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ABSTRACT Drosophila melanogaster plasmatocytes, the phagocytic cells among hemocytes, are essential
for immune responses, but also play key roles from early development to death through their interactions with
other cell types. They regulate homeostasis and signaling during development, stem cell proliferation, me-
tabolism, cancer, wound responses, and aging, displaying intriguing molecular and functional conservation
with vertebrate macrophages. Given the relative ease of genetics in Drosophila compared to vertebrates,
tools permitting visualization and genetic manipulation of plasmatocytes and surrounding tissues indepen-
dently at all stages would greatly aid a fuller understanding of these processes, but are lacking. Here, we
describe a comprehensive set of transgenic lines that allow this. These include extremely brightly fluorescing
mCherry-based lines that allow GAL4-independent visualization of plasmatocyte nuclei, the cytoplasm, or the
actin cytoskeleton from embryonic stage 8 through adulthood in both live and fixed samples even as het-
erozygotes, greatly facilitating screening. These lines allow live visualization and tracking of embryonic plas-
matocytes, as well as larval plasmatocytes residing at the body wall or flowing with the surrounding
hemolymph. With confocal imaging, interactions of plasmatocytes and inner tissues can be seen in live or
fixed embryos, larvae, and adults. They permit efficient GAL4-independent Fluorescence-Activated Cell Sort-
ing (FACS) analysis/sorting of plasmatocytes throughout life. To facilitate genetic studies of reciprocal signal-
ing, we have also made a plasmatocyte-expressing QF2 line that, in combination with extant GAL4 drivers,
allows independent genetic manipulation of both plasmatocytes and surrounding tissues, and GAL80 lines
that block GAL4 drivers from affecting plasmatocytes, all of which function from the early embryo to the adult.
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Drosophila plasmatocytes are well known for their immune functions
in combatting bacteria, fungi, and viruses through phagocytosis and
siRNA production (Braun et al. 1998; Elrod-Erickson et al. 2000;

Lemaitre and Hoffmann 2007; Tassetto et al. 2017). Yet recent years
have revealed the many ways in which they also play crucial roles in
development and homeostasis, contacting and exchanging signals with
surrounding cells. This has expanded the repertoire of functions that
plasmatocytes are known to carry out to protect the organism; their
patrolling serves not only to detect and destroy foreign invaders, but
also to assess defects in endogenous cell states and stimulate corrective
cellular responses. Many of the processes they affect and the molecular
pathways they use to do so are conserved with vertebrate macrophages,
making Drosophila plasmatocytes an excellent model system (Wynn
et al. 2013; Ratheesh et al. 2015).

Plasmatocytes influence development in several differentways. They
migrate widely in the embryo to phagocytose and thus clear cells that
have undergone programmed cell death (Tepass et al. 1994; Zhou et al.
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1995; Franc et al. 1996). As they move, plasmatocytes secrete extracel-
lular matrix (ECM) components, which assemble into a stable basal
lamina whose presence affects later steps in development (Fessler
and Fessler 1989; Olofsson and Page 2005; Martinek et al. 2008;
Matsubayashi et al. 2017). This effect can occur by the ECM providing
a substrate for cell movement or by binding Dpp, a BMP family mem-
ber, and influencing its signaling (Olofsson and Page 2005; Bunt et al.
2010; Van De Bor et al. 2015). These developmental functions are
conserved in vertebrates. Vertebratemacrophages also engulf apoptotic
cells during development (Gouon-Evans et al. 2000; Leers et al. 2002),
and show molecular conservation with Drosophila in some of the re-
ceptors they use to recognize dying cells (Franc et al. 1996; Fadok et al.
1998; Manaka et al. 2004; Greenberg et al. 2006; Kurucz et al. 2007; Wu
et al. 2009). Vertebrate macrophages secrete the ECM component col-
lagen (Schnoor et al. 2008), which can bind BMP family members
(Vukicevic et al. 1994; Sieron et al. 2002).

Plasmatocytes are also crucial for maintaining the organism after it
has formed. They alter responses to damage in the gut, regulating stem
cell proliferation by secreting stimulatory factors (Ayyaz et al. 2015;
Chakrabarti et al. 2016). Plasmatocytes kill tumor cells by expressing
TNFa (Parisi et al. 2014), or stimulate their invasion if tumors also
express activated Ras, through MMP1 induction by TNFa-induced
JNK signaling (Cordero et al. 2010; Pérez et al. 2017). Plasmatocytes
can even alter metabolism and aging; upon engulfing lipids, they induce
JAK-STAT signaling in surrounding tissues, which modulates insulin
sensitivity, hyperglycemia, fat storage, and lifespan (Woodcock et al.
2015). Conservation with vertebrates is seen for these processes as well.
Vertebrate macrophages alter gut stem cell proliferation to promote
regeneration; theymay also use BMP to do so as BMP2 inducible kinase
is upregulated in responding gut tissues (Pull et al. 2005). Vertebrate
macrophages can promote tumor induction of MMPs and invasion by
secreting TNFa (Hagemann et al. 2005). Finally, vertebrate macro-
phages also participate in an inflammatory response to obesity that
leads to insulin insensitivity (Weisberg et al. 2003; Xu et al. 2003;
Patsouris et al. 2008; Pollard 2009), as is seen in theDrosophila response
to lipid ingestion (Woodcock et al. 2015). Thus, conservation is seen
between vertebrates and Drosophila in the ways in which immune cells
and surrounding tissues affect one another and the molecular pathways
they use to do so.

The genetic power of Drosophila melanogaster can help elucidate
how plasmatocytes regulate organismal development and homeostasis,
and how tissues signal their state to plasmatocytes to induce responses.
Yet such studies require tools that are lacking, ones that permit the live
imaging or manipulation of plasmatocyte behavior along with the
modulation and visualization of other cells. Here, we describe a set of
tools designed to facilitate these approaches and demonstrate that they
function at all stages of the Drosophila life cycle. These lines will thus
greatly aid investigations of the manifold interactions of Drosophila
plasmatocytes with other tissues from birth to death, enabling insights
that can be relevant for vertebrate systems.

