pjxj) (A.2)

for x = (x1, x2, x3) ∈ R
3. Since the absolute value of each eigenvector is

pointwise bounded by (2/L)3/2 we have

ρ0(x) ≤
(

2
L

)3 ∑

p∈πN3/L

p2≤μ

1 ≤
(

2
L

)3 4π

3
μ3/2L3

π3
=

25μ3/2

3π2
. (A.3)

Remark. Since the lowest eigenvalue of −ΔL equals 3π2L−2, the problem sim-
plifies for μ < 3π2L−2 since the projections Π±

L,μ become trivial. In this case,
we can simply apply the original Lieb–Thirring inequality [17] to obtain the
desired bound. For our application, we shall need μ � L−2; hence, we shall
restrict our attention to μ ≥ 3π2L−2 in the following theorem.

For a real number t, we denote its positive part by t+ and its negative
part by t−. In particular, t = t+ − t−.

Theorem A.1. Let μ ≥ 3π2L−2. Let Q be a self-adjoint operator of finite rank
satisfying −Π−

L,μ ≤ Q ≤ 1 − Π−
L,μ, with density ρQ. There exist positive con-

stants K̃ and η independent of μ,L and Q such that

tr(−ΔL − μ)Q ≥ K̃

∫

CL

S
(
(|ρQ(x)| − ηL−1μ)+

)
dx (A.4)

with
S(ρ) := (μ3/2 + ρ)5/3 − μ5/2 − 5

3
μρ. (A.5)

Remark. In [14], a similar result was proven for the Laplacian with periodic
boundary conditions and we mostly follow that proof.

Remark. The crucial properties of the function S are its positivity and the
fact that S(ρ) behaves like μ−1/2ρ2 for small ρ and like ρ5/3 for large ρ. For
technical reasons, it will also be convenient that S is convex.

Essential for the proof will be to separate a given Q into Q = (Π+ +
Π−)Q(Π+ + Π−)=:Q++ + Q+− + Q−+ + Q−−. The densities associated to
Q±± will be denoted by ρ±±. Before we proceed with the proof of the theorem,
we show the following Lemma.

Lemma A.1. Assume Π− ≤ Q ≤ 1 − Π−. Then,

tr
(| − ΔL − μ|Q2

) ≤ tr(−ΔL − μ)Q. (A.6)
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Proof. We claim that Q2 ≤ Q++ − Q−−, which follows from the condition on
Q. In fact,

−Π− ≤ Q ≤ 1−Π− ⇒ 0 ≤ Q+Π− ≤ 1 ⇒ (Q+Π−)2 ≤ Q+Π−. (A.7)

Expanding the last inequality proves the claim. Hence,

tr(|ΔL + μ|Q2) ≤ tr(|ΔL + μ|Q++) − tr(|ΔL + μ|Q−−)

= tr((−ΔL − μ)Q++) + tr((−ΔL − μ)Q−−)

= tr((−ΔL − μ)Q). (A.8)

�

Proof of Theorem A.1. We shall treat Q±± separately and combine the various
terms at the end using the convexity of S.

Part 1. Q++, Q−−

We shall follow the method introduced by Rumin in [27]. With the aid
of the spectral projections Pe := 11(|ΔL + μ| ≥ e), we have the layer cake
representation

|ΔL + μ| =
∫ ∞

0

Pe de. (A.9)

Let us assume that γ is a smooth enough finite rank operator with 0 ≤ γ ≤ 1.
Then,

tr |ΔL + μ|γ =
∫ ∞

0

de tr(PeγPe) =
∫ ∞

0

de

∫

CL

ρe(x) dx (A.10)

where ρe denotes the density of the finite rank operator PeγPe. For a bounded
measurable set A, we estimate

∫

A

ρe(x) dx = tr(11APeγPe) =
∥∥∥11APeγ

1/2
∥∥∥

2

S2

≥
(∥∥∥11Aγ1/2

∥∥∥
S2

−
∥∥∥11AP⊥

e γ1/2
∥∥∥
S2

)2

+

=

((∫

A

ργ

)1/2

−
∥∥∥11AP⊥

e γ1/2
∥∥∥
S2

)2

+

(A.11)

where ργ denotes the density of γ and we used the triangle inequality for the
Hilbert–Schmidt norm ‖ · ‖S2

