
Average-Case Analysis of Programs: Automated Recurrence
Analysis for Almost-Linear Bounds

1 Anonymous and 2 Anonymous and 3 Anonymous

Technical Report No. IST-2016-619-v1+1
Deposited at 15 Jul 2016 09:04
https://repository.ist.ac.at/619/1/popl2017b.pdf

IST Austria (Institute of Science and Technology Austria)
Am Campus 1
A-3400 Klosterneuburg, Austria

Copyright © 2012, by the author(s).
All rights reserved.
Permission to make digital or hard copies of all or part of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for pro�t or
commercial advantage and that copies bear this notice and the full citation on the �rst page.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior
speci�c permission.

Average-Case Analysis of Programs:
Automated Recurrence Analysis for Almost-Linear Bounds

Abstract

We consider the problem of developing automated techniques to aid
the average-case complexity analysis of programs. Several classical
textbook algorithms have quite efficient average-case complexity,
whereas the corresponding worst-case bounds are either inefficient
(e.g., QUICK-SORT), or completely ineffective (e.g., COUPON-
COLLECTOR). Since the main focus of average-case analysis is to
obtain efficient bounds, we consider bounds that are either loga-
rithmic, linear, or almost-linear (O(logn), O(n), O(n · logn),
respectively, where n represents the size of the input). Our main
contribution is a sound approach for deriving such average-case
bounds for randomized recursive programs. Our approach is effi-
cient (a simple linear-time algorithm), and it is based on (a) the
analysis of recurrence relations induced by randomized algorithms,
and (b) a guess-and-check technique. Our approach can infer
the asymptotically optimal average-case bounds for classical ran-
domized algorithms, including RANDOMIZED-SEARCH, QUICK-
SORT, QUICK-SELECT, COUPON-COLLECTOR, where the worst-
case bounds are either inefficient (such as linear as compared to
logarithmic of average-case, or quadratic as compared to linear
or almost-linear of average-case), or ineffective. We have imple-
mented our approach, and the experimental results show that we
obtain the bounds efficiently for various classical algorithms.

Categories and Subject Descriptors F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

General Terms Program Verification, Average-Case Analysis

Keywords Randomized Recursive Programs, Average-Case
Analysis

1. Introduction

Static analysis for quantitative bounds. Static analysis of programs
aims to reason about programs without running them. The most
basic properties for static analysis are qualitative properties, such
as safety, termination, liveness, that for every trace of a program
gives a Yes or No answer (such as assertion violation or not, ter-
mination or not). However, recent interest in analysis of resource-
constrained systems, such as embedded systems, as well as for

[Copyright notice will appear here once ’preprint’ option is removed.]

performance analysis, quantitative performance characteristics are
necessary. For example, the qualitative problem of termination asks
whether a given program always terminates, whereas the quantita-
tive problem asks to obtain precise bounds on the number of steps,
and is thus a more challenging problem. Hence the problem of auto-
matically reasoning about resource bounds (such as time complex-
ity bounds) of programs is both of significant theoretical as well as
practical interest.

Worst-case bounds. The worst-case analysis of programs is the fun-
damental problem in computer science, which is the basis of algo-
rithms and complexity theory. However, manual proofs of worst-
case analysis can be tedious and also require non-trivial mathe-
matical ingenuity, e.g., the book The Art of Computer Program-
ming by Knuth presents a wide range of involved techniques to
derive such precise bounds [31, 32]. There has been a considerable
research effort for automated analysis of such worst-case bounds
for programs, see [17, 18, 22, 23] for excellent expositions on the
significance of deriving precise worst-case bounds and the auto-
mated methods to derive them. For the worst-case analysis there
are several techniques, such as worst-case execution time analy-
sis [39], resource analysis using abstract interpretation and type
systems [3, 18, 22, 23, 29], ranking functions [5, 6, 9, 11, 36–
38, 40], as well as recurrence relations [1–3, 15].

Average-case bounds. While several works have focused on deriv-
ing worst-case bounds for programs, quite surprisingly little work
has been done to derive precise bounds for average-case analysis,
with the exception of [13], which focuses on randomization in com-
binatorial structures (such as trees). This is despite the fact that
average-case analysis is an equally important pillar of theoretical
computer science, both in terms of theoretical and practical signif-
icance. For example, while for real-time systems with hard con-
straints worst-case analysis is necessary, for real-time systems with
soft constraints the more relevant information is the average-case
analysis. Below we highlight three key significance of average-case
analysis.

1. Simplicity and desired properties: The first key aspect is sim-
plicity: if the goal is to design algorithms with efficient average-
case complexity as compared to worst-case complexity, then
much simpler algorithms (and thus simple and efficient imple-
mentations) exist. A classic example is as follows: consider the
classical MEDIAN-FIND problem, or in general the SELECTION
problem that given a set of n numbers and 0 ≤ k ≤ n, asks
to find the k-th largest number (for median k = n/2). The
classical linear-time algorithm for the problem (see [10, Chap-
ter 9]) is quite involved, and its worst-case analysis to obtain
linear time bound is rather complex. In contrast, a much sim-
pler algorithm exists (namely, QUICK-SELECT, see Example 3
in Section 2.2) that has linear average-case complexity. A re-
lated advantage for randomized algorithms with average-case
complexity is that such algorithms enjoy many desired proper-
ties, which deterministic algorithms do not have. A basic ex-

1 2016/7/13

ample is CHANNEL-CONFLICT RESOLUTION (see Example 7,
Section 2.4) where the simple randomized algorithm can be im-
plemented in a distributed or concurrent setting, whereas deter-
ministic algorithms are quite cumbersome. In summary, ran-
domized algorithms with average-case analysis lead to simple,
efficient algorithms with several desirable properties.

2. Efficiency in practice: The second key aspect is efficiency in
practice. Since worst-case analysis concerns with corner cases
that rarely arise, many algorithms and implementations have a
much better average-case complexity as compared to the worst-
case complexity, and they perform extremely well in prac-
tice. A classic example is the QUICK-SORT algorithm, that has
quadratic worst-case complexity, but almost linear average-case
complexity, and is one of the most efficient sorting algorithms
in practice.

3. Worst-case analysis ineffective: The third key advantage of
average-case analysis is that in several important cases the
worst-case analysis is completely ineffective. For example,
consider one of the textbook stochastic process, namely the
COUPON-COLLECTOR problem, where there are n types of
coupons to be collected, and in each round, a coupon type
among the n types is obtained uniformly at random. The
process stops when all types are collected. The COUPON-
COLLECTOR process is one of the basic and classical stochastic
processes, with numerous applications in network routing, load
balancing, etc (see [34, Chapter 3] for applications of COUPON-
COLLECTOR problems). For the worst-case analysis, the pro-
cess might not terminate (thus has infinite worst-case bound),
but the average-case analysis shows that the expected termina-
tion time is O(n · logn), i.e., quite efficient.

Challenges. The average-case analysis brings several new chal-
lenges as compared to the worst-case analysis.

1. First, for the worst-case complexity bounds, the most classical
characterization for analysis of recurrences is the Master the-
orem (cf. [10, Chapter 1]). However, the average-case analysis
problems give rise to recurrences that are not characterized by
the Master theorem.

2. Second, techniques like ranking functions (linear or polyno-
mial ranking functions) cannot derive efficient bounds such as
O(logn) or O(n · logn).

While average-case analysis has been considered for combinatorial
structures using generating function [13], we are not aware of any
automated technique to handle recurrences arising from random-
ized algorithms.

Analysis problem: Almost-linear bounds for univariate and separa-
ble bivariate recurrences. In this work we consider the algorithmic
analysis problem of recurrences arising naturally for randomized
recursive programs. More specifically we consider the following
problem.

• We consider two classes of average-case recurrences: (a) uni-
variate class with one variable (which represents the array
length, or the number of input elements, as required in problems
such as QUICK-SELECT, QUICK-SORT etc); and (b) separa-
ble bivariate class with two variables (where the two indepen-
dent variables represent the total number of elements and total
number of successful cases, respectively, as required in prob-
lems such as COUPON-COLLECTOR, CHANNEL-CONFLICT
RESOLUTION). The above two classes capture a large class
of average-case analysis problems, including all the classical

ones mentioned above. Moreover, the main purpose of average-
case analysis is to obtain efficient bounds. Hence we focus on
the case of logarithmic, linear, and almost-linear bounds (i.e.,
bounds of formO(logn),O(n) andO(n · logn), respectively,
where n is the size of the input).

Thus the main problem we consider is to automatically derive such
efficient bounds for randomized univariate and separable bivariate
recurrence relations to aid the average-case analysis of programs.

Our contributions. Our main contribution is a sound approach for
analysis of recurrences for average-case analysis. The details of our
contributions are as follows:

1. Efficient algorithm. Our main contributions are efficient algo-
rithms for our problem. We first present a linear-time algorithm
for the univariate case. Our algorithm is based on simple com-
parison of leading terms of pseudo-polynomials. Second, we
present a simple reduction for separable bivariate recurrence
analysis to the univariate case. Our efficient (linear-time) al-
gorithm can soundly infer logarithmic, linear, and almost-linear
bounds for average-case recurrences involving one or two vari-
ables.

2. Analysis of classical algorithms. We show that for sev-
eral classical algorithms, such as RANDOMIZED-SEARCH,
QUICK-SELECT, QUICK-SORT, DIAMETER-COMPUTATION,
COUPON-COLLECTOR, CHANNEL-CONFLICT RESOLUTION
(see Section 2.2 and Section 2.4 for examples), our sound
approach can obtain the asymptotically optimal average-case
bounds. In all the cases above, either the worst-case bounds
(i) do not exist (e.g., COUPON-COLLECTOR), or (ii) are
quadratic when the average-case bounds are linear or almost-
linear (e.g., QUICK-SELECT, QUICK-SORT); or (iii) are lin-
ear when the average-case bounds are logarithmic (e.g.,
RANDOMIZED-SEARCH). Thus in cases where the worst-case
bounds are either not applicable, or grossly overestimate the
average-case bounds, our technique is both efficient (linear-
time) and can infer the optimal bounds.

3. Implementation. Finally, we have implemented our approach,
and we present experimental results on the classical examples
to show that we can efficiently achieve the automated average-
case analysis of randomized recurrence relations.

Novelty and technical contribution. The key novelty of our ap-
proach is an automated method to analyze recurrences arising from
randomized recursive programs, which are not covered by Master
theorem. Our approach is based on a guess-and-check technique.
We show that by over-approximating terms in a recurrence relation
through integral and Taylor’s expansion, we can soundly infer log-
arithmic, linear and almost-linear bounds using simple comparison
between leading terms of pseudo-polynomials.

2. Recurrence Relations

In this section, we present our mini specification language for re-
currence relations for average-case analysis. The language is de-
signed to capture running time of recursive randomized algorithms
which involve (i) only one function call whose average-case com-
plexity is to be determined, (ii) at most two integer parameters,
and (iii) involve randomized-selection or divide-and-conquer tech-
niques. We present our language separately for the univariate and
bivariate cases. In the sequel, we denote by N, N0, Z, and R the
sets of all positive integers, non-negative integers, integers, and real
numbers, respectively.

2 2016/7/13

2.1 Univariate Randomized Recurrences

Below we define the notion of univariate randomized recurrence
relations. First, we introduce the notion of univariate recurrence
expressions. Since we only consider single recursive function call,
we use ‘T’ to represent the (only) function call. We also use ‘n’ to
represent the only parameter in the function declaration.

