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A comprehensive understanding of the clonal evolution of cancer is critical for 

understanding neoplasia.  Genome-wide sequencing data enables evolutionary 

studies at unprecedented depth. However, classical phylogenetic methods 

often struggle with noisy sequencing data of impure DNA samples and fail to 

detect subclones that have different evolutionary trajectories. We have 

developed a tool, called Treeomics, that allows us to reconstruct the phylogeny 

of a cancer with commonly available sequencing technologies. Using Bayesian 

inference and Integer Linear Programming, robust phylogenies consistent 

with the biological processes underlying cancer evolution were obtained for 

pancreatic, ovarian, and prostate cancers. Furthermore, Treeomics correctly 

identified sequencing artifacts such as those resulting from low statistical 

power; nearly 7% of variants were misclassified by conventional statistical 

methods. These artifacts can skew phylogenies by creating illusory tumor 

heterogeneity among distinct samples. Importantly, we show that the 

evolutionary trees generated with Treeomics are mathematically optimal.   
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Genetic evolution underlies our current understanding of cancer1–3 and the 

development of resistance to therapies4–7. The principles governing this evolution are still 

an active area of research, particularly for metastasis, the final biological stage of cancer 

that is responsible for the vast majority of deaths from the disease. Although many 

insights into the nature of metastasis have emerged8,9, we do not yet know how malignant 

tumors evolve the potential to metastasize nor do we know the temporal or spatial rules 

governing the seeding of metastases at sites distant from the primary tumor10–13.  

 

In an effort to help understand this process, reconstructions of the temporal 

evolution of a patient's cancer from genome sequencing data have been reported14–17. But 

phylogenomic analysis has largely been focused on the subclonal structure and branching 

patterns of primary tumors18–20. The evolutionary relationships among metastases have 

less often been determined21–25, despite their importance. Several factors complicate the 

determination of the evolutionary histories of metastatic cancers. First, comprehensive 

data sets of samples from spatially-distinct metastases in different organs are rarely 

available. Second, most advanced cancer samples are derived from patients who have 

been treated with toxic and mutagenic chemotherapies, imposing a variety of unknown 

constraints on genetic evolution and its interpretation. Third, tumors are composed of 

varying proportions of neoplastic and non-neoplastic cells, and inferring meaningful 

evolutionary patterns from such impure samples is challenging26,27. Moreover, the 

situation for solid tumors differs from that of “liquid tumors”, where mutant allele 

fractions are high and can be easily determined from cytological analysis. Fourth, 

chromosome-level changes, including losses, are frequently observed in cancers, and 

previously acquired variants can be lost (i.e., some variants are not "persistent"). Finally, 

even when performed at high depth, next-generation sequencing coverage is always non-

uniform, resulting in different amounts of uncertainty among different loci within the 

same DNA sample as well as among different samples at the same locus. 

 

The variety of methods that have recently been used to infer evolutionary 

relationships among tumors underscore these complicating factors and the need for a 

more robust phylogenomic approach.  The methods include those based on genetic 
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distance23,28–30, maximum parsimony31,25, clonal ordering3,17,24 and variant allele 

frequency18,32,33. Classical phylogenetics assumes that the individual traits are known 

with certainty26. Consequently these methods struggle with noisy high-throughput DNA 

sequencing data, possibly from very impure samples, and fail to exploit the full potential 

of these data due to the error-prone binary present/absent classification of variants. 

Modern phylogenomic methods34–37 estimate variants from the observed variant allele 

frequencies (VAF). However, inaccurate VAFs resulting from insufficient sequencing 

depth or low sample purity introduce potential errors in the analysis. Furthermore, many 

of the methods used for inferring cancer evolutionary trees are based on those designed 

for more complex evolutionary processes involving sex and recombination12.  

  

Our current study was inspired by a different component of evolutionary biology, 

involving the analysis of asexual rather than sexual populations. One key conceptual 

difference between the new approach used here (“Treeomics”) and previous ones is that 

we determined the probability that each variant was or was not found in each sequenced 

lesion rather than rely on a binary input ("present" or "absent"), as used in classical 

phylogenetic methods. This evolutionary approach results in multiple advantages: (i) it is 

amenable to low coverage sequencing data and impure samples, (ii) no constraints on tree 

topologies, substitution models or mutation rates are required, (iii) Mixed Integer Linear 

Programming38 produces a single result without convergence or termination issues, and 

(iv) the obtained evolutionary tree is mathematically guaranteed to be optimal.  