MATERIALS AND METHODS

Cloning
Standardmolecular biologymethods were used, and all constructs were
first tested for functionality by transfection into the plasmatocyte-like S2
cell line (Schneider 1972; Woodcock et al. 2015) (a gift from Frederico
Mauri of the Knoblich laboratory at IMBA, Vienna) before injection
into flies. Restriction enzymes BSiWI, PstI, and AscI were obtained
from New England Biolabs (Frankfurt, Germany); XbaI and EcoRI
were from Promega (Mannheim, Germany). PCR amplifications were

performed with CloneAmp HiFi PCR Premix from Clontech’s Euro-
pean distributor Takara Bio Europe (Saint-Germaine en Laye, France)
using a peqSTAR 2· PCRmachine fromPEQLAB (Erlangen, Germany).
All Infusion cloning was conducted using an Infusion HD Cloning kit
obtained from Clontech’s European distributor (see above); relevant oli-
gos were chosen using the Infusion primer tool at the Clontech website
http://bioinfo.clontech.com/infusion/convertPcrPrimersInit.do.

Construction of srpHemo-3XmCherry
A 2.5 kb XbaI-EcoRI fragment, which contains three repeats
of mCherry, was cloned from pJJH1295 (Bakota et al. 2012;
Evans et al. 2014) (a gift from Jürgen Heinisch, Addgene plasmid
#36914), into the multiple cloning site of pCaSpeR4 (a gift from
Leonie Ringrose, IMBA, Vienna). Subsequently, a 4.3 kb fragment
of the srp promoter was amplified from plasmid srpHemoA
(Brückner et al. 2004) (a gift from K. Brückner) by PCR with the
following primers:

59-CGAGGTCGACTCTAGAAAATTTTGATGTTTTTAAATAGTCT
TATCAGCAATGGCAA-39.

59-ACGAAGCTTCTCTAGATATGGGATCCGTGCTGGGGTAGTGC-39.

This fragment was cloned upstream of the 3xmCherry fragment at
the XbaI site by Infusion cloning to create DSPL172.

Construction of srpHemo-H2A::3XmCherry
A 458 bp fragment containing the first 124 amino acids from histone
H2A was amplified from pKS23b, a gift from Kristen Senti and Julius
Brennecke at IMBA, using the following primers:

59-AGAGAAGCTTCGTACGCGTACGATGTCTGGACGTGGAAAAG-39.
59-CGACCTGCAGCGTACGCGTACGGCCGCCGCCTCTAGACACTT-39.

This fragment was placed by Infusion cloning at the BSiWI site
of DSPL172, downstream of the srp promoter and upstream of the
3XmCherry fragment, with the linker sequence SRGGGRTRTLQV
to create DSPL216.

Construction of srpHemo-moe::3XmCherry
An 869 bp fragment from the Moesin cDNA SD10366 (DGRC)
(Rubin et al. 2000) containing amino acids 370–646, and thus the
ERM domain of the protein, was amplified by PCR using the fol-
lowing primers:

59-AGAGAAGCTTCGTACGATGGACACCATCGATGTGCA-39.
59-CGACCTGCAGCGTACGCATGTTCTCAAACTGATCG-39.

This fragment was cloned as above at the BSiwI site in DSPL172,
downstream of the srp promoter and upstream of the 3xmCherry
fragment, with the linker MRTLQVD.

Construction of srpHemo-QF2
A 4.3 kb fragment containing the srpHemo promoter was amplified
from the srpHemoA plasmid (Brückner et al. 2004) (a gift from
K. Brückner) using the following primers:

59-TTATGCTAGCGGATCCAAATTTTGATGTTTTTAAATAGTCTTAT
CAGCAAT GGCAA-39.

59-TGGCATGTTGGAATTCTATGGGATCCGTGCTGGGGTAGTGC-39.

This fragmentwasused to replace the synaptobrevinpromoter in the
nsyb-QF2 plasmid (Riabinina et al. 2015) (a gift from C. Potter). The
synaptobrevin promoter was released by a digest with BamHI and
EcoRI and replaced by srpHemo using Infusion cloning.

846 | A. Gyoergy et al.

http://bioinfo.clontech.com/infusion/convertPcrPrimersInit.do
http://flybase.org/reports/FBgn0003507.html
http://flybase.org/reports/FBgn0003507.html
http://flybase.org/reports/FBgn0011661.html
http://flybase.org/reports/FBgn0003507.html


Construction of srpHemo-GAL80
A 4.3 kb fragment of the srp promoter was amplified from plasmid
srpHemoA (Brückner et al. 2004) (a gift from K. Brückner) by PCR
with the following primers:

59-GCATGTCGACCTCGAGAAATTTTGATGTTTTTAAATAGTCTTAT
CAGCAATGGCAA-39.

59-CTCCCGGGTACTCGAGTATGGGATCCGTGCTGGGGTAGTGC-39.

This fragment was cloned by infusion into the (w+) attB plasmid (a
gift from Jeff Sekelsky, Addgene plasmid #30326) at the XhoI site to
create DSPL237.

A 1307 bp fragment containing GAL80 was amplified with the
following primers from pAC-GAL80 (Potter et al. 2010; a gift from
Liqun Luo, Addgene plasmid #24346):

59-CTTCTGCAAGGCGCGCCCAATCAAAATGGATTACAACAAA
AGGAG-39.

59-CGGTGCCTAGGCGCGCCTACCGGTAGACATGATAAGATA
CATTGATG-39.

