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Abstract Most phenotypes are determined by molecular systems composed of specifically

interacting molecules. However, unlike for individual components, little is known about the

distributions of mutational effects of molecular systems as a whole. We ask how the distribution of

mutational effects of a transcriptional regulatory system differs from the distributions of its

components, by first independently, and then simultaneously, mutating a transcription factor and

the associated promoter it represses. We find that the system distribution exhibits increased

phenotypic variation compared to individual component distributions - an effect arising from

intermolecular epistasis between the transcription factor and its DNA-binding site. In large part,

this epistasis can be qualitatively attributed to the structure of the transcriptional regulatory

system and could therefore be a common feature in prokaryotes. Counter-intuitively,

intermolecular epistasis can alleviate the constraints of individual components, thereby increasing

phenotypic variation that selection could act on and facilitating adaptive evolution.

DOI: https://doi.org/10.7554/eLife.28921.001

Introduction
Distributions of mutational effects (DMEs) and the nature of the interactions among mutations (epis-

tasis) critically determine evolutionary paths and outcomes (Eyre-Walker and Keightley, 2007;

de Visser and Krug, 2014). DMEs are central to a range of fundamental questions in evolutionary

biology (Halligan and Keightley, 2009), including understanding the origins of novel traits

(Soskine and Tawfik, 2010), evolution of sex and recombination (Otto and Lenormand, 2002), and

maintenance of genetic variation (Charlesworth et al., 1995). In contrast to selective constraints,

which act on the variation already present in a population, biophysical laws and molecular mecha-

nisms that define how a molecular system functions constrain the access to phenotypic variation

through mutation (Camps et al., 2007; Wagner, 2011), and in doing so determine the shape of the

DME (Fontana and Buss, 1994).

Even though most phenotypes are determined by underlying molecular systems that consist of

multiple specifically interacting molecular components, direct and systematic experimental estimates

of DMEs have been limited to the two extremes only: either at the level of the whole organism,

obtained in mutation accumulation studies (Halligan and Keightley, 2009); or at the level of individ-

ual components, such as proteins (Wang et al., 2002; Bershtein et al., 2006; Sarkisyan et al.,

2016) and DNA-binding sites for transcription factors (Kinney et al., 2010; Shultzaberger et al.,

2012; Yun et al., 2012; Metzger et al., 2015), determined through direct mutagenesis. Knowing

only the effects of mutations in individual molecular components might be insufficient to understand

how the whole system evolves, as recent studies focusing on the interaction of mutations in two

components of a molecular system uncovered the existence of pervasive intermolecular epistasis

(Anderson et al., 2015; Podgornaia and Laub, 2015). Because of the large mutational space of pro-

teins, these studies focused only on mutations in specific residues that lie at the interface between
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the two interacting molecules. In contrast, addressing the more general question of how intermolec-

ular epistasis shapes DMEs of molecular systems is only possible by experimentally tackling the

nearly prohibitive space of possible mutational combinations, which even for single components is

conceivable only in rare cases (Sarkisyan et al., 2016). Here, by using one of the best understood

transcriptional regulation systems, we experimentally ask how the DME of a system differs from the

DMEs of its constitutive components.

To address this question, we used a simple gene regulatory system based on the canonical

Lambda bacteriophage switch (Ptashne, 2011), consisting of three components – the s

70RNA poly-

merase complex (together, we refer to them as RNAP), transcription factor CI (trans-element), and

the PR cis-element that contains the overlapping DNA-binding sites of the two proteins (Figure 1).

These three molecular components interact to produce a quantitative phenotype: gene expression.

Specifically, we used a genetic system in which a strong promoter PR controls the expression of a

yellow fluorescence protein (yfp) and is repressed by the CI repressor, which we placed under the

inducible promoter PTET (Figure 1B,C). This system exhibits high yfp expression in the absence of

CI, where the level of expression is determined solely by RNAP binding. However, in the presence of

CI, achieved by the induction of the PTET promoter, the system is strongly repressed (Figure 2A).

We find that, even in such a simple transcriptional regulatory system, the DME of the system differs

!

!

!

Figure 1. Genetic organization of the Lambda phage switch and the experimental system. (A) The Lambda phage switch consists of two transcription

factors - CI and Cro; two promoters - a strong promoter PR and a weak promoter PRM (not shown); and three operator sites - OR1, OR2, and OR3. (B) The

experimental synthetic system, where cro was substituted with the fluorescence marker gene (venus-yfp) under control of PR. The PRM promoter was

removed by the removal of parts of OR3. Located 500 bp away on the reverse strand and separated by a terminator sequence is the cI gene under

control of an inducible PTET promoter. CI, the trans-element, is 714 bp; the cis-element is 84 bp long. (C) CI dimers bind cooperatively to OR1 and OR2,

leading to repression of the PR promoter.

DOI: https://doi.org/10.7554/eLife.28921.002
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Figure 2. DMEs of the whole system are more evenly distributed than the individual component DMEs. In the experimental system, CI acts as a tight

repressor. The distributions of fluorescence are shown in the absence of CI (red) and in the presence of CI (blue). Each distribution was obtained by

measuring fluorescence of two independent measurements of 500,000 cells by flow cytometry, which were then pooled together. The dashed lines

separate three categories of phenotypes – ‘no expression’ phenotypes (corresponding to repressed wildtype); ‘high expression’ phenotypes

(corresponding to the wildtype in the absence of CI); and ‘intermediate’ phenotypes. No expression and high expression categories are defined to

include >99.9% of the wildtype fluorescence distribution in the presence and in the absence of CI, respectively. The Shannon entropy (S) is used to

estimate how uniform each distribution is across the entire range of possible expression levels. The associated standard deviation (±) is given for each S

value. Blue numbers are percentage of counts in each category in the presence of CI. Numbers in parentheses are percentage of counts excluding the

estimated percentages of uniquely transformed individuals carrying the wildtype genotype (see Materials and methods). The naı̈ve additive convolution

prediction for each system library and the associated predictions for the frequency of mutants in each category are shown in grey. Pearson’s Chi-

squared test was used to assess the difference between the observed and the convolution-predicted frequency of mutants in each category (low:

c

2
(2)=8.20; p<0.05; intermediate: c2(2)=32.26; p<0.0001; and high mutation frequency library: c2(2)=74.51; p<0.0001). The distributions of the effects of

mutations for the cis-element, the trans-element, and the whole system in the absence of CI are shown in Figure 2—figure supplement 1. Figure 2—

figure supplement 2 shows distributions of the effects of 150 single point mutations in the cis- and the trans-elements. Statistical significance of the

differences in entropy values between the mutant libraries is shown in Figure 2—source data 3. Flow cytometry measurements of 20 individual isolates

from each library are shown in Figure 2—figure supplements 3, 4 and 5, the analysis of which was used to demonstrate that gene expression noise is

constant (Figure 2—source data 1). Convolutions for each mutation probability performed with the knowledge of the genetic regulatory structure of

the system are shown in Figure 2—figure supplement 6, while Figure 2—figure supplement 7 provides an explanation of how convolutions were

performed. The outcome of the test for how sensitive the shapes of distributions are to the number of sampled individuals is shown in Figure 2—

Figure 2 continued on next page
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unexpectedly from the individual component DMEs, and that most of this difference can be directly

attributed to the genetic regulatory structure of the system.

Results
To determine the DMEs of individual components in our system, we performed direct mutagenesis

on the cis- and the trans-element independently. For each component, we created libraries with

approximately 0.01, 0.04, and 0.07 mutations per nucleotide (low, intermediate, and high mutation

probability libraries, respectively). Due to the different sizes of the two components (84 bp for cis

and 714 bp for trans), mutants in cis-element libraries contained on average 1, 3, and 6 mutations,

whereas mutants in trans-element libraries contained on average 7, 28, and 49 mutations, respec-

tively. We did not mutate the s

70 – RNAP complex due to its cell-wide pleiotropic effects. For

assessing the DMEs of the system, we created three additional ‘system mutant libraries’ by combin-

ing cis- and trans-element mutant libraries of the same mutation probability. Each library consisted

of more than 30,000 uniquely transformed individuals, and we estimated the corresponding DME for

each library by measuring fluorescence, that is gene expression, of 1 million randomly sampled indi-

viduals by flow cytometry. We quantified the differences in DMEs in two ways. First, by observing

the frequency of mutants in three biologically meaningful categories (Figure 2A): (i) mutants that are

indistinguishable from the wildtype without the CI repressor (‘high expression phenotypes’); (ii)

mutants indistinguishable from the wildtype with CI (‘no expression phenotypes’); and, importantly

for our argument, (iii) mutants with expression levels that the wildtype cannot achieve (‘intermediate

expression phenotypes’). Second, by calculating the Shannon entropy, which quantifies how uni-

formly the mutants cover the entire range of possible gene expression phenotypes.

