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The Free Boundary Schur Process
and Applications I

Dan Betea, Jérémie Bouttier, Peter Nejjar and Mirjana Vuletić

Abstract. We investigate the free boundary Schur process, a variant of the
Schur process introduced by Okounkov and Reshetikhin, where we allow
the first and the last partitions to be arbitrary (instead of empty in the
original setting). The pfaffian Schur process, previously studied by several
authors, is recovered when just one of the boundary partitions is left free.
We compute the correlation functions of the process in all generality via
the free fermion formalism, which we extend with the thorough treatment
of “free boundary states.” For the case of one free boundary, our approach
yields a new proof that the process is pfaffian. For the case of two free
boundaries, we find that the process is not pfaffian, but a closely related
process is. We also study three different applications of the Schur process
with one free boundary: fluctuations of symmetrized last passage perco-
lation models, limit shapes and processes for symmetric plane partitions
and for plane overpartitions.

1. Introduction

In this paper we introduce and study the free boundary Schur process, a ran-
dom sequence of partitions which we now define. Recall that an (integer) par-
tition λ is a nonincreasing sequence of integers λ1 ≥ λ2 ≥ · · · which vanishes
eventually. Its size is |λ| :=

∑
i≥1 λi. For two partitions λ, μ such that λ ⊃ μ

(i.e., λi ≥ μi for all i), let sλ/μ be the skew Schur function of shape λ/μ—see
the beginning of Sect. 2.1 for a summary of the relevant notions. Let us fix a
nonnegative integer N , two nonnegative real numbers u and v, and two fam-
ilies (ρ+

k )1≤k≤N and (ρ−
k )1≤k≤N of specializations (which we can think of as

collections of variables). To a sequence of partitions of the form

μ(0) ⊂ λ(1) ⊃ μ(1) ⊂ · · · ⊃ μ(N−1) ⊂ λ(N) ⊃ μ(N) (1.1)
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we assign a weight

W(�λ, �μ) := u|μ(0)|v|μ(N)|
N∏

k=1

(
sλ(k)/μ(k−1)

(
ρ+

k

)
sλ(k)/μ(k)

(
ρ−

k

))
. (1.2)

The partition function Z ≡ Z(u, v, ρ+
1 , ρ−

1 , . . . , ρ+
N , ρ−

N ) is the sum of weights
of all sequences of form (1.1). Under certain assumptions on the parameters
u, v, ρ±

1 , . . . , ρ±
N to be detailed in Sect. 2.1, the partition function is finite,

and W/Z defines a probability distribution which is the free boundary Schur
process.

For u = v = 0, we recover the original Schur process of Okounkov and
Reshetikhin [42], which is such that the boundary partitions μ(0) and μ(N) are
both equal to the empty (zero) partition ∅. For u > 0 and v = 0, only μ(N)

is constrained to be zero, and we recover the so-called pfaffian Schur process
[18] up to the inessential change that, in this reference, μ(0) is assumed to
be the conjugate of an even partition—see Remark 2.4. Of course, the case
u = 0 and v > 0 is equivalent by symmetry. The new situation considered in
this paper is when uv > 0, i.e., when both boundaries are free. Note that the
constant sequence equal to λ has weight (uv)|λ|; therefore, it is necessary to
have uv < 1 for the partition function to be finite. Let us mention that, if
we condition on having μ(0) = μ(N), then we recover Borodin’s periodic Schur
process [16]. Conversely, the free boundary Schur process of length N can be
seen as a symmetrized version of the periodic Schur process of length 2N .

The Schur process may be viewed as a simple point process on Z
2—see

Sect. 2.1. As such, a natural question is to characterize the nature of this
process. Okounkov and Reshetikhin showed that the original Schur process is
determinantal [42], while Borodin and Rains proved that the pfaffian Schur
process is, well, pfaffian [18]—see “Appendix A” section for the definition of
pfaffian point processes. In this paper, we shall see that the free boundary Schur
process is not pfaffian in general, but a closely related point process is, and we
will explicitly compute its correlation kernel. This situation is reminiscent of
the periodic Schur process, which becomes determinantal only after a certain
“shift-mixing” [16].

Context and Motivations. The problems we consider in this paper are part of
an active area of research dubbed “integrable probability”—see for instance
the exposition in [15]. A first major result in the area was the resolution of
Ulam’s problem by Baik et al. [5] who have shown that the longest increasing
subsequence of a random permutation exhibits Tracy–Widom GUE fluctua-
tions around its mean and thus behaves like the largest eigenvalue of a large
Gaussian Unitary Ensemble random matrix [50]. By the Robinson–Schensted
correspondence, Ulam’s problem is closely related to the so-called Plancherel
measure on the set of partitions, and Okounkov [41] realized that this measure
is a particular instance of a Schur measure, whose determinantal correlations
can be computed explicitly using the infinite wedge space (or free fermion) for-
malism. Asymptotics then reduces to simple saddle point analysis. Around the
same time, a discrete version of the Plancherel measure, that of last passage
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percolation (LPP) in a rectangle with independent geometric weights, has been
analyzed by Johansson [30] using Schur measures and orthogonal polynomial
techniques. Using asymptotics of Meixner polynomials, Johansson showed that
this model belongs to the same universality class and that, in particular, the
last passage time also fluctuates according to the Tracy–Widom GUE law.

The story continues with a series of papers by Baik and Rains [6–8,45]
studying longest increasing subsequences in random permutations subject to
certain symmetry constraints (e.g., involutions). Upon poissonization the cor-
responding processes are pfaffian instead of determinantal, and new distribu-
tions like the Tracy–Widom GOE and GSE laws appear as fluctuations.

In parallel, Okounkov and Reshetikhin [42] introduced a time-dependent
generalization of the Schur measure called the Schur process, using again the
infinite wedge space formalism to prove its determinantal nature, and applied
their result to analyze large plane partitions. As mentioned above, in the orig-
inal setting, the process is constrained to start and end with the empty parti-
tion. Borodin and Rains [18] developed another approach to the Schur process
via the Eynard–Mehta theorem; they treated similarly the pfaffian Schur pro-
cess, which appeared implicitly in an earlier work of Sasamoto and Imamura
[46], and corresponds in our language to having one free boundary and one
empty boundary (alternatively it can be viewed as a symmetrized Schur pro-
cess upon interpreting the free boundary as a reflection axis). In a different
direction, Borodin [16] considered the Schur process with periodic boundary
conditions.

In this paper, we explore the “missing” type of boundary conditions,
namely that of two free boundaries. Our main technical tool will be, as in [42],
the infinite wedge space/free fermion formalism. Free boundaries are repre-
sented in this formalism as free boundary states, which were first introduced in
[21] in order to compute the partition function of free boundary steep tilings
(an instance of free boundary Schur process to appear in Sect. 6). Here, we pro-
ceed to the next level of computing correlation functions, which requires under-
standing the interplay between free boundary states and fermionic operators.
The determinantal nature of the original Schur process with empty boundary
conditions results from Wick’s theorem for free fermions. As we shall see, the
adaptation of this theorem for free boundaries is not completely straightfor-
ward and involves extended free boundary states which are not eigenvectors
of the charge operator. A consequence of this is that the free boundary Schur
process is neither determinantal nor pfaffian in general, but becomes pfaffian
after we perform a certain random vertical shift of the point configuration,
that translates in the point process language the “charge mixing” occurring in
extended free boundary states. This phenomenon has some similarities with
Borodin’s shift-mixing for the periodic Schur process [16], but the fermionic
picture is rather different: as explained in [10], for periodic boundary condi-
tions, Borodin’s shift-mixing can be interpreted as the passage to the grand
canonical ensemble, needed to apply Wick’s theorem at finite temperature.
In the case of a single free boundary, the shift goes away, and our approach
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yields a new derivation of the correlations functions of the pfaffian Schur pro-
cess, alternative to that by Borodin and Rains [18] and the very recent one by
Ghosal [28] using Macdonald difference operators.

Among other recent developments related to the pfaffian Schur process,
let us mention the work by Baik, Barraquand, Corwin and Suidan studying its
applications to LPP in half-space [4] and facilitated TASEP [3], and the work
of Barraquand, Borodin, Corwin and Wheeler [9] introducing its Macdonald
analogue. Here, we further investigate applications of the pfaffian Schur process
by considering symmetric LPP, thus complementing the results of [4,7,8], as
well as symmetric plane partitions and plane overpartitions—two models which
can be rephrased in terms of lozenge and domino tilings, respectively. The
fact that dimer models with free boundaries are related to pfaffians is not
surprising. This was already observed for instance in [23,48] via nonintersecting
lattice paths. See also [25,44] for other limit shape results on tilings with free
boundaries. Applications of the Schur process with two free boundaries will be
investigated in a subsequent publication.
Outline. The paper is organized as follows: in Sect. 2 we list the main results
of the paper, only introducing the basic concepts needed for the statements.
It is divided into two parts: Sect. 2.1 leads to two fundamental Theorems 2.2
and 2.5 stating that certain point processes associated with the free boundary
Schur process have pfaffian correlations, while Sect. 2.2 deals with listing the
applications we draw from the first. Section 3 is devoted to the proof of our
two fundamental theorems via the machinery of free fermions. We also obtain
in Theorem 3.14 an expression for the general multipoint correlation func-
tions. Sections 4, 5 and 6 deal with asymptotic applications of Theorem 2.2
to models of symmetric last passage percolation, symmetric plane partitions
and plane overpartitions, respectively. Section 7 gathers some concluding re-
marks and perspectives. We list, in Appendices, odds and ends we deemed too
cumbersome to put in the main text.
Note. This paper is a slightly abridged version of the preprint [12]. An ex-
tended abstract was presented at FPSAC2017 [13].

2. Main Results

2.1. Correlation Functions of the Free Boundary Schur Process

Preliminaries on Symmetric Functions. We start with some definitions and
notations that are needed to state our results in compact form. We refer to [37,
Chapter 1] or [47, Chapter 7] for general background. Let Sym be the algebra
of symmetric functions, and let hn (resp. pn) be the complete homogeneous
(resp. power sum) symmetric function of degree n. For two partitions λ ⊃ μ,
the skew Schur function sλ/μ is given by sλ/μ := det1≤i,j≤�(λ) hλi−i+μj−j where
�(λ) := max{i : λi > 0} is the length of λ, and the ordinary Schur function sλ

is obtained by taking μ = ∅.
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A specialization ρ is an algebra homomorphism from Sym to the field C

of complex numbers. It is uniquely determined by its values on the hn’s (or
equivalently the pn’s), hence by the generating function

H(ρ; t) :=
∑

n≥0

hn(ρ)tn = exp

⎛

⎝
∑

n≥1

pn(ρ)tn

n

⎞

⎠ . (2.1)

As is customary, for a symmetric function f ∈ Sym, we will write f(ρ) in lieu
of ρ(f). For ρ, ρ′ two specializations and s a complex number, we denote by
ρ ∪ ρ′ and sρ the specializations defined by

H(ρ ∪ ρ′; t) := H(ρ; t)H(ρ′; t), H(sρ; t) := H(ρ; st) (2.2)

or equivalently pn(ρ ∪ ρ′) := pn(ρ) + pn(ρ′), pn(sρ) := snpn(ρ) for n ≥ 1.
Denoting by P the set of all partitions, we also define the (possibly infinite)
quantities

H(ρ; ρ′) :=
∑

λ∈P
sλ(ρ)sλ(ρ′) = exp

⎛

⎝
∑

n≥1

pn(ρ)pn(ρ′)
n

⎞

⎠ ,

H̃(ρ) :=
∑

λ∈P
sλ(ρ) = exp

⎛

⎝
∑

n≥1

(
p2n−1(ρ)
2n− 1

+
pn(ρ)2

2n

)
⎞

⎠ .

(2.3)

The definitions in terms of the sλ’s or the pn’s are equivalent by virtue of
the so-called Cauchy and Littlewood identities [47, Theorem 7.12.1 and Corol-
lary 7.13.8]. Note that the notation H(·; ·) is consistent: for ρ′ the specialization
in the single variable t, we have H(ρ; ρ′) = H(ρ; t). We also have the relations

H(ρ; ρ′ ∪ ρ′′) = H(ρ; ρ′)H(ρ; ρ′′), H̃(ρ ∪ ρ′) = H̃(ρ)H̃(ρ′)H(ρ; ρ′). (2.4)

A specialization ρ is said nonnegative if sλ/μ(ρ) is a nonnegative real
number for any λ, μ. In view of (1.2), all specializations ρ±

1 , . . . , ρ±
N should be

nonnegative in order for the weight W(�λ, �μ) to be nonnegative. A necessary
and sufficient condition [1,49] for ρ to be nonnegative is that its generating
function be of the form

H(ρ; t) = eγt
∏

i≥1

1 + βit

1− αit
(2.5)

where γ, α1, β1, α2, β2, . . . form a summable collection of nonnegative real num-
bers (in particular, when γ = β1 = β2 = · · · = 0, we recover the specialization
in the variables α1, α2, . . .).

Partition Function. The computation of the partition function of the general
free boundary Schur process was essentially carried out in [21, Section 5.3]. In
our current notation it is given as follows.

Proposition 2.1. The partition function of the free boundary Schur process
reads
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Z =
∏

1≤k≤�≤N

H(ρ+
k ; ρ−

� )
∏

n≥1

H̃(un−1vnρ+)H̃(unvn−1ρ−)H(u2nρ+; v2nρ−)
1− unvn

(2.6)

where

ρ± := ρ±
1 ∪ ρ±

2 ∪ · · · ∪ ρ±
N . (2.7)

For u = v = 0, the second product in the right-hand side of (2.6) reduces
to 1 and we recover the partition function of the original Schur process. For u =
1 and v = 0, the only nontrivial factor in the second product is H̃(ρ−) and we
recover the partition function of the pfaffian Schur process [18, Proposition 3.2],
up to slightly different conventions.

Simplifying Assumptions. To ease the forthcoming discussion, we shall assume
from now on that u, v ≤ 1 and uv < 1, that the specializations ρ±

k are non-
negative and that the series H(ρk; ·) are analytic and nonzero in some disk of
radius R > 1—see the preprint [12] for a discussion of more general assump-
tions. Our assumptions imply that Z is finite and that the free boundary Schur
process is a probability distribution.

Point Process. Following [42], we define the point configuration associated with
a sample (�λ, �μ) of the free boundary Schur process as

S(�λ) :=
{(

i, λ
(i)
j − j +

1
2

)

, 1 ≤ i ≤ N, j ≥ 1
}

⊂ Z× Z
′ (2.8)

where Z
′ := Z + 1/2 (having half-integer ordinates makes formulas slightly

more symmetric). This is a simple point process on Z × Z
′. Note that there

is no loss of generality in considering only the partitions λ(1), . . . , λ(N) in the
definition of the point configuration, and this makes the forthcoming formulas
more compact. One may study the statistics of the μ’s by considering an
auxiliary Schur process with increased length and zero specializations inserted
where appropriate (as sλ/μ(0) = 1λ=μ).

Correlations for One Free Boundary. Let us first discuss the previously known
case of the pfaffian Schur process [18], obtained for u = 0. By homogeneity of
the Schur functions, we may assume v = 1 without loss of generality.

Theorem 2.2. For u = 0 and v = 1, S(�λ) is a pfaffian point process (see
“Appendix A” section for the definition) whose correlation kernel entries are
given by

K1,1(i, k; i′, k′) =
1

(2iπ)2

∮

|z|=r

dz

zk+1

∮

|w|=r′

dw

wk′+1
F (i, z)F (i′, w)κ1,1(z, w),

K1,2(i, k; i′, k′) = −K2,1(i
′, k′; i, k)

=
1

(2iπ)2

∮

|z|=r

dz

zk+1

∮

|w|=r′

dw

w−k′+1

F (i, z)

F (i′, w)
κ1,2(z, w),

K2,2(i, k; i′, k′) =
1

(2iπ)2

∮

|z|=r

dz

z−k+1

∮

|w|=r′

dw

w−k′+1

1

F (i, z)F (i′, w)
κ2,2(z, w)

(2.9)
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where the radii r, r′ are such that 1 < r′ < r < R if i ≤ i′ and 1 < r <
r′ < R otherwise, and where

F (i, z) =

∏
1≤�≤i H(ρ+

� ; z)

H(ρ+; z−1)
∏

i≤�≤N H(ρ−
� ; z−1)

, κ1,1(z, w) =
(z − w)

√
zw

(z + 1)(w + 1)(zw − 1)
,

κ1,2(z, w) =
(zw − 1)

√
zw

(z + 1)(w − 1)(z − w)
, κ2,2(z, w) =

(z − w)
√

zw

(z − 1)(w − 1)(zw − 1)
.

(2.10)

Remark 2.3. The double contour integrals in (2.9) correspond to extracting
coefficients in certain bivariate Laurent series. Note that only integer powers
are involved since the

√
zw in κ’s is compensated by k, k′ being half-integers.

Intuitively speaking, in each factor F (i, z)±1, a H(·; z) should be thought as a
series in z and a H(·; z−1) as a series in z−1 (and similarly for w), while the
κ(z, w) should be thought as bivariate series in z−1 and w−1. In κ1,2(z, w),
the pole 1/(z − w) should be expanded as

∑
k≥0 wk/zk+1 for i ≤ i′, and as

−
∑

k<0 wk/zk+1 otherwise.

Remark 2.4. Our expressions do not quite match those of [18, Theorem 3.3]
mainly because Borodin and Rains impose that the “free boundary” is a par-
tition whose conjugate has even parts. This change is inessential, and it is pos-
sible to go from one convention to another by a simple change of the boundary
specialization. Actually, one can interpolate between the two conventions by
multiplying weight (1.2) by an extra factor αoc, where oc denotes the number
of odd columns of the Young diagram of μ(N) and where α is a nonnegative
parameter smaller than R. With this extra weighting, Theorem 2.2 still holds
provided that we take r, r′ > α and modify the κ’s into

κ1,1(z, w) =
(z − α)(w − α)(z − w)

√
zw

(z2 − 1)(w2 − 1)(zw − 1)
, κ1,2(z, w) =

(zw − 1)(z − α)
√

zw

(z2 − 1)(w − α)(z − w)
,

κ2,2(z, w) =
(z − w)

√
zw

(z − α)(w − α)(zw − 1)
.

(2.11)

For α = 1 we get back (2.10), while for α = 0 we recover [18, Theorem 3.3] up
to a simple change of variables. See Sect. 3.3.2 for the derivation.

Correlations for Two Free Boundaries. We now turn to the general case of
two free boundaries. Similarly to the periodic Schur process studied in [16], the
random point process S(�λ) is neither determinantal nor pfaffian in general, but
a modification of it is. More precisely, let us fix an auxiliary real parameter t,
and consider a Z-valued random variable Dt independent of the Schur process,
with law

Prob(Dt = d) =
t2d(uv)2d2

θ3(t2; (uv)4)
. (2.12)

Here the normalization factor involves the Jacobi theta function θ3(z; q) :=
∑

n∈Z
qn2/2zn—see “Appendix B” section. We then consider the shifted point

configuration
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St(�λ) := S(�λ) + (0, 2Dt), (2.13)

that is to say we move all points of S(�λ) vertically by a same shift 2Dt. Note
that, in contrast with the periodic Schur process [10,16], we have to shift the
point configuration by an even integer. As we shall see, the origin of this shift
in the free fermion formalism is rather different.

Theorem 2.5. The point process St(�λ) is pfaffian, and the entries of its correla-
tion kernel still have form (2.9), with the radii r, r′ now such that max(v,R−1)
< r, r′ < min(R, u−1), r′ < r if i ≤ i′ and r < r′ otherwise, and with F and κ
now given by

F (i, z) =

∏
1≤�≤i H(ρ+

� ; z)
∏

i≤�≤N H(ρ−
� ; z−1)

·
∏

n≥1

H(u2nv2n−2ρ−; z)H(u2nv2nρ+; z)

H(u2n−2v2nρ+; z−1)H(u2nv2nρ−; z−1)
,

κ1,1(z, w) =
v2

tz1/2w3/2
· ((uv)2; (uv)2)2∞
(uz, uw, − v

z
, − v

w
; uv)∞

·
θ(uv)2 (w

z
)

θ(uv)2(u2zw)
·

θ3

(
( tzw

v2 )2; (uv)4
)

θ3(t2; (uv)4)
,

κ1,2(z, w) =
w1/2

z1/2
· ((uv)2; (uv)2)2∞
(uz, −uw, − v

z
, v

w
; uv)∞

·
θ(uv)2 (u2zw)

θ(uv)2(w
z

)
·

θ3

(
( tz

w
)2; (uv)4

)

θ3(t2; (uv)4)
,

κ2,2(z, w) =
tv2

z1/2w3/2
· ((uv)2; (uv)2)2∞
(−uz, −uw, v

z
, v

w
; uv)∞

·
θ(uv)2 (w

z
)

θ(uv)2(u2zw)
·

θ3

(
( tv2

zw
)2; (uv)4

)

θ3(t2; (uv)4)

(2.14)

where (a1, . . . , am; q)∞ :=
∏∞

k=0(1 − a1q
k) · · · (1 − amqk) is the infinite q-

Pochhammer symbol with multiple arguments, and θq(z) := (z; q)∞(q/z; q)∞
is the “multiplicative” theta function—see “Appendix B” section.

Several remarks are now in order:

1. We recover of course Theorem 2.2 for u = 0 and v = 1, as Dt = 0 hence
S(�λ) = St(�λ).

2. Remark 2.3 still provides some “intuition” regarding the choice of con-
tours: they should encircle certain poles of the integrands and not others,
in order to pick the appropriate expansions of H(·; z) and H(·; z−1). The
main complication lies in the kernels κ(z, w): they actually describe the
free boundary Schur process of length N = 0, for which F ≡ 1, and which
is nothing but a single random partition drawn according to the (uv)size

measure. See also [16, Corollary 2.6] for a related observation.
3. As in the case of one free boundary, κ1,1(z, w) and κ2,2(z, w) have a simple

zero at z = w, while κ1,2(z, w) has a simple pole, due to the θ(uv)2(w/z)
factor appearing in the numerator or denominator. Note that, because of
the constraints on r and r′, we cannot hit any other zero of the factors
θ(uv)2(w/z) and θ(uv)2(u2zw), hence no other pole of κ(z, w).

4. The fact that we have an arbitrary parameter t at our disposal allows
in principle to return to the correlation functions for the unshifted point
process S(�λ). Actually, it is possible to obtain an explicit expression for
the n-point correlation functions of both St(�λ) and S(�λ) in the form of
a 2n-fold contour integral—see Theorem 3.14.
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2.2. Applications

We now present some applications of Theorem 2.2 to last passage percola-
tion, symmetric plane partitions and plane overpartitions. We plan to present
applications of Theorem 2.5 in a subsequent paper.

In our applications, all ρ−
k are equal to the zero specialization. Weight

(1.2) is then nonzero only for sequences (1.1) such that λ(k) = μ(k) for all k,
which can be seen more simply as ascending sequences of partitions ∅ ⊂ λ(1) ⊂
· · · ⊂ λ(N). Furthermore, each specialization ρ+

k will be either a specialization
in a single variable xk (i.e., H(ρ+

k ; z) = (1−xkz)−1) or its “dual” (H(ρ+
k ; z) =

1 + xkz). Recall that, for a single variable x, we have sλ/μ(x) = x|λ|−|μ|1λ�μ

where the notation λ � μ means that the skew shape λ/μ is a horizontal strip
(i.e., λ1 ≥ μ1 ≥ λ2 ≥ μ2 ≥ · · · ). Similarly, for the dual specialization x̄, we
have sλ/μ(x̄) = sλ′/μ′(x) = x|λ|−|μ|1λ�′μ where the notation λ �′ μ means
that the skew shape λ/μ is a vertical strip (i.e., λi − μi ∈ {0, 1} for all i).

The H-ascending Schur process consists in taking only specializations in
single variables. In that case, we obtain a measure over sequences of the form

∅ ≺ λ(1) ≺ λ(2) ≺ · · · ≺ λ(N−1) ≺ λ(N). (2.15)

The HV -ascending Schur process consists in taking alternatively a specializa-
tion in a single variable or a dual variable, to get a measure over sequences

∅ ≺ λ(1) ≺′ λ(2) ≺ · · · ≺ λ(2M−1) ≺′ λ(2M), N = 2M. (2.16)

In both cases, the unnormalized weight of a sequence will be

x
|λ(1)|
1 x

|λ(2)|−|λ(1)|
2 · · ·x|λ(N)|−|λ(N−1)|

N , (2.17)

possibly with the extra weighting αoc of Remark 2.4. For convenience, we state
the following:

Proposition 2.6. For the H- and HV -ascending Schur processes, the function
F appearing in Theorem 2.2 reads, respectively,

FH(i, z) =
∏N

k=1(1− xk/z)
∏i

k=1(1− xkz)
,

FHV (i, z) =
∏�i/2	

k=1 (1 + x2kz)
∏
i/2�

k=1 (1− x2k−1z)

M∏

k=1

(1− x2k−1/z)
(1 + x2k/z)

. (2.18)

In the next three subsections we describe the main results stated and
proved in the applications parts of the paper: Sects. 4, 5 and 6.