This fragment was introduced into DSPL237, downstream of the srp
fragment at the AscI site, using Infusion cloning to create DSPL322.

Drosophila melanogaster stocks
Flies were raised on standard agar, cornmeal, molasses, and yeast food
containing 1.5%Nipagin bought from IMBA (Vienna, Austria). Adults
were placed in cages in a Percival DR 36VL incubatormaintained at 29�
and 65% humidity, and embryos were collected on standard plates
prepared in house from apple juice, sugar, agar, and Nipagin, and
treated with yeast from Lesaffre (Marcq, France). This applies to all
experiments except the QF2movie, whose fly husbandry conditions are
described below. repo-GAL4 andQUAS-CD8::GFP were obtained from
the Bloomington Drosophila Stock Center, UAS-moe::mCherry from
P. Martin (Millard and Martin 2008), hml-dsRed from K. Brückner,
and srp-GAL4 UAS-2xeGFP from R. Reuter.

Embryo immunohistochemistry
Embryos were fixed with a standard 18.5% formaldehyde/heptane fix
for 20 min followed by methanol devitellinization. mCherry embryos
were visualized directly after fixation, rehydration, and mounting.
srp-moe::GFP embryos were rehydrated and underwent antibody staining,
using standard protocols and overnight incubation with a 1:500 dilu-
tion of GFP antibody (Aves Labs, Tigard, OR), followed (after washing)
by incubation for 2 hr with a 1:500 dilution of Goat anti-Chicken Alexa
Fluor 488 secondary (Invitrogen, Carlsbad, CA). Embryos to be stained
with Lz Ab (DSHB, Iowa City, IA) were heat-fixed using standard
protocols and incubated overnight with a 1:20 dilution of the antibody,
followed after washing by incubation for 2 hr with a 1:500 dilution of
Goat anti-Mouse Alexa Fluor 488 secondary antibody (Invitrogen).
After washing, they were mounted in Vectashield Mounting Medium
(Vector Labs, Burlingame) on 76 · 26 mm slides from Glasfabrik Karl
Hecht (Sondheim, Germany) with 22 · 40 mm coverslips, No. 1 thick-
ness (VWR International, Radnor, PA).

Microscopy
Embryo images were taken with an Inverted LSM700 Confocal Micro-
scope from Zeiss (Jena, Germany), using a Plain-Apochromat 20·/NA
0.8 Air Objective. Larvae and adult flies were imaged with a LeicaM205
FA Stereo Microscope, a Leica Planapo 2.0· objective, and a Leica
DFC3000G camera (Wetzlar, Germany). Larvae were anesthetized
for 10–15 sec with a FlyNap Anesthetic Kit (ArtNr 173010, Carolina

Biological Supply Company, Burlington, NJ), rinsed 2· in water, then
examined under the stereomicroscope. Adult flies were anesthetized for
3 min in FlyNap, and then immediately examined under the stereomi-
croscope. For imaging on the confocal, larvae and adults were prepared
as described, and then mounted in Halocarbon 200 oil (CatNr: 25073-
100, Polysciences Inc., Warrington, PA) in a sandwich of a plastic frame,
a YSI 5685 Membrane Kit 002 (ArtNr: 1518-9862, Yellow Springs
Instrument Co., Yellow Springs, OH) and a cover glass (CatNr: 631-
014724X50mm, thickness 1.5, VWR) immediately prior to visualization.

Macrophage cell counts
Embryos were analyzed at stage 15–16 for total plasmatocyte number
using Imaris (Bitplane) by detecting all the plasmatocyte nuclei as spots.

Time-lapse imaging
For the srpHemo-H2A::3xmCherry time-lapse movies, embryos were
dechorionated in 50% bleach for 4 min, washed with water, and
mounted in halocarbon oil 27 (Sigma) between a coverslip and an
oxygen-permeable membrane (YSI), as described above. The anterior
dorsolateral region of the embryo was imaged on an inverted multi-
photon microscope (TrimScope II, LaVision) equipped with aW Plan-
Apochromat 40·/1.4 oil immersion objective (Olympus). mCherry was
imaged at 1100 nm excitation wavelengths, using a Ti-Sapphire fem-
tosecond laser system (Coherent Chameleon Ultra) combined with
optical parametric oscillator technology (Coherent Chameleon Compact
OPO). Excitation intensity profileswere adjusted to tissue penetrationdepth
and Z-sectioning for imaging was set at 1 mm for tracking. For long-term
imaging,movies were acquired for 180–200minwith a frame rate of 40 sec.
All embryos were imaged with a temperature control unit set to 28.5�.

For the srp-QF2 QUAS-mCD8::GFP repo-GAL4 UAS-moe::mCherry
time-lapse movies, flies were left to lay eggs on grape juice/agar plates
overnight at 25�. Embryos were dechorionated in bleach. Stage
15 embryos of the appropriate genotype were identified based on the
absence of balancer chromosomes expressing fluorescent markers, and
mounted in 10S Voltatef oil (VWR) between a glass coverslip and a
gas-permeable Lumox culture dish (Greiner), as described previously
(Milchanowski et al. 2004; Evans et al. 2010). Movie images were taken
at room temperature every 15 min on an Ultraview spinning disk
microscope (PerkinElmer) equipped with a 20· NA 0.5 Plan-Neofluar
air objective. Maximum projection images were made from�40mmof
Z stacks taken every 3mm. Image processing was done by using ImageJ.

For the srpHemo-moe::3xmCherry time-lapsemovies, embryos were
dechlorinated in bleach for 1:15 min, and stage 15 embryos were iden-
tified and mounted in a slide covered with a double-sided sticky tape,
oriented ventrally, and covered with 10S Voltatef oil (VWR) and a glass
coverslip, as described in Stramer et al. (2010). Movie images were
taken at room temperature every 5 sec on a Zeiss LSM 880 microscope,
using Airyscan and a 63·/1.40 Oil DIC objective. Maximum projection
images were made from �17 mm of Z stacks taken every 1 mm. Image
processing was done by ImageJ.