DMEs of the cis- and the trans-element are categorically different
The difference between the effects of mutations in the cis- (Figure 2B,C,D) and the trans-element

(Figure 2E,F,G) is unambiguous. Most cis-element mutants, in the presence of CI, have low

Figure 2 continued

source data 4, while the confirmation that the mutagenesis protocol resulted in expected distributions of the number of mutations are shown in

Figure 2—source data 2.

DOI: https://doi.org/10.7554/eLife.28921.003

The following source data and figure supplements are available for figure 2:

Source data 1. Gene expression noise is constant.

DOI: https://doi.org/10.7554/eLife.28921.011

Source data 2. Sequencing 40 isolates from each cis- and trans-element library confirms the predicted distribution of the number of mutations.

DOI: https://doi.org/10.7554/eLife.28921.012

Source data 3. Differences between calculated entropy estimates are statistically significant.

DOI: https://doi.org/10.7554/eLife.28921.013

Source data 4. Observed distributions accurately describe phenotypic distributions of possible mutations.

DOI: https://doi.org/10.7554/eLife.28921.014

Figure supplement 1. DMEs for cis-element, trans-element, and system libraries in the absence of CI.

DOI: https://doi.org/10.7554/eLife.28921.004

Figure supplement 2. Distribution of single mutation effects in 150 random system double mutants and their corresponding single mutants.

DOI: https://doi.org/10.7554/eLife.28921.005

Figure supplement 3. Mutant isolates from the low mutation probability libraries.

DOI: https://doi.org/10.7554/eLife.28921.006

Figure supplement 4. Mutant isolates from the intermediate mutation probability libraries.

DOI: https://doi.org/10.7554/eLife.28921.007

Figure supplement 5. Mutant isolates from the high mutation probability libraries.

DOI: https://doi.org/10.7554/eLife.28921.008

Figure supplement 6. Mathematical predictions that account for the genetic regulatory structure accurately describe the system DME.

DOI: https://doi.org/10.7554/eLife.28921.009

Figure supplement 7. Predicting the system DME based on convolving component DMEs.

DOI: https://doi.org/10.7554/eLife.28921.010
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expression (Figure 2B,C,D). Such low expression can result either from sufficient CI repressor bind-

ing and/or impaired RNAP binding. The frequency of mutants with an intermediate expression phe-

notype in the presence of CI increases with the average number of mutations, a pattern that is also

observed in cis-element libraries in the absence of CI (Figure 2—figure supplement 1B,C,D). In con-

trast, the effects of mutations in the trans-element have a distinctive bimodal distribution

(Figure 2E,F,G). The two peaks in the distribution correspond to the expression levels of the wild-

type population in the absence and presence of CI, revealing that the majority of CI mutants are

either fully or close to fully functional, or completely inactive on the wildtype cis background. Fur-

thermore, increasing the average number of mutations in the trans-element decreases the frequency

of intermediate expression phenotypes. As the shape of the DME is determined by the underlying

biophysical and mechanistic constraints that limit the phenotypic variation accessible through muta-

tion, we conclude that the cis- and the trans-element have categorically different constraints. This

categorical difference is best observed in a direct comparison between high mutation cis

(Figure 2D) and low mutation trans (Figure 2E) libraries, which have approximately the same aver-

age number of mutations.

In order to further demonstrate that this categorical difference is not an artifact of the different

number of mutations introduced into each element, we show that the same general trend is evident

when comparing the effects of 150 random single point mutations of known identity in each, the cis-

and the trans-element (Figure 2—figure supplement 2A,B). These measurements were done at the

population level, in a plate reader. Point mutations in the cis-element, when only their effect on

RNAP binding is measured, show a high frequency of intermediate expression levels. This is in

agreement with other studies of prokaryotic (Kinney et al., 2010) and eukaryotic

(Shultzaberger et al., 2012) DNA-binding sites. Similarly, we find a bimodal distribution of single

mutation effects in the trans-element CI, which has previously been reported for other transcription

factors (Pakula et al., 1986; Markiewicz et al., 1994) and enzymes (Jacquier et al., 2013), and may

be a common feature of proteins that are close to their optimum (Soskine and Tawfik, 2010;

Bataillon and Bailey, 2014).

Mutating the whole system increases phenotypic variation
The DMEs for the system, in which both the cis- and the trans-element are mutated simultaneously,

show a surprising pattern: a higher frequency of intermediate phenotypes compared to either of the

individual component DMEs (Figure 2H,I,J). This pattern can also be observed in the library of 150

random system double mutants (Figure 2—figure supplement 2), which consist of a unique combi-

nation of the previously described point mutations in cis and in trans (comparing system to cis:

DKS = 0.39, p<0.0001; system to trans: DKS = 0.66, p<0.0001). Furthermore, the frequency of inter-

mediate phenotypes increased with the average number of mutations (Figure 2). At intermediate

and high mutation probabilities, the Shannon entropy of the system DMEs was also greater than the

entropy of either of its constitutive components (Figure 2; Figure 2—source data 3), indicating that

mutating the whole system gives rise to a more uniform range of possible phenotypes. The existence

of a difference between system DMEs in the absence (Figure 2—figure supplement 1H,I,J) and in

the presence of repressor CI (Figure 2H,I,J) indicates that a substantial portion of mutant CIs exhibit

binding to the mutated cis-element backgrounds, and are thus functional repressors that specifically

recognize operator mutants.

We tested if the observed differences between the system and the component DMEs might arise

from differences in the gene expression noise of mutants - if the system mutants have greater noise,

they could also lead to an increase in the frequency of intermediate phenotypes. However, this is

unlikely as, for every mutation probability, we observed no difference in gene expression noise in

our flow cytometry measurements (measured as the coefficient of variation) between 20 randomly

selected system, cis, and trans mutants in the presence of CI (Figure 2—figure supplement 3,

4 and 5). Furthermore, gene expression noise was constant between all 180 random isolates (60 iso-

lates from each of the three mutation probabilities) irrespective of their mutation probability (Fig-

ure 2—source data 1).
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Intermolecular epistasis drives the increase in phenotypic variation
We wanted to understand if the observed increase in the abundance of intermediate phenotypes

when the whole system mutates (Figure 2) can be attributed to epistatic interactions between muta-

tions in the cis- and the trans-element. Since we use log10 of expression as our phenotype of inter-

est, we calculate epistasis between mutations in the two components of the system (what we call

intermolecular epistasis) as the deviation from the additive prediction based on single component

effects. The additive null prediction for interactions between mutations, when considering only three

possible categories of mutational effects (‘no’, ‘intermediate’, and ‘high expression’), is shown in

Table 1. The standard approach of extending these predictions to whole distributions requires a

convolution of individual component DMEs (Orr, 2003; Lee et al., 2010). To obtain this ‘naı̈ve’ null

prediction, we convolved the observed trans-element DME (shown in Figure 2E,F,G) with the distri-

bution showing how mutations in cis alter wildtype expression (for further details, see Materials and

methods). Note that effectively no mutations in cis or trans decrease expression relative to the wild-

type, resulting in a ‘naı̈ve’ system prediction exhibiting an increase in the frequency of mutants with

high expression phenotypes, as seen in Figure 2H,I,J. We find that ‘naı̈ve’ convolution predictions,

which are carried out in the absence of any knowledge of the genetic regulatory structure of the sys-

tem, are significantly different from the observed system distributions (Figure 2H,I,J), suggesting

the existence of intermolecular epistasis between the two components.

To further show that intermolecular epistasis between the cis- and the trans-element is a common

feature of our system that shapes DMEs not only at elevated mutation rates but also when only a sin-

gle point mutation is present in each of the components, we utilized the previously described 150

random system double mutants (Figure 2—figure supplement 2), which consist of a unique combi-

nation of a single point mutation in cis and a single point mutation in trans (Figure 3—figure supple-

ment 1; Figure 3—source data 1). In a plate reader, and hence at the level of a monoclonal

population, we measured expression levels of all 150 system double mutants, as well as their corre-

sponding single mutants, in the presence of CI (Figure 2—figure supplement 2). From these meas-

urements, we calculated epistasis as the deviation from the additive expectation based on wildtype-

normalized single mutant effects. This definition of epistasis mirrors the convolution approach uti-

lized for the analysis of DMEs in Figure 2.

Intermolecular epistasis was common between single point mutations in our system, as 71 of 150

double mutants significantly deviated from their additive expectations (Figure 3, Figure 3—figure

supplement 2). As such, intermolecular epistasis impacts expression levels in the system not only

when a relatively large number of mutations accumulate, as shown in Figure 2, but also when a sin-

gle point mutation is introduced in each of the components. Furthermore, 53 of these 71 mutants

Table 1. Additive null predictions for interactions between mutations.

