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Abstract

Maladapted individuals can only colonise a new habitat if they can evolve a
positive growth rate fast enough to avoid extinction, a process known as evo-
lutionary rescue. We treat log fitness at low density in the new habitat as a
single polygenic trait and thus use the infinitesimal model to follow the evo-
lution of the growth rate; this assumes that the trait values of offspring of a
sexual union are normally distributed around the mean of the parents’ trait
values, with variance that depends only on the parents’ relatedness. The
probability that a single migrant can establish depends on just two param-
eters: the mean and genetic variance of the trait in the source population.
The chance of success becomes small if migrants come from a population
with mean growth rate in the new habitat more than a few standard devi-
ations below zero; this chance depends roughly equally on the probability
that the initial founder is unusually fit, and on the subsequent increase in
growth rate of its offspring as a result of selection. The loss of genetic vari-
ation during the founding event is substantial, but highly variable. With
continued migration at rate M , establishment is inevitable; when migra-
tion is rare, the expected time to establishment decreases inversely with M .
However, above a threshold migration rate, the population may be trapped
in a ‘sink’ state, in which adaptation is held back by gene flow; above this
threshold, the expected time to establishment increases exponentially with
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M . This threshold behaviour is captured by a deterministic approximation,
which assumes a Gaussian distribution of the trait in the founder population
with mean and variance evolving deterministically. By assuming a constant
genetic variance, we also develop a diffusion approximation for the joint dis-
tribution of population size and trait mean, which extends to include stabil-
ising selection and density regulation. Divergence of the population from its
ancestors causes partial reproductive isolation, which we measure through
the reproductive value of migrants into the newly established population.

Keywords: Local adaptation, infinitesimal model, evolutionary rescue,
parapatric speciation, quantitative genetics, diffusion, migration load

1. Introduction

Can a population establish itself in a new habitat, adapting to the new
conditions despite random drift and gene flow? This question is relevant in
several contexts: the evolution of specialist host races, perhaps eventually
leading to speciation; at the edge of a species’ range, where adaptation
to extreme conditions is necessary; and ‘evolutionary rescue’, following a
catastrophic change in environment, or loss of adaptation by random drift.

In this paper, we focus on the initial establishment of a population by
migrants, and its subsequent reproductive isolation. The source population
is poorly adapted to the new environment, and would, on average, decline
to extinction in the new conditions. However, migrants and their offspring
may by chance be better adapted, and moreover, selection will cause further
adaptation. Provided that gene flow is not so high as to swamp the incipient
adaptation, growth rates may become positive, and a large, well-adapted
population may be established.

As the population grows, the proportion of migrants decreases, as does
random drift; these two positive feedbacks ensure rapid and secure estab-
lishment, that will ultimately be limited by density-dependent regulation of
population size, and by stabilising selection on the trait, towards a new op-
timum. During establishment, we can ignore these two processes, focussing
on the initial adaptation and growth via directional selection from low den-
sity. Subsequent evolution, perhaps based on new mutations, may allow
further adaptation, and will lead to speciation if divergence (both adaptive
and non-adaptive) is sufficient to cause strong reproductive isolation.

This problem has received considerable attention in recent years, since it
is relevant to survival of endangered populations, delimitation of the species’
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range, and invasion of non-native species (Gomulkiewicz et al., 2010; Go-
mulkiewicz and Shaw, 2013). The positive feedback between adaptation and
population size was identified as a factor that can limit species’ range by
Haldane (1956); the consequent trapping of populations in a maladapted
‘sink’ state has been studied both in single demes (e,g, Holt et al., 2003;
Holt and Barfield, 2011) and along one-dimensional environmental gradi-
ents (Kirkpatrick and Barton, 1997; Polechová and Barton, 2015). Such
analyses have either been based on simulations of discrete loci, or on deter-
ministic models that assume a constant additive variance for one or more
traits. Here, we consider establishment despite initial maladaptation, us-
ing a model that takes into account the evolution of trait variance due to
migration and random drift.

Adaptation to a new environment may sometimes involve one or a few
changes of major effect - for example, a change in preference for a new
host, or origin of a distinct and reproductively isolated polyploid. However,
we deal here with the more common, and more challenging, case, where
adaptation is polygenic, possibly acting via many biological mechanisms.
We can simplify drastically by thinking of a single polygenic trait - log fitness
at low density in the new habitat - which by definition is under directional
selection. This fitness may be mediated via very many traits, but we can
absorb the genetic component of all of these into a single value.

This approach may seem paradoxical, since existing theory apparently
shows that gene flow should swamp polygenic adaptation. By analogy with
the mutation load, migration reduces fitness by an amount equal to the
mutation rate, for each locally adapted locus. If alleles at different loci are in
linkage equilibrium (as will be the case if migration is much weaker than total
selection), then the migration load is proportional to the number of locally
adapted loci, and may become disastrously high. Looking at the problem
in another way, selection at each locus must be stronger than migration to
prevent local alleles from being swamped by gene flow, which implies that
alleles of small effect cannot contribute to local adaptation.

However, these arguments only apply if locally favoured alleles are absent
or very rare in the source population. If adaptation is instead based on
standing variation, then alleles of indefinitely small effect can contribute.
To see this, consider an additive trait in a population of diploids, with two
possible alleles at locus i, having effect ±αi on the trait value. Writing
pi for the proportion of alleles of the first type in the new environment
and p′i for the corresponding proportion in the source population, migration
contributesm(p′i−pi) to the rate of change of pi, but a selection gradient β on
the trait causes selection βαi, and so contributes βαpi(1−pi). Thus selection

3

user
Sticky Note
(Kirkpatrick and Barton, 2006)

user
Sticky Note
Tufto, 2001; 

user
Sticky Note
either->almost all

user
Highlight

user
Sticky Note
Replace this sentence by " Tufto (2000, 2001) applied the infinitesimal model to study establishment despite initial maladaptation, which allows the evolution of trait variance due to selection and migration.  We develop this model, taking account of random drift and dempgraphic stochasticity. 

user
Sticky Note
(Le Corre and Kremer, 2012; Yeaman, 2015)

user
Sticky Note
"(Holt & Gomulkiewicz 1997)" - they argue ythat only absolute fitness matters at low density



can maintain a difference in allele frequency βαipiqi/m in migration selection
balance. Summing over loci, we find a difference in trait mean between the
new environment and the source population of

∆z̄ =
β

m

∑

i

2α2
i piqi =

β

m
VA,

where VA is the additive genetic variance. This result can of course be
obtained by a purely phenotypic argument, and is independent of the number
and effects of individual loci. The difference in allele frequency at each locus
may be small, but the cumulative effect can be large, shifting a set of traits
by many standard deviations, to well outside their original range. A similar
argument holds when random drift is included: slight changes in the neutral
distribution of allele frequencies can have large effects on phenotype, even if
drift and migration dominate selection at individual loci (Robertson, 1960;
Kimura, 1981). We will consider the limiting infinitesimal model, which
assumes a very large number of unlinked loci with additive effects. Then, the
evolution of the trait distribution depends essentially only on the variance
between offspring that is released by recombination. Within each family,
the trait values of the offspring are normally distributed, with mean equal
to the mid-parent value, and fixed variance V if the parents are unrelated.
In a finite population, the within-family variance decreases in proportion to
the parents’ relatedness. We define the model more carefully below. For a
more detailed introduction to the infinitesimal model, its derivation, and its
application, we refer to Barton et al. (2016).

This simple model has proved remarkably accurate in practical animal
breeding (Lynch and Walsh, 1998), in describing artificial selection exper-
iments (Weber and Diggins, 1990), and in analysis of natural populations
(Kruuk, 2004). Here, we use it to motivate an approximation to the joint
evolution of population size and mean trait value in the new habitat, in
which establishment can be described in a very general way, in terms of just
two parameters: the change in trait needed to make growth positive, and
the fitness of an average migrant, both expressed relative to the additive
variance in the source population.

Once the new population is established, we can use the same approxi-
mation to calculate its reproductive isolation from the source. Again this
depends on very few parameters: the divergence of the new population from
the source, and its degree of inbreeding.

The infinitesimal model can be justified as the limit of a model of an
additive trait that depends on a very large number of unlinked loci. Then,
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knowing the trait of an individual provides very little information about
the distribution of allele frequencies at any particular locus, which there-
fore changes only slightly as a result of selection. The sum of effects of
slight changes in allele frequency across all the loci can produce a substan-
tial change in the mean, but the within-family variance is determined by
the degree of inbreeding of the parents, with the effects of changes in al-
lele frequency only becoming important over a timescale longer by a factor
proportional to the number of loci. Under strong selection, the distribution
of trait values in the population may rapidly change its variance, and may
certainly deviate from normality. However, these changes are due to the cu-
mulative effects of linkage disequilibria amongst the loci, not to changes in
the marginal allele frequencies. The establishment and adaptation of a small
population under strong selection must occur quickly if it is to avoid extinc-
tion, and so we expect the infinitesimal model to be a good approximation
to the evolution of polygenic traits.

After defining the model, and its implementation in individual-based
simulations, we consider the fate of single migrants, finding (numerically)
the probability that they can successfully establish a growing population.
We then consider continued migration, and show that there is a threshold
fitness of average migrants, above which establishment is rapid, but below
which requires a rare fluctuation. This threshold behaviour is captured by a
caricature of our model in which the trait distribution in the new population
is assumed Gaussian with mean and variance evolving deterministically. In
this regime of continued migration, we also develop a diffusion approxima-
tion for the joint evolution of the trait mean with population size, which
extends to include stabilising selection and density regulation, and we use
it to investigate the stationary distribution of the new population. Finally,
we derive the reproductive isolation of the newly established population,
assuming that it is at equilibrium under a balance between mutation and
selection.

2. The infinitesimal model

Individuals are diploid, and may self-fertilise: thus, a single individual
can found a new population. Generations are discrete, and do not overlap.
We follow the ‘breeding value’ of a single additive quantitative trait, with in-
dividual value z. Non-inherited variation is not treated explicitly, but can be
thought of as being absorbed into the relation between fitness and breeding
value. Migrants (assumed unrelated) come from a large source population,
which is in Hardy-Weinberg proportions and linkage equilibrium. The trait
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is assumed to follow a Gaussian distribution in the source population with
mean z̄s and variance 2V , composed equally of within and between fam-
ily variance. This corresponds to the equilibrium distribution for a purely
additive neutral trait in a large population under the infinitesimal model.
To see why the variance is partitioned in this way, recall that under the
infinitesimal model, offspring traits follow a Gaussian distribution around
the mean of the parental traits with a fixed variance V . If the variance of
the parental traits is V1, say, then the variance of the mid-parent value is
V1/2, and so the variance across offspring is V1/2 + V ; at equilibrium we
must have V1 = 2V . By considering higher order cumulants, Bulmer (1980)
shows that in the absence of selection, under this model the distribution of
traits rapidly relaxes to a Gaussian.