2.2.1. Symmetric Last Passage Percolation. The last passage percolation
(LPP) time through a symmetric n × n nonnegative (integer or real)-valued
matrix ω is the maximum sum one can collect over all up-right paths going
through the matrix from the bottom left entry to the upper right entry. We
note our matrices, if embedded in the plane, are symmetric around the x = y
diagonal. See Fig. 1 for an example.
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Figure 1. An example of a 6 × 6 symmetric matrix ω (only diagonal
and above-diagonal elements shown) filled with nonnegative integers, and
the last passage percolation time of 69 (the sum of the elements on the

red path)

In the present work we consider the LPP time with symmetric, and (up
to symmetry) independent geometric weights {ωr,t}r,t∈Z≥1 . These weights (i.e.,
random variables) are given by

ωr,t = ωt,r ∼

⎧
⎨

⎩

g(arat), if r �= t,

g(αar), if r = t
(2.19)

where an, αan ∈ (0, 1), n ≥ 1, and Prob(g(q) = k) = qk(1 − q) for k ∈ Z≥0.
For (n1, n2), (r, t) ∈ Z

2
≥1 with n1 ≤ r, n2 ≤ t, consider up-right paths π from

(n1, n2) to (r, t), i.e., π = (π(0), π(1), . . . , π(r − n1 + t − n2)) with π(0) =
(n1, n2), π(r − n1 + t − n2) = (r, t) and π(i) − π(i − 1) ∈ {(0, 1), (1, 0)}. The
symmetric LPP time with geometric weights (2.19) is then defined to be

L(n1,n2)→(r,t) := max
π:(n1,n2)→(r,t)

∑

(m,n)∈π

ωm,n. (2.20)

Under the RSK bijection, LPP times become the largest part of integer
partitions—see Fig. 2 for a simulation. When considering L(n1,n2)→(rl,tl), l =
1, . . . , k with (rl, tl) lying on a down-right path, these partitions form a Schur
process with one free boundary, which is H-ascending for (rl, tl) lying on
a horizontal line—see Sect. 4.2.1 for more details. Consequently, the event
∩k

l=1{L(1,1)→(rl,tl) ≤ sl} becomes the event that a point configuration (2.8)
has no points in a set B. Such gap probabilities are given by Fredholm pfaf-
fians since we have a pfaffian point process by Theorem 2.2—see “Appendix
A” section for the definition of Fredholm pfaffians. This leads to the following
theorem, which will be proven as Theorem 4.1 in Sect. 4.2.1.

Theorem 2.7. Consider LPP time (2.20) with weights (2.19). Let rl, tl ∈
Z≥1, rl ≤ tl, l = 1, . . . , k with r1 ≤ . . . ≤ rk, t1 ≥ . . . ≥ tk. Then

Prob

(
k⋂

l=1

{L(1,1)→(rl,tl) ≤ sl}
)

= pf(J −K)B , (2.21)

where K,B are given in Theorem 4.1.
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Figure 2. A random partition λ, in Russian notation, whose weight
is proportional to sλ(q, . . . , q) (100 q’s) for q = 1/3. The right arm (its
first part) is, via the RSK correspondence, the last passage percolation
time in a 100 × 100 symmetric matrix filled with otherwise independent
geometric random numbers of parameter q2 (off-diagonal) and q (on the

diagonal)

Identity (2.21) now allows us to extract asymptotics of the LPP time
L(1,1)→(r,t) as r, t → ∞. The limiting fluctuations will, of course, depend on
the end point (r, t) and the choice of parameters an, α. Here, we do not aim to
exploit Theorem 2.7 in all possible directions. In the following theorem we fix
an =

√
q and choose α and the endpoint such that we are in a crossover regime,

from which different limit laws can be recovered. The following theorem will
be proven as Theorem 4.2 in Sect. 4.2.1.

Theorem 2.8. Consider weights (2.19) with aj =
√

q, q ∈ (0, 1), j ≥ 1 and
α = 1 − 2vcqN

−1/3, where cq = 1−√
q

q1/6(1+
√

q)1/3 , v ∈ R. Let u1 > · · · > uk ≥ 0.
Then

lim
N→∞

Prob

(
k⋂

i=1

{
L(1,1)→(N−�uiN2/3�,N) ≤ 2

√
qN

1 − √
q

− ui

√
qN2/3

1 − √
q

+ c−1
q siN

1/3}
)

= pf(J − χsK
vχs){u1,...,uk}×R

(2.22)

where χs(ui, x) = 1x>si
and Kv is defined in (4.10).

Specializing to k = 1 we obtain in particular

lim
N→∞

Prob

(

L(1,1)→(N−�uN2/3	,N) ≤
2
√

qN

1−√q
− u

√
qN2/3

1−√q
+ c−1

q sN1/3

)

= pf(J −Kv)(s,∞) =: Fu,v(s). (2.23)

Fu,v(s) performs a crossover between the classical distributions from random
matrix theory. Namely, one has F0,0 = FGOE, limv→+∞ F0,v(s) = FGSE(s) and
limu→+∞ Fu,v(s− u2d2

q) = FGUE(s), where dq = q1/6

2(1+
√

q)2/3 —see Sect. 4.1.
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Figure 3. A symmetric plane partition: the numbers on the left de-
termine the heights of cubes on the right

For k = 1 and u = 0, Theorem 2.8 recovers results already obtained by
Baik and Rains [6–8]. Furthermore [46] considered off-diagonal fluctuations
in half-space PNG, equivalent to symmetric LPP. For symmetric LPP with
exponential weights, the same kind of crossover between FGSE, FGUE, FGOE

was obtained, by different methods, recently in [4].

2.2.2. Symmetric Plane Partitions. A symmetric plane partition of length N
is a plane partition—i.e., an array of numbers (πi,j)1≤i,j≤N such that πi,j ≥
πi,j+1, πi,j ≥ πi+1,j , satisfying the symmetry condition πi,j = πj,i. It can be
viewed as a symmetric pile of cubes stacked into the corner of a room or a
lozenge tiling of the plane. See Fig. 3 for pictorial descriptions. A symmetric
plane partition (more precisely, the half of it that determines the whole—
Fig. 3 on the left) can be sliced into ordinary partitions �λ = (∅ ≺ λ(1) ≺
· · · ≺ λ(N)) with �(λ(i)) ≤ i using the simple formula λ

(i)
k = πN−i+k,k for

1 ≤ k ≤ i. We choose a qVolume measure, for q ∈ (0, 1), which can be treated
as an H-ascending Schur process for appropriately chosen (single variable)
specializations.

In Sect. 5 we consider the large volume limit of symmetric plane parti-
tions: q = e−r → 1 for scaling ri → x and rk → y where (x , y) ∈ R+ × R. A
sample of a symmetric random plane for q close to 1 is given in Fig. 4 (left
for rN → ∞, right for rN → a < ∞). In both cases there are two distinct
regions: the liquid region L where behavior is random, and the frozen region
where behavior is deterministic. One can visualize this as in the figure using
different colors for the three types of lozenges in the plane tiling.

The arctic curve, dividing the liquid and frozen regions, is the zero locus
of

D(X ,Y ) = −4(1− AY )(X − AY ) + (−1− X + Y + A2Y )2 (2.24)

where X = exp(−x ), Y = exp(−y), and A = exp(−a).
Case A = 0 corresponds to symmetric plane partitions with no bound on

the length, and the liquid region can be written in appropriate (u, v) coordi-
nates as the amoeba of the polynomial 1+u+ v—see Sect. 5 for the definition
of amoeba. As expected, one obtains the same liquid region as for nonsymmet-
ric plane partitions. The arctic shape for plane partitions was first obtained
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Figure 4. Large unbounded (left) and bounded (right) random sym-
metric qVolume-weighted plane partitions

by Blöte, Hilhorst and Nienhuis [39] in the physics literature and Cerf and
Kenyon [22] in the mathematics literature. It was later rederived by Okounkov
and Reshetikhin [42] using the Schur process.

The limit shape result can be derived from the following explicit formula
for the density of particles.

Proposition 2.9. For (x , y) ∈ L the density of particles is

ρ(x , y) =
θ(x , y)

π
(2.25)

where θ(x , y) = arg(z+(x , y)) and

z±(x , y) =
1 + X − (1 + A2)Y ±

√
D(X ,Y )

2(X − AY )
. (2.26)

To derive this result we start from the finite correlations given by The-
orem 2.2, changing i → N − i for convenience, and perform steepest descent
analysis to obtain the limiting behavior of the correlation kernel. In the limit
we obtain a (incomplete beta) determinantal process for x > 0 and a pfaffian
process for x = 0.

Theorem 2.10. Let (x , y) ∈ L and rescale the coordinates as

i =
⌊x

r

⌋
+ i, k =

⌊y
r

⌋
+ k (2.27)

where r → 0+ and i, k are fixed. Then, the rescaled process
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• converges for x = 0 to a pfaffian process with kernel

K1,1(i, k; i′, k′) =
∫

γ+

(1− z)i
(

1− 1
z

)i′

zk−k′−1 1− z

1 + z

dz

2πi
,

K1,2(i, k; i′, k′) =
∫

γ±
(1− z)i−i′zk

′−k−1 dz

2πi
,

K2,2(i, k; i′, k′) =
∫

γ−
(1− z)−i

(

1− 1
z

)−i′

zk
′−k−1 1 + z

1− z

dz

2πi

(2.28)

where γ+ is taken if and only if i ≥ i′. γ± is a contour from z−(x , y) to
z+(x , y), γ+ passing to the right of 0 and γ− to left of 0;

• converges for x �= 0 to a determinantal process with kernel K1,2 as in
(2.28).

Remark 2.11. It is natural to consider the asymptotics of kernel entries (2.28)
as i, i′, i−i′ or k−k′ tend to ±∞. This may be done using Laplace’s method: the
integrand has the generic form f(z)ng(z) where n denotes a parameter tending
to +∞, and it is always possible to choose an integration contour such that
|f(z)| is maximal at the endpoints z±(x , y), with a nonvanishing derivative.
As g does not vanish at the endpoints, we deduce that the integral behaves
at leading order as αf(z+)n+ᾱf(z−)n

n for some α ∈ C. Using Proposition A.1,
we may perform a rescaling to suppress the exponential blowup/decay, so that
the rescaled entry behaves as n−1 times some oscillating factor. The bottom
line is that, up to oscillations, the properly rescaled correlation kernel decays
as the inverse of the distance between points, and its diagonal entries (which
make the process nondeterminantal) decay as the inverse of the distance to
the free boundary.

Remark 2.12. In the case x = 0 it is crucial that we keep i = i finite as
r → 0+ to obtain a pfaffian process. If instead we rescale i = f(r) + i with
1 � f(r) � r−1, then we obtain a determinantal process with the kernel
K1,2 of (2.28) at x = 0. Intuitively speaking, the convergence to K1,2 is more
robust as it only depends on the difference i − i′. Together with the previous
remark, this shows that the free boundary affects the nature of correlations
only at a finite range in the bulk. In contrast, at the edge, as illustrated by
Theorem 2.8 correlations remain pfaffian on a larger range (namely N2/3 in
the LPP setting).

2.2.3. Plane Overpartitions. A plane overpartition is a plane partition where
in each row the last occurrence of an integer can be overlined or not and all
the other occurrences of this integer are not overlined, while in each column
the first occurrence of an integer can be overlined or not and all the other
occurrences of this integer are overlined. An example is given in Fig. 5. There is
a natural measure one can study on plane overpartitions: the qVolume measure,
where the volume is given by the sum of all its entries.

A plane overpartition with the largest entry at most N and shape λ

can be recorded as a sequence of partitions �λ = (∅ ≺ λ(1) ≺′ λ(2) ≺ · · · ≺
λ(2n−1) ≺′ λ(2N) = λ) where λ(i) is the partition whose shape is formed by
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Figure 5. A plane overpartition (left) and its associated point con-
figuration (right)

Figure 6. A large random plane overpartition shown as a domino tiling

all fillings greater than N − i/2 with the convention that k = k − 1/2. In
this context, with the qVolume measure considered, the sequence �λ becomes an
HV -ascending Schur process for appropriately chosen (single or dual variable)
specializations.

Plane overpartitions are in bijection with domino tilings—see Fig. 5
(right). We hope that the “picture is worth a thousand words,” but for more
details see Sect. 6. In Sect. 6 we consider the large volume limit of plane over-
partitions: q = e−r → 1 for scaling ri → x and rk → y. We consider the case
N = ∞ only and leave rN → a for subsequent work. A sample for q close to
1 is given in Fig. 6.

The liquid region L is half of the amoeba of the polynomial −1+u+v+uv
for the right choice of coordinates (u, v). The density in the liquid region is as
in Proposition 2.9 for different z±, with the explicit expression given in Sect. 6.
This was originally obtained in [51], see also [52] for results on the convergence
of height fluctuations to the Gaussian free field in the equivalent language of
strict plane partitions.

We analyze the pfaffian local correlations given by Theorem 2.2 in the
limit and obtain an analogue of Theorem 2.10. (Remarks 2.11 and 2.12 still
hold mutatis mutandis.)

Theorem 2.13. Let (x , y) ∈ L. As r → 0+ the rescaled process, where the
rescaling is given precisely in Sect. 6,
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• converges for x = 0 to a pfaffian process with kernel

K1,1(i, k; i′, k′) =
∫

γ+

(
1− z

1 + z

)i+i′+1

(−1)izk−k′−1 dz

2πi
,

K1,2(i, k; i′, k′) =
∫

γ±

(
1− z

1 + z

)i−i′

zk
′−k−1 dz

2πi
,

K2,2(i, k; i′, k′) =
∫

γ−

(
1− z

1 + z

)−i−i′−1

(−1)izk
′−k−1 dz

2πi

(2.29)

where γ+ is taken if and only if i ≥ i′ and γ± are defined as in Theo-
rem 2.10;

• converges for x �= 0 to a determinantal process with kernel K1,2 as in
(2.29).

3. Free Fermions

This section is devoted to the proof of the results presented in Sect. 2.1 via
the free fermion formalism.

3.1. Preliminaries

3.1.1. Notations and Reminders. Here we recall the standard material which
is useful for the study of the usual Schur process [42], following the notation
conventions of [41, Appendix A]. See also [2,29,38] and [32, Chapter 14].

Admissible Sets and Partitions. Let us denote by Z
′ := Z+1/2 the set of half-

integers. We say that a subset S of Z′ is admissible if it has a greatest element
and its complement has a least element. Equivalently, we require S+ := S\Z′

<0

and S− := Z
′
<0\S to be both finite. We denote by S the set of admissible

subsets. To each S ∈ S we may associate its charge C(S) and its energy H(S)
defined by

C(S) := |S+| − |S−|, H(S) :=
∑

k∈S+

k −
∑

k∈S−

k. (3.1)

Clearly the energy is nonnegative and vanishes if and only if S = Z
′
<0. The set

of partitions being denoted P, there is a well-known bijection between S and
P ×Z (the “combinatorial boson–fermion correspondence”): to each partition
λ ∈ P and integer c ∈ Z, we associate the admissible set

S(λ, c) := {λi − i + 1/2 + c, i ≥ 1}. (3.2)

It is not difficult to see that S(λ, c) has charge c and energy |λ|+ c2/2.
Fock Space and Fermionic Operators. The fermionic Fock space, denoted F ,
is the infinite-dimensional Hilbert space spanned by the orthonormal basis
|S〉, S ∈ S. Here we use the bra–ket notation and will denote by 〈·| dual vectors.
We may think of a basis vector |S〉 as the semi-infinite wedge product

|S〉 = s1 ∧ s2 ∧ s3 ∧ · · · (3.3)
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where s1 > s2 > s3 > · · · are the elements of S, and {k, k ∈ Z
′} is an

orthonormal basis of some smaller “one-particle” vector space. For λ a partition
and c an integer we introduce the shorthand notations

|λ, c〉 := |S(λ, c)〉, |λ〉 := |λ, 0〉, |c〉 := |∅, c〉. (3.4)

The vector |0〉 is called the vacuum. The charge and energy naturally become
diagonal operators acting on F , which we still denote by C and H, respectively.
We also denote by R the shift operator such that R|S〉 = |S + 1〉 (i.e., all
elements of S are incremented by 1).

We now define the fermionic operators: for k ∈ Z
′, let us define the

operators ψk and ψ∗
k by

ψk|S〉 :=

{
0, if k ∈ S

(−1)j |S ∪ {k}〉, if k /∈ S
,

ψ∗
k|S〉 :=

{
(−1)j |S\{k}〉, if k ∈ S

0, if k /∈ S
(3.5)

where j = |S ∩Z
′
>k|. In the semi-infinite wedge picture, ψk corresponds to the

exterior multiplication by k on the left, and ψ∗
k to its adjoint operator. They

satisfy the canonical anticommutation relations

{ψk, ψ∗
� } = δk,�, {ψk, ψ�} = {ψ∗

k, ψ∗
� } = 0, k, � ∈ Z

′ (3.6)

where {a, b} := ab + ba. We also define the generating series

ψ(z) :=
∑

k∈Z′
ψkzk, ψ∗(w) :=

∑

k∈Z′
ψ∗

kw−k. (3.7)

Observe that ψk|0〉 = ψ∗
−k|0〉 = 0 for k < 0. We now recall Wick’s lemma in a

form suitable for future generalizations—see for instance [19, Appendix B] for
a proof.

Lemma 3.1 (Wick’s lemma). Let Ψ be the vector space spanned by (possibly
infinite linear combinations of) the ψk and ψ∗

k, k ∈ Z
′. For φ1, . . . , φ2n ∈ Ψ ,

we have

〈0|φ1 · · ·φ2n|0〉 = pf A (3.8)

where A is the antisymmetric matrix defined by Aij := 〈0|φiφj |0〉 for i < j.

Bosonic and Vertex Operators. The bosonic operators αn are defined by

αn :=
∑

k∈Z′
ψk−nψ∗

k, n = ±1,±2, . . . (3.9)

and α0 is the charge operator. We have α∗
n = α−n, αn|0〉 = 0 for n > 0, and

the commutation relations

[αn, αm] = nδn,−m, [αn, ψ(z)] = znψ(z), [αn, ψ∗(w)] = −wnψ∗(w).
(3.10)
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For ρ a specialization of the algebra of symmetric functions, we define the
vertex operators Γ±(ρ) by

Γ±(ρ) := exp

⎛

⎝
∑

n≥1

pn(ρ)α±n

n

⎞

⎠ . (3.11)

When x is a variable, we denote by Γ±(x) (resp. Γ′
±(x)) the vertex operators

for the specialization in the single variable x (resp. its dual x̄), for which
pn(x) = xn (resp. pn(x̄) = (−1)n−1xn). Clearly, Γ−(ρ) is the adjoint of Γ+(ρ)
for any real ρ, and

Γ+(ρ)|0〉 = |0〉, 〈0|Γ−(ρ) = 〈0|. (3.12)

Given two specializations ρ, ρ′, as pn(ρ ∪ ρ′) = pn(ρ) + pn(ρ′), we have

Γ+(ρ)Γ+(ρ′) = Γ+(ρ ∪ ρ′) = Γ+(ρ′)Γ+(ρ). (3.13)

Commutation relations (3.10) and Cauchy identity (2.3) imply that

Γ+(ρ)Γ−(ρ′) = H(ρ; ρ′)Γ−(ρ′)Γ+(ρ) (3.14)

while

Γ±(ρ)ψ(z) = H(ρ; z±1)ψ(z)Γ±(ρ),

Γ±(ρ)ψ∗(w) = H(ρ;w±1)−1ψ∗(w)Γ±(ρ). (3.15)

These latter relations always make sense at a formal level; at an analytic level
they require that the parameter of H(ρ; ·) be within its disk of convergence.
The crucial property of vertex operators is that skew Schur functions arise as
their matrix elements, namely

〈λ, c|Γ+(ρ)|μ, c′〉 = 〈μ, c′|Γ−(ρ)|λ, c〉 =

{
sμ/λ(ρ), if c = c′,
0, otherwise.

(3.16)

This results from (3.15), Wick’s lemma and the Jacobi–Trudi identity.
Finally, we will use the fact that the fermionic operators can be recon-

structed from the vertex operators and the charge and shift operators C and
R—see e.g., [32, Theorem 14.10]—a fact we will refer to as the boson–fermion
correspondence.

Proposition 3.2. We have:

ψ(z) = zC− 1
2 R Γ−(z)Γ′

+

(
−z−1

)
, ψ∗(w) = R−1w−C+ 1

2 Γ′
−(−w)Γ+

(
w−1
)
.

(3.17)

3.1.2. Free Boundary States and Connection with the Schur Process. Follow-
ing [21, Section 5.3], given two parameters u, v, we introduce the free boundary
states

|v〉 :=
∑

λ∈P
v|λ||λ〉, 〈u| :=

∑

λ∈P
u|λ|〈λ|. (3.18)

Both are (respectively, left and right) eigenvectors of the charge operator C
with eigenvalue 0. For u = v = 0, we recover, respectively, the vacuum |0〉 and
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its dual 〈0|. The following proposition generalizes (3.12) to arbitrary u, v and
is essentially a reformulation of [21, Proposition 10].

Proposition 3.3 (Reflection relations). We have

Γ+(ρ)|v〉 = H̃(vρ)Γ−(v2ρ)|v〉, 〈u|Γ−(ρ) = H̃(uρ)Γ+(u2ρ)〈u| (3.19)

with H̃ defined as in (2.3).

Proof. When projected on the standard basis, these relations amount to the
identity [37, I.5, Ex. 27(a), (3), p. 93] (specialized at ρ), which itself amounts
to the Littlewood identity. See also [21] for a combinatorial proof when ρ is the
specialization in a single variable, by iteration it then holds for an arbitrary
number of variables, hence holds for any specialization. �

Armed with all these definitions, we are now in position to make the
connection with the free boundary Schur process. The remainder of this section
is basically an adaptation of the arguments in [42] (see also [19]) to the case
of free boundaries.

Proposition 3.4. The partition of the free boundary Schur process is given by

Z = 〈u|Γ+(ρ+
1 )Γ−(ρ−

1 ) · · ·Γ+(ρ+
N )Γ−(ρ−

N )|v〉. (3.20)

For U a finite subset of {1, . . . , N} × Z
′, the probability �(U) that the point

process S(�λ) contains U reads

�(U) =
ZU

Z
(3.21)

where ZU is obtained from the product in the right-hand side of (3.20) by
inserting, for each (i, k) ∈ U , the operator ψkψ∗

k between Γ+(ρ+
i ) and Γ−(ρ−

i )
(if several points of U have the same abscissa, the ψkψ∗

k can be inserted in any
order since they commute).

Proof. This is a basic application of the transfer-matrix method: by (3.16), the
vertex operators Γ± can be seen as transfer matrices for the Schur process,
and the operator ψkψ∗

k “measures” whether there is a point at ordinate k (we
have ψkψ∗

k|S〉 = |S〉 if k ∈ S and 0 otherwise). �

As a useful warm-up, we may compute the partition function of the free
boundary Schur process.

Proof of Proposition 2.1. We apply the method introduced in [21, Section 5.3],
which we colloquially call ping-pong. The reader might find useful to consult
this reference for more details.

In order to evaluate product (3.20), the first step consists in “commuting”
the Γ+ to the right and the Γ− to the left, using (3.14) and (3.13), to yield

Z =
∏

1≤k≤�≤N

H(ρ+
k ; ρ−

� )× 〈u|Γ−(ρ−)Γ+(ρ+)|v〉 (3.22)
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with ρ± as in (2.7). For u = v = 0, i.e., for the original Schur process with
“vacuum” boundary conditions, the rightmost factor is equal to 1 by (3.12).
For general u, the reflection relations allow to write first

〈u|Γ−(ρ−)Γ+(ρ+)|v〉 = H̃(uρ−)〈u|Γ+(ρ̂)|v〉 (3.23)

with ρ̂ = ρ+∪u2ρ−. For v = 0, i.e., for the pfaffian Schur process, the rightmost
factor equals 1 and we are done. For uv > 0, we need to use again the reflection
relations infinitely many times to “bounce” the Γ back and forth:

〈u|Γ+(ρ̂)|v〉 =
∏

n≥1

H̃(un−1vnρ̂)× 〈u|v〉. (3.24)

Here we assume that uv < 1 so that the argument of the “bouncing” Γ tends
to the zero specialization as the number of reflections tends to infinity. From
the definition of the free boundary states we have

〈u|v〉 =
∑

λ∈P
(uv)|λ| =

∏

n≥1

1
1− (uv)n

. (3.25)

Collecting all factors and rearranging them in a more symmetric manner (using
the relation H̃(ρ∪ρ′) = H̃(ρ)H̃(ρ′)H(ρ; ρ′) and other easy properties), we end
up with desired expression (2.6) for the partition function. �

We may perform a similar manipulation to rewrite ZU in (3.21), by play-
ing ping-pong with the Γ’s. The factors arising from commutations between
Γ’s or from reflection relations are the same as in Z and thus cancel when
we normalize to get the correlation function �(U). The fermionic operators ψk

and ψ∗
k get “conjugated” by the Γ’s crossing them. If we list the elements of

U by increasing abscissa as (i1, k1), . . . , (in, kn), then we end up with

�(U) =
〈u|Ψk1(i1)Ψ

∗
k1

(i1) · · ·Ψkn
(in)Ψ∗

kn
(in)|v〉

〈u|v〉 (3.26)

where

Ψk(i) :=Ad
(
Γ+(ρ→

i )Γ−(ρ←
i )−1

)
· ψk, Ψ∗

k(i) :=Ad
(
Γ+(ρ→

i )Γ−(ρ←
i )−1

)
· ψ∗

k.