Univariate recurrence expressions. The syntax of univariate re-
currence expressions e is generated by the following grammar:

e ::= c | n | ln n | n · ln n | 1
n

| T (n− 1) | T
(⌊

n

2

⌋)
| T
(⌈

n

2

⌉)
|
∑n−1

j=1 T(j)
n

| 1
n
·

 n−1∑
j=dn2 e

T(j) +
n−1∑

j=bn2 c
T(j)

| c · e | e + e

where c ∈ [1,∞) and ln(�) represents the natural logarithm func-
tion with base e. Informally, T(n) is the (expected) running time of
a recursive randomized program which involves only one recursive
routine indicated by T and only one parameter indicated by n. Then
each T(�)-term in the grammar has a direct algorithmic meaning:

• T (n− 1) may mean a recursion to a sub-array with length
decremented by one;

• T
(⌊

n
2

⌋)
and T

(⌈
n
2

⌉)
may mean a recursion related to a

divide-and-conquer technique;
• finally,∑n−1

j=1 T(j)
n

and
1
n
·

 n−1∑
j=dn

2 e
T(j) +

n−1∑
j=bn2 c

T(j)

may mean a recursion related to a randomized selection of an
array index.

Substitution. Consider a function h : N → R and univariate recur-
rence expression e. The substitution function, denoted by Sub(e, h),
is the function from N into R such that the value for n is obtained
by evaluation through substituting h for T and n for n, respec-
tively. Moreover, if e does not involve the appearance of ‘T’, then
we use the abbreviation Sub(e) i.e., we omit h. For example, (i) if
e = n + T(n − 1), and h : n 7→ n · logn, then Sub(e, h) is the
function n 7→ n+ (n− 1) · log(n− 1), and (ii) if e = 2 · n, then
Sub(e) is the function n 7→ 2n.

Univariate recurrence relation. A univariate recurrence relation
G = (eq1, eq2) is a pair of equalities as follows:{

eq1 : T(n) = e

eq2 : T(1) = c
(1)

where c ∈ (0,∞) and e is a univariate recurrence expression.

Evaluation of univariate recurrence relation. Consider a univariate
recurrence relation G {

eq1 : T(n) = e

eq2 : T(1) = c
(2)

where c ∈ (0,∞) and e is a univariate recurrence expression.
The evaluation sequence Eval(G) is as follows: Eval(G)(1) = c,
and for n ≥ 2, given Eval(G)(i) for 1 ≤ i < n, for the value

Eval(G)(n) we evaluate the expression Sub(e,Eval(G)), because
in e the parameter n always decreases and thus this is well-defined.

Finite vs infinite solution. Note that the above description gives a
computational procedure to compute Eval(G) for any finite n, in
linear time in n through dynamic programming. The interesting
question is to algorithmically analyze the infinite behavior. A func-
tion TG : N→ R is called a solution to G if TG(n) = Eval(G)(n)
for all n ≥ 1. The function TG is unique and explicitly defined as
follows:

• Base Step. TG(1) := c;
• Recursive Step. TG(n) := Sub(e, TG)(n) for all n ≥ 2.

The interesting algorithmic question is to reason about the asymp-
totic infinite behaviour of TG.

2.2 Motivating Classical Examples

In this section we present several classical examples of randomized
programs whose recurrence relations belong to the class of univari-
ate recurrence relations described in Section 2.1.
Example 1 (RANDOMIZED-SEARCH). Consider the Sherwood’s
RANDOMIZED-SEARCH algorithm (cf. [33, Chapter 9]) depicted
in Fig. 1. The algorithm checks whether an integer value d is
present within the index range [i, j] (0 ≤ i ≤ j) in an integer array
ar which is sorted in increasing order and is without duplicate
entries. The algorithm outputs either the index for d in ar or −1
meaning that d is not present in the index range [i, j] of ar.

The description of the pseudo-code is as follows. The first four lines
deal with the base case when there is only one index in the index
range. The remaining lines deal with the recursive case: in line
6, an index k is uniformly sampled from {i, i+ 1, . . . , j}; line 7–8
check whether k is the output; line 9–12 perform the recursive calls
depending on whether ar[k] < d or not; finally, line 13–14 handle
the case when d < ar[i] or d > ar[j].

Let T : N → N be the function such that for any n ∈ N, we
have T (n) is the supremum of the expected execution times upon
all inputs (ar, i, j) with j − i + 1 = n. We derive a recurrence
relation for T as follows. Let n ∈ N and (ar, i, j), d be any input
such that n = j − i+ 1. We clarify two cases below:

1. there exists an i ≤ k∗ < j such that ar[k∗] ≤ d < ar[k∗ + 1],
where ar[j + 1] is interpreted∞ here;

2. ar[j] ≤ d or d < ar[i].

In both cases, we have T (1) = 1. In Case 1, we deduce from the
pseudo-code in Fig. 1 that

T (n) ≤ 6 + 1
n
· max

1≤`∗<n

(
`∗∑
`=1

T (n− `) +
n∑

`=`∗+1

T (`− 1)

)
for all n ≥ 2, where the maximum ranges over all `∗ := k∗ − i+
1’s. In Case 2, similarly we deduce that

T (n) ≤ 6 + 1
n
·max

{
n−1∑
`=1

T (n− `),
n∑
`=2

T (`− 1)

}
Thus a preliminary versionG′ of the recurrence relation is T(1) =
1 and

T(n) = 6 + 1
n
· max

1≤`∗<n

(
`∗∑
`=1

T(n− `) +
n∑

`=`∗+1

T(`− 1)

)

3 2016/7/13

randsearch(ar, i, j, d) {
1 : i f (i = j and ar[i] 6= d)
2 : re turn −1 ;
3 : e l s e i f (i = j and ar[i] = d)
4 : re turn i ;
5 : e l s e
6 : k ← uniform(i, j) ;

7 : i f (ar[k] = d)
8 : re turn k ;
9 : e l s e i f (ar[k] < d and k < j)
1 0 : re turn randsearch(ar, k + 1, j, d) ;
1 1 : e l s e i f (ar[k] > d and i < k)
1 2 : re turn randsearch(ar, 1, k − 1, d) ;
1 3 : e l s e
1 4 : re turn −1 ;

end i f
end i f

}

Figure 1. Pseudo-code for Sherwood’s RANDOMIZED-SEARCH

for all n ≥ 2. Let T ′ : N → R be the unique solution to G′. Then
from the fact that T ′(2) ≥ T ′(1), by induction T ′ is monotonically
increasing. Thus the maximum

max
1≤`∗<n

(
`∗∑
`=1

T ′(n− `) +
n∑

`=`∗+1

T ′(`− 1)

)
is attained at `∗ =

⌊
n
2

⌋
for all n ≥ 2. Then G′ is transformed into

our final recurrence relation as follows:
T(n) = 6 + 1

n
·

 n−1∑
j=dn2 e

T(j) +
n−1∑

j=bn2 c
T(j)

T(1) = 1

. (3)

We note that the worst-case complexity for this algorithm is Θ(n).

Example 2 (QUICK-SORT). Consider the QUICK-SORT algo-
rithm [10, Chapter 7] depicted in Fig. 2, where every input
(ar, i, j) is assumed to satisfy that 0 ≤ i ≤ j and ar is an ar-
ray of integers which does not contain duplicate numbers.

The description of the pseudo-code is as follows: first, line 2 sam-
ples an integer uniformly from {i, . . . , j}; then, line 3 calls a sub-
routine pivot which (i) rearranges ar such that integers in ar which
are less than ar[k] come first, then ar[k], and finally integers in ar
greater than ar[k], and (ii) outputs the new indexm of ar[k] in ar;
and finally, lines 4–7 handle recursive calls to sub-arrays.

From the pseudo-code, the following recurrence relation is easily
obtained: {

T(n) = 2 · n + 2 ·
∑n−1

j=1
T(j)

n

T(1) = 1
(4)

where T(n) represents the maximal expected execution time over
all inputs (ar, i, j) such that j−i+1 is a fixed constant represented
by n, and the execution time of pivot is represented by 2 ·n. We note
that the worst-case complexity for this algorithm is Θ(n2).

Example 3 (QUICK-SELECT). Consider the QUICK-SELECT al-
gorithm (cf. [10, Chapter 9]) depicted in Fig. 3 which upon any
input (ar, i, j) and d such that 0 ≤ i ≤ j, 1 ≤ d ≤ j − i + 1
and ar contains no duplicate integers, finds the d-th largest integer

quicksort(ar, i, j) {
1 : i f (i < j)
2 : k ← uniform(i, j) ;
3 : m← pivot(ar, i, j, ar[k]) ;

4 : i f (i ≤ m− 1)
5 : quicksort(ar, i,m− 1) ;

end i f

6 : i f (m+ 1 ≤ j)
7 : quicksort(ar,m+ 1, j) ;

end i f
end i f

}

Figure 2. Pseudo-code for Randomized QUICK-SORT

in ar. Note that for an array of size n, and d = n/2, we have the
MEDIAN-FIND algorithm.

The description of the pseudo-code is as follows: line 1 handles the
base case; line 3 starts the recursive case by sampling k uniformly
from {i, . . . , j}; line 4 rearranges ar and returns anm in the same
way as pivot in QUICK-SORT (cf. Example 2); line 5 handles the
case when ar[k] happens to be the d-th largest integer in ar; and
finally, line 7–10 handle the recursive calls.

Let T : N → N be the function such that for any n ∈ N, we
have T (n) is the supremum of the expected execution times upon
all inputs (ar, i, j) with j − i + 1 = n. By an analysis on where
the d-th largest integer lies in ar which is similar to the analysis on
d in Example 1, a preliminary recurrence relation is obtained such
that T(1) = 1 and

T(n) = 4+2·n+ 1
n
· max
1≤`∗≤n

(
`∗−1∑
`=1

T(n− `) +
n∑

`=`∗+1

T(`− 1)

)
.

By similar monotone argument in Example 1, the maximum of the
right-hand-side expression above is attained at `∗ =

⌊
n+1

2

⌋
for all

n ≥ 2. By the fact that
⌊
n+1

2

⌋
=
⌈
n
2

⌉
for all n ≥ 2, the following

recurrence relation is obtained:
T(n) = 4 + 2 · n + 1

n
·

 n−1∑
j=bn

2 c+1

T(j) +
n−1∑

j=dn
2 e

T(j)

T(1) = 1

To fit our univariate recurrence expression, we use over-
approximation, and the final recurrence relation for this example
is

T(n)=4 + 2 · n + 1
n
·

 n−1∑
j=bn

2 c
T(j) +

n−1∑
j=dn

2 e
T(j)

T(1) = 1

. (5)

We note that the worst-case complexity for this algorithm is Θ(n2).

Example 4 (DIAMETER-COMPUTATION). Consider the
DIAMETER-COMPUTATION algorithm (cf. [34, Chapter 9]) to
compute the diameter of an input finite set S of three-dimensional
points. A pseudo-code to implement this is depicted in Fig. 4.

The description of the pseudo-code is as follows: line 1–2 handle
the base case; line 3 samples a point p uniformly from S; line 4
calculates the maximum distance in S from p; line 5 calculates the

4 2016/7/13

quickselect(ar, i, j, d) {
1 : i f (i = j) re turn a[i] ;
2 : e l s e
3 : k ← uniform(i, j) ;
4 : m← pivot(ar, i, j, ar[k]) ;

5 : i f (m− i+ 1 = d)
6 : re turn ar[m] ;
7 : e l s e i f (m− i+ 1 < d)
8 : re turn quickselect(ar,m+ 1, j, d) ;
9 : e l s e i f (m− i+ 1 > d)
1 0 : re turn quickselect(ar, i,m− 1, d) ;

end i f
end i f

}

Figure 3. Pseudo-code for Randomized QUICK-SELECT

intersection of all balls centered at points in S with uniform radius
d; line 6 calculates the set of points outside U ; lines 7–8 handle the
situation S′ = ∅ which implies that d is the diameter; lines 9–10
handle the recursive call to S′. Due to uniform choice of p at line 3,
the size of S′ is uniformly in [0, |S| − 1]; it then follows a pivoting
(similar to that in Example 3 and Example 2) by line 5 w.r.t the
linear order over {maxp′∈S dist(p, p′) | p ∈ S}.