Most interactions result in high expression phenotypes because the wildtype in the presence of CI has no expression, meaning that

mutations are either neutral or increase wildtype expression. If an effect of a mutation is positive, the additive model states that the

effect remains positive (and the same), independent of the genetic background. As such, these predictions are true only for a system

that is tightly repressed, where the wildtype has no expression. ‘High +’ indicates predictions that result in expression levels above the

biologically meaningful limit, which is defined by the unrepressed PR promoter (shown in Figure 2A). We treat these predictions as

high expression phenotypes. We consider three categorical single component effects (‘no expression’, ‘intermediate expression’, and

‘high expression’), and show the categorical effect predicted by the additive null model for the system. We use categorical effects only

to provide an intuition for what the additive model predicts - to obtain actual predictions of system DMEs, we use convolution (as

explained in detail in Materials and methods section Naı̈ve convolution of component distributions as the null model for additivity

between mutations).

Effects of mutations in trans

No expression Intermediate expression High expression

Effects of mutations in cis

No expression No Intermediate High

Intermediate expression
Intermediate Intermediate

+high
High +

High expression High High + High +

DOI: https://doi.org/10.7554/eLife.28921.015
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were in positive epistasis, meaning that the dou-

ble mutant effect was higher than expected

based on single mutant effects. Such positive

epistasis contributes to the observed increase in

the frequency of mutants with intermediate phe-

notypes in the system (Figure 2—figure supple-

ment 2), as seemingly neutral trans mutations,

which fully repress the wildtype cis, show ele-

vated expression on mutated cis backgrounds.

On the other hand, the presence of negative

epistasis indicates a penetrant trans mutation,

whose high expression on the wildtype cis is

decreased on a mutated cis background. Such

epistasis most frequently arises from loss-of-func-

tion trans mutations, in which the system expres-

sion level in the presence of CI is determined

only by the effect of the cis mutation in the

absence of CI. Consequently, we observed nega-

tive epistasis in 8 of 10 trans single point mutants

that exhibited no measurable repression (Fig-

ure 3—source data 2). We did not identify any

relationship between the presence of intermolec-

ular epistasis and the physical location of muta-

tions in the trans- (c2(4)=2.02; p=0.73) or the cis-

element (c2(5)=1.69; p=0.89)(Figure 3—source

data 1), indicating that even though individually

mutations in some loci have a greater effect on

expression level, they are not associated with any

particular form of epistasis.

Intermolecular epistasis arises from
the genetic regulatory structure of
the system
In the system we study, the genetic regulatory

structure (Figure 1) indicates that mutations in cis

affect both the binding of RNAP and of the

repressor. A comparison to the ‘naı̈ve’ convolu-

tions performed without accounting for this regu-

latory structure (Figure 2) demonstrates that the

presence of intermolecular epistasis prevents

accurate predictions of system DME from individ-

ual component DMEs. We wanted to understand

if these predictions could be improved by

accounting for the effects of cis-element muta-

tions on RNAP binding, which are measured in

the absence of CI. In other words, we wanted to

connect the basic knowledge of the regulatory

structure of the system to the epistasis between

mutations in the two components.

To do so experimentally, we combined the

high mutation probability cis and the low muta-

tion probability trans-element libraries (Figure 4).

We chose these two libraries because they have

similar expected number of mutations (n ~ 6),

therefore minimizing a potential bias in their

mutational effects arising from the difference in

!

!

!

Figure 3. Epistasis in 150 random system double

mutants. We created 150 double mutants with one

unique random point mutation in the cis- and the other

in the trans-element (Figure 3—figure supplement 1;

Figure 3—source data 1). In a plate reader, we

measured expression levels of monoclonal populations

of each double mutant and its constitutive single

mutants in the presence of CI. Epistasis was estimated

as the deviation of the observed double mutant effect

from the additive expectation based on single mutant

effects (shown for each double mutant in Figure 3—

figure supplement 2). The grey bar indicates

measurements that are not in significant epistasis.

Double mutants above the ‘no epistasis’ line are in

positive epistasis (observed double mutant effect is

greater than the additive expectation), and those

below are in negative epistasis. Distributions of

mutational effects for single cis and trans mutants, as

well as for the double system mutants are shown in

Figure 2—figure supplement 2, while the data for

epistasis calculations are shown in Figure 3—source

data 2. By measuring expression levels of 60 random

double mutants (shown in orange) and their

constitutive single mutants in the flow cytometer, we

confirmed that estimates of epistasis using the plate

reader correspond to those based on flow cytometry

measurements (Figure 3—figure supplement 6;

Source Data 3), and that the noise of expression is

constant for all mutants (Figure 3—figure

supplements 3, 4 and 5; Source Data 4).

DOI: https://doi.org/10.7554/eLife.28921.016

The following source data and figure supplements are

available for figure 3:

Source data 1. Identity and location of mutations in

the 150 random double mutant library.

DOI: https://doi.org/10.7554/eLife.28921.023

Source data 2. Calculating epistasis from the effects of

150 random double mutants and their corresponding

single point mutations, measured in plate reader.

DOI: https://doi.org/10.7554/eLife.28921.024

Source data 3. Gene expression noise in single and

double mutants is constant.

DOI: https://doi.org/10.7554/eLife.28921.025

Source data 4. Calculating epistasis from the effects of

60 random double mutants and their corresponding

single point mutations, measured in flow cytometer.

DOI: https://doi.org/10.7554/eLife.28921.026

Figure 3 continued on next page
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the number of mutations in the two compo-

nents. We used FACS to partition the mutant

libraries into the three phenotypic bins (no

expression, intermediate, and high expression,

as in Figure 2). In this manner, we partitioned

two libraries: the high mutation cis-element

library in the absence of CI (Figure 2—figure

supplement 1D) and the low mutation trans-

element library in the presence of CI

(Figure 2E). We constructed nine new mutant

libraries with all possible combinations of these

partitions (Figure 5A–I). From these combina-

tion DMEs, measured in the presence of CI, we

calculated the expected frequencies of mutants

in each of the three categories, by weighting

each combination DME by the relative fre-

quency of the original trans-element partition it

was derived from. Then, the predicted fre-

quency in each category of the system DME is

the sum of the weighted counts in the corre-

sponding category across all nine DMEs (see

Materials and methods). These predicted fre-

quencies were not different from the observed

ones (Table 2). As such, only by experimentally

accounting for the genetic regulatory structure

of the system (Figure 1) can we accurately predict mutant frequencies in three biologically meaning-

ful categories and qualitatively explain how the cis background alters the phenotypic effects of

trans-element mutations, as detailed in the legend to Figure 5.

We also produced a mathematical prediction of the system DME that incorporated the knowl-

edge of its genetic regulatory structure. To do so, in addition to incorporating the knowledge of the

effects of cis mutations in the absence of CI, we also assumed that all trans-element mutations that

have high expression (same expression as the wildtype in the absence of CI) are loss-of-function

mutants, which do not bind any mutated cis. When convolving the two component distributions, the

effects of such loss-of-function trans mutants are removed and replaced by the cis-element DME in

the absence of CI. This approach, which accounts for the effects of cis mutations on RNAP binding,

captures the frequencies of mutants in the three phenotypic categories (‘no’, ‘intermediate’, and

‘high’ expression) more accurately than the ‘naı̈ve’ convolutions (Figure 4; Table 2; Figure 2—figure

supplement 6). From a theoretical evolutionary perspective, it is the deviations from a simple addi-

tive model that have well-documented consequences for organismal evolution, as they determine

the ruggedness of the adaptive landscape (de Visser and Krug, 2014). Here, we show how those

deviations emerge from the underlying genetic regulatory structure, and hence how they might lead

to better predictions of regulatory system DMEs.

Accounting for the genetic regulatory structure of the system does not
explain all intermolecular epistasis
While considering the effects of cis-element mutations on RNAP binding explains intermolecular

epistasis to an extent that allows more accurate predictions of system DMEs, it might not explain all

of it. To determine the extent to which intermolecular epistasis cannot be explained by accounting

for the genetic regulatory structure of the system, we constructed a second library of 150 system

double mutants. This time, instead of randomly combining point mutations in cis- and trans-ele-

ments, we combined point mutations with a specific phenotype. Namely, all cis-element point

mutants exhibited high expression in the absence of CI, meaning that the binding of RNAP was not

measurably impaired (Figure 6—figure supplement 1A). All point mutations in trans used to assem-

ble the 150 double mutants exhibited no expression (Figure 6—figure supplement 1B), meaning

that these mutants had a fully functional trans-element on the wildtype cis background. The system

double mutant library made in this manner corresponds to the partition combination shown in

Figure 3 continued

Figure supplement 1. Identity and location of

mutations in the 150 random double mutant library.