(3.27)

Here Ad denotes the adjoint action

Ad(A) ·B := ABA−1 (3.28)

and the specializations ρ→
i and ρ←

i are given by

ρ→
i :=

i⋃

�=1

ρ+
i ∪
⋃

n≥1

(
u2nv2n−2ρ− ∪ u2nv2nρ+

)
,

ρ←
i :=

N⋃

�=i

ρ−
i ∪
⋃

n≥1

(
u2n−2v2nρ+ ∪ u2nv2nρ−) . (3.29)

The intuitive meaning of all this is the following: given a fermionic operator ψk

inserted at position i in ZU , the operator Γ+(ρ→
i ) corresponds to the product

of all Γ+’s that will cross it from left to right; similarly, Γ−(ρ←
i ) corresponds to
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all Γ−’s that will cross it from right to left. The operator Ψk(i) is the operator
resulting after all these commutations have been made. Note that the ordering
of Γ’s in Ad is irrelevant since they commute up to a scalar factor and that,
by (3.15), Ψk(i) (resp. Ψ∗

k(i)) is a linear combination of ψ’s (resp. ψ∗’s).
In the case u = v = 0 [42], Okounkov and Reshetikhin were able to

rewrite (3.26) as a determinant using Wick’s lemma (we obtain a pfaffian from
Lemma 3.1, but the matrix A has a specific block structure so its pfaffian
reduces to a determinant of size n). From there, they could conclude that the
point process S(�λ) is determinantal. This does not extend straightforwardly
in the case of free boundaries (“naive” generalizations of Wick’s lemma are
false), and we will explain how to circumvent this problem in the next section.

3.2. Pfaffian Correlations in the Presence of Free Boundaries

3.2.1. Extended Free Boundary States. The starting point is to observe that
a general basis vector |λ〉 of charge 0 can be written in the form

|λ〉 = (−1)j1+···+jr+r/2ψi1 · · ·ψir
ψ∗

j1 · · ·ψ
∗
jr
|0〉 (3.30)

where i1 > · · · > ir are arbitrary positive half-integers, namely the elements
of S(λ, 0)+, and j1 > · · · > jr are arbitrary negative half-integers, namely
the elements of S(λ, 0)−. These numbers are closely related to the Frobenius
coordinates of λ, and r is the size of the Durfee square of λ. Multiplying by
v|λ| = vi1+···+is−j1−···−js and summing over all possible pairs of sequences, we
get

|v〉 =

⎛

⎜
⎝
∑

r≥0

∑

i1>···>ir>0
0>j1>···>jr

ψ̃i1(v, t) · · · ψ̃ir
(v, t)ψ̃j1(v, t) · · · ψ̃jr

(v, t)

⎞

⎟
⎠ |0〉 (3.31)

with

ψ̃i(v, t) =

{
t1/2viψi for i ∈ Z

′
>0,

(−1)i+1/2t−1/2v−iψ∗
i for i ∈ Z

′
<0.

(3.32)

Here t is a parameter which has no effect in (3.31) but will be useful in the
following. The big sum looks nasty, but it turns out that it can be generated
in a rather elegant manner.

Proposition 3.5. We have

|v〉 = Π0eX(v,t)|0〉 (3.33)

where Π0 denotes the projector onto the fermionic subspace of charge 0, and
where

X(v, t) :=
∑

(k,�)∈Z
′2

k>�

ψ̃k(v, t)ψ̃�(v, t). (3.34)

Remark 3.6. For |v| < 1, the sum in (3.34) is convergent in the space of
bounded operators on F .
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Define the extended free boundary state |v, t〉 as

|v, t〉 := eX(v,t)|0〉. (3.35)

Proposition 3.5 is then an immediate consequence of the following lemma.

Lemma 3.7. The extended free boundary state decomposes in the canonical
basis of F as

|v, t〉 =
∑

S∈S
Csps(S) is even

tC(S)/2vH(S)|S〉. (3.36)

Proof. We first observe that the ψ̃i all anticommute with one another; hence,
all the terms in X(v, t) commute. Furthermore the square of each of these
terms vanishes, hence

eX(v,t) =
∏

k>�

(
1 + ψ̃k(v, t)ψ̃�(v, t)

)
. (3.37)

By expanding this product, we obtain a sum over all possible finite sets
{(k1, �1), . . . , (kr, �r)} of pairs of elements of Z

′ such that ks > �s for all
s. Clearly, the contribution from sets containing twice the same element of
Z

′ in different pairs vanishes; hence, the sets with nonzero contribution can
be identified with finite partial matchings {{k1, �1}, . . . , {kr, �r}} of Z

′. Let
M = {m1, . . . ,m2r} be a subset of Z

′ with an even number 2r of elements:
each one of the (2r − 1)!! perfect matchings of M will then arise exactly once
in the sum. Using again the anticommutativity of the ψ̃i, we see that all these
perfect matchings have the same contribution up to a sign. It can be seen that
all these contributions cancel with one another, except one, and we arrive at

eX(v,t) =
∑

r≥0

∑

(m1,...,m2r)∈Z
′2r

m1>···>m2r

ψ̃m1(v, t) · · · ψ̃m2r
(v, t)

=
∑

r′,r′′≥0
r′+r′′even

∑

i1>···>ir′ >0
0>j1>···>jr′′

ψ̃i1(v, t) · · · ψ̃ir′ (v, t)ψ̃j1(v, t) · · · ψ̃jr′′ (v, t)

(3.38)

(the second line is a simple relabeling of the sum, where we split the positive
and negative indices). This expression can be compared with (3.31): we now
have a sum over all admissible subsets S of Z

′ with an even charge (with
S+ = {i1, . . . , ir′} and S− = {j1, . . . , jr′′}). Multiplying by |0〉 and plugging
back the definition of ψ̃, we obtain wanted expression (3.36). �

By reindexing the sum in (3.36) as a sum over all partitions and all
even charges, we can express |v, t〉 in terms of |v〉 and of the shift operator R,
namely

|v, t〉 =
∑

c∈2Z

tc/2vc2/2Rc|v〉. (3.39)
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Of course we may define a dual extended free boundary state

〈u, t| = 〈0|eX(u,t)∗
=

∑

S admissible
Csps(S) even

tC(S)/2uH(S)〈S| =
∑

c∈2Z

tc/2uc2/2〈u|R−c

(3.40)

and its scalar product with |v, t〉 reads

〈u, t|v, t〉 =

(
∑

c∈2Z

tc(uv)c2/2

)

〈u|v〉 = θ3(t2; (uv)4)(uv;uv)−1
∞ (3.41)

which is finite for uv < 1 (see “Appendix B” section for reminders on theta
functions and q-Pochhammer symbols).

Remark 3.8. Reflection relations (3.19) still hold when we replace |v〉 by |v, t〉
and 〈u| by 〈u, t| (this is immediate from (3.39), (3.41) and the commutation
between R and the Γ’s). The extended free boundary states also satisfy the
remarkable fermionic reflection relations

ψ(z)|v, t〉 = t−1 v − z

v + z
ψ∗
(

v2

z

)

|v, t〉,

〈u, t|ψ∗(w) = t−1 u− w−1

u− w−1
〈u, t|ψ

(
1

u2w

)

. (3.42)

which can be checked using boson–fermion correspondence (3.17).

3.2.2. Wick’s Lemma for One Free Boundary. The notion of extended free
boundary state yields a new proof that, for u = 0, the point process S(�λ)
is pfaffian—the original proof by Borodin and Rains [18] relied instead on a
pfaffian analogue of the Eynard–Mehta theorem. Let us observe that, for u = 0,
we have 〈u|v〉 = 1 and expression (3.26) for the correlation function �(U) can
be rewritten as

�(U) = 〈0|Ψk1(i1)Ψ
∗
k1

(i1) · · ·Ψkn
(in)Ψ∗

kn
(in)|v, t〉 (3.43)

(use |v〉 = Π0|v, t〉, and drop the projector Π0 since we multiply on the left by
a quantity of charge 0).

Lemma 3.9 (Wick’s lemma for one free boundary). Let Ψ be as before the
vector space spanned by (possibly infinite linear combinations of) the ψk and
ψ∗

k, k ∈ Z
′. For φ1, . . . , φ2n ∈ Ψ , we have

〈0|φ1 · · ·φ2n|v, t〉 = pf A (3.44)

where A is the antisymmetric matrix defined by Aij := 〈0|φiφj |v, t〉 for i < j.

Proof. Recall definition (3.35) of |v, t〉. We “commute” the operator eX(v,t) to
the left, where it is absorbed by the left vacuum 〈0| (since 〈0|X(v, t) = 0), and
get

�(U) = 〈0|φ̃1 · · · φ̃2n|0〉 (3.45)

where φ̃i := e−X(v,t)φieX(v,t).
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Now, the key observation is that, for any φ ∈ Ψ , the commutator [X(v, t),
φ] is also in Ψ by the bilinearity of X and the canonical anticommutation
relations. Therefore, Ψ is stable under conjugation by e−X(v,t), and thus we
may apply usual Wick’s Lemma 3.1 to conclude that �(U) = pf A with

Aij = 〈0|φ̃iφ̃j |0〉 = 〈0|φiφj |v, t〉, i < j. (3.46)

�

By applying Lemmas (3.9)–(3.43), and being careful about the order-
ing between operators (note that {Ψk(i),Ψk′(i′)} = 0 for all i, i′, k, k′, while
{Ψk(i),Ψ∗

k′(i′)} = 0 for i = i′ and k �= k′), we find that S(�λ) is a pfaffian
point process whose correlation kernel entries are given by

K1,1(i, k; i′, k′) = 〈0|Ψk(i)Ψk′(i′)|v, t〉, K2,2(i, k; i′, k′) = 〈0|Ψ∗
k(i)Ψ∗

k′(i′)|v, t〉,

K1,2(i, k; i′, k′) = −K2,1(i
′, k′; i, k) =

{
〈0|Ψk(i)Ψ∗

k′(i′)|v, t〉, if i ≤ i′,

−〈0|Ψ∗
k′(i′)Ψk(i)|v, t〉, otherwise.

(3.47)

Note that the dependency on t is trivial (K1,1, K1,2 and K2,2 are, respectively,
proportional to t−1, t0 and t1), and can be eliminated by row/column multi-
plications in the pfaffian, so that the point process S(�λ) is independent of t
as it should.

To complete the proof of Theorem 2.2, we need to rewrite the entries
of the correlation kernel in the form of double contour integrals. This will be
done in Sect. 3.3, but before we discuss the case of two free boundaries.

3.2.3. Wick’s Lemma for Two Free Boundaries. In the case uv > 0, when we
rewrite (3.26) in terms of the extended free boundary states, it is no longer
possible to “drop” the projectors Π0 as was done in (3.43). But, from (3.39) and
(3.40), we see that �(U) is proportional to the t0 term in 〈u, t|Ψk1(i1)Ψ

∗
k1

(i1)
· · ·Ψkn

(in)Ψ∗
kn

(in)|v, t〉. This quantity turns out to be pfaffian.

Lemma 3.10. (Wick’s lemma for two free boundaries) Let Ψ be again the vector
space spanned by (possibly infinite linear combinations of) the ψk and ψ∗

k,
k ∈ Z

′. For φ1, . . . , φ2n ∈ Ψ and uv < 1, we have

〈u, t|φ1 · · ·φ2n|v, t〉
〈u, t|v, t〉 = pf A (3.48)

where A is the antisymmetric matrix defined by Aij = 〈u, t|φiφj |v, t〉/〈u, t|v, t〉
for i < j.

Proof. It is tempting to proceed as in the proof of Lemma 3.9, by commuting
eX(v,t) to the left and similarly commuting eX(u,t)∗

to the right, but those
two quantities do not commute and it is unclear whether they have a nice
quasi-commutation relation.

Instead, we again play ping-pong, but this time with fermionic operators.
Let Ψ+ (resp. Ψ−) be the vector space spanned by the ψk and ψ∗

−k with
k < 0 (resp. k > 0). We have Ψ = Ψ+ ⊕ Ψ− and, writing φ = φ+ + φ− for
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the associated decomposition of φ ∈ Φ, we have φ+|0〉 = 0 and 〈0|φ− = 0.
Note that X(v, t) is a bilinear combination of operators in Ψ− only (which all
anticommute with one another), and it follows that, for any φ ∈ Ψ , we have

[φ−,X(v, t)] = 0, [φ+,X(v, t)] ∈ Ψ−, [[φ+,X(v, t)],X(v, t)] = 0.
(3.49)

As a consequence we have

[φ+, eX(v,t)] = [φ+,X(v, t)]eX(v,t) (3.50)

and hence

φ+|v, t〉 = [φ+,X(v, t)]|v, t〉. (3.51)

Similarly, we have the dual relations

〈u, t|φ− = 〈u, t|[X(u, t)∗, φ−], [X(u, t)∗, φ−] ∈ Ψ+. (3.52)

We now establish (3.48) by induction on n. It is a tautology for n = 1.
Let us assume it holds up to rank n− 1. Let φ1, φ2 · · · , φ2n be elements of Ψ .
We start by writing

〈u, t|φ1φ2 · · ·φ2n|v, t〉 = 〈u, t|χ(1)φ2 · · ·φ2n|v, t〉 (3.53)

with χ(1) = φ+
1 + [X(u, t)∗, φ−

1 ] ∈ Ψ+, using (3.52). We then move χ(1) to the
right, using the fact that the anticommutators {χ(1), φi} are all scalars, to get

〈u, t|χ(1)φ2 · · · φ2n|v, t〉

=
2n∑

i=2

(−1)i{χ(1), φi}〈u, t|φ2 · · · φi−1φi+1 · · · φ2n|v, t〉 − 〈u, t|φ2 · · · φ2nχ(2)|v, t〉

(3.54)

with χ(2) = [χ(1),X(v, t)] ∈ Ψ−, using (3.51). Now we move χ(2) in the right-
most term to the left, picking anticommutators on the way, until it hits 〈u, t|
and can be transformed into χ(3) = [X(u, t)∗, χ(2)] ∈ Ψ+, which we then move
to the right, and so on. The χ’s tend to zero as we iterate, since we pick at
least a factor u or v on each iteration from the definition of X. Hence we arrive
at

〈u, t|φ1φ2 · · ·φ2n|v, t〉 =
2n∑

i=2

(−1)i{χ, φi}〈u, t|φ2 · · ·φi−1φi+1 · · ·φ2n|v, t〉

(3.55)

where χ = χ(1) − χ(2) + χ(3) − · · · . Applying this equality for n = 2 and
φ2 → φi we get that 〈u, t|φ1φi|v, t〉 = {χ, φi}〈u, t|v, t〉, and hence, by applying
induction hypothesis, (3.55) can be rewritten as

〈u, t|φ1φ2 · · ·φ2n|v, t〉
〈u, t|v, t〉 =

2n∑

i=2

(−1)iA1i pf A(1i)

(3.56)
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where A is defined as in the proposition and A(1i) is its submatrix with the
first and i-th rows and columns removed. We conclude by recognizing the
right-hand side of (3.56) is the expansion of the pfaffian pf A with respect to
the first row/column. �
Remark 3.11. Our proof relies on the fact that X(v, t) and X(u, t)∗ are bilinear
combinations of fermionic operators. The space of such (not necessarily charge-
preserving) bilinear combinations, supplemented with the identity operator 1,
forms a Lie algebra denoted D′

∞ which is an infinite-dimensional analogue of
the even dimensional orthogonal Lie algebra [29, Section 7]. It acts on the
space Ψ of fermionic operators as the Lie algebra of the group of linear trans-
formations preserving the canonical anticommutation relations, also known as
fermionic Bogoliubov transformations. It would be interesting to exploit this
fact to obtain a shorter proof of Proposition 3.10 for general u, v. Let us also
mention that the generalized Wick theorem mentioned in [2, Section 2.7] does
not apply to our situation since it requires the preservation of charge, and as
such implies determinantal (as opposed to pfaffian) correlations.

We now make the connection with the shifted process St(�λ) of Theo-
rem 2.5 explicit. Set

�t(U) :=
〈u, t|Ψk1(i1)Ψ

∗
k1

(i1) · · ·Ψkn
(in)Ψ∗

kn
(in)|v, t〉

〈u, t|v, t〉 . (3.57)

By (3.39) and (3.40), we have

�t(U) =
1

〈u, t|v, t〉
∑

c∈2Z

tc(uv)c2/2〈u|Ψk1−c(i1)Ψ
∗
k1−c(i1) · · · Ψkn−c(in)Ψ∗

kn−c(in)|v〉

(3.58)

where we use the fact that R−1ψkR = ψk−1 and hence R−1Ψk(i)R = Ψk−1(i)
(R commutes with vertex operators). By (3.26) and (3.41), we get

�t(U) =
1

θ3(t2; (uv)4)

∑

c∈2Z

tc(uv)c2/2� (U − (0, c)) = Prob
(
U ⊂ St(�λ)

)
.

(3.59)

In other words, �t(U) is nothing but the correlation function for the point
process St(�λ). By applying Lemma 3.10 to (3.57), and being again careful
about the ordering between operators, we conclude that St(�λ) is indeed a
pfaffian point process, and the entries of its correlation kernel read

K1,1(i, k; i′, k′) =
〈u, t|Ψk(i)Ψk′ (i′)|v, t〉

〈u, t|v, t〉
, K2,2(i, k; i′, k′) =

〈u, t|Ψ∗
k(i)Ψ∗

k′ (i′)|v, t〉
〈u, t|v, t〉

,

K1,2(i, k; i′, k′) = −K2,1(i′, k′; i, k) =

⎧
⎪⎪⎨

⎪⎪⎩

〈u,t|Ψk(i)Ψ∗
k′ (i′)|v,t〉

〈u,t|v,t〉 , if i ≤ i′,

− 〈u,t|Ψ∗
k′ (i′)Ψk(i)|v,t〉
〈u,t|v,t〉 , otherwise.

(3.60)

Note that we recover (3.47) in the case u = 0.
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3.3. Contour Integral Representations of the Correlation Functions

3.3.1. Correlation Kernels. Having proved the pfaffian nature of the point
process St(�λ) (which coincides with S(�λ) in the case of one free boundary),
the last step to establish Theorem 2.5 (and Theorem 2.2) is to show that the
entries of correlation kernel (3.60) match their announced expressions.

Integral Representation of Ψk(i) and Ψ∗
k(i). Following [42], we pass to the

fermion generating functions ψ(z) and ψ∗(w) introduced in (3.7). Using (3.15),
we get that

Ψk(i) = [zk] Ad
(
Γ+(ρ→

i )Γ−(ρ←
i )−1

)
· ψ(z)

=
1

2iπ

∮

R−1<|z|<R

dz

zk+1/2

H(ρ→
i ; z)

H(ρ←
i ; z−1)

ψ(z),

Ψ∗
k(i) = [w−k] Ad

(
Γ+(ρ→

i )Γ−(ρ←
i )−1

)
· ψ∗(w)

=
1

2iπ

∮

R−1<|w|<R

dw

w−k+1/2

H(ρ←
i ;w−1)

H(ρ→
i ;w)

ψ∗(w)

(3.61)

where [zk] and [w−k] denote coefficient extractions in the Laurent series to the
right, which we may represent as contour integrals by our analyticity assump-
tions. Noting that H(ρ→

i ; z)/H(ρ←
i ; z−1) is nothing but F (i, z) as defined in

Theorem 2.5, we may plug these expressions into (3.60) and get desired contour
integral representation (2.9) with

κ1,1(z, w) =
〈u, t|ψ(z)ψ(w)|v, t〉

〈u, t|v, t〉 ,

κ2,2(z, w) =
〈u, t|ψ∗(z)ψ∗(w)|v, t〉

〈u, t|v, t〉 ,

κ1,2(z, w) =

⎧
⎨

⎩

〈u,t|ψ(z)ψ∗(w)|v,t〉
〈u,t|v,t〉 , if |z| > |w|,

− 〈u,t|ψ∗(w)ψ(z)|v,t〉
〈u,t|v,t〉 , if |z| < |w|.

(3.62)

However, there are two possible convergence issues to consider:

• For κ1,2 we should be careful that the product ψ(z)ψ∗(w) (resp. ψ∗(w)
ψ(z)) makes sense as an operator on F only for |z| > |w| (resp. |z| < |w|),
as otherwise its diagonal entries are infinite. Thus, to obtain a correct
double contour integral representation for K1,2(i, k; i′, k′), we should in-
tegrate z over a circle of radius r, and w over a circle of radius r′, with
r > r′ if i ≤ i′ and r < r′ otherwise. Of course this choice of contours
also works for κ1,1 and κ2,2 where the nesting condition is not necessary.

• The second issue is specific to the case of free boundaries: we should make
sure that the action of ψ(z) or ψ∗(z) on the extended free boundary states
is well-defined. It can be seen that this requires v < |z| < u−1. Intuitively
speaking, the probability that |v〉 and |v, t〉 (resp. 〈u| and 〈u, t|) have an
“excitation” at level k decays as v|k| (resp. u|k|), and the action of ψ(z)
and ψ∗(z) does not blow up if and only if |z|−1 < v (resp. |z| < u). Thus,
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for the double contour integrals to make sense, we should take the radii
r, r′ between v and u−1.

This explains the constraints on the integration radii r, r′ in Theorem 2.5.

Remark 3.12. Using the canonical anticommutation relations, it is possible to
see that there is a single meromorphic function κ1,2(z, w) with a pole at z = w,
and that its two expressions in (3.62) correspond to Laurent expansions in
different annuli. Furthermore, fermionic reflection relations (3.42) imply that

κ1,2(z, w) = t
v + w

v − w
κ1,1

(

z,
v2

w

)

= t−1 z − v

z + v
κ2,2

(
v2

z
, w

)

. (3.63)

Evaluation of Fermionic Propagators. We now turn to the evaluation of the
κ’s. In the case of one free boundary (u = 0), the computations are rather
easy, for instance to compute κ1,2(z, w) = 〈0|ψ(z)ψ∗(w)|v, t〉 for |z| > |w| we
use (3.36) and notice that the only |S〉 that contribute have charge 0 and
correspond to “hook” partitions. Taking into account signs and the special
contribution from |0〉, we get

κ1,2(z, w) =
∑

k∈∈Z
′
<0

(−1)k+1/2 zk

vk

∑

�∈Z
′
>0

w�

v�
+
∑

k∈Z
′
<0

zk

wk
=

(zw − v2)
√

zw

(z + v)(w − v)(z − w)
.

(3.64)

For v = 1, we obtain the expression announced in (2.10), and we leave the
reader derive similarly the expressions for the other propagators, given in “Ap-
pendix C” section, to conclude the proof of Theorem 2.2.

We may adapt this approach to the case of two free boundaries, but the
computations become involved. A simpler approach is to use Proposition 3.2
to rewrite the fermions in terms of vertex operators. For instance, to evaluate
κ1,2(z, w) for |z| > |w|, we write

〈u, t|ψ(z)ψ∗(w)|v, t〉
= 〈u, t|(z/w)C−1/2Γ−(z)Γ′

+

(
−z−1

)
Γ′

−(−w)Γ+

(
w−1
)
|v, t〉

=
√

w

z

(
∑

c∈2Z

(tz/w)c(uv)c2/2

)

〈u|Γ−(z)Γ′
+

(
−z−1

)
Γ′

−(−w)Γ+

(
w−1
)
|v〉

(3.65)

where we use (3.39), (3.40) and the commutation of vertex operators with R
and C. The last factor on the second line can be identified with the partition
function of a certain free boundary Schur process of length 2, compare with
Proposition 3.4. Using Proposition 2.1 to evaluate this partition function, and
recognizing several Pochhammer symbols and theta functions, we arrive at

〈u, t|ψ(z)ψ∗(w)|v, t〉

=
√

w

z
θ3

(
(tz/w)2; (uv)4

) ((uv)2; (uv)2)2∞θ(uv)2(u2zw)〈u|v〉
(uv, uz,−uw,−vz−1, vw−1;uv)∞θ(uv)2(w/z)

.

(3.66)
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Upon dividing by normalization (3.41), we obtain the expression of κ1,2(z, w)
announced in (2.14). The expressions for the other propagators, given in “Ap-
pendix C” section, can be checked using (3.63) and simple manipulations of
Pochhammer symbols and theta functions. This concludes the proof of Theo-
rem 2.5.

3.3.2. Variations on Free Boundary States. In this section, we explain how to
handle the extra weighting αoc mentioned in Remark 2.4. Recall that |v〉 =∑

λ v|λ||λ〉. We define the following companion boundary vectors:

|vec〉 =
∑

λ: λ has even columns

v|λ||λ〉, |vα, oc〉 =
∑

λ

α# of odd columns of λv|λ||λ〉,

|ver〉 =
∑

λ: λ has even rows

v|λ||λ〉, |vβ, or〉 =
∑

λ

β# of odd rows of λv|λ||λ〉

(3.67)

where ec, er, oc, or stand for, respectively, even columns, even rows, odd
columns, odd rows, and where α, β are parameters. Note that |v1, oc〉 = |v1, or〉
= |v〉 while |v0, oc〉 = |vec〉 and |v0, or〉 = |ver〉. Analogously we may define
covectors 〈uec|, etc.

Proposition 3.13. We have

|vα, oc〉 = Γ−(αv)|vec〉, |vβ, or〉 = Γ′
−(βv)|ver〉. (3.68)

Proof. The first (resp. second) identity results from the fact that any partition
can be decomposed uniquely into a partition with even columns (resp. rows)
and a horizontal (resp. vertical) strip. �

Noting that Γ−(x)Γ′
−(−x) = 1 for any single variable x, we deduce that

the modified free boundary states can be expressed in terms of the original
one as

|vα, oc〉 = Γ−(αv)Γ′
−(−v)|v〉, |vβ, or〉 = Γ′

−(βv)Γ−(−v)|v〉. (3.69)

Replacing |v〉 by |vα, oc〉 in Proposition 3.4, we obtain the partition func-
tion and correlation functions for the free boundary Schur process with the
extra weight αoc counting the number of odd columns of μ(N). By (3.69), we
readily see that such modification amounts to replacing the boundary special-
ization ρ−

N by the specialization ρ−
N [α, v] such that

H(ρ−
N [α, v]; t) =

1− tv

1− αtv
H(ρ−

N ; t). (3.70)

In other words, we are “adding” a specialization in the single variable αv
and “subtracting” (in the sense of plethystic negation) a variable v. Note that
ρ−

N [α, v] is a priori not nonnegative. Still, this allows to deduce easily the parti-
tion function and correlations functions of the modified process from Proposi-
tion 2.1 and Theorem 2.5. In (2.14), changing ρ−

N into ρ−
N [α, v] produces some

extra factors in F (i, z). These factors will appear in contour integral repre-
sentation (2.9), once for F (i, z) and once for F (i′, w). We may conventionally
choose to absorb them in a redefinition of the κ’s, and keep F unchanged: this
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yields announced expression (2.11) for u = 0 and v = 1. It is not difficult to see
that such a redefinition of the κ’s amounts to replacing in (3.62) the extended
free boundary state |v, t〉 by

|vα, oc, t〉 := Γ−(αv)Γ′
−(−v)|v, t〉, (3.71)

i.e., we modify the fermionic propagators rather than the boundary special-
ization ρ−

N .
Of course, we could perform a similar trick to introduce instead an ex-

tra weight βor counting the number of odd rows of μ(N). Let us record the
corresponding redefinition of the κ’s for u = 0 and v = 1:

κ1,1(z, w) =
√

zw(z − w)
(zw − 1)(z + β)(w + β)

,

κ1,2(z, w) =
√

zw(zw − 1)(w + β)
(z − w)(w2 − 1)(z + β)

,

κ2,2(z, w) =
√

zw(z − w)(z + β)(w + β)
(z2 − 1)(w2 − 1)(zw − 1)

.

