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Abstract
Evolution occurs in populations of reproducing individuals. The structure of the population affects

the outcome of the evolutionary process. Evolutionary graph theory is a powerful approach to study this
phenomenon. There are two graphs. The interaction graph specifies who interacts with whom for payoff in
the context of evolution. The replacement graph specifies who competes with whom for reproduction. The
vertices of the two graphs are the same, and each vertex corresponds to an individual of the population. The
fitness (or the reproductive rate) is a non-negative number, and depends on the payoff. A key quantity is the
fixation probability of a new mutant. It is defined as the probability that a newly introduced mutant (on a
single vertex) generates a lineage of offspring which eventually takes over the entire population of resident
individuals. The basic computational questions are as follows: (i) the qualitative question asks whether the
fixation probability is positive; and (ii) the quantitative approximation question asks for an approximation
of the fixation probability. Our main results are as follows: First, we consider a special case of the general
problem, where the residents do not reproduce. We show that the qualitative question is NP-complete, and
the quantitative approximation question is #P-complete, and the hardness results hold even in the special
case where the interaction and the replacement graphs coincide. Second, we show that in general both
the qualitative and the quantitative approximation questions are PSPACE-complete. The PSPACE-hardness
result for quantitative approximation holds even when the fitness is always positive.

Keywords: Evolution; Evolutionary games on graphs; Fixation probability; Computational complexity.
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1 Introduction

In this work we study the basic computational questions for evolutionary games on graphs, and present com-
plexity results for them. We start with a description of the model of evolution on graphs and its significance.
We then state the basic computational questions and present our results.
Evolutionary dynamics with constant selection. Evolutionary dynamics act on populations. The composition
of the population changes over time under the influence of mutation and selection. Mutation generates new
types and selection changes the relative abundance of different types. A fundamental concept in evolutionary
dynamics is the fixation probability of a new mutant [8, 13, 17, 18]: Consider a population of N resident
individuals, each with a non-negative fitness value, r. A single mutant with fitness value 1 is introduced in the
population as the initialization step1. Then the following step is repeated. At each time step, one individual is
chosen proportional to the fitness to reproduce and one individual is chosen uniformly at random for death. The
offspring of the reproduced individual replaces the dead individual. This so-called Moran process continues
until either all individuals are mutants or all individuals are residents. The fixation probability is the probability
that the mutants take over the population, which means all individuals are mutants. A standard calculation
shows that the fixation probability is given by (1 − r)/(1 − rN ). The correlation between the relative fitness
of the mutant (with respect to resident fitness, i.e., 1/r) and the fixation probability is a measure of the effect
of natural selection in that population structure [22, 15, 27]. A neutral mutant, r = 1, has fixation probability
1/N . The rate of evolution, which is the rate at which subsequent mutations accumulate in the population, is
proportional to the fixation probability, the mutation rate, and the population sizeN . Hence fixation probability
is a fundamental concept in evolution.
Evolutionary game dynamics. The fitness values of individual types (resident and mutant) need not be con-
stant, but could themselves depend on the composition of the population. This idea brings us to evolutionary
game theory, where the individuals of a population interact with each other to receive a payoff. There could
be two strategies, R and M , and a payoff matrix. The payoff of an individual is the average payoff of the
interactions (see [18, Section 7.1]; also Section 2). Standard evolutionary game theory assumes a well-mixed
population structure, which means all individuals interact with equal probability. Again a fundamental question
is the fixation probability of a mutant [8, 13, 17, 18], which quantifies whether or not a mutant is favored by
natural selection.
Evolutionary graph theory: Informal model. The outcome of an evolutionary process is dependent on popu-
lation structure. Evolutionary graph theory studies this phenomenon. The individuals of the population occupy
the vertices of a graph. The links (edges) determine who interacts with whom. Evolutionary graph theory
describes evolutionary dynamics in spatially structured population where most interactions and competitions
occur mainly among neighbors in physical space [20, 15, 23, 6, 9]. Another application is cultural evolution
(spread of ideas and behaviors) in social networks [11]. Finally, the hierarchy of cellular proliferation and dif-
ferentiation in the human body, which is crucial for physiological function and for reducing cancer initiation,
is described by evolutionary graph theory [21]. The evolutionary graph theory considers directed graphs be-
cause interactions between individuals need not be symmetric [21, 15]: Examples of population structures and
evolutionary processes that resemble directed graphs include somatic evolution of cancer either in epithelial
tissue [21, 19] or in the hematopoeitic system [16], the spatial distribution of microbial and other populations
along flowing water gradients or social networks, where some people are more influential than others [1].
Evolutionary graph theory: Basic results. For the case of constant fitness (which means residents with rel-
ative fitness r and mutants with relative fitness 1) graphs have been identified that maintain the same selection
pressure as the well mixed population, that amplify selection, or that reduce selection. For example, a star
graph is an amplifier of selection, because the fixation probability of the mutant is given by 1−r2

1−r2N ; hence the
star graph squares the relative fitness [15]. In contrast, ‘isothermal graphs’ where the in-degree and out-degree
of all vertices coincide (such as regular undirected graphs) have the same fixation probability as the Moran pro-
cess, 1−r

1−rN [15, 3]. There are some graphs and update rules that enhance the evolution of cooperation, which is
a particular strategy in evolutionary games, for example in the well-known Prisoner’s dilemma [15, 23]. Evolu-
tion of cooperation is a major topic in evolutionary biology, because cooperation is seen as a main component

