
Quantitative Interprocedural Analysis

Krishnendu Chatterjee and Andreas Pavlogiannis and Yaron Velner

Technical Report No. IST-2016-523-v1+1
Deposited at 31 Mar 2016 09:11
https://repository.ist.ac.at/523/1/main.pdf

IST Austria (Institute of Science and Technology Austria)
Am Campus 1
A-3400 Klosterneuburg, Austria

Copyright © 2012, by the author(s).
All rights reserved.
Permission to make digital or hard copies of all or part of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for pro�t or
commercial advantage and that copies bear this notice and the full citation on the �rst page.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior
speci�c permission.

Quantitative Interprocedural Analysis∗

Krishnendu Chatterjee1, Andreas Pavlogiannis†1 and Yaron Velner2

1IST Austria (Institute of Science and Technology Austria) Klosterneuburg, Austria
2Tel Aviv University, Israel

March 31, 2016

Abstract

We consider the quantitative analysis problem for interprocedural control-flow graphs (ICFGs). The
input consists of an ICFG, a positive weight function that assigns every transition a positive integer-
valued number, and a labeling of the transitions (events) as good, bad, and neutral events. The weight
function assigns to each transition a numerical value that represents a measure of how good or bad an
event is. The quantitative analysis problem asks whether there is a run of the ICFG where the ratio
of the sum of the numerical weights of good events versus the sum of weights of bad events in the
long-run is at least a given threshold (or equivalently, to compute the maximal ratio among all valid
paths in the ICFG). The quantitative analysis problem for ICFGs can be solved in polynomial time,
and we present an efficient and practical algorithm for the problem. We show that several problems
relevant for static program analysis, such as estimating the worst-case execution time of a program or
the average energy consumption of a mobile application, can be modeled in our framework. We have
implemented our algorithm as a tool in the Java Soot framework. We demonstrate the effectiveness of
our approach with three case studies. First, we show that our framework provides a sound approach (no
false positives) for the analysis of inefficiently-used containers. Second, we show that our approach can
also be used for static profiling of programs which reasons about methods that are frequently invoked.
Third, we show that the static profiling can be also lifted to collections of methods (e.g., libraries). Our
experimental results show that our tool scales to relatively large benchmarks, and discovers relevant and
useful information that can be used to optimize performance of the programs.

Keywords— Interprocedural analysis, Quantitative objectives, Mean-payoff and ratio objectives, Mem-
ory bloat, Static profiling.

1 Introduction

Static and interprocedural analysis. Static analysis techniques provide ways to obtain information about
programs without actually running them on specific inputs. Static analysis explores the program behavior
for all possible inputs and all possible executions. For non-trivial programs, it is impossible explore all the
possibilities, and hence static analysis uses approximations (abstract interpretations) to account for all the
possibilities [1]. Static analysis algorithms generally operate on the interprocedural control-flow graphs (for
brevity ICFGs). An ICFG consists of a collection of control-flow graphs (CFGs), one for each procedure
of the program. The CFG of each procedure has a unique entry node and a unique exit node, and other
nodes represent statements of the program and conditions (in other words, basic blocks of the program).

∗This work has been supported by the Austrian Science Foundation (FWF) under the NFN RiSE (S11405-07), FWF Grant
P23499-N23, ERC Start grant (279307: Graph Games), ERC grant 321174-VSSC, Israel Science Foundation grant 652/11, and
Microsoft faculty fellows award.

†pavlogiannis@ist.ac.at

1

In addition, there are call and return nodes for each procedure which represent invoking of procedures and
return from procedures. Call-transitions connect call nodes to entry nodes; and return-transitions connect
exit nodes to return nodes. Algorithmic analysis of ICFGs provides the mathematical framework for static
analysis of programs. Interprocedural analysis with objectives such as reachability, set-based information,
etc have been deeply studied in the literature [2, 3, 4, 5, 6, 7].

Quantitative objectives. A qualitative (or Boolean) objective assigns to every run of a program a Boolean
value (accept or reject). A quantitative objective assigns to every run of a program a real value that
represents a quality measure of the run. The analysis of programs with quantitative objectives is gaining
huge prominence due to embedded systems with requirements on resource consumption, promptness of
responses, performance analysis etc. Quantitative objectives have been proposed in several applications such
as for worst-case execution time (see [8] for survey), power consumption [9], prediction of cache behavior
for timing analysis [10], performance measures [11, 12, 13], to name a few. Another important feature of
quantitative objectives is that they are very well-suited for anytime algorithms [14] (where anytime algorithms
generate imprecise answers quickly, and proceed to construct progressively better approximate solutions with
refinements) (for a more elaborate discussion see [15]).

Mean-payoff and ratio objectives. One of the most well-studied and mathematically elegant quantitative
objectives is themean-payoff objective, where a rational-valued weight is associated with every transition and
the goal is to ensure that the long-run average of the weights along a run is at least a given threshold [16,
17, 18]. For example, consider a weight function that assigns to every transition the resource (such as
power) consumption, then the mean-payoff objective measures the average resource consumption along a
run. Along with ICFGs with mean-payoff objectives, we also consider ratio objectives. For ratio objectives,
the transitions (events) of the ICFGs are labelled as good, bad, or neutral events, and a positive weight
function assigns a positive integer-valued weight to every transition, and the weight function represents how
good or bad an event is. The quantitative analysis problem asks if there is a run of the program such
that the ratio of the sum of the weights of the good events versus the weights of the bad events in the
long-run is at least a given threshold. For example, consider a weight function that assigns weight 1 to each
transition, and a labeling of events as follows: whenever a request is made is a bad event, whenever a request
is pending is a good event, and whenever no request is pending is a neutral event. The ratio objective
assigns the long-run average time between requests and the corresponding grant per request for a run, and
measures timeliness of responses to requests. Finite-state systems (or intraprocedural finite-state programs)
with mean-payoff objectives have been studied in the literature in [16, 18, 19, 13] for performance modeling,
and more recently applied in synthesis of reactive systems with quality guarantee [11] and robustness [20],
reliability requirements and resource bounds of reactive systems [12, 21, 22].

Interprocedural quantitative analysis. Quantitative objectives such as mean-payoff and ratio objec-
tives provide the appropriate framework to express several important system properties such as resource
consumption and timeliness. While finite-state systems with mean-payoff objectives have been studied in
the literature, the static analysis of ICFGs with mean-payoff and ratio objectives has largely been ignored.
An interprocedural analysis is precise if it provides the meet-over-all-valid -paths solution (a path is valid
if it respects the fact that when a procedure finishes it returns to the site of the most recent call). In the
quantitative setting, the problem corresponds to finding the maximal value over all valid paths and to pro-
duce a witness (symbolic) path for that value. In this work, we consider precise interprocedural quantitative
analysis for ICFGs with mean-payoff and ratio objectives.

Our contributions. In this work we present a flexible and general modelling framework for quantitative
analysis and show how it can be used to reason about quantitative properties of programs and about potential
optimizations in the program. We present an efficient polynomial-time algorithm for precise interprocedural
quantitative analysis, which is implemented as a tool. We demonstrate the efficiency of the algorithm with
two case studies, and show that our approach scales to programs with thousands of methods.

1. (Theoretical modeling). We show that ICFGs with mean-payoff and ratio objectives provide a robust
framework that naturally captures a wide variety of static program analysis optimization and reasoning
problems.

2

(a) (Detecting container usage). An exceedingly important problem for performance analysis is
detection of runtime bloat that significantly degrades the performance and scalability of pro-
grams [23, 24]. A common source of bloat is inefficient use of containers [24]. We show that the
problem of detecting usage of containers can be modeled as ICFGs with ratio objectives. A good
use of a container corresponds to a good event and no use of the container is a bad event, and a
misuse is represented as a low ratio of good vs bad events. Hence the container usage problem is
naturally modeled as ratio analysis of ICFGs. While the problem of detecting container usage was
already considered in [24], our different approach has the following benefits (see Section 5.2 for a
comparison). First, our approach can handle recursion ([24] does not handle recursion). Second,
our approach is sound, and does not yield false positives. Third, the approach of [24] ignored
Delete operations and we are able to take into consideration both Add and Delete operations
(thus provide a more refined analysis). Moreover, our algorithmic approach for analysis of ICFGs
is polynomial, whereas the algorithmic approach of [24] in the worst case can be exponential.

(b) (Static profiling of programs). We use our framework to model a conceptually new way for static
profiling of programs for performance analysis. A line in the code (or a code segment) is referred as
hot if there exists a run of the program where the line of code is frequently executed. For example,
a function is referred as hot if there exists a run of the program where the function is frequently
invoked, i.e., the frequency of calls to the function among all function calls is at least a given
threshold. Similarly, a collection of functions is referred as hot if there exists a run of the program
where the collection is frequently invoked (note that a collection of methods might be frequently
invoked even if each individual method is not). Again this problem is naturally modeled as ratio
problem for ICFGs, and our approach statically detects methods that are more frequently invoked.
Optimization of frequently executed code would naturally lead to performance improvements and
reasoning about hot spots in the code can assist the complier to apply optimization such as
function inlining and loop unrolling (see Section 3.2 and Section 3.3 for more details).

(c) (Other applications). We show the generality of our framework by demonstrating that it provides
an appropriate framework for theoretical modeling of diverse applications such as interprocedural
worst-case execution time analysis, evaluating speedup in parallel computation, and interproce-
dural average energy consumption analysis.

2. (Algorithmic analysis). The quantitative analysis of ICFGs with mean-payoff objectives can be
achieved in polynomial time by a reduction to pushdown systems with mean-payoff objectives (which
can be solved in polynomial time [25]). However, the resulting algorithm in the worst case has time
complexity that is a polynomial of degree thirteen and space complexity that is a polynomial of degree
six (which is prohibitive in practice). We exploit the special theoretical properties of ICFGs in order
to improve the theoretical upper bound and get an algorithm that in the worst case runs in cubic time
and with quadratic space complexity. In addition, we exploit the properties of real-world programs
and introduce optimizations that give a practical algorithm that is much faster than the theoretical
upper bound when the relevant parameters (the total number of entry, exit, call, and returns nodes) are
small, which is typical in most applications. Finally we present a linear reduction of the quantitative
analysis problem with ratio objectives to mean-payoff objectives.

3. (Tool and experimental results). We have implemented our algorithm and developed a tool in the Java
Soot framework [26]. We show through two case studies that our approach scales to relatively large
programs from well-known benchmarks. The details of the case studies are as follows:
(a) (Detecting container usage). Our experimental results show that our tool scales to relatively

large benchmarks (DaCapo 2009 [27]), and discover relevant and useful information that can be
used to optimize performance of the programs. Our tool could analyze all containers in several
benchmarks (like muffin) whereas [24] could analyze them partially (in muffin only half of the
containers were analyzed in [24] — before the predefined time bound was exceeded). Our sound
approach allows us to avoid false reports (that were reported by [24]) and our simple mathematical
modelling even allows us to report misuses that were not reported by [24].

(b) (Static profiling of programs). We run an analysis to detect (i) hot methods and (ii) hot collec-

3

tions of methods for various thresholds. Our experimental results on the benchmarks report only
a small fraction of the functions as hot for high threshold values, and thus give useful informa-
tion about potential functions to be optimized for performance gain. In addition we perform a
dynamic profiling and mark the top 5% of the most frequently invoked functions as hot. Our
experiments show a significant correlation between the results of the static and dynamic analy-
sis. In addition, we show that the sensitivity and specificity of the static classification can be
controlled by considering different thresholds, where lower thresholds increase the sensitivity and
higher thresholds increase the specificity. We investigate the trade-off curve (ROC curve) and
demonstrate the prediction power of our approach.

Thus we show that several conceptually different problems related to program optimizations are natu-
rally modeled in our framework, and demonstrate that we present a flexible and generic framework for
quantitative analysis of programs. Moreover, our case studies show that our tool scales to benchmarks
with real-world programs.

A preliminary version of this work has appeared in [28]. The current version expands upon [28] by
including (i) full proofs of lemmas, (ii) a more detailed presentation with examples and illustrations, as well
as (iii) an additional application case (Section 3.3) and experimental results (Section 5.4).

2 Definitions

In this section we present formal definitions of interprocedural control-flow graphs, and the quantitative
analysis problems. We will use an example program, described in Figure 1 and Figure 2, to demonstrate
each definition.