Transgenic line production
The srpHemo-GAL80 construct was injected into lines y1 M{vas-int.
Dm}ZH-2A w�; M{3xP3-RFP.attP}ZH-51D (BL 24483) and y1

M{vas-int.Dm}ZH-2Aw�;M{3xP3-RFP.attP}ZH-86Fb (BL24749), obtained
from Peter Duchek of IMBA, to produce inserts on the second and
third chromosomes through C31-mediated integration (Bischof et al.
2007). Our srpHemo-QF2 driver was injected into yw; p[w39, y+, attP16a
(Okulski et al. 2011) to produce an insert on the second chromosome.
After injection, allmale survivorswere crossed tow; Sp/CyO; PrDr/TM3Ser
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virgins. After hatching, we screened for transformants based on eye
color and crossed them again to w; Sp/CyO; PrDr/TM3Ser virgins to
get rid of the integrase inserted on the X chromosome. We kept three
transformants/landing site.

All other vectors were co-injected into w1118 (BL-3605) using stan-
dard injection methods, along with a helper plasmid D2-3 (Robertson
et al. 1988) that permits P element transposase expression. w+ trans-
formants were selected and double balanced.

qPCR
RNA was isolated from �50,000 mCherry-positive or mCherry-
negative cells using an RNeasy Plus Micro Kit (QIAGEN), following the
manufacturer’s protocol. Of the resulting RNA, 50 ng was used for
cDNA synthesis using the Sensiscript RT Kit (QIAGEN) and oligo
dT primers. A Takyon qPCR Kit (Eurogentec) was used to mix qPCR
reactions based on the provided protocol, using the following primers:

mCherry: 59-ACATCCCCGACTACTTGAAGC-39 and 59 ACCTTGTA
GATGAACTCGCCG-39

which were designed using Primer-BLAST (https://www.ncbi.nlm.
nih.gov/tools/primer-blast/index.cgi?LINK_LOC=BlastDescAd).

Pvr: 59-GTGACTTTGGTCTGGCTCG-39 and 59-GATTCCAGCGC
CAGC-39.

RhoL: 59-CCTGAGCTATCCCAGTACCAA-39 and 59-ACCACTTGCTTTT
CACGTTTTC-39.

Drpr: 59-TCCACCTATCGCATTAAACACC-39 and 59-ACAGTCCCT
CACAATACGGTT-39.

RpL32: 59-AGCATACAGGCCCAAGATCG-39 and 59-TGTTGTCGA
TACCCTTGGGC-39.

These four sets of primers were obtained from FlyPrimerBank
(http://www.flyrnai.org/FlyPrimerBank). qPCRwas run on a LightCycler

480 (Roche) and data were analyzed using LightCycler 480 Software and
Prism.

FACS analysis
Embryos were collected for 1 hr from adult w2; srpHemo-3xmCherry
flies and aged for an additional 4 hr, all at 29�. Embryos collected from
w2 flies were processed in parallel and served as a negative control.
Embryos were dissociated using a procedure adapted from Estrada and
Michelson (2008). Embryos were dechorionated with fresh 50% bleach
for 5 min, thoroughly rinsed with water, and blotted on a dry towel.
Next, 30 mg of embryos were transferred with a paintbrush into a
dounce homogenizer. Subsequent procedures were carried out at 4�
or on ice, and all the solutions were cooled. Homogenizers were filled
with 10 ml of Seecof saline (6 mM Na2HPO4, 3.67 mM KH2PO4,
106 mM NaCl, 26.8 mM KCl, 6.4 mM MgCl2, and 2.25 mM CaCl2
at a pH of 6.8) and embryos were homogenized with 10 vertical strokes.
The resulting suspensions from three homogenizers were collected into
a 50 ml Falcon tube (Corning, NY) and centrifuged at 500 rpm for
6 min 30 sec to pellet tissue debris. The supernatant was collected into a
separate 50 ml Falcon tube and centrifuged at 1250 rpm for 10 min to
precipitate cells. The supernatant was discarded, and the cell pellet was
resuspended in 20 ml RPMI media with 10% FBS, which was then split
into two 10 ml Falcon tubes. Next, 1 ml of heat-inactivated FBS was
slowly pipetted down to the bottom of each of the tubes, which were
subsequently centrifuged at 1250 rpm for 10 min to separate out the
dead cells that remained in the upper phase after centrifugation. The
resulting cell pellet was resuspended in 500 ml of Schneider’s media
with 25% (0.2 mM filtered) heat-inactivated FBS and 2 mM EDTA (to
reduce calcium dependent adhesion and thus the formation of clumps).
The cell suspension was filtered to remove cell clumps using a Falcon
12 · 75 mm Polystyrene tube with a cell strainer cap containing a
35 mm nylon mesh. The cells were analyzed or sorted using a FACS

n Table 1 GAL4 Driver lines previously utilized for Plasmatocyte expression

Promoter Source Tissue Expression of Reporter

Time of UAS-Reporter
Expression in Plasmatocytes References for Creation and

ExpressionEmbryo Larva Adult

serpent (srpHemo) P, LG in larva and adult PC St 10–17 L1+, L2+/2, L3+/2 + Brückner et al. (2004),
Zaidman-Rémy et al. (2012)

serpent (srp) P, LG, FB, embryonic midgut,
amnioserosa, larval and
adult PC, larval SG