(3.72)

For bookkeeping purposes, we gather in “Appendix C” section the expressions
for all modified fermionic propagators with one free boundary state. The case
of two free boundaries is left as an exercise to the reader.

3.3.3. General Correlation Functions. It turns out that the free fermion for-
malism used in this section allows to derive an explicit 2n-fold contour integral
representation for the general n-point correlation function of both S(�λ) and
St(�λ):

Theorem 3.14. Let U = {(i1, k1), . . . , (in, kn)} be a finite subset of {1, . . . , N}×
Z

′, with i1 ≤ · · · ≤ in. The probability �(U) that the point process S(�λ) con-
tains U reads

�(U) =
1

(2iπ)2n

∮

· · ·
∮ ( n∏

j=1

dzjdwj

z
kj+1

j w
−kj+1

j

· F (ij , zj)

F (ij , wj)

)

Φ(z1, . . . , zn; w1, . . . , wn)

(3.73)

where the contour integrals are taken over 2n nested circles min(R, u−1) >
|z1| > |w1| > · · · > |zn| > |wn| > max(v,R−1), and where F is as in Theo-
rem 2.5 while

Φ(z1, . . . , zn; w1, . . . , wn) =

√
w1 · · · wn

z1 · · · zn

((uv)2; (uv)2)2n
∞∏n

i=1(uzi, −uwi, −vz−1
i , vw−1

i ; uv)∞

×
∏n

i,j=1 θ(uv)2(u
2ziwj)

∏
1≤i≤j≤n θ(uv)2(wj/zi)

∏
1≤i<j≤n θ(uv)2(zj/wi)

×
∏

1≤i<j≤n

θ(uv)2(zj/zi)θ(uv)2(wj/wi)

θ(uv)2(u2zizj)θ(uv)2(u2wiwj)
. (3.74)
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The probability �t(U) that the point process St(�λ) contains U admits the same
expression, upon replacing Φ(z1, . . . , zn;w1, . . . , wn) by

Φt(z1, . . . , zn;w1, . . . , wn)

= θ3

((

t
z1 · · · zn

w1 · · ·wn

)2

; (uv)4
)

Φ(z1, . . . , zn;w1, . . . , wn)
θ3(t2; (uv)4)

. (3.75)

Proof. We start from fermionic representation (3.26) of �(U) and plug in con-
tour integral representation (3.61) of Ψk(i) and Ψ∗

k(i): we obtain 2n-fold con-
tour integral (3.73) with

Φ(z1, . . . , zn;w1, . . . , wn) =
〈u|ψ(z1)ψ∗(w1) · · ·ψ(zn)ψ∗(wn)|v〉

〈u|v〉 . (3.76)

This quantity may be evaluated by the same strategy as for the fermionic prop-
agators in Sect. 3.3.1, by using the boson–fermion correspondence (Proposi-
tion 3.2) to rewrite the ψ/ψ∗ in terms of vertex operators (and R and C oper-
ators that are immediately factored out). We recognize the partition function
of a certain free boundary Schur process of length 2N , which after some mas-
saging yields (3.74). The discussion of integration contours is easily adapted
from that in Sect. 3.3.1.

For �t(U), we proceed in the same way starting from fermionic represen-
tation (3.57), which amounts to replacing Φ by

Φt(z1, . . . , zn;w1, . . . , wn) =
〈u, t|ψ(z1)ψ∗(w1) · · ·ψ(zn)ψ∗(wn)|v, t〉

〈u, t|v, t〉 . (3.77)

By (3.39) and (3.40), we see that Φt differs from Φ by a simple charge-related
factor, leading to (3.75). �
Remark 3.15. By Wick’s lemma for two free boundaries (Lemma 3.10), we
have

Φt(z1, . . . , zn;w1, . . . , wn) = pf

[
κ1,1(zi, zj) κ1,2(zi, wj)

−κ1,2(zj , wi) κ2,2(wi, wj)

]

1≤i,j≤n

(3.78)

where the κ’s are as in Theorem 2.5. Plugging in the explicit expression for
Φt given in Theorem 3.14, we obtain a remarkable pfaffian identity which
amounts to a particular case of an identity due to Okada [40]. In the case
u = v = 0, this identity reduces to the well-known Cauchy determinant. In the
case u = 0, v = 1 of Theorem 2.2, we obtain an identity equivalent to Schur’s
pfaffian pf1≤i<j≤2n

xi−xj

xi+xj
=
∏

1≤i<j≤2n
xi−xj

xi+xj
(the equivalence goes as follows:

substitute expression (2.10) for the κ’s, pull out the trivial row/column factors
and take x2i−1 = zi−1

zi+1 , x2i = 1−wi

wi+1 for i = 1, . . . , n).

4. Symmetric Last Passage Percolation

In this section we consider the last passage percolation (LPP) time with sym-
metric and up to symmetry independent geometric weights. For (an)n≥1 ∈
(0, 1)N, α ∈ (0, inf{ 1

an
, n ≥ 1}) and r, t ∈ Z≥1 these weights are given by
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ωr,t = ωt,r ∼

⎧
⎨

⎩

g(arat), if r �= t,

g(αar), if r = t
(4.1)

where Prob(g(q) = k) = qk(1− q) for k ∈ Z≥0.
For (k, l), (m,n) ∈ Z

2
≥1 with k ≤ m, l ≤ n, consider up-right paths π

from (k, l) to (m,n), i.e., π = (π(0), π(1), . . . , π(m − k + n − l)) with π(0) =
(k, l), π(m − k + n − l) = (m,n) and π(i) − π(i − 1) ∈ {(0, 1), (1, 0)}. The
symmetric LPP time with geometric weights (4.1) is then defined to be

L(k,l)→(m,n) := max
π:(k,l)→(m,n)

∑

(r,t)∈π

ωr,t (4.2)

where the maximum is taken over all up-right paths from (k, l) to (m,n). Note
that we have the recursion

L(k,l)→(m,n) = max{L(k,l)→(m−1,n), L(k,l)→(m,n−1)}+ ωm,n. (4.3)

4.1. Definition of Distribution Functions

We start by defining the distribution functions which will appear later. The
distributions defined below are mostly given in terms of contour integrals,
which is why we make the following definition. For ϕ ∈ [0, 2π] and z ∈ R denote
by Gϕ

z = {z + |s|esgn(s)iϕ, s ∈ R} the infinite curve oriented from z +∞e−iϕ to
z +∞eiϕ. If f is a function and V ⊂ C, we denote by γV any counterclockwise
oriented simple closed curve containing all elements of V in its interior and
excluding all poles of f that are not elements of V .

Let u1 > u2 > · · · > uk ≥ 0 and a, b ∈ {1, . . . , k}. For v ∈ R we define

Kv
1,1(ua, ξ; ub, ξ

′)

=
1

(2πi)2

∫

G
π/3
1

dZ

∫

G
π/3
1

dW
(Z − W )(W + 2v)(Z + 2v)

4ZW (Z + W )

eZ3/3−Z2ua−Zξ

e−W3/3+W2ub+Wξ′

(4.4)

and Kv
1,2 = Kv,1

1,2 + Kv,2
1,2 , where

Kv,1
1,2 (ua, ξ;ub, ξ

′)

=
1

(2πi)2

∫

G
π/3
AZ

dZ

∫

G
2π/3
AW

dW
(Z + W )(Z + 2v)

2(W + 2v)Z(Z −W )
eZ3/3−Z2ua−ξZ

eW 3/3−W 2ub−Wξ′ ,

(4.5)

with AZ > AW > −2v,AZ > 0. For a ≤ b, we have Kv,2
1,2 (ua, ξ;ub, ξ

′) = 0, and
if a > b, then

Kv,2
1,2 (ua, ξ;ub, ξ

′) =
−1
2πi

∫

iR

dZeZ2(ub−ua)+Z(ξ′−ξ) (4.6)

with iR oriented with increasing imaginary part. Finally, we define Kv
2,2 =

Kv,1
2,2 + Kv,2

2,2 through
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Kv,1
2,2 (ua, ξ; ub, ξ

′)

=
1

(2πi)2

∫

G
2π/3
B3

dZ

∫

G
2π/3
B4

dW
Z − W

(W + 2v)(Z + 2v)(Z + W )

e−Z3/3+uaZ2+Zξ

eW3/3−ubW2−Wξ′ ,

(4.7)

with B3 > −2v > B4, B3 < −B4.
We define Kv,2

2,2 for ua = ub = 0 to be

Kv,2
2,2 (0, ξ; 0, ξ′) =

e8v3/3−2vξ′

2πi

∫

G
2π/3
C1

dZ
e−Z3/3+Zξ

Z − 2v
+ sgn(ξ′ − ξ)e−2v|ξ−ξ′|

(4.8)

with C1 < 2v, whereas if ua + ub > 0

Kv,2
2,2 (ua, ξ;ub, ξ

′) =
e8v3/3+4v2ub−2vξ′

2πi

∫

G
2π/3
B2

dZ
1

Z − 2v
e−Z3/3+Z2ua+ξZ

− 1
2πi

∫

G
2π/3
B1

dZ
2Z

(Z + 2v)(Z − 2v)
eZ2(ua+ub)+Z(ξ−ξ′)

(4.9)

with B1 > 2|v|, B2 > 2v. We can now define the following antisymmetric
kernel, note that we introduce the prefactor dq = q1/6

2(1+
√

q)2/3 in its definition
so we do not have to insert it later:

Kv(ua, ξ;ub, ξ
′) =

(
Kv

1,1(dqua, ξ; dqub, ξ
′) Kv

1,2(dqua, ξ; dqub, ξ
′)

−Kv
1,2(dqub, ξ

′; dqua, ξ) Kv
2,2(dqua, ξ; dqub, ξ

′)

)

.

(4.10)

The Tracy–Widom GUE distribution is given by

FGUE(s) = pf(J − K̂A2)(s,∞) (4.11)

with K̂A2(x, y) =

(
0 KA2(x, y)

−KA2(y, x) 0

)

and

KA2(x, y) =
1

(2πi)2

∫

G
2π/3
−1

dz

∫

G
π/3
1

dw
ew3−wx

ez3−zy

1
w − z

(4.12)

is the Airy kernel.
We define Fu,v through

Fu,v(s) = pf(J −Kv(u, ξ;u, ξ′))(s,∞). (4.13)

The FGOE and FGSE distributions which appear in the following can be de-
fined through Fredholm pfaffians—see e.g., [4, Lemmas 2.6 and 2.7], but their
explicit form will not be needed later and hence we omit giving it. Fu,v interpo-
lates between various distribution functions. First, we have F0,0(s) = FGOE(s);
the equivalence of F0,0 with existing definitions of FGOE was checked in, e.g.,
Lemma 2.6 of [4]. It follows from our Theorem 4.2 and (4.26) of [6] that
F0,v(s) = F�(s; v), where F� is defined in Definition 4 of [8]. This and (2.33)



3696 D. Betea et al. Ann. Henri Poincaré

in [8] imply limv→+∞ F0,v(s) = FGSE(s). Finally, if v = v(u) is such that
u+2v(u)→ +∞ for u → +∞, then limu→+∞ Fu,v(s−u2d2

q) = FGUE(s) (with

dq = q1/6

2(1+
√

q)2/3 ). This follows from the convergence of Kv (under conjugation)

to K̂A2 and dominated convergence.

4.2. Results and Proofs

The first result we present is a formula for the multipoint distribution of LPP
times along down-right paths.

Theorem 4.1. Consider LPP time (4.2) with weights (4.1). Let rl, tl ∈ Z≥1, rl ≤
tl, l = 1, . . . , k with r1 ≤ . . . ≤ rk, t1 ≥ . . . ≥ tk. Then

Prob

(
k⋂

l=1

{L(1,1)→(rl,tl) ≤ sl}
)

= pf(J −K)B (4.14)

where B = {(i, x) ∈ {1, . . . , k}×Z
′ : x > si−1/2} is equipped with the counting

measure. The kernel K is given by

K1,1(a, xa; b, xb)

=
1

(2πi)2

∮

dz

∮

dw
z − w

(z2 − 1)(w2 − 1)(zw − 1)
z−xa+1/2w−xb+1/2(1 − α/z)(1 − α/w)

×
ra∏

i=1

1

1 − aiz

rb∏

i=1

1

1 − aiw

ta∏

i=1

(1 − ai/z)

tb∏

i=1

(1 − ai/w) (4.15)

for counterclockwise oriented circle contours around 0 satisfying α, 1 < |z|, |w|
< mini=1,...,t1

1
ai

;

K1,2(a, xa; b, xb)

=
1

(2πi)2

∮

dz

∮

dw
zw − 1

(z − w)(z2 − 1)
z−xa+1/2wxb−3/2 1− α/z

1− α/w

×
ra∏

i=1

1
1− aiz

rb∏

i=1

(1− aiw)
ta∏

i=1

(1− ai/z)
tb∏

i=1

1
1− ai/w

(4.16)

for counterclockwise oriented circle contours around 0 with maxi=1,...,t1 ai, α <
|z|, |w| < mini=1,...,t1

1
ai

and, if a ≤ b, |w| < |z| > 1, and, if b < a, 1 < |z| <
|w|; and finally

K2,2(a, xa; b, xb)

=
1

(2πi)2

∮

dz

∮

dwzxa−3/2wxb−3/2 z − w

zw − 1
1

(1− α/z)(1− α/w)

×
ra∏

i=1

(1− aiz)
rb∏

i=1

(1− aiw)
ta∏

i=1

1
1− ai/z

tb∏

i=1

1
1− ai/w

(4.17)

for counterclockwise oriented circle contours around 0 with α,maxi=1,...,t1 ai <
|z|, |w| < mini=1,...,t1

1
ai

and 1 < |zw|.

The following theorem will be obtained from the previous one by asymp-
totic analysis.



Vol. 19 (2018) The Free Boundary Schur Process and Applications I 3697

Theorem 4.2. Consider weights (4.1) with aj =
√

q, q ∈ (0, 1), j ≥ 1 and
α = 1 − 2vcqN

−1/3, where cq = 1−√
q

q1/6(1+
√

q)1/3 , v ∈ R. Let u1 > · · · > uk ≥ 0.
Then

lim
N→∞

Prob

(
k⋂

i=1

{
L(1,1)→(N−�uiN2/3�,N) ≤ 2

√
qN

1 − √
q

− ui

√
qN2/3

1 − √
q

+ c−1
q siN

1/3}
)

= pf(J − χsK
vχs){u1,...,uk}×R (4.18)

where χs(ui, x) = 1x>si
and Kv is defined in (4.10).

Remark 4.3. As was already mentioned, further asymptotic regimes can be
considered. The geometric LPP time L(1,1)→(κN,N) with weights (4.1) and an =
√

q converges to FGUE as long as α <
1+

√
κq√

κ+
√

q
. Also, as was already obtained

in [6], L(1,1)→(N,N) (rescaled) converges to FGSE for α < 1. We note that this
case is more involved than the others, see Section 5 of [4] for a discussion
and solution of the arising difficulties in the exponential case. Finally, the law
of large numbers limit of L(1,1)→(N,N) changes for α > 1 and L(1,1)→(N,N)

converges to a Gaussian random variable under N1/2 scaling.

4.2.1. Proofs of Theorems 4.1 and 4.2. We start by proving Theorem 4.1.
Symmetric LPP time (4.2) is a marginal of a Schur process with an even
columns free boundary partition. This can be seen using the framework de-
veloped in [11] which we mostly follow and refer to for further references. For
a word w = (w1, . . . , wn) ∈ {≺,�}n and a sequence of partitions �λ = (∅ =
λ(0), . . . , λ(n)) we say that �λ is w−interlaced if λ(i−1)wiλ

(i), i = 1, . . . , n and
we define w� = (w�

n, . . . , w�
1) ∈ {≺,�}n by imposing w�

i �= wi. Furthermore,
given w, we set Γi = Γ+ (resp. Γi = Γ−) if wi equals ≺ (resp. �), and we
define wsym = w ·w� where · means concatenation. For w ∈ {≺,�}n, we label
the elements of {i : Γi = Γ+} as i1 ≤ . . . ≤ im and those of {i : Γi = Γ−} as
jn−m ≤ . . . ≤ j1. We now define s1, . . . , sn by setting

sik
= ak, k = 1, . . . ,m; sjk

= ak, k = 1, . . . , n−m (4.19)

with the (an)n≥1 from (4.1).
To w we associate an encoded shape: we construct a down-right path

π̂ = (π̂(0), . . . , π̂(n)), π̂(0) = (1,#{i : wi =�} + 1), π̂(n) = (#{i : wi =≺
}+ 1, 1) of unit steps by setting π̂(i + 1)− π̂(i) = (1, 0) if wi+1 equals ≺, and
π̂(i + 1)− π̂(i) = (0,−1) otherwise. This path can be seen as the boundary of
a Young diagram drawn in French convention, denoted by sh(w); the bottom
left corner of this Young diagram is located at (1, 1)—see Fig. 7 left. For fixed
λ, μ we have the bijective local growth rule

Tloc : {κ : κ ≺ λ, κ ≺ μ} × Z≥0 → {ν : ν � λ, ν � μ} (4.20)

where ν := Tloc((κ, k)) is given by

ν1 = max{λ1, μ1}+ k,

νi = max{λi, μi}+ min{λi−1, μi−1} − κi−1, i ≥ 2
(4.21)
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π̂
≺

�≺

�≺

�

(1,1)

G1,1 G1,2 G1,3

G2,2G1,2

G1,3

∅

∅

λ(0) = ∅

∅ ∅ ∅ ∅ = λ(0)

λ(1)

λ(2)

λ(2)

λ(3)

λ(1)

Figure 7. Left: the encoded shape sh(wsym) = (3, 2, 1) for w =
(≺, �, ≺) together with the down-right path π̂ in bold; right: the par-

titions λ(0), . . . , λ(3), . . . , λ(0) associated with the points of π̂ are con-
structed recursively using the empty partitions on the boundary, the
Gr,t and Tloc

and one has

|ν|+ |κ| = |μ|+ |λ|+ k. (4.22)

Let {Gr,t, r, t ≥ 1} be nonnegative integers with Gr,t = Gt,r (Gr,t is
a possible realization of the ωr,t from (4.1)). We now recursively construct
partitions λr,t, (r, t) ∈ Z

2
≥1 as follows: for (r, t) ∈ {(1, k) : k ≥ 1}∪{(k, 1) : k ≥

1} we set λr,t = ∅. Given λr,t =: κ, λr+1,t =: μ, λr,t+1 =: λ we define

λr+1,t+1 := Tloc((κ,Gr,t)). (4.23)

Note that, since Gr,t = Gt,r and Tloc is symmetric in λ and μ, we have
that λr,t = λt,r.

Given wsym ∈ {≺,�}2n and the corresponding down-right path π̂ =
(π̂(0), . . . , π̂(2n)), we denote

λ(m) = λπ̂(m),m = 0, . . . , 2n (4.24)

and note that we have λ(n+k) = λ(n−k), k = 0, . . . , n—see Fig. 7 right.
The following proposition is an elementary induction on |sh(wsym)| (see

Theorem 3.2 of [11] for a similar proof), which we omit carrying out (the
partition function Zw appearing in (4.26) was computed in (2.6)).

Proposition 4.4. Let w ∈ {≺,�}n, wsym = w · w� and si, i = 1, . . . , 2n, be
variables (4.19) for wsym. With symmetric weights (4.1) we obtain by (4.24)
a probability distribution on

{�λ : �λ = (∅ = λ(0), . . . , λ(n−1), λ(n), λ(n−1), . . . , λ(0)), �λ is wsym-interlaced }
(4.25)

which is given by

Prob({�λ}) =
1

Zw
〈λ(n)|Γ−({α})|1ec〉 ·

n∏

i=1

〈λ(i−1)|Γi({si})|λ(i)〉. (4.26)

Now we can prove Theorem 4.1.
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Proof of Theorem 4.1. Note that, by construction, L(1,1)→(m,n) = λm+1,n+1
1 ,

where λm+1,n+1
1 is from (4.23) and Gr,t = ωr,t. Consequently, the LPP times

become a gap probability for the point process S(�λ) where �λ is distributed as
(4.26). By (A.11), the left-hand side of (4.14) is given as a Fredholm pfaffian,
and the corresponding correlation functions are computed in Theorem 2.2 and
(2.11), leading to identity (4.14). �

Proof of Theorem 4.2. We have to show the convergence, as N → ∞, of the
Fredholm pfaffian provided by Theorem 4.1. By Proposition 4.5, the kernel K
from Theorem 4.1 converges pointwise to Kv, and by Proposition 4.6 we can
apply Lemma A.3 which yields an integrable upper bound, allowing us to apply
dominated convergence to show the convergence of the Fredholm pfaffian. �

4.2.2. Asymptotics. In the following asymptotics, we will ignore the integer
parts in (4.27) when it leads to no confusion.

Proposition 4.5. Set aj =
√

q for a q ∈ (0, 1) and let u1 > · · · > uk ≥ 0 and

cq = 1−√
q

q1/6(1+
√

q)1/3 , dq = q1/6

2(1+
√

q)2/3 . Set α = 1 − 2vcqN
−1/3, v ∈ R. We take

tl = N, rl = N − �ulN
2/3�, l = 1, . . . , k and

xa = � 2
√

q

1−√q
N� − �uaN2/3

√
q

1−√q
�+ �ξN1/3� − 1/2,

xb = � 2
√

q

1−√q
N� − �ubN

2/3

√
q

1−√q
�+ �ξ′N1/3� − 1/2.

(4.27)

We then have for the kernels K from Theorem 4.1 and Kv from (4.10):

lim
N→∞

N2/3e−N2/3 ln(1−√
q)(ua+ub)c−1

q K1,1(a, xa; b, xb) = cqKv
1,1(dqua, cqξ; dqub, cqξ′),

lim
N→∞

N1/3eN2/3 ln(1−√
q)(ub−ua)K1,2(a, xa; b, xb) = cqKv

1,2(dqua, cqξ; dqub, cqξ′),

lim
N→∞

eN2/3 ln(1−√
q)(ub+ua)cqK2,2(a, xa; b, xb) = cqKv

2,2(dqua, cqξ; dqub, cqξ′). (4.28)

Proof. We start with K1,2. We get for a ≤ b

K1,2(a, xa; b, xb)

=
1

(2πi)2

∮

1/
√

q>|z|>α,1

dz

∮

1/
√

q,|z|>|w|>α,
√

q

dw
z − α

w − α

zw − 1

w(z − w)(z − 1)(z + 1)

× eNf1(z)+N2/3uaf2(z)−N1/3f3(z)ξ

eNf1(w)+N2/3ubf2(w)−N1/3f3(w)ξ′ (4.29)

=
1

(2πi)2

∮

γ−1,0,1,w

dz

∮

γ√
q,α

dw
z − α

w − α

zw − 1

w(z − w)(z − 1)(z + 1)

× eNf1(z)+N2/3uaf2(z)−N1/3f3(z)ξ

eNf1(w)+N2/3ubf2(w)−N1/3f3(w)ξ′ (4.30)
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where we have set

f1(z) = ln(1−√q/z)− ln(1−√qz)− ln(z)
2
√

q

1−√q
,

f2(z) = ln(z)
√

q

1−√q
+ ln(1−√qz),

f3(z) = ln(z).

(4.31)

One readily computes f1(1) = f ′
1(1) = f ′′

1 (1) = 0, f ′′′
1 (1) = 2c−3

q and

f2(1) = ln(1−√q), f ′
2(1) = 0, f ′′

2 (1) = −
√

q

(1−√
q)2 , also dq = −f ′′

2 (1)c2
q/2.

Let us briefly outline the strategy for the asymptotics. We choose contours
γ−1,0,1,w for z and γ√

q,α for w such that they pass (almost) through the
critical point 1. Furthermore, for δ > 0 small (but independent of N) we
want �(f1(z)) ≤ −c0,0 and −�(f1(w)) ≤ −c0,0 for some c0,0 > 0 (depending
on δ) for z ∈ γδ

−1,0,1,w, w ∈ γδ√
q,α where we define γδ

−1,0,1,w = {z ∈ γ−1,0,1,w :
|z − 1| ≤ δ}, γδ√

q,α = {w ∈ γ√
q,α : |w − 1| ≤ δ}.

Given this, the integral over (γδ
−1,0,1,w ∪ γδ√

q,α)c will vanish as N → ∞.
On γδ

−1,0,1,w ∪ γδ√
q,α we use Taylor to obtain Nf1(1 + ZcqN

−1/3) = Z3/3 +
O(Z4N−1/3). For this reason we want (γδ

−1,0,1,w−1)N1/3, respectively, (γδ√
q,α−

1)N1/3 to lie (up to a part of length O(1)) in {z ∈ C : �(z3) < 0}, respectively,
{w ∈ C : �(w3) > 0}.