Interprocedural control-flow graphs (ICFGs). A program P with m methods is modeled by an inter-
procedural control-flow graph (ICFG) A which consists of a tuple ⟨A1, . . . , Am⟩ of m modules, where each
module Ai = ⟨Ni,Eni,Ex i,Calls i,Retnsi, δi⟩ represents a method (or the control-flow graph of a method)
in the program. A module Ai contains the following components:

• A finite set of nodes Ni.
• An entry node En i, which represents the first node of the method.
• An exit node Ex i, which represents termination of the method.
• A finite set Calls i that denotes the set of calls of the method, and a finite set Retnsi that denotes the
set of returns.

• A transition relation δi defined as follows: A transition in Ai is either (i) between two nodes in the
same module (internal transitions) or between a return node and a node in the same module (i.e., u, v
such that u ∈ Ni ∪ Retnsi and v ∈ Ni ∪ Calls i); or (ii) between a call node of a module Ai and the
entry node of a module Aj (which models the invocation of method j from method i); or (iii) between
the exit node of module Ai and a return node of a module Aj (which models the case that method i
terminated and the run of the program continues in method j which invoked method i).

We denote by N =
⋃

1≤i≤m Ni and similarly, En =
⋃

1≤i≤m{Eni}; Ex =
⋃

1≤i≤m{Ex i}; Calls =
⋃

1≤i≤m Calls i; Retns =
⋃

1≤i≤m Retnsi; and δ =
⋃

1≤i≤m δi. In the sequel we use N (resp. Ni) to de-
note all nodes in A (resp. Ai), and refer to the nodes of N \ (Calls ∪ Retns ∪ En ∪ Ex) as internal nodes.

Quantitative ICFGs. A quantitative ICFG (QICFG for brevity) consists of an ICFG A and a weight
function w that assigns a rational-valued weight w(e) ∈ Q to every transition e, where Q is the set of all
rationals.

Example 1. Consider an example program shown in Figure 1 and Figure 2. In this example, (i) Modules:
A1 = main, A2 = foo; (ii) Nodes: N2 = {f:Entry, if(x>1), f:call foo, f:foo ret, x++, f:Exit}; (iii) Entry and
exit: En2 = f:Entry and Ex 2 = f:Exit; (iv) Calls and returns: Calls2 = {f:call foo} and Retns2 = {f:foo ret};
and (v) Transition: for example, (x++,f:Exit) ∈ δ2, (f:Exit,f:foo ret) ∈ δ2 and (f:Exit,m:foo ret) ∈ δ2.

Configurations and paths. A configuration consists of a sequence c = (r1, . . . , rj , u), where each ri is a
return node (i.e., ri ∈ Retns) and u ∈ N is a node in one of the modules. Intuitively, when the module

4

1 void main (){
2 whi le (x){
3 i f (y > 0)
4 f oo (x) ;
5 e l s e
6 z = 7 ;
7 }
8 z++;
9 r e turn ;

10 }

m:Entry while(x)

z++

if(y > 0)

m:Exit

m:foo ret m:call foo

z=7

Figure 1: main

1 i n t f oo (i n t x){
2 i f (x > 1)
3 f oo (x − 1) ;
4 x++;
5 r e turn x ;
6 }

f:Entry if(x>1) f:call foo

f:foo ret x++ f:Exit

Figure 2: foo

that u belongs to terminates, the program will continue in rj . A sequence of configurations is valid if it
does not violate the transition relation, and a path π is a valid sequence of configurations. We note that
a path can be equivalently represented by the first configuration and a sequence of transitions. For a path
π = ⟨c1, c2, . . . , cℓ⟩ we denote by (i) ni: the node of configuration ci (i.e., ci = (r1, . . . , rj , ni)), and (ii) αi:
the stack string of ci (i.e., αi = r1, . . . , rj). For a path π let π[1, i] denote the prefix of length i of π. A run
of the program is modeled by a path in A.

Example 2. Consider the program and the corresponding ICFG shown in Figure 1 and Figure 2. An
example of a run in the program modeled as a path in the ICFG is as follows: ⟨(ϵ, m:Entry), (ϵ, while(x)), (ϵ,
if (y > 0)), (ϵ, m:call foo), (m:foo ret, f:Entry), (m:foo ret, if (x > 1)), (m:foo ret, f:call foo), (m:foo ret, f:foo
ret, f:Entry), . . . ⟩, where ϵ denotes the empty stack.

Ratio analysis problem. In this work we consider the ratio analysis problem, where every transition
of a ICFG has a label from the set {good , bad , neutral}. Intuitively, desirable events are labelled as good ,
undesirable events are labelled as bad , and other events are labelled as neutral . The ratio analysis problem,
given a ICFG , a labeling of the events, and a threshold λ > 0, asks to determine whether there is a run
where the ratio of sum of weights of good events vs the sum of weights of the bad events that is greater
than the threshold λ. Formally, we consider a positive integer-weight function w, that assigns a positive
integer-valued weight to every transition, and for good and bad events the weight denotes how good or how
bad the respective event is. For a finite path π we denote by good(w(π)) (resp., bad(w(π))) the sum of
weights of the good (resp., bad) events in π. In particular, for the weight function w that assigns weight 1
to every transition, we have that good(w(π)) (resp. bad(w(π))) represents the number of good (resp. bad)

events. We denote Rat(w(π)) = good(w(π))
max{1,bad(w(π))} the ratio of the sum of weights of good and bad events in π

(note that in denominator we have max{1, bad(w(π))} to remove the pathological case of division by zero).
For an infinite path π we denote

LimRat(w(π))=

⎧

⎪

⎨

⎪

⎩

lim inf
i→∞

Rat(w(π[1, i])) if π has infinitely many

good or bad events;

0 otherwise;

5

informally this represents the ratio as the number of relevant (good/bad) events goes to infinity. Our analysis
focuses on paths with unbounded number of relevant events, and infinitely many events provide an elegant
abstraction for unboundedness. Hence, we investigate the following problem:

Given a ICFG with labeling of good, bad, and neutral events, a positive integer weight function
w, and a threshold λ ∈ Q such that λ > 0, determine whether there exists an infinite path π such
that LimRat(w(π)) > λ.

Remark 1. Our approach can be extended to reason about finite runs by a adding an auxiliary transition,
labeled as a neutral event, from the final state of the program to its initial state (also see Section 3.4).

Mean-payoff analysis problem. In the mean-payoff analysis problem we consider a QICFG with a
rational-valued weight function w. For a finite path π in a QICFG we denote by w(π) the total weight

of the path (i.e., the sum of the weights of the transitions in π), and by Avg(w(π)) = w(π)
|π| the average

of the weights, where |π| denotes the length of π. For an infinite path π, we denote LimAvg(w(π)) =
lim infi→∞ Avg(w(π[1, i])). The mean-payoff analysis problem asks whether there exists an infinite path π
such that LimAvg(w(π)) > 0. In Section 4 we show how the ratio analysis problem of ICFGs reduces to the
mean-payoff analysis problem of QICFGs.

Assigning context-dependent and path-dependent weights. In our model the numerical weights are
assigned to every transition of a ICFG . First, note that since we consider weight functions as an input and
allow all weight functions, the weights could be assigned in a dependent way. Second, in general, we can have
an ICFG , and a finite-state deterministic automaton (such as a deterministic mean-payoff automaton [12])
that assigns weights. The deterministic automaton can assign weights depending on different contexts (or
call strings) of invocations, or even independent of the context but dependent on the past few transitions (i.e.,
path-dependent), i.e., the automaton has the stack alphabet and transition of the ICFG as input alphabet
and assigns weights depending on the current state of the automaton and an input letter. We call such a
weight function regular weight function. Given a regular weight function specified by an automaton A and
an ICFG we can obtain a ICFG (that represents the path-dependent weights) by taking their synchronous
product, and hence we will focus on ICFGs for algorithmic analysis. The regular weight function can also
be an abstraction of the real weight function, e.g., the regular weight function is an over-approximation if
the weights that it assigns to the good (resp. bad) events are higher (resp. lower) than the real weights. If
the original weight function is bounded, then an over-approximation with a regular weight function can be
obtained (which can be refined to be more precise by allowing more states in the automaton of the regular
weight function). Note that the new ICFG which is obtained from an ICFG and automaton A has a blowup
in the number of states of A, and thus there is a tradeoff between the precision of A and the size of the new
ICFG constructed.

3 Applications: Theoretical Modeling

In this section we show that many diverse problems for static analysis can be reduced to ratio analysis of
ICFGs. We will present experimental results (in Section 5) for the problems described in Section 3.1 and
Section 3.2.

3.1 Container analysis

The inefficient use of containers is the cause of many performance issues in Java. An excellent exposition of
the problem with several practical motivations is presented in [24]. The importance of accurate identification
of misuse of containers that minimizes (and ideally eliminates) the number of false warnings was emphasized
in [24] and much effort was spent to avoid false warnings for real-world programs. We show that the ratio
analysis for ICFGs provides a mathematically sound approach for the identification of inefficient use of
containers.

6

Two misuses. We aim to capture two common misuses of containers following the definitions in [24]. The
first inefficient use is an underutilized container that always holds very few number of elements. The cause
of inefficiency is two-fold: (i) a container is typically created with a default number of slots, and much
more memory is allocated than needed; and (ii) the functionality that is associated with the container is
typically not specialized to the case that it has only very few elements. The second inefficiency is caused by
overpopulated containers that are looked up rarely, though potentially they can have many elements. This
causes a memory waste and performance penalty for every lookup. Thus we consider the following two cases
of misuse:

1. A container is underutilized if there exists a constant bound on the number of elements that it holds
for all runs of the program.

2. For a threshold λ, a container is overpopulated if for all runs of the program the ratio of Get vs Add
operations is less than λ.

We note that our approach is demand-driven (where users can specify to check the misuse of a specific
container).

Modeling. The modeling of programs as ICFGs is standard. We describe how the weight function and
the ratio analysis problem can model the problem of detecting misuses. We abstract the different container
operations into Get, Add, and Delete operations. For this purpose we require the user to annotate the
relevant class methods by Get, Add, or Delete; and by a weight function that corresponds to the number
of Get, Add, or Delete operations that the method does (typically this number is 1). For example, in the
class HashSet, the add method is annotated by Add, the contains method is annotated by Get and the
remove operation is annotated by Delete. The clear operation which removes all elements from the set is
annotated by Delete but with a large weight (if clear appears in a loop, it dominates the add operations
of the loop). We note that the annotation can be automated with the approach that is described in [24].

1. When detecting underutilized containers we define Add operations as good events and Delete oper-
ations as bad events, and check for threshold 1. Note that the relevant threshold is 1: if the (long-run)
ratio of Add vs Delete is not greater than 1, then the total number of elements in the container is
bounded by a constant.

2. When detecting overpopulated containers we defineGet operations as good events andAdd operations
as bad events, and check for the given threshold λ.

In addition, since we wish to analyze heap objects, the allocation of the container is a bad event with
a large weight (i.e., similar effect as of clear); see Example 3. The container is misused iff the answer
to the ratio analysis problem is NO (note that in the problem description for container analysis we have
quantification over all paths and for ratio analysis of ICFGs the quantification is existential). The detection
is demand-driven and done for an allocated container c.

Details of modeling. Intuitively, a transition in the call graph is good if it invokes a functionality that is
annotated by a good operation (i.e., Add operation for the underutilized analysis and Get operation for
the overpopulated analysis) and the object that invokes the operation points to container c, and it is bad if
the invoked operation is annotated as bad. Formally, for a given allocated container c: If at a certain line
a variable t that may point to c invokes a good functionality, then we denote the transition as good. If t
must point to c and invokes a bad functionality, then we denote it as a bad events. All other transitions are
neutral. Note that our modeling is conservative. The misuse is detected for the container c if all runs of the
program have a ratio of good vs bad events that is below the threshold (in other words, the container is not
misused if there exists a path where the ratio of good vs bad events is above the threshold, and this exactly
corresponds to the ratio analysis of ICFGs).