Individuals migrate from the source population, independent of z, their
number in each generation being Poisson distributed with expectation M .
Immediately after migration, there are N(t) individuals, which mate ran-
domly, irrespective of whether they are newly arrived or native, and with
the possibility of selfing. Offspring are produced, and survive into the next
generation with probability that depends on their trait value, and which, if
we incorporate population density regulation, will decrease with N(t). The
surviving offspring are joined by another Poisson distributed group of im-
migrants from the source population, resulting in N(t + 1) individuals and
the process repeats.

Although migrants are assumed to be unrelated to each other, and to the
native population, the evolving population will become inbred. The variance
amongst offspring is the sum of the variance contributed by haploid gametes
from each parent, which in turn is generated by segregation at meiosis, in
proportion to (1− Fii), (1 − Fjj) where Fii is the probability of identity by
descent between the two distinct genes of parent i, and similarly for Fjj.
That is, the variance between offspring from diploid parents i, j is

vij = V

(
1− (Fii + Fjj)

2

)
. (1)

The same formula applies with self-fertilisation.
We model directional selection on the trait by taking fitness to be w =

eβz. The number N∗(t + 1) in the next generation, before migration, is
Poisson distributed, with expectation N(t)W , where W is the mean of eβz

across offspring. Thus, the population is only expected to grow (as opposed
to simply being maintained by immigration) ifW > 1. We focus on the case
where the source population has z̄s < 0, so that some form of selection is
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required for the trait to become positive in the new population, allowing it
to grow.

It would be inefficient to simulate this model directly, by forming a large
number of offspring, and culling them in proportion to their individual fit-
ness. Instead, the average fitness of offspring from each possible pair of
parents, wij , is calculated. Denoting the parental trait values by zi, zj
respectively, with exponential directional selection, eβz:

wij = E

[
eβz
]
= exp

(
β
(zi + zj)

2
+
β2

2
vij

)
. (2)

The number of surviving offspring, N∗(t + 1), is Poisson distributed with
expectation

∑
i,j wij/N(t). For each of these, parents i, j are drawn with

probability proportional to wij. This choice is represented by a pedigree
matrix Pki, with dimensions N∗(t+1)×N(t); Pki gives the probability that
a gene in offspring k came from individual i in the parental population.
Under the infinitesimal model, this is not distorted by knowing the trait
values of the individuals involved. Thus, each row has either two entries
of 1/2, if that offspring has distinct parents, or one entry of 1, if it was
produced by selfing. If offspring k has parents i, j, then its trait value is
drawn from a normal distribution with mean (zi+zj)/2+βvij , and variance
vij . The relatedness in the new population is

P

(
F +

1

2
(I − Fdiag)

)
P T ,

where Fdiag is the diagonal matrix with entries from the diagonal of F . New
migrants (assumed to be unrelated to these N∗(t + 1) individuals and to
each other) are added, to arrive at the new generation of size N(t + 1).
By representing P as a sparse matrix, a population of up to ∼ 1000 can
be simulated. For larger populations, the relatedness can be taken to be
approximately equal between all pairs.

3. Establishment of a new population

In this section, we use simulations to explore establishment of the pop-
ulation in the new habitat, first considering the fate of a single migrant and
then continuous immigration from the source population. In this second
scenario, establishment is inevitable, but we still see two competing effects:
migration introduces variance which feeds selection, but reproduction with
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a migrant pulls back the mean trait value among offspring towards the value
in the source population, thus impeding adaptation.

3.1. Single migrants

We begin by considering the fate of a single migrant, of trait value z0.
In the long term, density-dependent fitness must limit population size, and
stabilising selection (or some other process) must limit trait evolution. How-
ever, we assume that the population is established before either of these are
significant, and so take fitness to be simply eβz. In the first generation, born
of a single selfed migrant, before selection, the trait values of offspring are
Gaussian, with mean z0 and variance V . The expected number to survive
selection is E

[
eβz
]
= eβz0+β2V/2. The relatedness between any two genes

(sampled from either the same or distinct offspring) is Fij = 1/2. While
the population size is small, inbreeding rapidly reduces the genetic variance,
and so if the population is to survive, individuals with sufficiently large z
must be produced in the first few generations. The probability that this will
happen depends only on the two dimensionless quantities z0/

√
2V and on

β
√
2V ; the latter is the standard deviation in log fitness (measured in the

new habitat) of the source population. It is convenient to scale both the
trait value and the fitness gradient relative to

√
2V in this way and thus set

the variance in the source population to be 2V = 1.
Figure 1 shows one example of a successful establishment, where we de-

fine establishment to mean reaching population size N = 100. We start
with a single migrant of value z0 = −2, and fitness gradient β = 0.25; thus,
recalling that 2V = 1, the expected number of surviving offspring from this
founder individual is E

[
eβz
]
= eβz0+β2/4 = 0.62. The population mean in-

creases rapidly in the first few generations, as does the population size. After
15 generations, the population mean becomes positive, after which popula-
tion size rises more rapidly (Fig. 1, middle). The population increases for
two reasons: first, the increase in trait mean, and hence fitness, and second,
the stochastic acceleration - the expected numbers conditional on fixation
must rise faster than the unconditional expectation. Because there are only
a few individuals during the first few generations, the heterozygosity, 1−F ,
decreases rapidly, to only ∼ 0.1 by the time the population is large. The
actual trait variance fluctuates below this underlying heterozygosity (com-
pare lower dashed with solid curve in Fig. 1, right). In a neutral model, one
expects the average heterozygosity to decrease by a factor 1 − 1

2N in each
generation (upper dotted curve in Fig. 1, right); in this example the actual
heterozygosity is slightly lower than this prediction. This is to be expected
as selection will distort the pedigree, as fitter individuals are more likely
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Figure 1: An example of successful establishment, starting with a single migrant with z0 =
−2, β = 0.25. Left: Values of each individual though time; thick line shows the population
mean. Middle: Population size, N . Right: The variance, 2V , and heterozygosity, 1 −
F (solid, lower dashed), through time. The upper dashed curve shows the predicted

heterozygosity, based on the population size:
∏

t

(
1− 1

2Nt

)
.

to reproduce, and so the probability of identity between surviving offspring
should exceed the neutral prediction. Based on replicate trials (Fig. 3), the
probability of establishment with z0 = −2, β = 0.25 is 0.00012. Individual
replicates are highly variable.

Figure 2 shows average features of 50 successful establishments, again
with z0 = −2, and for β = 0.125, 1 (left, right). When the population
succesfully establishes, it increases rapidly, over the first ∼ 20 generations
for β = 0.125, and the first ∼ 10 generations for β = 1 (top row). After this
initial phase, the mean appears to settle to around 50; however, this is an
artefact of the definition of establishment at N ≥ 100. Once the population
is above ∼ 20, because of the variation in trait values across the population,
it may rapidly fix, or it may fluctuate for 100 generations or more before
taking off. As a result, the size of populations that have not yet reached
N = 100, but will eventually do so, is roughly uniformly distributed between
a small number and 100.

The middle row of Fig. 2 shows the trait mean; to make runs that reached
N ≥ 100 at different times more comparable, this is plotted against popula-
tion size. Offspring of successful migrants tend to have substantially higher
z than their parent (averaging ∼ −1 for β = 0.125, and ∼ 0 for β = 1,
compared to an average over the source population of −2). On average, the
trait mean increases to ∼ 0.5 by the time the population is large, though
this is highly variable: some populations establish with a trait mean that is
close to zero. Once populations are large, the trait mean is almost always
positive, so that there is a sharp lower bound to its distribution.

The bottom row of Fig. 2 shows the genetic variance, which decreases
to an average of ∼ 0.02 for β = 0.125, and ∼ 0.1 for β = 1; more variance
remains when the fitness gradient is steep, because then, establishment is
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faster. However, the variance remaining in large populations is highly vari-
able between runs. We set the variance in the source population to be 2V = 1
and compare the observed variance during establishment to 2V (1−F ). The
mean heterozygosity, 1−F , which determines the segregation variance, has
a narrower distribution than the population variance, but almost the same
mean. On average, the heterozygosity predicted from the population size,∏

t

(
1 − 1

2Nt

)
, is very close to that of the variance (compare dashed with

solid lines).
The solid lines in Fig. 3 (left) show how the probability of establishment

depends on the initial trait value, z0, and on the fitness gradient, β. (Re-
call that both are scaled relative to the variance in the source population,
2V , which is therefore set to 1 here, and that establishment is defined as
reaching at least 100 individuals). As β becomes smaller, the dependence
on the initial trait value becomes weaker, since fitness depends more weakly
on the trait value. Indeed, in the limit β = 0, there would simply be a
critical branching process, with each individual producing a Poisson num-
ber of offspring with mean 1; the probability of reaching N = 100 is then
∼ 1/100, independent of z0. However, even for the smallest fitness gradient
(β = 0.125), selection still dominates in large populations.

A successful migrant will typically have trait value around one standard
deviation from the mean z̄s and so can be maladapted for z̄s < 0. But
selection acting on the variance among the migrant’s offspring means that
the descendants of a maladapted migrant can still have a positive chance of
becoming established.

The right plot of Fig. 3 shows the probability of establishment for β =
0.125, 2, as in the left plot (solid curves). The contribution of selection to
establishment can be seen by comparison with the probability of establish-
ment from a homozygous individual, whose offspring necessarily have the
same trait value as the parent (lower dashed curve). This is just the estab-
lishment probability for a Galton-Watson branching process with Poisson
offspring distribution of mean eβz0 , which we approximate by the survival
probability (recalling that establishment means reaching N = 100). It is
zero for z0 < 0, and increases steeply with βz0 (dotted curves at far right).
However, the solid and dotted curves converge as the initial value becomes
more positive, showing that selection has little effect on establishment when
the initial migrant is already well adapted.

We see that, even though genetic variance is rapidly lost during the first
few generations, selection during this time greatly increases the chances of
success. Indeed, even after the population has become large, some genetic
variation remains, and so further adaptation will occur even without new
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Figure 2: Population size, trait mean, and variance, for 50 successful establishments;
z0 = −2, β = 0.125 (left column), 1 (right column). (Results for β = 2 were not shown,
since for those only 27 runs established within 105 trials). In each plot, the thick line shows
the mean, whilst points show individual runs. Top: Population size, plotted against time.
Middle: Trait mean, plotted against population size. Bottom: Trait variance, Var, plotted
against population size. The mean of the variance across runs is shown by the thick line,
and the mean heterozygosity predicted from population size, 1−Fpred, by the dashed line.
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Figure 3: Left: Probability of reaching at least N = 100, starting from a single individual
drawn from a population with mean trait value z̄s and variance 2V = 1; β = 0.125, 0.25,
0.5, 1, 2 (bottom to top). Right: For β = 0.25, 2, the solid curves show the probability
of reaching at least N = 100 for a single migrant of trait value exactly z̄s. The dotted
curves on the far right show the probability of establishment of a homozygous individual
of value z̄s; this is the probability of establishment of a Galton-Watson branching process
with Poisson offspring distribution with mean eβz̄s (which we have approximated by the
survival probability). This is zero for z̄s < 0. The black dashed curves to the left show the
probability of establishment of a migrant chosen randomly from a source population with
mean z̄s and variance 2V = 1. Grey dashed curves show the same, but for a homozygous
individual, so that the new population cannot evolve. The dashed curves are calculated
by integration over the values shown by the solid curves; for z̄s > 0.5, the probability
is approximated by these dotted curves. Estimates are based on the number of trials
required to successfully establish 50 populations. Each of the 50 runs made a maximum of
105 trials; values here are maximum likelihood estimates of the establishment probability,
assuming an exponential distribution for time to establishment, truncated at 105.
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mutation. Random drift also contributes to some extent, but in two compet-
ing ways: random sampling may produce individuals with trait values well
above the mean of the source population; on the other hand drift results in
inbreeding, which reduces the variability of trait values. It is not clear how
to separate this from the effect of selection, which systematically increases
the trait mean.