1In the literature, an alternative notion is to consider that the mutant have fitness r and the residents have fitness 1, we follow the
notation that leads to simpler formulas
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for the creative tendency of evolution. A crucial aspect of evolutionary graph theory is the computation of the
fixation probability of an invading mutant.
The formal model and computational questions. In the study of evolutionary games on graphs in general
there are two graphs (that have the same vertices) [15, 24]. The “interaction graph” specifies who interacts with
whom for payoff. The “replacement graph” specifies who competes with whom for reproduction. The fitness
(or reproductive rate) of an individual is a non-negative number, which depends on the payoff. We consider
two natural fitness functions that map payoffs to fitness: (1) linear bounded fitness, where the fitness is the
payoff but at least 0; and (2) exponential fitness, where the fitness is an exponential function of the payoff (and
thus always strictly positive). The initial step is the introduction of a mutant uniformly at random and then at
each step a vertex is chosen proportional to the fitness. The individual in the vertex reproduces to a successor
uniformly at random among the successors in the replacement graph. The relevant computational questions for
evolution on graphs are as follows: (1) the qualitative question asks whether the fixation probability is positive;
and (2) the quantitative approximation question asks, given ε > 0, to compute an approximation of the fixation
probability within an additive error of ε.
Special cases of the model. In this work we will establish several complexity results, and our most interesting
results are the lower bounds. Hence we consider several special cases of the model, and present lower bounds
for the special cases, which establish hardness of even several restricted cases of the general problem. The
special cases we consider are as follows:

1. In the general model the interaction and replacement graphs are different (we refer to the model as the
I&R model), and an important special case is where these two graphs coincide (we refer to the model as
the IEQR model) [15, 23].

2. A second special case is when the residents cannot reproduce. This special case is motivated by eco-
logical dynamics, and represents an ecosystem occupied by resident species. The spatial structure of the
ecosystem is given by a graph. An invading species (mutant) is introduced, such that the mutant has
a competitive advantage in the sense that once a position is occupied by the invading species then the
resident cannot get it back. Another scenario that this special case represents is that a mutant enters an
empty geographic location, and the question is whether the mutant can spread (hence the residents, being
non-existing, cannot reproduce).

Our contributions. While previous results characterized the fixation probabilities of specific graphs (such
as star or regular undirected graphs), the complexity of computing the fixation probability for arbitrary input
graphs has been open (explicitly referred to as an important open problem in a survey [26, Open Problem 2.1
and 2.2]). We study the computational complexity of the basic questions for evolution on graphs and our results
are as follows:

1. First, we consider the model with no resident reproduction and linear bounded fitness. We show that
(i) the qualitative decision question is NP-complete both for the I&R and IEQR models; and (ii) the
quantitative approximation (and also the exact) problem is #P-complete both for the I&R and IEQR
models, where ε > 0 is part of the input and specified in binary.

2. Second, we consider the model with resident reproduction and linear bounded fitness. We show that both
the qualitative and the quantitative questions are PSPACE-complete for the general I&R model; and the
exact fixation probability can be computed in exponential time.

3. Finally, we consider the case of exponential fitness function. The following problems can be solved
in polynomial time: (i) the qualitative problem for the general I&R model; and (ii) the quantitative
approximation for the general I&R model with no resident reproduction. We show that with resident
reproduction the quantitative approximation problem is PSPACE-complete for the general I&R model.

Our main results are summarized in Table 1 and our key contributions are the lower bounds. We will present
the relevant aspects of the lower bounds, and the upper bounds and other technical details are in the full version.

Remark 1. Note that the quantitative approximation problem is not defined as a decision problem. For #P
upper bound for the approximate (as well as exact) fixation probability for the no resident reproduction, we
mean that given the number of solutions to an #P problem we can compute in polynomial time the exact
fixation probability. For PSPACE upper bounds, we can compute an approximation of the fixation probability
in polynomial space.

Related complexity result. To the best of our knowledge, previous to our results, there was only one com-
putational complexity result for evolutionary games on graphs. For the precise computation of the fixation
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probability, NP-hardness for evolutionary games on graphs (named as frequency dependent selection) in the
IEQR model was stated in [15]. We present stronger lower bounds: NP-hardness even for the qualitative prob-
lem and #P-hardness even for approximation. The problem of computing evolutionary stable strategies without
the population structure but for any number of strategy types has been considered in [7], whereas evolutionary
games on graphs consider two strategy types (resident and mutants) but the evolutionary dynamics operates
on a population structure. The problem of time scale (or speed) of evolutionary processes has been studied in
different contexts [4, 30], which are related to mixing time of Markov chains; and the problem of evolvability
of functions in polynomial time has also been studied [29, 12]. However, none of these works consider evolu-
tionary games on graphs. The computational study of the stochastic process on graphs induced by evolutionary
games has largely been left open [26, Open Problem 2.1 and 2.2], which we mostly solve in this work.
Technical contributions. The complexity study of evolutionary games on graphs brings together many diverse
fields of studies related to computer science (namely, game theory, graph theory, evolutionary stochastic pro-
cesses, and computational complexity): it involves the study of stochastic processes which arise in the context
of evolution, and requires the analysis of stochastic processes in combination with graph theory. Our main re-
sults are computational complexity results for the analysis of the fundamental evolutionary stochastic processes
on graphs, and our main technical contribution is to develop novel gadgets on graphs that in combination with
the evolutionary stochastic processes can mimic runs of a polynomial-space Turing machine (for the PSPACE
lower bounds), or has the ability to count the number of matchings in bipartite graphs (for the #P-hardness).