Lines 5–6 can be done in O(|S| · log |S|) time for Euclidean
distance, and O(|S|) time for L1 metric [34]. Thus, we obtain two
recurrence relations as follows:{

T(n) = 2 + n + 2 · n · ln n +
∑n−1

j=1
T(j)

n

T(1) = 1
(6)

for Euclidean distance with the execution time for lines 5–6 being
taken to be 2 · n · ln n, and{

T(n) = 2 + n + 2 · n +
∑n−1

j=1
T(j)

n

T(1) = 1
(7)

for L1 metric with the execution time for lines 5–6 being taken to
be 2 · n.

We note that the worst-case complexity for this algorithm is as
follows: for Euclidean metric it is Θ(n2 · logn) and for the L1
metric it is Θ(n2).

Example 5 (Sorting with QUICK-SELECT). Consider a sorting
algorithm depicted in Fig. 5 which selects the median through
the QUICK-SELECT algorithm. The recurrence relation is directly
obtained as follows:{

T(n) = 4 + T ∗(n) + T
(
b n2 c
)

+ T
(
d n2 e
)

T(1) = 1
(8)

where T ∗(�) is an upper bound on the expected running time
of QUICK-SELECT (cf. Example 3). We note that the worst-case
complexity for this algorithm is Θ(n2).

2.3 Separable Bivariate Randomized Recurrences

We consider a generalization of the univariate recurrence relations
to a class of bivariate recurrence relations called separable bivari-
ate recurrence relations. Similar to the univariate situation, we use
‘T’ to represent the (only) function call and ‘n’, ‘m’ to represent
namely the two integer parameters.

diameter(S) {
1 : i f (|S| = 1)
2 : re turn 0 ;

e l s e
3 : p← uniform(S) ;
4 : d← maxp′∈S dist(p, p′)
5 : U ←

⋂
p′∈S{p

′′ ∈ R3 | dist(p′′, p′) ≤ d}
6 : S′ ← S\U

7 : i f (S′ = ∅)
8 : re turn d
9 : e l s e
1 0 : re turn diameter(S′)

end i f
end i f

}

Figure 4. Pseudo-code for DIAMETER-COMPUTATION

sortbyselect(ar, i, j) {
1 : i f (i < j)
2 : m← quickselect(ar, i, j, b j−i+1

2 c) ;
3 : i f (i < m− 1)
4 : sortbyselect(ar, i,m− 1) ;

end i f

5 : i f (m+ 1 < j)
6 : sortbyselect(ar,m+ 1, j) ;

end i f
end i f

}

Figure 5. Pseudo-code for Sorting with QUICK-SELECT

Separable Bivariate Recurrence Expressions. The syntax of sep-
arable bivariate recurrence expressions is illustrated by e, h and b
as follows:

e ::= T (n,m− 1) | T
(
n,
⌊
m

2

⌋)
| T
(
n,
⌈
m

2

⌉)
|
∑m−1

j=1 T(n, j)
m

| 1
m
·

 m−1∑
j=dm2 e

T(n, j) +
m−1∑

j=bm2 c
T(n, j)

| c · e | e + e

h ::= c | ln n | n | n · ln n | c · h | h + h

b ::= c | 1
m
| lnm | m | m · lnm | c · b | b + b

The differences are that (i) we have two independent parameters
n,m, (ii) e now represents an expression composed of only T-
terms, and (iii) h (resp. b) represents arithmetic expressions for n
(resp. for m). This class of separable bivariate recurrence expres-
sions (often for brevity bivariate recurrence expressions) stresses a
dominant role on n and a minor role on m, and is intended to model
randomized algorithms where some parameter (to be represented
by n) does not change value.

5 2016/7/13

Substitution. The notion of substitution is similar to the univariate
case. Consider a function h : N × N → R, and a bivariate recur-
rence expression e. The substitution function, denoted by Sub(e, h),
is the function from N×N into R such that Sub(e, h)(n,m) is the
real number evaluated through substituting h, n,m for T, n,m, re-
spectively. The substitution for h, b is defined in a similar way, with
the difference that they both induce a univariate function.

Bivariate recurrence relations. We consider bivariate recurrence
relations G = (eq1, eq2), which consists of two equalities of the
following form: {

eq1 : T(n,m) = e + h · b
eq2 : T(n, 1) = h · c

(9)

where c ∈ (0,∞) and e, h, b are from the grammar above.

Solution to bivariate recurrence relations. The evaluation of bivari-
ate recurrence relation is similar to the univariate case. Similar to
the univariate case, the unique solution TG : N × N → R to a
recurrence relation G taking the form (9) is a function defined re-
cursively as follows:

• Base Step. TG(n, 1) := Sub(h)(n) · c for all n ∈ N;
• Recursive Step. TG(n,m) := Sub(e, TG)(n,m)+Sub(h)(n) ·

Sub(b)(m) for all n ∈ N and m ≥ 2.

Again the interesting algorithmic question is to reason about the
asymptotic infinite behaviour of TG.

2.4 Motivating Classical Examples

In this section we present two classical examples of randomized
algorithms where the randomized recurrence relation belongs to the
bivariate recurrence relations defined in Section 2.3.
Example 6 (COUPON-COLLECTOR). Consider the COUPON-
COLLECTOR problem [34, Chapter 3] with n different types of
coupons (n ∈ N). The randomized process proceeds in rounds:
at each round, a coupon is collected uniformly at random from the
coupon types (i.e., each coupon type is collected with probability
1
n

); and the rounds continue until all the n types of coupons are
collected.

We model the rounds as a recurrence relation with two variables
n,m, where n represents the total number of coupon types and m
represents the remaining number of uncollected coupon types. The
recurrence relation is as follows:{

T(n,m) = n · 1
m

+ T(n,m− 1)
T(n, 1) = n · 1 (10)

where T(n,m) is the expected number of rounds, n
m

represents the
expected number of rounds to collect a new (i.e., not-yet-collected)
coupon type when there are still m type of coupons to be collected,
and n (for T(n, 1)) represents the expected number of rounds to
collect a new coupon type when there is only one new coupon type
to be collected. We note that the worst-case complexity for this
process is∞.
Example 7 (CHANNEL-CONFLICT RESOLUTION). We consider
two network scenarios in which n clients are trying to get access
to a network channel. This problem is also called the RESOURCE-
CONTENTION RESOLUTION [30, Chapter 13]. In this problem, if
more than one client tries to access the channel, then no client can
access it, and if exactly one client requests access to the channel,
then the request is granted. While centralized deterministic algo-
rithms exist (such as Round-Robin) for the problem, to be imple-
mented in a distributed or concurrent setting, randomized algo-
rithms are necessary.

Distributed setting. In the distributed setting, the clients do not
share any information. In this scenario, in each round, every client
requests an access to the channel with probability 1

n
. We are in-

terested in the expected number of rounds until every client gets
at least one access to the channel. At each round, let m be the
number of clients who have not got any access. Then the prob-
ability that a new client (from the m clients) gets the access is
m · 1

n
·(1− 1

n
)n−1. Thus, the expected rounds that a new client gets

the access is n
m
· 1

(1− 1
n

)n−1 . Since the sequence
{

(1− 1
n

)n−1}
n∈N

converges decreasingly to 1
e

when n → ∞, this expected time is
no greater than e · n

m
. Then for this scenario, we obtain an over-

approximating recurrence relation{
T(n,m) = n · e

m
+ T(n,m− 1)

T(n, 1) = n · 1 (11)

for the expected rounds until which every client gets at least one
access to the channel. Note that in this setting no client has any
information about any other client.

Concurrent setting. In the concurrent setting, the clients share one
variable, which is the number of clients which has not yet been
granted access. Also in this scenario, once a client gets an access
the client does not request for access again. Moreover, the shared
variable represents the number of clients m that have not yet got
access. In this case, in reach round a client that has not access
to the channel yet, requests access to the channel with probability
1
m

. Then the probability that a new client gets the access becomes
m · 1

m
· (1 − 1

m
)m−1. It follows that the expected time that a

new client gets the access becomes 1
(1− 1

m
)m−1 which is smaller

than e. Then for this scenario, we obtain an over-approximating
recurrence relation{

T(n,m) = 1 · e+ T(n,m− 1)
T(n, 1) = 1 · 1 . (12)

We also note that the worst-case complexity for both is∞.

2.5 From Programs to Recurrence Relations

The derivation of recurrence relations (as illustrated in our exam-
ples) for randomized recursive programs follows few simple main
patterns. We describe these patterns below.

1. Randomized index patterns: A randomized index selection fol-
lowed by a pivoting procedure w.r.t some linear order; and then
followed by a sub-array/subset selection w.r.t the linear order
and the element at the selected index (e.g., Example 2, Exam-
ple 4); and more generally, also some input number independent
of the array/set (e.g., Example 1, Example 3).

2. Direct analysis and subproblems. Direct analysis and solution
of subcases (e.g., Example 5, where the subcases are other
recurrence relations).

3. Simple probabilistic bounds. Simple derivations of probabilities
and bounds on probabilities (e.g., Example 6, Example 7).

Since these patterns above are typical in randomized algorithms, by
applying the patterns above, for a wide class of randomized recur-
sive programs a pattern-based derivation of the recurrence relation
can be easily achieved. The problem of deriving recurrence rela-
tions (such as for deterministic programs) directly from programs
has already been considered in several works ([1–3, 15]). Hence,
the crucial step that require automation is the analysis of the ran-
domized recurrence relations. We will consider analyzing random-
ized recurrence relations algorithmically in our work.

6 2016/7/13

3. Average-Case Analysis

In this work, we focus on synthesizing logarithmic, linear, and
almost-linear asymptotic bounds for recurrence relations. Our goal
is to decide and synthesize asymptotic bounds in the simple form
as follows:

d · f + g, f ∈ {ln n, n, n · ln n}.
Informally, f is the major term for time complexity, d is the coef-
ficient of f to be synthesized, and g is the time complexity for the
base case specified in (1) or (9). In details, we study the following
algorithmic problems, and in the algorithmic problem, w.l.o.g, we
consider that every e in (1) or (9) involves at least one T(�)-term
and one non-T(�)-term.

Univariate Case: The univariate case problem is as follows:

• Input: a univariate recurrence relationG taking the form (1) and
an expression f ∈ {ln n, n, n · ln n}.

• Output: Decision problem. Output “yes” if TG ∈ O(Sub(f)),
and “fail” otherwise.

• Output: Quantitative problem. A positive real number d such
that

TG(n) ≤ d · Sub(f)(n) + c (13)
for all n ≥ 1, or “fail” otherwise, where c is from (1).

Bivariate Case: The bivariate case problem is an extension of the
univariate one, and hence the problem definitions are similar, and
we present them succinctly below.

• Input: a bivariate recurrence relation G taking the form (9) and
an expression f (similar to the univariate case).

• Output: Decision problem. Output “yes” if TG ∈ O(Sub(f)),
and “fail” otherwise;

• Output: Quantitative problem. A positive real number d such
that

TG(n,m) ≤ d · Sub(f)(n,m) + c · Sub(h)(n)
for all n,m ≥ 1, or “fail” otherwise, where c, h are from (9).
Note that in the expression above the term b does not appear as
it can be captured with f itself.