 

RESULTS 

Evolutionarily incompatible mutation patterns 
To illustrate our approach, we first focused on the data of a treatment-naïve pancreatic 

cancer patient Pam0322 (Fig. 1). WGS (whole-genome sequencing; coverage: median 

51x, mean 56x) as well as deep targeted sequencing (coverage: median 296x, mean 644x) 

was performed on ten spatially-distinct samples from the primary tumor and distinct liver 

and lung metastases (Online Methods and ref. 22). Estimated purities ranged from 16% to 

43% per sample22, typical for low-cellularity cancers. Founder variants (present in all 
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samples) and unique variants (present in exactly one sample) are parsimony-

uninformative and hence irrelevant for the branching in an evolutionary tree. 

Parsimony-informative variants (variants present in some but not in all samples; depicted 

by black dots in Fig. 1) exhibited many evolutionary incompatibilities when we tried to 

reconstruct a phylogeny consistent with the evolutionary processes underlying tumor 

progression using conventional methods. In particular, evolutionary relationships could 

not be inferred based on standard present/absent classification of variants (Fig. S1).   

 

The mutation pattern of a variant is denoted by the set of samples where the variant 

is present (Fig. S1). Two somatic variants ! and ! are evolutionarily incompatible if and 

only if samples with the following three patterns exist: (i) variant ! is absent and ! is 

present, (ii) ! is present and ! is absent, and (iii) both variants are present. Because 

somatic variants are by definition absent in the germline, ! and ! are evolutionarily 

incompatible, so no perfect (the same variant is not independently acquired twice; infinite 

sites model39) and persistent (acquired variants are not lost; no back mutation) phylogeny 

can be inferred (Fig S1). 

 

  A perfect and persistent tree consistent with the observed (noisy) data of Pam03 

cannot be inferred and may not even exist40–42. Treeomics shows that such a phylogeny 

may indeed exist but that it is hidden behind technical and biological artifacts. Although 

the median coverage in the sequencing data from Pam03 was high, many of the identified 

variants had a coverage below 20x in at least one of the impure samples (purity <20%; 

Fig. S2), leading to potentially misleading evolutionary patterns with standard 

approaches, as shown below. 

 

Identifying evolutionarily compatible mutation patterns 
To account for inconclusive data, we developed a Bayesian inference model to calculate 

the probability that a variant is present in a sample (detailed in Online Methods). Using 

these probabilities for each individual variant, we calculated reliability scores for each 

possible mutation pattern. We constructed an evolutionary conflict graph where the nodes 

were determined through analysis of all mutation patterns, with the weights of each node 
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provided by the calculated reliability scores (Fig. S3). If two nodes (mutation patterns) 

were evolutionarily incompatible, an edge between the corresponding nodes was added. 

We aimed to identify the set of nodes that maximized the sum of the weights (reliability 

scores) when no pair of nodes was evolutionarily incompatible.  This maximal set 

represents the most reliable and evolutionarily compatible mutation patterns 

(Supplementary Information). We modeled and solved the maximization challenge using 

a Mixed Integer Linear Program38 (MILP; see Online Methods). Additionally, we proved 

via a reduction to the weighted minimum vertex cover problem that the decision version 

of finding the most reliable and evolutionarily compatible mutation patterns is 

NP-complete43 (see Supplementary Information for mathematical proofs). 

 

Predicting putative artifacts in sequencing data 
The solution obtained with the MILP provided the most likely evolutionarily compatible 

mutation pattern for each variant. By comparing our inferred classifications to 

conventional binary classification, Treeomics predicted putative sequencing or biological 

artifacts in the data (Fig. 2). The conventional classifications differed in 8.8% of the 

variants in Pam03 (78 putative artifacts from 89 variants in 10 samples; Fig. 2). As 

expected, the majority (72) of the differences were caused by putative false-negatives in 

the binary classification that were inferred to be present by Treeomics (Table 1). 