DOI: https://doi.org/10.7554/eLife.28921.017

Figure supplement 2. Single mutant effects, as well as

predicted and observed double mutant effects.

DOI: https://doi.org/10.7554/eLife.28921.018

Figure supplement 3. 30 double mutants with their

corresponding single mutants, which are in significant

positive epistasis.

DOI: https://doi.org/10.7554/eLife.28921.019

Figure supplement 4. Ten double mutants with their

corresponding single mutants, which are in significant

negative epistasis.

DOI: https://doi.org/10.7554/eLife.28921.020

Figure supplement 5. Twenty double mutants with

their corresponding single mutants, which are not in

significant epistasis.

DOI: https://doi.org/10.7554/eLife.28921.021

Figure supplement 6. Flow cytometer and plate

reader measurements give equivalent estimates of

epistasis.

DOI: https://doi.org/10.7554/eLife.28921.022
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Figure 5C. In such a library, in the presence of

CI, the additive null model predicts that a double

mutant would exhibit the same phenotype as its

cis point mutant, when the corresponding trans

mutant maintains the same binding properties as

the wildtype CI. When this is true, the system

double mutant would not be in significant epista-

sis. Conversely, the system double mutant in this

library would be in significant epistasis only when

the trans mutant binds the mutated cis differently

than the wildtype trans does.

We found that 15 double mutants in this

library are in significant epistasis (Figure 6).

These mutants maintained a decreased yet sub-

stantial dynamical range between the two envi-

ronments (absence and presence of CI), and

hence were still functional regulators (Figure 6—

source data 1). Furthermore, all 15 were in posi-

tive epistasis, indicating that the double mutant

effect is greater than the additive expectation. In

such mutants, trans mutations are phenotypically

neutral on the wildtype cis, but not on a mutated

cis background, meaning that the trans mutant

binds the mutated cis less strongly than the wild-

type CI does. It is worth noting that the lack of

mutants that are in negative epistasis in this

library might be due to the strong wildtype bind-

ing of the CI repressor, so that introducing point

mutations in trans that improve binding is highly

unlikely. When mutations in trans induce altera-

tions to the binding properties of the repressor

(but not complete loss of function), intermolecu-

lar epistasis cannot be accounted for by the

underlying structure of the genetic regulatory

network. Interestingly, a disproportionate num-

ber of double mutants that were in positive epis-

tasis carried a trans mutation in the linker region

of the CI (c2(4)=20.66; p<0.0005), which connects

the N-terminal DNA-binding domain with the

C-terminal dimerization domain (Figure 6—fig-

ure supplement 2; Figure 6—source data 2). This is in contrast to the random double mutant

library (Figure 3), where we found no relationships between location of mutation and epistasis.

Discussion
In this study, we show that mutating a molecular system with the most common transcriptional regu-

latory structure in prokaryotes (Salgado et al., 2013), namely a repressible promoter, increases phe-

notypic variation beyond what can be achieved by mutating any of the individual components alone.

We focused on the phenotypic effects, rather than the fitness effects of mutations, in order to mini-

mize the complexity of the studied system and also to enable a more direct interpretation of the

results, as fitness effects of mutations depend on a much larger, and often unknown, set of factors

than simply their phenotypic effects. Doing so enables an interpretation of observed DMEs in the

light of their underlying molecular mechanisms, as recently shown for a prokaryotic (Lagator et al.,

2017) and a eukaryotic cis-regulatory element (White et al., 2016). Furthermore, while previous

studies investigated the effects of specific mutations in the contact surface between two molecules

(Anderson et al., 2015; Podgornaia and Laub, 2015), their local nature, imposed by the large

!

!

!

Figure 4. Distribution of expression phenotypes for the

system with high mutation probability in the cis-

element and low mutation probability in the trans-

element. The distributions of fluorescence are shown in

the absence of CI (shown in red) and in the presence of

CI (shown in blue). Each distribution was obtained by

pooling two independent measurements of 500,000

cells. The dashed lines separate three categories of

phenotypes – no expression phenotypes

(corresponding to repressed wildtype); intermediate

expression phenotypes; and high expression

phenotypes (corresponding to the wildtype in the

absence of CI). Numbers are percentage of counts in

each category, in the absence (red) and in the presence

(blue) of CI. The naı̈ve convolution-predicted DME in

the presence of CI, performed in the absence of any

knowledge of the genetic regulatory structure of the

system, is shown in grey, together with the

corresponding frequencies of mutants in each

category. The convolution prediction that accounted

for the regulatory structure is shown in dark green.

Results of the Pearson’s Chi-squared test for the

differences between the observed and both types of

convolution-predicted DMEs in the presence of CI are

shown in Table 2.

DOI: https://doi.org/10.7554/eLife.28921.028
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Figure 5. Understanding the interactions between mutations in cis and trans by accounting for the genetic regulatory structure of the system. Three

partitions, obtained by FACS, of the low mutation probability trans-element library (corresponding to no expression, intermediate, and high expression

phenotypes) were combined with the three equivalent partitions of the high mutation probability cis-element library in the absence of CI. The cis-

element library in the absence of CI shows only the effect of mutations on RNAP binding. The DME of the original trans-element library, corresponding

to Figure 2E, is shown on top. The DME of the original cis-element library, corresponding to Figure 2—figure supplement 1D, is shown on the right.

The arrows illustrate from which category of the original DME (either trans or cis) were the sorted mutants used to make the particular combined library.

DMEs of all nine partition-combination libraries were estimated using flow cytometry, with each distribution obtained by pooling two independent

measurements of 500,000 cells. Also shown is the sorting accuracy, obtained as the repeated DME measurement of each trans partition following the

original FACS sorting (panels J,K,L). The distributions of fluorescence are shown in the presence of CI. The dashed lines separate three categories of

phenotypes – ‘no expression’, ‘intermediate’, and ‘high expression’ phenotypes. Numbers are percentage of counts in each category. At least in part,

intermolecular epistasis can be qualitatively explained by considering the genetic regulatory structure of the system, as follows. Panels A), (B), and C):

no expression cis-element mutants do not bind RNAP sufficiently to lead to expression, so that system mutants containing them remain in the ‘no

expression’ bin irrespective of the effect of mutations in trans. (D) No expression trans-element mutants fully repress on wildtype cis. When cis-element

mutations of intermediate expression are introduced, some still bind the functional CI mutants leading to repression, while others carry mutations that

prevent CI binding, resulting in intermediate expression system mutants. (E) Intermediate expression CI mutants only partially repress on wildtype cis,

but fully repress some cis-element mutants that have lowered RNAP binding. Other intermediate expression CI mutants do not bind a mutated cis-

element background. (F) High expression CI mutants cannot bind wildtype cis. Similarly, they do not bind intermediate expression cis-element mutants,

resulting in intermediate expression in the system. (G), (H): Some high expression cis-element mutants can fully bind mutated but functional CI mutants,

others can only partially bind them, while some maintain full RNAP binding while losing all CI binding. (I) non-functional CI mutants do not repress on

wildtype cis, hence also not on mutated cis-element backgrounds.

DOI: https://doi.org/10.7554/eLife.28921.029
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mutational space of proteins, prevented conclusions about DMEs of molecular systems. Precisely

because our experimental approach allowed us to overcome these obstacles, we were able to show

how the regulatory network structure determines intermolecular epistasis, indicating a broad range

of conditions under which the additive null models of interactions between mutations might be

inaccurate.

The observed increase in the frequency of intermediate phenotypes arises, in large part, from

intermolecular epistasis between the two components of the system, most of which can be attrib-

uted to the structure of the gene regulatory system. The observed increase is due to both positive

and negative epistasis. When intermolecular epistasis is positive, mutations in cis expose the genetic

variation hidden in originally phenotypically neutral trans mutations. This can be achieved in two

ways: (i) through changes in the RNAP and repressor binding sites, which are accounted for by con-

sidering the genetic regulatory structure of the system (Figure 5); or (ii) when mutations in trans

change the binding preference of the repressor, so that a mutation in cis decreases the binding of

the mutated trans more than it decreases the binding of the wildtype repressor (Figure 6). Negative

intermolecular epistasis, on the other hand, arises when: (i) the trans mutations are penetrant, so

that their effects (in particular, increased expression) are buffered by mutations in cis. This epistasis

is frequently observed when trans mutations lead to a complete loss of binding (high expression

phenotype), so that the system phenotype becomes the same in the presence and in the absence of

CI (Figure 3). In other words, the system undergoes a qualitative transition from a three-component

and thus a regulated promoter, to a two-component or a constitutive promoter. Under these condi-

tions, the system phenotype is determined only by the effect of cis mutations on RNAP binding and

can be thus explained by considering the genetic regulatory structure of the system (Figure 5). (ii)

Negative epistasis can also arise when trans-element mutations alter the binding preference of the

repressor, so that the mutated trans binds mutated cis more strongly than the wildtype repressor

does. We found no evidence for this type of epistasis in the library of 150 random double mutants,

likely due to our use of the Lambda PR promoter, which binds the repressor very tightly.