Recall that in the above algorithmic problems obtaining the finite
behaviour of the recurrence relations is easy (through evaluation of
the recurrences using dynamic programming), and the interesting
aspect is to decide the asymptotic infinite behaviour.

4. The Synthesis Algorithm

In this section, we present our algorithms to synthesize asymptotic
bounds for randomized recurrence relations.

Main ideas. The main idea is as follows. Consider as input a re-
currence relation taking the form (1) and an univariate recurrence
expression f ∈ {ln n, n, n · ln n}which specifies the desired asymp-
totic bound. We first define the standard notion of a guess-and-
check function in Section 4.1 which provides a sound approach for
asymptotic bound. Based on the guess-and-check function, our al-
gorithm executes the following steps for the univariate case.

1. First, the algorithm establishes a scalar variable d and then
constructs the template h to be n 7→ d · Sub(f)(n) + c for a
univariate guess-and-check function.

2. Second, the algorithm computes an over-approximation
OvAp(e, h) of Sub(e, h) through the techniques we develop in

Sect. 4.2 such that the over-approximation OvAp(e, h) will in-
volve terms from nk, ln` n (k, ` ∈ N0) only. Note that k, ` may
be greater than 1, so the above expressions are not necessarily
linear (they can be quadratic or cubic for example).

3. Finally, the algorithm synthesizes a value for d such that
OvAp(e, h)(n) ≤ h(n) for all n ≥ 2 through truncation of
[2,∞) ∩ N into a finite range and a limit behaviour analysis
(towards∞).

Our algorithm for bivariate cases is a reduction to the univariate
case.

4.1 Guess-and-Check Functions

We follow the standard guess-and-check technique to solve simple
recurrence relations. Below we first fix a univariate recurrence
relation G taking the form (1).
Definition 1 (Univariate Guess-and-Check Functions). Let G be
a univariate recurrence relation taking the form (1). A function
h : N → R is a guess-and-check function for G if there exists
a natural number N ∈ N such that

• (Base Condition) TG(n) ≤ h(n) for all 1 ≤ n ≤ N , and
• (Inductive Argument) Sub(e, h)(n) ≤ h(n) for all n > N .

By an easy induction on n (starting from the N specified in Defini-
tion 1) we obtain the following result.

Theorem 1 (Guess-and-Check, Univariate Case). If a function h :
N → R is a guess-and-check function for a univariate recurrence
relation G taking the form (1), then TG(n) ≤ h(n) for all n ∈ N.

We do not present explicitly present the definition for guess-and-
check functions in the bivariate case, since we will present a re-
duction of the analysis of separable bivariate recurrence relations
to that of the univariate ones (cf. Section 4.4).

4.2 Approximations for Recurrence Expressions

In this part, we develop tight approximations for logarithmic terms.
In principle, we use Taylor’s Theorem to approximate logarithmic
terms such as ln (n− 1), ln bn2 c, and integral to approximate sum-
mations of logarithmic terms. All the results in this section are tech-
nical and depends on basic calculus (the detailed proofs are in the
Appendix A).

We have the following result using integral-by-part technique and
Newton-Leibniz Formula.
Lemma 1. For all a, b ∈ (0,∞) such that a < b, the following
assertions hold:

(1)
∫ b

a

1
x

dx = ln x
∣∣∣b
a

;

(2)
∫ b

a

ln xdx = (x · ln x− x)
∣∣∣b
a

;

(3)
∫ b

a

x · ln xdx =
(1

2 · x
2 · ln x− 1

4 · x
2
) ∣∣∣b

a
.

In the following lemma we provide a tight approximation for
floored expressions, the proof of which is a simple case distinction
between even and odd cases.
Lemma 2. For all natural numbers n, we have

n− 1
2 ≤

⌊
n

2

⌋
≤ n

2 ≤
⌈
n

2

⌉
≤ n+ 1

2 .

7 2016/7/13

The following lemma handles over-approximation of simple sum-
mations.
Lemma 3. For any natural number n ≥ 2 and real number c,∑n−1

j=1 c

n
≤ c and

(∑n−1
j=dn2 e

c+
∑n−1

j=bn2 c
c
)

n
≤ c .

Based on Lemma 2 and Taylor’s Theorem, we have the following
two propositions.
Proposition 1. For any natural number n ≥ 2, we have:

(1) lnn− ln 2− 1
n− 1 ≤ ln

⌊
n

2

⌋
≤ lnn− ln 2 ;

(2) lnn− ln 2 ≤ ln
⌈
n

2

⌉
≤ lnn− ln 2 + 1

n
.

Proposition 2. For any natural number n ≥ 2, we have:

lnn− 1
n− 1 ≤ ln (n− 1) ≤ lnn− 1

n
.

By investigating a thorough interaction between Taylor’s Theorem
and integral, we establish the following approximations for sum-
mation of logarithmic or reciprocal terms.
Proposition 3. For any natural number n ≥ 2, we have:

(1)
∫ n

1

1
x

dx−
n−1∑
j=1

1
j
∈
[
−0.7552,−1

6

]
(14)

(2)
∫ n

1
ln xdx−

(
n−1∑
j=1

ln j

)
− 1

2 ·
∫ n

1

1
x

dx ∈
[
− 1

12 , 0.2701
]

(15)

(3)
∫ n

1
x · ln xdx−

(
n−1∑
j=1

j · ln j

)
− 1

2 ·
∫ n

1
ln xdx+

1
12 ·

∫ n

1

1
x

dx− n− 1
2 ∈

[
−19

72 , 0.1575
]
. (16)

From Proposition 3 and Lemma 1, we establish a tight approxima-
tion (with at most constant deviation) for summation of logarithmic
or reciprocal terms.

Notations: Γ(·). In the sequel, for any natural number n ≥ 2, we
use the following notation:

Γ 1
n

(n) :=
∫ n

1

1
x

dx = lnn ;

Γln n(n) :=
∫ n

1
ln xdx− 1

2 ·
∫ n

1

1
x

dx

= n · lnn− n− lnn
2 + 1 ;

Γn ln n(n) :=
∫ n

1

[
x · ln x− ln x

2 + 1
12 ·

1
x

]
dx− n− 1

2

= n2 · lnn
2 − n2

4 −
n · lnn

2 + lnn
12 + 1

4 .

Example 8. Consider the summation
n−1∑

j=dn
2 e

ln j +
n−1∑

j=bn
2 c

ln j (n ≥ 4).

By Proposition 3, we can over-approximate it as

2·
(

Γln n (n) + 1
12

)
−
(

Γln n

(⌈
n

2

⌉)
+ Γln n

(⌊
n

2

⌋)
− 0.5402

)
which is equal to

2 · n · lnn− 2 · n− lnn−
⌈
n

2

⌉
· ln
⌈
n

2

⌉
−
⌊
n

2

⌋
· ln
⌊
n

2

⌋
+
⌈
n

2

⌉
+
⌊
n

2

⌋
+

ln
⌊
n
2

⌋
2 +

ln
⌈
n
2

⌉
2 + 1

6 + 0.5402.

Then by Lemma 2 and Proposition 1, we can further obtain the
following over-approximation

2 · n · lnn− 2 · n− lnn+ 0.7069

− n

2 · (lnn− ln 2)− n− 1
2 ·

(
lnn− ln 2− 1

n− 1

)
+ n+ 1

2 + n

2 + lnn− ln 2
2 +

lnn− ln 2 + 1
n

2
which is roughly

n · lnn− (1− ln 2) · n+ 1
2 · lnn+ 0.6672 + 1

2 · n.

Remark 1. We remark that although we do approximation for
terms appearing in our recurrence relations only, our techniques
are more general and can be applied to more general terms (e.g., a
summation of logarithmic terms from bn3 c to dn2 e).

4.3 Algorithm for Univariate Recurrence Relations

In this section, we present our algorithm to synthesize a guess-
and-check function in form (13) for univariate recurrence relations.
Due to space restrictions some technical details are relegated to
Appendix B.

We present our algorithm in two steps. First, we present the de-
cision version, and then we present the quantitative version that
synthesizes the associated constant. The two key aspects are over-
approximation and use of pseudo-polynomials, and we start with
over-approximation.
Definition 2 (Over-approximation). Let f ∈ {ln n, n, n·ln n}. Con-
sider a univariate recurrence expression g, constants d and c, and
the function h = d · Sub(f) + c. We define the over-approximation
function, denoted OvAp(g, h), recursively as follows.

• Base Step A. If g is one of the following:

c′, n, ln n, n · ln n,
1
n

then OvAp(g, h) := Sub(g).

• Base Step B. If g is a single term which involves T, then we de-
fine OvAp(g, h) from over-approximations given in Lemma 2,
Lemma 3 and Proposition 1– 3. In details, OvAp(g, h) is ob-
tained from Sub(g, h) by first over-approximating any sum-
mation through Proposition 3 and Lemma 1 (i.e., through
those Γ(�) functions defined below Proposition 3), then over-
approximating any

ln (n− 1),
⌊
n

2

⌋
,
⌈
n

2

⌉
, ln
⌊
n

2

⌋
, ln
⌈
n

2

⌉
by Proposition 1 and Proposition 2. The details of the important
over-approximations are illustrated explicitly in Table 1.

• Recursive Step. We have two cases: (a) If g is g1 + g2, then
OvAp(g, h) is OvAp(g1, h) + OvAp(g2, h). (b) If g is c′ · g′,
then OvAp(g, h) is c′ · OvAp(g′, h).

8 2016/7/13

f, T-term Over-approximation
ln n, e1 ln n− 1

n
ln n, e2 ln n− ln 2
ln n, e3 ln n− ln 2 + 1

n

ln n, e4 ln n− 1− ln n
2·n + 13

12 ·
1
n

ln n, e5 ln n− (1− ln 2) + ln n
2·n + 0.6672

n
+ 1

2·n2

f, T-term Over-approximation
n, e1 n− 1
n, e2

n
2

n, e3
n+1

2
n, e4

n−1
2

n, e5
3
4 · n−

1
4·n

f, T-term Over-approximation
n · ln n, e1 n · ln n− ln n− 1 + 1

n

n · ln n, e2
1
2 · n · ln n− ln 2

2 · n
n · ln n, e3

n·ln n
2 − ln 2

2 · n + 1−ln 2
2 + ln n

2 + 1
2·n

n · ln n, e4
n·ln n

2 − n
4 −

ln n
2 + ln n

12·n + 0.5139
n

n · ln n, e5
3
4 · n · ln n− 0.2017 · n− 1

2 · ln n
−0.2698 + ln n

8·n + 1.6369
n

+ 1
2·n·(n−1) + 1

4·n2

Table 1. Illustration for Definition 2, where
• e1 := T(n− 1);
• e2 := T

(⌊
n
2

⌋)
;

• e3 := T
(⌈

n
2

⌉)
;

• e4 := 1
n
·
∑n−1

j=1 T(j); and

• e5 := 1
n
·
(∑n−1

j=dn2 e
T(j) +

∑n−1
j=bn2 c

T(j)
)

.

Example 9. Consider the recurrence relation for Sherwood’s
RANDOMIZED-SEARCH (cf. (3)). Choose f = ln n and then the
template h becomes n 7→ d · lnn + 1. From Example 8, we have
that the over-approximation for

6 + 1
n
·

 n−1∑
j=dn2 e

T(j) +
n−1∑

j=bn2 c
T(j)

when n ≥ 4 is

7 + d ·
[
lnn− (1− ln 2) + lnn

2 · n + 0.6672
n

+ 1
2 · n2

]
where the second summand comes from an over-approximation of

1
n
·

 n−1∑
j=dn2 e

d · ln j +
n−1∑

j=bn2 c
d · ln j

 .