Though selection and random drift make it possible for a single indi-
vidual with expected fitness less than one to establish a population, this is
unlikely when the initial value is more than a few genetic standard devia-
tions below the critical threshold. The initial value, z0, for which P = 10−4,
is −2.01

√
2V for β = 0.125, and −1.84

√
2V for β = 1: the probability

of establishment is determined mainly by the initial trait value, relative to
the genetic standard deviation, and is insensitive to the fitness gradient.
We may also compare the fitness of the initial migrant, eβz0 , which gives
P = 10−4; this is 0.78 for β = 0.125, but 0.16 for β = 1. Thus, an unfit
migrant still has an appreciable chance to establish a population, provided
that the fitness gradient is steep enough that its descendants can be fit.

The black dashed curves in Fig. 3 (right) show the probability of es-
tablishment by a migrant chosen randomly from the source population, for
β = 0.125, 2, plotted against the mean trait value of the source popula-
tion. For negative z̄s, these probabilities are much higher than for a migrant
whose trait value is exactly z̄s, because the migrant may be a few standard
deviations above the mean. Thus, establishment is feasible when the mean
is 3 or 4 genetic standard deviations below the threshold, z = 0, and when
an individual with trait value given by the mean in the source population
would be extremely unfit in the new habitat. For P = 10−4, the correspond-
ing z̄s is −3.64, −3.92 for β = 0.125, 1, respectively, and the corresponding
fitnesses of the mean individual are eβz̄s = 0.63, 0.020. With no evolution
(i.e., assuming homozygous migrants), P = 10−4 for z̄s = −2.97, −3.55, and
eβz̄s = 0.69, 0.032, respectively. Roughly speaking, the change in trait value
required for the population to increase is contributed to a similar degree by
the chance migration of an individual that is unusually well adapted to the
new habitat, and by the subsequent evolution of the new population. This
is illustrated further in Table 1.

3.2. Steady migration

Now, suppose that there is a steady influx of migrants from the source
population. We still neglect density-dependence and stabilising selection,
and so establishment is inevitable: eventually, a large enough population
will be established, with sufficient genetic variation, to allow adaptation
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Table 1: Threshold values for establishment probabilities of 10−4. (i) Top panel, zc0, the
critical value of z0 above which establishment probability is greater than 10−4; (ii) Middle
panel, z̄cs, the critical value of z̄s for which establishment from a migrant picked at random
from the source population has probability 10−4; (iii) Bottom panel, z̃cs, the same as (ii)
except that the migrant is taken to be homozygous. We have normalised so that 2V = 1.

(i)

β zc0 exp(βzc0)

0.125 −2.00677 0.778142

0.25 −2.0357 0.601141

0.5 −1.99809 0.368231

1 −1.8381 0.159119

2 −1.62252 0.038967

(ii)

β z̄cs exp(βz̄cs)

0.125 −3.63602 0.634763

0.25 −3.8175 0.385052

0.5 −3.90004 0.142271

1 −3.92306 0.0197804

2 −3.99407 0.000339465

(iii)

β z̃cs exp(βz̃cs)

0.125 −2.97144 0.689748

0.25 −3.15104 0.454862

0.5 −3.31216 0.190886

1 −3.44909 0.0317746

2 −3.55486 0.00081712
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and growth to indefinitely high numbers. When the influx is low, establish-
ment depends on single migrants, and can be predicted from the results of
the previous section (dashed lines at left of Fig. 3). However, as the mi-
gration rate increases, interactions between migrants become important, in
two opposing ways. First, migrants introduce genetic variation, which can
greatly increase the efficiency of selection. However, migration also pulls
the trait mean back towards the value in the source population, which im-
pedes adaptation. There is a strong positive feedback here, because small
populations are especially liable to the swamping effects of gene flow, which
impedes their adaptation to local conditions.

Figure 4 shows how the expected time to establishment (defined as reach-
ing N ≥ 100) depends on the number of migrants per generation, M , for
β
√
2V = 0.25. Overall, we see that for zs/

√
2V > −0.5 (lowest solid

curve), the mean time to establishment decreases with immigration, and
becomes very fast for large M . However, for higher levels of divergence
(zs/

√
2V ≤ −0.5) there is an intermediate migration rate, M , which min-

imises the time to establishment; for large migration rates, establishment
takes an extremely long time.

4. Approximating the dynamics of escape

While the population is rare in the new environment, we can neglect
density dependent regulation. Conditional on the trait values, each possible
pair of individuals in the population, independently, leaves behind a random
number of offspring, with a distribution that depends on the parental traits.
This is highly reminiscent of the nonlinear stochastic growth models intro-
duced in a series of papers beginning with Kesten (1970); see Kesten (1971)
for a review. Kesten’s model is one of a diploid population and incorpo-
rates multiple types, and so in particular could be used to model multilocus
traits. However, the only really satisfying analytic results currently avail-
able are when the type of an offspring is that of one of its parents. In our
setting, in which the variance released by recombination plays a crucial role,
these results do not apply. Here we shall satisfy ourselves with some simple
caricatures of the joint evolution of population size and trait distribution,
deferring a study of more sophisticated models to future work.

4.1. ‘Deterministic’ approximations

To understand why establishment becomes difficult at high migration
rates when divergence is above a threshold value, we shall make the approx-
imation that the trait distribution across the whole population is Gaussian.
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Figure 4: Mean time to establishment, for β = 0.25, given migration at rate M from
a source population with mean z̄s and variance 2V = 1; z̄s = −1, −1.5, −2, −2.5, −3
(bottom to top, black lines). Additional values, z̄s = −1.55, −1.6, −1.65, −1.7 are shown
in grey, for large M (right of figure). The dashed lines at the left give the prediction,
T̄ = 1

MP
, from the probability of establishment, P , of a single migrant, drawn randomly

from the source population (Fig. 3, right, dashed curves). The thick line at lower left shows
the lower bound, T̄ = 1/M , which would obtain if the first migrant to arrive immediately
established a new population. Establishment is defined as a population of N ≥ 100 for
M < 10, and N ≥ 300 for M > 10. Estimates of T̄ are based on 100 replicates for each
z̄s,M . Relatedness, F , is tracked between each pair of individuals up to N = 50, above
which it is replaced by the mean relatedness.
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As a first approximation, we shall further suppose that the population size
and the trait mean and variance evolve deterministically. We shall refer to
this as the deterministic approximation. We emphasize that the Gaussian
distribution across the population is not a consequence of using the infinites-
imal model, which, in the presence of selection, only guarantees that within
each family the trait distribution is normally distributed.

We expect this to be a reasonable approximation if migration rates are
moderately high and the selection gradient is not too extreme. Under the
infinitesimal model, each diploid migrant carrries half of the genetic variance
in the source population, and so modest rates of migration into a small
‘sink’ population can maintain high genetic variance, without causing large
deviations from a Gaussian.

In Appendix A, we develop a recursion for the joint evolution of pop-
ulation size, trait mean, trait variance and average identity, which fits the
dynamics well, and predicts a critical divergence, beyond which maladap-
tation becomes stable. Here, we develop a simpler recursion, by assuming
that the variance remains approximately constant, despite selection and mi-
gration, and assuming that the identity is zero. In the more sophisticated
models that follow, we shall routinely use the notation V ∗ = V (1 − F∗) for
the variance (before selection) among offspring of two individuals from the
new population, where V is the segregation variance among offspring of two
unrelated individuals and F∗ is the average identity in the new population.
We shall also use that notation here, even though we are assuming F∗ = 0.
Directional selection does not change the variance, and so if the variance
across the population is approximately constant it will be 2V ∗.

Our aim is to write down deterministic equations which, under these
assumptions, govern the joint evolution of the expected population size and
the mean value of the trait across the population. With a slight abuse of
notation, we denote these quantities by N(t), z̄(t), respectively. Since the
within family variance is V ∗, the mean fitness, W , among offspring is

W = E

[
exp

(
β
(Z1 + Z2)

2
+
β2V ∗

2

)]
,

where Z1 and Z2 are the traits of two parents sampled at random from
the population. (Here we are using our assumption that identity is zero in
both the new and the source populations, so that the within family variance
is the same irrespective of whether one or both of the parents is a newly
arrived migrant or not, but see Appendix A for the more general case.) The
distribution of traits across the population is Gaussian with mean z̄ and
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variance 2V ∗, giving
W = exp

(
βz̄ + β2V ∗

)
, (3)

and so after reproduction and the subsequent migration,

N(t+ 1) =M +N(t) exp
(
βz̄(t) + β2V ∗

)
. (4)

The mean trait among these individuals is

z̄(t+ 1) =
1

N(t+ 1)

(
Mz̄s +N(t)E[zeβz ]

)
,

where the expectation is with respect to the distribution of the trait among
offspring (before selection) and can be calculated by differentiating W with
respect to β. This yields

z̄(t+ 1) =
1

N(t+ 1)

(
Mz̄s +N(t)(z̄(t) + 2βV ∗)eβz̄(t)+β2V ∗

)

= (z̄(t) + 2βV ∗)

(
1− M

N(t+ 1)

)
+ z̄s

M

N(t+ 1)

= z̄(t) + 2βV ∗

(
1− M

N(t+ 1)

)
− M

N(t+ 1)

(
z̄(t)− z̄s

)
. (5)

It is convenient to rescale equations (4) and (5) by setting n = N/M , α =
β
√
2V ∗ and y = (z̄ − z̄s)/

√
2V ∗. Then the equations become

n(t+ 1) = 1 + n(t)Wse
αy(t), y(t+ 1) = (y(t) + α)

(
1− 1

n(t+ 1)

)
, (6)

where
Ws = exp

(
βz̄s + β2V ∗

)

is the mean growth rate of the source population in the new conditions.
If Ws is above some critical value, Ws,crit, population size and trait in-

crease together even from low values, regardless of M . For smaller values of
Ws, there are two equilibria, one stable and one unstable. In this case, the
population may be unable to grow, regardless of how large is M ; instead, it
is maintained by migration as a poorly adapted ‘sink’. Although an increase
inM increases the population size, it also impedes adaptation, and therefore
prevents indefinite growth.