St 10–17 L1+, L2+/2, L3+/2 + Crozatier et al. (2004),
Milchanowski et al. (2004),
Avet-Rochex et al. (2010)

croquemort P in adult, internal tissues St 12–17 — + Olofsson and Page (2005) (embryo)
Clark et al. (2011) (adult)

peroxidasin P, LG from L2 on, in
larva and adult PC,
weak FB in L3

St 12–17 L1-L3 ++ Stramer et al. (2005) (embryo)
Stofanko et al. (2008) (larva)
Ghosh et al. (2015) (adult)

glial cells missing P, lateral glia St 10–17 — — Bernardoni et al. (1997),
Olofsson and Page (2005),
Avet-Rochex et al. (2010)

hemese 80% of circulating P,
sessile P, sections of
midgut, SG

— L3 — Zettervall et al. (2004)

hemolectin P, LG — L2, L3 + Avet-Rochex et al. (2010),
Sinenko and Mathey-Prevot (2004),
Woodcock et al. (2015) (adult)

collagen P, LG cortical zone,
and FB at all stages

St 13–17 L1–L3 + Asha et al. (2003), Avet-Rochex
et al. (2010)

singed P St 11–17 — Zanet et al. (2012)
eater P, LG — L3 — Tokusumi et al. (2009)

UAS, upstream activating sequence; P, Plasmatocytes; LG, lymph gland; PC, Pericardial cells; St, stage; FB, Fat Body; SG, salivary gland.
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Aria III (BD) flow cytometer. Emission signals for mCherry (600LP,
610/20), dsRed (583/15), and near infrared (755LP, 780/60) were de-
tected. Data were analyzed with FloJo (Tree Star) software. The cells
from the dissociated negative control w2 embryos were sorted to set a
baseline plot. A sample of the cells from the dissociated srpHemo-
3xmCherry embryos was stained with 2 mg/ml Propidium Iodide and
almost no dead cells were detected upon sorting. Macrophages from
these same srpHemo-3xmCherry embryos were sorted based onmCherry
fluorescence into 2 ml Eppendorf tubes with 50 ml of Schneider’s Dro-
sophila media.

For eachgenotype, 15 third-instar larvaewere collecteddirectly from
bottles with a brush. Prior to homogenization, they were rinsed in water
to dislodge any fly food residue and kept on ice to immobilize them. For
each genotype, eight pairs of male and female adult flies were collected
after CO2 anesthesia in an eppendorf tube and kept on ice till homog-
enization. Homogenization of larvae and adults, and FACS analysis,
proceeded as for the embryos above, except that the LIVE/DEAD Fix-
able Near-IRDead Cell Stain kit (Thermo Fisher Scientific) was utilized
on a sample according to the manufacturers’ instructions. Data shown
is representative of FACS from three independent experiments.

Data availability
All plasmids and Drosophila strains created in this study are available
from the authors upon request. All strains are also available through the
Bloomington Drosophila Stock Center.

RESULTS

Direct fusion lines visualize plasmatocyte nuclei, the
cytoplasm, and the cytoskeleton in the embryo
Visualizing plasmatocytes in fixed and live specimens is essential for
understanding how these cells interact with surrounding tissues. Pre-
vious studies have labeled plasmatocytes by using various GAL4 drivers
to activate UAS-reporters (Table 1; Evans et al. 2014). However, this
approach prevents the simultaneous use of other GAL4 drivers to in-
dependently affect or image separate tissues. Direct fusions have been
made of plasmatocyte-specific promoters to fluorescent proteins (Table
2; Evans et al. 2014), but none of these expressed at all stages of the life
cycle. Additionally, the expression that many displayed was weak and,
in some lines, was also present in large extraneous tissues, making live
plasmatocyte detection and FACS analysis challenging. Therefore, we

fused the srpHemo promoter that guides specific plasmatocyte expres-
sion in the embryo (Brückner et al. 2004) to three copies of mCherry
(Shaner et al. 2004; Bakota et al. 2012), a red fluorescentmonomer with
a rapid maturation time, low photobleaching, and the ability to survive
fixation with fluorescence intact. We also fused the first 124 amino
acids of Histone H2A to mCherry, concentrating the signal in the
nucleus to facilitate cell counting and tracking. There is little auto-
fluorescence in the embryo in the red spectrum, and thus these
srpHemo-H2A::3xmCherry lines displayed extremely brightly fluoresc-
ing plasmatocytes with little background starting at embryonic stage
8 and continuing through stage 17; the signal was still strongly visible
after fixation with heat, formaldehyde, and paraformaldehyde—utilizing
methanol, ethanol, or a hand-held needle to devitellinize—without any
antibody staining required (formaldehyde/methanol is shown in Figure
1A). In contrast, the plasmatocyte fluorescence in the previously con-
structed srp-moe::GFP (Moreira et al. 2010) does not survive fixation
(data not shown) and is weak when viewed live [Supplemental Material,
Figure S1, A and B; asterisks in A show autofluorescent yolk granules as
plasmatocytes only become evident live at stage 10 (data not shown)].
Upon staining with an antibody against GFP, plasmatocytes can be
observed starting at stage 8 but are accompanied by strong extraneous
expression in the amnioserosa (arrow in Figure S1, C and D), which is
also seen live (arrow in Figure S1B) but not observed in live or fixed
negative controls (data not shown). Thus, utilizing three copies of
mCherry fused directly to the srpHemo promoter produces a plasmato-
cyte marker that is brightly visible in live or fixed embryos without
antibody staining from early embryonic stages onwards.