Example 3. We illustrate some important aspects of the container analysis problem with an example.
Consider the program shown in Figure 3. We consider the containers that are allocated in line 9 and in
line 20 and analyze them for underutilization. There exist runs that go through line 14 and properly use the
container that is allocated in line 9, since qux method can add unbounded number of elements to the hash table
(due to its recursive call). However, the container in line 20 is underutilized, since in every run the number
of elements is bounded by 2. However, note that if the Delete operation is not handled, then the container
is reported as properly used. We note that since we assign large weights to the allocation of the container,

7

1 void qux (Hashtable h , i n t x){
2 h . put (x , x/2) ;
3 i f (x > 0){
4 qux (h , x/2) ;
5 }
6 }
7

8 Hashtable bar (i n t x){
9 r e turn new Hashtable (x∗x) ;

10 }

12 void f oo (i n t x){
13 i f (x % 2){
14 Hashtable h1 = bar (x) ;
15 qux (h1 , x) ;
16 }
17 e l s e
18 {
19 f o r (i n t y = 0 ; y < x ; y++){
20 Hashtable h2 = new Hashtable (y) ;
21 h2 . put (y , x) ;
22 f o r (i n t z = 0 ; z < y ; z++)
23 {
24 h2 . put (z , y) ;
25 . . .
26 h2 . remove (z) ;
27 }
28 }
29 }
30 }

Figure 3: An example for underutilized container analysis.

this prevents the analysis from reporting that h2 properly uses the container that is allocated in line 20. In
summary, the example illustrates the following important features: (1) the proper usage of the container
should be tested also outside of its allocation site1 (as opposed to the approach of [24]); (2) sometimes the
proper usage of a container is due to recursion; and (3) handling Delete operations appropriately increases
the precision of analysis. While these important features are illustrated with the toy example, such behaviors
were also manifested in the programs of the benchmarks (see Subsection 5.2 for details).

Soundness. Our ratio analysis approach for ICFGs is both sound and complete (with respect to the weighted
abstracted ICFG). Since we use a conservative approach for assigning bad and good events, the ICFG we
obtain for the misuse analysis of containers is sound and we get the following result.

Theorem 1. (Soundness). The underutilized and overpopulated container analysis through the ratio anal-
ysis problem on ICFGs is sound (do not report false positives, i.e., any reported misused container is truly
misused).

Remark 2. We remark about the significance of the soundness of our approach.

• The soundness criteria is a very important and desirable feature for container analysis (for details
see [29, 24]), because a reported misused container needs to be analyzed manually and incurs a sub-
stantial effort for optimization. Hence as argued in [29, 24], spurious warnings (false positive) of
misuse must be minimized. In our approach, a misuse is reported iff in every run a misuse is detected,
and with a sound (over approximation) annotation of the weights our approach is sound.

• The soundness of our approach is with respect to a sound (over approximation) annotation of the Add
, Delete and Get operations. In addition, for a given ICFG, our ratio analysis is precise (i.e.. both
sound and complete), hence, our container analysis is sound.

3.2 Static profiling of methods

Finding the most frequently executed lines in the code can help the programmer to identify the critical
parts of the program and focus on the optimization of these parts. It can also assist the compiler (e.g., a
C compiler) to decide whether it should apply certain optimizations such as function inlining (replacing a

1E.g., an HashTable is allocated in bar function but the proper usage is done outside the allocation site, namely, after the
termination of bar.

8

function call by the body of the called function) and loop unrolling (re-write the loop as a repeated sequence
of similar independent statements). These optimizations can reduce the running time of the program, but
on the other hand, they increase the size of the (binary) code. Hence, knowing whether the function or loop
is hot (frequently invoked) is important when considering the time vs. code size tradeoff. In this subsection
we present the model for profiling the frequency of function calls (which allows finding hot functions), and
we note that our profiling technique is generic and can be scaled to detect other hot spots in the code (e.g.,
hot loops).

Problem description. Given a program with several functions, a function f is called λ-hot, if there exists
an (interprocedural) run (of unbounded length) of the program where the frequency of calls to f (among all
function calls in the run) is at least λ. Formally, for a run, given a prefix of length i, let #f(i) denote the
number of calls to f and #c(i) denote the number of function calls in the prefix of length i. The function is

λ-hot if there exists a run such that lim infi→∞
#f(i)
#c(i) > λ.

Modeling. The modeling of programs as ICFGs is straightforward. We describe the labeling of events and
weight function in ICFGs to determine if a function f is λ-hot. First we label call-transitions to f as good
events and assign weight 1; then we label all other call-transitions as bad events and assign them weight 1.
To ensure that the number of calls to f also appear in the denominator (in the total number of calls) we
label transitions from the entry node of f as bad events with weight 1. The function f is λ-hot iff the answer
to the ratio analysis problem with threshold λ is YES.

3.3 Static profiling of libraries

Modern software comprises thousands of methods and classes, which are usually grouped into libraries.
In several programming languages (e.g. C++), the developer decides whether libraries will be statically or
dynamically linked. While there are several factors that affect this choice (e.g., compatibility issues, licensing
restrictions etc.), one consideration is that of performance, as statically linked libraries allow for speedups
such as the following.

1. Interprocedural optimizations coming from the compiler by performing interprocedural analysis on the
target program together with the statically linked libraries.

2. Avoiding runtime overheads imposed by invocations of methods that lie in dynamically linked libraries.
3. Cache-level optimizations, by allowing the compiler to arrange statically linked libraries in such order

to try to minimize cache misses.
On the other hand, infrequently used libraries might better be dynamically linked, (i) to keep the inter-

procedural optimizations fast, (ii) keep the size of the executable small, and (iii) have fewer cache misses.
Estimating statically the frequently used libraries can assist static vs dynamic linking.

Problem description. Similarly as in Section 3.2, given a program that links with several libraries, a
library ℓ is called λ-hot, if there exists an (interprocedural) run (of unbounded length) of the program where
the frequency of calls to methods of ℓ (among all method calls to libraries in the run) is at least λ. Formally,
for a run, given a prefix of length i, let #ℓ(i) denote the number of calls to methods of the library ℓ and
#t(i) denote the number of function calls to library methods in the prefix of length i. The library ℓ is λ-hot

if there exists a run such that lim infi→∞
#ℓ(i)
#t(i) > λ.

Modeling. The modeling is similar to that of Section 3.2. The program is modeled as an ICFG . Call
transitions to methods of the library ℓ are labeled as good events, whereas call transitions to methods of
other libraries are labeled as bad events. To ensure that the number of calls to methods of ℓ also appear
in the denominator (in the total number of library calls) we label transitions from the entry node of every
method of ℓ as bad events. All labeled events receive weight 1. The library ℓ is λ-hot iff the answer to the
ratio analysis problem with threshold λ is YES.

3.4 Estimating worst-case execution time

The approach of [15] for estimating worst-case execution time (WCET) is also naturally captured by ratio
analysis. While the intraprocedural problem was considered in [15], our approach allows the more general

9

interprocedural analysis. In this approach, we consider (as in [15]) that each program statement is assigned
a cost that corresponds to its running time (e.g., number of CPU cycles).

Modeling. The modelling of WCET analysis of the program is as follows: We add to the ICFG of the
program a transition from every terminal node to the initial node, and every such transition is a bad event
with weight 1. All the other transitions are good events and their weight is their cost (running time). The
WCET of the program is at most N cycles if and only if the answer to the ratio analysis problem with
threshold N is NO.

3.5 Evaluating the speedup in a parallel computation

The speed of a parallel computing is limited by the time needed for the sequential fraction of the program.
For example, if a program runs for 10 minutes on a single processor core, and a certain part of the program
that takes 2 minutes to execute cannot be parallelized, then the minimum execution time cannot be less than
two minutes (regardless of how many processors are devoted to a parallelized execution of this program).
Hence, the speedup is at most 5. Amdahl’s law [30] states that the theoretical speedup that can be obtained
by executing a given algorithm on a system capable of executing n threads of execution is at most 1

B+ 1

n
(1−B)

,

where B is the fraction of the algorithm that is strictly serial. Our ratio analysis technique can be used to
(conservatively) estimate the value of B and thus to evaluate the outcome of Amdahl’s law.

Modeling. As in Section 3.4, we consider that the cost of every program statement is given, and we add to
the ICFG of the program a transition from every terminal node to the initial node, this time as a neutral
event with weight 0. All the transitions of the code that cannot be parallelized are defined as good events,
and the other transitions are defined as bad events. We denote by P the fraction of the code that can be
parallelized and by S the fraction of the code that is strictly serial. The value of S

P
is at most λ if and only

if the answer to the ratio analysis problem with threshold λ is NO. Hence B is bounded by 1
1+ 1

λ

for which

the answer to the ratio analysis problem with threshold λ is NO.

3.6 Average energy consumption

In the case of many consumer electronics devices, especially mobile phones, battery capacity is severely
restricted due to constraints on size and weight of the device. This implies that managing energy well is
paramount in such devices. Since most mobile applications are non-terminating (e.g., a web browser), the
most important metric for measuring energy consumption is the average memory consumption per time
unit [31], e.g., watts per second.

Modeling. We consider that the running time and energy consumption of each statement in the application
code is given (or is approximated). In our modeling we split each transition in the ICFG into two consecutive
transitions, the first is a good event and the next is a bad event. The good event is assigned with a weight
that corresponds to the energy consumption of the program statement and the bad event is assigned with
a weight that corresponds to the running time of the statement. The average energy consumption of the
application is at most λ if and only if the answer to the ratio analysis problem is NO.

4 Algorithm for Quantitative Analysis of QICFGs

In this section we present three results. The mean-payoff analysis problem for QICFGs can be solved in
polynomial time, this can be derived from [25]. First, we present an algorithm that significantly improves
the current theoretical bound for the problem for QICFGs. Second, we present an efficient algorithm that in
most practical cases is much faster as compared to the theoretical upper bound. Finally, we present a linear
reduction of the ratio analysis problem to the mean-payoff analysis problem for QICFGs.

10

4.1 Improved algorithm for mean-payoff analysis

In this section we first discuss the basic polynomial-time algorithm for mean-payoff analysis of QICFGs that
can be obtained from the results on pushdown systems shown in [25]. Due to space constraints the technical
proofs are relegated to the supplementary material.

Results of [25] and reduction. The results of [25] show that pushdown systems with mean-payoff objec-
tives can be solved in polynomial time. Given a pushdown system with state space Q and stack alphabet Γ,
the polynomial-time algorithm of [25] can be described as follows. The algorithm is iterative, and in each
iteration it constructs a finite graph of size O(|Q| · |Γ|2) and runs a Bellman-Ford style algorithm on the finite
graph from each vertex. The Bellman-Ford algorithm on the finite graph from all vertices in each iteration
requires O(|Q|3 · |Γ|6) time and O(|Q|2 · |Γ|4) space. The number of iterations required is O(|Q|2 · |Γ|2). Thus
the time and space requirement of the algorithm are O(|Q|5 · |Γ|8) and O(|Q|2 · |Γ|4), respectively. A QICFG
can be interpreted as a pushdown system where N corresponds to Q and Retns corresponds to Γ.

Theorem 2. (Basic algorithm [25]). The mean-payoff analysis problem for QICFGs can be solved in
O(|N |5 · |Retns|8) time and O(|N |2 · |Retns|4) space, respectively.

Improved algorithm. We will present an improved polynomial-time algorithm for the mean-payoff analysis
of QICFGs. The improvement relies on the following properties of QICFGs:

1. The transitions of a module are independent of the stack of a configuration, while in pushdown systems
the transitions can depend on the top symbol of the stack. This enables to reduce the size of the finite
graphs to be considered in every iteration.

2. Every call node has only one corresponding return node. Therefore, if a module A1 invokes a module
A2, then the behavior of A1 after the termination of A2 is independent of A2. This enables us to reduce
the number of iterations to O(|Calls |).

To present the improved algorithm and its correctness formally, we need a refined analysis and extensions of
the results of [25]. We first describe a key aspect and present an overview of the solution.

Remark 3. (Infinite-height lattice). Our algorithm will be an iterative algorithm till some fixpoint is reached.
However, for interprocedural analysis with finite-height lattices, fixpoints are guaranteed to exist. Unfortu-
nately in our case for mean-payoff objectives, it is an infinite-height lattice. Thus a fixpoint is not guaranteed.
For this reason the analysis for mean-payoff objectives is more involved, and this is even in the case of finite
graphs. For example, for reachability objectives in finite graphs linear-time algorithms exist, whereas for fi-
nite graphs with mean-payoff objectives the best-known algorithms (for over three decades) are quadratic [32].
This difference is even more pronounced in our case of recursive graphs.