In the studied system, we demonstrate that intermolecular epistasis is present even between sin-

gle point mutations in the cis- and the trans-element (Figure 3), and not only when a larger number

Table 2. Predicting the system DME is possible only when accounting for epistasis between components.

Four different predictions for the frequency of mutants in each partition (no expression, intermediate, and high expression phenotypes)

were compared to the actual system distribution, measured in the presence of CI, and consisting of the high probability cis +low prob-

ability trans libraries (Figure 4). The experimental prediction based on distributions of nine partition-combination DMEs (Figure 5) was

obtained by weighting the nine DMEs with the relative frequency of the original trans partition they were derived from (from

Figure 2E - no expression partitions were weighted by 0.686; novel phenotype partitions by 0.097; high expression partitions by

0.217). One convolution of cis- and trans-element DMEs was performed in the absence of any knowledge of the genetic regulatory

structure of the system (naı̈ve convolution), and the other by accounting for the effects of cis mutations in the absence of CI (Figure 2—

figure supplement 7). The null prediction tested if the observed distributions could arise only from the imprecise sorting of the origi-

nal trans library partitions (Figure 4J,K,L). Only the experimental prediction based on partition-combination libraries and the convolu-

tion that accounted for the genetic regulatory structure could explain the epistatic interactions between mutants in cis- and trans-

elements (shown in orange).

Actual system
(mutations in cis and
trans)

Experimental prediction
(based on partition
libraries)

Convolution (no
knowledge of genetic
structure)

Convolution (accounting for
cis effects in the absence of
CI)

Null prediction
(based on sorting
accuracy)

No expression
phenotypes (%)

61.8 55.1 44.4 62.9 68.6

Intermediate
phenotypes (%)

31.9 31.1 21.5 26.6 9.7

High
expression
phenotypes (%)

6.3 13.8 34.1 10.5 21.7

c
2 compared to

actual distribution
5.49 24.7 1.89 59.8

p value 0.064 10�6 0.388 10�13

DOI: https://doi.org/10.7554/eLife.28921.027
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of mutations accumulates in each component

(Figure 2). When considering interactions

between point mutations (Figure 3;6), we identi-

fied that positive epistasis contributes dispropor-

tionately to the increase in the frequency of

intermediate phenotypes. The extent to which

positive, as opposed to negative, epistasis drives

the observed increase in the intermediate pheno-

types when a greater number of mutations are

present in the components (Figure 2) cannot be

addressed without knowing the effects of specific

molecular interactions between a prohibitively

large number of mutation combinations.

Epistasis has been shown to impose con-

straints on evolutionary paths by increasing the

ruggedness of the adaptive landscape both in

theoretical and experimental studies

(Whitlock et al., 1995; Barton and Partridge,

2000; Weinreich et al., 2006; Poelwijk et al.,

2011; Breen et al., 2012; Podgornaia and Laub,

2015). Our data suggest that, for transcriptional

regulatory networks, mutating the system of spe-

cifically interacting components alleviates the bio-

physical and mechanistic constraints acting on

individual components, and in doing so increases

phenotypic variation accessible through muta-

tion. This role of intermolecular epistasis as a

facilitator rather than a constraint on evolution

arises, in significant part, directly from the

genetic structure of a repressible transcriptional

regulatory system. As such, it might be a com-

mon feature in prokaryotes, where repression

through direct binding site overlap with RNAP

forms the most common type of transcriptional

regulatory system organization (Salgado et al.,

2013). In these and other similar systems, poten-

tial paths for protein evolution might be more

abundant when the interacting DNA-binding site

is also mutating, as mutations in the partner com-

ponent can expose the genetic variation hidden

in originally phenotypically neutral mutations.

Such intermolecular epistasis could give rise to

punctuated protein evolution (Fontana and

Schuster, 1998) – long periods of phenotypic

stasis during which a transcription factor accumu-

lates neutral mutations, interrupted by rapid

adaptive evolution facilitated by mutations in the

DNA-binding site. Furthermore, a gene might be

horizontally transferred with its cognate cis-ele-

ment, but without its cognate regulator. Then,

intermolecular epistasis between the transferred

cis-element and the orthologous transcription

factor may reveal previously unavailable pheno-

types that can facilitate adaptation to new niches.

Therefore, accumulating mutations in the entire

system, as opposed to only in a single

!

!

!

Figure 6. Not all intermolecular epistasis can be

explained by accounting for the underlying genetic

regulatory structure of the system. We created 150

double mutants with single mutation combinations

corresponding to Figure 5G. A double mutant in this

library would not be in epistasis unless a mutation in

trans binds the cis mutant differently than the wildtype

trans does. In a plate reader, we measured expression

levels of monoclonal populations of each double

mutant and its constitutive single mutants in the

presence of CI. Epistasis was estimated as the

deviation of the observed double mutant effect from

the additive expectation based on single mutant

effects. The grey bar indicates measurements that are

not in significant epistasis. The effects of single

mutations in cis and in trans, as well as the double

mutant effects, are shown in Figure 6—figure

supplement 1, while the underlying data are shown in

Figure 6—source data 1. The location of point

mutations is shown in Figure 6—figure supplement 2

and Figure 6—source data 2.

DOI: https://doi.org/10.7554/eLife.28921.030

The following source data and figure supplements are

available for figure 6:

Source data 1. Calculating epistasis from the effects of

150 double mutants and their corresponding single

point mutations, measured in plate reader.

DOI: https://doi.org/10.7554/eLife.28921.033

Source data 2. Identity and location of mutations in

the library of 150 double mutant, with a point mutation

in cis that leads to high expression in the absence of

CI, and a point mutation in trans that leads to no

expression in the presence of CI.

DOI: https://doi.org/10.7554/eLife.28921.034

Figure supplement 1. Distribution of single mutation

effects in 150 system double mutants and their

corresponding single mutants.

DOI: https://doi.org/10.7554/eLife.28921.031

Figure supplement 2. Identity and location of

mutations in the double mutant library with a trans

mutation that has no expression in the presence of CI,

and a cis mutation with high expression in the absence

of CI.

DOI: https://doi.org/10.7554/eLife.28921.032
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component, appears to facilitate evolution both by extending the neutral sequence space, and

hence increasing diversity through drift (Lynch and Hagner, 2015), as well as by increasing the avail-

able phenotypic variability.

Materials and methods

Gene regulation in the lambda phage switch
The right regulatory region of Lambda phage (OR) is responsible for the decision-making between

lysis or lysogeny (Johnson et al., 1981). The regulatory region consists of two RNA polymerase

(RNAP) binding sites - promoters PR and PRM (not shown), and three CI/Cro transcription factor

operators (OR1, OR2, and OR3) (Figure 1A). In the wildtype system, the strong promoter PR leads to

expression of the transcription factor Cro. The transcription factor CI represses PR promoter by

direct binding-site competition with RNAP.

Synthetic system
We used a synthetic system based on the Lambda phage switch, in which we decoupled the cis- and

trans-regulatory elements (Figure 1B,C). We removed cI and substituted cro with venus-yfp

(Nagai et al., 2002) under control of PR promoter, followed by a T1 terminator sequence. The OR3

site was removed in order to remove the PRM promoter. Separated by a terminator sequence and

500 random base pairs, we placed cI under the control of PTET, an inducible promoter regulated by

TetR (Lutz and Bujard, 1997), followed by a TL17 terminator sequence. In this way, concentration of

CI transcription factor in the cell was under external control, achieved by addition of the inducer

anhydrotetracycline (aTc). The entire cassette was inserted into a low-copy number plasmid back-

bone pZS* carrying a kanamycin resistance gene (Lutz and Bujard, 1997). In this system, cI consti-

tutes the trans-element, while the PR promoter together with the two CI operator sites OR1 and OR2

make the cis-element.

Creating the mutant libraries
The library of cis- and trans-element mutants was created using the GeneMorph IITM random muta-

genesis kit (Agilent Technologies, Santa Clara, US). We created three mutant libraries with different

average probability of mutations (0.01, 0.04, and 0.07 mutation chance per nucleotide) for both the

transcription factor (714 bp) and the PR cis-regulatory element (84 bp). Therefore, the average num-

ber of mutations per mutant in the trans-element libraries was 7, 28, or 49, while in the cis-element it

was 1, 3, or 6, respectively. We applied the same likelihood of mutation per nucleotide rather than

using the same actual number of mutations between equivalent cis- and trans-element libraries in

order to more accurately represent the biological process of mutagenesis.