No Resident Reproduction Resident Reproduction
IEQR model I&R model IEQR model I&R model

Qual. NP-c ((LB) Thm. 3) NP-c ((UB) Thm. 3) NP-h, PSPACE PSPACE-c ((LB) Thm. 5, (UB) Thm. 5)
Appr. #P-c ((LB) Thm. 4) #P-c ((UB) Thm. 4) #P-h, PSPACE PSPACE-c ((LB) Thm. 5, (UB) Thm. 5)

Table 1: Complexity of evolution on graphs with linear bounded fitness. Qual is short-hand for qualitative and
appr for approximation. Our main contributions of lower bounds (LB) and upper bounds (UB) are boldfaced.
NP-c (resp., #P-c, PSPACE-c) means NP-complete (resp., #P-complete, PSPACE-complete). Similarly, NP-h
(resp., #P-h) means NP-hard (resp., #P-hard).

2 Models of Evolution on Graphs

We present the basic definitions of the different models of evolution on graphs and the computational questions.
Evolutionary graphs. An evolutionary graph G = (V,EI , ER) consists of a finite set V of vertices; a set
EI ⊆ V × V of interaction edges; and a set ER ⊆ V × V of replacement (or reproduction) edges [24]. The
sets EI and ER consist of directed edges, and the graph GI = (V,EI) is called the interaction graph, and
GR = (V,ER) is called the replacement graph. The graph GI is responsible for determining the interaction of
individuals in the graph (which affects the fitness or payoff), and the graphGR captures the underlying structure
for reproduction and replacement of individuals in the graph. Given an edge (v, u) we say u is a successor of v
and v is a predecessor of u.
Payoff of individuals. Each vertex of the graph will be occupied by one of two types of individuals, namely, the
resident type and the mutant type. In evolutionary games, along with the evolutionary graph there is a payoff
matrix, which is defined as follows: (R M

R a b
M c d

)
where the entries of the matrix are rational numbers and represent the payoff of an interaction, i.e., a (resp.,
b) is the payoff of a resident type interacting with another resident (resp., mutant) type, and c (resp., d) is the
payoff of a mutant type interacting with a resident (resp., mutant) type. Given two vertices, x and y, we denote
by pay(x, y) the payoff of the type of vertex x versus the type of vertex y.
Fitness of individuals. The fitness of an individual denotes the fecundity (or reproductive rate) and must be a
non-negative number. Let EI(v) = {u | (v, u) ∈ EI} denote the set of interaction successors of v. We define
two natural (but not equivalent) ways of defining the fitness of v, denoted as f(v), as follows:
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1. Linear bounded fitness. The linear bounded fitness is the average payoff of the interactions but at least 0,

i.e., f(v) = max

{∑
u∈EI (v)

pay(v,u)

|EI(v)| , 0

}
.

2. Exponential fitness. The exponential fitness is an exponential function of the average payoff of the inter-

actions, i.e., f(v) = exp

(∑
u∈EI (v)

pay(v,u)

|EI(v)|

)
.

We will use LBF (resp., ExF) to refer to the linear bounded (resp., exponential) fitness function.
The evolutionary process. The evolutionary process we consider is the classical birth-death process.

1. Initially all vertices of the graph are of the resident type and a mutant type is introduced uniformly at
random at one of the vertices of the graph.

2. Repeat the following step (referred to as a generation): In every generation, a vertex v is selected pro-
portional to the fitness of the individual at the vertex to reproduce2. A new born individual replaces one
of the replacement successors of v, i.e., it replaces a vertex chosen uniformly at random from the set
ER(v) = {u | (v, u) ∈ ER}.

Step 2 (or generations) is repeated until nothing can change (in particular, if all vertices have fitness 0 or have
the same type, then nothing can change).
Fixation probability. The most relevant question from an evolutionary perspective is the fixation probability
which is the probability that the mutant takes over the population, i.e., eventually all vertices become mutants.
Computational questions. Given an evolutionary graph, a payoff matrix, and the payoff to fitness function
(linear bounded, or exponential) we consider the following questions:

1. the qualitative decision question asks whether the fixation probability is positive; and
2. the quantitative approximation question, given ε > 0, asks to compute an approximation of the fixation

probability within an additive error of ε.
Special cases. In this work we will establish several complexity bounds for the problem, and our most inter-
esting results are the lower bounds. Hence we consider several special cases and establish lower bounds for
them.

1. Constant fitness with density constraints. A special case of the payoff matrix is the constant fitness
(aka constant selection) matrix defined as follows: a = b = r and c = d = 1, for some constant
r ≥ 0. Along with the evolutionary graph and the payoff matrix, we have two thresholds, namely, θR
and θM , for the resident type and the mutant type, respectively. Intuitively, the thresholds represent a
density constraint, and if an individual is surrounded by a lot of individuals of the same type, then its
reproductive strength decreases. The density constraint is relevant in many applications of evolution (see
books [2, page 470] [25, page 320], also see Remark 2). Let the selected vertex for reproduction be v.
Let Same(v) denote the number of vertices in EI(v) that are of the same type as v. If v is a mutant type,
and Same(v)

|EI(v)| ≤ θM (resp., if v is a resident type, and Same(v)
|EI(v)| ≤ θR), then the individual gives birth to an

individual of the same type. Note that the density constraint implies that if the constraint is violated, then
the selected individual does not reproduce.

2. The I&R and IEQR models. An important special case is when the interaction and replacement graphs
coincide, i.e.,EI = ER [15, 23]. We refer to the general model as the I&R model (with possibly different
interaction and replacement graphs) and the special case where the graphs coincide as the IEQR model.

3. No resident reproduction. Another special case is when the payoff matrix is the constant payoff matrix
with r = 0. In this case, the resident types cannot reproduce. This represents the scenario that a mutant
has an advantage over the residents such that if a mutant occupies a position, then the residents cannot
win it back.