. Because ‖γ‖ ≤ 1, we further get

∥∥∥11AP⊥
e γ1/2

∥∥∥
2

S2

= tr(11AP⊥
e γP⊥

e 11A) ≤ ∥∥11AP⊥
e

∥∥2

S2
‖γ‖ ≤ |A|f(e) (A.12)

with
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f(e) :=
(

2
L

)3 ∑

p∈πN3/L

|p2−μ|<e

1 =
(

2
L

)3 ∑

n∈N
3/2

| 4π2

L2 n2−μ|<e

1

=
(

2
L

)3 [∣∣∣∣N
3/2 ∩ B

(
L

2π
(μ + e)1/2

)∣∣∣∣−
∣∣∣∣N

3/2 ∩ B̄

(
L

2π
(μ − e)1/2

+

)∣∣∣∣

]

(A.13)

where B(R) denotes the centered open ball with radius R and B̄(R) its closure.
Here, we used

∥∥11AP⊥
e

∥∥2

S2
=

∑

p∈πN3/L

|p2−μ|<e

∫

A

|φp(x)|2 dx ≤ |A|
∑

p∈πN3/L

|p2−μ|<e

sup
x∈A

|φp(x)|2 ≤ |A|f(e)

(A.14)
where we bounded the eigenfunction φp of −ΔL to the eigenvalue p2 by
|φp(x)| ≤ (2/L)3/2. Taking A = B(R)+x with R → 0, we obtain the pointwise
bound

ρe(x) ≥
(√

ργ(x) −
√

f(e)
)2

+
. (A.15)

Hence, we get

tr |ΔL + μ|γ ≥
∫

CL

dx

∫ ∞

0

de
(√

ργ(x) −
√

f(e)
)2

+
=
∫

CL

R(ργ(x)) dx

(A.16)
with

R(ρ) :=
∫ ∞

0

(√
ρ −
√

f(e)
)2

+
de. (A.17)

To obtain the desired result, we have to analyze R(ρ) in more detail. In the
following, we will use C to denote a generic constant, whose value can change
throughout the computation. Obviously

∣∣∣∣
∣∣N3/2 ∩ B(R)

∣∣− 4π

3
R3

∣∣∣∣ � max(1, R2) (A.18)

and the same statement holds if one takes the closure B̄(R) instead of B(R).
For 0 < x < 1 and M > 0, (A.18) allows us to bound

|N3/2 ∩ B(M(1 + x)1/2)| − |N3/2 ∩ B̄(M(1 − x)1/2)|

≤ 4πM3

3

(
(1 + x)3/2 − (1 − x)3/2

+

)
+ C max(1,M2)

� M3x + max(1,M2) , (A.19)

where we used (1+x)3/2 −(1−x)3/2
+ � x. Applying (A.19) to f(e) for e/μ < 1,

we get

f(e) � μ1/2e +
μ

L
(A.20)
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using that μ � L−2 by assumption. For e ≥ μ, we get

f(e) =
(

2
L

)3 ∣∣∣∣N
3/2 ∩ B

(
L

2π
(μ + e)1/2

)∣∣∣∣ ≤
C

L3

(
L3(μ + e)3/2

)
≤ Ce3/2.

(A.21)
Combining both statements, we have thus shown that

f(e) ≤ C
(μ

L
+ μ1/2e11(e ≤ μ) + e3/211(e > μ)

)
= u + g(e) (A.22)

with
g(e) := Cemax(μ1/2, e1/2) , u :=C

μ

L
. (A.23)

Using the explicit form of g, one readily checks that

R(ρ) =
∫ ∞

0

(√
ρ −
√

f(e)
)2

+
de

≥
∫ ∞

0

(√
ρ − √

u −
√

g(e)
)2

+
de � S((ρ − 2u)+) , (A.24)

where we have also used that (
√

ρ − √
u)2+ ≥ 1

2 (ρ − 2u)+. In combination with
(A.16), this shows that

tr | − ΔL − μ|γ �
∫

CL

S((ργ(x) − CL−1μ)+) dx. (A.25)