Fifty-nine of these putative false-negatives had relatively low coverage, explaining how 

they could easily be misclassified as absent given the low neoplastic cell content in these 

samples. Accordingly, many of these under-powered false-negatives occurred in samples 

with the lowest coverage (LiM 5, LuM 2-3) or lowest neoplastic cell content (LuM 1). In 

LuM 2, the driver gene mutation KRAS was incorrectly classified as absent by 

conventional means though it is most likely a clonal founding mutation and was present 

at a VAF of 19% in the original WGS sample (Supplementary Table S1). Some variants 

contained false-negatives across many samples, indicating that these variants were 

generally difficult to call. Remarkably, 95% (56/59) of the predicted under-powered 

false-negatives were either significantly present in the WGS data (mostly at higher 

coverage than in the targeted sequencing data), or the genomic region of the variant 

possessed a low alignability score (Supplementary Table S1).  
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An additional 13 putative false-negatives were sequenced at relatively high 

coverage, but might be explained by loss of heterozygosity (LOH), which frequently 

occurs in pancreatic cancers. Of the 6 putative false-positives (purple squares in Fig. 2b; 

e.g., abParts, MFN1), 83% (5/6) were classified as absent in the original WGS data and 

all of them were in a genomic region with a low alignability score44,45 (Supplementary 

Table S1). Hence, at least 6.9% (56 putative false-negatives + 5 putative false-positives) 

of the variants were misclassified by conventional binary classification. If a 

phylogenomic method does not account for sequencing artifacts, a large fraction of 

variants will often be inconsistent with any inferred evolutionary tree. In our case, at least 

31.5% of the variants would be evolutionarily incompatible – independent of the inferred 

tree topology (Fig. 2a). These putative artifacts may also help to explain the observed 

high tumor heterogeneity in earlier studies and the recently reported tumor homogeneity 

when sequencing depth is increased22,28. 

 

Inferring evolutionary trees 
From the identified mutation patterns, Treeomics inferred an evolutionary tree rooted at 

the germline DNA sequence of Pam03 (Fig. 3). We found strong support for two major 

evolutionary clusters among the geographically distinct lesions: (i) samples LiM 2-5 

(liver mets) and PT 11 (primary tumor) and (ii) samples LiM 1, LuM 1 (lung met.) and 

PT 10. These results indicate that a recent parental clone of PT 11 seeded the liver 

metastases in cluster (i) and a recent parental clone of PT 10 seeded the lung and liver 

metastases in cluster (ii); perhaps the same clone also seeded LuM 2 and 3, however, the 

low neoplastic cell content and the low coverage of LuM 2 and 3 prevented a definite 

conclusion. We also reconstructed the same major clusters by using the low-coverage 

WGS data (Fig. S4) instead of the high coverage targeted sequencing data (Fig. 3). The 

inferred trees indicated that the lung metastases had been seeded before most of the liver 

metastases in patient Pam03 (Fig. 3). Furthermore, the results suggested that the liver 

metastasis LiM 1 was seeded from a genetically different subclone than all other liver 

metastases.  In a different treatment-naïve pancreatic cancer patient (Pam02) we also 

found that liver metastases diverged late in the inferred evolutionary tree (Fig. S5). 
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Confirming robustness of the identified mutation patterns 

We investigated the robustness of our results by determining whether Treeomics could 

identify the inferred mutation patterns and their evolutionary trajectories from a random 

subset of the given variants. Through this analysis, we found that only  ~two thirds of the 

variants in Pam03 were sufficient to identify all major evolutionary relationships and 

clusters, despite the fact that only 34% of variants were identified as 

parsimony-informative (Fig. S6a). As expected, subclusters within the main clusters were 

less frequently reproduced as indicated by the lower bootstrapping values because of 

inadequate supporting sequencing data. 

 

To further validate our approach, we reanalyzed data from high-grade serous 

ovarian cancers23. We were able to reproduce all phylogenetic trees of Bashashati et al.23 

except for Case 5. In this case, the authors reported an early divergence of sample 5c 

while Treeomics suggested a late divergence (Fig. S7c). Comprehensive analysis of their 

data (reinterpreted in Fig. S7a,b) revealed that their tree either required that several 

variants (including two driver gene mutations and multiple indels) occurred 

independently twice or that two mutations in the driver genes ABL1 and MDM4 were 

lost; both possibilities seem implausible (Fig. S7 and Fig. 1D in ref. 23).  Treeomics did 

not require these implausible scenarios to construct an otherwise similar tree.  We 

confirmed the robustness of our results via bootstrapping (Fig. S6b). Distance-based 

methods, such as those used by Bashashati et al., can be compromised by large 

differences in the number of acquired mutations among samples; sample 5c had twice as 

many mutations than most other samples.   