We demonstrated the effectiveness of our srpHemo-H2A::3xm-
Cherry nuclear line for tracking in live embryos by making two-photon
movies of plasmatocyte migration from the head into the germband in
stage 10–12 embryos (File S1) (Figure 1B). There was much less auto-
fluorescence at the 1100 wavelength used for mCherry than at the
980 nm used for eGFP in the yolk and, particularly usefully, in the
vitelline membrane, where absorption of laser energy through auto-
fluorescence at 980 nm frequently leads to membrane rupture and
death of the embryo during movie acquisition. The brightness of the
mCherry signal also permitted the use of low laser power for effective
imaging and thus less photobleaching. Analysis of plasmatocyte dis-
placement based on tracking the nuclei with Imaris software revealed
distinct paths of migration within the anterior, corresponding to the
different directions ultimately chosen (Figure 1C). Efficient localization

n Table 2 Direct fusion lines for plasmatocyte visualization: previously published and described in this paper

Promoter Source-
Reporter Utilized

Reporter Utilized:
Tissue Expression

Time and Level of
Reporter Expression
in Plasmatocytes References for Creation and

ExpressionEmbryo Larva Adult

Previously published
hemolectin-DsRed P, CC, LG — +++L2–L3 +/2 Makhijani et al. (2011)
hemolectin-DsRed::nls P, CC, LG — +++L2–L3 +/2 Clark et al. (2011), Makhijani et al. (2011)
eater-DsRed P — +/2L3 — Tokusumi et al. (2009), Ayyaz et al. (2015)
eater-GFP P — +/2L3 — Sorrentino et al. (2007)
serpent-moe::GFP P, LG, in embryo

amnioserosa
+ +/2L1–EL3 — Moreira et al. (2010), Razzell et al. (2013)

This paper
srpHemo-3xmCherry

and derivatives
P, CC until embryonic

stage 15, cortical zone of LG,
+++ +++ +++ This paper

PC in second and third-instar
larvae and adult, SGS from
embryonic stage 16 till LL3

St 8–17 L1–L3

P, Plasmatocytes; CC, Crystal Cells; LG, lymph gland; SGS, Stomatogastric nervous system; PC, Pericardial cells; St, stage.

Volume 8 March 2018 | Genetic Tools for Drosophila Macrophages | 849

http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.300452/-/DC1/FigureS1.ai
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.300452/-/DC1/FigureS1.ai
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.300452/-/DC1/FigureS1.ai
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.300452/-/DC1/FileS1.mov


of srpHemo-H2A::3xmCherry to the nucleus (Figure 1F) also permitted
easy determination of total plasmatocyte cell counts from confocal
images using Imaris; we detected 5926 48 cells (n = 24) by analyzing
wild-type stage 16 embryos, somewhat less than the 700 previously

counted at stage 11 based on an antibody marker (Tepass et al.
1994). Thus, the nuclear-localized mCherry permits automated plas-
matocyte tracking and counting, and eliminates many of the problems
that occur with live two-photon imaging of GFP.

Figure 1 Direct fusion lines allow fluorescent visualization of plasmatocyte nuclei, the cytoplasm, or the cytoskeleton in embryos from stage (St)
8 onwards. (A) Fixed srpHemo-H2A::3xmCherry embryos display strong fluorescence in the nuclei of plasmatocytes starting from St 8 and continuing
throughout embryogenesis. Embryonic St is indicated in the lower left of each panel. (B) Stills from a two-photon movie of a srpHemo-H2A::3xmCherry St
10–12 embryo illustrating the low level of endogenous autofluorescence in the yolk. Three successive time points are shown, with the intervening time
in minutes indicated in the upper right of each panel. (C) Arrows indicating relative displacement of macrophage nuclei in 90 min of live imaging starting
at St 10. (D and E) Close-ups of merged confocal images of srpHemo-H2A::3xmCherry embryos stained with Lz antibody (D’ and E’) as a marker of crystal
cells (CC). We see mCherry expression in CC until St 14 (D”), but no longer at St 15 (E”). Live image of individual plasmatocytes visualized with
a two-photon microscope with (F) srpHemo-H2A::3xmCherry or (G) srpHemo-3xmCherry, or (H) with a Zeiss confocal microscope from an
srpHemo-moe::3xmCherry embryo demonstrating nuclear, cytoplasmic, or actin labeling, respectively. All embryos are positioned with anterior
to the left and dorsal at the top. Scale bars correspond to 20 mM in (A), 40 mM in (B), 20 mM in (C and D), 2 mM in (F and G), and 10 mM in (H).
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We assessed if our srpHemo-H2A::3xmCherry line also directs ex-
pression in crystal cells. These cells are born along with plasmatocytes
from the mesoderm, migrate to a location around the proventriculus,
and remain there during embryogenesis (Lebestky et al. 2000). In larvae
and adults, they mobilize to enhance melanization in response to
wounds or wasp egg infection (Galko and Krasnow 2004; Dudzic
et al. 2015). We used an antibody recognizing Lozenge, a crystal cell
marker, and observed colocalization with srpHemo-H2A::3xmCherry
(Figure 1, D–D”) throughmuch of embryogenesis, but by stage 15 (Fig-
ure 1, E–E”) nomCherry colocalization was detected. We also observed
extraneous expression in the stomatogastric nervous system starting at
stage 16/17 (data not shown). Given that there are 35 crystal cells
(Milchanowski et al. 2004) and that we detect �600 total cells, we
conclude that 94% of all embryonic cells labeled with srpHemo-
H2A::3xmCherry before stage 15 are plasmatocytes.

We further created srpHemo-3xmCherry lines to produce plasma-
tocytes with a labeled cytoplasm (Figure 1G and Figure S1, E and E’),
which are useful for studies examining direct contact of plasmatocytes
with other tissues as well as their phagocytosis of pathogens and
apoptotic cells. To visualize polymerized actin in plasmatocytes during
studies of migration, we fused the mCherry with the C-terminal part of
moesin that had been previously used to detect actin (Edwards et al.
1997). In these actin-binding srpHemo-moe::3xmCherry lines, we could
detect filopodial and lamellipodial extensions within the plasmatocytes
in live and fixed embryos (Figure 1H and Figure S1, F and F’), and could
make time-lapse movies of plasmatocyte actin dynamics (File S2). Al-
though the expression is weaker than in the cytoplasmic version, plas-
matocytes can still be easily seen from all of these lines in fixed
heterozygous embryos (Figure S1, E–G’), which allows analysis of the

heterozygous progeny that arise, for example, during RNAi crosses. Het-
erozygotes can also be used in live imaging (nuclear line is shown in File
S3, movie stills in Figure S1, H and H’). These lines were inserted at
random positions on the second and third chromosomes, and are viable
as homozygous embryos. Thus, our lines fusing the srpHemo promoter to
3xmCherry, either on its own or combined with other protein domains,
permitted easy visualization of either the cytoplasm, nuclei, or actin
cytoskeleton of plasmatocytes in the embryo in multiple contexts.