Remark 2 (Matrix encoding of density constraints in LBF). For many of our lower bounds, we will use constant
selection with density constraints, and we argue that the density constraints of our lower bounds, are special
cases of the linear bounded fitness without any density constraints. In our results for lower bounds we consider
two types of density constraints: (1) θM = 1

2 − δ, for 0 < δ < 1/10 (in Section 3 and Section 4), where there
is no resident reproduction (hence θR is irrelevant); and and (2) θM = θR = 0 in Section 5. In all the lower
bounds, the payoff matrix is constant. These two density constraints can be encoded as a payoff matrix (that is

2If every vertex has fitness 0, then no vertex is selected for reproduction.
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not constant) with linear bounded fitness function as follows:

(R M

R 0 0
M 1 −1

)
;

( R M

R −N 1
M 1 −N

)
.

The first payoff matrix encodes that a vertex that is a mutant can reproduce only if strictly less than half of the
successors in EI are mutants, and thus encode θM = 1

2 − δ, for 0 < δ < 1/10, in graphs where the outdegree
is at most five. The second matrix (for a graph with N vertices) encodes that a vertex can reproduce only if all
the successors in EI are of the opposite type.

3 Qualitative Analysis: No Resident Reproduction with LBF

In this section we establish two results for the no resident reproduction model with LBF: the qualitative analysis
problem is (1) in NP for the general I&R model (details in appendix); and (2) is NP-hard in the special case of
IEQR model, and even in a special case of LBF, where we have constant fitness with density constraints, (using
density constraints mentioned in Remark 2).
Lower bound. We present an NP lower bound, and we will prove it for the IEQR model with no resident
reproduction. Moreover, since there is no resident reproduction, the threshold θR does not matter. We will
present a reduction from the 3-SAT problem (which is NP-complete [5, 14, 10]) and use threshold θM as 1

2 − δ,
for any 0 < δ ≤ 1

10 . However it would be easy to modify our construction for any threshold θM in (0, 1). The
“right” way to think of the threshold is that it is 1

2 and that the density constraint uses a strict inequality. The
upper bound is chosen because we will use vertices with degree five or less.
Notations. Let X = {x1, x2, . . . , xn} be a set of n Boolean variables. Consider a 3-CNF formula ϕ =
C1 ∧C2 ∧ · · · ∧Cm, where each Ci is a clause of a list of (precisely) three literals (where a literal is a variable
x or its negation x, where x ∈ X). Each clause represents a disjunction of the literals that appear in it. An
instance of the 3-SAT problem, given a 3-CNF formula ϕ, asks whether there exists a satisfying assignment.
We will now construct an evolutionary graph G(ϕ), given an instance of a 3-SAT problem, with (i) EI = ER,
(ii) no resident reproduction, and (iii) threshold θM = 1

2 − δ, for 0 < δ ≤ 1
10 such that there is a satisfying

assignment iff the answer to the qualitative decision problem is YES. We first present two gadget constructions
that will be used in the reduction.
Predecessor gadget. We present a predecessor gadget for a vertex pair (u, v) such that v is the only successor
of u. The gadget ensures the following property (namely, the predecessor gadget property): if all vertices
become mutants, then the vertex u must have become a mutant before vertex v. The construction of the gadget
is as follows: Add a new dummy vertex u′. Let the successors of u be v and u′, and the successor of u′ be
only v. Then the only way for u′ to become a mutant is if u is a mutant, since u is the only predecessor of u′.
But u′ can only become a mutant if u is a mutant and v is not (since otherwise the threshold condition with
θM = 1

2 − δ is not satisfied for u, for any 0 < δ ≤ 1
10 ). Hence, if all vertices become mutant, then u must

become a mutant before v. We will denote by PredEdges(u, v, u′) the set {(u, v), (u, u′), (u′, v)} of edges of
the predecessor gadget.
(Extended) Binary tree gadget. Given a vertex rt, and a set L of vertices, we will denote by BinTr(rt, L) a
binary tree with rt as root and L as leaf vertices. In a binary tree, every non-leaf vertex has out-degree 2. Note
that the binary tree gadget adds additional vertices, and has O(|L|) vertices. By an abuse of notation we will
use BinTr(rt, L) to denote both the set of vertices and the set of edges of the binary tree, and it would either
be clear from the context or explicitly mentioned. Given a binary tree T and an extension vertex z 6∈ T , an
extended binary tree (EBT) consists of T and an edge from every non-leaf vertex to z. Given a root vertex rt, a
set of L of leaf vertices, and an extension vertex z, we denote by ExBinTr(rt, L, z) the edge set of the extended
binary tree that extends the binary tree of rt and L. We will explicitly use the following property for an EBT
(namely, qualitative EBT (QEBT) property):
• (QEBT Property). In an EBT, every non-leaf vertex has out-degree 3, and for density constraint with

threshold 1
2 − δ, for 0 < δ ≤ 1

10 (the construction works even if δ is up to 1
6 ), if the root becomes a

mutant and z is not a mutant, then root can be responsible for making every vertex in the tree a mutant.
However, note that if z is a mutant, then any vertex in the tree with out-degree 3 cannot make both the
children mutants due to the density constraint.
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The evolutionary graphG(ϕ). We now present the evolutionary graphG(ϕ) where we first describe the vertex
set and then the edges.
The vertex set. The set V of vertices is as follows: The vertex v> will be the start vertex; and the vertices z⊥,
y⊥, and z′⊥ are end vertices (that will form a predecessor gadget for (z⊥, y⊥) with dummy vertex z′⊥). We have a
vertex ci for each clauseCi (namely, clause vertices); and one for each literal c1i , c

2
i , and c3i in the clause (namely,

clause-literal vertices). Similarly, we have a vertex xi for each variable in X (namely, variable vertices),
and vertices xti and xfi (namely, variable-value vertices) to represent the truth values to be assigned to xi.
Corresponding to xti and xfi we also have vertices uti and ufi (namely, duplicate vertices). The vertex v0 forms
a predecessor gadget (using the dummy vertex v′0) to ut1. Let Lti = {ĉjk | 1 ≤ k ≤ m, 1 ≤ j ≤ 3, cjk = xi}
denote a copy of the clause-literal vertices that correspond to xi and Lfi = {ĉjk | 1 ≤ k ≤ m, 1 ≤ j ≤ 3, cjk =
xi} denote a copy of the clause-literal vertices that correspond to negation of xi. The set BinTr(xti, L

t
i) (resp.