We first note that �(f1(eis)) = 0 for all s. Furthermore, we compute

L(z) = zf ′
1(z) =

√
q(1 +

√
q)

1−√q

(1− z)2

(
√

q − z)(−1 +
√

qz)
. (4.32)

An elementary computation shows

�(L(eis)) = 0. (4.33)

Next we treat �(L(eis)) = L(eis). We have

�(L(z)) =
√

q(1 +
√

q)
1−√q

1
|(√q − z)(−1 +

√
qz)|2

×�((1− z)2(
√

q − z̄)(−1 +
√

qz̄)). (4.34)

This implies by a simple computation

L(eis) =
√

q(1 +
√

q)
1−√q

2(−1 + cos(s))
|√q − eis|2 . (4.35)

Let now ε > 0, and φ ∈ [0, 2π]. Then, by Taylor approximation for some
ts ∈ [0, 1], we have

�(f1(eis + εeiφ)) = �(f1(eis)) + �(f ′
1(e

is)εeiφ) +
1
2
�(f ′′

1 (eis + tsεeiφ)ε2e2iφ)

= L(eis)ε cos(φ− s) +
ε2

2
�(f ′′

1 (eis + tsεeiφ)e2iφ). (4.36)
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1 wc w̃c

γδ√
q,α γδ

−1,0,1,w

Figure 8. Parts of the contours γ√
q,α and γ−1,0,1,w from (4.38)

and (4.42) close to where they cross the positive real axis in wc =

1 + N−1/3(2|v|cq + 1/2), w̃c = wc + N−1/3/2. The curve segments

γδ√
q,α, γδ−1,0,1,w are shown in dotted lines

Take ε = −ε1L(eis) for ε1 > 0 small and φ = π + s, respectively, φ = s
to get

�(f1((1 + ε1L(eis))eis)) ≥ L(eis)2ε1/2,

�(f1((1− ε1L(eis))eis)) ≤ −L(eis)2ε1/2.
(4.37)

Choose now the contour (Fig. 8)

γ√
q,α(s) = (1 + N−1/3(2|v|cq + 1/2))(1 + ε1L(eis))eis, s ∈ [0, 2π].(4.38)

The prefactor (1 + N−1/3(2|v|cq + 1/2)) makes sure that α lies inside the
contour. Furthermore, by (4.37) and (4.35), for any δ > 0 independent of N
there is a c0,0 > 0 for which we have −�(f1(w)) ≤ −c0,0 for w ∈ γ√

q,α\γδ√
q,α =

{w ∈ γ√
q,α : |w − 1| > δ}. To choose γ−1,0,1,w consider first

γ̃−1,0,1,w(s) = (1 + N−1/3(2|v|cq + 1))(1− ε1L(eis))eis, s ∈ [0, 2π].
(4.39)

By (4.37) and (4.35), �(f1(γ̃−1,0,1,w(s))) behaves as desired, but �(γ̃−1,0,1,w(s))
< 1 + N−1/3(2|v|cq + 1)) if ε1L(eis)(−1 + cos(s))−1 is too small, i.e., the con-
tour may not cross the positive real axis with the right angles. We thus do a
local modification. Choose η1 > 0 small and let η2 > 0 be the number such
that ei arcsin(η1) + η2 ∈ {(1− ε1L(eis))eis, s ∈ [0, 2π]}, and let ei arcsin(η1) + η2 =
(1− ε1L(eisη2 ))eisη2 . Let M > 1 and define

γloc,1
−1,0,1,w(s) = 1 + is + s/M, s ∈ [0, η1] and

γloc,2
−1,0,1,w(s) = ei arcsin(η1) + s, s ∈ [η2, 1 + η1/M − cos(arcsin(η1))]. (4.40)

Choosing M sufficiently large and η1 sufficiently small we get by Taylor ap-
proximation around 1 and earcsin(η1)i that for some constants d1, d2 > 0

�(f1(γ
loc,1
−1,0,1,w(s))) ≤ −s3d1 and �(f1(γ

loc,2
−1,0,1,w(s))) ≤ −η2

1sd2. (4.41)

Define finally γloc,3
−1,0,1,w = {(1− ε1L(eis))eis, s ∈ [sη2 , π]}.
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Since �(f1(z)) = �(f1(z̄)) it suffices to define γ−1,0,1,w on the upper half
plane. We set

γ−1,0,1,w = (1 + N−1/3(2|v|cq + 1))(γloc,1
−1,0,1,w + γloc,2

−1,0,1,w + γloc,3
−1,0,1,w) (4.42)

where the + means we concatenate the curves such that γ−1,0,1,w is coun-
terclockwise oriented. On the lower half plane, we simply take the image of
(4.42) under complex conjugation. We now choose δ < η1 such that γδ

−1,0,1,w ⊂
{1 + is + |s|/M, s ∈ [−η1, η1]}.

By virtue of (4.41), (4.37) and (4.35), for z ∈ γ−1,0,1,w\γδ
−1,0,1,w = {z ∈

γ−1,0,1,w : |z−1| > δ} we have �(f1(z)) ≤ −c0,1 for a c0,1 > 0 and we can take
c0,0 = c0,1. We choose Σ to be the part of the contours where z /∈ γδ

−1,0,1,w

and/or w /∈ γδ√
q,α. Then integral (4.30) is on

Σ ∪ (γδ
−1,0,1,w ∪ γδ√

q,α) = γ−1,0,1,w ∪ γ√
q,α. (4.43)

On Σ, there is a c0,0 > 0 such that �(f1(z)) < −c0,0 and/or −�(f1(w)) <
−c0,0, and also �(f1(z)),−�(f1(w)) < c0,0/4. Furthermore, we can bound∣
∣
∣ z−α
w(w−α)

zw−1
(z−w)(z2−1)

∣
∣
∣ < C(δ)N1/3 where C(δ) is a constant depending on δ. So

overall we may bound

N
1/3

e
N2/3f2(1)(ub−ua)

∣
∣
∣
∣
∣

∫

Σ
dzdw

zw − 1

(z2 − 1)(z − w)

z − α

w(w − α)

eNf1(z)+N2/3uaf2(z)−N1/3f3(z)ξ

eNf1(w)+N2/3ubf2(w)−N1/3f3(w)ξ′

∣
∣
∣
∣
∣

≤ Ce
−Nc0,0/2 (4.44)

for a C > 0.
For the integral on γδ

−1,0,1,w ∪ γδ√
q,α, we do the change of variable

z = 1 + ZcqN
−1/3 w = 1 + WcqN

−1/3. (4.45)

Use now Taylor and define F (Z,W ) via

eN(f1(z)−f1(w))eN2/3(uaf2(z)−ubf2(w))eN1/3(ξ′f3(w)−ξf3(z))

= eN2/3(uaf2(1)−ubf2(1))eZ3/3+Z2uac2qf ′′
2 (1)/2−ξZcq−W3/3−W2ubc2qf ′′

2 (1)/2+Wcqξ′

× eO(Z4N−1/3)+O(Z3N−1/3)+O(Z2N−1/3)+O(W4N−1/3)+O(W3N−1/3)+O(W2N−1/3)

= F (Z, W )eN2/3(uaf2(1)−ubf2(1)) (4.46)

and denote F̃ (Z,W ) = eZ3/3+Z2uac2
qf ′′

2 (1)/2−ξZcq−W 3/3−W 2ubc2
qf ′′

2 (1)/2+Wcqξ′
.

To control the contribution from the error terms in (4.46), we use the inequality
|ex − 1| ≤ e|x||x|.

With the change of variable (4.45), we have to control
∣
∣
∣

cq

(2πi)2

∫

(γδ−1,0,1,w−1) N1/3
cq

dZ

∫

(γδ√
q,α

−1) N1/3
cq

dW
Z + 2v

W + 2v

× Z + W + ZWN−1/3cq

(1 + WcqN−1/3)(Z − W )Z(2 + ZcqN−1/3)
× (F (Z, W ) − F̃ (Z, W ))

∣
∣
∣ (4.47)

≤ cq

(2π)2

∫

(γδ−1,0,1,w−1) N1/3
cq

|dZ|
∫

(γδ√
q,α

−1) N1/3
cq

|dW |
∣
∣
∣
∣

Z + 2v

W + 2v

× Z + W + ZWN−1/3cq

(Z − W )Z
F̃ (Z, W )

∣
∣
∣
∣
∣

(4.48)
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× e
|O(Z4N−1/3)+O(Z3N−1/3)+O(Z2N−1/3)+O(W4N−1/3)+O(W3N−1/3)+O(W2N−1/3)|

× |O(Z
4
N

−1/3
)+O(Z

3
N

−1/3
)+O(Z

2
N

−1/3
) + O(W

4
N

−1/3
) + O(W

3
N

−1/3
) + O(W

2
N

−1/3
)|

≤ cq

(2π)2

∫

(γδ−1,0,1,w−1) N1/3
cq

|dZ|
∫

(γδ√
q,α

−1) N1/3
cq

|dW |
∣
∣
∣
∣

Z + 2v

W + 2v

× Z + W + ZWN−1/3cq

(Z − W )Z

eZ3(1+χ1)/3−ξZ(1+χ2)cq

eW3(1+χ3)/3−W (1+χ4)cqξ′

∣
∣
∣
∣
∣
∣

×

∣
∣
∣
∣
∣
∣
∣

e
Z2(1+χ5)uac2qf′′

2 (1)/2

e
W2(1+χ6)ubc2qf′′

2 (1)/2

∣
∣
∣
∣
∣
∣
∣

× N
−1/3|O(Z

4
) + O(Z

3
) + O(Z

2
) + O(W

4
) + O(W

3
) + O(W

2
)| (4.49)

where the χi ∈ R, i = 1, . . . , 6 can be taken as small in absolute value as desired
by taking δ small. Now for large N , the |eZ3(1+χ1)/3e−W 3(1+χ3)/3| term domi-
nates integral (4.49). At the integration boundary, it is of order e−O(δ3N). This
easily implies that N1/3 × (4.49) remains bounded as N →∞. Consequently,
(4.49) vanishes like N−1/3. We can thus take F̃ (Z,W ) instead of F (Z,W ) and
only make an error of O(N−1/3). By doing so, we are left with

cq

(2πi)2

∫

(γδ
−1,0,1,w−1) N1/3

cq

dZ

∫

(γδ√
q,α−1) N1/3

cq

dWF̃ (Z,W )

× Z + 2v

W + 2v

Z + W + ZWcqN
−1/3

(Z −W )Z
(2 + ZcqN

−1/3)−1

1 + WN−1/3cq
.

(4.50)

Finally, in (4.50) we can extend the curves to infinity (inside {z ∈ C : �(z3) <
0} and {w ∈ C : �(w3) > 0}) and thus only make an error e−O(N). We can
then deform the contours to be as in (4.5) without errors.

To summarize, we have shown that

N1/3ef2(1)N
2/3(ub−ua)K1,2(a, xa; b, xb)

=
cq

(2πi)2

∫

G
π/3
AZ

dZ

∫

G
2π/3
AW

dW
(Z + W + ZWcqN

−1/3)(Z + 2v)
(W + 2v)Z(Z −W )

× eZ3/3+Z2uac2
qf ′′

2 (1)/2−ξZcq−W 3/3−W 2ubc2
qf ′′

2 (1)/2+Wcqξ′

(1 + WN−1/3cq)(2 + ZcqN−1/3)

+O(N−1/3 + e−Nc0,0/2 + e−O(N)), (4.51)

implying

lim
N→∞

N1/3ef2(1)N
2/3(ub−ua)K1,2(a, xa; b, xb)

=
cq

(2πi)2

∫

G
π/3
AZ

dZ

∫

G
2π/3
AW

dW
(Z + W )(Z + 2v)

2(W + 2v)Z(Z −W )

×eZ3/3+Z2uac2
qf ′′

2 (1)/2−ξZcq−W 3/3−W 2ubc2
qf ′′

2 (1)/2+Wcqξ′
(4.52)

for AZ > AW > −2v,AZ > 0.
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If now a > b, we have the condition |z| < |w| on our contours. Deforming
them so as to equal (4.42), (4.38), we pick up an extra residue, which equals

N1/3ef2(1)N
2/3(ub−ua)−1

2πi

∮

γ0

dzeN2/3f2(z)(ua−ub)+N1/3f3(z)(ξ′−ξ)z−1.

(4.53)

For γ0(s) = eis the contribution of the integral over γδ
0 in (4.53) clearly

vanishes. Note ua − ub < 0. On γδ
0 we do the same change of variable z =

1 + ZcqN
−1/3. Next we Taylor-expand f2(1 + ZcqN

−1/3), f3(1 + ZcqN
−1/3)

as before, and control the contribution from the remainder terms as before.
Sending then N →∞ shows that (4.53) converges to

−cq

2πi

∫

iR

dZeZ2c2
qf ′′

2 (1)(ua−ub)/2eZcq(ξ′−ξ), (4.54)

with iR oriented with increasing imaginary part.
Next we come to K1,1(a, xa; b, xb). We have

K1,1(a, xa; b, xb)

=
1

(2πi)2

∮

γ−1,0,1

dz

∮

γ−1,0,1

dweN(f1(z)+f1(w))+N2/3(uaf2(z)+ubf2(w))

× e−N1/3(f3(z)ξ+f3(w)ξ′)(z − w)
(z2 − 1)(w2 − 1)(zw − 1)

(z − α)(w − α). (4.55)

We can choose contour (4.42) for both z and w in (4.55). Redoing all the
steps made for K1,2 we obtain

lim
N→∞

N2/3e−N2/3f2(1)(ua+ub)K1,1(a, xa; b, xb)

=
c2
q

(2πi)2

∫

G
π/3
1

dZ

∫

G
π/3
1

dW
(Z −W )(W + 2v)(Z + 2v)

4ZW (Z + W )

× eZ3/3+Z2uac2
qf ′′

2 (1)/2−ξZcq+W 3/3+W 2ubc2
qf ′′

2 (1)/2−Wcqξ′
. (4.56)

Finally, we come to K2,2(a, xa; b, xb). We have

K2,2(a, xa; b, xb)

=
1

(2πi)2

∮

γ√
q,α

dz

∮

γ√
q,α,1/z

dwe−N(f1(z)+f1(w))−N2/3(uaf2(z)+ubf2(w))+N1/3(f3(z)ξ+f3(w)ξ′)

× z − w

zw(z − α)(w − α)(zw − 1)
. (4.57)

We can choose the contour for z to also contain 1/α, e.g., γ√
q,α(s) = (1+

N−1/3(2|v|cq + 1/2))eis. Note that on the unit circle, �(−f2(z)),�(−f2(1/z))
are maximal at z = 1 and decrease until they reach z = −1.

We consider first the case ua + ub > 0. We start with the residue of w at
1/z. It equals
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1
2πi

∮

(1+N−1/3(2|v|cq+1/2))eis
dz

z2 − 1
z(z − α)(−α)(z − 1/α)

×e−N2/3(f2(z)ua+f2(1/z)ub)eN1/3(f3(z)ξ−f3(z)ξ′). (4.58)

Repeating the steps of the asymptotics for K1,2, one then obtains

lim
N→∞

eN2/3f2(1)(ua+ub)(4.58)

=
−1
2πi

∫

G
2π/3
B1

dZ
2Z

(Z + 2v)(Z − 2v)
e−Z2f ′′

2 (1)c2
q(ua+ub)/2+Zcq(ξ−ξ′) (4.59)

with B1 > 2|v|.
Next we consider the contribution from the pole at w = α, given by

eN2/3f2(1)(ua+ub)

2πi

∮

(1+N−1/3(2|v|cq+1/2))eis
dz

1
zα(zα− 1)

×e−N(f1(z)+f1(α))−N2/3(f2(z)ua+f2(α)ub)+N1/3(f3(z)ξ+f3(α)ξ′) (4.60)

We may deform the contour (1 + N−1/3(2|v|cq + 1/2))eis in (4.60) to

(1 + N−1/3(2|v|cq + 1/2))(1 + ε1L(eis))eis, s ∈ [0, 2π]. (4.61)

without errors. By the same asymptotic analysis performed for K1,2 we then
see that

lim
N→∞

(4.60) =
e8v3/3−2v2c2

qf ′′
2 (1)ub−2vcqξ′

2πi

×
∫

G
2π/3
B2

dZ
1

Z − 2v
e−Z3/3−Z2uac2

qf ′′
2 (1)/2+ξZcq , B2 > 2v.

(4.62)

We compute the remaining term

lim
N→∞

eN2/3f2(1)(ua+ub)

(2πi)2

∮

γ√
q,α

dz

×
∮

γ√
q

dwe
−N(f1(z)+f1(w))−N2/3(uaf2(z)+ubf2(w))+N1/3(f3(z)ξ+f3(w)ξ′) z−w

zw(z−α)(w−α)(zw−1)
.

(4.63)

As contours, we can choose (4.61) for γ√
q,α, and 1−N−1/3(4|v|cq+1)

1+N−1/3(2|v|cq+1/2)
×

(4.61) for γ√
q (note that with this choice, γ√

q,α has no point of γ√
q in its

interior, and vice versa).
With this choice, we can now proceed exactly as before. This then yields

that

(4.63) =
1

(2πi)2

∫

G
2π/3
B3

dZ

∫

G
2π/3
B4

dW
e−Z3/3−uaZ2c2

qf ′′
2 (1)/2+Zcqξ

eW 3/3+ubW 2c2
qf ′′

2 (1)/2−Wcqξ′

× Z −W

(W + 2v)(Z + 2v)(Z + W )
(4.64)

for B3 > −2v,B4 < −2v and B3 < −B4.
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For ua = ub = 0, we proceed as follows. Writing the integer parts, the
residue of w = 1/z is given by

1
2πi

∮

(1+N−1/3(2|v|cq+1/2))eis
dz

z2 − 1
(−α)(z − 1/α)(z − α)

z�N1/3ξ	−�N1/3ξ′	−1.

(4.65)

Now, if �N1/3ξ� − �N1/3ξ′� ≤ −1, we can send z →∞ in (4.65) which shows
(4.65) = 0. If �N1/3ξ� − �N1/3ξ′� > 0, (4.65) equals the sum of the residues
at z = α, 1/α, and if �N1/3ξ� − �N1/3ξ′� = 0, (4.65) equals the sum of the
residues at z = 0, α, 1/α. Thus

lim
N→∞

(4.65) = lim
N→∞

(
− 1{ �N1/3ξ	−�N1/3ξ′	

N1/3 >0}

×
(

e−2vcq
�N1/3ξ	−�N1/3ξ′	

N1/3 + e2vcq
�N1/3ξ	−�N1/3ξ′	

N1/3

)

−1{�N1/3ξ	−�N1/3ξ′	=0}α
−1
)

= −1{ξ−ξ′>0}(e−2vcq(ξ−ξ′) + e2vcq(ξ−ξ′))− 1{ξ=ξ′}. (4.66)

Contribution (4.60) from the pole at w = α is as before, but here we
compute separately the residue z = 1/α in (4.60), which equals

1
α

ef3(α)N1/3(ξ′−ξ) →N→∞ e2vcq(ξ−ξ′). (4.67)

What thus remains to compute from (4.60) is the limit of
1

2πi

∮

γ√
q

dz
1

zα(zα− 1)
e−N(f(α)+f(z))eN1/3ξ′f3(α)eN1/3ξf3(z), (4.68)

which equals

1
2πi

∫

G
2π/3
C1

dZe−Z3/3+Zξcq
e8v3/3−2vcqξ′

Z − 2v
, C1 < 2v. (4.69)

So in total, the sum of the residues of w in 1/z and α converges to

(4.69) + sgn(ξ′ − ξ)e−2vcq|ξ−ξ′|. (4.70)

The remaining term is exactly (4.64) for ua = ub = 0. �
The following proposition will provide the required integrable upper

bound.

Proposition 4.6. Let cq,K, xa, xb, α be as in Proposition 4.5. Let L > 0 and
ξ, ξ′ > −L and a ≤ b. Then there is an N0 and a C > 0 (which may depend
on L, ua, ub, but not on ξ, ξ′) such that for N > N0

N1/3eN2/3 ln(1−√
q)(ub−ua)|K1,2(a, xa; b, xb)| ≤ Ce−cξ+dξ′

, (4.71)

N2/3e−N2/3 ln(1−√
q)(ub+ua)|K1,1(a, xa; b, xb)| ≤ Ce−cξ−cξ′

, (4.72)

eN2/3 ln(1−√
q)(ub+ua)|K2,2(a, xa; b, xb)| ≤ Cedξ+dξ′

, (4.73)

with c = 2|v|cq + 3/4, d = 2|v|cq + 2/3.



Vol. 19 (2018) The Free Boundary Schur Process and Applications I 3707

Proof. We assume first that ξ, ξ′ ≥ 0. To show (4.72), note that the proof of
pointwise convergence easily implies that for ξ = ξ′ = 0 and contour (4.42) for
γ−1,0,1 one has

N2/3 |K1,1(a, xa; b, xb)|
eN2/3f2(1)(ua+ub)

≤ N2/3

eN2/3f2(1)(ua+ub)

∮

γ−1,0,1

|dz|
∮

γ−1,0,1

|dw|∣∣eN(f1(z)+f1(w))+N2/3(uaf2(z)+ubf2(w))
∣
∣

×
∣
∣
∣
∣

(z − α)(w − α)(z − w)

(z2 − 1)(w2 − 1)(zw − 1)

∣
∣
∣
∣ ≤ C (4.74)

where f1, f2 are as in the proof of Proposition 4.5. If now ξ, ξ′ ≥ 0, this creates
an extra factor

|e−N1/3(ln(z)ξ+ln(w)ξ′)|. (4.75)

For contour (4.42), we have that for z, w ∈ γ−1,0,1 |z|, |w| ≥ 1+N−1/3(2|v|cq +
1). Hence we can bound for N large enough |e−N1/3(ln(z)ξ+ln(w)ξ′)| ≤ e−c(ξ+ξ′).
Next we come to (4.71). As contours we choose again γ√

q,α = (4.38), γ−1,0,1,w =
(4.42). The proof of pointwise convergence easily implies that for ξ = ξ′ = 0
we have a constant upper bound. If now ξ, ξ′ ≥ 0, then we get an extra factor
which equals

|eN1/3 ln(w)ξ′−N1/3 ln(z)ξ|. (4.76)

Now for w ∈ γ√
q,α, we have |w| ≤ 1 + N−1/3(2|v|cq + 1/2). Consequently, for

N large enough, we have N1/3 ln(|w|) ≤ 2|v|cq + 2/3. Since for z ∈ γ−1,0,1,w

we have |z| ≥ 1 + N−1/3(2|v|cq + 1) we get −N1/3 ln(|z|) ≤ −(2|v|cq + 3/4).
This implies that (4.76) ≤ e−cξ+dξ′

. As for K2,2, consider the case ua +ub > 0
first. In (4.60), by definition of α and choice of contour, we obtain |(4.60)| ≤
Ced(ξ+ξ′). Equally, one obtains |(4.58)|eN2/3 ln(1−√

q)(ub+ua) ≤ ed(ξ+ξ′). Finally,
(4.63) can be bounded by ed(ξ+ξ′) as well, simply by the choice of contours.
The case ua +ub = 0 is treated similarly. Finally, if ξ, ξ′ ∈ [−L, 0], the proof(s)
of pointwise convergence give an upper bound C, where the constant C may
depend on L. If, e.g., ξ ∈ [−L, 0], ξ′ > 0 we multiply the bound obtained in
the case ξ ≤ 0, ξ′ = 0 by the bound obtained for ξ′ ≥ 0, ξ = 0, finishing the
proof. �

5. Symmetric Plane Partitions

A free boundary plane partition of length N is an array (πi,j)1≤j≤i≤N of non-
negative integers satisfying the properties πi,j ≥ πi+1,j , πi,j ≥ πi,j+1 for all
meaningful i, j. Its volume is the sum of its entries: |π| =

∑
1≤j≤i≤N πi,j .

Clearly a free boundary plane partition of length N is half of a symmetric
plane partition with base in the square N ×N , which by definition is an array
(πi,j)1≤i,j≤N satisfying the above constraints plus the symmetry constraint
πi,j = πj,i. An example of length 5 and volume 79 is depicted in Fig. 9.
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Figure 9. Left: a free boundary plane partition π of length 5, with
π1,1 = 10, π4,2 = 5, . . ., corresponding to interlacing partitions ∅ ≺ (6) ≺
(7, 3) ≺ (9, 5, 2) ≺ (9, 7, 3, 1) ≺ (10, 8, 6, 2, 1); middle: a stack of cubes
depicting π via the heights of the horizontal lozenges; right: the corre-
sponding symmetric plane partition with base contained in a 5×5 square

Let us fix a real parameter 0 < q < 1. We will study the asymptotics
of free boundary plane partitions weighted according to their volume, that is,
distributed as

Prob(π) ∝ q|π| (5.1)

in the limit q → 1 and N →∞.
Free boundary plane partitions π of length N weighted by their volume

are in bijection with the H-ascending Schur process on
�λ = (∅ ≺ λ(1) ≺ · · · ≺ λ(N)) (5.2)

with parameters xi = qN+1−i (the free boundary is λ(N)) via the following
identification:

λ
(i)
k = πN−i+k,k, 1 ≤ k ≤ i. (5.3)

In this setting we have

Prob(�λ) ∝ q
∑

1≤i≤N |λ(i)|. (5.4)

The sequence of partitions �λ, itself induced by π, gives a point process via
the identification λ(i) �→ {k(i)

s = λ
(i)
s − s + 1

2}. It turns out the computations
and formulas are simpler if we reverse time. We introduce a new sequence of
partitions μ(i) defined by μ(i) = λ(N−i) so that our Schur process becomes
∅ = μ(N) ≺ · · · ≺ μ(0). Proposition 2.6 becomes the following.