Solution overview. In finite graphs the solution for the mean-payoff analysis is to check whether the graph
has a cycle C such that the sum of weights of C is positive. If such a cycle exists, then a lasso path that
leads to the cycle and then follows the cyclic path forever has positive mean-payoff value. For QICFGs
we show that it is enough to find either a loop in the program such that the sum of weights of the loop
is positive or a sequence of calls and returns with positive total weight such that the last invoked module
is the same as the first invoked module. For this purpose we compute a summary function that finds the
maximum weight (according to the sum of weights) path between every two statements of a method (i.e.,
between every two nodes of a module). The computation is an extension of the Bellman-Ford algorithm
to QICFGs. We show that it is enough to compute a summary function for QICFGs with a stack height
that is bounded by some constant, and then all that is left is to mark pairs of nodes such that the weight
of a maximal weight path between them is unbounded. In finite graphs the maximum weight between two
vertices is unbounded only if the graph has a cycle with positive sum of weights (i.e., a path with positive
total weight that can be pumped). For QICFGs it is also possible to pump special types of acyclic paths.
We first characterize these pumpable paths (up to Lemma 2). We then show how to compute a bounded
summary function (Lemma 3 and the paragraph that follows it and Example 6). Finally we show how to use
the summary function to solve the mean-payoff analysis problem. We start with the basic notions related to
stack heights and pumpable paths, and their properties which are crucial for the algorithm.

11

Stack heights. The configuration stack height of c = (r1, . . . , rj , u), denoted as SH(c), is j. For a finite path
π = ⟨(α1, n1), . . . , (αℓ, nℓ)⟩, the stack height of the path (denoted by SH(π)) is the maximal stack height of
all the configurations in the path. Formally SH(π) = max{|α1|, . . . , |αℓ|}. The additional stack height of π
is the additional height of the stack in the segment of the path, i.e., the additional stack height ASH(π) is
SH(π)−max(|α1|, |αℓ|).

Pumpable pair of paths. Let π = ⟨c1t1t2 . . . ⟩ be a finite or infinite path (where each ti is a transition in
the QICFG). A pumpable pair of paths for π is a pair of non-empty sequences of transitions: (p1, p2) =
(ti1ti1+1 . . . ti1+ℓ1 , ti2ti2+1 . . . ti2+ℓ2), for ℓ1, ℓ2 ≥ 0, i1 ≥ 0 and i2 > i1 + ℓ1 such that for every j ≥ 0 the path
πj
(p1,p2)

obtained by pumping the pair p1 and p2 of paths j times each is a valid path, i.e., for every j ≥ 0
we have

πj
(p1,p2)

= ⟨c1t1 . . . ti1−1(p1)
jti1+ℓ1+1 . . . ti2−1(p2)

jti2+ℓ2+1 . . . ⟩

is a valid path. We illustrate the above definitions with the next example.

Example 4. Consider the program from Figure 1 and Figure 2 and the corresponding ICFG. A possible
path in the program is

m:Entry → while(x) → if(y>0) → m:call foo → f:Entry → if(x>1) → f:call foo → f:Entry →
if(x>1)→ x++→ f:Exit→ f:foo ret→ x++→ f:Exit→ m:foo ret→ while(x)

and we denote this path with π. Then ASH(π) = 2, and the pair of paths f:Entry→ if(x>1)→ f:call foo and
f:foo ret→ x++→ f:Exit is a pumpable pair of paths.

In the next lemmas we first show that every path with large additional stack has a pumpable pair of
paths, and then establish the connection of additional stack height and the existence of pumpable pair of
paths with positive weights in Lemma 2. The key intuition for the proof of the next lemma is that a path
with ASH(π) > |Calls |+ 1 must contain a recursive call that can be pumped.

Lemma 1. Let π be a finite path with ASH(π) = d > |Calls |+ 1. Then π has a pumpable pair of paths.

Proof. Intuitively a path with ASH(π) > |Calls |+ 1 must contain a recursive call that can be pumped. We
now present the detailed argument. Let c0 and ck be the starting and the end configurations of the finite
path π, respectively. Let ℓ = max{SH(c0), SH(ck)}. Given π, let c1 be the first configuration in π of stack
height strictly greater than ℓ and with a call node n1 ∈ Calls i (for some module Ai) such that there exists a
configuration c2 in π with a call node n2 ∈ Calls i satisfying the following conditions: (i) n1 = n2 and (ii) in
the path segment in π between c1 and c2 the stack height is always at least SH(c1). Moreover, let c3 be
the first configuration after c2 of stack height SH(c1) and with a return node n3 ∈ Retnsi. We first justify
the existence of these configurations: (i) the existence of c1 and c2 follows by the pigeonhole principle and
the fact that ASH(π) > |Calls |+ 1; and (ii) the existence of c3 follows because SH(c1) > SH(ck) and hence
the call corresponding to c1 must return in the path π. Note that existence of c3 (i.e., the return of the
call of c1) implies the existence of a configuration c4 with a return node n4 ∈ Retnsi in the path such that
SH(c4) = SH(c2), (this corresponds to the return of the call of c2). Note that since n1 = n2, it follows that
n3 = n4 (as they corresponds to the return of the same call node). The path segment p1 of π between c1 and
c2, and the path segment p2 of π between c4 and c3, constitutes a pumpable pair. The result follows.

Lemma 2. Let c1, c2 be two configurations and j ∈ Z. Let d ∈ N be the minimal additional stack height of
all paths between c1 and c2 with total weight at least j. If d > |Calls | + 1, then there exists a path π∗ from
c1 to c2 with additional stack height d that has a pumpable pair (p1, p2) with w(p1) + w(p2) > 0.

Proof. Let us consider the set of paths Π between c1 and c2 with total weight at least j, and let Πmin

be the subset of Π that has minimal additional stack height. The proof is by induction on the length of
paths in Πmin. Consider a path π from Πmin that has the shortest length among all paths in Πmin. Since
ASH(π) = d > |Calls | + 1, then by Lemma 1 it contains a pumpable pair. Let us consider the path π1

obtained from π by pumping the pumpable pair zero times (i.e., the pumpable pair is removed). Since we
remove a part of the path we have that ASH(π1) ≤ ASH(π). If w(π1) ≥ w(π), then we obtain a path π1

12

Figure 4: Example of a path π = ⟨c1, . . . , cℓ⟩, where j indexes the j-th configuration of π, and αj is the stack
of cj . The configuration ci is a local minimum of π. The suffix πi of π starting at the i-th configuration is a
non-decreasing path, as the top symbol of αi is never popped.

with weight at least j, with either smaller additional stack height than π, or of shorter length, contradicting
that π is the shortest length minimal additional stack height path with weight at least j. Hence we must
have w(π1) < w(π), and hence the pumpable pair has positive weight. Now for an arbitrary path π in Πmin

we obtain that it has a pumpable pair. Either the pumpable pair has positive weight and we are done, else
removing the pumpable pair we obtain a shorter length path of the same stack height, and the result follows
by inductive hypothesis on the length of paths.

Example 5. We illustrate Lemma 2 on our running example. Consider again the program from Figure 1
and Figure 2 and the corresponding ICFG. Additionally, consider a weight function that assigns -1 to the
transition that foo calls recursively itself, +2 to the transitions to the exit node of foo (i.e., when foo
returns), and 0 to every other transition. Examine two configurations c1 = (ϵ, f : if(x > 1)), c2 = (ϵ, f :
Exit), and note that for j = 4, the minimal additional stack height d of all paths from c1 to c2 with total
weight at least j is d = 4, as they all have to make at least 4 recursive calls to foo to witness a weight of at
least 4 (in particular, i invocations and returns to and from foo contribute a weight of i · (−1+2) = i). Since
there are only 2 calls in total, Lemma 2 identifies a pumpable pair of paths f:Entry → if(x>1) → f:call foo
and f:foo ret → x++ → f:Exit with positive total weight. Indeed, the weight is −1 + 2 > 0, and the pair of
paths is pumbable due to recursion, as pointed in Example 4. Observe that this conclusion cannot be made
using Lemma 2 with e.g. j = 1, as in that case there is a run from c1 to c2 that witnesses weight at least j
and has additional stack height only 1 (i.e., the run that only calls foo recursively once), which is less than
the number of calls in the program.

Our algorithm for the mean-payoff analysis problem is based on detecting the existence of certain non-
decreasing paths with positive weight. The maximal weights of such non-decreasing paths between node
pairs are captured with the notion of a summary function and bounded summary functions (with bounded
additional stack height). We now define them, and establish the lemma related to the number of bounded
summary functions to be computed.

Local minimum and non-decreasing paths. A configuration ci in a path π = ⟨c1, . . . , cℓ⟩ is a local minimum
if the stack height of ci is minimal in π, i.e., |αi| = min(|α1|, . . . , |αℓ|). A path from configuration (α, n1)
to (αβ, n2) is a non-decreasing α-path if (α, n1) is a local minimum. Note that if a sequence of transitions
is a non-decreasing α-path for some α ∈ Retns∗, then the same sequence of transitions is a non-decreasing
γ-path for every γ ∈ Retns∗. Hence, we say that π is a non-decreasing path if there exists α ∈ Retns∗ such
that π is a non-decreasing α-path. Figure 4 illustrates the concepts of local minimum and non-decreasing
paths.

Summary function. Given the QICFG A and α ∈ Retns∗, we define a summary function sα :
⋃

1≤ℓ≤m(Nℓ×
Nℓ)→ {−∞} ∪ Z ∪ {ω} as:

1. sα(n1, n2) = z ∈ Z iff the weight of the maximum weight non-decreasing path from configuration
(α, n1) to configuration (α, n2) is z.

13

2. sα(n1, n2) = ω iff for all j ∈ N there exists a non-decreasing path from (α, n1) to (α, n2) with weight
at least j.

3. sα(n1, n2) = −∞ iff there is no non-decreasing path from (α, n1) to (α, n2).
We note that for every α,β ∈ Retns∗ it holds that sα ≡ sβ . Hence, we consider only s ≡ sϵ (where ϵ is
the empty string and corresponds to empty stack). The computation of the summary function is done by
considering stack height bounded summary functions defined below.

Stack height bounded summary function. For every d ∈ N, the stack height bounded summary function
sd :

⋃

1≤ℓ≤m(Nℓ ×Nℓ)→ {−∞} ∪ Z ∪ {ω} is defined as follows: (i) sd(n1, n2) = z ∈ Z iff the weight of the
maximum weight non-decreasing path from (ϵ, n1) to (ϵ, n2) with additional stack height at most d is z;
(ii) sd(n1, n2) = ω iff for all j ∈ N there exists a non-decreasing path from (ϵ, n1) to (ϵ, n2) with weight at
least j and additional stack height at most d; and (iii) sd(n1, n2) = −∞ iff there is no non-decreasing path
with additional stack height at most d from (ϵ, n1) to (ϵ, n2).

Facts of summary functions. We have the following facts: (i) for every d ∈ N, we have sd+1 ≥ sd (monotonic-
ity); and (ii) sd+1 is computable from sd and the QICFG. By the above facts we get that if sd ≡ sd+1, i.e.,
if a fix point is reached, then s ≡ sd. For interprocedural analysis with finite-height lattices, fix points are
guaranteed to exist. Unfortunately in our case, the image of si is infinite and moreover, it is an infinite-height
lattice. Thus a fix point is not guaranteed. The next lemma shows that we can compute all the non-ω values
of s with the bounded summary function.

Lemma 3. Let d = |Calls |+ 1. For all n1, n2 ∈ N , if s(n1, n2) ∈ Z ∪ {−∞}, then s(n1, n2) = sd(n1, n2).

Proof. Obviously s(n1, n2) ≥ sd(n1, n2). If sd(n1, n2) < s(n1, n2) it follows that there exists a non-decreasing
path π from n1 to n2 with w(π) > sd(n1, n2). By the definition of the bounded height summary function it
follows that ASH(π) > d, and w.l.o.g we assume that π has the minimal additional stack height among all
non-decreasing paths from n1 to n2 with weight w(π). Then by Lemma 2 it follows that π has a pumpable
pair (p1, p2) with w(p1) + w(p2) = wp > 0. Hence, for every j ≥ 0 the path πj that is obtained from π
by pumping the pair (p1, p2) exactly j times has weight w(πj) = w(π) + (j − 1) · wp, and it is a valid non-

decreasing path from n1 to n2. Hence, for every ℓ ∈ N the path πj for j = ⌈ ℓ−w(π)
wp

+ 1⌉ satisfies w(πj) ≥ ℓ

(if ℓ ≤ w(π), then we set j = 1). By definition we get that s(n1, n2) = ω, and this completes the proof.