We apply this for γ = Q++ and γ = −Q−− and obtain

tr(−ΔL − μ)Q±± �
∫

CL

S
(
(|ρ±±(x)| − CL−1μ)+

)
dx. (A.26)

Part 2. Q+−, Q−+

In the next step, we want to prove bounds for Q+− and Q−+. We intro-
duce

Π+
0 = 11(μ < −ΔL < μ +

√
μ/L) , Π−

0 = 11(μ − √
μ/L ≤ −ΔL ≤ μ)

Π+
1 = 11(μ +

√
μ/L ≤ −ΔL) , Π−

1 = 11(−ΔL < μ − √
μ/L) (A.27)

and split Q+− = (Π+
0 + Π+

1 )Q(Π−
0 + Π−

1 ) = Q+−
00 + Q+−

10 + Q+−
01 + Q+−

11 . The
following three parts of the proof will treat these terms. We start with Q±

00.

Part 3. Q+−
00

The density of Q+−
00 is equal to

ρ+−
00 (x) =

∑

k∈(πN/L)3

μ<k2<μ+
√

μ/L

∑

j∈(πN/L)3

μ−√
μ/L≤j2≤μ

〈φk|Qφj〉φk(x)φj(x). (A.28)

Using ‖Q‖ ≤ 1, we can bound this as

|ρ+−
00 (x)| ≤

(∑

k∈(πN/L)3

μ<k2<μ+
√

μ/L

|φk(x)|2
)1/2(∑

j∈(πN/L)3

μ−√
μ/L≤j2≤μ

|φj(x)|2
)1/2
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≤
(

2
L

)3√
|{μ ≤ k2 ≤ μ +

√
μ/L}|

√
|{μ − √

μ/L ≤ j2 ≤ μ}|

≤ C
μ

L
(A.29)

where we applied (A.19) in the last step.

Part 4. Q+−
10 , Q+−

01

Next we will bound ρ+−
10 . For a general function W (viewed as a multi-

plication operator), we have

| tr(WQ+−
10 )| =

∣∣∣∣tr
(

Π−
0 W

Π+
1

| − ΔL − μ|1/2
| − ΔL − μ|1/2Q

)∣∣∣∣

≤
√

tr | − ΔL − μ|Q2

∥∥∥∥Π
−
0 W

Π+
1

| − ΔL − μ|1/2

∥∥∥∥
S2

. (A.30)

To bound the first factor, we can use Lemma A.1. For the second term, we
need to use the specific form of the eigenfunctions of the Dirichlet Laplacian.
Using (A.2), we get

|〈φp|Wφq〉|2 =
(

1
2L

)6
∣∣∣∣∣∣

∑

A,B∈{1,−1}3

Ŵ ((Ajpj)j − (Bjqj)j)

∣∣∣∣∣∣

2

� L−6
∑

A,B∈{1,−1}3

|Ŵ ((Ajpj)j − (Bjqj)j)|2 (A.31)

where (Ajpj)j and (Bjqj)j denote the vectors obtained by component-wise
multiplication. Hence,

∥∥∥∥Π
−
0 W

Π+
1

| − ΔL − μ|1/2

∥∥∥∥
2

S2

=
∑

p,q∈(πN/L)3

μ−√
μ/L≤p2≤μ

q2>μ+
√

μ/L

|〈φp|Wφq〉|2
q2 − μ

≤ L√
μ

∑

p,q∈(πN/L)3

μ−√
μ/L≤p2≤μ

q2>μ+
√

μ/L

|〈φp|Wφq〉|2

� 1
L6

L√
μ

∑

p,q∈(π(Z\{0})/L)3

μ−√
μ/L≤p2≤μ

q2>μ+
√

μ/L

|Ŵ (p − q)|2

� 1
L6

L√
μ

∑

q∈(π(Z\{0})/L)3

|Ŵ (q)|2
∑

μ−√
μ/L≤p2≤μ

1 � √
μ ‖W‖2

2 . (A.32)

The sum of (A.31) is included in the second line of the previous calculation
by extending the sum over p, q ∈ N

3 to p, q ∈ (Z \ {0})3, and we have again
used (A.19) in the last step.
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Choosing for W = (ρ+−
10 )∗, we thus get from (A.30)