PCR products of mutagenesis reactions were ligated into the wildtype construct, and inserted

into One-Shot Top10 cells (Life Technologies, Carlsbad). This step was used to maximize the library

diversity due to One-Shot Top10 cells’ high competency. Following electroporation, cells were

plated at low concentrations on selective kanamycin plates to allow single colony formation and min-

imize resource competition, and grown overnight. Using chilled LB media, colonies were washed off

the plates and collected. To ensure large coverage, we cloned mutagenized PCR products until we

obtained at least 30,000 individual colonies (uniquely transformed individuals). Due to the stochastic

nature of the mutagenesis protocol used (Agilent Technologies), the number of uniquely trans-

formed individuals did not necessarily equal the number of different mutant genotypes, especially at

low mutation rates. To illustrate, when the mutation rate was low so that a cis-element mutant would

have on average only one mutation, some PCR mutagenesis products did not contain any mutations.

When mutations were in the trans-element, which is ~10-fold longer, almost all PCR mutagenesis

products contained several mutations. Using the information provided by the supplier (which we ver-

ified by sequencing 40 mutants from each cis and trans library, see below) on the distributions of the

number of mutations (given a mutagenesis rate), we estimated that approximately 34.2%, 3.5%, and

0.2% of the low, intermediate, and high mutation number cis-element libraries consisted of wildtype

genotypes. The comparative proportion of wildtype genotypes in the trans-element libraries was

0.07%, 10�13%, and 10�22%.

Lagator et al. eLife 2017;6:e28921. DOI: https://doi.org/10.7554/eLife.28921 13 of 22

Research article Genomics and Evolutionary Biology

https://doi.org/10.7554/eLife.28921


Populations containing a mixture of mutants with a given number of mutations were used to iso-

late plasmids, and clone them into the modified MG1655 strain expressing tetR gene from a consti-

tutive PN25 promoter. We showed that the distributions of mutation numbers in 40 isolated

individuals from each library conformed to the distributions of mutation numbers provided by the

supplier. We did this by comparing the actual distribution of the number of mutations to the Poisson

distribution based on the predicted mutation probability, using a Kolmogorov-Smirnov (K-S) test

(Figure 2—source data 2). We used a power test to determine that the sample size of 40 was suffi-

cient to verify the predicted number of mutations, with power set at 0.80 and desired detectable dif-

ference of ±0.5 mutations. Among the 240 sequenced mutants from the six libraries (6 � 40), we

found no bias toward a specific type of mutations (transitions vs. transversions), nor did we identify

overrepresentation of any particular single point mutation or locus in this dataset. From the

sequenced mutants, we could estimate the proportion of re-ligated wildtype plasmid, in which the

mutated region was not inserted and instead the wildtype used as the cloning template re-ligated

back (this is a common occurrence with any library created through standard restriction-digestion

cloning techniques). By observing the frequency of wildtype genotypes in the sequenced trans librar-

ies (which, due to the relatively large number of mutations should not contain any wildtype sequen-

ces), we estimate that < 5% of each library is re-ligated with the wildtype insert (Figure 2—source

data 2). As this is a relatively small frequency to estimate precisely from sequencing 120 clones (3 �

40 trans library sequences), we do not account for it when considering the proportion of wildtype

cells in each library. More importantly, this bias should be the same for all libraries and is therefore

unlikely to alter our comparative analyses. Finally, among the 240 sequenced plasmids, we did not

observe any that contained neither the mutated nor the wildtype insert, as all sequenced plasmids

had an insert from cloning.

To make the whole system libraries, we removed through restriction digestion the mutated cis-

element from each cis library and cloned it into the plasmid library already containing trans-element

mutants with the corresponding mutation probability. Note that system libraries created in this way

would likely have somewhat reduced diversity compared to either cis or trans libraries, as stochasti-

cally some mutants present in the component libraries would not find their way into the combined

system library. By our design, this potential reduction in diversity would be equally biased toward cis

and trans mutants, and ought not to be inflated for one component compared to the other.

In this study, we set out to understand phenotypic effects of mutations and to connect the DMEs

to the epistasis between the two components. To achieve this goal, we investigated the DMEs in

random mutant libraries, therefore without knowing the identity of the specific mutants. We did not

characterize individual mutants, as drawing conclusion about the effects of specific mutations would

require an unachievable high number of mutants to be analyzed. This was because the relatively

large number of mutations introduced, in particular in the trans-element where each individual in the

low mutation probability library contained on average seven point mutations, meant that we covered

a very large mutational space. As such, we would need to characterize an astronomical number of

mutants to gain the statistical power necessary to discern the effects of individual mutations from

the interactions between them. Marginal sampling of such a huge sequence space, which is the best

we could achieve, would tell us nothing about how individual positions affect the overall DME.

Single-cell fluorescence measurements
In order to obtain the distributions of phenotypic effects of mutations in mutant libraries, we used

flow cytometry/fluorescence activated cell sorting (FACS) to analyze expression levels of a yellow

fluorescence protein. For all libraries, we measured gene expression levels both in the absence and

in the presence of the transcription factor CI, determined by absence or presence of the inducer

aTc, respectively. Throughout, we use log10 of expression level as our phenotype of interest. Mutant

libraries, as well as the wildtype construct, were grown overnight in M9 minimal media supple-

mented by 1% casamino acids, 2% glucose, and 30 mg/ml kanamycin, and either without or with 8

ng/ml aTc. From this point, the investigator was blinded with respect to the identity of each proc-

essed library. Overnight populations were diluted 100 times, grown for 2 hr, diluted a further 10

times and their fluorescence measured in a BD FACSAriatm III cell sorter. Fluorescence of 500,000

cells was measured for each replicate of each library. Two independent replicates of each mutant

library and the monoclonal wildtype population in each of the two growth conditions were measured

in the manner described above. All flow cytometry data were subsequently analyzed in FlowJo
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version 10.0.8r1, and measurements with extreme FSC-A and SSC-A values were excluded from the

analyses. The two replicate measurements of each library exhibited the same distributions of fluores-

cence phenotypes (tested by the K-S test) and were pooled together, to give a million counts for

each library.

We verified that 1 million individual measurements, as well as the library diversity of at least

30,000 mutants, accurately described phenotypic distributions of possible mutations. To ensure that

we are capturing a significant proportion of all possible phenotypic effects, we subsampled progres-

sively smaller number of measurements (n = 500,000; n = 250,000; n = 100,000; n = 50,000) of cis-

and trans-element mutant libraries, in each relevant environment (both absence and presence of CI

for cis-element libraries, and only presence of CI for trans-element libraries). We quantified the dif-

ference between each subsampled dataset and the corresponding full dataset using a K-S test, and

found that, by randomly subsampling each dataset 50 times, the distributions of phenotypes in sub-

samples were not statistically different from the distribution of the full dataset (Figure 2—source

data 4).

Calculating entropy of a DME
Shannon entropy was used as an estimate of how uniform the distribution is across the whole range

of possible phenotypes. The range of possible phenotypes was defined by the minimum and the

maximum fluorescence measurement in the entire dataset, across all measured mutant library DMEs.

Entropy was calculated as:

S¼ �
k

P
Pk logPk þ logDx

where Pk is the frequency of fluorescence measurements in the kth bin, and Dx is the width of the

bin, which was set to 0.05. In principle, values of entropy estimates depend on the bin width, so we

checked explicitly that our conclusions do not depend on this particular choice. Error associated

with each entropy measurement was calculated using standard bootstrapping methods. We per-

formed a nonparametric permutation test to assess if the differences in entropy are significant.

Estimating gene expression noise from flow cytometry measurements
We randomly isolated 20 cis, 20 trans, and 20 system mutants, from each mutation probability

library, giving rise to 180 isolates. Power analysis (power.anova.test function in R statistical package)

indicated that 20 samples in each category were sufficient to detect differences in gene expression

noise of 2%, at significance level of 0.05 and power greater than 0.9. In a flow cytometer, we mea-

sured gene expression levels in the presence of CI in 100,000 individual counts, for two replicates of

each mutant isolate, as well as for the wildtype. First, using a K-S test, we confirmed that the two

replicate distributions for each mutant were not significantly different. We combined the two repli-

cate measurements, and then randomly sampled without replacement 5000 reads from this common

pool ten times (Figure 2—figure supplement 3, 4 and 5). Gene expression noise for each such sub-

sample of 5000 reads was estimated as the coefficient of variation, as done in other studies on gene

expression noise (Metzger et al., 2015). Note that the gene expression noise measured in this man-

ner comes from two sources – the heterogeneity of gene expression between individual cells and

the measurement error inherent in the flow cytometer. We assume that the measurement error is

constant between all mutants, so that possible changes in the coefficient of variation would indicate

a difference in the heterogeneity of gene expression between genetically identical individuals. Using

ANOVA (aov function in R statistical software, version 3.4.1), we asked if there were differences in

the noise of gene expression between the 60 mutants of the same mutation probability, as well as

between all 180 tested mutants. We performed this test separately for the mutants that had no

expression (that were fully contained in the ‘no expression’ category), and for all other mutants.