 

We also reanalyzed a comprehensive data set from prostate cancers21. Treeomics 

generally confirmed the results and further refined others. For example, for patient A32, 

Gundem et al. (2015) reported an inconclusive evolutionary tree due to evolutionary 

incompatible subclones present at low frequencies. Our method used the strong evidence 

for mutation patterns C, E and D, F (see Extended Data Figure 3p,q in ref. 21) and was 
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thereby able to illuminate the evolutionary relationships among these samples in a 

conclusive fashion (Fig. S8). 

 

Detecting subclones of distinct origin 
If multiple subclones were represented in the same sample, conventional phylogenetic 

approaches would be unable to separate their evolutionary trajectories. In the cases where 

multiple subclones present at low frequencies were apparent, evolutionarily incompatible 

mutation patterns with high reliability scores were identified (Fig. S9b). By investigating 

the VAFs of the variants in these patterns, we could infer separate evolutionary histories 

for the subclones (Online Methods). For both the prostate cancer data of case A2221 

(Fig. S9) and of case 620 (Fig. S10), Treeomics identified subclonal structures and 

separated their evolutionary trajectories without requiring high purity samples or deep 

sequencing data as are required by previously used methods.  

 

DISCUSSION 
The new approach described here efficiently reconstructs the evolutionary history, detects 

potential artifacts in noisy sequencing data, and finds subclones of distinct origin. The 

evolutionary theory of asexually evolving populations combined with Bayesian inference 

and Integer Linear Programming enabled us to infer detailed phylogenomic trees. In 

contrast to other tools, Treeomics accounts for putative artifacts in sequencing data and 

can thereby infer the branches where somatic variants were acquired as well as where 

some may have been lost during evolution, presumably through losses of heterozygosity 

resulting from chromosomal instability46. The branching in the inferred trees sheds light 

on the seeding patterns (timing47 and location) of particular metastatic lesions11,12.  

 

We have designed Treeomics from first principles to directly handle ambiguity in 

high-throughput sequencing data, including samples with low neoplastic cell content or 

coverage. The mutation patterns and their evolutionary conflict graph form a robust data 

structure and consequently the painful task of semi-automatic filtering becomes 

unnecessary. As a result of the Bayesian confidence estimates for the individual variants, 
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this method can infer more robust results than traditional phylogenetic methods, which 

employ a binary representation of sequencing data. Furthermore, as shown above, 

distance-based methods can produce results inconsistent with the evolutionary theory of 

cancer as they often ignore knowledge of biological phenomena specific to neoplasia 

(Fig. S7). We compared our results to another state-of-the-art method in cancer 

phylogenomics37 (other methods were not applicable for multiple spatially-distinct 

samples with low neoplastic cell content). AncesTree37 roughly identified one of the 

major evolutionary clusters in Pam03 but excluded 58% (37/89) of the variants (among 

them the driver gene mutation in KRAS) in the inferred phylogeny due to evolutionary 

incompatibilities (Fig. S11).  

 

At present Treeomics only employs nucleotide substitutions and short insertions 

and deletions – a subset of the available information. Other types of data, such as copy 

number alterations, structural variations and DNA methylation, could be incorporated 

into Treeomics to further improve the accuracy of the inferred results48–51. Such analyses 

can benefit from analyzing all tumor samples from the same patient together (plus a 

matched normal sample) to account for the joint evolution of cancer cells, yielding more 

robust results52. 

 

The challenge in finding the most likely evolutionary trajectories is NP-complete. 

However, medium-sized instances of NP-complete problems are no longer intractable 

due to the enormous engineering and research effort that has been devoted to ILP solvers. 

The MILP formulation enables an efficient and robust analysis of large datasets (see 

Supplementary Information, Theorem 1, for more details about the theoretical limits). 

MILPs may also be useful in other areas of phylogenetic inference where methods with 

strong biological assumptions (e.g. constant mutation rates or specific substitution 

profiles) are not applicable or are computationally too expensive to obtain guaranteed 

optimal solutions. 
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ONLINE METHODS 
 

DNA sequencing design and validation 

As described in detail in ref. 22, sequencing data were generated in two stages. First, 

genomic DNA from 22 tumor samples (16 metastases and 6 primary tumor sections) was 

evaluated by 60x whole genome sequencing (WGS) using an Illumina Hi-Seq 2000. 