Pseudo-polynomials. Our next step is to define the notion of (uni-
variate) pseudo-polynomials which extends normal polynomials
with logarithm. This notion will be crucial to handle inductive argu-
ments in the definition of (univariate) guess-and-check functions.

Definition 3 (Univariate Pseudo-polynomials). A univariate
pseudo-polynomial (w.r.t logarithm) is a function p : N → R such
that there exist non-negative integers k, ` ∈ N0 and real numbers
ai, bi’s such that for all n ∈ N,

p(n) =
k∑
i=0

ai · ni · lnn+
`∑
i=0

bi · ni. (17)

W.l.o.g, we consider that in the form (17), it holds that (i) a2
k+b2

` 6=
0, (ii) either ak 6= 0 or k = 0, and (iii) similarly either b` 6= 0 or
` = 0.

Degree of pseudo-polynomials. Given a univariate pseudo-
polynomial p in the form (17), we define the degree deg(p) of p
by:

deg(p) =
{
k + 1

2 if k ≥ ` and ak 6= 0
` otherwise

,

Intuitively, if the term with highest degree involves logarithm, then
we increase the degree by 1/2, else it is the power of the highest
degree term.

Leading term p. The leading term p of a pseudo-polynomial p in
the form (17) is a function p : N→ R defined as follows:

p(n) =
{
ak · nk · lnn if k ≥ ` and ak 6= 0
b` · n` otherwise

for all n ∈ N. Furthermore, we define Cp to be the (only) coeffi-
cient of p.

With the notion of pseudo-polynomials, the inductive argument
of guess-and-check functions can be soundly transformed into an
inequality between pseudo-polynomials.
Lemma 4. Let f ∈ {ln n, n, n · ln n} and c be a constant.
For all univariate recurrence expressions g, there exists pseudo-
polynomials p and q such that coefficients (i.e., ai, bi’s in (17)) of q
are all non-negative, Cq > 0 and the following assertion holds: for
all d > 0 and for all n ≥ 2, with h = d ·Sub(f) + c, the inequality

OvAp(g, h)(n) ≤ h(n) (18)

is equivalent to
d · p(n) ≥ q(n). (19)

Remark 2. In the above lemma, though we only refer to existence
of pseudo-polynomials p and q, they can actually be computed in
linear time, because p and q are obtained by simple rearrangements
of terms from OvAp(g, h) and h, respectively.
Example 10. Let us continue with Sherwood’s RANDOMIZED-
SEARCH. Again choose h = d · ln n + 1. From Example 9, we
obtain that for every n ≥ 4, the inequality

d · lnn+ 1 ≥

7 + d ·
[
lnn− (1− ln 2) + lnn

2 · n + 0.6672
n

+ 1
2 · n2

]
resulting from over-approximation and the inductive argument of
guess-and-check functions is equivalent to

d ·
[
(1− ln 2) · n2 − n · lnn

2 − 0.6672 · n− 1
2

]
≥ 6 · n2.

As is indicated in Definition 1, our aim is to check whether (18)
holds for sufficiently large n. The following proposition provides a
sufficient and necessary condition for checking whether (19) holds
for sufficiently large n.
Proposition 4. Let p, q be pseudo-polynomials such that Cq > 0
and all coefficients of q are non-negative. Then there exists a real
number d > 0 such that d · p(n) ≥ q(n) for sufficiently large n iff
deg(p) ≥ deg(q) and Cp > 0.

Note that by Definition 1 and the special form (13) for univariate
guess-and-check functions, a function in form (13) needs only to
satisfy the inductive argument in order to be a univariate guess-
and-check function: once a value for d is synthesized for a suffi-
ciently large N , one can scale the value so that the base condition

9 2016/7/13

is also satisfied. Thus from the sufficiency of Proposition 4, our
decision algorithm that checks the existence of some guess-and-
check function in form (13) is presented below. Below we fix an
input univariate recurrence relation G taking the form (1) and an
input expression f ∈ {ln n, n, n · ln n}.

Algorithm UniDec: Our algorithm, namely UniDec, for the deci-
sion problem of the univariate case, has the following steps.

1. Template. The algorithm establishes a scalar variable d and
sets up the template d · f + c for a univariate guess-and-check
function.

2. Over-approximation. Let h denote d ·Sub(f)+c. The algorithm
calculates the over-approximation function OvAp(e, h), where
e is from (1).

3. Transformation. The algorithm transforms the inequality

OvAp(e, h)(n) ≤ h(n) (n ∈ N)
for inductive argument of guess-and-check functions through
Lemma 4 equivalently into

d · p(n) ≥ q(n) (n ∈ N),
where p, q are pseudo-polynomials obtained in linear-time
through rearrangement of terms from OvAp(e, h) and h (see
Remark 2).

4. Coefficient Checking. The algorithm examines cases on Cp.
If Cp > 0 and deg(p) ≥ deg(q), then algorithm outputs
“yes” meaning that “there exists a univariate guess-and-check
function”; otherwise, the algorithm outputs “fail”.

Theorem 2 (Soundness for UniDec). If UniDec outputs “yes”,
then there exists a univariate guess-and-check function in form (13)
for the inputs G and f. The algorithm is a linear-time algorithm.
Example 11. Consider the recurrence relation for Sherwood’s
RANDOMIZED-SEARCH (cf. (3)) and f = ln n as the input. From
Example 9 and Example 10, the algorithm directly asserts that
the asymptotic behaviour of Sherwood’s RANDOMIZED-SEARCH
is O(lnn).
Remark 3. From the tightness of our over-approximation (up
to only constant deviation) and the sufficiency and necessity of
Proposition 4, the UniDec algorithm can handle a large class of
univariate recurrence relations. Moreover, the algorithm is quite
simple and efficient (linear-time).

Analysis of examples of Section 2.2. Our algorithm can decide the
following bounds for the examples of Section 2.2.

1. For Example 1 we obtain an O(logn) bound, whereas the
worst-case bound is Θ(n).

2. For Example 2 we obtain an O(n · logn) bound, whereas the
worst-case bound is Θ(n2).

3. For Example 3 we obtain an O(n) bound, whereas the worst-
case bound is Θ(n2).

4. For Example 4 we obtain anO(n·logn) (resp.O(n)) bound for
Euclidean metric (resp. for L1 metric), whereas the worst-case
bound is Θ(n2 · logn) (resp. Θ(n2)).

5. For Example 5 we obtain an O(n · logn) bound, whereas the
worst-case bound is Θ(n2).

In all cases above, our algorithm decides the asymptotically opti-
mal bounds for the average-case analysis, whereas the worst-case
analysis grossly over-estimate the average-case bounds.

Quantitative bounds. Above we have already established that
our linear-time decision algorithm can establish the asymptotically
optimal bounds for the recurrence relations of several classical
algorithms. We now take the next step to obtain even explicit
quantitative bounds, i.e., to synthesize the associated constants
with the asymptotic complexity. To tackle these situations, we
derive a following proposition which gives explicitly a threshold
for “sufficiently large numbers”. We first explicitly constructs a
threshold for “sufficiently large numbers”.

Definition 4 (Threshold Nε,p,q for Sufficiently Large Numbers).
Let p, q be two univariate pseudo-polynomials

p(n) =
k∑
i=0

ai · ni · lnn+
`∑
i=0

bi · ni ,

q(n) =
k′∑
i=0

a′i · ni · lnn+
`′∑
i=0

b′i · ni

such that deg(p) ≥ deg(q) and Cp, Cq > 0. Then given any
ε ∈ (0, 1), the number Nε,p,q is defined as the smallest natural
number such that both x, y (defined below) is smaller than ε:

x = −1 +
k∑
i=0

|ai| ·
N i · lnN
p(N) +

`∑
i=0

|bi| ·
N i

p(N)

y = −1deg(p)=deg(q) ·
Cq
Cp

+
k′∑
i=0

|a′i| ·
N i · lnN
p(N) +

`′∑
i=0

|b′i| ·
N i

p(N)

Then we show that Nε,p,q is indeed what we need.

Proposition 5. Consider two univariate pseudo-polynomials p, q
such that deg(p) ≥ deg(q), all coefficients of q are non-negative
and Cp, Cq > 0. Then given any ε ∈ (0, 1),

q(n)
p(n) ≤

1deg(p)=deg(q) ·
Cq

Cp
+ ε

1− ε
for all n ≥ Nε,p,q (for Nε,p,q of Definition 4).

With Proposition 5, we describe our algorithm UniSynth which out-
puts explicitly a value for d (in (13)) if UniDec outputs yes. Below
we fix an input univariate recurrence relation G taking the form (1)
and an input expression f ∈ {ln n, n, n · ln n}. Moreover, the algo-
rithm takes ε > 0 as another input, which is basically a parameter
to choose the threshold for finite behaviour. For example, smaller ε
leads to large threshold, and vice-versa. Thus the algorithm we pro-
vide is a flexible one as the threshold can be varied with the choice
of ε.

Algorithm UniSynth: Our synthesis algorithm for the quantitative
problem has the following steps:

1. Calling UniDec. The algorithm calls UniDec, and if it returns
“fail”, then return “fail”, otherwise execute the following steps.
Obtain the following inequality

d · p(n) ≥ q(n) (n ∈ N)

from the transformation step of UniDec.

2. Variable Solving. The algorithm calculates Nε,p,q for a given
ε ∈ (0, 1) (see Definition 4) and outputs the value of d as the
least number such that the following two conditions hold: (i) for
all 2 ≤ n < Nε,p,q

Eval(G)(n) ≤ d · Sub(f)(n) + c

10 2016/7/13

(recall Eval(G)(n) can be computed in linear time), and (ii) we
have

d ≥
1deg(p)=deg(q) ·

Cq

Cp
+ ε

1− ε .

Theorem 3 (Soundness for UniSynth). If the algorithm UniSynth
outputs a real number d, then d · Sub(f) + c is a univariate guess-
and-check function for G.
Remark 4. Note that even our quantitative algorithm requires
quite simple computational steps, i.e., it is based on comparisons,
and does not require any optimization (such as linear program-
ming) procedure.
Example 12. Consider the recurrence relation for Sherwood’s
RANDOMIZED-SEARCH (cf. (3)) and f = ln n as the input. Con-
sider that ε := 0.9. From Example 9 and Example 10, the algorithm
establishes the inequality

d ≥ 6
(1− ln 2)− lnn

2·n −
0.6672
n
− 1

2·n2

and finds that N0.9,p,q = 6. Then the algorithm finds d =
204.5335 through the followings:

• Eval(G)(2) = 7 ≤ d · ln 2 + 1;
• Eval(G)(3) = 11 ≤ d · ln 3 + 1;
• Eval(G)(4) = 15 ≤ d · ln 4 + 1;
• Eval(G)(5) = 17.8 ≤ d · ln 5 + 1;

• d ≥
6

1−ln 2 +0.9
1−0.9 .

Thus, by Theorem 1, the expected running time of Sherwood’s
Randomized-Search has an upper bound 204.5335 · lnn+1. Later
in Section 5, we show that one can obtain a much better d = 19.762
through our algorithms by choosing ε := 0.01, which is quite good
since the optimal value lies somewhere in [15.129, 19.762] (cf. the
first item R.-SEAR. in Table 2).

4.4 Algorithm for Bivariate Recurrence Relations

In this part, we present our results for the separable bivariate re-
currence relations. The key idea is to use separability to reduce the
problem to univariate recurrence relations. There are two key steps
which we describe below.