Theorem 5.1. The point process induced by π via the sequence of partitions
μ(i) is pfaffian with 2× 2 correlation kernel given by

K(i, k; i′, k′) =

[
K1,1(i, k; i′, k′) K1,2(i, k; i′, k′)
−K1,2(i′, k′; i, k) K2,2(i, k; i′, k′)

]

(5.5)
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where
K1,1(i, k; i′, k′)

=
1

(2πi)2

∫

Cz

∫

Cw

F (N − i, z)F (N − i′, w)
1

zk+1wk′+1

√
zw(z − w)

(z+1)(w+1)(zw − 1)
dwdz,

K1,2(i, k; i′, k′)

=
1

(2πi)2

∫

Cz

∫

Cw

F (N − i, z)

F (N − i′, w)

wk′−1

zk+1

√
zw(zw − 1)

(z + 1)(w − 1)(z − w)
dwdz,

K2,2(i, k; i′, k′)

=
1

(2πi)2

∫

Cz

∫

Cw

1

F (N − i, z)F (N − i′, w)
zk−1wk′−1

√
zw(z − w)

(z − 1)(w−1)(zw−1)
dwdz,

(5.6)

the contours are counterclockwise oriented circles centered at the origin of radii
slightly larger than 1 with the additional constraint that for K1,2 Cz surrounds
Cw if and only if i′ ≤ i and finally where we have denoted

F (N − i, z) :=
(q/z; q)N

(qi+1z; q)N−i
. (5.7)

Remark 5.2. Every particle in our process corresponds to a horizontal lozenge
in the middle picture from Fig. 9, and we imagine tiling the floor of the room
with infinitely many horizontal lozenges going down. Some authors (e.g., [42])
prefer to write the kernel in terms of heights h of these lozenges. For a given
particle at position (i, k), the coordinate of the corresponding lozenge (in the
axes depicted, with the origin at the hidden corner of the box) is (i, h) =
(i, k− i

2 ). We opt to work throughout with the ordinate k of particle positions,
but the reader interested in the lozenge picture has only to keep in mind
k = h + i

2 .

We now pick a real number a > 0. We zoom in around a point (i, k) in
the point process induced by μ(i) for large N, i, k as q approaches 1. Precisely,
we are interested in the asymptotic regime r → 0+ with

q = e−r → 1, rN → a, ri→ x , rk → y. (5.8)

The coordinate system (x , y) represents our macroscopic coordinates,
with y ∈ R and 0 ≤ x ≤ a. The positive real number a plays the role of a
boundary parameter. We furthermore introduce macroscopic exponential co-
ordinates (and exponential boundary parameter)

X = exp(−x ), Y = exp(−y), A = exp(−a). (5.9)

Notice 0 < A < 1,A ≤ X ≤ 1. We first focus on the case 0 < x < a and
thus A < X < 1.

Analyzing the kernel asymptotically in regime (5.8) (following [42]) can
be reduced (more details will be given below) to the analysis of the z integrand
F (N − i, z)/zk+1/2.

We first note in the limit r → 0+, the zeros of F (N − i, z) accumulate in
the set Z = [0, 1], while the poles in the set P = [ 1

X , 1
A ]. Moreover as r → 0+

we have by (B.7)
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F (N − i, z)
zk+1/2

∼ exp
1
r
S(z; x , y) (5.10)

where S(z; x , y) = Li2(A/z)− Li2(1/z) + Li2(Xz)− Li2(Az)− y log z.
To apply the method of steepest descent to S, we look for its critical

points: that is, solutions of z ∂
∂z S(z; x , y) = 0. There are two of them:

z± = z±(x , y) =
1 + X − (1 + A2)Y ±

√
D(X ,Y )

2(X − AY )
(5.11)

where
D(X ,Y ) = −4(1− AY )(X − AY ) + (−1− X + Y + A2Y )2

= (A2 − 1)2Y 2 − 2(A − 1)2XY + X 2 − 2(A − 1)2Y − 2X + 1.

(5.12)

Remark 5.3. The equation D(X ,Y ) = 0, the locus where S has a real double
critical point, is a conic in the (X ,Y ) plane. Its discriminant is −16A(A−1)2 <
0, and so it is the equation of an ellipse. When A = 0 (equivalently, a → ∞),
it becomes a parabola.

Remark 5.4. The two critical points in Eq. (5.11) have a singularity on the line
X = AY , where one of them becomes ±∞ (depending on the sign of X − AY ),
while the other stays finite at AY −1

(1−A+A2)Y −1 as can be easily verified by an
application of l’Hôpital’s rule.

Keeping x and hence X fixed, we solve for Y (and hence for y) from
D(X ,Y ) = 0 to obtain two solutions:

Y± =
(1 + X )(1 − A)2 ± 2(1 − A)

√−AX 2 + X (1 + A2) − A
(1 − A2)2

, y∓ = − log(Y±).

(5.13)

We note y− ≤ y+ and both depend on x ; when x = a we have y− = y+ =
log(1 + A); when x = 0 (hence X = 1) we have y+ = ∞ (as Y− = 0) and
y− = − log 4

(1+A)2 .
We call the curve

C = {(x , y) ∈ R
2 : a ≥ x ≥ 0,D(X ,Y ) = 0} (5.14)

the arctic curve. It is depicted in Fig. 10. We denote by L—which we call the
liquid region, the inside of the arctic curve; that is, the domain

L = {(x , y) ∈ R
2 : a ≥ x ≥ 0, y− ≤ y ≤ y+}. (5.15)

We now discuss what happens to the critical points at various (x , y)
positions in the plane. To do that, we first take care of the singularity on the
line X = AY or, equivalently, the line x = a + y. The curve C is tangent to this
line, at the tangency points (xT , yT ) given by:

(XT ,YT ) =
(

A
1− A + A2

,
1

1− A + A2

)

, (xT , yT ) = (− log XT ,− log YT )

(5.16)
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Figure 10. Left: a portion of the arctic curve for a = 1 in the lozenge
(x , h) = (x , y − x /2) coordinates; the vertical dashed line is of abscissa
x = 1/2 and intersects the arctic curve in the two points h± = y± − x /2;
the points of tangency of the arctic curve to the boundary of the domain
on the bottom and right are also pictured. Right: a simulation (after
symmetrization) of a boxed plane partition with base of size 100 × 100
and q ≈ 0.98 using the algorithm from [11]

where by construction 0 < xT < a, yT = xT − a < 0. We have three cases:
• when D(X ,Y ) = 0 and thus (x , y) ∈ C, S has a double critical point:

z = 1+X−(1+A2)Y
2(X−AY ) . This happens twice for fixed x : when y = y− or y = y+

(the two cases coinciding at x = a, y− = y+ = log(1 +A)). First, the case
y = y+ > 0. We have z ∈ (1, 1

X ). When (x , y) → (0,∞) along C, z → 1
from above (so z > 1 always). When (x , y) → (a, log(1 + A)) from above
along C, z → 1

A from below. C is tangent at (a, log(1 + A)) to the line
x = a. Second, the case y = y− ≤ log(1+A). If 0 ≤ x < xT , z ∈ (−∞,−1]
with z = −1 at x = 0 and z → −∞ when x → xT from below. When
x ∈ (xT , a], z ∈ [ 1

A ,∞) with z →∞ when x → xT from above and z → 1
A

from below as x → a;
• when D(X ,Y ) < 0, which means (x , y) is in the interior of L, the two

distinct critical points are complex conjugate with arguments ±θ(x , y)
where we take θ(x , y) ∈ (0, π). θ(x , y) varies from 0 to π as y descends
from y+ to y− through the liquid region L for fixed x < xT . In the case
x > xT both double critical points zt corresponding to (x , y+) and zb
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corresponding to (x , y−) are positive, with 0 < zt < zb, so if one recenters
the complex plane at any real number between zt and zb and considers
the arguments of the two complex conjugate critical points corresponding
to y− < y < y+, we have a similar situation as above. See Fig. 11.

• when D(X ,Y ) > 0 (and thus for (x , y) not in L) there are two distinct real
critical points. We study what happens for fixed x . If y > y+, 1 < z− <

z+ < 1
X with z− = 1, z+ = 1

X in the limit y →∞ and z± converging to the
unique double critical point in the limit y → y+. If y < y−, the situation is
more complicated due to the singularity at X = AY (equivalently on the
line x = a + y). We again distinguish two cases. First, x < xT fixed. For
y ∈ (x −a, y−), if y → y−, the two roots z± converge to the corresponding
(negative) real double critical point. When y → x − a from above, z− →
−∞ and z+ → AY −1

(1−A+A2)Y −1 < 0 from below. When y passes below the
line x − a and goes to −∞, z− goes from ∞ (for y just below the line
y = x − a) to 1

A (at y → −∞), while z+ goes from AY −1
(1−A+A2)Y −1 at

y = x − a to A at y → −∞. Second, the case x > xT . z− goes from
the double critical point zc > 1

A to 1
A as y goes from y− to −∞, passing

through z− = AY −1
(1−A+A2)Y −1 at the line y = x − a. z+ goes from zc to ∞

as y moves from y− and approaches the line y = x − a from above, and
then jumps and goes from ∞ to A as y descends from just below the line
y = x − a to −∞.

Remark 5.5. In light of the above discussion, the curve C is the locus in the
(x , y) plane where S has a double critical point. Given a point (x , y) ∈ C,
one computes the corresponding double critical point zc(x , y) = 1+X−(1+A2)Y

2(X−AY ) .
Importantly, one can go backward as well and for each double critical point zc,
one can compute the corresponding (x , y) = (x (zc), y(zc)) by solving for (x , y)
in the following system of two equations

(

z
∂

∂z

)

S(zc; x , y) = 0,
(

z
∂

∂z

)2

S(zc; x , y) = 0 (5.17)

and in doing so one obtains a time/rational parameterization of C as

C = {(x (zc), y(zc)) : zc ∈ R\(−1, 1]} (5.18)

with the time parameter played by the double critical point of S. In brief
zc �→ (x (zc), y(zc)) takes R\(−1, 1] to C: as zc increases from 1+ to ∞ we draw
the upper part of C from (0,∞) to (xT , yT ), and then as zc increases from −∞
to −1 we draw the lower part of C from (xT , yT ) to (0,− log 4

(1+A)2 ).

Fix a point (x , y) in the plane, with 0 ≤ x ≤ a and y ≥ x − a, and let z±
be the corresponding critical points. In the asymptotic analysis that follows,
the existence of a closed contour C0 on which �(S(z)−S(z0)) = 0 (where z0 is
one of the two critical points), and which passes to the right of 1 (but the left
of exp(x ) = 1

X ) and to the left of 0 (thus encompassing the cut on the interval
[0, 1]), will be the key ingredient in the proof. Such a contour, for (x , y) in the
critical region and thus for complex conjugate critical points (z0 = z+ in that
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Figure 12. The curves (solid) �(S(z) − S(z+)) = 0 with arrows in
the direction of ascent and the final z and w contours from the proof of
Theorem 5.6. Top left: z+ is one of the two complex conjugate critical
points of S corresponding to the liquid region; top right: z+ is real cor-
responding to the region above the arctic curve; bottom left: z+ is real
and corresponds to the region below the arctic curve and x < xT ; bottom
right: like bottom left but with x > xT

case though the choice makes no difference as S(z) = S(z)), is depicted in
Fig. 12 (top left). For its existence, we argue as follows. We have the following
limits at 0 and −∞ (along the real axis, say):

lim
z→0−

�S(z) =∞, lim
z→−∞�S(z) = −∞ (5.19)

and so by the intermediate value theorem there will be a point z on the negative
real axis with �(S(z) − S(z0)) = 0. Likewise on the interval (1, 1

X ) �(S(z) −
S(z0)) changes sign, and we thus have a point z in this interval with �(S(z)−
S(z0)) = 0. Connecting the contours in the upper and lower half-planes will
yield the desired C0. For a precise technical description of this argument see
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Lemma 6.4 in [16] and note that the f in that statement is exactly our S
without the log term. For x = 0 the preceding discussion becomes simpler. In
this case, for z on the unit circle {|z| = 1}, we have, by direct computation,
2�(S(z)) = S(z) + S(1/z) = 0. Moreover in the case of complex conjugate
critical points z± we have |z±| = 1 and so the C0 is just the unit circle.

We finally remark that in the case a→∞ the above argument simplifies
considerably and C0 is just the circle around the origin of radius exp(x /2).

Before stating our first asymptotic result, we fix a few useful notations.
We concentrate on the case 0 < x < xT , but the case xT < x < a can be
treated similarly. We will study the case x = 0 separately.

For (x , y) ∈ L, we denote by γ+ any simple counterclockwise contour
(path) joining the two corresponding critical points z+ and z− just to the
right of 1. It depends of course on θ(x , y) which is the argument of z+. By γ−
we denote a clockwise contour (path) joining the same two points but which
passes to the left of 0. We state the result for i′ ≤ i. For i > i′ the only
difference is one replaces γ+ by γ−.

Finally, one only needs to look in the half-space y ≥ x − a. The reason
for this is combinatorial: below the line y = x − a we will see only particles,
as the partition μ(N−i) has at most i parts due to the interlacing constraints.
Therefore the kernel will not be of interest around points (x , y) in the half-space
given by y < x − a.

Theorem 5.6. Let (x , y) ∈ (0, a)× R and y > x − a. Let

(i, i′) =
(⌊x

r

⌋
+ i,
⌊x

r

⌋
+ i′
)

, (k, k′) =
(⌊y

r

⌋
+ k,
⌊ y
r

⌋
+ k′
)

(5.20)

where i′, i ∈ N, k, k′ ∈ Z
′ are fixed. Then ri, ri′ → x and rk, rk′ → y as r → 0+.

When rN → a we find that

lim
r→0+

K1,2(i, k; i′, k′) =

{
0, if y > y+,
1

2πi

∫
C

(1− e−x z)i−i′zk
′−k−1dz, otherwise

(5.21)

where C is
• γ± if y− ≤ y ≤ y+ (γ+ if and only if i′ ≤ i);
• a positively oriented circle of radius 1 + ε centered at the origin for some

0 < ε � 1 if y < y− and x < xT ;
• a positively oriented circle containing the cut P but passing to the right

of 1 if y < y− and x > xT .

Proof. We will give a similar argument to the one given in Section 3.1 of [42].
The interested reader will note the same argument has been applied before
(modulo notation, conventions and some minor technical details), in various
related models (for both normal and/or strict as opposed to symmetric/free
boundary plane partitions—see [20,27,42,51]) and the analysis carries over
almost mutatis mutandis.

Throughout the proof we restrict to the case i′ ≤ i, in which case the z
contour is on the outside in the double contour integral formula for K1,2. The
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other case follows similarly. We also write S(z) in lieu of S(z; x , y) whenever
possible.

The idea is that we deform the original integration contours for K1,2

around the complex plane and have them pass through the critical point z+

(and in the case of complex conjugate critical points, both z+ and z−). We
want to make �(S(z)−S(z+)) negative everywhere except at z+ (or z± in the
complex conjugate case), while making �(S(w)− S(z+)) positive everywhere
except z+ (respectively, z±). We then observe S(z)−S(w) = (S(z)−S(z+))−
(S(w)− S(z+)) and employ multiple times the following simple limit:

∫

γ

exp
(

1
r
f(z)
)

dz → 0, r → 0+ (5.22)

if f is smooth and �f < 0 for all but finitely many points along the simple
closed contour γ.

In the four panels of Fig. 12 we illustrate, for various situations that will
arise, the level lines of �(S(z) − S(z+)). The first three figures correspond
to points (x , y) with x < xT , sitting above the arctic curve, inside the liquid
region L, and below the arctic curve but above the line x = y + a, respectively.
The last corresponds to (x , y) below the arctic curve but with x > xT , the only
case that needs special treatment when x > xT .

K1,2 is explicitly given in Theorem 5.1. In the limit, the integrand
F (N−i,z)
F (N−i′,w)

wk′+1

zk+1 is approximated by

exp
1
r

(
S(z; x , y)− S(w; x , y)

)
(5.23)

and it is this function that will provide the dominant asymptotic contribution.
Throughout the proof, contours of integration for z and w will move

around. One has to take care that the z contour never crosses the interval
[ 1
X , 1

A ] where the poles of the function F accumulate in the limit (but the
w contour can certainly cross this interval), and that the w contour never
crosses the interval [0, 1] where the zeros of the function F (so poles in the w
variable) accumulate in the limit (and again, the z contour is of course allowed
to cross said interval). None of the operations described below move the z or
w contours in a way that their respective forbidden intervals are crossed, as
can be explicitly checked case by case.

First, the case y > y+, x < xT . We deform the contours so that the z
contour, which is on the outside, passes through z+ ∈ (1, exp(x )) at an angle
orthogonal to the real axis—which is locally the direction of steepest descent
for �S, and otherwise contains the contour C0 where �(S(z) − S(z+)) = 0
(to ensure everywhere else �(S(z) − S(z+)) < 0). Similarly we deform the
w contour so that it is contained in C0 (so that �(S(z) − S(z+)) > 0) and
passes through z+ parallel to the real axis. See Fig. 12 (top right). We observe
that the factor 1/(z − w) does not cause problems as it is integrable: we can
bound

∫
dzdw
z−w by the converging

∫ δ

−δ

∫ δ

−δ
dxdy√
x2+y2

= 8δ log(1 +
√

2) for some

small positive real δ. We conclude the integral decays exponentially fast to 0
in the limit r → 0+.
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Second, the case y ∈ (y−, y+), x < xT , which is to say (x , y) ∈ L. We
proceed as before by passing both contours through the two critical points z+

and z−, so that they intersect orthogonally at both. Based on the gradient of
�(S(z)−S(z+)) the final contours look like in Fig. 12 (top left). We note that
for this to be possible, we have to pass the w contour to the outside of the
z contour on an arc passing through the left of 1 and connecting z+ with z−
(this arc is γ+). Doing so we pick up the residue at z = w for every z between
z+ and z− along γ+. The total contribution is finite and equal to

1

2πi

∫

γ+

Resz→w

(
F (N − i, z)

F (N − i′, w)
wk′−1/2z−k−1/2 zw − 1

(z + 1)(w − 1)(z − w)

)

dz

=
1

2πi

∫

γ+

F (N − i, w)

F (N − i′, w)
wk′−k+1dw → 1

2πi

∫

γ+

(1 − e−x w)i−i′wk′−k−1dw, r → 0 +

(5.24)

where to take the limit we have used the estimates from “Appendix B” section.
We now argue that the integral on the remaining contours vanishes in the limit.
The remaining integrals will converge to 0 exponentially again using the basic
fact from (5.22). Again the denominator factor 1/(z − w) poses no further
issues.

The situation repeats for a third time, for y < y−, y > x − a, x < xT .
We pass both contours through z+ < 0, but now as in the previous case the
gradient of �(S(z) − S(z+)) forces the w contour on the outside and the z
on the inside, the z contour passing orthogonally to the real axis while the w
contour passing parallel to it at z+. See Fig. 12 (bottom left). As we have to
pass the whole w contour to the outside, we pick up a residue along the line
z = w over a whole closed contour passing through z+ and to the left of 1 of
contribution:

1

2πi

∫

C

Resz→w

(
F (N − i, z)

F (N − i′, w)
wk′−1/2z−k−1/2 zw − 1

(z + 1)(w − 1)(z − w)

)

dz

=
1

2πi

∫

C

F (N − i, w)

F (N − i′, w)
wk′−k+1dw → 1

2πi

∫

C

(1 − e−x w)i−i′wk′−k−1dw, r → 0 +

(5.25)

where again we have used “Appendix B” section. The remaining integrals, as
before, converge exponentially fast to 0 in the limit.

For x > xT , the two cases y > y+ (above the arctic curve) and y ∈ (y−, y+)
(inside the liquid region) are handled using the same contours as if it were in
the regime x < xT . For the third case y < y−, the situation is somewhat
different as now the critical points z± are in the interval (exp(a),∞). We pass
both contours through z+ as before. Since the z contour cannot cross P, we
enlarge it on the left side and have it pass through infinity until it comes back
on the other side and encircles P. We can do this as there is no residue at∞ in
the z variable. Locally at z+ the final contour Cz is parallel to the axis. We now
inflate the contour Cw, passing it over Cz and picking up the stated residue
over the desired contour C, so that it goes through z+ locally perpendicular
to the real axis. See Fig. 12 (bottom right). Further note that if i = i′, k = k′
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(the diagonal of the kernel), the residue integral over C is 0, since the origin
is no longer inside C. �

Remark 5.7. We mention one qualitative difference between the case x < xT

handled in Fig. 12 (top left, top right, bottom left) and the case x > xT . If
x − a < y < y−, asymptotically around (x , y) (below the arctic curve), one sees
only particles if x < xT , while for x > xT one sees only holes. Both regions are
frozen, but in different ways. See Fig. 10 for a numerical visualization of this.

Remark 5.8. Up to a change of variables z �→ e−x z which introduces extra
factors of the form ex (k

′−k) that nevertheless cancel in any pfaffian computation
(as they are diagonal), the kernel

(Δi,Δk) �→ 1
2πi

∫

γ±
(1− z)Δiz−Δk−1dz (5.26)

is called the incomplete beta kernel [42]; in our case Δi = i − i′,Δk = k − k′.
When we restrict ourselves to the same slice i = i′ a simple integration shows
it becomes the discrete sine kernel

(k, k′) �→ sin(θ(k− k′))
π(k− k′)

(5.27)

where θ = θ(x , y) is the argument of z+ = z+(x , y).

Theorem 5.6 justifies the word arctic curve for L in the following sense:
if one looks at a large system and scales appropriately, in the particle–hole
description, above C we will see only holes in the sense that the probability of
seeing a particle decays exponentially; below C we will see only particles—the
probability of seeing particles is exponentially close to 1 that is, as can be ver-
ified from the explicit limit of the diagonal elements of the kernel K(i, k; i, k).
Inside C we will see a mixture, and this region is called the liquid region—
denoted above by L. We illustrate this in Fig. 10.

Theorem 5.6 also gives us the limiting density of particles, given below.
Similar results for various related models of plane partitions can be found in,
e.g., [22, Section 2], [42, Corollary 2], [33, Sections 4 and 8] and [14, Section 3].

Corollary 5.9. In limit (5.8) and around macroscopic point (x , y) the density
of particles is

ρ(x , y) =
θ(x , y)

π
, θ(x , y) = arg(z+(x , y)). (5.28)

Note that, for x < xT , the density is 0 above C (as the two critical points
are real so θ = 0), strictly between 0 and 1 inside L and 1 below (as the two
roots are negative below C). For x > xT , the density is 0 above C, strictly
between 0 and 1 when inside L where the two roots are complex conjugate,
0 again (!) for y below C but above the line x = a + y, and 1 below C and
below the aforementioned line. This can immediately be translated into the
density of horizontal tiles in the plane partition picture via the change of
variables y = h + x

2—here h = limr→0+ hr is the macroscopic ordinate/height
for lozenges.
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In the case a → ∞ (A → 0) the arctic curve C becomes particularly
simple. It can be written as half the zero locus (the part x > 0) of

(1+U+V )(1 + U − V )(1− U + V )(1− U − V )=0, (U, V ) = (e− x
2 , e− y

2 ).
(5.29)

It is thus half the boundary of the amoeba of the polynomial p(U, V ) = 1+U +
V [34–36] and can be recovered using the techniques in [35], independent of
the description as a Schur process. We recall that the amoeba of a polynomial
p(U, V ) ∈ C[U, V ] is the set

{(log |U |, log |V |) : (U, V ) ∈ (C\0)2, p(U, V ) = 0}. (5.30)

We make a small digression and address the three-dimensional nature
of the picture. It is possible to recover the three-dimensional limit surface
from the above formulas. This was first obtained by Cerf and Kenyon [22] in
the mathematical literature and by Blöte, Hilhorst and Nienhuis in the physics
literature [39], and while we can recover their formulas, as already noted in [42]
(whose exposition we follow for this purpose), further analysis—in particular
a concentration inequality type of result—is needed to make the computations
rigorous (but see [22] where this is done using an alternative method). We
also note that all the cited references deal with regular (nonsymmetric) plane
partitions, but the limit surface is the same after a mild reparameterization
(so that indeed the symmetric plane partitions, as opposed to just the free
boundary halves, are distributed according to the same qVolume measure as
the ordinary plane partitions). Here and below we consider ρ as a function of
(x , h), and we extend to the symmetric case by ρ(x , h) = ρ(−x , h). We denote
X,Y,Z the three-dimensional coordinates of space, with Z the vertical, X
the southwest and Y the southeast coordinates, respectively, in the (1, 1, 1)
projection. Then a parameterization of the limit surface, depicted in Fig. 13
for the case of unbounded bottom, is:

Z(x , h) =
∫ h

−∞
(1− ρ(x , s))ds,

X(x , h) = Z(x , h)− h − x
2
,

Y (x , h) = Z(x , h)− h +
x
2
. (5.31)

We now address, again in the case x > 0, the limits of K1,1 and K2,2.
It will be easier to work with the conjugated kernel K̃(i, k; i′, k′) defined
thusly. We fix (x , y) and consider the corresponding z+. Then (with S(z+) :=
S(z+; x , y)):



3720 D. Betea et al. Ann. Henri Poincaré

Figure 13. The limit surface for both symmetric and nonsymmetric
random plane partitions

(
K̃1,1 K̃1,2

K̃2,1 K̃2,2

)

=

(
e−�S(z+)/r 0

0 e�S(z+)/r

)(
K1,1 K1,2

K2,1 K2,2

)(
e−�S(z+)/r 0

0 e�S(z+)/r

)

.