To find the critical value, observe that at equilibrium y(t) = y(t+ 1) =
α(n − 1), i.e., ycrit = α(ncrit − 1) and writing f(n) = 1 + nWse

α2(n−1) we
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must solve
n = f(n), 1 = f ′(n). (7)

This yields a quadratic in n whose positive solution is

ncrit =
α2 +

√
α4 + 4α2

2α2
=

1

2

(
1 +

√
1 + 4/α2

)
. (8)

In our original variables, this becomes

Ncrit =
M

2

(
1 +

√
1 + 2/(β2V ∗)

)
,

and substituting in (7) to find Ws,crit we find

Ws,crit =
ncrit − 1

ncrit
e−α2(ncrit−1) =

(
1− M

Ncrit

)
e−α2(Ncrit−M)/M ,

and finally, since Ws,crit = exp(βz̄s,crit + β2V ∗), we find

βz̄s,crit = −1

2
α
(√

4 + α2
)
− log

(
α+

√
4 + α2

−α+
√
4 + α2

)
. (9)

For α = β
√
2V ∗ ≪ 1, βz̄s,crit ∼ −2α. For α≫ 1, βz̄s,crit ≈ −α2/2− 2 log α.

The solid line in Fig. 5 (top) shows the critical log fitness of an average
migrant above which establishment is inevitable in this deterministic limit,
βz̄s,crit, plotted against the standard deviation of log fitness in the source
population, α = β

√
2V ∗. The dashed line shows the more sophisticated

approximation of Appendix A, which takes into account the different within-
family variance of offspring resulting from different combinations of native
and migrant parents. The lower plot shows the corresponding critical fitness
of the source population in the new environment, Ws,crit.

4.2. The diffusion approximation to the stochastic dynamics

In this section we shall continue to assume that the trait distribution
across the population has a Gaussian distribution, but we extend the analy-
sis of the last section to incorporate stochastic fluctuations in the population
size and trait mean to capture demographic stochasticity and random sam-
pling drift. We shall use a continuous time approximation.

The first step is to find the appropriate continuous time approximation
to the discrete equations (4), (5). If βz̄+β2V ∗ is small, neglecting the second
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Figure 5: Top: The critical log fitness of an average migrant, βz̄s,crit, above which estab-
lishment is inevitable in the deterministic limit, plotted against the standard deviation of
log fitness in the source population, β

√
2V ∗. The solid line assumes constant variance 2V ∗

(Eq. 9). The dashed line allows variance to evolve (Appendix A). Bottom: The critical
fitness of an average migrant in the new environment, Ws,crit = exp(βz̄s,crit + β2V ∗).
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order term β2V ∗, we arrive at the pair of ordinary differential equations:

dN(t)

dt
= M + βz̄(t)N(t);

dz̄(t)

dt
= 2βV ∗

(
1− M

2N(t)

)
− M

N(t)
(z̄(t)− z̄s).

In fact, as we explain in Appendix B, if we wanted to accumulate an error of
order at most β2(M+N) per generation in using this differential equation for
population size in place of our discrete recursion, we should (at the expense
of much more complex expressions in what follows) replace the immigration
rate M in the first equation by M(1 − βz̄(t)/2). With this equation the
error is order βz̄M + β2(M + N). Since our model is in any case only a
caricature, we take these simpler equations.

We now add random perturbations ζN , ζz̄ with the appropriate variances.
Recall that the variance of the trait across the population was taken to be
2V ∗. The dynamics can then be described by a potential, U :

U =M logN + β(N − M

2
)z̄ − M

4V ∗
(z̄ − z̄s)

2 ,

for which

dN

dt
= N

∂U

∂N
+ ζN =M + βz̄N + ζN , < ζ2N >= N ;

dz̄

dt
=

2V ∗

N

∂U

∂z̄
+ ζz̄ = 2βV ∗

(
1− M

2N

)
− M

N
(z̄ − z̄s) + ζz̄, < ζ2z̄ >=

2V ∗

N
.

If there were a stationary distribution, ψ, then, see e.g. Gardiner (2004),
§5.3.3, it would satisfy

ψ ∝ e2U

N
= N2M−1 exp

(
β(2N −M)z̄ − M

2V ∗
(z̄ − z̄s)

2

)
. (10)

This expression diverges for large N , z̄, but it should approximate the den-
sity of the population while it is near to a stable ‘sink’ equilibrium, when
that exists. In the next section, we extend it to include density regulation
and stabilising selection.

Equation (10) has a simple form, with three terms that correspond to
migration that increases population size (N2M−1), directional selection on
the trait (eβ(2N−M)z̄), and gene flow that pulls the trait mean towards the
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Figure 6: The distribution of N , z̄ for a population trapped in a sink; zs = −3, β =
0.05, M = 10. 11 replicate simulations were made with a total of 105 generations; the
first 200 generations were discarded. Top left: the distribution of N , compared with
that predicted by Eq. (11), N2M−1 exp

(
(2N −M)βz̄s + (2N −M)2β2/4M

)
(red). Top

middle: The trait mean, conditional on N compared with the predicted z̄s + βV ∗(2N −
M)/M), assuming 2V ∗ = 1. Top right: The variance of the mean compared with the
predicted var(z̄) = 1/2M . Bottom left: The population variance, 2V ∗,conditional on N ,
compared with the assumed 2V ∗ = 1. Bottom middle: Mean identity, F̄ , conditional on
N .

source (e−M(z̄−zs)
2/2V ∗

).
For given N , the trait mean is normally distributed, with variance V ∗/M ,

and mean E [z̄] = z̄s+βV
∗(2N−M)/M ; this is the deterministic equilibrium

in which selection 2βV ∗(1−M/2N) increases the trait mean, but is opposed
by gene flow at rate M/N . Integrating over the trait mean, the distribution
of N is proportional to

N2M−1 exp

(
β2(2N −M)2

V ∗

2M
+ β(2N −M)z̄s

)
. (11)

If M > 1/2 (which is required for genetic variance, 2V ∗, to be high and ap-
proximately constant), and if z̄s < −2

√
V ∗(1− 1/(2M))+βV ∗/2 ∼ −2

√
V ∗,

then the distribution has a peak at low density, and with z̄ < 0, which rep-
resents a metastable ‘sink’, in which the population is maintained by gene
flow despite its maladaptation. Figure 6 compares this approximation with
the distribution of z̄, N for M = 10.
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5. Understanding the new equilibrium

5.1. Deterministic equilibrium

Once the new population is established, it will grow and adapt. Even-
tually, its size must be limited by some form of density dependence, and
the trait will reach some equilibrium mean and variance. Despite inbreed-
ing, there will be some residual genetic variance (the amount being highly
variable), which will slowly be augmented by new mutation. We will first
outline how trait evolution may be limited, and then develop a diffusion ap-
proximation for the full process. In the following section, we complete the
analysis by using the deterministic approximation to estimate the degree to
which the newly established population is reproductively isolated from its
progenitor.

Suppose that fitness decreases linearly with density, at rate γ, giving a
continuous-time approximation:

dN(t)

dt
= M +N(t)βz̄(t)− γN(t)2,

dz̄(t)

dt
= 2βV ∗

(
1− M

2N(t)

)
− M

N(t)
(z̄(t)− z̄s) .

A homogeneous population with trait z̄ would equilibrate at

N =
1

2γ

(
βz̄ +

√
β2z̄2 + 4Mγ

)
,

but the trait is also evolving. For the trait mean to be in equilibrium, we
must have z̄ = z̄s + βV ∗ 2N−M

M , which implies equilibria for population size
at:

N =
M

2 (2β2V ∗ −Mγ)

(
−βz̄s + β2V ∗ ±

√
(βz̄s − β2V ∗)2 − 8β2V ∗ + 4Mγ

)
.

There are three distinct regimes. If 2β2V ∗ < γM , the trait cannot evolve fast
enough to overcome migration and density regulation, and the population
will be trapped in a unique ‘sink’ equilibrium. If

8β2V ∗ −
(
βz̄s − β2V ∗

)2
< 4γM < 8β2V ∗,

then there is a stable ‘sink’, but the population can escape to indefinitely
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high density if it can get beyond an unstable saddle point. Finally, if

4γM < 8β2V ∗ −
(
βz̄s − β2V ∗

)2
,

the population will expand indefinitely, even when it starts at low density
and is poorly adapted.

Simply adding linear density-dependence cannot maintain a stable equi-
librium at high density, in addition to the stable ‘sink’ which exists for
8β2V ∗ − (z̄s − β2V ∗)2 < 4γM . However, there are (at least) three ways by
which the indefinite adaptive increase of the population might be limited.
First, density-dependence might be steeper than linear (e.g. ∼ −γNa for
a > 1); then, population size would stabilise and the trait would be main-
tained in a migration-selection balance. Second, under purely directional
selection, genetic variance would decrease, and mutation pressure would de-
crease the mean, as favourable alleles fix. Third, the trait might be under
stabilising selection towards zopt > 0, with log fitness s

2

(
z2opt − (z̄ − zopt)

2
)
,

preventing its indefinite increase. We have chosen this form of log fitness
so that the threshold for positive growth is at z̄ = 0. Near that thresh-
old, the trait would still be under approximately directional selection with
β ∼ s zopt, provided zopt ≫ z̄s,

√
2V ∗.

5.2. Diffusion approximation at a stationary state

We now extend the diffusion approximation to include density-dependence
and stabilising selection; it is not immediately obvious how to include mu-
tation or fixation of favourable alleles in the quantitative genetic model in
a consistent way, and so we do not consider these cases. We shall use 2V̂
to denote the variance of the trait across the population. As we explain
in Appendix C, under stabilising selection, negative linkage disequilibrium
results in 2V̂ < 2V ∗ (although for small s, V̂ ∼ V ∗). The potential, U , is
modified to allow density dependence −γNa, and arbitrary mean fitness r̄:

U = M logN +Nr̄ − M

4V̂
(z̄ − z̄s)

2 − γ

a
Na

dN

dt
= N

∂U

∂N
+ ζN =M +Nr̄ − γNa + ζN < ζ2N >= N

dz̄

dt
=

2V̂

N

∂U

∂z̄
+ ζz̄ = 2V̂

∂r̄

∂z̄
− M

N
(z̄ − z̄s) + ζz̄ < ζ2z̄ >=

2V̂

N

24

user
Sticky Note
because the mean increases indefinitely under directional selection



Hence, the stationary density is proportional to:

ψ ∝ e2U

N
= N2M−1 exp

(
2Nr̄ − M

2V̂
(z̄ − z̄s)

2 − 2γ

a
Na

)
(12)

This is valid on the assumption that the genetic variance changes slowly,
so that the population size and trait mean approach the stationary distribu-
tion conditional on the current genetic variance. Stabilising selection would
be represented by:

r̄ =
s

2

(
z2opt − (z̄ − zopt)

2
)
.