Direct fusion lines visualize plasmatocyte nuclei, the
cytoplasm, and the cytoskeleton in larvae and adults
These lines alsopermittedclear visualizationof individualplasmatocytes
in larvae and adults. In larvae, the characteristic pattern of resident
plasmatocytes sitting in the body wall pockets (Makhijani et al. 2011)
was most easily evident live through a stereomicroscope for the cyto-
plasmic 3xmCherry (Figure 2A), although it was also visible in the
nuclear- and actin-localized forms (Figure S2, A and B). Individual
plasmatocytes from the srpHemo-3xmCherry lines were also visible in
these conditions floating in the hemolymph (Figure 2B and File S4),
thereby allowing detection of the fluid flow. We frequently observed
clusters of floating plasmatocytes adhering to a darker nonfluorescing
droplet (most visible in File S4 when examining the cells indicated with
an arrow in Figure 2B). The cortical zone of the third-instar larval
lymph gland was labeled by mCherry (Figure 2C) along with 40 peri-
cardial cells, pairs of large (50 mM) oval cells in a repeating pattern
along the dorsal vessel that allow the heartbeat to be easily visualized
(Figure S2C and File S5) (Das et al. 2007). We also observed this
pericardial fluorescence in two other lines that visualize plasmatocytes,
srpHemo-GAL4UAS-GFP (Brückner et al. 2004) and pxn-GAL4UAS-GFP

Figure 2 Direct fusion lines allow live
imaging of plasmatocytes in larvae and
adults. (A) Live image of plasmatocytes
sitting on the body wall of a srpHemo-
3xmCherry larva, viewed through the
cuticle with a stereomicroscope. (B)
Time-lapse imaging of plasmatocytes
in a srpHemo-3xmCherry larva filmed
through a stereomicroscope. Three suc-
cessive time points separated by 2.2
sec each are shown. Arrowhead indicates
a group of cells that float in the hemo-
lymph while most other cells remain
attached to the body wall. (C) Confo-
cal image of labeling by srpHemo-
3xmCherry third-instar larval lymph
gland. (D) Live image of plasmatocytes
in a srpHemo-3xmCherry adult and in a
close-up of (E) the leg viewed through a
stereomicroscope. (F–G) Live image of
a srpHemo-3xmCherry adult viewed
with a confocal microscope. (F) 3D pro-
jection of plasmatocytes in the head,
proboscis, and thorax. (F’) transmitted
light view of the adult fly imaged in (F).
(G) Single confocal slice showing plas-
matocytes encircling adult fat body cells
(one indicated with white circle). Scale
bars correspond to 500 mM in (A–C),
250mM in (D and E), and 100mm in (F–G).
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(Stramer et al. 2005), but not in hml-DsRed (Makhijani et al. 2011)
(data not shown). Expressionwas also seen in the stomatogastric nervous
system during larval stages (Figure S2D). In fixed or live larvae, plasma-
tocytes were also visible deep within the body, at depths of #130 mm
with confocal imaging (Figure S2, E and E’ shows a fixed first-instar
srpHemo-3xmCherry with a 3D projection of plasmatocytes). At adult
stages, cytoplasmic- (Figure 2, D and E), nuclear-, and actin-targeted
mCherry-labeled plasmatocytes (Figure S2, G–I) were visible in the head,
thorax, and legs using a stereomicroscope. Confocal images of live
srpHemo-3xmCherry adults detected plasmatocytes within the body, at
depths up to 94 mm (Figure 2, F and F’). The discovery of plasmatocytes
encircling cells in the fat body (Figure 2G) is particularly interesting given

recent results demonstrating their role in regulating metabolism
(Woodcock et al. 2015).While in larvae the srpHemo-3xmCherry signal
is similar to that seen in third-instar hml-DsRed larvae (data not shown),
in the adult the srpHemo-3xmCherry signal is much brighter (compare
Figure S2, F’ and G’) and can be easily detected in heterozygotes of
all constructs (Figure S2, G’–I’). This allows direct detection of
the presence of the chromosome in adults, greatly facilitating crosses.
srp-moe::GFP, the other direct fusion line expressed beyond a single stage
(Table 1), is much weaker than srpHemo-3xmCherry in second- and
early third-instar larvae (Figure S3, A–C), and not detectible in late
third-instar larvae and adults even with a confocal microscope (Figure
S3, D–K). Thus, the srpHemo-3xmCherry lines permit visualization of

Figure 3 The direct fusion srpHemo-3xmCherry line allows Fluorescence-Activated Cell Sorting (FACS) of plasmatocytes from embryos, larvae,
and adults. (A) FACS plot of Side Scatter (SSC) vs. mCherry fluorescence signal in cells obtained from control w- and w-; srpHemo-3xmCherry and
embryos, showing strong separation of mCherry+ signal from the remaining cells. (B) quantitative PCR conducted on cDNAs prepared from RNA
isolated from mCherry+- and mCherry2-sorted cells using primers recognizing the plasmatocyte markers mCherry, Pvr, RhoL, Ppn, and Notch.
The data are normalized to results for the housekeeping gene RpL32 and the graph shows the fold difference in signal observed between the
mCherry+ (plasmatocytes) and mCherry2 cells. (C and D) FACS plot of SSC vs. mCherry or DsRed fluorescence signal in cells obtained from
srpHemo-3xmCherry, hml-DsRed, and control w-. In larvae (C), the two direct fusion lines show similar levels of fluorescent protein-positive
plasmatocytes; however, in the adult (D), the number of DsRed+ plasmatocytes in hml-DsRed flies is strongly reduced when compared to the
number of mCherry+ plasmatocytes in srpHemo-3xmCherry. (E) Quantification of plasmatocytes compared to total events detected during FACS
analysis. Error bars in (B and E) represent SE of the mean. At least three independent experiments were conducted for each stage.
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plasmatocytes in live and fixed samples without antibody staining
from the embryo to the adult.