Importantly, genomic DNA from the normal tissues of each patient was used to facilitate 

identification of somatic variants. We obtained an average coverage of 69x with 97.5% of 

bases covered at >10x, revealing a total of 106,919 putative coding and noncoding 

somatic mutations, (average of 4,860 per sample). To limit the artifacts generated by 

WGS and alignment, we filtered the putative variants using several quality parameters, 

including read directionality, mutant allele frequency detected in the normal, known 

human SNPs, and the number of independent tags at each site. 

 

Second, we utilized a targeted sequencing approach to independently screen every 

mutation that we observed to be of high quality in at least one WGS tumor sample. 

Briefly, probes for capture were designed to flank each potential mutant base (n = 960) 

and libraries were prepared for the original 22 WGS samples. Using an Illumina chip-

based approach, we successfully aligned, processed, and validated 219 mutations (range 

107-112 per patient) at an average sequencing depth of 772x (Supplementary Tables S2 

and S3). In addition to the increased coverage and sensitivity of targeted sequencing, both 

sequencing approaches generated independent datasets in which we could directly 

compare putative variants in silico among many tumors within a patient. Additional 

details regarding patient selection, processing of tissue samples and DNA extraction and 

quantification can be found in ref. 22. 

 

Bayesian inference model 

To compute reliability scores for each mutation pattern, we first extract posterior 

probabilities for the presence and absence of a variant in a sample from a Bayesian model 

of error-prone sequencing. If f is the true fraction of variant reads in the sample, ! is our 
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prior belief about f, and e is the sequencing error rate, the posterior distribution ! of f 

given N total reads and K variant reads is  

! ! !,! = !
! ∙ ! 1− ! + 1− ! ! ! ∙ ! ∙ ! + 1− ! 1− ! !!! ∙ ! ! ∙ 1! (1) 

where ! is a normalizing constant (see Supplementary Information). A priori, the variant 

allele frequency in a sample is exactly zero (! = 0) with some positive probability !!. 

The prior ! is then of the following form  

! ! = !! ∙ ! ! + 1− !! ∙ ! ! , (2) 

where ! !  denotes the Dirac delta function and !(!) denotes a prior given the variant is 

present (Supplementary Information). The prior can differ for each variant to account for 

sample purity and variant ploidy. The probability that a variant is absent, denoted by !, 

and the probability that a variant is present, denoted by !, are  

! = ! ! = 0 !,! , !  = 1− !. (3) 

A variety of more sophisticated variant detection algorithms can be used here as long as 

the output can be converted to posterior probabilities of presence and absence. We 

calculate the probability of each mutation pattern for a particular variant by multiplying 

the corresponding posterior probabilities for each sample. Each mutation pattern has 

some positive probability, but those supported by the data are given much more weight. 

A mutation pattern ! is denoted as a binary vector of length |!| (total number of samples) 

where !!  is 1 if the variant is present in sample ! and 0 if absent. The likelihood 

!! !  that a variant ! exhibits pattern ! is 

!!(!) = !!,!!! ∙ !!,!!!!! .
!∈!

 (4) 

The reliability score !!  of each mutation pattern ! (corresponding to a node in the 

evolutionary conflict graph; Fig. S3) is given by  

!! = −!"# 1− !! !
!

. (5) 

The argument of the logarithm denotes the probability that no mutation has pattern ! and 

hence leverages the full sequencing information from all variants. With these scores 

(weights), the minimum weight vertex cover of the evolutionary conflict graph 
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corresponds to identifying the most reliable and evolutionarily compatible mutation 

patterns (see Supplementary Information for further details). 

Identifying reliable evolutionarily compatible mutation patterns 

Given the calculated reliability scores, we efficiently find the most reliable and 

evolutionarily compatible mutation pattern for all variants via solving a mixed integer 

linear program38 (MILP). In the Supplementary Information we prove that finding these 

mutation patterns is equivalent to solving the Minimum Vertex Cover problem; one of 

Karp's original 21 NP-complete problems43. In the Minimum Vertex Cover problem one 

wants to find the minimum set of nodes in an undirected graph such that each edge in the 

graph is adjacent to one of the nodes in the minimum set. Therefore, by definition all 

edges are covered by the nodes in the minimum set. Similarly, we try to find the weighted 

set of nodes (here mutation patterns) with the minimal sum of reliability scores such that 

no evolutionary incompatibilities in the conflict graph remain. After this minimal set of 

nodes and their adjacent edges have been removed from the graph, we can easily infer an 

evolutionary tree since evolutionary conflicts no longer exist (i.e., all edges were covered 

and removed with the minimal set). The remaining set of mutation patterns is by 

definition the maximal set of evolutionarily compatible patterns (see Supplementary 

Information for details). 