Then, for example, if a = 2 and we normalise so that 2V̂ = 1, the stationary
distribution ψ[N, z̄] satisfies

ψ [N, z̄] ∝ N2M−1

× exp

(
−M (z̄ − z̄s)

2 − s

(
N − M

2

)(
(z̄ − zopt)

2 − z2opt

)
− γN2

)
.

Integrating over the trait we find that the density of the marginal distribu-
tion of the population size satisfies

ψ[N ] ∝ N2M−1

√
M + s

(
N − M

2

)

× exp

(
−sM(N −M/2) (zopt − z̄s)

2

M + s
(
N − M

2

) + s

(
N − M

2

)
z2opt − γN2

)
.

On the other hand, if we condition on the population size, then the trait
has mean and variance given by

E[z|N ] =
Mz̄s + szopt

(
N − M

2

)

M + s
(
N − M

2

) , Var ( z̄|N) =
1

2
(
M + s

(
N − M

2

)) .

Figure 7 shows the result of a simulation of a population subject to
stabilising selection towards an optimum at zopt = 5 with s = 0.02 and
density regulation as above with a = 2 and γ = 0.001. There are two
metastable states. Over a total of 55,000 generations, 8 of 11 replicate
simulations, each started from a single migrant, jump from low density to
high density, and none jump in the opposite direction. Thus jumps are
too rare for it to be feasible to estimate the rates of transition in the two
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Figure 7: The distribution ofN, z̄ for a population subject to stabilising selection, s = 0.02,
towards an optimum at zopt = 5, and density regulation with a = 2, γ=0.001; migrants
enter at rate M , and have mean zs = −2. 11 replicate simulations were made, starting
with a single migrant, and with a total of 55,000 generations. Over this time, 8 of the
11 replicates jumped to high density. Top left: The distribution of N , compared with
the diffusion approximation (red), assuming 2V ∗ = 1. Top middle: The trait mean,
conditional on N . The black line shows the mean for each value of N , and is compared
with the diffusion approximation (red curve). Top right: The variance of the mean,
conditional on N , compared with the diffusion approximation (red curve). Dots show
the variance, pooled into windows of width ∆N = 10. Bottom left: within-population
variance, conditional on N . The black line shows the mean for each value of N , and is
compared with the diffusion approximation (red curve). Bottom right: Mean identity, F ,
conditional on N ; this is used to calculate the predicted variance, 2V ∗ (red line at bottom
left).

directions, and therefore the relative weight of each metastable state, but
the diffusion approximation does predict the joint distribution of N, z̄, given
that the population is in one or other of the two metastable states. This
prediction is shown by the red curve at top left of Fig. 7. The predicted
distribution has been separated into two peaks which are then weighted by
the observed weights; thus the fit is to the shape of each peak separately, not
to their relative weights. The population variance is assumed to be 2V ∗, the
mean identity being calculated from pooled data at low and high densities
(0.29, 0.23 respectively). The other four panels of Fig. 7 show the expected
mean, the variance of the trait mean, the variance within populations, and
the mean identity. The expectation and the variance of the trait mean match
well, except in the transition region (20 < N < 150), where there is little
data. The variance within populations is somewhat lower than the predicted
2V ∗ at low density, but somewhat higher at high density (bottom left).
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6. Introgression into the new population

Once the new population is established with large numbers, and has
adapted to its new environment, it will still receive migrants from its pro-
genitor population. These will impede adaptation by pulling the trait mean
back, but given that establishment was possible, the new population will be
able to remain distinct unless conditions change. Moreover, introgression
will be reduced both because the new population is larger, and because it is
better adapted. Here, we calculate the reproductive value of an individual
backcrossing into such a population - that is its expected long-term genetic
contribution, normalised so that the mean contribution of native individu-
als is one. When averaged over the trait values and degree of relatedness
of migrants, this gives the gene flow factor, which measures the reduction
in gene flow due to selection against introgressing genes (Bengtsson, 1985).
This determines the strength of reproductive isolation, and hence, whether
the new population should be considered a biological species.

The new population will initially be highly inbred (Fig. 2), and gene flow
may play an important role by introducing new genetic variation. Because
individuals that migrate into a large population contribute additively to the
decrease in the mean relatedness, F , the rate of influx of trait variance due
to migrants is proportional to their reproductive value, just as for allele
frequencies or trait means. In the following, we describe how reproductive
value depends on trait mean and on relatedness, assuming that the new
population is at an equilibrium involving mutation and directional selection.
We also outline the corresponding derivation for stabilising selection, but we
are unable to provide an analytic expression for the reproductive value in
this case. Derivations are in Appendix C.

Directional selection

Suppose that the newly established population is at equilibrium in a
balance between directional selection and mutation. As before, we write V
for the variance in the trait among offspring of two unrelated individuals,
the within-family variance is V (1− F∗) where F∗ is the average identity of
two individuals chosen from the population, and under directional selection
with fitness eβz the equilibrium genetic variance is 2V ∗.

In each generation, selection increases the mean by 2βV ∗, and this is
counterbalanced by mutation. We assume that mutation only slowly in-
creases the genetic variance, and that this is offset by weak random drift or
stabilising selection; these effects are assumed to be negligible on the short
timescale set by recombination and by selection on the trait mean.
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We define w [z, Fw, Fb] to be the reproductive value of an individual back-
crossing into the population. Here z is the value of the trait of the individ-
ual, Fw is the probability of identity of two distinct copies of a gene sampled
within the individual, and Fb is the mean identity between the individual
and a randomly chosen individual from the established population.

First we consider a single generation. The immediate fitness of an in-
dividual is the expected number of its offspring, normalised by the average
growth rate across the native population (given by Eq. 3). For an individual
with trait value z, the immediate fitness is

exp
(
−βz̄ − β2V ∗

)
E

[
exp

(
β
(z + Y )

2
+
β2Vb
2

)]

= exp

(
β
(z − z̄)

2
− β2V ∗

4
+
β2

2
(Vb − V ∗)

)
,

where the expectation is over the trait value Y of a randomly chosen mate
from the native population and Vb is the within-family variance among off-
spring:

Vb = V

(
1− Fw + F∗

2

)
. (13)

For a native individual, Vb = V ∗. For a migrant, we see two conflicting
forces; we expect that for a new migrant z < z̄, but if it brings extra
variance (Vb > V ∗), the offspring can nonetheless be successful.

After selection and mutation (which reduces the mean by 2βV ∗), the
trait distribution of surviving offspring is normal with mean

z + z̄

2
+ βVb −

3βV ∗

2

and variance Vb + V ∗/2. Writing N [x|µ, σ2] for the density function at x of
a normally distributed random variable with mean µ and variance σ2, we
now have a recurrence for the reproductive value:

w [z, Fw, Fb] = exp

(
β
(z − z̄)

2
− β2V ∗

4
+
β2

2
(Vb − V ∗)

)

×
∫
w

[
x, Fb,

Fb + F∗

2

]
N
[
x

∣∣∣∣
z + z̄

2
+ βVb −

3βV ∗

2
, Vb +

V ∗

2

]
dx.

For a native individual, with trait value z, Fw = Fb = F∗ and the
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reproductive value is
w∗[z] = eβ(z−z̄)−β2V ∗

. (14)

(Notice that this averages to one across native individuals.) Equation (14)
says that the reproductive value is proportional to the square of the immedi-
ate fitness. This can be understood using Robertson’s (1960) argument, that
with no linkage, an inherited increase in fitness halves across each generation,
and so persists for, on average, two generations. The fixation probability
of a favourable mutation has the same dependence on reproductive value
(Barton, 2009).

The reproductive value of a migrant individual with trait z is:

w[z, Fw, Fb] = exp
(
β(z − z̄) + 4β2(Vb − V ∗)− β2V ∗

)
. (15)

This decreases with Fw, Fb, because an inbred migrant has less variable
offspring (Vb < V ∗ = V (1− F∗)). The factor exp(z − z̄), which reduces the
contribution of a less well-adapted migrant, is multiplied by a factor which
increases the contribution if the migrant produces more variable offspring
than the natives. When the new population is relatively outbred (right of
Fig. 8), the effect of the trait mean dominates, and introgression is reduced.
However, when it is highly inbred (F∗ ∼ 1; left of Fig. 8), the increased
variance of hybrids can give them a strong advantage if there is a high
genetic variance in the source population.

Stabilising selection

We now turn to the case of stabilising selection. We assume that the pop-
ulation is at equilibrium with constant relatedness F∗ between all genomes;
fitness is proportional to exp

(
−s(z − zopt)

2/2
)
, and the mean is assumed

to be at the optimum. The trait z is taken to be normally distributed with
variance 2V̂ . As before, V ∗ = V (1−F∗) denotes the within family variance
before selection. Because stabilising selection causes negative linkage dise-
quilibrium, V̂ < V ∗ at equilibrium. In Appendix C we find an expression
for V̂ and show that for small s it is approximately equal to V ∗.

Before the action of selection, the offspring of two individuals sampled
at random from the population have mean zopt and variance V̂ +V ∗ and so
an easy calculation (Appendix C) shows that the mean growth rate across

the population is 1/
√

1 + s(V̂ + V ∗). Now focus on an individual with trait

value z. The variance across its offspring (before selection) when it repro-
duces with a randomly chosen member of the native population is V̂ /2+Vb,
with Vb given by (13). Normalising by the mean growth rate, an analogous
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Figure 8: Reproductive value of an unrelated and outbred individual (Fw = Fb = 0) that
backcrosses into a population with inbreeding coefficient F∗ under directional selection
(Eq. 15). This population has genetic variance 2V ∗ = 2V (1 − F∗). The variance in log
fitness is 2β2V∗ = 0.02 (dashed curves), 0.2 (solid curves); relative fitness of the migrant
is eβ(z−z̄) = 1, e−1, e−2, e−3 (= 1, 0.37, 0.135, 0.050) (top to bottom).

calculation shows that the immediate fitness of the individual is
√

1 + s(V̂ + V ∗)
√

1 + s(V̂ /2 + Vb)
exp

(
−(z − zopt)

2

4

s

2(1 + s(V̂ /2 + Vb))

)
.

The distribution of surviving offspring of this individual is normal with mean

zopt +
z − zopt

2(1 + s(V̂ /2 + Vb))

and variance
V̂ /2 + Vb

1 + s(V̂ /2 + Vb)
,

from which we deduce the recursion for the reproductive value. Using the
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same notation as for directional selection:

w[z, Fw , Fb] =

√
1 + s(V̂ + V ∗)

√
1 + s(V̂ /2 + Vb)

exp

(
−(z − zopt)

2

4

s

2(1 + s(V̂ /2 + Vb))

)

×
∫

N
[
x

∣∣∣∣∣zopt +
(z − zopt)

2(1 + s(V̂ /2 + Vb))
,

(V̂ /2 + Vb)

(1 + s(V̂ /2 + Vb))

]
w

[
x, Fb,

Fb + F∗

2

]
dx.