∫

CL

|ρ+−
10 |2 ≤ Cμ1/2 tr(−ΔL − μ)Q. (A.33)

In a similar way, we can treat ρ+−
01 with the result that also

∫

CL

|ρ+−
01 |2 ≤ Cμ1/2 tr(−ΔL − μ)Q. (A.34)

Part 5. Q+−
11

Similarly to above we again introduce a multiplication operator W , and
estimate
∣∣tr(WΠ+

1 QΠ−
1 )
∣∣

≤
∥∥∥∥

Π+
1

|ΔL + μ|1/4
W

Π−
1

|ΔL + μ|1/4

∥∥∥∥
S2

∥∥∥|ΔL + μ|1/4Q|ΔL + μ|1/4
∥∥∥
S2

. (A.35)

The second factor we bound by
∥∥∥|ΔL + μ|1/4Q|ΔL + μ|1/4

∥∥∥
S2

≤
∥∥∥|ΔL + μ|1/2Q

∥∥∥
S2

= tr(|ΔL + μ|Q2)1/2

(A.36)
and Lemma A.1. For the first one, we have

∥∥∥∥
Π+

1

|ΔL + μ|1/4
W

Π−
1

|ΔL + μ|1/4

∥∥∥∥
2

S2

=
∑

p,q∈(πN3/L)

p2>μ+
√

μ/L

q2<μ−√
μ/L

|〈φp|Wφq〉|2
(μ − q2)1/2(p2 − μ)1/2

≤ C

L6

∑

p,q∈(πZ3/L)

p2>μ+
√

μ/L

q2<μ−√
μ/L

|Ŵ (q − p)|2
(μ − q2)1/2(p2 − μ)1/2

=
C

L3

∑

k∈(πZ3/L)

Φ(k)|Ŵ (k)|2 ≤ C sup
k

Φ(k) ‖W‖2
2 (A.37)

with

Φ(k) =
1
L3

∑

q∈(πZ3/L)

(q−k)2>μ+
√

μ/L

q2<μ−√
μ/L

1
(μ − q2)1/2((q − k)2 − μ)1/2

. (A.38)

In [14, Proof of Theorem 5.1], it was shown that supk Φ(k) � μ1/2 for μ � L−2.
Hence, the choice W = (ρ+−

11 )∗ yields
∫

CL

|ρ+−
11 |2 � μ1/2 tr((−ΔL − μ)Q). (A.39)

Part 6. Combining the above estimates
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By combining (A.34) and (A.39), we obtain

μ−1/2

∫

CL

|ρ+− − ρ+−
00 |2 ≤ C tr(−ΔL − μ)Q. (A.40)

Using that |ρ+−
00 | ≤ Cμ/L, as shown in (A.29), this further implies that

μ−1/2

∫

CL

(|ρ+−| − Cμ/L
)2
+

≤ C tr(−ΔL − μ)Q. (A.41)

The integrand in the left side is bounded from below by CS((|ρ+−|−Cμ/L)+);
hence, ∫

CL

S
(
(|ρ+−| − Cμ/L)+

) ≤ C tr(−ΔL − μ)Q. (A.42)

Since |ρ+−| = |ρ−+|, the same bound holds for ρ−+ as well. Combining (A.26)
and (A.42) and using the convexity of S, we get

tr(−ΔL − μ)Q �
∫

CL

S

(
(|ρ++| + |ρ−−| + |ρ+−| + |ρ−+| − Cμ/L)+

4

)

≥
∫

CL

S

( (|ρQ| − Cμ/L)+
4

)
�
∫

CL

S((|ρQ| − Cμ/L)+).

(A.43)

This completes the proof of Theorem A.1. �

By taking a Legendre transform, the result above implies that following
potential version of the Lieb–Thirring inequality.

Theorem A.2. Assume that V is a real-valued function in L5/2([−L/2, −L/2]3),
and μ ≥ 3π2L−2. Then, we have

0 ≥ − tr(−ΔL + V − μ)− + tr(−ΔL − μ)− −
∫

CL

ρ0V

≥ −K

∫

CL

(
μ1/2|V |2 + |V |5/2 + L−1μ|V |

)
(A.44)

with K > 0 independent of L, μ and V .