 

In the evolutionary conflict graph ! = (!,!) , each node ! ∈ !  represents a 

different mutation pattern. For ! samples, the number of nodes |!| is given by 2!. For 

each pair of evolutionarily incompatible mutation patterns ! and !, there exists an edge 

(!, !) ∈ !. The weight (!!) of each node ! is given by the reliability scores !! described in 

the Bayesian inference model section (Fig. S3). 

 

The MILP to find the minimal-weighted set of evolutionarily incompatible mutation 

patterns is defined by the following objective function and constraints:  

(objective function) minimize  !! ∙ !!!∈!   (6) 

(constraints) 
subject to  !! + !! ≥ 1 

             !! ∈ {0,1}, !! > 0 

for all (!, !) ∈ ! 

for all ! ∈ ! 
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This formulation guarantees that the MILP solver finds the minimal value of the 

objective function such that all constraints are met and hence the nodes in the selected set 

cover all edges. The evolutionarily compatible and most reliable mutation 

patterns {! | !! = 0} are given by the complement set of the optimal solution {! | !! = 1} 
to the MILP. 

 

Inferring evolutionary trees 

After the evolutionarily compatible mutation patterns {! | !! = 1} have been identified 

and variants are assigned to their most likely evolutionarily compatible pattern based on 

the maximum likelihood weights given by the Bayesian inference model, the derivation 

of an evolutionary tree is a trivial computational task. In quadratic time (!(! ∙!)) of the 

input size we construct a unique phylogeny where ! is the number of samples and ! is 

the total number of distinct variants53. The branches where the individual variants are 

acquired follow from the inferred tree.  

 

Detecting subclones of distinct origin 

Evolutionary incompatible mutation patterns with high reliability scores may indicate 

mixed subclones with distinct evolutionary trajectories (Fig. S9b, Fig. S10a). Recall that 

evolutionary incompatibility requires that the conflicting variants need to be present 

together in at least one sample. However, even if both variants are mutated in a 

statistically significant fraction in the same sample, these variants may not be present in 

the same cells and the evolutionary laws of an asexually evolving population may not be 

violated. If low VAFs of those variants support this hypothesis, Treeomics updates the 

corresponding mutation patterns and infers distinct evolutionary trajectories to these 

subclones. Low VAFs of the variants in descending (not necessarily evolutionary 

incompatible) mutation patterns of the putative subclone provide additional evidence for 

mixed subclones in a sample. As outlined for prostate cancer case A22, subsets 

(descendants) and supersets (ancestors) of the conflicting mutation pattern can 

simultaneously be identified and a comprehensive evolutionary tree inferred (Fig. S9c). 

This approach also worked well among samples from the same tissue. After two 

subclones were separated, 12643 (out of 12645) variants supported the inferred 
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evolutionary tree (Fig. S10b). The remaining two variants were predicted to be 

false-positives by Treeomics.  

Binary present/absent classification 

We perform conventional binary present/absent classification of each variant to allow a 

comparison to the inferred classification used in our new approach. We scored each 

variant by calculating a p-value in all samples (one-tailed binomial test): 

Pr ! ≥ ! !!,!,! = 1− !
! ∙ !!"#!!!!

!!! ∙ (1− !!"#)!!!  where N denotes the 

coverage, K denotes the number of variant reads observed at this position, and X denotes 

the random number of false-positives. As null hypothesis H0, we assume that the variant 

is absent. Similar to Gundem et al.21, we assumed a false-positive rate (pfpr) of 0.5% for 

the Illumina chip-based targeted deep sequencing. In the WGS data set we assumed a 

conservative false-positive rate of 1%54. We used the step-up method55 to control for an 

average false discovery rate (FDR) of 5% in the combined set of p-values from all 

samples of a patient. Variants with a rejected null hypothesis were classified as present.  

The remaining variants were classified as absent.  

 

Treeomics 

The source code and manual for Treeomics, as well as multiple examples illustrating its 

usage, are provided at https://github.com/johannesreiter/treeomics. The tool is 

implemented in Python 3.4. The inputs to the tool are the called variants and the 

corresponding sequencing data, either in tab-separated-values format or as matched 

tumor-normal VCF files. As output, Treeomics produces a comprehensive HTML report 

(Supplementary File 1) including statistical analysis of the data, a mutation table plot and 

a list of putative artifacts (false-positives, well-powered and under-powered 

false-negatives). Additionally, Treeomics produces evolutionary trees in LaTeX/TikZ 

format for high-resolution plots in PDF format. If circos56 is installed, Treeomics 

automatically creates the evolutionary conflict graph and adds it to the HTML report. 