Step 1. The first step is to reduce a separable bivariate recurrence
relation to a univariate one.
Definition 5 (From G to Uni(G)). Let G be a separable bivariate
recurrence relation taking the form (9). The univariate recurrence
relation Uni(G) from G is defined by eliminating any occurrence
of n and replacing any occurrence of h with 1.

Informally, Uni(G) is obtained from G by simply eliminating the
roles of h, n. The following example illustrates the situation for
COUPON-COLLECTOR example.
Example 13. Consider G to be the recurrence relation (10) for
COUPON-COLLECTOR example. Then Uni(G) is as follows:{

T(n) = 1
n

+ T(n− 1)
T(1) = 1 .

Step 2. The second step is to establish the relationship between TG
and TUni(G), which is handled by the following proposition, whose
proof is an easy induction on m.
Proposition 6. For any separable bivariate recurrence relation
G taking the form (9), the solution TG is equal to (n,m) 7→
Sub(h)(n) · TUni(G)(m).

Description of the Algorithm. With Proposition 6, the algorithm for
separable bivariate recurrence relations is straightforward: simply
compute Uni(G) for G and then call the algorithms for univariate
case presented in Section 4.3.

Analysis of examples in Section 2.4. Our algorithm can decide the
following bounds for the examples of Section 2.4.

1. For Example 6 we obtain an O(n · logm) bound, whereas the
worst-case bound is∞.

2. For Example 7 we obtain anO(n · logm) bound for distributed
setting and O(m) bound for concurrent setting, whereas the
worst-case bounds are both∞.

Note that for all our examples, m ≤ n, and thus we obtain O(n ·
logn) andO(n) upper bounds for average-case analysis, which are
the asymptotically optimal bounds. In all cases above, the worst-
case analysis is completely ineffective as the worst-case bounds are
infinite. Moreover, consider Example 7, where the optimal number
of rounds is n (i.e., one process every round, which centralized
Round-Robin schemes can achieve). The randomized algorithm,
with one shared variable, is a decentralized algorithm that achieves
O(n) expected number of rounds (i.e., the optimal asymptotic
average-case complexity).

5. Experimental Results

We consider the classical examples illustrated in Section 2.2 and
Section 2.4. In Table 2 for experimental results we consider the
following recurrence relations G:

1. R.-SEAR. corresponds to the recurrence relation (3) for Exam-
ple 1;

2. Q.-SORT corresponds to the recurrence relation (4) for Exam-
ple 2;

3. Q.-SELECT corresponds to the recurrence relation (5) for Ex-
ample 3;

4. DIAM. A (resp. DIAM. B) corresponds to the recurrence rela-
tion (6) (resp. the recurrence relation (7)) for Example 4;

5. SORT-SEL. corresponds to recurrence relation (8) for Exam-
ple 5, where we use the result from setting ε = 0.01 in Q.-
SELECT;

6. COUPON corresponds to the recurrence relation (10) for Exam-
ple 6;

7. RES. A (resp. RES. B) corresponds to the recurrence relation
(11) (resp. the recurrence relation (12)) for Example 7.

In the table, f specifies the input asymptotic bound, ε and Dec is the
input which specifies either we use algorithm UniDec or the syn-
thesis algorithm UniSynth with the given ε value, and d gives the
value synthesized w.r.t the given ε (X for yes). We describe d100 be-
low. Also we need approximation for constants such as e and ln 2,
and we use the interval [2.7182, 2.7183] for tight approximation of
e and [0.6931, 0.6932] for tight approximation of ln 2.

The value d100. For our synthesis algorithm we obtain the value d.
The optimal value of the associated constant with the asymptotic
bound, denoted d∗, is defined as follows. For z ≥ 2, let

dz := max
{
TG(n)− c
Sub(f)(n) | 2 ≤ n ≤ z

}
(c is from (1)). Then the sequence dz is increasing in z, and its
limit is the optimal constant, i.e., d∗ = limz→∞ dz . We consider
d100 as a lower bound on d∗ to compare against the value of d we
synthesize. In other words, d100 is the minimal value such that (13)
holds for 1 ≤ n ≤ 100, whereas for d∗ it must hold for all n, and

11 2016/7/13

Recur. Rel. f ε,Dec d d100

R.-SEAR. ln n

UniDec X

15.129
0.5 40.107
0.3 28.363
0.1 21.838
0.01 19.762

Q.-SORT n · ln n

UniDec X

3.172
0.5 9.001
0.3 6.143
0.1 4.556
0.01 4.051

Q.-SELECT n

UniDec X

7.909
0.5 17.001
0.3 11.851
0.1 9.001
0.01 8.091

DIAM. A n · ln n

UniDec X

4.525
0.5 9.001
0.3 6.143
0.1 4.556
0.01 4.525

DIAM. B n

UniDec X

5.918
0.5 13.001
0.3 9.001
0.1 6.778
0.01 6.071

SORT-SEL. n · ln n

UniDec X

16.000
0.5 50.052
0.3 24.852
0.1 17.313
0.01 16.000

COUPON n · lnm

UniDec X

0.910
0.5 3.001
0.3 1.858
0.1 1.223
0.01 1.021

RES. A n · lnm

UniDec X

2.472
0.5 6.437
0.3 4.312
0.1 3.132
0.01 2.756

RES. B m

UniDec X

2.691
0.5 6.437
0.3 4.312
0.1 3.132
0.01 2.756

Table 2. Experimental results where all running times (averaged
over 5 runs) are less than 0.02 seconds, between 0.01 and 0.02 in
all cases.

hence d∗ ≥ d100. Our experimental results show that the d values
we synthesize for ε = 0.01 is quite close to the optimal value.

We performed our experiments on Intel(R) Core(TM) i7-4510U
CPU, 2.00GHz, 8GB RAM. All numbers in Table 2 are over-
approximated up to 10−3, and the running time of all experiments
are less than 0.02 seconds. From Table 2, we can see that optimal d
are effectively over-approximated. For example, for QUICK-SORT
(Eq. (4)) (i.e, Q.-SORT in the table), our algorithm detects d =
4.051 and the optimal one lies somewhere in [3.172, 4.051]. The
experimental results show that we obtain the results extremely
efficiently (less than 1/50-th of a second). For further experimental
result details see Table 3 in Appendix C.

6. Related Work

The problem of deriving worst-case bounds have received a lot of
attention. The following works consider various approaches for au-
tomated worst-case bounds, [20–22, 24–26, 28, 29] for amortized
analysis, and the SPEED project [16–18] for non-linear bounds us-
ing abstract interpretation. All these works focus on the worst-case
analysis, and do not consider average-case analysis.

Our main contribution is automated analysis of recurrence rela-
tions. Approaches for recurrence relations has also been consid-
ered in the literature, such as Grobauer [15] for generating recur-
rence relations from DML for the worst-case analysis, Flajolet et
al. [14] for allocation problems, and Flajolet et al. [13] for solv-
ing recurrence relations for randomization of combinatorial struc-
tures (such as trees) through generating functions. Moreover, the
COSTA project [1–3] transforms Java bytecode into recurrence re-
lations and solves them through ranking functions. Our approach
is quite different because we consider recurrence relations arising
from randomized algorithms and average-case analysis, whereas
previous approaches consider recurrence relations either for worst-
case bounds or for combinatorial structures.

For intraprocedural analysis ranking functions have been widely
studied [5, 6, 9, 11, 36–38, 40], which have then been extended
to non-recursive probabilistic programs as ranking supermartin-
gales [7, 8, 12]. Such approaches are related to almost-sure termi-
nation, and not deriving average-case analysis. Moreover, such ap-
proaches cannot produce bounds such as O(logn) or O(n logn).

Proof rules have also been considered for recursive (probabilistic)
programs in [19, 27, 35], but these methods cannot be automated
and require manual proofs.

7. Conclusion

Discussion. In this work we consider the problem of average-case
analysis of randomized recursive programs. First, we present a
sound and efficient (linear-time) method to derive logarithmic, lin-
ear, and almost-linear bounds for randomized recurrence relations
for univariate recurrence relations. Our approach is applicable to a
large class of classical textbook algorithms, such as QUICK-SORT,
QUICK-SELECT, RANDOMIZED-SEARCH etc. Note that like Mas-
ter Theorem, the univariate recurrence relations is already applica-
ble to a large class of programs. Our second contribution is that we
consider a subclass of bivariate recurrence relations, namely, sepa-
rable bivariate recurrence relations, and show that this subclass can
model recurrence relations of classical processes such as COUPON-
COLLECTOR, CHANNEL-CONFLICT RESOLUTION. For this sub-
class we again present an efficient algorithm by a simple reduction
to the univariate case, and thereby establish that the subclass is both
expressive and efficiently analyzable.

Future work. Our work gives rise to a number of interesting ques-
tions. First, an interesting theoretical direction of future work
would be to consider more general randomized recurrence relations
(such as with more than two variables, or interaction between the
variables). While the above problem is of theoretical interest, most
interesting examples are already captured in our class of random-
ized recurrence relations as mentioned above. Another interesting
practical direction of future work would be automated techniques
to derive recurrence relations from randomized recursive programs.

12 2016/7/13

References
[1] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost

analysis of java bytecode. ESOP 2007, Lecture Notes in Computer
Science, pages 157–172. Springer, 2007.

[2] E. Albert, P. Arenas, S. Genaim, and G. Puebla. Automatic inference
of upper bounds for recurrence relations in cost analysis. SAS 2008,
volume 5079 of Lecture Notes in Computer Science, pages 221–237.
Springer, 2008.

[3] E. Albert, P. Arenas, S. Genaim, M. Gómez-Zamalloa, G. Puebla,
D. V. Ramı́rez-Deantes, G. Román-Dı́ez, and D. Zanardini. Termi-
nation and cost analysis with COSTA and its user interfaces. Electr.
Notes Theor. Comput. Sci., 258(1):109–121, 2009.

[4] R. G. Bartle and D. R. Sherbert. Introduction to Real Analysis. John
Wiley & Sons, Inc., 4th edition, 2011.

[5] O. Bournez and F. Garnier. Proving positive almost-sure termination.
In RTA, pages 323–337, 2005.

[6] A. R. Bradley, Z. Manna, and H. B. Sipma. Linear ranking with
reachability. CAV 2005, volume 3576 of Lecture Notes in Computer
Science, pages 491–504. Springer, 2005.

[7] A. Chakarov and S. Sankaranarayanan. Probabilistic program anal-
ysis with martingales. CAV 2013, volume 8044 of Lecture Notes in
Computer Science, pages 511–526. Springer, 2013.

[8] K. Chatterjee, H. Fu, P. Novotný, and R. Hasheminezhad. Algorithmic
analysis of qualitative and quantitative termination problems for affine
probabilistic programs. POPl 2016, pages 327–342. ACM, 2016.

[9] M. Colón and H. Sipma. Synthesis of linear ranking functions. TACAS
2001, volume 2031 of Lecture Notes in Computer Science, pages 67–
81. Springer, 2001.

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. In-
troduction to Algorithms (3. ed.). MIT Press, 2009. ISBN 978-
0-262-03384-8. URL http://mitpress.mit.edu/books/
introduction-algorithms.

[11] P. Cousot. Proving program invariance and termination by paramet-
ric abstraction, Lagrangian relaxation and semidefinite programming.
VMCAI 2005, volume 3385 of Lecture Notes in Computer Science,
pages 1–24. Springer, 2005.

[12] L. M. F. Fioriti and H. Hermanns. Probabilistic termination: Sound-
ness, completeness, and compositionality. POPL 2015, pages 489–
501. ACM, 2015.