BinTr(xfi , L
f
i )) represents the vertices of a binary tree with the root vertex xti (resp. xfi ) and leaf vertices Lti

(resp. Lfi ).
The edge set. We now describe the edge set:
• There is an edge from the initial vertex v> to the first clause vertex c1; and we have two predecessor

gadgets; (i) (z⊥, y⊥) with dummy vertex z′⊥; and (ii) (v0, u
t
1) with dummy vertex v′0.

• For each clause vertex ci, there are five edges, three to clause-literal vertices cji (for j = 1, 2, 3) of the
clause, one to the next clause vertex (for cm this next vertex is x1), and to the vertex ut1.
• For each variable vertex xi, there are three edges: to xti and xfi , and to the next variable vertex xi+1 (for
xn the next vertex is v0).
• Each duplicate vertex uti has three edges: to ufi , to xti, and to y⊥. Similarly, each vertex ufi has three

edges: to uti+1 (ufn has edge to z⊥ instead), to xfi , and to y⊥.
• Finally, we have the EBT with xαi (for α ∈ {t, f}) as root, Lαi as leaf vertices and y⊥ as the extension

vertex. For each vertex in Lαi , for α ∈ {t, f}, we add edges to the corresponding clause-literal vertex and
to ut1. This ensures that every internal vertex of the binary tree has degree three, and leaf vertices have
degree two.

The formal description of the vertices and edges is in the appendix (also see Figure 1 for a pictorial illustration).
Basic facts. We mention some basic facts about the evolutionary graph obtained.

1. First, observe that the predecessor gadget property implies that for fixation the vertex v0 must become a
mutant before vertex ut1; and vertex z⊥ before vertex y⊥.

2. Second, for a vertex with degree `, it can reproduce a mutant as long as at most ` · (12 − δ) successors
are mutants. In particular, for vertices with five (resp. three) successors, like the clause (resp. variable)
vertices, it can reproduce a mutant until at most three (resp. two) successors are mutants, because of the
bounds on θM . If a vertex has out-degree two (or one), then it can reproduce a mutant until at most one
successor is a mutant, because of the bounds on θM . The conditions follow from the density constraint
with threshold 1

2 − δ.
Using the above facts and the QEBT property, we show that the graph G(ϕ) has positive fixation probability iff
ϕ is satisfiable. The main results are summarized below.

Theorem 3. The qualitative decision question for no resident reproduction in both the general I&R model and
the IEQR model with LBF is NP-complete.

4 Quantitative Approximation: No Resident Reproduction with LBF

In this section we show that in the no resident reproduction model with LBF the following assertions hold:
(i) the precise fixation probability can be computed in #P (for the general I&R model, and the details are in
the appendix); and (ii) for ε > 0, the problem of approximating the fixation probability within an additive error
of ε is #P-hard (even in the IEQR model). Again in our lower bound we will consider a special case of LBF
where we have constant fitness with density constraint.
Perfect matching in bipartite graphs. We present a reduction from the computation of the number of perfect
matchings in a bipartite graph G = (V,E). In a bipartite graph G, the vertex set V is partitioned into vertices
V` (left vertices) and Vr (right vertices) and all edges go from a vertex in V` to a vertex in Vr (i.e., E ⊆ V`×Vr).
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We also have |V`| = |Vr| = n. A perfect matching PM is a set {e1, e2, . . . , en} of n edges from E such that
for every vertex v` ∈ V` (resp. vr ∈ Vr) there exists an edge e` = (v`, v

′
r) (resp. er = (v′`, vr)) in PM. Given a

bipartite graph, the problem of computing the number of distinct perfect matchings was shown by Valiant [28]
to be #P-complete.
Uniform degree property. First, we will consider bipartite graphs for which there exists an integer k such
that all vertices in V` have either degree 2k or 1. We refer to the property as the uniform degree property. A
reduction from general bipartite graphs to graphs with uniform degree property is in the appendix.
Perfect binary trees. We will consider perfect binary trees as gadgets.
• A perfect binary tree (PBT) is a balanced binary tree (every internal vertex has exactly two children) with

all leaves at the same level (i.e. with 2k leaf vertices, for some non-negative integer k). For a PBT we
will use the following property, which we refer to as the probabilistic PBT (PPBT) property: if the root
becomes a mutant, then eventually all vertices in a path from the root to some leaf will become mutants,
where such a path is chosen uniformly at random. Since every non-leaf vertex has out-degree two, due to
the density constraint, each internal vertex can make one of its children (chosen uniformly) a mutant and
hence the PPBT property follows.