Treeomics also supports various filtering (e.g., minimal sample median coverage, false-

positive rate, false-discovery rate) for an extensive analysis of the sequencing data. 

Detailed instructions for the filtering and analysis are provided in the readme file in the 
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online repository. For solving the MILP, Treeomics makes use of the common CPLEX 

solver (v12.6) from IBM. 
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FIGURE LEGENDS 

Fig. 1:  Observed tumor heterogeneity across lesions of pancreatic cancer patient 
Pam03. Each variant found in any lesion is shown and its chromosomal position 
indicated in the outermost circle. Parsimony-informative variants (black dots; black 
gene names) are present in more than one but not in all samples and can provoke 
evolutionary incompatibilities. Founder variants (present in all samples; green squares; 
green gene names) and unique variants (present in a single sample; blue triangles; blue 
gene names) are parsimony-uninformative. The five innermost circles correspond to 
samples from five distinct liver metastases (LiM 1-5); the following three circles 
correspond to samples from three distinct lung metastases (LuM 1-3); the other circles 
correspond to different parts of the primary tumor (PT 10-11). 

Fig. 2:  Treeomics identifies evolutionarily compatible mutation patterns after 
recognizing potentially misleading artifacts in the sequencing data. Variants 
shown in Fig. 1 are organized as evolutionarily-defined groups (“nodes”) rather than 
by chromosomal positions. The nodes are indicated in the outermost circle: blue 
colored nodes are evolutionarily compatible and red colored nodes are evolutionarily 
incompatible. a | Based on conventional present/absent classification, at least 31.5% of 
the variants were evolutionarily incompatible (depending on the inferred tree 
topology). The incompatibilities are demarcated by red lines (“edges”) in the center of 
the circle that connect each pair of incompatible nodes. b | Based on a Bayesian 
inference model and a Mixed Integer Linear Program, Treeomics identified the most 
likely evolutionarily compatible mutation pattern for each variant (Online Methods). 
This method predicted that 8.8% (78/890) variants across all samples were 
misclassified and thereby caused the evolutionary incompatibilities shown in panel a. 
Putative false-negatives with low coverage sequencing data are depicted by unfilled 
purple triangles. Powered (coverage above 100) putative false-negatives are depicted 
by filled purple triangles. Putative false-positives are depicted by purple squares. The 
driver gene mutation in KRAS was among the putative false-negatives in one of the 
ten lesions.  

Fig. 3:  Reconstructed evolution of patient Pam03's cancer from targeted 
sequencing data. Lung metastases (LuM 1-3) are depicted in red; Liver metastases 
(LiM 1-5) are depicted in green; Primary tumor samples (PT 10-11) are depicted in 
black. SC indicate predicted subclones. Gray percentages indicate bootstrapping 
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values from 1000 samples. Based on the identified evolutionarily compatible mutation 
patterns in Fig. 2b, a unique evolutionary tree exists. LiM 1 was seeded from a 
different subclone than all other liver metastases. Due to the limited number of 
targeted resequenced variants, the support for some branches was relatively low, in 
particular within the identified main clusters (e.g. LiM 2-5). The majority of variants 
(55%) were already present in the founding clone.  

 

TABLES 

Table 1. Treeomics predicted putative artifacts in ten sequencing samples of 
pancreatic cancer patient Pam03. Many putative false-negatives with low statistical 
power occurred in samples with the lowest coverage (LiM 5, LuM 2-3) or lowest 
neoplastic cell content (LuM 1). Five distinct liver metastases (LiM 1-5), three distinct 
lung metastases (LuM 1-3), two different parts of the primary tumor (PT 10, 11). 

Artifact type LiM 1 LiM 2 LiM 3 LiM 4 LiM 5 LuM 1 LuM 2 LuM 3 PT 10 PT 11 Total 

Under-powered 
false-negatives 

7 2 5 1 13 12 5 5 1 8 59 

Powered  
false-negatives 

2 2 2 2 1 1 0 0 1 2 13 

False-positives 0 1 0 0 0 3 0 1 0 1 6 
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