By Lemma 3 we get that if sd+1(n1, n2) > sd(n1, n2) (for d = |Calls | + 1), then s(n1, n2) = ω. Hence,
the summary function s is obtained by the fix point of the following computation: (i) Compute si+1 from
si up to sd for d = |Calls |+ 1; (ii) for i ≥ |Calls |+ 1, if si+1(n1, n2) > si(n1, n2), then set si+1(n1, n2) = ω;
(iii) a fix point is reached after at most O(|Calls |) iterations (say j iterations), and then we set s ≡ sj .
This establishes that we require only O(|Calls |) iterations as compared to O(|N |2 · |Retns|2) iterations. The
number of returns and calls are the same and thus we significantly improve the number of iterations required
from the quartic worst-case bound to linear bound. We now describe the computation of every iteration to
obtain si+1 from si.

Computation of si+1 from si. We first compute a partial function, namely, s′i+1 : En×Ex → {−∞,ω}∪Z that
satisfies s′i+1(n1, n2) = si+1(n1, n2) for every n1 ∈ En and n2 ∈ Ex . We initialize s′0(n1, n2) = s0(n1, n2).
For every module Aℓ we construct a finite graph Gi

ℓ by taking all the nodes and transitions of Aℓ and by
adding a transition between every call node and its corresponding return node. For every transition between
a pair of nodes n1, n2 ∈ Nℓ \ (Calls ℓ ∪ Retnsℓ) we assign the weight according to the original weight in A.
For every transition between a call node that invokes module Ap and a corresponding return node we assign
the weight s′i(Enp,Exp). To compute s′i+1 for module Aℓ we run one Bellman-Ford iteration over Gi

ℓ for
source node Enℓ and target node Ex ℓ. We observe the next two key properties of s′i:

• For every iteration i, a module Aℓ, and pair of nodes n1, n2 ∈ Nℓ we have that the weight of the
maximum weight path between n1 and n2 in Gi

ℓ is exactly si+1(n1, n2) (the proof is by a simple
induction over i).

• If s′i+1 ≡ s′i, then si+1 ≡ si (follows from the first key property).

14

Hence, to compute s we compute s′i+1 from s′i until we get s′i+1 ≡ s′i, and then we compute all pairs
maximum weight paths (e.g., by the Floyd-Warshall algorithm) over every Gi

ℓ and get si+1 (and si+1 ≡ s).
The Floyd-Warshall algorithm has a cubic time complexity and quadratic space complexity [33]. Therefore,
the time complexity for computing every iteration of si is O(

∑

|Nℓ|2) and the complexity of the last step is
O(

∑

|Nℓ|3). The space complexity of the last step is O(max{|N1|, . . . , |Nm|}2), but to store si we require
O(

∑

|Nℓ|2) space.

Summary graph. Given QICFG A with a summary function s, we construct the summary graph
Gr(A) = (V,E) of A with a weight function w : E → Z ∪ {ω} as follows: (i) V = N \ (Ex ∪ Retns);
and (ii) E = Einternal ∪ Ecalls where Einternal = {(n1, n2) | n1, n2 ∈ Nℓ for some ℓ, and s(n1, n2) >
−∞} contains the transitions in the same module and Ecalls = {(n1, n2) | n1 ∈ Calls and n2 ∈
En and n1 is a call to a module with entry node n2} contains the call transitions. The weights of Einternal

are according to the summary function s and the weights of Ecalls are according to the weights of these tran-
sitions in A (i.e., according to w). A simple cycle in Gr(A) is a positive simple cycle iff one of the following
conditions hold: (i) the cycle contains an ω edge; or (ii) the sum of the weights of the cycles according to
the weights of the summary graph is positive. Lemma 4 shows the equivalence of the mean-payoff analysis
problem and positive cycles in the summary graph.

Lemma 4. A QICFG A has a path π with LimAvg(w(π)) > 0 iff the summary graph Gr(A) has a (reachable)
positive cycle.

Proof. If Gr(A) does not contain a positive cycle, then it follows that the weight of every non-decreasing path
in A is bounded by the weight of the maximum weight path in Gr(A). Hence, for every infinite path π we
get that every prefix of π is a non-decreasing path from the initial configuration with bounded weight (sum
of weights bounded from above), and therefore LimAvg(w(π)) ≤ 0. Conversely, if Gr(A) has a positive cycle,
then it follows that there is a path π0π1 in Gr(A) such that π0 and π1 are non-decreasing paths, π1 begins
and ends in the same node (possibly at higher stack height) and w(π1) > 0. Hence, the path π0πω

1 is a valid

path and satisfies LimAvg(w(π0πω
1)) =

w(π1)
|π1|

> 0, where πω
1 = π1 · π1 · π1 . . . is the infinite concatenation of

the finite path π1. The desired result follows.

Algorithm and analysis. Algorithm 1 solves the mean-payoff analysis problem for QICFGs. The computation
of the summary function requires O(|Calls |) computations of the partial summary function s′i, which requires
m runs of Bellman-Ford algorithm, each run over a graph of size |Nℓ| (hence, each run takes O(|Nℓ|2) time).
In addition the computation requires m runs of all pairs maximum weight path (Floyd-Warshall) algorithm.
Each run is over a graph of size O(|Nℓ|) (hence, each run takes O(|Nℓ|3) time and O(|Nℓ|2) space). Finally
we detect positive cycles by running Bellman-Ford algorithm once over the summary graph, which takes
O(|N |2) time and O(|N |) space. Thus we obtain the following result.

Theorem 3. (Improved algorithm). Algorithm 1 solves the mean-payoff analysis problem for QICFGs
in O

((

|Calls | · (
∑

|Nℓ|2)
)

+ (
∑

|Nℓ|3) + |N |2
)

time and O(
∑

|Nℓ|2) space.

Remark 4. Note that in the worst case the running time of Algorithm 1 is cubic and the space requirement
is quadratic.

The next example is an illustration of a run of Algorithm 1.

Example 6. Consider the QICFG that consists of modules f and g (Figures 5 and 6) and the entry of f is
the initial entry of the program. We now describe the run of Algorithm 1 over the QICFG. For simplicity,
we denote the graph of f by F and the graph of g by G (and not by G1 and G2). Note that the number of
call nodes is 3.

We first compute the summary function s′ and the first step is to compute s′0. We have s′0(f:entry,f:exit) =
−35, and s′0(g:entry,g:exit) = −25.

In order to compute s′1(f:entry,f:exit) we construct a graph F 0 from F by adding a transition from the
node f:call g to the node f:ret g with weight s′0(g:entry,g:exit) and find the maximum weight path from f:entry
to f:exit in F 0. We get s′1(f:entry,f:exit) = −35. In order to compute s′1(g:entry,g:exit) we construct a graph

15

Algorithm 1 Mean-payoff QICFG Analysis
1: for ℓ← 1 to m do
2: s′0(Enℓ,Ex ℓ)← Bellman-Ford(Aℓ) {Compute s′0 by running Bellman-Ford algorithm on Aℓ}
3: end for
4: i← 1
5: loop
6: for ℓ← 1 to m do
7: Construct Gi−1

ℓ according to s′i−1

8: s′i(Enℓ,Ex ℓ)← Bellman-Ford(Gi−1
ℓ) {Compute s′i by running Bellman-Ford algorithm overGi−1

ℓ }
9: end for

10: if s′i ≡ s′i−1 then
11: break
12: end if
13: if i > |Calls |+ 1 then
14: for ℓ← 1 to m do
15: if s′i(Enℓ,Ex ℓ) > s′i−1(Enℓ,Ex ℓ) then
16: s′i(Enℓ,Ex ℓ) = ω
17: end if
18: end for
19: end if
20: i← i+ 1
21: end loop
22: s←Floyd-Warshall(s′i)
23: Construct Gr(A) from s
24: Bellman-Ford(Gr(A)) {Run Bellman-Ford over Gr(A)}
25: if Gr(A) has a positive cycle then
26: return YES
27: else
28: return NO
29: end if

16

f:call g f:g ret

f:entry f:v f:exit
-30

-10-15
-5

Figure 5: Module f

g:entry g:u1

g:call g g:ret g

g:u2 g:exit

g:call f g:ret f

-10
-5

-10
35

-5

-10

-10

Figure 6: Module g

f:call g

f:entry f:v
-30

-15

g:entry g:u1

g:call g

g:u2

g:call f

-10

-5

ω

-10
0

0

0

Figure 7: Summary graph of f and g

G0 from G by adding a transition from g:call g to g:ret g with weight s′0(g:entry,g:exit) and a transition from
g:call f to g:ret f with weight s′0(f:entry,f:exit) and find the maximum weight path from g:entry to g:exit in
G0. We get s′1(g:entry,g:exit) = −10.

Since s′1 ̸= s′0, we continue to compute s′2. We construct F 1 and G1 in the same manner as we constructed
F 0 and G0 (but take the values of s′1 instead of s′0) and get s′2(f:entry,f:exit) = −35, s

′
2(g:entry,g:exit) = 5.

For i = 3 we get s′3(f:entry,f:exit) = −35, s′3(g:entry,g:exit) = 20. For i = 4, s′4(f:entry,f:exit) = −35,
s′4(g:entry,g:exit) = 35.

For i = 5 we get s′5(f:entry,f:exit) = −20 and s′5(g:entry,g:exit) = 50. Since i > |Calls | + 1
and s′5(f:entry,f:exit) > s′4(f:entry,f:exit) and s′5(g:entry,g:exit) > s′4(g:entry,g:exit) we assign assign
s′5(f:entry,f:exit) = ω and s′5(g:entry,g:exit) = ω. In the sixth iteration we get a fix point (that is, s′6 ≡ s′5)
and exit the loop block.

From F 5 and G5 we compute the summary function s. For example s(g:entry,g:u1) = ω and
s(f:entry,f:v) = −30. Finally, we construct the summary graph (see Figure 7) and check whether a posi-
tive cycle exists. The cycle f:entry→f:v→f:call g→g:entry→g:u1→g:u2→g:call f→f:entry contains an ω-edge
and thus, it is a positive cycle. Hence algorithm returns YES.

4.2 Efficient algorithm for mean-payoff analysis

In this section we further improve the algorithm for the mean-payoff analysis problem for QICFGs, and the
improvement depends on the fact that typically the number of entry, exit, call, and returns nodes is much
smaller than the size of the QICFGs. Formally, in most typical cases we have |Ex∪Retns∪Calls∪En | << |N |.
Let Xℓ = {Ex ℓ,Enℓ} ∪ Retnsℓ ∪ Callsℓ and X =

⋃

ℓ Xℓ. We present an improvement that enables us to
construct the summary function over graphs of size O(|Xℓ|) (instead of graphs of size O(|Nℓ|) of Section 4.1),
and with at most O(|Calls |) iterations. Hence, the algorithm in most typical cases will be much faster and
require much smaller space.

Compact representation. The key idea for the improvement is to represent the modules in compact form.
The compact form of a module Aℓ, denoted by Comp(Aℓ), consists of the entry, exit, call, and returns node of
Aℓ. There is transition between every node in Comp(Aℓ), and the weight of each transition is the maximum

17

weight path between the nodes with additional stack height 0 (and if there is no such path, then the weight
is −∞). Formally, Comp(Aℓ) = (V,E); where V = Xℓ; E = V × V , and w(v1, v2) = s0(v1, v2) (where s0 is
the bounded height summary function of height 0). If in Comp(Aℓ) there is a cycle with positive weight that
is reachable from the entry node, then we say that Aℓ is a positive mean-payoff witness. The computation
of the compact form for a module Aℓ requires O(|Xℓ| · |Nℓ|2) time and O(|Nℓ|) space (running Bellman-Ford
on each Aℓ), and thus the compact form for all modules can be computed in O(

∑

|Xℓ| · |Nℓ|2) time and
O(max |Nℓ|) space (note that the space can be reused).

Witness in summary graph of compact forms. After constructing the compact forms, we compute a summary
function for Comp(A1), . . . ,Comp(Am), and a corresponding summary graph. We say that there is a path
with positive mean-payoff iff there exists a positive cycle in the summary graph or there exists a path to the
entry node of a positive mean-payoff witness. The correctness of the algorithm relies on the next lemma.