The graph Red(G). Given a bipartite graph G with the uniform degree property, let the vertex sets be V` and
Vr, respectively. Let E(v) = {u | (v, u) ∈ E} denote the successors of a vertex v ∈ V`. Let V k

` = {v ∈
V` | |E(v)| = 2k} be the set of vertices with degree 2k; and V 1

` = V` \ V k
` be the set of vertices in V` with

degree 1. Our reduction, denoted Red(G), will construct an evolutionary graph (with EI = ER and hence we
only specify one set of edges), which consists of three parts: part 1 sub-graph, then edges related to Vr, and a
copy of part 1 with some additional edges. We first describe the part 1 sub-graph and then its copy.
• (Part 1). We have a start vertex vs, a final vertex y⊥, and we create an EBT Bs as follows:
ExBinTr(vs, V`, y⊥), i.e., the start vertex is the root, V` is the set of leaf vertices, and y⊥ is the ex-
tension vertex. For every vertex v ∈ V k

` , let E(v) = {u1, u2, . . . , uj}, and we consider a set
Lkv = {u1v, u2v, . . . , u

j
v} of j = 2k vertices and construct a PBT Pv = BinTr(v, Lkv). Note that Bs is

an EBT (but the underlying binary tree is not necessarily perfect).
• (Edges related to Vr). From every vertex v ∈ V k

` , and every uiv in Lkv , we add two edges: one to
ui ∈ E(v) and one to y⊥. From every vertex v ∈ V 1

` (with degree 1), we add two edges: to the unique
u ∈ E(v) and to y⊥. Every vertex in Vr has an edge to y⊥.
• (Copy 1 of Part 1 with additional edges). First, we create a copy of the part of the graph described in

part 1, along with one additional vertex z⊥. For every vertex v of part 1, let the corresponding vertex in
the copy be called v, and the copy of the extension vertex is y⊥. We describe the difference in the copy
as compared to the graph of part 1: (i) first there is an edge from y⊥ to the copy vs of the start vertex;
(ii) for every vertex z which is a copy of a non-leaf vertex z in Pv, for some v ∈ V k

` , (i.e., z 6∈ Lkv), there
are three additional edges from z: (a) to z (i.e., from the copy to the original vertex), (b) to y⊥, and (c) to
z⊥; and (iii) for every vertex z which is a copy of a leaf vertex z in Pv, for some v ∈ V k

` , (i.e., z ∈ Lkv),
there is only one edge which goes to z (i.e., there is no edge to Vr or y⊥, but an edge from the copy to the
original vertex). Hence in the copy of Pv, for any v, internal vertices have degree five, and leaf vertices
have degree 1.
• Finally, we have the following edges: {(y⊥, y⊥), (y⊥, z⊥), (y⊥, z⊥)}.

We denote by n̂ the number of vertices in Red(G), and note that n̂ = O(m), where m is the number of edges
in G.
Example. We consider the graph G with six vertices, where V` = {v1, v2, v3} and Vr = {v4, v5, v6}, such that
v1 and v2 each have edges to v4 and v5 and v3 has an edge to v6. See Figure 2 for an illustration. Observe
that G satisfies the uniform degree property. In Figure 3 we have part 1 of the graph Red(G) along with Vr. In
Figure 4 we have the remainder of Red(G).
The process of fixation in Red(G). The process of fixation in Red(G) can be decomposed in two phases.
The first phase (Phase 1) is over when y⊥ becomes a mutant; and the second phase (Phase 2) is over with the
fixation. A key property of Phase 2 is as follows: vertices in Vr cannot become a mutant after y⊥ has become a
mutant: This is because for each vertex u in Vr, every predecessor v of u has exactly two successors, and one
them is y⊥ (and hence the density constraint with threshold 1

2 − δ ensures that if y⊥ is a mutant, then vertices
in Vr cannot become mutants after that).
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• Phase 1. In Phase 1, the vertex vs must be the first vertex to become a mutant (since it has no predecessor).
After vs, all vertices in Bs turn into mutants (by the QEBT property). Once a vertex v ∈ V k

` becomes
a mutant, then a path in the PBT Pv under v is chosen uniformly at random to become mutants (by the
PPBT property), and then the leaf of the path can make the corresponding vertex in Vr a mutant. Once a
vertex v in V 1

` with degree 1 becomes a mutant, then it can reproduce a mutant to the unique neighbor in
Vr. In the end, some vertex in Vr reproduces a mutant to y⊥ and Phase 1 ends.
• In Phase 2, first the copy vs becomes a mutant from y⊥. After vs, all vertices which are copy of vertices

in Bs become mutants (again by the QEBT property). Once copies of vertices in V k
` become mutant,

then the tree underneath them in the copy become mutants. Consider a vertex u which is a copy of a
vertex u ∈ Pv, for some v ∈ V k

` , and there are two cases: (i) if u is a non-leaf vertex, then u has degree
five, and can reproduce mutants until the two children in the tree and the original vertex u are mutants
(note if y⊥ or z⊥ is a mutant, then both the children and the original copy cannot all become mutants due
to the density constraint); (ii) if u is a leaf-vertex, then u has degree one, and can reproduce mutant for
u. Finally, y⊥ makes y⊥ a mutant, which then makes z⊥ a mutant.

Fixation and a perfect matching. Observe that fixation implies that all vertices in Vr have become mutant, and
no vertex in Vr can become a mutant in the second phase. Each vertex in V` is responsible for making at most
one neighbor in Vr a mutant (for vertices with degree 1 it is the unique successor in Vr, and for vertices with
degree 2k, it corresponds to the leaf of the path in the perfect binary tree chosen uniformly at random by the
PPBT property). This defines a perfect matching. Conversely, given a perfect matching, Phase 1 and Phase 2
of fixation can be described using the pairs of the matching (to chose paths uniformly at random in the perfect
binary trees). Thus given fixation, it defines a perfect matching, and we say that fixation has used the perfect
matching.
Exact fixation probability. Consider some perfect matching PM. Observe that if there are s > 0 perfect
matchings, then the exact fixation probability is s · xPM, where xPM is the probability that we have fixation and
used PM. This is because each perfect matching has the same probability to be the chosen matching in Phase 1
by the PPBT property. In Phase 2, any vertex v which is either a vertex in V 1

` or a leaf in Pv, for v ∈ V k
` , cannot

reproduce by the key property of Phase 2 (and thus can be viewed as having no out-going edges). Thus in
Phase 2, by symmetry, the probability xPM of fixation for a perfect matching PM is independent of PM. Given
appropriate approximations of xPM and the fixation probability in Red(G) the number of perfect matching in
G can be obtained.