(16)

In general, even for native individuals we have not been able to find a
closed form solution for this recursion. However, for small s, for a native
individual, an approximate solution to (16) is provided by

w(z) ∝ exp
(
−θ s

2
(z − zopt)

2
)
,

where

θ =
−(2α− 1) +

√
4α2 + 4α− 15

4(V̂ + 2V ∗)
,

and α = 2 + s(V̂ + 2V ∗). Since for small s, at equilibrium, V̂ ∼ V ∗,
substituting we find

θ ∼ s

3
as s ↓ 0,

so that for small s the reproductive value of a native individual is approxi-
mately proportional to the immediate fitness to the power 4/3.

More generally, the reproductive value of migrants, and hence their con-
tribution to gene flow, depends on their degree of inbreeding (Fw), their
relatedness to the new population (Fb), and on the product of the strength
of stabilising selection and the genetic variance, 2sV , which is a measure
of the genetic load due to stabilising selection. The reproductive value, of
an individual with the optimal trait value, z = zopt, is greater than 1 if it
comes from the native population, so that Fw = Fb = F∗, and increases with
2sV . Unrelated individuals that move into a highly inbred population have
substantially lower reproductive value, because their offspring are highly
variable, and hence tend to be further from the optimum.

7. Discussion

We analyse a simple, yet quite general, model for establishment in a new
habitat, following the joint evolution of the numbers and fitness distribution
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of individuals in the new environment. Although most of our results come
from simulations, we obtain approximations for the limiting cases of low
and high numbers of immigrants. More important, a thorough description is
possible because there are just three parameters: the number of migrants per
generation, M , and the mean and variance of log fitness of individuals from
the source population, measured in the new environment. These quantities
are, in principle, directly observable - though it has been very difficult to
measure the genetic variance in fitness in any organism (Kruuk et al., 2014).

The probability that a single migrant will establish a new population
depends primarily on how many genetic standard deviations the source lies
below the threshold fitness needed for positive growth (z̄s/

√
2V ). Roughly,

establishment becomes feasible if the mean of the source population is less
than ∼ 4 standard deviations below the threshold growth rate; even though
individuals that would have positive growth may be extremely rare, their
offspring will be selected for faster growth, allowing establishment. A pos-
itive growth rate is achieved in roughly equal measure by the success of
migrants that by chance are better adapted to the new environment, and
by the subsequent adaptation of their offspring. Following intense inbreed-
ing during establishment, some genetic variance remains, but the extent of
inbreeding - and hence, of future adaptation - is highly variable (Fig. 2).

Steady immigration gives more opportunity for establishment, and main-
tains higher genetic variance in the new population. However, it also pulls
the diverging population back towards the maladaptation of the source;
if the divergence of the source is greater than some threshold number of
standard deviations, then the expected time to establishment increases in-
definitely with migration rate, M (Fig. 4, upper right). This threshold can
be predicted by a simple deterministic approximation that ignores random
fluctuations, and assumes a constant genetic variance (Fig. 5). Above this
threshold level of divergence, establishment is still possible, provided that
M is not too high, but relies on random fluctuations that allow escape from
a metastable ‘sink’ state.

We introduce a simple diffusion approximation, which captures the qual-
itative behaviour of the model. The key assumptions are that the genetic
variance is constant - reasonable for moderate to large numbers of migrants
- and that changes are slow. This continuous time approximation is the
main source of error, since the small initial population size and strong fit-
ness differences necessarily set a short timescale. Nevertheless, the diffusion
approximation is a powerful aid to intuition, and readily extends to give
the joint distribution of population size and trait means or allele frequencies
in a population that experiences density regulation and stabilising selection
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(Eq. 12; see Banglawala, 2010).
We have used a very simple model of trait evolution, which depends pri-

marily on a single parameter - the additive genetic variance. There is obvious
scope for including greater realism - in particular, investigating the effects
of the number of loci, and including dominance and inbreeding depression.
The diffusion approach may be fruitful here, since it readily extends to dis-
crete biallelic loci, with dominance (see Banglawala, 2010). Gomulkiewicz
et al. (2010) argue that establishment is harder when more loci are involved.
However, as they point out, this argument depends on which quantities are
held fixed. If the additive variance is fixed, then there is a well-defined
infinitesimal limit, which is insensitive to the number of loci and their dis-
tribution of effects.

Gomulkiewicz and Houle (2009) investigate the effects of genetic con-
straints on evolutionary rescue, using a model of stabilising selection on
multiple traits. A large population will always reach the optimum, provided
there is at least some genetic variance in every direction. However, when
adaptation must occur rapidly if a small population is to survive, genetic
constraints (represented by directions in trait space with low variance) may
lead to extinction. Here, we only consider a single trait, which can be seen as
the vector that connects the source population with the new optimum. Ge-
netic constraints are represented by the variance along this direction. This
will be a good approximation if the new optimum is far from the threshold
for positive growth - a considerable simplification.

The rapid adaptation that is needed to establish a growing population in
a new habitat is unlikely to depend on mutation: a heterozygote for a single
mutation would need to increase growth rate to a positive value by itself.
This may be plausible for specific environmental challenges - pesticides or
plant toxins for example - but seems unlikely where multiple adaptations are
needed for growth. However, a mutation of large effect could act together
with polygenic adaptation. For a single migrant that carries such an allele in
heterozygous form, it is trivial to extend our analysis. However, continued
migration would tend to swamp the new allele. Indeed, the facilitating
mutation might eventually be lost, even if its initial presence was crucial for
establishment (c.f. Gomulkiewicz et al., 2010).

The strong dependence of establishment probability on the number of
standard deviations that separate the source from the threshold for positive
growth simply reflects the rapid decline of probability in the tails of a normal
distribution. It implies that if the size of the gap, measured in standard
deviations, fluctuates in space or time, then rare instances when the gap is
small will be most likely to lead to establishment. Once a large population is
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established, it can increase and adapt further, until numbers are limited by
competition, and the trait is limited by either stabilising selection, mutation
pressure, or lack of variation that can further increase fitness.

Once a new population is established in large numbers, N , the rate of
immigration will be low if M ≪ N . Moreover, immigrants will have low
fitness in the new habitat; under the infinitesimal model with initial fitness
eβz < 1, the rate of gene flow into the new population is given by Eq. (10).
If gene flow is sufficiently reduced, then we have a model of speciation.
Recalling the scenario in which demes in a metapopulation experience a
fluctuating environment, whether the new population survives and remains
distinct depends more on the distribution of suitable habitat than on genetic
details.

Note that this mechanism is distinct from classical ‘founder-effect’ speci-
ation, because it is impeded rather than assisted by inbreeding and the conse-
quent loss of genetic variance during establishment (Barton and Charlesworth,
1984). Directional selection acts throughout establishment in the new envi-
ronment, so that no fitness valley needs to be crossed. Nevertheless, a combi-
nation of genetic and demographic fluctuations are needed to establish large
numbers of well-adapted individuals despite gene flow from populations that
are already abundant in a different environment (or environments).

It is not immediately obvious whether the model analysed here should
be classed as sympatric or parapatric. Microhabitats might be intimately
mingled, and individuals from the source population might land randomly
across habitats. However, individuals that do manage to survive in the new
habitat are assumed to leave offspring there, and they must mate primarily
with others born there. Provided that the original population is sufficiently
many standard deviations from the threshold for growth in the new habi-
tat, only a few individuals can immigrate for establishment to be feasible.
So, this is a model of parapatric speciation. However, if the evolving trait
itself induced habitat or mate preference, or a trait that determined premat-
ing isolation were added, we would have a model for sympatric speciation
(c.f. Polechová and Barton, 2005; Barton, 2010). This could be seen as an
extension of the infinitesimal models of Polechová and Barton (2005) and
Barton (2010) to include local adaptation and random drift.
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Appendix A. Gaussian approximations

We develop a deterministic approximation which assumes that after mi-
gration, random mating, and selection, the population follows a Gaussian
distribution. Otherwise, the derivation allows for strong selection, and for
the excess variance generated by mixing populations. Our aim is to write
down a recursion for the joint evolution of the population size, the mean
trait value, and the variance within and between families.

Recall the order of events over a generation in our infinitesimal model.
At the start of the generation, M migrants enter the population. Every pair
of individuals (both native and migrant) produces a random number of off-
spring with mean trait value the average of the two parents and (within fam-
ily) variance determined by the relatedness between the parents. Offspring
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Table A.2: Contributions from the three classes of mated pair.

mating fraction mean variance between variance within
families families

migrant×migrant M2

(M+N)2 z̄s V V

migrant× native 2MN
(M+N)2

z̄s+z̄
2

V+v
2 V

native × native N2

(M+N)2
z̄ v V (1− F )

mating total variance mean fitness

migrant×migrant 2V exp
[
β zs + β2V

]

migrant× native 3V
2 + v

2 exp
[
β z̄s+z̄

2 + β2

2

(
3V
2 + v

2

)]

native × native v + V (1− F ) exp
[
βz̄ + β2

2 (v + V (1− F ))
]

survive with a probability determined by their fitness. For our derivation
it is convenient to follow the (equivalent) strategy of our simulations. Each
pair of individuals in the population produces a Poisson number of offspring
with mean wij given by (2). The traits of offspring are independent samples
from a normal distribution with mean βvij +(zi+zj)/2, where zi and zj are
the trait values of the parents and vij is the within family variance.

Assume that the distribution of individuals in the population, size N ,
is Gaussian, with mean z̄ and variance 2v. The average identity is F . At
the start of the generation, M migrants enter, with mean z̄s and variance
2V ; these make a fraction m = M

M+N of the population. We now have three
classes of mated pair (Table A.2).

The new population size, mean trait value among offspring before selec-
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tion, and the average within family variance are:

N∗ =
M2

(M +N)
exp

(
βz̄s + β2V

)

+
2MN

(M +N)
exp

(
β
z̄s + z̄

2
+
β2

2

(
3V

2
+
v

2

))

+
N2

(M +N)
exp

(
βz̄ +

β2

2
(v + V (1− F ))

)
;

N∗z̄∗ =
M2

(M +N)
exp

(
βz̄s + β2V

)

+
2MN

(M +N)
exp

(
β
z̄s + z̄

2
+
β2

2

(
3V

2
+
v

2

))

+
N2

(M +N)
exp

(
βz̄ +

β2

2
(v + V (1− F ))

)
;

N∗V ∗

w =
M2

(M +N)
V exp

(
βz̄s + β2V

)

+
2MN

(M +N)

(
3V

2
+
v

2

)
exp

(
β
z̄s + z̄

2
+
β2

2

(
3V

2
+
v

2

))

+
N2

(M +N)
(v + V (1− F )) exp

(
βz̄ +

β2

2
(v + V (1− F ))

)
.