These two groups were treated separately because the flow cytometry fluorescence measurement is

not responding to the same intracellular environment when the cell is producing a fluorescence pro-

tein and when it is not. As such, estimates of gene expression noise in the two categorically different

types of intercellular environments are not directly comparable (Figure 2—source data 1). Note that

the tests carried out across all three mutation probabilities, which included 95 mutants with no fluo-

rescence and 85 mutants with fluorescence, found no differences in gene expression noise. The

probability of mutants with significantly different noise existing in the library but not being detected
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at such sample sizes is less than 10�4 (calculated using experimentally-observed within and between

group variance and at power level of 0.9). For a library of 30,000 random mutants, this would mean

that no more than 10 system mutants could have different gene expression noise. For such a small

number of mutants to skew the observed system DMEs and lead to an increase in intermediate phe-

notypes would be possible only if they were strongly overrepresented in the library. This is unlikely

the case, since all 180 isolated mutants had growth rates that were comparable to the wildtype, and

hence increase in noise would have to be hugely beneficial on a very short time scale (around 10

generations).

Naı̈ve convolution of component distributions as the null model for
additivity between mutations
Let us consider the effects of mutations, mcis and mtrans, in two components of a system. As our phe-

notype of interest is log10 of fluorescence level, we assume that, if two mutations are independent,

their effects are additive: mexpected = mcis + mtrans. A deviation from this additive assumption is

termed epistasis, so that: e = mobserved mexpected. Note that a deviation from an additive expectation

in log is equivalent to a multiplicative prediction on the linear scale. When considering a library of

mutants in two components, their effects are represented by corresponding DMEs, fcis(m) and

ftrans(m), where m is the ‘true’ effect of a random mutation on the wildtype, in the absence of experi-

mental noise and measurement errors. If one could obtain ‘true’ DMEs for mutant libraries (in the

absence of any type of noise or error), then the additive null expectation should follow a simple con-

volution of the two distributions: fexpected = fcis * ftrans. Any deviation of the observed combined

library DME (fobserved) from the fexpected is indicative of epistasis.

In a realistic setting, experimental noise and instrumental error prevent direct measurements of

the ‘true’ underlying DME (f), so that any measured DME (F) incorporates all the errors with its ‘true’

DME f. This means that, if the experimental noise and instrumental error do not change between

mutants and across the dynamical measurement range, as is the case for our data (Figure 2—source

data 1; Figure 3—source data 3), then the observed DME (F) of a mutant library is equivalent to a

convolution between its ‘true’ underlying DME (f) and the measured wildtype distribution (Fwt): F = f

* Fwt. In other words, the ‘true’ DME (f) shows how mutations alter wildtype expression. It follows

that the additive prediction for the combined library, in the absence of epistasis, is a convolution of

three DMEs:

F+expected = f+expected * F+wt = f +
cis * f

+
trans * F

+
wt

where f +
cis and f +

trans are the ‘true’ distributions of the cis- and the trans-element, respectively,

and the superscript ‘+’ indicates the presence of CI. The same equality would of course hold true in

the absence of CI, but the analysis is trivial, as then the trans library shows no difference to the corre-

sponding wildtype F–wt, that is f –
trans is a unit element for the operation of convolution (delta-distri-

bution). For simplicity, we will omit the subscript when discussing DMEs obtained in the presence of

CI.

The additive prediction (multiplicative in log10 of expression) can be rewritten in two equivalent

forms:

1. Fexpected = Fcis * ftrans
2. Fexpected = fcis * Ftrans

To obtain either of the underlying ‘true’ DMEs, we would need to deconvolve the wildtype distri-

bution from one of the measured component library DMEs. However, although well understood and

well behaved analytically, (de)convolutions are known to be highly unstable when used on numerical

datasets, like ours. Therefore, we would need at least one of the component distributions in their

analytical form. Instead of fitting one of the measured DMEs to some analytical representation fol-

lowed by a deconvolution, we decided to directly ‘reverse engineer’ one of the component DMEs.

We chose the cis DME in the presence of CI, as the simpler of the two. Concretely, we searched for

fcis, such that its convolution with Fwt matches the observed Fcis as closely as possible. We assumed

fcis to be from the gamma-family, as a relatively wide family of curves often used to describe DMEs

(Figure 2—figure supplement 7A). We optimized three parameters of the fcis: shape, scale, and

location, to minimize the squared differences between the observed cis-element DME (Fcis) and fcis *

Fwt (Figure 2—figure supplement 7B). Note that the ‘true’ cis DME indicates that effectively all

mutations in cis are either neutral or they increase expression. Because of this, convolving the ‘true’
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cis distribution with any other distribution results in an overall increased expression, independently

of where the original distribution is centered. This is in line with the usual treatment of single mutant

effects: if an effect of a mutation is positive, the additive model states that the effect remains posi-

tive (and the same), independently of the genetic background.

After we obtained the ‘true’ DME for cis (fcis), we convolve it with the observed trans DME to pro-

duce a naı̈ve null-model for the system DME in the absence of epistasis. Convolving without any

adjustments results in a part of the predicted system DME that lies beyond the highest experimen-

tally recorded fluorescence levels (Figure 2—figure supplement 7C). Because we use one of the

strongest known promoters, the Lambda PR, predictions that have higher expression than the wild-

type are not biologically meaningful, as no combination of component mutations could experimen-

tally result in such high expression levels. To reflect this maximal biologically obtainable limit to

expression levels, we introduce a cutoff, effectively treating any mutant that would result in higher

expression levels as having the wildtype expression. In practice, we (i) removed the high expression

peak from the trans DME (as convolution with those mutants gives rise to higher expression levels),

(ii) performed a convolution between the remainder of the trans DME and the fcis, (iii) introduced a

smooth cutoff at maximum expression levels to the convolved distribution, and (iv) added back the

residual part of the high-expressing mutants. More specifically in the first step, we fitted the fraction

a of the wildtype distribution in the absence of CI (F–wt) to minimize its (square) difference to the

right-hand part of the high-expression trans peak (Figure 2—figure supplement 7D,E). In this way,

we obtained a smooth remainder to convolve with fcis, which will produce biologically realistic values.

In the end, we add back the distribution of the wildtype in the absence of CI (F–wt), so to obtain a

properly normalized predicted distribution (Figure 2—figure supplement 7F). Because we impose

this limit to the highest biologically obtainable expression level, convolving a hypothetical distribu-

tion consisting of predominantly high expression phenotypes with the ‘true’ cis distribution (fcis)

would result in only high expression phenotypes.

The prediction for the system DME obtained in this manner reflects only two assumptions: the

additive assumption of no epistasis, and the limit to maximal attainable expression levels. As such,

this naı̈ve prediction explicitly disregards any information about the genetic regulatory structure of

the system. For each mutation probability, we evaluate if the predicted DME is different from the

experimentally observed DME by conducting Pearson’s Chi-squared test to compare the frequencies

of mutants in the three expression categories (‘no’, ‘intermediate’, and ‘high’ expression).

Epistasis between random point mutants
We created 150 mutants with a random point mutation in cis, and 150 mutants with a random point

mutation in trans. Cis-element mutants were identified by Sanger sequencing of 400 randomly

selected mutants from the cis-element library with low (0.01) mutation probability. To obtain 150

trans-element mutants, we repeated the random mutagenesis protocol on cI with a very low muta-

tion rate (yielding approximately one mutation per kb). From this reaction, we randomly selected

and sequenced 500 mutants in order to identify 150 that contained only a single point mutation.

Then, we created a library of 150 double mutants, with one point mutation in the cis- and the other

in the trans-element. These 150 double mutants were unique, as each one consisted of a unique

pairing between cis and trans point mutations, so that no point mutations were found in more than

one double mutant (Figure 3—source data 1).