Theorem 4. The quantitative approximation problem, where the approximation number 0 < ε < 1 is given
in binary, for no resident reproduction in both the general I&R model and the IEQR model with LBF is #P-
complete (and even the exact fixation probability can be computed in #P).

5 Qualitative Analysis and Quantitative Approximation: I&R Model with
Resident Reproduction and LBF

In this section we will establish the polynomial space upper bound (details in appendix) and lower bound in the
I&R model with resident reproduction, when the fitness function is LBF.
Lower bound. We present two lower bounds: (i) the qualitative decision question is PSPACE-hard; and (ii) the
question that given an evolutionary graph with the promise that the fixation probability is close to either 0 or 1,
deciding which is the case is PSPACE-hard (which implies PSPACE-hardness for the quantitative approxima-
tion problem). For simplicity, we present our lower bounds in two steps. We will first reduce the problem to a
problem which we call concurrent-if, and then show that the concurrent-if problem is PSPACE-complete.
Concurrent-if problem. The intuitive description of the concurrent-if problem is as follows: it consists of a set
of Boolean variables, and a set of if statements where each conditional is a conjunction of some of the Boolean
variables or their negation, and if the conditional is true, then a Boolean variable is set to a truth value. At each
step, any of the if-statements can be executed. The process ends either when the first Boolean variable is true
or nothing can change (i.e., the conditional of all if-statements are false). Note that the execution can loop, and
perhaps run forever. We first define an if-statement.
If-statement. Let B = {b1, b2, . . . , bn} be a set of n Boolean variables. An if-statement s is as follows:∧

(cn1, . . . , cnk) ⇒ bi := val, where 1 ≤ i, k ≤ n, val is either true or false, each cnj is either a Boolean
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variable b` or its negation b`. An if-statement is satisfied if each of the cnj is true (i.e., cnj is true if one of the
following holds: if cnj is b` and b` is true, or cnj is b` and b` is false).
Concurrent-if system. A concurrent-if system consists of a set B = {b1, b2, . . . , bn} of n Boolean variables
and a set P = {s1, s2, . . . , sm} of m if-statements over the Boolean variables in B. The set of statements
defines an execution from an initial setting of the Boolean variables as follows: repeatedly, a satisfied if-
statement

∧
(cn1, . . . , cnk) ⇒ bi := val is selected and then bi is set to val. If the first Boolean variable b1 is

eventually true, then the execution is accepted. If at each point of an execution there is at most one satisfied
if-statement, then we say that the execution is deterministic.
The decision problem. Given a concurrent-if system, the associated decision problem is as follows: Given a
set B of Boolean variables, an initial setting of the variables of B, and a set P of concurrent if-statements, such
that the execution e from the initial setting is deterministic, whether e is accepting. First we establish that the
decision problem for concurrent-if systems is PSPACE-complete (details in appendix).
Reduction of the concurrent-if problem to evolutionary games on graphs We describe how we encode the
Boolean variables and the if-statements of a concurrent-if system in evolutionary games on graphs.
Density constraint. Again our lower bound result will be for a special case of LBF, where we have constant
fitness with density constraints (recall Remark 2). Our construction will be for θR = θM = 0, but a similar
construction will work for any choice of θR, θM ∈ [0, 1). The thresholds θR = θM = 0 indicates that a vertex
v can reproduce precisely as long as all its successors in EI are of the opposite type of v.
Ideas and gadgets behind the reduction. We first introduce some key ideas and gadgets behind the reduction.
• States which are nearly always a mutant/resident: Similar to the previous lower bounds, we have a vertex
vs without any predecessor in ER. Thus, if vs is not made a mutant at the start, then it cannot become
a mutant. Hence we only consider the case when vs is a mutant in the beginning and stays a mutant
forever. We also have a vertex v̂s, and our construction ensures that it stays a resident until all other
vertices are mutants and then (after a few more steps) all vertices become mutants, and we get fixation.
We use the vertices vs and v̂s to ensure that a given vertex has a desired type, and otherwise the vertex
cannot reproduce. Our construction ensures (by the density constraint) the following properties:

– A vertex v with v̂s as a successor under EI can only reproduce if it is a mutant (using the density
constraint and v̂s is a resident). Similarly, a vertex v with vs as a successor under EI can only
reproduce if it is a resident.