Lemma 5. Let A = ⟨A1, . . . , Am⟩ be a QICFG, let Gr(A) be its summary graph and let Comp(Gr(A)) be
the summary graph that is formed by Comp(A1), . . . ,Comp(Am). The following assertions are equivalent:

1. Gr(A) has a (reachable) positive cycle.
2. Comp(Gr(A)) has a (reachable) positive cycle or a positive mean-payoff witness.

Proof. (of Lemma 5). We first observe that every node in Comp(Gr(A)) exists also in Gr(A) and that the
weight of every path in Comp(Gr(A)) has the same weight for the corresponding path in Gr(A) (this can
be easily shown by induction over the number of iterations that are needed to obtain a fix point in the
bounded height summary function). Hence, if Gr(A) has a positive simple cycle that contains a call node
c for c ∈ Calls , then c is a node also in Comp(Gr(A)) and by the observation above, c is part of a positive
cycle in Comp(Gr(A)). Therefore, Comp(Gr(A)) has a positive cycle. Otherwise, Gr(A) has a positive simple
cycle that does not contain a call node. Hence, there is a module Aℓ with a reachable positive simple cycle
that has additional stack height 0. Therefore Comp(Gr(A)) has a positive cycle or a positive mean-payoff
witness. This concludes the proof of one direction and the proof for the converse direction is trivial.

The above lemma establishes the correctness of the computation on compact form graphs, and gives
us the following result. The following result is obtained from Theorem 3 by replacing |Nℓ| with |Xℓ| and
|N | by |X |, and the additional

∑

|Xℓ| · |Nℓ|2 time and max |Nℓ| space are required for the compact form
computation.

Theorem 4. (Efficient algorithm). The mean-payoff analysis problem for QICFGs can be solved in
O
((

|Calls | · (
∑

|Xℓ|2)
)

+ (
∑

|Xℓ|3) + |X |2 +
∑

|Xℓ| · |Nℓ|2
)

time and O(
∑

|Xℓ|2 + max |Nℓ|) space, where
Xℓ = {Ex ℓ,Enℓ} ∪ Retnsℓ ∪Calls ℓ and X =

⋃

ℓXℓ.

4.3 Reduction: Ratio analysis to mean-payoff analysis

We now establish a linear reduction of the ratio analysis problem to the mean-payoff analysis problem. Given
a ICFG A with labeling of good, bad, and neutral events, a positive integer weight function w, and rational
threshold λ > 0, the reduction of the ratio analysis problem to the mean-payoff analysis problem is as follows.
We consider a QICFG A′ with weight function wλ for the mean-payoff objective defined as follows: for a
transition e we have

wλ(e) =

⎧

⎪

⎨

⎪

⎩

w(e) if e is labelled with good

−λ · w(e) if e is labelled with bad

0 otherwise (if e is labelled with neutral)

The next lemma establishes the correctness of the reduction.

Lemma 6. Given a ICFG A with labeling of good, bad, and neutral events, a positive integer weight function
w, and rational threshold λ > 0, let A′ be the QICFG with weight function wλ.

18

There exists a path π in A with LimRat(w(π)) > λ iff there exists a path π in A′ with
LimAvg(wλ(π)) > 0.

Proof. (of Lemma 6). Observe that by the definition of wλ we have that for every ϵ > 0 and a finite path π:

Rat(w(π)) ≥ λ+ ϵ iff Avg(wλ(π)) ≥ ϵ.

LimAvg implies LimRat. Consider an infinite path π. If LimAvg(wλ(π)) > 0, then by definition there is an
ϵ > 0 and n0 ∈ N such that for every n ≥ n0 we have Avg(wλ(π[1, n])) ≥ ϵ. Hence by the above observation
there exist ϵ > 0 and n0 ∈ N such that for every n ≥ n0 we have Rat(w(π[1, n])) ≥ λ + ϵ. Moreover, it
follows that in π there are infinitely many edges with positive weights (according to wλ) and hence π has
infinitely many good events. Hence, we get that LimRat(w(π)) > λ.

LimRat implies LimAvg. The proof for the converse direction is less trivial and relies on properties of
QICFGs that we established. Suppose that there is an infinite path π with LimRat(w(π)) > λ. We note
that every infinite path has infinitely many local minima and let c1, c2, . . . be an infinite sequence of local
minima in π. We have the following facts:

1. The segment between every two such configurations ci and cj for i < j is a non-decreasing path (since
each ci is a local minimum).

2. There is a configuration cp with a node np such that for every ℓ ∈ N there exists a configuration cj
(for p < j) such that the segment between cp and cj is of length greater than ℓ and np = nj , i.e., cp
and cj have the same node (follows from the pigeonhole principle, since the number of local minima is
infinite and we have finitely many nodes).

We claim that there exists a non-decreasing finite path π∗ that is a segment of π, which begins at cp and ends
at a configuration that has the same node (possibly at different stack height), and we have Rat(w(π∗)) > λ.
Assume towards the contradiction of the claim that for every configuration cj with np = nj , with p < j, we
have Rat(w(π∗)) ≤ λ. If π has only finitely many good or bad events, then LimRat(w(π)) = 0 < λ. Else we
consider the following sequence of prefixes of π: π0 is the prefix of π that ends in cp; and πi is the segment
that starts in cp and ends in the i-th local minimum after cp that has the same node np. Then we have

Rat(π0 · πi) ≤ λ+
w(π0)

i
;

since the length of πi is at least i. Hence, by definition LimRat(w(π)) ≤ λ, which establishes the desired
contradiction. Thus we have that Rat(w(π∗)) > λ and therefore Avg(wλ(π∗)) > 0 and the path π′ = π0(π∗)ω

is a valid path (since π∗ is a non-decreasing path that begins and ends in the same node) with Avg(wλ(π′)) >
0. The desired result follows.

Remark 5. Note that in our reduction from ratio analysis to mean-payoff analysis we do not change the
QICFG, but only change the weight function. Thus our algorithms from Theorem 3 and Theorem 4 can also
solve the ratio analysis problem for QICFGs. Moreover, our proof of lemma 6 shows that for all paths π, if
we have LimAvg(wλ(π)) > 0, then we also have LimRat(w(π)) > λ, i.e., any witness for the mean-payoff
analysis is also a witness for the ratio analysis.

5 Experimental Results: Three Case Studies

In this section we present our experimental results on two case studies described in Section 3.1 and Section 3.2.
We run our case studies on several benchmarks in Java, including DaCapo 2009 benchmarks [27], and we
use [34, 35] to assist Soot for the construction of the control-flow graphs. First we present some optimizations
that proved useful for speed-up in the benchmarks.

19

5.1 Optimization for case studies

We present four optimizations for the case studies: the first two are general, and the last two are specific to
our case studies.

Faster computation of stack height bounded summary function. We note that if module Aℓ invokes
only modules Aj1 , . . . , Ajk , and s′i(Enjh ,Ex jh) = s′i−1(Enjh ,Ex jh) for all h ∈ {1, . . . , k}, then s′i(Enℓ,Ex ℓ) =
s′i−1(Enℓ,Ex ℓ). Hence, when computing s′i, we maintain a set Li = {ℓ | s′i(Enℓ,Ex ℓ) > s′i−1(Enℓ,Ex ℓ)}, and
in the next iteration we run Bellman-Ford algorithm only for the modules that invoke modules from Li.

Reducing the number of iterations for fix point. We now present an optimization that allows us to
reduce the number of bounded height summary functions from O(|Calls |) to a practically constant number.
We note that the O(|Calls |) theoretical bound is tight. However, only pathological cases can reach even a
fraction of this bound. We note that in typical programs the average nesting of function calls is practically
constant (say 10). So if we do not get a fix point after 10 iterations (i.e., s′11 > s′10), then it is probably
because there is a recursive call with positive weight. If this is the case, then if we build the summary graph
according to s11, we will get a positive cycle in the summary graph, that is, we will get a witness for a path
with a positive mean-payoff, and we can stop the computation (since by definition s ≥ s11, we get that this
witness is valid). Hence, our optimized algorithm is to compute the bounded height summary function s′i
and if s′i > s′i−1 and i = 10, 20, 30, . . . , then we construct the summary graph and look for a witness path.
If a path is found, then we are done. Otherwise we continue and compute s′i+1.

Removing redundant modules. Consider an ICFG A = ⟨A1, . . . , Am⟩ in which every node is reachable
from the program entry (the entry node of the main method). We say that module Ai is non-redundant
if (i) the module has non-zero weight transitions (good or bad events); or (ii) it invokes a non-redundant
module, and is called redundant otherwise. Let Ai be a redundant module. For every path π that contains
a transition to Eni (an invocation of Ai), the segment of π between that transition and the first transition
to Exi contains only neutral transitions. Because all nodes of A are reachable, we can safely replace each
call node that invokes Ai by an internal node that leads to the corresponding return node, and label it as a
neutral event. Our optimization then consists of removing redundant modules, as follows:

1. First, we perform a single-source interprocedural reachability from the program entry, which requires
linear time ([2]), and discard all non-reachable nodes in all modules.

2. Then, we perform a backwards reachability computation on the call graph of A, starting from the set
of all modules that contain non-zero weight transitions. All detected redundant modules are discarded,
and calls to them are replaced according to the above description.

Hence, when computing the bounded height summary function, the size of the graph is smaller and the
Bellman-Ford algorithm takes less time. Additionally, the number of calls |Calls | decreases, which reduces
the number of iterations required in the main loop of Algorithm 1. In the first case study, typically more
than half of the methods are eliminated in this process.

Incremental computation of summary functions. We present the final optimization which is relevant
for our second and third case studies. Let A1 be a QICFG and let A2 be a QICFG that is obtained from
A1 only by increasing some of the transitions weights. Let s1 be the summary function of A1. Then we
can compute the summary function of A2 by setting s′20 ≡ s1 and by computing s′2i from s′2i+1 in the usual
way. The correctness is almost trivial. Since the weights of A2 are at least as the weights of A1, we get
that if we conceptually add a transition (n1, n2) with weight s1(n1, n2) for every two nodes (in the same
module) in A2, then the weights of the paths with the maximal weight in A2 remain the same. By assigning
s′20 = s1 we only add such conceptual transitions. Hence, the correctness follows. We now describe how this
optimization speed up the analysis of the second case study. In the static profiling for function frequencies,
we need to build a summary graph for every function f , and then run the mean-payoff analysis for every
such graph. Given this optimization, we can first compute (only once) a summary graph for the case that all
method invocations are bad events. We denote this QICFG by A∗ and the corresponding summary function
by s∗. Note that in A∗ all weights are negative, and the mean-payoff analysis answer is trivially NO. But
still the summary function computation, which computes the quantitative information about the maximum
weight context-free paths, provides useful information and saves recomputation. To determine the frequency

20

of f we assign weights to A and get Af , and the difference between Af and A∗ is only in the weight that
is assigned to the invocation of f . We then compute the summary function sf for Af by first assigning
s′f0 = s∗. In practical cases, programs can have thousands of methods, but only small portion of them will
have a path to f . So along with the previous optimizations we get that only few Bellman-Ford runs are
required to compute sf . Overall, the computation of s∗ is expensive, and may take several minutes for a
large program, but it is done only once, and then the computation of each sf is much faster.

5.2 Container analysis

Technical details about experimental results. We discuss a few relevant details about our experiments and
results.

• We use the points-to analysis tool of [36]. This tool provides interprocedural on demand analysis for a
may-alias relationship of two variables. We say that a variable may point to an allocated container if
it may-alias the container, and a variable must point to an allocated container if it may-alias only one
allocated container.

• For the underutilized containers the threshold is 1, and for the analysis of overpopulated containers we
set a threshold of 0.1 for our experimental results. That is, if the ratio between the number of added
elements to the number of lookup operations is more than 10, then the container is overpopulated.

Experimental results. Our experimental results on the benchmarks are reported in Table 1. In the table,
M and # CO represent the number of methods and containers that are reachable from the main entry
of the program, respectively; # OP and # UC represent the number of overpopulated and underutilized
containers discovered by our tool, respectively; and TA(s) and TQ(s) represent the time required for alias
analysis and the time required for the quantitative analysis of QICFGs (in seconds), respectively; and the
entries of the respective columns represent the time for overpopulated/underutilized container analysis. We
now highlight some interesting aspects of our experimental results. First, our approach for container analysis
discovers containers that are overpopulated or underutilized, while maintaining soundness. Second, the cases
that we identify reveal useful information for optimization, for example, in the first (batik-rasterizer) and
the second (batik-svgpp) benchmarks we identify containers that always have a small bounded number of
elements.