[13] P. Flajolet, B. Salvy, and P. Zimmermann. Automatic average-case
analysis of algorithm. Theor. Comput. Sci., 79(1):37–109, 1991.

[14] P. Flajolet, D. Gardy, and L. Thimonier. Birthday paradox, coupon
collectors, caching algorithms and self-organizing search. Discrete
Applied Mathematics, 39(3):207–229, 1992.

[15] B. Grobauer. Cost recurrences for DML programs. ICFP 2001, pages
253–264. ACM, 2001.

[16] B. S. Gulavani and S. Gulwani. A numerical abstract domain based on
expression abstraction and max operator with application in timing
analysis. CAV 2008, volume 5123 of Lecture Notes in Computer
Science, pages 370–384. Springer, 2008.

[17] S. Gulwani. SPEED: symbolic complexity bound analysis. CAV 2009,
volume 5643 of Lecture Notes in Computer Science, pages 51–62.
Springer, 2009.

[18] S. Gulwani, K. K. Mehra, and T. M. Chilimbi. SPEED: precise
and efficient static estimation of program computational complexity.
POPL 2009, pages 127–139. ACM, 2009.

[19] W. H. Hesselink. Proof rules for recursive procedures. Formal Asp.
Comput., 5(6):554–570, 1993.

[20] J. Hoffmann and M. Hofmann. Amortized resource analysis with poly-
morphic recursion and partial big-step operational semantics. APLAS
2010, volume 6461 of Lecture Notes in Computer Science, pages 172–
187. Springer, 2010.

[21] J. Hoffmann and M. Hofmann. Amortized resource analysis with
polynomial potential. ESOP 2010, volume 6012 of Lecture Notes in
Computer Science, pages 287–306. Springer, 2010.

[22] J. Hoffmann, K. Aehlig, and M. Hofmann. Multivariate amortized
resource analysis. ACM Trans. Program. Lang. Syst., 34(3):14, 2012.

[23] J. Hoffmann, K. Aehlig, and M. Hofmann. Resource aware ML. CAV
2012, volume 7358 of Lecture Notes in Computer Science, pages 781–
786. Springer, 2012.

[24] M. Hofmann and S. Jost. Static prediction of heap space usage for
first-order functional programs. POPL 2003, pages 185–197. ACM,
2003.

[25] M. Hofmann and S. Jost. Type-based amortised heap-space analysis.
ESOP 2006, volume 3924 of Lecture Notes in Computer Science,
pages 22–37. Springer, 2006.

[26] M. Hofmann and D. Rodriguez. Efficient type-checking for amortised
heap-space analysis. CSL 2009, volume 5771 of Lecture Notes in
Computer Science, pages 317–331. Springer, 2009.

[27] C. Jones. Probabilistic Non-Determinism. PhD thesis, The University
of Edinburgh, 1989.

[28] S. Jost, H. Loidl, K. Hammond, N. Scaife, and M. Hofmann. ”carbon
credits” for resource-bounded computations using amortised analysis.
FM 2009, volume 5850 of Lecture Notes in Computer Science, pages
354–369. Springer, 2009.

[29] S. Jost, K. Hammond, H. Loidl, and M. Hofmann. Static determination
of quantitative resource usage for higher-order programs. POPL 2010,
pages 223–236. ACM, 2010.

[30] J. Kleinberg and Éva Tardos. Algorithm Design. Addison-Wesley,
2004. ISBN 0-321-29535-8.

[31] D. E. Knuth. The Art of Computer Programming, Volume III: Sorting
and Searching. Addison-Wesley, 1973. ISBN 0-201-03803-X.

[32] D. E. Knuth. The Art of Computer Programming, Volume I: Funda-
mental Algorithms, 2nd Edition. Addison-Wesley, 1973.

[33] J. McConnell. Analysis of Algorithms C An Active Learning Approach.
Jones and Bartlett Publishers, Inc., 2008.

[34] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge
University Press, 1995. ISBN 0-521-47465-5.

[35] F. Olmedo, B. L. Kaminski, J.-P. Katoen, and C. Matheja. Reasoning
about recursive probabilistic programs. In LICS 2016, 2016, to appear.

[36] A. Podelski and A. Rybalchenko. A complete method for the synthesis
of linear ranking functions. VMCAI 2004, volume 2937 of Lecture
Notes in Computer Science, pages 239–251. Springer, 2004.

[37] L. Shen, M. Wu, Z. Yang, and Z. Zeng. Generating exact nonlin-
ear ranking functions by symbolic-numeric hybrid method. J. Sys-
tems Science & Complexity, 26(2):291–301, 2013. doi: 10.1007/
s11424-013-1004-1.

[38] K. Sohn and A. V. Gelder. Termination detection in logic programs
using argument sizes. PODS 1991, pages 216–226. ACM Press, 1991.

[39] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. B.
Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. P. Puschner, J. Staschulat, and P. Stenström. The worst-case
execution-time problem - overview of methods and survey of tools.
ACM Trans. Embedded Comput. Syst., 7(3), 2008.

[40] L. Yang, C. Zhou, N. Zhan, and B. Xia. Recent advances in program
verification through computer algebra. Frontiers of Computer Science
in China, 4(1):1–16, 2010.

13 2016/7/13

A. Proofs for Sect. 4.2

To prove lemmas in Sect. 4.2 we need the following well-known
theorem.
Theorem 4 (Taylor’s Theorem (with Lagrange’s Remainder) [4,
Chapter 6]). For any function f : [a, b]→ R (a, b ∈ R and a < b),
if f is (k+1)-order differentiable, then for all x ∈ [a, b], there exists
a ξ ∈ (a, x) such that

f(x) =

(
k∑
j=0

f (j)(a)
j! · (x− a)j

)
+ f (k+1)(ξ)

(k + 1)! · (x− a)k+1 .

We also need to recall that
∞∑
j=1

1
j2 = π2

6 and
∞∑
j=1

1
j3 = α

where α is the Apéry’s constant which lies in [1.2020, 1.2021].

Proposition 1. For any natural number n ≥ 2, we have

(1) lnn− ln 2− 1
n− 1 ≤ ln

⌊
n

2

⌋
≤ lnn− ln 2 ;

(2) lnn− ln 2 ≤ ln
⌈
n

2

⌉
≤ lnn− ln 2 + 1

n
.

Proof. Let n ≥ 2 be a natural number. The first argument comes
from the facts that

ln
⌊
n

2

⌋
≤ ln n2 = lnn− ln 2

and

ln
⌊
n

2

⌋
≥ ln n− 1

2

= ln n2 −
(

ln n2 − ln n− 1
2

)
= lnn− ln 2− 1

2 ·
1
ξn

(
ξn ∈

(
n− 1

2 ,
n

2

))
≥ lnn− ln 2− 1

n− 1
where we use the fact that⌊

n

2

⌋
≥ n− 1

2
and ξn is obtained from Taylor’s Theorem. The second argument
comes from the facts that

ln
⌈
n

2

⌉
≥ ln n2 = lnn− ln 2

and

ln
⌈
n

2

⌉
≤ ln n+ 1

2

= ln n2 +
(

ln n+ 1
2 − ln n2

)
= lnn− ln 2 +

(
ln n+ 1

2 − ln n2

)
= lnn− ln 2 + 1

2 ·
1
ξ′n

(
ξ′n ∈

(
n

2 ,
n+ 1

2

))
≤ lnn− ln 2 + 1

n

where the first inequality is due to the fact that⌈
n

2

⌉
≤ n+ 1

2
and ξ′n is obtained from Taylor’s Theorem.

Proposition 2. For any natural number n ≥ 2, we have

lnn− 1
n− 1 ≤ ln (n− 1) ≤ lnn− 1

n
.

Proof. The lemma follows directly from the fact that

lnn− ln (n− 1) = 1
ξ

for some ξ ∈ (n − 1, n), which can be obtained through Taylor’s
Theorem.

Proposition 3. For any natural number n ≥ 2, we have

(1)
∫ n

1

1
x

dx−
n−1∑
j=1

1
j
∈
[
−0.7552,−1

6

]
(14)

(2)
∫ n

1
ln xdx−

(
n−1∑
j=1

ln j

)
−1

2 ·
∫ n

1

1
x

dx ∈
[
− 1

12 , 0.2701
]

(15)

(3)
∫ n

1
x · ln xdx−

(
n−1∑
j=1

j · ln j

)
− 1

2 ·
∫ n

1
ln xdx+

1
12 ·

∫ n

1

1
x

dx− n− 1
2 ∈

[
−19

72 , 0.1575
]
. (16)

Proof. Let n be a natural number such that n ≥ 2. We first estimate
the difference ∫ n

1

1
x

dx−
n−1∑
j=1

1
j
.

To this end, we deduce the following equalities:∫ n

1

1
x

dx−
n−1∑
j=1

1
j

=
n−1∑
j=1

∫ j+1

j

[
1
x
− 1
j

]
dx

=
n−1∑
j=1

∫ 1

0

[
1

j + x
− 1
j

]
dx

=
n−1∑
j=1

∫ 1

0

[
− 1
j2 · x+ 1

ξ3
j,x

· x2
]

dx

=− 1
2 ·

(
n−1∑
j=1

1
j2

)
+
n−1∑
j=1

∫ 1

0

1
ξ3
j,x

· x2 dx ,

where ξj,x is a real number in (j, j+x) obtained from Taylor’s The-
orem with Lagrange’s Remainder. The first and fourth equalities
come from the linear property of Riemann Integral; the second one
follows from the variable substitution x′ = x− j; the third one fol-
lows from Taylor’s Theorem. Using the fact that ξj,x ∈ (j, j + 1),
one obtains that∫ n

1

1
x

dx−
n−1∑
j=1

1
j
≤ −1

2 ·

(
n−1∑
j=1

1
j2

)
+ 1

3 ·

(
n−1∑
j=1

1
j3

)
(20)

14 2016/7/13

and

∫ n

1

1
x

dx−
n−1∑
j=1

1
j
≥ −1

2 ·

(
n−1∑
j=1

1
j2

)
+ 1

3 ·

(
n∑
j=2

1
j3

)
. (21)

Then (14) follows from the facts that

∫ n

1

1
x

dx−
n−1∑
j=1

1
j
≤

n−1∑
j=1

(
− 1

2 · j2 + 1
3 · j3

)
≤ − 1

2 · 12 + 1
3 · 13

= −1
6

and

∫ n

1

1
x

dx−
n−1∑
j=1

1
j
≥

n−1∑
j=1

(
− 1

2 · j2 + 1
3 · j3

)
− 1

3 + 1
3 · n3

≥ −π
2

12 + α

3 −
1
3

≥ −0.7552

where in both situations we use the fact that 2 · j2 ≤ 3 · j3 for all
j ∈ N.

Then we consider the difference

∫ n

1
ln xdx−

n−1∑
j=1

ln j .