In a plate reader, we measured fluorescence levels of all 150 double mutants as well as of their

corresponding point mutants. The mutants, as well as the wildtype, were grown overnight in M9

minimal media supplemented with casamino acids, 30 mg/ml kanamycin, and either in the absence

of CI or in the presence of CI (induced with 8 ng/ml of aTc). The overnight populations were diluted

1000-fold, grown until OD600 of approximately 0.05, and their fluorescence measured in a Bio-Tek

Synergy H1 platereader. This procedure was replicated six times for each mutant. We performed a

series of pairwise t-tests in order to determine which isolates had significantly different fluorescence

to the wildtype. Using a K-S test, we compared if the system double mutants had a higher frequency

of intermediate phenotypes.

Consistent with convolution-based analyses, we consider expression level as the log10 of fluores-

cence, so that epistasis is defined as a deviation from an additive model, as e = msystem -

(mcis +mtrans), where msystem is the wildtype-relative fluorescence of a system double mutant, and

mcis and mtrans the wildtype-relative fluorescence of the two corresponding single mutants. Epistasis
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was calculated in the presence of CI, as in the absence of CI all trans mutants exhibited wildtype

expression, and all system double mutants had the same expression as the cis mutant alone. In order

to statistically determine which double mutants exhibited epistasis (i.e. e not equal 1), we conducted

a series of FDR-corrected t-tests. The errors were calculated based on six replicates, using error

propagation to account for the variance due to normalization by the wildtype. Variance was not sig-

nificantly different between measured mutants (Figure 3—source data 2).

It is possible that the estimates of epistasis through population-level measures of fluorescence

levels in a plate reader might not be equivalent to estimates obtained through flow cytometry. This

would particularly be true if the gene expression noise varied significantly between mutants. In order

to confirm this is not the case in our study, we randomly selected 30 double mutants that, based on

plate reader measurements, were in significant positive epistasis, 10 double mutants that were in

significant negative epistasis, and 20 mutants that were not in significant epistasis. Then, we mea-

sured the fluorescence in 100,000 individual reads for two replicates of each isolate in a flow cytome-

ter, in the absence and in the presence of CI (Figure 3—figure supplement 3, 4 and 5). First, we

compared if gene expression noise between single and double mutants was the same, by conducing

the same kind of analysis as described above, and found no differences between mutants (mutants

with no expression: F83,747 = 0.891; p=0.59; mutants with expression: F95,855 = 1.332; p=0.174) (Fig-

ure 3—source data 3). We also confirmed that the noise in single/double mutants was not different

to the gene expression noise in isolates from low, intermediate, and high mutation probability librar-

ies (mutants with no expression: F166,1494 = 0.765; p=0.746; mutants with expression: F180,1620 =

1.385; p=0.485). Then, we calculated epistasis in the presence of CI from flow cytometry measure-

ments in the same manner as described for plate reader measurements (Figure 3—source data 4).

To evaluate the significance of calculated deviations from the additive expectation (epistasis), we

use error propagation on the standard deviation obtained from the combined flow cytometry distri-

butions of the two replicates, and not on the variance between means of replicate measurements

(since the measured means for each isolated mutant were near identical between replicates). Linear

regression between the estimates of epistasis from the two types of measurements shows that flow

cytometry gives the same description of epistasis as the plate reader measurements (F1,58 = 350.5;

p<0.0001) (Figure 3—figure supplement 6).

Because all 150 double mutants were sequenced, we could test if epistasis was associated with

the location of mutations. For the trans-element, we identified three locations: the N-terminus and

the C-terminus domains, and the linker region between them (Figure 3—source data 1). For the cis-

element, the mutations could either be in one of the CI operator sites, in the RNAP contact residues

(�10 and �35 regions), in the sites that have direct contact with both, or those that do not have

direct contact with either protein (Figure 3—source data 1). Then, we tested if existence of epistasis

depended on the location of point mutations through a Pearson’s Chi-squared test, which consid-

ered only the binary value for epistasis: either the presence of significant epistasis or its absence.

Experimentally accounting for the genetic regulatory structure of the
system
We wanted to explore if accounting for the genetic regulatory structure of the studied system would

improve our ability to predict the system DME from the DMEs of its components. To this end, we

put together the low mutation probability trans-element (Figure 2E) and high mutation probability

cis-element libraries (Figure 2—figure supplement 1D) and measured the DME for this library in

the manner described above. We put together these two libraries as they have approximately the

same average number of mutations (seven for the trans- and six for the cis-element), allowing a com-

parison that is not influenced by the actual number of mutations in each of the two elements.

In order to experimentally predict the frequencies of phenotypes in each category of the low

mutation trans-element +high mutation cis-element library, we partitioned the low mutation proba-

bility trans-element library in the presence, and high mutation probability cis-element library in the

absence of CI. Using FACS, we partitioned each library into three bins, corresponding to the no

expression, intermediate, and high expression phenotype categories. We sorted a minimum of

500,000 individuals into each bin, and grew them overnight in LB with 30 mg/ml kanamycin. Using

these populations, we obtained a measure of sorting accuracy by obtaining a DME of each trans-ele-

ment partition after overnight growth. We isolated the plasmids from all six partitioned populations

(three cis and three trans), and cloned all possible combinations of cis- and trans-element partitions
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to make nine new mutant libraries. We obtained a DME for each of these libraries, in the manner

described previously.

Then, we obtained a prediction for the frequency of phenotypes in each of the three categories

for the system mutant library consisting of low mutation probability trans- and high mutation proba-

bility cis-elements. To do so, we weighted the frequencies of phenotypes in each category of each

partition combination library in Figure 5 by the frequency of that partition in the original trans-ele-

ment library (Figure 2E). For example, no expression trans +no expression cis library yielded 93.4%

of phenotypes in ‘no expression’ category, and 6.6% of phenotypes in ‘intermediate phenotype’ cat-

egory. These were weighted by 0.686, which is the frequency of phenotypes in no expression trans-

element category from which this particular partition combination library was derived (Figure 2E).

All weighted frequencies in the three categories – ‘no expression phenotypes’, ‘intermediate pheno-

types’, and ‘high expression phenotypes’ – across all nine partition combination DMEs were added

up to obtain a prediction for the distribution of phenotypes for the whole system library. As a control

that it is the presence of the cis mutants that leads to a more accurate prediction of frequencies in

the three categories, we used the frequencies of phenotypes based on sorting accuracy. These two

predicted distributions (experimental prediction based on partition libraries and the prediction

based on sorting accuracy) were compared to the actual distributions using a Pearson’s Chi-squared

test.

Mathematically accounting for the genetic regulatory structure of the
system
We tested if accounting for the genetic regulatory structure improved the naı̈ve convolution-based

prediction of the system DME. Similar to the experimental approach, we incorporated the knowl-

edge of the effects of cis mutations in the absence of CI (F–cis). In addition to the previous analysis,

we assume that trans mutants showing high expression phenotypes (namely, those mutants that

have the same expression as the wildtype in the absence of CI) are loss-of-function mutants that do

not bind any cis mutants. To incorporate this information into the convolution, we (i) removed the

high expression peak from the trans DME; (ii) performed a convolution between the remainder of

the trans DME and the fcis, (iii) introduced a cutoff, and then, (iv) instead of adding back the high

expression wildtype in the absence of CI (F–wt), we add the distribution of cis mutations in the

absence of CI (F–cis). This distribution is, as for the naı̈ve convolution, added in proportion to the

removed high expression trans phenotypes to normalize the whole distribution. Then, we evaluated

the difference between the predicted DME and the observed system DME using a Pearson’s Chi-

squared test, as previously described. We did this for the three system libraries shown in Figure 2

and for the high mutation probability cis +low mutation probability trans library, shown in Figure 4.

Not all intermolecular epistasis arises from the genetic regulatory
structure of the system
While considering the effects of cis mutations on RNAP binding (and hence accounting for the

genetic regulatory structure of the system) explained much of intermolecular epistasis we observed

in system DMEs, we wanted to evaluate the extent to which other mechanisms might be contribut-

ing to epistasis between the cis- and the trans-element. To this end, we designed a library of 150

system double mutants, by combining point mutations in cis- and trans-elements with specific phe-

notypes. Namely, we selected 150 trans mutants that exhibited full repression, and 150 cis-element

mutants that exhibited high expression in the absence of CI (Figure 6—figure supplement 1). The

system double mutant library made in this manner corresponds to the partition combination shown

in Figure 5G. Note that not all 150 double mutants had a unique point mutation in the cis-element,

since we could not identify 150 mutations in cis that did not significantly affect expression levels in

the absence of CI. Then, we measured fluorescence levels for all double mutants and their constitu-

tive single mutants, and from those measurements calculated epistasis, in the same manner as

described above. Finally, we tested if existence of epistasis depended on the location of point muta-

tions (Figure 6—figure supplement 2; Figure 6—source data 2) with Pearson’s Chi-squared test,

as previously described.
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