Benchmark # M # CO # OP # UC TA(s) TQ(s)

batik-rasterizer 21433 9 1 2 124/125 144/143
batik-svgpp 7859 3 0 3 20/20 14/13

mrt 9798 10 1 0 70/13 41/59
java cup 8173 10 0 0 19/19 25/22
xalan 8729 6 3 2 5/5 41/43

polyglot 8068 8 2 2 0/0 17/17
antlr 8607 15 5 2 11/12 25/24
jflex 21852 43 3 6 2473/2614 178/210
avrora 13331 75 9 9 145/141 111/113
muffin 22503 50 3 5 2500/157 352/173
bloat06 10675 211 32 14 399/250 2241/2165
eclipse06 9335 74 8 4 37/22 222/164
jython06 12210 66 9 5 154/68 13593/8376

Table 1: Experimental results for container usage analysis

Key charasteristics and comparison with existing work. Our formulation for the misused container
analysis problem has several key characteristics that distinguish it from existing literature:

1. Our framework can handle recursion, which has been a challenging task in the past [24].

21

Benchmark # M # I T

antlr 768 326 1.2
bloat 2576 676 30.8
eclipse 1056 215 2.3
fop 429 47 0.4

luindex 567 239 0.7
lusearch 842 237 2.5
pmd 2547 589 11.5

Table 2: Experimental results for frequency of functions

Figure 8: The ROC curves for the analysis of frequently invoked methods. The left plot shows the results
when all methods are analyzed. The right plot shows the results when only the active methods are analyzed.

2. We present a sound and complete approach for ratio analysis of QICFGs. Since we also follow a
conservative modeling, we result in a sound analysis approach for detecting containers misuse.

3. Our algorithm is polynomial time (once the points-to relation is computed)
4. Finally, our approach also allows us to handle Delete operations, which have been difficult to handle

in the past [24].
Example 3 illustrates the advantages of our approach. One drawback of is that it is conservative: while for
underutilized containers analysis (Add vs Delete) our approach captures all cases reported in [24], our
approach for overpopulated containers analysis is more conservative (to obtain soundness).

With our approach we were able to fully analyze all the containers in all benchmarks. Below we present
example snippets of code from the benchmarks where our analysis gives different results from the analysis
of the existing tool of [24] with which we have compared our results. The example in Figure 9 shows that
handling Delete operations leads to more refined analysis: in the example, if Delete operations are not
handled, then the misuse is not detected. The example in Figure 10 shows that the proper utilization of
containers might depend on the recursive calls. Finally, the example in Figure 11 illustrates that the proper
use of containers can be outside its allocation site, and thus detecting proper use requires a quantitative
interprocedural framework, such as the one proposed in this work.

5.3 Static profiling: frequency of function calls

Experimental results. We examined ten thresholds, namely 1/30, 2/30, 3/30, ..., 10/30, and for each
threshold λ we say that a method is statically hot if it is λ-hot (according to the definition in Subsec-
tion 3.2). We compared the results to dynamic profiling from the DaCapo benchmarks [27]. In the dynamic
profiling we define the top 5% of the most frequently invoked functions as dynamically hot. For example, if

22

1 publ i c void c l e a r ed () {
2 . . .
3 i f (l i s t != nu l l){
4 . . .
5 }
6 e l s e {
7 Object o = elementsById . remove (id) ;
8 i f (o != th i s) // oops not us !
9 elementsById . put (id , o) ;

10 }
11 }

1 publ i c void run () {
2 whi le (t rue) {
3 . . .
4 i f (. . .) {
5 . . .
6 r c . c l e a r ed () ;
7 }
8 . . .
9 }

10 . . .
11 }

Figure 9: An example from benchmark batik. The method run invokes cleared in a loop, and in every
invocation, one element of elementsById is removed and one element is added. Thus in this loop the total
number of elements in elementsById is bounded.

1 void addCNAME(CNAMERecord cname) {
2 i f (backtrace == nu l l)
3 backtrace = new Vector () ;
4 backtrace . inser tElementAt (cname , 0) ;
5 }
6

7 publ i c SetResponse f indRecords (Name name , shor t type) {
8 . . .
9 i f (type != Type .CNAME && type != Type .ANY && r r s e t . getType () == Type .CNAME)

10 {
11 zr = f indRecords (cname . getTarget () , type) ;
12 zr .addCNAME(cname) ;
13 . . .
14 }
15 . . .
16 r e turn zr ;
17 }

Figure 10: An example from benchmark muffin. The method findRecords has a recursive call, and method
addCNAME adds an element to vector backtrace. A path with recursion depth n adds n elements to
backtrace. Hence, backtrace may have unbounded number of elements and it is not underutilized.

23

1 Hashtable cg i (Request r eques t)
2 {
3 Hashtable a t t r s = new Hashtable (1 3) ;
4 . . .
5 i f (query != nu l l)
6 {
7 Str ingToken i zer s t = new Str ingToken i zer (decode (query) , ”&”) ;
8 whi le (s t . hasMoreTokens ())
9 {

10 . . .
11 a t t r s . put (key , value) ;
12 }
13 }
14 . . .
15 r e turn a t t r s ;
16 }
17

18 publ i c Reply recvReply (Request r eques t)
19 {
20 . . .
21 e l s e i f (r eques t . getPath () . equa l s (”/admin/ s e t ”))
22 {
23 Hashtable a t t r s = cg i (r eques t) ;
24 . . .
25 f o r (i n t i = 0 ; i < enabled . s i z e () ; i++)
26 {
27 . . .
28 p r e f s . put (key , (Str ing) a t t r s . get (key)) ;
29 }
30 . . .
31 }
32 . . .
33 r e turn r ep ly ;
34 }

Figure 11: An example from benchmark muffin. The method cgi allocates the container attrs and potentially
adds it many elements. The method recvReply performs a get operation over attrs in a loop. Since we
analyze not only the operations that are nested in the allocation site, we detect that attrs is not overpopulated
(the analysis of [24] reports it as overpopulated).

24

a program has 1000 functions, and in the benchmark 500 functions were invoked at least once, then the 25
most frequently invoked functions are dynamically hot. We note that theoretically speaking, the definitions
of dynamic and static hotness are incomparable (basically for any λ), but our experimental results show
a good correlation between the two notions. To illustrate the correlation we treat our static analysis as a
classifier of hot methods, and the specificity and sensitivity of the classifier are controlled by the threshold
λ. The sensitivity of a classifier is measured by the true positive rate (tpr), which is

#dynamically hot methods that are reported as statically hot

#dynamically hot methods

The specificity is determined by the false positive rate (fpr):

#non-dynamically hot methods that are reported as statically hot

#methods

For high values of λ, the classifier is expected to capture only dynamically hot methods (but it will miss
most of the dynamically hot methods), and thus it will have very high fpr but very low tpr. For very low
values of λ the classifier will report most of the methods as hot, so most of the hot methods will be reported
as hot, and we will have very high tpr but very low fpr. A fundamental metric for classifier evaluation is a
receiver operating characteristic (ROC) graph. A ROC graph is a plot with the false positive rate on the X
axis and the true positive rate on the Y axis. The point (0,1) is the perfect classifier, and the area beneath
an ROC curve can be used as a measure of accuracy of the classifier.

In our experimental evaluation we only considered application functions (and not library functions), and
the results are presented in Table 2. In the table, # M represents the number of application methods (that
are reachable from the main entry of the program), # I represents the number of application methods that
were actually invoked in the execution of the benchmark, T represents the average running time for the
static analysis of a single method (i.e., to check whether a single method is λ-hot for a fixed λ) (in seconds).
For each λ we present the tpr and fpr values of the classifications. We present an evaluation for two cases.
In the first case we statically analyze all the methods and calculate the tpr and fpr accordingly. In the
second case we consider only the active methods, namely, the methods that were invoked at least once in
the program, and we remove all the other methods from the program control flow graph. This simulates
a typical case where the programmer has prior knowledge on methods that are definitely not hot and can
instruct the static analysis to ignore them. The ROC curves are presented in Figure 8, where the most left
points on the graph are for λ = 10/30 and the fpr and tpr increases as λ decreases (until it finally reaches
1/30). In general, for most of the programs the static analysis gives useful and quite accurate information.
Specifically, the threshold λ = 7/30 captures more than half of the hot methods for most benchmarks (i.e.,
except fop and antlr) and with a fpr less than 0.3 which means that if a method was statically reported as not
hot, then with probability 0.7 it is really not hot. We note that the analysis over fop gives quite poor results
because only 10% of the methods were active. However, when we analyzed only the active methods we get
better results for fop, see the right hand graph in Figure 8. When we only consider the active methods, the
threshold λ = 9/30 captures most of the dynamically hot methods while maintaining a fpr less than 0.1 (for
most programs).

5.4 Static profiling: frequency of class method calls

We have experimented with the potential of our framework to statically predict collections of methods,
where the set will be frequently invoked. As discussed in Section 3.3, when such sets of methods are software
libraries, good predictions can assist static vs dynamic library linking. As our prototype implementation has
focused on Java programs, where static linking does not apply (the JVM dynamically loads classes as they
are referenced), we have grouped methods based on the class they belong to. Then we applied the modeling
of Section 3.3, where a Java class is used as a substitute for a library.

We examined the thresholds 1/30, 2/30, 3/30, ..., 16/30. Similarly to the case of hot methods, for every
threshold λ we say that a class is statically hot if the collection of its methods is λ-hot (according to

25

Figure 12: The ROC curves for the analysis of frequently invoked classes.

the definition in Section 3.3). Again, we compared the results to dynamic profiling from the DaCapo
benchmarks [27]. In the dynamic profiling we define the top 5% of the most frequently invoked classes as
dynamically hot. Table 3 presents a summary of the analysis, where # C represents the number of classes
(that are reachable from the main entry of the program), # I represents the number of classes that were
actually invoked in the execution of the benchmark, T represents the average running time for the static
analysis of a single class (i.e., to check whether the collection of methods of a whole class is λ-hot for a fixed
λ) (in seconds).

Benchmark # C # I T

antlr 103 79 8.3
bloat 284 168 29.7
eclipse 187 69 4.2
fop 197 24 0.2

luindex 101 64 3.1
lusearch 164 69 9.0
pmd 379 130 10.5

Table 3: Experimental results for frequency of classes

Figure 12 shows the corresponding ROC curves. The leftmost point of each curve corresponds to λ =
16/30, and the fpr and tpr increase as we move to the right. We see that the static analysis provides useful
information, as for most benchmarks it achieves relatively large tpr while keeping the tpr reasonably low.
The static analysis performs poorly in the case of fop, for which we have seen in Section 5.3 that the overlap
between methods discovered in the static and dynamic analysis is very small.

Hot methods vs hot collections of methods. We clarify some differences between the concepts of hot methods
and hot collections of methods. First, we note that frequently invoked collections of methods cannot be
detected simply by detecting frequently invoked methods, and a separate analysis is required. Figure 13
illustrates the difference on a small example. We have used a larger threshold range in our analysis of
hot classes, and thus groups of functions are in general expected to meet larger thresholds than individual
functions. In our experimental results, the information computed is not of direct use, as all classes are loaded
on runtime by the JVM. However, it is demonstrated that our framework can statically analyze programs
and provide meaningful suggestions as to which groups of methods (e.g., classes, libraries) will be frequently
used.

Remarks. We run the experiments on a single thread Intel Pentium 3.80GHz. For Table 1 results, the alias
analysis did not complete for some benchmarks (e.g. fop, pmd). In Table 2 we only show benchmarks for

26

1 c l a s s A:
2 {
3 publ i c void f 1 ()
4 {
5 . . .
6 }
7 publ i c void f 2 ()
8 {
9 . . .

10 }
11 publ i c void f 3 ()
12 {
13 . . .
14 }
15 }
16

17 void main ()
18 {
19 A a = new A() ;
20 whi le (1)
21 {
22 a . f 1 () ;
23 a . f 2 () ;
24 a . f 3 () ;
25 }
26 }

Figure 13: Illustration of the difference between hot methods and hot collections of methods. Here, the
collection of the methods of class A is λ-hot for any threshold λ ≤ 1. However, each of the methods f1(),
f2() and f3() of A are at most 1/3-hot. Hence determining frequently invoked collections of methods requires
separate analysis, and cannot rely on simply detecting frequently invoked methods.