(5.32)

It follows that diagonal elements of K̃ converge to zero.

Theorem 5.10. With the same assumptions as in Theorem 5.6, in the asymp-
totic regime given by (5.8) we find that limr→0+ K̃1,1(i, k; i′, k′) = limr→0+

K̃2,2(i, k; i′, k′) = 0.

Proof. It turns out the analysis was already carried out in the proof of Theo-
rem 5.6, with one particular difference: now we can move both the z and the w
contours around and deform them into one and the same contour, called γ1,1 for
K̃1,1 and γ2,2 for K̃2,2—we can do this as there is no more residue/singularity
to take care of at z = w as the diagonal elements of the kernel do not con-
tain a (z−w) term in the denominator of the integrand. In the frozen regions
(y > y+ or y < y−) the contours both pass through z+, while in the liquid
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region (y ∈ (y−, y+)) both pass through z+ and z− = z+, respectively. In all
three cases they intersect in the critical point(s) at right angles, and away
from them γ1,1 follows a direction of descent, while γ2,2 one of ascent. In fact
in all three cases, γ1,1 can be taken to be the final z contour from the proof
of Theorem 5.6, while γ2,2 the final w contour. See Fig. 12 (top left, top right,
bottom left): γ1,1 = Cz and γ2,2 = Cw.

More precisely, the integrands in K̃1,1 and K̃2,2 can be approximated by

exp
1
r

(
S̃(z; x , y) + S̃(z; x , y)

)
and exp−1

r

(
S̃(z; x , y) + S̃(z; x , y)

)
,

(5.33)

respectively, as r → 0+ where S̃(z; x , y) = S(z; x , y) − �S(z+; x , y) with the
observation that throughout the proof the dependence on x , y will be omitted.

The important remark is that S̃ has real part zero at z+ (and in the
liquid region, at z− as well), and so we deform the two contours into one and
the same such that for K̃1,1 the real part of S(z)−S(z+) decreases away from
z+ (and so will become negative), while for K̃2,2 it increases away from z+

thus becoming positive. Then in both cases the integrals will converge to 0 as
r goes to 0 using basic asymptotic fact (5.22). We finally remark that for K̃1,1

deformation of the contours has to avoid the interval ( 1
X , 1

A ), while for K̃2,2 we
need to avoid the interval (0, 1)—both of which can be achieved. �

Remark 5.11. �S(z+) can be made more explicit as both S and z+ have
explicit formulas, but we decided to avoid this to streamline the proof. In the
case a →∞ the argument (originally the one from [42]) simplifies considerably,
and it will be presented, in a slightly modified form (i.e., for a different model)
in Sect. 6.

The discussion above, especially Theorems 5.6 and 5.10 and Remark 5.8,
allows us to formulate the main result as: “away from the arctic curve, for
x > 0, the local pfaffian correlations, in the limit, become determinantal with
kernel given by the incomplete beta kernel.”

Theorem 5.12. Let n > 0 be a natural number, a ∈ (0,∞), x , y real numbers
with x ∈ (0, a), y > x − a, and for 1 ≤ s ≤ n fix n pairs is ∈ N, ks ∈ Z

′.
As r → 0+ assume we have is ∈ N, ks ∈ Z

′ depending on r and converging
ris → x , rks → y thusly:

is =
⌊x

r

⌋
+ is, ks =

⌊y
r

⌋
+ ks, (5.34)

and denote U = {(i1, j1), . . . , (in, jn)}. Then in the asymptotic regime given
by (5.8) we have

�(U) →

⎧
⎪⎨

⎪⎩

0, if y > y+ or (x > xT and y < y−),
det1≤u,v≤n B(Δiuv,Δkuv), if y ∈ (y−, y+),
1, if x < xT and y < y−

(5.35)
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where Δiuv = iu − iv,Δkuv = ku − kv, B(Δi,Δk) is the incomplete beta kernel

(Δi,Δk) �→ 1
2πi

∫

γ±
(1− z)Δiz−Δk−1dz (5.36)

with γ± connecting the two critical points z±, γ+ passing to the right of 0
(and γ− passing to the left), with γ+ being chosen in the case iv ≤ iu (and γ−
otherwise).

In the case x = 0 (X = 1), the limiting regime r → 0+ for the local
microscopic coordinates becomes (i, k)

i = i, k =
⌊y
r

⌋
+ k (5.37)

which for i is of course a relabeling we nevertheless use to be consistent with
our notation so far. Because y+ = ∞, the coordinate y is either in the liquid
region (y > y− = − log 4

(1+A)2 ) in which case the double critical points are
complex conjugate of modulus 1, or in the frozen region (−a < y < y−) in
which case the double critical points are real negative. Moreover, on the circle
{|z| = 1} (of interest in the liquid region) the real part of S is constant and
equal to 0:

2�S(z) = S(z) + S(1/z) = 0. (5.38)

with values increasing (positive) and decreasing (negative) outside (remark
that in the notation from above C0 = {|z| = 1}).

When one passes the contours through the critical points, the preced-
ing arguments work almost unchanged. The few observations we make are as
follows.

First, the contours for z and w exist even when x = 0 since for any finite
q = exp(−r) there is enough space to the right of 1 between the largest zero of
F (= q < 1) and its smallest pole (= q−i−1 > 1). Thus, even though we have
a pole at 1 in the integrand for K1,2 and K2,2, this will never give a residual
contribution as the contours can avoid passing through 1.

Second, in both cases—y inside/outside the liquid region, we have to
exchange the two contours (and if y is inside the liquid region, both have to
pass through z+ = z−), in which case we will pick up the contributions from
the residues along the hyperbola zw = 1 in the analysis of K1,1 and K2,2.
Their contributions are, in the limit r → 0+:

Resz→ 1
w

K1,1 →
∫

γ+

(1− w)i
(

1− 1
w

)i′

wk−k′−1 1− w

1 + w

dw

2πi
,

Resz→ 1
w

K2,2 →
∫

−γ−
(1− w)−i

(

1− 1
w

)−i′

wk′−k−1 w + 1
w − 1

dw

2πi
(5.39)

where γ+ is a closed contour passing through z+ < 0 and to the right of 1 if
y < y− or otherwise joins the two complex conjugate critical points (again to
the right of 1) if y > y−. The minus sign in front of γ− in the second integral
can be brought inside the integral and appears due to the fact γ− is oriented
bottom-to-top, while our z and w contours are counterclockwise.
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Third, K̃ = K if y > y− as the real part of S at the critical points is 0.
In view of the above, we have shown the correlations remain pfaffian when

x = 0 with a kernel we have explicitly computed. We formally state the result.

Theorem 5.13. Let n > 0 be a natural number, a ∈ (0,∞), y > −a real, and
for 1 ≤ s ≤ n fix n pairs is ∈ N, ks ∈ Z

′. As r → 0+ assume we have is ∈ N,
as well as ks ∈ Z

′ depending on r converging thusly:

is = is, ks =
⌊y
r

⌋
+ ks. (5.40)

Denote U = {(i1, j1), . . . , (in, jn)}. Then in the asymptotic regime given by
(5.8) the correlations �(U) converge to 1 if y < y− and are otherwise pfaffian
with 2× 2 matrix kernel given by:

K1,1(i, k; i′, k′) =
∫

γ+

(1− z)i
(

1− 1
z

)i′

zk−k′−1 1− z

1 + z

dz

2πi
,

K1,2(i, k; i′, k′) =
∫

γ±
(1− z)i−i′zk

′−k−1 dz

2πi
,

K2,2(i, k; i′, k′) =
∫

γ−
(1− z)−i

(

1− 1
z

)−i′

zk
′−k−1 1 + z

1− z

dz

2πi

(5.41)

where γ± are as in Theorem 5.12 and γ+ is taken if and only if i′ ≤ i.

Remark 5.14. It is crucial that we keep is = is finite as r → 0+ to obtain a
pfaffian process. If instead we rescale is = f(r) + is with 1 � f(r) � r−1,
then we obtain a determinantal process with the kernel K1,2. To see this, first
observe that under this rescaling, by deforming the contours as before, we may
still reduce the double contour integral representation for K1,2 (resp. K1,1 and
K2,2) to a single integral of the residue of the integrand at z = w (resp. at
zw = 1). The expression for the residue involves some q-Pochhammer symbols
which may be estimated using (B.7)—namely (z; q)i = (1−z)ieo(i) for i� r−1.
For K1,2, the residue has the same finite limit as before, since the dependency
on f(r) disappears in the ratio F (N−i,w)

F (N−i′,w) . But this is not the case for K1,1 and
K2,2 which involve, respectively, the product F (N − i, w)F (N − i′, w) and its
inverse. Instead, we find that the dominant contribution to the integral comes
from the endpoints, since |1− z| is maximal on γ+ and minimal on γ− at the
endpoints. Setting R(i, z) = (z; q)i, we conclude that R−1(i, z+)R−1(j, z+)K1,1

and R(i, z+)R(j, z+)K2,2 both converge to zero. Using the conjugation trick
of Proposition A.1, the correlation functions are found to be determinantal in
the limit.

6. Plane Overpartitions

A plane overpartition is a plane partition where in each row the last occurrence
of an integer can be overlined or not, while all the other occurrences of this
integer are not overlined, and in each column the first occurrence of an integer
can be overlined or not, while all the other occurrences of this integer are
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overlined. A plane overpartition with the largest entry at most N and shape λ
can be recorded as a sequence of partitions ∅ ≺ λ(1) ≺′ λ(2) ≺ · · · ≺ λ(2n−1) ≺′

λ(2N) = λ where λ(i) is the partition whose shape is formed by all fillings
greater than N − i/2, where the convention is that k = k − 1/2. An example
of a plane overpartition is given in Fig. 14.

A plane partition π is called a (diagonally) strict plane partition if its
diagonals π(t) = (πi,i+t)i≥1 are strict partitions, i.e., strictly decreasing se-
quences of integers. By deleting the overlines in a plane overpartition one
obtains a strict plane partition. Conversely, a strict plane partition can be
overlined to obtain a plane overpartition and there are 2#border components dif-
ferent ways to do it. A border component of a strict plane partitions is a set
of rookwise-connected boxes (i.e., a connected ribbon/border strip) filled with
the same number. The strict plane partition obtained by deleting the overlines
in Fig. 14 has five border components.

A measure that to a plane overpartition with the largest entry at most N
assigns a weight q|sum of all entries| is an HV-ascending Schur process with t = 1
and x1 = x2 = qN , . . . , x2N−1 = x2N = q1.

The asymptotics of strict plane partitions was studied in [51] using a
variant of the original Schur process, where in the definition of the process
the skew Schur P and Q functions were used instead of the standard Schur
symmetric functions. There a strict plane partition is represented by a finite
point configuration where each point in the configuration corresponds to one
entry in the strict plane partition. Precisely, a strict partition can be repre-
sented by the set of its parts, since all parts are different, and hence a strict
plane partition π can be represented by a finite subset of Z×Z>0, where (t, x)
belongs to it if x is a part of π(t). See Fig. 15 (top). The set of blue points
is the point configuration corresponding to the strict plane partition obtained
by deleting the overlines in Fig. 14.

The above point configuration is not a suitable representation of a plane
overpartition, since there are 2#border components different ways to overline a
strict plane partition. We need a new set of point configurations to represent
these different overlinings. We explain briefly how these point configurations
are obtained and refer the reader to [21,24] for details and proofs.

Starting from the point configuration of the corresponding strict plane
partition we first construct a set of nonintersecting paths, where each path
corresponds to a row of the plane partition. Going from πi,j to πi,j+1 we take

1

3

3

4

1

3

4

3

3

2

2 2

Figure 14. A plane overpartition ∅ ≺ (1) ≺′ (2) ≺ (2, 2) ≺′
(3, 3, 1) ≺ (5, 3, 1) ≺′ (5, 4, 1) ≺ (5, 4, 1, 1) ≺′ (5, 4, 2, 1)
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π(−4) π(−1)π(0) π(1) π(2) π(5)· · · · · · t

x

•

• •

•

•
•

•
• •

• • •

∅
λ(2)

λ(4)

λ(6)

λ(8)

λ(1)

λ(3)

λ(5)

λ(7)

t

x

•

• •

•

•
•

•
• •

• • •

Figure 15. Strict plane partition point configuration (top) and plane
overpartition point configuration (bottom)

an eastbound edge followed by πi,j − πi,j+1 southbound edges if πi,j is not
overlined and a southeastbound edge followed by πi,j − πi,j+1− 1 southbound
edges if πi,j is overlined. See Fig. 15 (top). Once we have the nonintersecting
paths we can produce a domino tiling. Dominos are placed diagonally and
cover Z × Z≥0. It is possible to place them in such a way so that different
types of dominos (divided by the direction of the position and the color of
the top corner in a chessboard fashion coloring) correspond to different edges.
See Fig. 15 (bottom). Finally, place two particles (holes) at the center of each
of the two domino squares if the top corner of that domino is black (white).
The point configuration is the set of all particles. See Fig. 15 (bottom), where
particles are shown in solid colors. It corresponds to the example from Fig. 14.

One can show that a point configuration representing a plane overparti-
tion ∅ ≺ λ(1) ≺′ λ(2) ≺ · · · ≺ λ(2n−1) ≺′ λ(2N) = λ is a subset of

(
Z + 1

4

)
×(

Z + 3
4

)
∪
(
Z + 3

4

)
×
(
Z + 1

4

)
consisting of points (t, x) such that the Maya

diagram of λi(x) contains a particle at the position t: t = λ
i(x)
j − j + 1/2, for

some j ≥ 1 with i(x) = 2N − 2(x− 1/4) and

t = �t− 1/2� − 1/2. (6.1)
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For the HV-ascending Schur process with x1 = x2 = qN , . . . , x2N−1 =
x2N = q1:

FHV (i, z) =
(−qN+1−�i/2	z; q)�i/2	
(qN+1−
i/2�z; q)
i/2�

(q/z; q)N

(−q/z; q)N
, i = 1, . . . , 2N. (6.2)

If we set F (x, z) = FHV (i(x), z) then F (x, z) = (−q�x+1/2�z;q)N+1−�x+1/2�
(q�x�z;q)N+1−�x�

× (q/z;q)N

(−q/z;q)N
and when N →∞

F (x, z) =
(−q
x+1/2�z; q)∞

(q
x�z; q)∞

(q/z; q)∞
(−q/z; q)∞

. (6.3)

Remark 6.1. For q ∈ (0, 1) and fixed x, zeros of F as a function of z are
−q−
x+1/2�,−q−
x+1/2�−1, . . ., which belong to (−∞,−q−
x+1/2�], and q, q2,
. . ., which belong to (0, q]. Poles are q−
x�, q−
x�−1, . . ., which belong to
[q−
x�,∞), and −q,−q2, . . ., which belong to [−q, 0).

In our asymptotic analysis we will consider q ∈ (0, 1) and xi such that
rxi → χ when r → 0+ where q = e−r. We will need to avoid zeros or poles
of F (xi, z) along certain contours in z for r close to 0+. Zeros, respectively,
poles, could be avoided if we make sure to choose contours that do not cut
Z(χ) = (−∞,−eχ] ∪ (0, 1], respectively, P(χ) = [−1, 0) ∪ [eχ,∞).

Theorem 6.2. Let (t1, x1), . . . , (tn, xn) ∈
(
Z + 1

4

)
×
(
Z + 3

4

)
∪
(
Z + 3

4

)
×
(
Z + 1

4

)
.

Pfaffian correlations are given by the following matrix kernel:

K(ti, xi; tj , xj) =
[

K1,1(ti, xi; tj , xj) K1,2(ti, xi; tj , xj)
−K1,2(tj , xj ; ti, xi) K2,2(ti, xi; tj , xj)

]

(6.4)

where

K1,1(ti, xi; tj , xj) = [ztiwtj ]F (xi, z)F (xj , w)
√

zw(z − w)
(z + 1)(w + 1)(zw − 1)

,

1 < |w|, 1 < |z|,

K1,2(ti, xi; tj , xj) =

[
zti

wtj

]
F (xi, z)
F (xj , w)

√
zw(zw − 1)

(z − w)(z + 1)(w − 1)
,

1 < |z|, 1 < |w|, |w|<>|z|, for xi
≥
<xj ,

K2,2(ti, xi; tj , xj) =
[

1
ztiwtj

]
1

F (xi, z)F (xj , w)

√
zw(z − w)

(z − 1)(w − 1)(zw − 1)
,

1 < |z|, 1 < |w|,
(6.5)

and t is as in (6.1).

Remark 6.3. Let χ ∈ R. Define

K̃(ti, xi; tj , xj) =
(

eχti/2 0
0 e−χti/2

)

K(ti, xi; tj , xj)
(

eχtj/2 0
0 e−χtj/2

)

.

(6.6)
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Then

pf[K̃(ti, xi; tj , xj)]1≤i,j≤n = pf[K(ti, xi; tj , xj)]1≤i,j≤n. (6.7)

Let

G(x, t, z) = r
(
log F (x, z)− t(log z − χ/2)

)
. (6.8)

Using Theorem 6.2

K̃1,1(ti, xi; tj , xj) =
1

(2πi)2

∫

Cz

∫

Cw

z − w√
zw(z + 1)(w + 1)(zw − 1)

× exp
[
1
r

(
G(ti, xi, z) + G(tj , xj , w)

)
]

dzdw (6.9)

where Cz and Cw are simple closed counterclockwise oriented contours such
that |z| > 1, z /∈ P(χ), |w| > 1, and w /∈ P(χ) for all z ∈ Cz and w ∈ Cw;

K̃1,2(ti, xi; tj , xj) =
1

(2πi)2

∫

Cz

∫

Cw

zw − 1√
zw(z − w)(z + 1)(w − 1)

× exp
[
1
r

(
G(ti, xi, z)−G(tj , xj , w)

)
]

dzdw (6.10)

where Cz and Cw are simple closed counterclockwise oriented contours such
that |z| > 1, z /∈ P(χ), |w| > 1, w /∈ Z(χ), |z| > |w| (|z| < |w|), for all z ∈ Cz

and w ∈ Cw when xi ≥ xj (xi < xj);

K̃2,2(ti, xi; tj , xj) =
1

(2πi)2

∫

Cz

∫

Cw

z − w√
zw(z − 1)(w − 1)(zw − 1)

× exp
[
1
r

(
−G(ti, xi, z)−G(tj , xj , w)

)
]

dzdw (6.11)

where Cz and Cw are two simple closed counterclockwise oriented contours
such that |z| > 1, z /∈ Z(χ), |w| > 1, w /∈ Z(χ) for all z ∈ Cz and w ∈ Cw.

Before we proceed with the asymptotics, we set up some notation.
Define C+(R, θ) (C−(R, θ)) to be the counterclockwise (clockwise) ori-

ented arc on |z| = R from Re−iθ to Reiθ for R > 0 and 0 ≤ θ ≤ π. The
counterclockwise oriented circle |z| = R is then C+(R, θ) ∪ −C−(R, θ).

For a sequence of real numbers ai we define an (infinite) integer matrix

Δ(a)ij = �ai� − �aj�. (6.12)

Let D = {(τ, χ)|τ ∈ R, χ ∈ R≥0,−1 ≤ f(τ, χ) ≤ 1} = {(τ, χ)|χ ∈ R≥0,
−τc(χ) ≤ τ ≤ τc(χ)} where

f(τ, χ) =
(eχ + 1)(eτ − 1)
2eχ/2(eτ + 1)

, τc(χ) = 2 log
eχ/2 + 1
eχ/2 − 1

. (6.13)

Note that D is a domain bounded by three curves: χ = 0 and −1 ± eχ/2 −
eτ/2 ∓ eτ/2eχ/2 = 0 for χ > 0. Amoeba of P (z, w) = −1 + z + w + zw is a
domain bounded by the following four curves:

− 1± eω − eξ ∓ eξeω = 0, ω > 0, and − 1± eω + eξ ± eξeω = 0, ω < 0.

(6.14)
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If we set (ξ, ω) = (τ/2, χ/2) then D is the half of the amoeba of −1+z+w+zw
for ω ≥ 0. Let

θc(τ, χ) =

⎧
⎪⎨

⎪⎩

arccos(f(τ, χ)), −τc(χ) ≤ τ ≤ τc(χ),
0 τ > τc(χ),
π τ < −τc(χ).

(6.15)

Theorem 6.4. Let rti, rtj → τ , rxi, rxj → χ when r → 0+ where q = e−r.
Assume Δ(t− 1/2)ij , Δ(x)ij, Δ(x + 1/2)ij do not change with r. Then

lim
r→0+

K̃1,2(ti, xi; tj , xj)

=
e− χ

2 Δ(t−1/2)ij

2πi

∫

C±(e−χ/2,θc(τ,χ))

1
wΔ(t−1/2)ij+1

(1− w)Δ(x)ij

(1 + w)Δ(x+1/2)ij
dw

(6.16)

where we choose C+(e−χ/2, θc(τ, χ)) if xi ≥ xj and C−(e−χ/2, θc(τ, χ)) other-
wise and where θc(τ, χ) is as in (6.15).

Proof. We start with (6.10). The asymptotics is determined by the limit of G
when r → 0+:

S(z; τ, χ) = −Li2(−e−χz) − Li2

(
1

z

)

+ Li2(e
−χz) + Li2

(

−1

z

)

− τ(log z − χ/2)

(6.17)

where Li2(z) is defined in “Appendix B” section. Ignoring the log part of S,
the function is analytic on C\P(χ). We can easily compute

z
d
dz

S(z; τ, χ) = −τ + log
(1 + e−χz)(z + 1)
(1− e−χz)(z − 1)

(6.18)

where by the Cauchy–Riemann equations

z
d
dz

S(z; τ, χ) = x
d
dx
�S + y

d
dy
�S + i

(

y
d
dx
�S − x

d
dy
�S

)

. (6.19)

The real part of S(z; τ, χ) vanishes on the circle z = eχ/2eiθ. This implies
that on this circle the imaginary part of z d

dz S(z; τ, χ) vanishes too, which is
the derivative of �S in the direction of the tangent, while the real part is equal
to R d

dR�S(z; τ, χ). Then for z = eχ/2eiθ

R
d

dR
�S(z; τ, χ) = −τ + log

∣
∣
∣
∣
z + 1
z − 1

∣
∣
∣
∣

2

, (6.20)

which is negative if and only if cos θ < f(τ, χ).
If (τ, χ) ∈ D and z = eχ/2eiθ then R d

dR�S(z; τ, χ) changes the sign along
|z| = eχ/2 at θ = ±θc(τ, χ) being positive for |θ| < |θc(τ, χ)|. We then de-
form contours so that the real parts of S(z, τ, χ) and S(w, τ, χ) are negative
everywhere on the new contours except at the critical points. The new con-
tours look like γz and γw in Fig. 16. The integrals over these new contours
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γz

γw

−1 1 eχ−eχ

Z(χ) P(χ)Z(χ)P(χ)

|z| = eχ/2

Figure 16. Deformed contours in z and w

vanish as r → 0+, but we pick up the residue at z = w on C+(eχ/2, θc(τ, χ))
(C−(eχ/2, θc(τ, χ)) when xi ≥ xj (xi < xj). The residue is equal to

1
2πi

e
χ
2 Δ(t−1/2)ij

∫

C±(eχ/2,θc(τ,χ))

1
wΔ(t−1/2)ij+1

(1− e−χw)Δ(x)ij

(1 + e−χw)Δ(x+1/2)ij
dw.

(6.21)

The change of variables w �→ e−χw brings the expression from the statement
of the theorem.

Some special care is needed when χ = 0 because we are deforming the
contours in a neighborhood of |z| = 1 and |w| = 1. In this case (τ, χ) ∈ D
for all τ . Observe that if we deform the contours as described above, the new
contour in z, respectively, w, will still encompass z = −1, respectively, w = 1,
and we will not be picking up any residues coming from z = −1 or w = 1.
Also note that while deforming the contours we remain away from P(χ) for
the z-contour and Z(χ) for the w-contour.

Lastly, the integral 1/(z−w) converges at the points of intersection of the
contours. We can for simplicity make them cross orthogonally; then the integral
of 1/(z − w) along these contours is absolutely bounded by the convergent
integral

∫∫
1/
√

x2 + y2dxdy.
If (τ, χ) does not belong to D, then R d

dR�S(z; τ, χ) does not change sign.
It is strictly positive for τ < 0 and strictly negative for τ > 0. We just need to
push the contour Cz inside (for τ < 0) or outside (for τ > 0) of |z| = eχ/2 and
push Cw outside (for τ < 0) or inside (for τ > 0) of |w| = eχ/2 to obtain that
both �S(z; τ, χ) and �S(w; τ, χ) are negative along the new contours. Then
when τ > 0 we get that K1,2 vanishes in the limit and when τ < 0 we pick up
the residue at z = w along the whole circle |z| = eχ/2. �

Remark 6.5. The density function of a particle present at (τ, χ) is

ρ(τ, χ) = lim
r→0+

K1,2(t, x; t, x), for rt → τ and rx→ χ. (6.22)
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From the theorem above

ρ(τ, χ) =
1

2πi

∫

C+(e−χ/2,θc(τ,χ))

1
z
dz =

θc(τ, χ)
π

. (6.23)

A three-dimensional depiction of a plane overpartition π, obtained by
stacking πi,j unit cubes above the (i, j)-th position, is deciphered from the
corresponding point configuration in the following way. Each particle (t, x) in
the configuration is mapped to (X,Y,Z) ∈ Z

3
≥0 where X is the number of

particles to the right of (t, x) counting the particle itself, Y is the number of
holes to the left of (t, x), or equivalently X + �t− 1/2�, and Z is equal to
�x + 1/2�. The limit shape of strict plane partitions is:

X(τ, χ) =
∫ τc(χ)

τ

ρ(t, χ)dt,

Y (τ, χ) =
∫ τ

−τc(χ)

(1− ρ(t, χ))dt =
∫ τc(χ)

τ

ρ(t, χ)dt + τ,

Z(τ, χ) = χ (6.24)

where τc(χ) is given by (6.13). The two formulas for Y are indeed equal from
the properties of the model, but this can be confirmed directly since
∫ 0

−τc(χ)

(1− ρ(t, χ))dt =
∫ 0

−τc(χ)

π − arccos f(t, χ)
π

dt

=
∫ 0

−τc(χ)

arccos f(−t, χ)
π

dt =
∫ τc(χ)

0

ρ(t, χ)dt.