We shall add the between-class variance, and the change in mean trait value
due to selection, later. Let v = V + δv, and M̃ = M exp (−β(z̄ − z̄s)/2),
Ñ = N exp

(
β2δv/8

)
. The expressions above become

N∗ =
exp

(
βz̄ + β2V

)

(M +N)

((
M̃ + Ñ

)2
− Ñ2γ

)
;

(z̄∗ − z̄s) =

((
M̃ + Ñ

)
− Ñγ

)
Ñ

((
M̃ + Ñ

)2
− Ñ2γ

) (z̄ − z̄s) ;
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and

2V ∗

w = 2V +
Ñ
(
M̃δv + Ñ(1− γ) (δv − V F )

)

((
M̃ + Ñ

)2
− Ñ2γ

) ;

where
γ =

(
1− exp

(
−β2V F/2

))
.

We also need to find the identity, F ∗, within the offspring, after selection.
More precisely, we require the identity between the two distinct genes in a
diploid individual, since this determines the segregation variance released by
meiosis. Individuals from crosses between migrants and natives cannot be
inbred; those from crosses amongst the M migrants have identity 1

2M ; and

those from crosses amongst the N natives have identity (1−F )
2N + F . Hence:

F ∗ =
1

2M
φM,M + φN,N

(
1

2N
(1− F ) + F

)
(A.1)

where

φN,N =
Ñ2(1− γ)((

M̃ + Ñ
)2

− Ñ2γ

) , φM,M =
M̃2

((
M̃ + Ñ

)2
− Ñ2γ

) .

The mean trait value of offspring will shift by β times the within-family
variance due to selection and so the shift in the mean trait value across the
whole population due to selection is given by 2βV ∗

w , so that after selection
we have

(z̄∗∗ − z̄s) =

((
M̃ + Ñ

)
− Ñγ

)

((
M̃ + Ñ

)2
− Ñ2γ

)Ñ (z̄ − z̄s) + 2βV ∗

w .

Finally, we must add the variance generated by mixing the three classes.

The three classes of mating are in the ratio α =
{
M̃2, 2M̃Ñ , Ñ2(1− γ)

}
,

and have means (after selection) of m =
{
0, ∆2 + β δv

2 ,∆+ βδv − FβV
}
,

plus a constant; ∆ = z̄ − zs. The variance generated by mixing the three
classes is 1

(
∑

α)2

(
α.m2(

∑
α)− (α.m)2

)
, where we have abused notation and
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written m2 for the vector whose entries are the squares of those of m, giving:

Vb =
M̃Ñ

4

((
M̃ + Ñ

)2
− Ñ2γ

)2 ×
{
2A2

((
M̃ + Ñ

)2
(1− γ) + γM̃2

)

− 4AβV FÑ(1− γ)
(
M̃ + Ñ

)
+ 2β2V 2F 2(1− γ)Ñ

(
M̃ + 2Ñ

)}
,

where A = βδv + (z̄ − z̄s).
We can rewrite these expressions in a simpler dimensionless form by

letting y = (z̄ − z̄s)
√
2V , α = β

√
2V , δ = δv/V , δb = Vb/V , n = N/M ,

γ =
(
1− exp(−α2F/4

)
:

n∗ =
exp

(
βz̄s +

α2

2

)

(1 + n)

(
(1 + nC)2 − n2C2γ

)
,

δ∗w =
nC
(
δ
2 + nC(1− γ)

(
δ
2 − F

2

))

((1 + nC)2 − n2C2γ)
,

y∗∗ =
(1 + nC(1− γ))

((1 + nC)2 − n2C2γ)
nCy + α (1 + δ∗w) ,

δb =
nC

4 ((1 + nC)2 − n2C2γ)2

{
2a2

(
(1 + nC)2(1− γ) + γ

)

− 4aαF (1 − γ)nC(1 + nC) + α2F 2(1− γ)nC(1 + 2nC)

}
,

F ∗ =
1

2M
φM,M + φN,NF

(
1− 1

2Mn

)

=
1

((1 + nC)2 − n2C2γ)

(
1

2M
+ n2C2(1− γ)F

(
1− 1

2Mn

))
,

where

φM,M =
1

((1 + nC)2 − n2C2γ)
, φN,N =

n2C2(1− γ)

((1 + nC)2 − n2C2γ)
,

Ñ/M̃ = nC and C = exp(αy/2 + α2δ/8), a = y + αδ/2. If F reaches a
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quasi-equilibrium, n∗ = n, and:

F ∼ 1

(2M(1 + 2nC) + nC2(1− γ))
(A.2)

If F is negligible, as it will be for large M , we can set F , γ = 0, obtaining:

n∗ =
(1 + nC)2

(1 + n)
exp

(
βz̄s +

α2

2

)
, y∗∗ = α+

nC

(1 + nC)

(
y + α

δ

2

)
,

δ∗ = δ∗w + δ∗b =
nC

(1 + nC)

δ

2
+

nC

2(1 + nC)2

(
y + α

δ

2

)2

.

Figure A.9 compares this deterministic recursion with stochastic simu-
lations of the full model. The mean of the source population is sufficiently
negative that there is a ‘sink’ state that can trap the population. The panels
show the outcome for different starting points. If the mean, z̄s, is initially
low, the population remains small (top row, z̄s = −2.5,−2,−1.5), whilst if
it is sufficiently high, it quickly escapes (bottom row, z̄s = −1.0,−0.5, 0).
The full Gaussian approximation developed in this section (orange dots) fits
closely to the mean of those populations that remain trapped (red line),
whilst the cruder approximation outlined in the main text which assumes a
constant variance fits less well (brown dots).

Next, we find the critical point above which escape is inevitable. Assum-
ing that y ≫ αδ, and that δ is rapidly pulled towards a quasi-equilibrium,
we have for αy small

δ ∼ nCy2

((2 + nC)(1 + nC)− αynC)
∼ ny2

(2 + n)(1 + n)
.

If y2 ≪ n, then δ is small, and

n∗ =
(1 + nC)2

(1 + n)
exp

(
βz̄s +

α2

2

)
, y∗∗ = α+

nC

(1 + nC)
y.

At equilibrium, n = (y − α) exp(−αy/2)/α. Hence:

βz̄s = log

(
(y − α)

y2
e−αy/2

(
α+ (y − α)e−αy/2

))
− α2

2
. (A.3)

This has a peak at some critical value of βz̄s, which determines the critical
point below which a stable ‘sink’ state is possible.

The still simpler approximation developed in the main text assumes C ∼
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Figure A.9: We compare the Gaussian approximation of Appendix A with simulations of
the full model; β = 0.25, M = 10. Grey lines show 20 replicates, starting from N = 100,
with the mean of the source population z̄s = −2.5. This is below the critical value of
z̄s = −2.0 (from either Eq. 9 or Eq. A.3), and so there is an unstable point below which
the population is trapped in a ‘sink’. Each panel shows a different starting condition,
z̄s = −2.5,−2.0, . . . , 0 (from top left). Orange dots are the Gaussian approximation, with
F = 0, whilst brown dots are the simpler approximation of Eqs. (4), (5), which assumes
constant variance. The red line is the mean of those runs which did not escape by the
end.

1, and approximates changes due to selection to be small, leading to Eqs. (8),
(9). Figure A.10 shows that this is close to the Gaussian approximation of
Eq. (A.3).

Appendix B. A note on diffusion approximations

In Section 4.2, we wrote down a system of differential equations to ap-
proximate the evolution of the population size and mean trait value, under
the assumption that the trait value across the population has a Gaussian
distribution with constant variance. If we wish the differential equations
to mimic the discrete system given by equations (4) and (5), some care is
needed in choosing the coefficients.

It is convenient to consider the recursions for N and Nz̄. These are:

N(t+ 1) = M +N(t) exp
(
βz̄(t) + β2V ∗

)
, (B.1)

N(t+ 1)z̄(t+ 1) = (N(t)z̄(t) + 2βV ∗N(t)) exp
(
βz̄(t) + β2V ∗

)
+Mz̄s.

(B.2)
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Figure A.10: This shows the equilibria for n = N

M
, y = (z̄ − z̄s)

√
2V ∗ (left, right),

against βz̄s, for β = 0.25. The lower equilibrium is stable, the upper unstable; the critical
value of βzs is where these equilibria merge. Blue: naive approximation; Red: Gaussian
approximation. Orange points show means over simulations of the full model, run for 104

generations, or until escape, and dropping the last 50 generations. This procedure was
repeated until a total of at least 5000 generations were accumulated.

We note that the solution to

df(t)

dt
= g(t) + a(t)f(t)

satisfies

f(t+ T ) =

∫ t+T

t
g(u) exp

(∫ t+T

u
a(r)dr

)
du+ f(t) exp

(∫ t+T

t
a(r)dr

)
.

(B.3)
If we take the differential equations

dN

dt
= M + βz̄N (B.4)

dz̄

dt
= 2βV ∗

(
1− M

2N

)
− M

N
(z̄ − z̄s), (B.5)

then
d(Nz̄)

dt
=Mz̄s + 2βV ∗

(
N − M

2

)
+ βz̄(Nz̄). (B.6)

Solving for N using (B.3) with T = 1 yields:

N(t+ 1) =

∫ t+1

t
M exp

(∫ t+1

u
βz̄(r)dr

)
du+N(t) exp

(∫ t+1

t
βz̄(r)dr

)
.

Now we expect z̄ to change by order β over a single generation (this will
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be the order of its shift due to selection) and so for small β, expanding the
exponential, we see that

N(t+ 1) =M +N(t)(1 + βz̄(t)) +
1

2
βz̄(t)M +O

(
β2(N(t) +M)

)
.

Comparing with our discrete recursion (in which we also expand the expo-
nential), the errors we are accumulating in using (B.4) in place of (B.1) are of
order at most βM+β2N per generation. If we wanted to reduce the error to
order β2(M+N), we would need to replaceM in (B.4) byM(1−βz̄/2). The
point is that in contrast to the discrete world, in which all migrants arrive
after reproduction, here migrants arrive throughout the time interval and
once arrived, they produce offspring, thereby increasing the overall effect of
migrants on the population size at the end of the generation. We chose not
to make this adjustment to M . We expect βz̄M to be small relative to N ;
once z̄ is large, the population grows rapidly.

Now consider the equation for Nz̄. Again we use (B.3):

(Nz̄)(t+ 1) =

∫ t+1

t

(
Mz̄s + 2βV ∗

(
N(u)− M

2

))

× exp

(∫ t+1

u
βz̄(r)dr

)
du

+ (Nz)(t) exp

(∫ t+1

t
βz̄(r)dr

)
.