27

which we managed to obtain dynamic profiles. For a few benchmarks (e.g. jython) the quantitative analysis
took too long for the entire benchmark. In such cases, our tool could be used to focus on specific functions.

6 Related Work

Interprocedural analysis. Algorithms that operate on the interprocedural control-flow graphs provide the
framework for static analysis of programs, and have numerous applications. Precise interprocedural analysis
is crucial for dataflow analysis and has been studied in several works [2, 3]. The study of interprocedural
analysis has also been extended to weighted pushdown systems, where the weight domain is a bounded
idempotent semiring [4, 5]. Analysis of such weighted pushdown systems has been used in many applications
of program analysis [5, 6, 7]. Our work is different because the objectives (mean-payoff and ratio analysis) we
consider are very different from reachability and bounded domains. The mean-payoff objective is a function
that assigns a real-valued number to every path. In contrast to bounded domain functions, the range of a
mean-payoff function is potentially uncountable. We develop novel techniques to extend the summary graph
approach for finite-height lattices to solve mean-payoff analysis of QICFGs (which requires computing fix
points for infinite-height lattices).

Mean-payoff analysis. Mean-payoff objectives are quantitative metrics for performance modeling in many
applications and very well-studied in the context of finite-state graphs and games. Finite-state graphs and
games with mean-payoff objectives have been studied in [32, 13, 16, 18] for performance modeling, and ro-
bust synthesis of reactive systems [20, 11]. Quantitative abstraction-refinement frameworks for finite-state
systems with mean-payoff objectives have also been studied in [15]. While the mean-payoff objectives have
been considered in depth for finite-state systems, they have not been considered in depth for interproce-
dural analysis. Pushdown systems with mean-payoff objectives were considered in [25]. We significantly
improve the complexity of the polynomial-time algorithm for interprocedural mean-payoff analysis that can
be obtained by a reduction to the results of [25].

Detecting inefficiently-used containers. Bloat detection and detecting inefficiently used containers have
been identified in many previous works as a major reason for program inefficiency. Dynamic approaches for
the problem were studied in many works such as [37, 23, 38, 39, 40, 41, 42]. A static approach to analyze
the problem was first considered in [24], which is the most closely related work to our case study. The work
of [24] provides an excellent exposition of the problem with several practical motivations. It also describes
the clear advantages of the static analysis tools, and identifies that soundness in detecting inefficiently used
containers (with no or low false positive rates) is a very important feature. Our approach for the problem
is significantly different from the approach of [24]. A big part of the contribution of [24] is an automated
annotation for the functionality of the containers operation. The main algorithmic approach of [24] is to use
CFL-reachability (context-free reachability) to identify nesting loop depths and then use this information for
detecting misuse of containers. Our algorithmic approach is very different: we use a quantitative analysis
approach, i.e., ratio analysis of QICFGs to model the problem.

Static profiling of programs. Static and dynamic profiling of programs is in the heart of program
optimization. Static profiling are typically used in branch predictions where the goal is to assign probabilities
to branches, and typically require some prior knowledge on the probability of inputs. Static profiling of
programs for branch predictions has been considered in [43, 44, 45, 46]. Dynamic profiling has also been
used in many applications related to performance optimizations, see [47] for a collection of dynamic profiling
tools. Two main drawbacks of dynamic profiling are that they require inputs, and they cannot be used for
compiler optimizations. We use static profiling to determine if a function is invoked frequently along some
run of the program, and do not require any prior knowledge on inputs. The techniques used in [43, 44, 46]
involves solving linear equations with sparse matrix solvers, whereas our solution method is different (by
quantitative analysis of QICFGs).

28

7 Conclusion

In this work we considered the quantitative (ratio and mean-payoff) analysis for interprocedural programs.
We demonstrated how interprocedural quantitative analysis can aid to automatically reason about properties
of programs and potential program optimizations. We significantly improved the theoretical known upper-
bound for the polynomial-time solution, and presented several practical optimizations that proved to be
useful in real programs. We have implemented the algorithm in Java, and showed that it scales to DaCapo
benchmarks of real-world programs. This shows that interprocedural quantitative analysis is feasible and
useful. Some possible directions of future works are as follows: (1) extend our framework with multiple
quantitative objectives and study their applications; and (2) extend [15] to have an abstraction-refinement
framework for quantitative interprocedural analysis.

Acknowledgments. We thank Mooly Sagiv for pointing us to reference [24], Nimrod Zibil for discussions
on C optimizations, and anonymous reviewers for their helpful comments.

References

[1] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In POPL, pages 238–252, 1977.

[2] Thomas W. Reps, Susan Horwitz, and Shmuel Sagiv. Precise interprocedural dataflow analysis via
graph reachability. In POPL, pages 49–61, 1995.

[3] Markus Müller-Olm and Helmut Seidl. Precise interprocedural analysis through linear algebra. In
POPL, pages 330–341, 2004.

[4] Ahmed Bouajjani, Javier Esparza, and Tayssir Touili. A generic approach to the static analysis of
concurrent programs with procedures. In POPL, 2003.

[5] Thomas W. Reps, Stefan Schwoon, Somesh Jha, and David Melski. Weighted pushdown systems and
their application to interprocedural dataflow analysis. Sci. Comput. Program., 58(1-2):206–263, 2005.

[6] Akash Lal, Thomas W. Reps, and Gogul Balakrishnan. Extended weighted pushdown systems. In CAV,
pages 434–448, 2005.

[7] Thomas W. Reps, Akash Lal, and Nicholas Kidd. Program analysis using weighted pushdown systems.
In FSTTCS, pages 23–51, 2007.

[8] ReinhardWilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing, David B. Whal-
ley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mitra, Frank Mueller, Isabelle
Puaut, Peter P. Puschner, Jan Staschulat, and Per Stenström. The worst-case execution-time problem
- overview of methods and survey of tools. ACM Trans. Embedded Comput. Syst., 7(3), 2008.

[9] Vivek Tiwari, Sharad Malik, and Andrew Wolfe. Power analysis of embedded software: a first step
towards software power minimization. IEEE Trans. VLSI Syst., 2(4):437–445, 1994.

[10] Christian Ferdinand, Florian Martin, Reinhard Wilhelm, and Martin Alt. Cache behavior prediction
by abstract interpretation. Sci. Comput. Program., 99.

[11] R. Bloem, K. Chatterjee, T. A. Henzinger, and B. Jobstmann. Better quality in synthesis through
quantitative objectives. In CAV, pages 140–156, 2009.

[12] K. Chatterjee, L. Doyen, and T. A. Henzinger. Quantitative languages. ACM Trans. Comput. Log.,
11(4), 2010.

[13] J. Filar and K. Vrieze. Competitive Markov Decision Processes. Springer-Verlag, 1997.

29

[14] Mark S. Boddy. Anytime problem solving using dynamic programming. In AAAI, pages 738–743, 1991.

[15] Pavol Cerný, Thomas A. Henzinger, and Arjun Radhakrishna. Quantitative abstraction refinement. In
POPL, pages 115–128, 2013.

[16] A. Ehrenfeucht and J. Mycielski. Positional strategies for mean payoff games. Int. Journal of Game
Theory, 8(2):109–113, 1979.

[17] H. Bjorklund, S. Sandberg, and S. Vorobyov. A combinatorial strongly subexponential strategy im-
provement algorithm for mean payoff games. In MFCS’04, pages 673–685, 2004.

[18] U. Zwick and M. Paterson. The complexity of mean payoff games on graphs. Theoretical Computer
Science, 158:343–359, 1996.

[19] T. A. Liggett and S. A. Lippman. Stochastic games with perfect information and time average payoff.
Siam Review, 11:604–607, 1969.

[20] R. Bloem, K. Greimel, T. A. Henzinger, and B. Jobstmann. Synthesizing robust systems. In FMCAD,
pages 85–92, 2009.

[21] U. Boker, K. Chatterjee, T. A. Henzinger, and O. Kupferman. Temporal specifications with accumulative
values. In LICS, 2011.

[22] M. Droste and I. Meinecke. Describing average- and longtime-behavior by weighted MSO logics. In
MFCS, pages 537–548, 2010.

[23] Nick Mitchell and Gary Sevitsky. The causes of bloat, the limits of health. In OOPSLA, pages 245–260,
2007.

[24] Guoqing (Harry) Xu and Atanas Rountev. Detecting inefficiently-used containers to avoid bloat. In
PLDI, pages 160–173, 2010.

[25] Krishnendu Chatterjee and Yaron Velner. Mean-payoff pushdown games. In LICS, pages 195–204, 2012.

[26] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay Sundaresan.
Soot - a java bytecode optimization framework. In CASCON’99.

[27] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S. McKinley, Rotem
Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony
Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish Phansalkar, Darko Stefanović, Thomas
VanDrunen, Daniel von Dincklage, and Ben Wiedermann. The dacapo benchmarks: java benchmarking
development and analysis. SIGPLAN Not., 41(10):169–190, 2006.

[28] Krishnendu Chatterjee, Andreas Pavlogiannis, and Yaron Velner. Quantitative Interprocedural Analysis.
In POPL, 2015.

[29] Yichen Xie, Mayur Naik, Brian Hackett, and Alex Aiken. Soundness and its role in bug detection
systems. In Proc. of the Workshop on the Evaluation of Software Defect Detection Tools, 2005.

[30] Gene M Amdahl. Validity of the single processor approach to achieving large scale computing capabil-
ities. In Proceedings of the April 18-20, 1967, spring joint computer conference, pages 483–485. ACM,
1967.

[31] Aaron Carroll and Gernot Heiser. An analysis of power consumption in a smartphone. In USENIX,
2010.

[32] R.M. Karp. A characterization of the minimum cycle mean in a digraph. Discrete Mathematics, 23:309–
311, 1978.

30

[33] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. The MIT Press,
3rd edition, 2009.

[34] Eric Bodden, Andreas Sewe, Jan Sinschek, Mira Mezini, and Hela Oueslati. Taming reflection: Aiding
static analysis in the presence of reflection and custom class loaders. In ICSE ’11, pages 241–250. ACM,
2011.

[35] Ondrej Lhoták and Laurie J. Hendren. Scaling java points-to analysis using spark. In CC, pages 153–169,
2003.

[36] Manu Sridharan and Rastislav Bod́ık. Refinement-based context-sensitive points-to analysis for java.
In PLDI, pages 387–400, 2006.

[37] Nick Mitchell, Gary Sevitsky, and Harini Srinivasan. Modeling runtime behavior in framework-based
applications. In ECOOP, 2006.

[38] Bruno Dufour, Barbara G. Ryder, and Gary Sevitsky. A scalable technique for characterizing the usage
of temporaries in framework-intensive java applications. In SIGSOFT FSE, pages 59–70, 2008.

[39] Gene Novark, Emery D. Berger, and Benjamin G. Zorn. Efficiently and precisely locating memory leaks
and bloat. In PLDI, pages 397–407, 2009.

[40] Ohad Shacham, Martin T. Vechev, and Eran Yahav. Chameleon: adaptive selection of collections. In
PLDI, pages 408–418, 2009.

[41] Ajeet Shankar, Matthew Arnold, and Rastislav Bod́ık. Jolt: lightweight dynamic analysis and removal
of object churn. In OOPSLA, 2008.

[42] Guoqing (Harry) Xu, Nick Mitchell, Matthew Arnold, Atanas Rountev, Edith Schonberg, and Gary
Sevitsky. Finding low-utility data structures. In PLDI, 2010.

[43] Thomas Ball and James R. Larus. Branch prediction for free. In PLDI, pages 300–313, 1993.

[44] Youfeng Wu and James R. Larus. Static branch frequency and program profile analysis. In MICRO 27,
pages 1–11. ACM, 1994.

[45] John L. Hennessy and David A. Patterson. Computer Architecture, Fourth Edition: A Quantitative
Approach. Morgan Kaufmann, 2006.

[46] Tim A. Wagner, Vance Maverick, Susan L. Graham, and Michael A. Harrison. Accurate static estimators
for program optimization. In PLDI, 1994.

[47] Wikipedia. List of performance analysis tools, 2015.

31