(6.25)

An exactly sampled large plane overpartition for q = 0.9 is shown in
Fig. 17 as a strict plane partition and as a domino tiling in Fig. 6. The simu-
lations were carried out using the algorithms of [11].

Under the same conditions as in Theorem 6.4, diagonal elements of K̃
vanish for χ > 0.

Theorem 6.6. Let rti, rtj → τ , rxi, rxj → χ when r → 0+ where q = e−r.
Assume Δ(t − 1/2)ij, Δ(x)ij, Δ(x + 1/2)ij do not change with r. Then for
χ > 0

lim
r→0+

K̃1,1(ti, xi; tj , xj) = lim
r→0+

K̃2,2(ti, xi; tj , xj) = 0. (6.26)

When χ = 0 assume in addition that xi does not change with r. Set ei =
�xi� − �xi + 1/2�. Then

lim
r→0+

K̃1,1(ti, xi; tj , xj)

=
1

2πi

∫

C+(1,θc(τ,0))

(−1)
xi�−1

w−Δ(t−1/2)ij+ei+1

(1− w)
xi�+
xj�−1

(1 + w)
xi+1/2�+
xj+1/2�−1
dw,

(6.27)
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Figure 17. A large random plane overpartition shown as a strict
plane partition

lim
r→0+

K̃2,2(ti, xi; tj , xj)

=
1

2πi

∫

C−(1,θc(τ,0))

(−1)
xi�−1

wΔ(t−1/2)ij−ei+1

(1− w)1−
xi�−
xj�

(1 + w)1−
xi+1/2�−
xj+1/2� dw.

(6.28)

Proof. We start with (6.9). The analysis was done in the proof of Theorem 6.4.
We can conclude that we can deform Cz and Cw into new contours such that
the real parts of S(z, τ, χ) and S(w, τ, χ) are negative everywhere on the new
contours except at the critical points. We can choose to deform them to the
same contour γz in Fig. 16. When χ > 0 there is no residue to pick up since
while deforming the contours we keep |z| > 1, z /∈ P(χ), |w| > 1 and z /∈ P(χ).
The proof is analogous for K̃2,2.

In the case where χ = 0 we can proceed as above, but now for K̃1,1

we will be picking up the residue at z = 1/w along C+(1, θc(τ, 0)) for K̃1,1

and along −C−(1, θc(τ, 0)) for K̃2,2. Computing the residues we get (6.27) and
(6.28). �

Let (τ, χ) ∈ R× R≥0, t, x, y ∈ Z. Define

B±
τ,χ(t, x, y) =

1
2πi

∫

C±(e−χ/2,θc(τ,χ))

1
zt+1

(1− z)x

(1 + z)y
dz (6.29)

where θc(τ, χ) is as in (6.15).
From Theorems 6.4 and 6.6 we obtain that in the limit the bulk has

determinantal correlations. Precisely, after factoring out constants that cancel
out in the pfaffian as in Remark 6.3, we get the following.
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Theorem 6.7. For i = 1, . . . , n let rti → τ , rxi → χ > 0 when r → 0+ where
q = e−r. Assume Δ(t− 1/2), Δ(x), Δ(x + 1/2) do not change with r. Then

lim
r→0+

�((t1, x1), . . . , (tn, xn))

= det
[
Bτ,χ

± (Δ(t− 1/2)ij ,Δ(x)ij ,Δ(x + 1/2)ij)
]
i,j=1,...,n

(6.30)

where we choose + if xi ≥ xj and − otherwise.

At the boundary χ = 0 limit correlations remain pfaffian.

Theorem 6.8. For i = 1, . . . , n and q = e−r let ti and xi be such that rti → τ
when r → 0+, and Δ(t− 1/2), and xi do not change with r. Then

lim
r→0+

�((t1, x1), . . . , (tn, xn)) = pf
[

B1,1(i, j) B1,2(i, j)
−B1,2(j, i) B2,2(i, j)

]

1≤i,j≤n

(6.31)

where

B1,1(i, j) = (−1)
xi�−1

×B+
τ,0(−Δ(t− 1/2)ij + ei, �xi�+ �xj� − 1, xi + 1/2�+ �xj + 1/2� − 1),

B1,2(i, j) = B±
τ,0(Δ(t− 1/2)ij ,Δ(x)ij ,Δ(x + 1/2)ij),

B2,2(i, j) = (−1)
xi�−1

×B−
τ,0(Δ(t− 1/2)ij − ei, 1− �xi� − �xj�, 1− �xi + 1/2� − �xj + 1/2�)

(6.32)

where ei = �xi� − �xi + 1/2� and we choose + if xi ≥ xj and − otherwise.

Remark 6.9. If in Theorem 6.8 instead of keeping xi constant we let xi →∞,
while still keeping rxi → 0, we get that the correlations in the limit become
determinantal with the kernel B1,2(i, j). To show this one can adapt the proof
of Theorem 6.6 where, as before, we deform the contours and end up with
the residue at z = 1/w along C±(1, θc(τ, 0)). We can then use the fact that
(z; q)x = (1 − z)xeo(x) when x → ∞ and rx → 0 and that |(1 − z)/(1 +
z)| achieves its maximum (minimum) on C+ (C−) at the endpoints to show
that R(i, zc)R(j, zc)K̃1,1 and R−1(i, zc)R−1(j, zc)K̃2,2 both vanish, where the
conjugation factor R(i, z) is (z; q)xi

/(−z; q)xi
and zc is one of the endpoints

zc = eiθc(τ,0). See also Remark 5.14.

Remark 6.10. Theorem 2.13 follows from Theorems 6.7 and 6.8 if we only
consider the point process on points (t1, x1), . . . , (tn, xn) ∈

(
Z + 3

4

)
×
(
Z + 1

4

)
,

in which case �xi� = �xi + 1/2�. To obtain Theorem 2.13 we need to rescale
our microscopic coordinates (t, x) as

t =
⌊τ

r

⌋
+ k, x =

⌊χ

r

⌋
+ i +

1
4

(6.33)

and note that there (x , y) and L were used instead of (τ, χ) and D.
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7. Conclusion

In this paper we have introduced the Schur process with two free boundary par-
titions; computed its pfaffian correlations upon charge mixing; and provided a
uniform asymptotic treatment, upon killing one of the free boundaries, of var-
ious combinatorial and statistical mechanical models: symmetric last passage
percolation, symmetric plane partitions and plane overpartitions.

We mention a few directions that merit further investigation: asymptotic
analysis of the full two free boundary correlations, where we expect new ker-
nels and “universality” behavior to appear—we plan to address this in a future
work; possible generalizations to Hall–Littlewood, q-Whittaker, or even Mac-
donald processes—Fock space does not quite exist here so new ideas in the
spirit of [9] are needed; analysis of other combinatorial models that can be
treated using one free boundary—see [45, Section 7] for a flavor; and possible
connections to matrix models, τ -functions, enumerative algebraic geometry
and map counting.
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Appendix A. Fredholm Pfaffians and Point Processes

For an antisymmetric 2n× 2n matrix A, the pfaffian of A is given by

pf A =
1

2nn!

∑

σ∈S2n

sgn(σ)Aσ(1),σ(2)Aσ(3),σ(4) · · ·Aσ(2n−1),σ(2n) (A.1)

and one can show that (pf A)2 = det A.

Matrix Kernels and Fredholm Pfaffians. Here we briefly introduce the notions
needed for the text. For more information, see [45] or [43, Appendix B]. A
matrix kernel on a space X is a matrix-valued function on X ×X. It is said
antisymmetric if K(x, y) = −K(y, x)T. We use [K(xi, xj)]1≤i,j≤n to denote the
block matrix whose block (i, j) is K(xi, xj). If the kernel K is antisymmetric
and of even size, then so is the matrix [K(xi, xj)]1≤i,j≤n and we can compute
its pfaffian. Note that this pfaffian is invariant under a permutation of S =
{x1, x2, . . . , xn} and we can use pf K(S) to denote it.

Proposition A.1. Let K, K̃ be 2 × 2 antisymmetric kernels on X such that
there exists a complex-valued function f on X such that

K̃(x, y) :=
(

ef(x) 0
0 e−f(x)

)

K(x, y)
(

ef(y) 0
0 e−f(y)

)

. (A.2)

Then

pf[K(xi, xj)]1≤i,j≤n = pf[K̃(xi, xj)]1≤i,j≤n. (A.3)

Let (X,m) be a measure space and K a scalar kernel. The Fredholm
determinant is defined as

det(I + K)X :=
∞∑

n=0

1
n!

∫

Xn

dmn(x) det[K(xi, xj)]1≤i,j≤n (A.4)

where I(x, y) = δx,y. For a 2× 2 antisymmetric matrix kernel K the Fredholm
pfaffian is defined in analogous way by

pf(J + K)X =
∞∑

n=0

1
n!

∫

Xn

dmn(x) pf[K(xi, xj)]1≤i,j≤n (A.5)

where J is the antisymmetric matrix kernel J(x, y) = δx,y

(
0 1
−1 0

)

.

When X is finite and m is a counting measure, then pf(J +K)X coincides
with the ordinary pfaffian of J + K. Identities involving ordinary pfaffians
and determinants can usually be generalized to the Fredholm setting, e.g.,

pf (J + K)2X = det(I − JK)X where I = δx,y

(
1 0
0 1

)

.

Fredholm determinant (A.4) is absolutely convergent if we assume that a
scalar kernel K satisfies |K(x, y)| ≤ D for all (x, y) ∈ X ×X and

∫
X

dm(x) =
M < ∞ since by Hadamard’s bound |det[K(xi, xj)]1≤i,j≤n| ≤ nn/2Dn, which
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gives us that (A.4) is dominated by the absolutely convergent series
∞∑

n=0

nn/2(DM)n

n!
. (A.6)

A little bit more generally, to check that the Fredholm pfaffian is dom-
inated by series (A.6) it is enough to have that the antisymmetric kernel K
satisfies

|pf[K(xi, xj)]1≤i,j≤n| ≤ nn/2Dn
n∏

i=1

f(xi), (A.7)

for some measurable function f such that
∫

X
dm(x)f(x) = M <∞.

Pfaffian Point Processes. We now briefly introduce point processes. For more
detail see for example [31] or [17]. Let X be a locally compact Polish space. A
configuration is any subset of X with no accumulation points. Let Conf (X) be
the set of all configurations, and let P be a probability measure on Conf (X).
P induces a Radon measure on Xn, assigning to a bounded Borel set S the
expected number of n-tuples of distinct points that fall in S. If this measure is
absolutely continuous, then it has the Radon–Nikodym derivative ρn, known
as the n-point correlation function, with respect to some reference measure
m. For a bounded Borel set B ⊆ X, the gap probability pB , which is the
probability that a random configuration has no intersection with B, is given
by

pB = E

[
∏

i

(1− χB(xi))

]

=
∞∑

n=0

(−1)n

n!

∫

Bn

dmn(x)ρn(x1, . . . , xn). (A.8)

In the case of a discrete set X endowed with the counting measure, the cor-
relation function has a simple interpretation. For an n-tuple of distinct points
S = {x1, . . . , xn}, the n-point correlation function ρn(x1, x2, . . . , xn) is equal
to P(CS) where CS is the set of all configurations that contain S. For B finite,
the gap probability formula says

pB =
∑

S⊆B

(−1)#S
P(CS), (A.9)

which is simply the inclusion–exclusion formula.
A point process is called pfaffian if its n-point correlation function can

be written in terms of a 2 × 2 antisymmetric matrix kernel K, called the
correlation kernel, as

ρn(x1, x2, . . . , xn) = pf[K(xi, xj)]1≤i,j≤n. (A.10)

For a pfaffian point process, the gap probability for a bounded Borel set B ⊆ X
is given by the Fredholm pfaffian

pB =
∞∑

n=0

(−1)n

n!

∫

Bn

dmn(x) pf[K(xi, xj)]1≤i,j≤n = pf(J −K)B . (A.11)
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Remark A.2. In Sect. 4 we investigate the gap probabilities of B = (s1,∞)×
· · · × (sk,∞) ⊂ (Z′)k where m is the counting measure. B is not bounded in
this case, but since it can be written as the union of bounded sets, (A.11) holds
by the dominated convergence theorem as long as we can claim the Fredholm
pfaffian is absolutely convergent. To show it is absolutely convergent we use
the lemma below which gives a sufficient condition for (A.7) to be satisfied.
In this case we will use f(x) = e−bx, b > 0 for which

∫
B

dm(x)e−bx is indeed
finite.

Lemma A.3. Let K =
(

K1,1 K1,2

K2,1 K2,2

)

be a 2 × 2 antisymmetric kernel and

c > d ≥ 0. Let x, y ∈ R and suppose there is a C > 0 such that

|K1,1(x, y)| ≤ Ce−cx−cy, |K1,2(x, y)| ≤ Ce−cx+dy, |K2,2(x, y)| ≤ Cedx+dy.

(A.12)

Then there exist b > 0 and D > 0 such that

|pf[K(xi, xj)]1≤i,j≤n| ≤ nn/2Dne−b
∑n

i=1 xi . (A.13)

Proof. Define

K̃(x, x′) =
(

ecx 0
0 e−dx

)

K(x, y)
(

ecy 0
0 e−dy

)

. (A.14)

Let S = {x1, . . . , xn}. Then |pf K(S)| = e(d−c)
∑n

i=1 xi |pf K̃(S)| ≤ e(d−c)
∑n

i=1 xi

√
(2n)nC2n where the inequality comes from Hadamard’s bound (since

K̃(xi, xj) < C). We choose D = C
√

2 and b = c− d. �

Appendix B. Pochhammer, Theta and Some Elementary
Asymptotics

For q a parameter, the q-Pochhammer symbol of length n ∈ N ∪ {∞}, the
multiplicative and the additive, theta functions are defined by:

(x; q)n :=
n−1∏

i=0

(1− xqi),

θq(x) := (x; q)∞(q/x; q)∞,

θ3(z; q) :=
∑

n∈Z

q
n2
2 zn

(B.1)

where |q| < 1. For finite n we have (x; q)n = (x; q)∞/(qnx; q)∞.1 They are
related by the Jacobi triple product identity [26]:

θ3(z; q) = (q; q)∞
∏

i= 1
2 , 3

2 , 5
2 ,...

(
1 + qiz

) (
1 + qi/z

)
= (q; q)∞θq(−z

√
q).

(B.2)

1This should be taken as the definition for negative integer values of n.
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Finally note the quasi-periodicity relations:

θq(qx) = − 1
x

θq(x), θq

(
1
x

)

= − 1
x

θq(x), θq

(
x

q

)

= −x

q
θq(x).

(B.3)

We use the convention that concatenation means product: (a1, a2, . . . ; q)n :=∏
i(ai; q)n and similarly θq(a1, a2, . . .) :=

∏
i θq(ai).

We now turn to certain limits of Pochhammer symbols (and hence of
theta functions). First we need the dilogarithm function Li2(z). It is defined
by the power series representation

Li2(z) =
∑

n≥1

z2

n2
, |z| < 1 (B.4)

with analytic continuation given by

Li2(z) = −
∫ z

0

log(1− u)
u

du, z ∈ C\[1,∞). (B.5)

Differentiating the dilogarithm, we obtain the usual logarithm
(
z d

dz

)
Li2(z) =

− log(1− z). If q = exp(−r) and r → 0+, we have

log(z; q)∞ ∼ −Li2(z)
r

(B.6)

while

log(z; q)n ∼
{

1
r (Li2(e−Az)− Li2(z)) if nr → A > 0,

n log(1− z) if nr → 0.
(B.7)

Using this, one can prove that if u(q) is a function that tends to u ∈ (0, 1) as
r → 0+, then for fixed a and b

lim
q=e−r,
r→0+

(qau(q); q)∞
(qbu(q); q)∞

= (1− u)b−a. (B.8)

Appendix C. Fermionic Propagators

Proposition C.1. Using the notation of (3.18) and (3.67), we have:

〈0|ψ(z)ψ(w)|v〉 =
v2√

zw(z − w)

(z + v)(w + v)(zw − v2)
, for

∣
∣
∣
v

w

∣
∣
∣ < 1,

∣
∣
∣
v

z

∣
∣
∣ < 1,

〈0|ψ(z)ψ∗(w)|v〉 =

√
zw(zw − v2)

(z − w)(w − v)(z + v)
, for

∣
∣
∣
v

z

∣
∣
∣ < 1,

∣
∣
∣
v

w

∣
∣
∣ < 1,

∣
∣
∣
w

z

∣
∣
∣ < 1,

〈0|ψ∗(z)ψ(w)|v〉 =

√
zw(zw − v2)

(z − w)(w + v)(z − v)
, for

∣
∣
∣
v

z

∣
∣
∣ < 1,

∣
∣
∣
v

w

∣
∣
∣ < 1,

∣
∣
∣
w

z

∣
∣
∣ < 1,

〈0|ψ∗(z)ψ∗(w)|v〉 =
v2√

zw(z − w)

(z − v)(w − v)(zw − v2)
, for

∣
∣
∣
v

z

∣
∣
∣ < 1,

∣
∣
∣
v

w

∣
∣
∣ < 1,

〈0|ψ(z)ψ(w)|ver〉 =
v2(z − w)√
zw(zw − v2)

, for

∣
∣
∣
∣
v2

zw

∣
∣
∣
∣ < 1,

〈0|ψ(z)ψ∗(w)|ver〉 =
w

√
w(zw − v2)√

z(z − w)(w2 − v2)
, for

∣
∣
∣
w

z

∣
∣
∣ < 1,

∣
∣
∣
v

w

∣
∣
∣ < 1,
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〈0|ψ∗(z)ψ(w)|ver〉 =
z
√

z(zw − v2)√
w(z − w)(z2 − v2)

, for
∣
∣
∣
w

z

∣
∣
∣ < 1,

∣
∣
∣
v

z

∣
∣
∣ < 1,

〈0|ψ∗(z)ψ∗(w)|ver〉 =
v2zw

√
zw(z − w)

(z2 − v2)(w2 − v2)(zw − v2)
, for

∣
∣
∣
v

z

∣
∣
∣ < 1,

∣
∣
∣
v

w

∣
∣
∣ < 1,

〈0|ψ(z)ψ(w)|vec〉 =
v2zw

√
zw(z − w)

(z2 − v2)(w2 − v2)(zw − v2)
, for

∣
∣
∣
v

z

∣
∣
∣ < 1,

∣
∣
∣
v

w

∣
∣
∣ < 1,

〈0|ψ(z)ψ∗(w)|vec〉 =
z
√

z(zw − v2)√
w(z − w)(z2 − v2)

, for
∣
∣
∣
w

z

∣
∣
∣ < 1,

∣
∣
∣
v

z

∣
∣
∣ < 1, (C.1)

〈0|ψ∗(z)ψ(w)|vec〉 =
w

√
w(zw − v2)√

z(z − w)(w2 − v2)
, for

∣
∣
∣
w

z

∣
∣
∣ < 1,

∣
∣
∣
v

w

∣
∣
∣ < 1,

〈0|ψ∗(z)ψ∗(w)|vec〉 =
v2(z − w)√
zw(zw − v2)

, for

∣
∣
∣
∣
v2

zw

∣
∣
∣
∣ < 1,

〈0|ψ(z)ψ(w)|vβ, or〉 =
v2√

zw(z − w)

(zw − v2)(z + β)(w + β)
, for

∣
∣
∣
∣
v2

zw

∣
∣
∣
∣ < 1,

∣
∣
∣
∣
β

z

∣
∣
∣
∣ < 1,

∣
∣
∣
∣
β

w

∣
∣
∣
∣ < 1,

〈0|ψ(z)ψ∗(w)|vβ, or〉 =

√
zw(zw − v2)(w + β)

(z − w)(w2 − v2)(z + β)
, for

∣
∣
∣
w

z

∣
∣
∣ < 1,

∣
∣
∣
v

w

∣
∣
∣ < 1,

∣
∣
∣
∣
β

z

∣
∣
∣
∣ < 1,

〈0|ψ∗(z)ψ(w)|vβ, or〉 =

√
zw(zw − v2)(z + β)

(z − w)(z2 − v2)(w + β)
, for

∣
∣
∣
w

z

∣
∣
∣ < 1,

∣
∣
∣
v

z

∣
∣
∣ < 1,

∣
∣
∣
∣
β

w

∣
∣
∣
∣ < 1,

〈0|ψ∗(z)ψ∗(w)|vβ, or〉 =
v2√

zw(z − w)(z + β)(w + β)

(z2 − v2)(w2 − v2)(zw − v2)
, for

∣
∣
∣
v

z

∣
∣
∣ < 1,

∣
∣
∣
v

w

∣
∣
∣ < 1,

〈0|ψ(z)ψ(w)|vα, oc〉 =
v2√

zw(z − w)(z − α)(w − α)

(z2 − v2)(w2 − v2)(zw − v2)
, for

∣
∣
∣
v

z

∣
∣
∣ < 1,

∣
∣
∣
v

w

∣
∣
∣ < 1,

〈0|ψ(z)ψ∗(w)|vα, oc〉 =

√
zw(zw − v2)(z − α)

(z − w)(z2 − v2)(w − α)
, for

∣
∣
∣
w

z

∣
∣
∣ < 1,

∣
∣
∣
v

z

∣
∣
∣ < 1,

∣
∣
∣
α

w

∣
∣
∣ < 1,

〈0|ψ∗(z)ψ(w)|vα, oc〉 =

√
zw(zw − v2)(w − α)

(z − w)(w2 − v2)(z − α)
, for

∣
∣
∣
w

z

∣
∣
∣ < 1,

∣
∣
∣
v

w

∣
∣
∣ < 1,

∣
∣
∣
α

z

∣
∣
∣ < 1,

〈0|ψ∗(z)ψ∗(w)|vα, oc〉 =
v2√

zw(z − w)

(zw − v2)(z − α)(w − α)
, for

∣
∣
∣
∣
v2

zw

∣
∣
∣
∣ < 1,

∣
∣
∣
α

z

∣
∣
∣ < 1,

∣
∣
∣
α

w

∣
∣
∣ < 1.

Proof. Ping-pong (one-sided) and boson–fermion correspondence (3.17). Equiv-
alently, the argument proving (3.64) applies throughout. �

We now turn to the (unmodified) two free boundary propagators. Recall
definition (3.40).

Proposition C.2. We have:

〈u, t|ψ(z)ψ(w)|v, t〉 =
((uv)2; (uv)2)2∞θ(uv)2 ( w

z
)

(− v
z

, − v
w

, uz, uw; uv)∞θ(uv)2 (u2zw)
·

θ3

(
( tzw

v2 )2; (uv)4
)

(uv; uv)∞
· v2

tw
√

zw
,

for

∣
∣
∣
∣
v

z

∣
∣
∣
∣ < 1,

∣
∣
∣
∣
v

w

∣
∣
∣
∣ < 1, |uz| < 1, |uw| < 1, |uv| < 1,

〈u, t|ψ(z)ψ
∗
(w)|v, t〉 =

((uv)2; (uv)2)2∞θ(uv)2 (u2zw)

(− v
z

, v
w

, uz, −uw; uv)∞θ(uv)2 ( w
z

)
·

θ3

(
( tz

w
)2; (uv)4

)

(uv; uv)∞
·
√

w

z
,

for

∣
∣
∣
∣
v

z

∣
∣
∣
∣ < 1,

∣
∣
∣
∣
v

w

∣
∣
∣
∣ < 1, |uz| < 1, |uw| < 1,

∣
∣
∣
∣
w

z

∣
∣
∣
∣ < 1, |uv| < 1,

〈u, t|ψ∗
(z)ψ(w)|v, t〉 =

((uv)2; (uv)2)2∞θ(uv)2 (u2zw)

( v
z

, − v
w

, −uz, uw; uv)∞θ(uv)2 ( w
z

)
·

θ3

(
( tw

z
)2; (uv)4

)

(uv; uv)∞
·
√

z

w
,

for

∣
∣
∣
∣
v

z

∣
∣
∣
∣ < 1,

∣
∣
∣
∣
v

w

∣
∣
∣
∣ < 1, |uz| < 1, |uw| < 1,

∣
∣
∣
∣
w

z

∣
∣
∣
∣ < 1, |uv| < 1,
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〈u, t|ψ∗
(z)ψ

∗
(w)|v, t〉 =

((uv)2; (uv)2)2∞θ(uv)2 ( w
z

)

( v
z

, v
w

, −uz, −uw; uv)∞θ(uv)2 (u2zw)
·

θ3

(

( tv2
zw

)2; (uv)4
)

(uv; uv)∞
· v2t

w
√

zw
,

for

∣
∣
∣
∣
v

z

∣
∣
∣
∣ < 1,

∣
∣
∣
∣
v

w

∣
∣
∣
∣ < 1, |uz| < 1, |uw| < 1, |uv| < 1. (C.2)

Proof. Ping-pong and boson–fermion correspondence (3.17). All are similar to
the proof of (3.66). �
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fect sampling algorithm for Schur processes. Markov Process. Relat. Fields 24,
381–418 (2018). arXiv:1407.3764 [math.PR]

[12] Betea, D., Bouttier, J., Nejjar, P., Vuletić, M.: The free boundary Schur process
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