Now again using (B.3), we see that for u ∈ [t, t+ 1], up to an error of order
β, N(u) = N(t) + (u− t)M . Substituting we find

(Nz̄)(t+ 1) =

∫ t+1

t

(
Mz̄s + 2βV ∗

(
N(t) +M(u− t)− M

2

))

× exp

(∫ t+1

u
βz̄(r)dr

)
du+ (Nz)(t) exp

(∫ t+1

t
βz̄(r)dr

)

= Mz̄s

(
1 +

βz̄

2

)
+ 2βV ∗N(t) + (NZ)(t) (1 + βz̄(t))

+ O
(
β2(M +N)

)
.

Taking a factor (1 −M/(2N)) in (B.5) in place of the (1 −M/N) in the
discrete equations, results in the cancellation of two terms βV ∗M . Once
again, we see that if we replace M by M(1 − βz̄/2) in equation (B.4), our
approximation is accurate up to order β2(M +N).
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Appendix C. Reproductive value of migrants

Directional selection

Here we set up and solve a recursion for the reproductive value of an
individual backcrossing into a population that has established in the new
environment. We denote the reproductive value of an individual of trait z
by w[z, Fw , Fb], where Fw is the probability of identity of two distinct copies
of a gene sampled within the individual and Fb is the mean identity between
the individual and a randomly chosen individual from the native population.
In order to write down a recursion, we must keep track of not only the trait
value, but also Fw and Fb for offspring of our chosen individual.

It is convenient to replicate the steps in our simulations. First we calcu-
late the mean growth rate across the whole population. Then we calculate
the contribution from our individual of trait z. Finally we write down the
conditional distribution of the trait of a second individual sampled from the
population, given that it produced an offspring with our chosen individual.

Since the population is assumed to be at equilibrium with mean z̄ and
variance 2V ∗, exactly as before (Eq. 3), the mean growth rate of the popu-
lation is exp

(
βz̄ + β2V ∗

)
.

Suppose now that an individual has trait value z, and we calculate its
expected number of offspring. Offspring could come from multiple partners
in our model, but the mean number of offspring is

wz = E

[
exp

(
β
(z + Y )

2
+
β2Vb
2

)]
= exp

(
β
(z + z̄)

2
+
β2Vb
2

+
β2V ∗

4

)
,

where the expectation on the left is with respect to the choice of the mate
Y from the population, and we have used Vb to denote the within-family
variance of the offspring:

Vb = V

(
1− Fw + F∗

2

)
. (C.1)

The immediate fitness of the individual, that is its relative weight in the
whole population, is

exp

(
β
(z − z̄)

2
− β2V ∗

4
+
β2

2
(Vb − V ∗)

)
.

To find the distribution of the trait Y of the mate of our chosen individ-
ual, we must weight the random pick from the population by the relative
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fitness of offspring of parents z and y compared to the quantity wz that we
just calculated. The resulting tilted distribution has density proportional to

exp

(
β
(y − z̄)

2
− (y − z̄)2

4V ∗

)

and so is a normal distribution with mean z̄+βV ∗ and variance 2V ∗. Given
Y = y, the trait values among offspring will then be normal with mean
(z + y)/2 + βVb − 2βV ∗, and variance Vb. The term −2βV ∗ in the mean
reflects mutation (which restores the population to equilibrium).

Combining the above, we can now write down the recursion for the re-
productive value. We write N [x|µ, σ2] for the density function at x of a
normally distributed random variable with mean µ and variance σ2. Then

w [z, Fw, Fb] = exp

(
β
(z − z̄)

2
− β2V ∗

4
+
β2

2
(Vb − V ∗)

)

×
∫ ∫

w

[
x, Fb,

Fb + F∗

2

]
N
[
x

∣∣∣∣
y + z

2
+ βVb − 2βV ∗ , Vb

]

×N [y |z̄ + βV ∗ , 2V ∗] dydx (C.2)

We can find the reproductive value of a native individual as a special
case. Writing w∗[z] = w [z, F∗, F∗],

w∗[z] = exp

(
β
(z − z̄)

2
− β2V ∗

4

)

×
∫ ∫

w∗[x]N
[
x

∣∣∣∣
y + z

2
− βV ∗ , V ∗

]
N [y |z̄ + βV ∗ , 2V ∗] dydx. (C.3)

To solve this, one can integrate out y on the right hand side to see that x
has a normal distribution with mean (z + z̄ − βV ∗)/2 and variance 3V ∗/2
and then postulating a solution of the form exp

(
θβ(z − z̄)− θ2β2V ∗

)
and

matching coefficients yields

w∗[z] = exp
(
β(z − z̄)− β2V ∗

)
. (C.4)

(The second term in the exponent is needed in order for the mean reproduc-
tive value across the population to be one). That is the reproductive value
is proportional to the square of the immediate fitness.

One can apply a similar technique to find the reproductive value of a
migrant, but now we obtain a recursion. Again integrating out y in equa-
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tion (C.2), we find that x is normally distributed with mean (z + z̄)/2 +
βVb − 3βV ∗/2, and variance Vb + V ∗/2. We make the ansatz that

w[z, Fw, Fb] = exp (δ(Fw , Fb)(z − z̄)− θ(Fw, Fb)) .

Then equation (C.2) becomes

w[z, Fw , Fb] = exp

(
β
(z − z̄)

2
− β2V ∗

4
+
β2

2
(Vb − V ∗)

)

× exp

(
δ
(
Fb,

Fb + F∗

2

)(z − z̄

2
+ βVb −

3βV ∗

2

)

+ δ
(
Fb,

Fb + F∗

2

)2 1
2

(
Vb +

V ∗

2

)
− θ
(
Fb,

Fb + F∗

2

))
. (C.5)

Equating the exponents in (C.5) yields

δ(Fw, Fb) =
β

2
+

1

2
δ
(
Fb,

Fb + F∗

2

)
,

and iterating we see that
δ(Fw, Fb) = β.

Substituting δ(Fw , Fb) = δ(Fb, (Fb + F∗)/2 = β into the recursion for θ
obtained by equating coefficients in (C.5) we obtain

−
(
θ(Fw, Fb)− θ

(
Fb,

Fb + F∗

2

))
= 2β2(Vb − V∗) = β2V (F∗ − Fw) .

Again iterating, and using the solution we obtained before for a native in-
dividual, we find that,

θ(Fw, Fb) = β2V ∗ − 4β2(Vb − V ∗).

Thus the reproductive value of a migrant individual with trait z is

w[z, Fw, Fb] = exp
(
β(z − z̄) + 4β2(Vb − V ∗)− β2V ∗

)
.

Stabilising selection

We assume that the fitness is proportional to exp(−s(z − zopt)
2/2) and

the mean in the population is assumed to be at the optimum. Because
stabilising selection causes negative linkage disequilibrium, the variance in
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the trait across the population will no longer be 2V ∗ Let us write 2V̂ for the
variance across the whole population. We retain the notation V ∗ = V (1−F∗)
for within family variance (before selection), where V is the variance (before
selection) among offspring of two unrelated individuals.

Before the action of selection, the variance among offspring is Ṽ = V̂ +
V ∗. The action of selection reduces this to Ṽ /(1+sṼ ) and so at equilibrium

2V̂ =
Ṽ(

1 + sṼ
) , (C.6)

leading to a quadratic in V̂ whose positive solution is

V̂ =
1

4s

(√
1 + 12sV (1− F∗) + (2sV (1− F∗))

2 − (1 + 2sV (1− F∗))

)

(C.7)
which tends to V ∗ for small s. So for small s, the variance in trait values
across the population is ∼ 2V ∗, as for the classical infinitesimal model.

To set up a recursion for the reproductive value, it is convenient to note
that if Z is normally distributed with mean µ and variance σ2, then

E

[
exp

(
−sZ

2

2

)]

=

∫
1√
2πσ2

exp

(
−sσ

2 + 1

2σ2

(
z − µ

sσ2 + 1

)2

− µ2s

2(sσ2 + 1)

)

=
1√

1 + sσ2
exp

(
− µ2s

2(1 + sσ2)

)
. (C.8)

First we calculate the mean growth rate in the population. Before selec-
tion, the distribution of the offspring of two individuals sampled at random
from the population is Gaussian with mean zopt and variance V̂ + V ∗ and

so using (C.8), the mean growth rate is 1/

√
1 + s(V̂ + V ∗).

Now, define w [z, Fw, Fb] to be the reproductive value of an individual
with trait value z backcrossing into such a population. By analogy with
our calculation for directional selection, our first task is to find its mean
number of offspring. Before selection, the trait value of offspring is normal
with mean (z + zopt)/2 and variance V̂ /2 + Vb where, as before, Vb is the
within family variance of the offspring and is defined by (C.1). Using (C.8)
applied to the offspring trait value minus zopt which has mean (z − zopt)/2
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and variance V̂ /2 + V ∗, and our expression for the growth rate across the
population, the immediate fitness of the individual is

√
1 + s(V̂ + V ∗)

√
1 + s(V̂ /2 + Vb)

exp

(
−(z − zopt)

2

4

s

2(1 + s(V̂ /2 + Vb))

)
.

Now we can read off the distribution of the trait value of successful
offspring from the calculation that led to (C.8). It is normal with mean

zopt +
(z − zopt)

2(1 + s(V̂ /2 + Vb))

and variance (V̂ /2+Vb)/(1+s(V̂ /2+Vb)). The recursion for the reproductive
value is therefore

w[z, Fw , Fb] =

√
1 + s(V̂ + V ∗)

√
1 + s(V̂ /2 + Vb)

exp

(
−(z − zopt)

2

4

s

2(1 + s(V̂ /2 + Vb))

)

×
∫

N
[
x

∣∣∣∣∣zopt +
(z − zopt)

2(1 + s(V̂ /2 + Vb))
,

(V̂ /2 + Vb)

(1 + s(V̂ /2 + Vb))

]
w

[
x, Fb,

Fb + F∗

2

]
dx.

(C.9)

We have been unable to find a closed form solution to this equation, even
for native individuals. However, when s is small, for a native individual it
is close to Gaussian. To see why, try a solution of the form

w∗ ∝ exp
(
−θ s

2
(z − zopt)

2
)
,

then substituting in (C.9) with Fb = F∗ and equating exponents, we find a
quadratic in θ. Writing α = 2 + s(V̂ + 2V ∗), the positive solution is

θ =
−(2α− 1) +

√
4α2 + 4α− 15

4(α− 2)
.

For small s, we saw above that at equilibrium V̂ ∼ V ∗ and substituting we
find

θ ∼ 1

3
as s ↓ 0.

Moreover, substituting back into the recursion, we see that with this value
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of θ, as s ↓ 0, we have an approximate solution. Thus, for small s, the
reproductive value of a native individual is approximately proportional to
the immediate fitness to the power 4/3.

The reason that this approach does not work for larger values of s is
that although the same expression for θ in terms of α ensures that when
we substitute w∗ of this form into (C.9), the exponents in the exponentials
on both sides of the equations match, the constant terms multiplying those
exponentials are not equal.
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