First, we derive that

∫ n

1
ln xdx−

n−1∑
j=1

ln j

=
n−1∑
j=1

∫ j+1

j

[ln x− ln j] dx

=
n−1∑
j=1

∫ 1

0
[ln (j + x)− ln j] dx

=
n−1∑
j=1

∫ 1

0

[
1
j
· x− 1

2 · ξ2
j,x

· x2
]

dx

=1
2 ·

(
n−1∑
j=1

1
j

)
−
n−1∑
j=1

∫ 1

0

1
2 · ξ2

j,x

· x2 dx

where ξj,x is a real number in (j, j + 1) obtained from Taylor’s
Theorem. Using the fact that ξj,x ∈ (j, j + 1), one can obtain that∫ n

1
ln xdx−

n−1∑
j=1

ln j (22)

≤1
2 ·

(
n−1∑
j=1

1
j

)
− 1

6 ·
n∑
j=2

1
j2

≤1
2 ·
∫ n

1

1
x

dx+ 1
4 ·

(
n−1∑
j=1

1
j2

)
− 1

6 ·

(
n∑
j=2

1
j3

)

− 1
6 ·

n∑
j=2

1
j2

=1
2 ·
∫ n

1

1
x

dx+
n−1∑
j=1

(
1

12 · j2 −
1

6 · j3

)
+ 1

3 −
1

6 · n3 −
1

6 · n2

where the second inequality follows from Inequality (21), and∫ n

1
ln xdx−

n−1∑
j=1

ln j (23)

≥1
2 ·

(
n−1∑
j=1

1
j

)
− 1

6 ·
n−1∑
j=1

1
j2

≥1
2 ·
∫ n

1

1
x

dx+ 1
12 ·

(
n−1∑
j=1

1
j2

)
− 1

6 ·

(
n−1∑
j=1

1
j3

)

=1
2 ·
∫ n

1

1
x

dx+
n−1∑
j=1

(
1

12 · j2 −
1

6 · j3

)
where the second inequality follows from Inequality (20). Then
from Inequality (22) and Inequality (23), one has that∫ n

1
ln xdx−

n−1∑
j=1

ln j

≤1
2 ·
∫ n

1

1
x

dx+
∞∑
j=1

(
1

12 · j2 −
1

6 · j3

)
+ 1

3

≤1
2 ·
∫ n

1

1
x

dx+ π2

72 −
α

6 + 1
3

≤1
2 ·
∫ n

1

1
x

dx+ 0.2701

and ∫ n

1
ln x dx−

n−1∑
j=1

ln j

≥1
2 ·
∫ n

1

1
x

dx+
(1

12 −
1
6

)
≥1

2 ·
∫ n

1

1
x

dx− 1
12

where in both situations we use the fact that 12 · j2 ≤ 6 · j3 for
all j ≥ 2. The inequalities above directly imply the inequalities in

15 2016/7/13

(15). Finally, we consider the difference

∫ n

1
x · ln x dx−

n−1∑
j=m

j · ln j .

Following similar approaches, we derive that for all natural num-
bers n ≥ 2,

∫ n

1
x · ln xdx−

n−1∑
j=1

j · ln j

=
n−1∑
j=1

∫ j+1

j

[x · ln x− j · ln j] dx

=
n−1∑
j=1

∫ 1

0
[(j + x) · ln (j + x)− j · ln j] dx

=
n−1∑
j=1

∫ 1

0

[
(ln j + 1) · x+ 1

2 · ξj,x
· x2
]

dx

=1
2 ·

(
n−1∑
j=1

ln j

)
+ n− 1

2 +
n−1∑
j=1

∫ 1

0

1
2 · ξj,x

· x2 dx

where ξj,x ∈ (j, j + 1). Thus, one obtains that

∫ n

1
x · ln xdx−

n−1∑
j=1

j · ln j ≤ (24)

1
2 ·

(
n−1∑
j=1

ln j

)
+ n− 1

2 + 1
6 ·

n−1∑
j=1

1
j

and

∫ n

1
x · ln xdx−

n−1∑
j=1

j · ln j ≥ (25)

1
2 ·

(
n−1∑
j=1

ln j

)
+ n− 1

2 + 1
6 ·

n−1∑
j=1

1
j
− 1

6 + 1
6 · n.

By plugging Inequalities in (21) and (23) into Inequality (24), one
obtains that∫ n

1
x · ln xdx−

n−1∑
j=1

j · ln j

≤1
2 ·

[∫ n

1
ln xdx− 1

2 ·
∫ n

1

1
x

dx−
n−1∑
j=1

(
1

12 · j2 −
1

6 · j3

)]
+ n− 1

2

+ 1
6 ·

[∫ n

1

1
x

dx+ 1
2 ·

(
n−1∑
j=1

1
j2

)
− 1

3 ·

(
n∑
j=2

1
j3

)]

≤1
2 ·
∫ n

1
ln x dx− 1

12 ·
∫ n

1

1
x

dx+ n− 1
2

+
n−1∑
j=1

(
1

24 · j2 + 1
36 · j3

)
+ 1

18 −
1

18 · n3

≤1
2 ·
∫ n

1
ln x dx− 1

12 ·
∫ n

1

1
x

dx+ n− 1
2 + π2

144 + α

36 + 1
18

≤1
2 ·
∫ n

1
ln x dx− 1

12 ·
∫ n

1

1
x

dx+ n− 1
2 + 0.1575

for all natural numbers n ≥ 2. Similarly, by plugging Inequalities
in (20) and (22) into Inequality (25), one obtains∫ n

1
x · ln xdx−

n−1∑
j=1

j · ln j

≥1
2 ·

[∫ n

1
ln xdx− 1

2 ·
∫ n

1

1
x

dx−
n−1∑
j=1

(
1

12 · j2 −
1

6 · j3

)
− 1

3

]
+ n− 1

2

+ 1
6 ·

[∫ n

1

1
x

dx+ 1
2 ·

(
n−1∑
j=1

1
j2

)
− 1

3 ·

(
n−1∑
j=1

1
j3

)]
− 1

6

≥1
2 ·
∫ n

1
ln xdx− 1

12 ·
∫ n

1

1
x

dx+ n− 1
2

+
n−1∑
j=1

(
1

24 · j2 + 1
36 · j3

)
− 1

3

≥1
2 ·
∫ n

1
ln xdx− 1

12 ·
∫ n

1

1
x

dx+ n− 1
2 + 1

24 + 1
36 −

1
3

=1
2 ·
∫ n

1
ln xdx− 1

12 ·
∫ n

1

1
x

dx+ n− 1
2 − 19

72

Then the inequalities in (16) are clarified.

B. Proofs for Sect. 4.3

Lemma 4. Let f ∈ {ln n, n, n·ln n} and c be a constant. For all uni-
variate recurrence expressions g, there exists pseudo-polynomials p
and q such that coefficients (i.e., ai, bi’s in (17)) of q are all non-
negative, Cq > 0 and the following assertion holds: for all d > 0
and for all n ≥ 2, with h = d · Sub(f) + c, the inequality

OvAp(g, h)(n) ≤ h(n) (18)

16 2016/7/13

is equivalent to

d · p(n) ≥ q(n) (19).

Proof. From Definition 2, n 7→ n · (n − 1) · OvAp(g, h)(n) is
a pseudo-polynomial. Simple rearrangement of terms of inequality
(18) gives the desired pseudo-polynomials. Moreover, the fact that
all coefficients in g (from (1)) are positive, is used to derive that all
coefficients of q are non-negative and Cq > 0.

Proposition 4. Let p, q be pseudo-polynomials such that Cq > 0
and all coefficients of q are non-negative. Then there exists a real
number d > 0 such that d · p(n) ≥ q(n) for sufficiently large n iff
deg(p) ≥ deg(q) and Cp > 0.

Proof. We present the two directions of the proof.

(“If ”:) Suppose that deg(p) ≥ deg(q) and Cp > 0. Then the result
follows directly from the facts that (i) q(n)

p(n) > 0 for sufficiently

large n and (ii) lim
n→∞

q(n)
p(n) exists and is non-negative.

(“Only-if ”:) Let d be a positive real number such that d · p(n) ≥
q(n) for sufficiently large n. Then Cp > 0, or otherwise d · p(n) is
either constantly zero or negative for sufficiently large n. Moreover,
deg(p) ≥ deg(q), since otherwise lim

n→∞

q(n)
p(n) =∞.

Proposition 5. Consider two univariate pseudo-polynomials p, q
such that deg(p) ≥ deg(q), all coefficients of q are non-negative
and Cp, Cq > 0. Then given any ε ∈ (0, 1),

q(n)
p(n) ≤

1deg(p)=deg(q) ·
Cq

Cp
+ ε

1− ε
for all n ≥ Nε,p,q (for Nε,p,q of Definition 4).

Proof. Let p, q be given in Definition 4. Fix an arbitrary ε ∈ (0, 1)
and let Nε,p,q be given in Definition 4. Then for all n ≥ Nε,p,q , (i)
both p(n), q(n) are positive and (ii)

q(n)
p(n) ≤

k′∑
i=1

a′i ·
N i · lnN
p(N) +

`′∑
i=1

b′i ·
N i

p(N)

≤ 1deg(p)=deg(q) ·
Cq
Cp

+ ε

and

p(n)
p(n) ≥ 1−

[
−1 +

k∑
i=1

|ai| ·
N i · lnN
p(N) +

`∑
i=1

|bi| ·
N i

p(N)

]
≥ 1− ε.

It follows that for all n ≥ Nε,p,q ,

q(n)
p(n) ≤

1deg(p)=deg(q) ·
Cq

Cp
+ ε

1− ε .

The desired result follows.

Theorem 2.[Soundness for UniDec] If UniDec outputs “yes”, then
there exists a univariate guess-and-check function in form (13) for
the inputs G and f. The algorithm is a linear-time algorithm.

Proof. From Definition 1 and the special form (13) for univariate
guess-and-check functions, a function in form (13) which satisfies
the inductive argument of Definition 1 can be modified to satisfy
also the base condition of Definition 1 by simply raising d to a
sufficiently large amount. Then the result follows from Theorem 1
and the sufficiency of Proposition 4.

Theorem 3.[Soundness for UniSynth] If the algorithm UniSynth
outputs a real number d, then d · Sub(f) + c is a univariate guess-
and-check function for G.

Proof. Directly from the construction of the algorithm, Theorem 1,
Proposition 4 and Proposition 5.

C. Detailed Experimental Results

The detailed experimental results are given in Table 3. We use
X to represent yes and × for fail. In addition to Table 2, we
include values forNε,p,q in Definition 4. For the separable bivariate
examples, recall that n does not change, and in these examples, the
reduction to the univariate case is the function of m.

17 2016/7/13

PROGRAM f UNIDEC
UNISYNTH(X)

ε Nε,p,q d d100

R.-SEAR. ln n X

0.5 13 40.107
15.1290.3 25 28.363

0.1 97 21.838
0.01 1398 19.762

Q.-SORT

ln n × - - - -
n ×

n ln n X

0.5 10 9.001
3.1720.3 21 6.143

0.1 91 4.556
0.01 1458 4.051

Q.-SELECT

ln n × - - - -

n X

0.5 33 17.001
7.9090.3 54 11.851

0.1 160 9.001
0.01 1600 8.091

DIAM. A

ln n × - - - -
n ×

n ln n X

0.5 3 9.001
4.5250.3 3 6.143

0.1 4 4.556
0.01 4 4.525

DIAM. B

ln n × - - - -

n X

0.5 9 13.001
5.9180.3 14 9.001

0.1 40 6.778
0.01 400 6.071

SORT-SEL.

ln n × - - - -
n ×

n ln n X

0.5 18 50.052
16.0000.3 29 24.852

0.1 87 17.313
0.01 866 16.000

COUPON n · lnm X

0.5 2 3.001
0.9100.3 2 1.858

0.1 2 1.223
0.01 2 1.021

RES. A n · lnm X

0.5 2 6.437
2.4720.3 2 4.312

0.1 2 3.132
0.01 2 2.756

RES. B

lnm × - - - -

m X

0.5 2 6.437
2.6910.3 2 4.312

0.1 2 3.132
0.01 2 2.756

Table 3. Detailed experimental results where all running times (averaged over 5 runs) are less than 0.02 seconds (between 0.01 and 0.02
seconds).

18 2016/7/13