• Boolean-value gadgets: We describe how to implement boolean-value gadgets in evolutionary graphs for
the Boolean variables of the concurrent-if system. Each boolean-value gadget j consist of four vertices
vjtv (the true-value-vertex), vjfv (the false-value-vertex), vjts (the true-setter-vertex) and vjfs (the false-
setter-vertex). In the second phase (the execution of the concurrent-if system phase) each boolean-value
gadget is such that the two setters, vjts and vjfs , are mutants. Also, at most one of the value vertices vjtv
and vjfv , can be a mutant at any given point. If vjtv is a mutant, then the value of j is true. If vjfv is a
mutant, then the value of j is false. If neither is a mutant, then we say that j has no value. The edge set
is as follows: (i) both vjts and vjfs have v̂s, v

j
tv , v

j
fv as successors under EI ; (ii) vjts (resp., vjfs ) has only

vjtv (resp., vjfv ) as a successor under ER (see Figure 5). The purpose of the edges in EI are as follows:
the edge to v̂s enforces that the setter vertex is a mutant before reproduction; and the other two edges
enforce that only if the gadget has no value (i.e., both value vertices are resident), then the setter vertex
can reproduce a mutant (by the density constraint and that θR = θM = 0). Observe that when the gadget
has no value, then each of the setter vertices can set the value of the gadget to either true or false with
positive probability in any such step.
• If-statement gadgets: Each if-statement gadget, for the if-statement

∧
(cn1, . . . , cnk) ⇒ bi := val, is

implemented using a single vertex v (the if-statement-vertex). The if-statement gadget works under the
requirement that v is a resident, and our construction will ensure that in the second phase (the execution
of the concurrent-if system phase) each if-statement-vertex v is a resident. The edge set is as follows:

1. The vertex v has the following edges in Ei: an edge to vs; and for each Boolean variable j in
(cn1, . . . , cnk) an edge to vjtv , and for each negation of a Boolean variable j′ in (cn1, . . . , cnk) an
edge to vj

′

fv .
2. The vertex v has vifv (resp., vitv ) as successor under ER if val is true (resp., false).

The purpose of the edges in EI are as follows: the edge to vs enforces that the if-statement-vertex is a
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resident before v reproduces; the other edges enforces that each literal in (cn1, . . . , cnk) has the correct
value before reproduction. Consider the case where val is true (the case where it is false is similar).
If v can reproduce at a given point in time, then

∧
(cn1, . . . , cnk) must be true. In that case, if the

boolean-value-gadget for bi has value false, then v reproduces to set bi to no value. This then allows
the setter-vertices of bi to reproduce, and set bi eventually to a value again. Observe that even though v
tries to set bi to true, the value of bi might not be set to true immediately. The process is as follows: v
tries to set bi to true by ensuring that if it is false, then it sets it to no value, and ensures that the true-
setter vertex has positive probability to set it to true. Hence eventually with probability 1 it is set to true.
Note that given

∧
(cn1, . . . , cnk) is still true, v can simply reproduce until bi becomes true. Since there

is a fixed positive probability that the setter-vertices will set bi to either value, eventually bi becomes
true with probability 1. We will only use the boolean-value gadgets for deterministic executions and
thus, the condition

∧
(cn1, . . . , cnk) remains true until bi becomes true. This is because the execution is

deterministic and thus, no other if-statement is satisfied in the current situation as long as bi is false or
has no value. Especially, for the next if-statement to be satisfied it must depend on bi being true.

Using the above gadgets, given a concurrent-if system instance, we construct a evolutionary graph such that
informally the following assertion hold: fixation happens with probability 0 if the concurrent-if systems does
not accept, otherwise the fixation probability is close to 1. Theorem 5 summarizes the result of this section.

Theorem 5. For the general I&R model with resident reproduction and LBF, the following assertions hold:
(1) The qualitative decision problem is PSPACE-complete; and (2) the quantitative approximation problem can
be solved in polynomial space, and even given the promise that the fixation probability is close to either 0 or 1,
deciding which is the case is PSPACE-hard (hence the quantitative approximation problem is PSPACE-hard).

6 Complexity Results for the Exponential Fitness Function ExF

In this section we consider the case where the fitness of an individual at a vertex is an exponential function of
the payoff, and we do not have density constraint. We first present the results, and describe how to obtain them.

1. Result 1. The qualitative problem can be solved in polynomial time.
2. Result 2. For the no resident reproduction case (i.e., when the fitness of a resident is set to 0), the

quantitative approximation problem can be solved in polynomial time.
3. Result 3. For the resident reproduction case, we have the same complexity bounds as in the case where

we have the LBF.
Key ideas for lower bound of Result 3. Result 1, Result 2, and upper bound of Result 3 are in the appendix. We
present the key ideas of the lower bound of Result 3.
The key idea. The key idea is as follows:

1. First step: First, we consider the problem with constant payoff along with density constraints and argue
that the PSPACE hardness result holds even in the case where either mutants or residents fixate within an
exponential number of steps with high probability.

2. Second step: In the hardness proof in the model with density constraints we require that a vertex can
reproduce iff all its successors are of the opposite type. In the model with fitness exponential of payoff,
there is always a positive probability to reproduce. Thus even if a vertex has all its successors of the
opposite type, it can still reproduce, and we refer to such reproductions as “undesired reproductions” (for
the hardness proof). We show that a payoff matrix (with exponential payoff and no density constraints)
can encode that if a vertex does not have all its successes of the other type, then the probability to
reproduce is exponentially small (i.e., the undesired reproduction probability is exponentially small).
Since in the hardness result of the previous item, the fixation happens within exponentially many steps,
using union bounds it is easy to argue that the probability that an undesired reproduction happens before
fixation is negligible.

Theorem 6. For the general I&R model with the fitness function is exponential function of the payoff, where
each payoff of the matrix is polynomial in the size of the graph, the following assertion holds: the quantitative
approximation problem can be solved in polynomial space, and even given the promise that the fixation proba-
bility is close to either 0 or 1, deciding which is the case is PSPACE-hard (hence the quantitative approximation
problem is PSPACE-hard).
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Figure 1: The graph G(ϕ) for ϕ = (z̄ ∨ y ∨ x) ∧ (z ∨ x ∨ x̄). The edges to ut1 are dashed and the edge from
uαi for all 1 ≤ i ≤ 3 and α ∈ {t, f} are dotted, for readability. Also, the vertex ut1 is included twice to make it
clear that it is in a predecessor gadget.
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