Remark. In case that μ < 3π2L−2 we have −ΔL − μ > 0, and therefore
tr(−ΔL − μ)− = 0 and also ρ0 = 0. One can thus obtain a lower bound using
the standard Lieb–Thirring inequality [17] applied to a potential V −μ in this
case.

Proof. We start with the identity

− tr(A + B)− = inf
0≤γ≤1

tr(A + B)γ (A.45)

for Hermitian matrices A and B, where an optimizer is clearly 11(A + B ≤ 0).
With P− = 11(A ≤ 0) and Q = γ − P−, (A.45) reads

− tr(A + B)− = inf
−P −≤Q≤1−P −

tr(A + B)Q + tr(A + B)P−. (A.46)
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Defining P−
B = 11(A + B ≤ 0), we equivalently get

tr(A + B)(P−
B − P−) = inf

−P −≤Q≤1−P −
tr(A + B)Q. (A.47)

This equality can be extended to allow A = −Δ − μ and B = V (see [14,
Theorem 4.1]). Using this and applying Theorem A.1, we get

tr(−ΔL − μ)− − tr(−ΔL + V − μ)− −
∫

CL

ρ0V

≥ inf
ρ

(
K̃

∫

CL

S((|ρ| − ηL−1μ)+) +
∫

CL

V ρ

)

≥ inf
ρ≥0

(
K̃

∫

CL

S((ρ − ηL−1μ)+) −
∫

CL

|V |ρ
)

(A.48)

where the infimum in the first line is over functions ρ : R
3 → R, while in the

second we can restrict to nonnegative functions ρ. We can pull the infimum
inside the integral for a lower bound. Clearly, we can assume that ρ ≥ ηL−1μ.
Introducing γ = ρ − ηL−1μ, we have

inf
γ≥0

(
K̃S(γ) − |V |γ − ηL−1μ|V |

)

= K̃

(
2
3
μ5/2 + K̃−1|V |μ3/2 − 2

3

(
μ + K̃−1 3|V |

5

)5/2
)

− ηL−1μ|V |.

(A.49)

Using that

x5/2 +
5
2
x3/2y − (x + y)5/2 ≥ −15

√
xy2

8
− y5/2 (A.50)

for x = μ and y = 3K̃−1|V |/5 gives the bound

(A.49) � −μ1/2|V |2 − |V |5/2 − L−1μ|V |. (A.51)

Plugging this into (A.48) proves the Theorem. �

We apply the above theorem for a potential V ∈ L5/2(CL) with V ≤ 0,
choosing μ as eN , the Nth eigenvalue of the Dirichlet Laplacian −ΔL. In
particular, μ ≥ e1 = 3π2L−2 which allows us to use Theorem A.2. The ground-
state energy ED

N for N non-interacting particles confined to CL was defined in
the beginning of Sect. 2 and can be written as ED

N =
∑N

i=1 ei.
We denote by eV

k the kth eigenvalue of −ΔL + V , and by EV,D
N the sum

of the N lowest eigenvalues of −ΔL + V , i.e., EV,D
N =

∑N
i=1 eV

i . Theorem A.2
implies that

tr(−ΔL −μ)− = −ED
N +NeN ≥ tr(−ΔL +V −eN )− −R ≥ −EV,D

N +NeN −R
(A.52)

with

R = const.
∫

CL

(
μ1/2|V |2 + |V |5/2 + L−1μ|V |

)
−
∫

CL

ρ0V. (A.53)
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We used that since V ≤ 0 the operator −ΔL + V − eN has at least N non-
positive eigenvalues, and therefore we can get a lower bound on the trace of
its negative part by summing only the first N of them.

From the above calculation, together with ρ0 � μ3/2 and μ = eN �
N2/3/L2, we deduce the following corollary.

Corollary A.1. Let V ∈ L5/2(CL) with V ≤ 0 and let ED
N denote the ground-

state energy of N non-interacting fermions confined to CL. With EV,D
N , we

denote the ground-state energy of the corresponding Hamiltonian with external
potential V . Then,

ED
N − EV,D

N �
∫

CL

(
N1/3

L
|V |2 + |V |5/2 +

N

L3
|V |
)

. (A.54)
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