FACS sorting from the embryo to the adult using the
direct fusion cytoplasmic line
The srpHemo-3xmCherry line also facilitated purification of plasmato-
cytes by FACS. In stage 11 embryos, 2% of total cells from this line were
mCherry-positive (Figure 3, A and E and Figure S4A). These cells were
enriched for plasmatocytemarkers such as Pvr, Papilin, and RhoL (Cho
et al. 2002; Kramerova et al. 2003; Siekhaus et al. 2010), as assessed by
qPCR (Figure 3B), but not for the broadly expressed gene Notch
(Hartley et al. 1987), thus identifying the mCherry+ cells as plasmato-
cytes.We compared this line to the other extant direct fusion line in the
red spectrum, hml-dsRed, which turns on in second-instar larvae.
According to modENCODE data on FlyBase (http://flybase.org/
reports/FBgn0029167.html), hemolectin is moderately expressed in
LL3, almost absent inpupa, and shows lowexpression in adults, particularly
females. We did not analyze srp-moe::GFP as it had strong extraneous
expression in the embryo (Figure S1, B–D), was weak in second-early
third-instar larvae, and showed no expression in late third-instar larvae
and adults (Figure S3, A–K). The relative number of plasmatocytes was
similar in srpHemo-3xmCherry and hml-DsRed in third-instar larvae
(Figure 3, C and E), but we detected $10 times more fluorescent-
positive plasmatocytes in srpHemo-3xmCherry than hml-DsRed adults
(Figure 3, D and E), consistent with microscopic examination (Figure
S2, F–G’), indicating very weak expression of hml-DsRed at this time.
Using srpHemo-3xmCherry, we identified 0.25 and 0.6% of total cells as
plasmatocytes in larvae and adults, respectively (Figure 3E and Figure
S4, B and C). Thus, these srpHemo-derived constructs permit in vivo
visualization and efficient FACS sorting, and analysis of plasmatocytes
from the embryo to the adult independent of GAL4-based expression,
unlike any other extant direct fusion line.

QF2 lines allowing genetic manipulation of
plasmatocytes from the embryo to the adult
To permit genetic manipulation of plasmatocytes along with separate
modulation of other tissues, we have taken advantage of the Q system
(Potter et al. 2010; Potter and Luo 2011) and a nontoxic variant of the

relevant transcription factor called QF2 (Riabinina et al. 2015). Our
srpHemo-QF2 driver integrated at the attP16a landing site on the sec-
ond chromosome can control the expression of QUAS constructs such
as QUAS-CD8::GFP in plasmatocytes (Figure 4A), starting at embry-
onic stage 10. We additionally observed lower-level expression from
srpHemo-QF2 either in the amnioserosa,mesoderm, and/or in punctate
cells in the germband ectoderm in 11% of embryos (Figure S5, A and
B). As QF2 does not bind to UAS sites, it can be combined with the
known large repertoire of GAL4 drivers, which can then independently
drive UAS constructs in other tissues. We illustrate this capability by
combining srpHemo-QF2 QUAS-CD8::GFP with repo-GAL4 UAS-
moe::mCherry to simultaneously label plasmatocytes and the embry-
onic nervous system (Figure 4B and File S6). In the larval stage, we see
srpHemo-QF2-dependent expression detectable with a stereomicro-
scope again in the circulating and resident plasmatocyte population
at the body wall during all larval stages (Figure 4, C and D), and in
the third-instar larval lymph gland as well as pericardial cells (data not
shown). Extraneous expression is seen in a subset of the fat body
(arrowhead in Figure 4C). Plasmatocyte expression continues into
the adult, which can be detected with a stereomicroscope (Figure 4E).
Thus, the srpHemo-QF2 line permits the independent visualization or
genetic modification of plasmatocytes and surrounding tissues.

GAL80 line blocking GAL4 action in plasmatocytes from
the embryo to the adult
Finally,wewished tobe able togenetically alterDrosophilausingbroadly
expressed GAL4 drivers while not affecting plasmatocytes themselves.
To this end, we utilized GAL80, which blocks the activity of GAL4 (Lee
and Luo 1999), and created srpHemo-GAL80 lines. This construct was
integrated on the second and third chromosome at the split white attP
landing sites at ZH-51D and ZH-86Fb, which contain 3xP3-RFP and
can be recognized in larvae by the remaining landing site red fluores-
cence in the brain (Figure S6A), hindgut (Figure S6B), and interseg-
mental nerves (asterisk in Figure S6E”), and in the top of the head
(Figure S6, C and C’) (Bischof et al. 2007) in the adult, aiding detection
of the chromosome in crosses. Should this extraneous RFP be delete-
rious for planned experiments, it can be eliminated from the line by
expressing cre recombinase. To demonstrate the use of this construct,

Figure 4 srpHemo-QF2 enables inde-
pendent genetic manipulation of plas-
matocytes and surrounding tissues in
the embryo to the adult. (A) Confocal
image of fixed stage (St) 12 srpHemo-
QF2 QUAS-CD8::GFP embryo showing
QF2 dependent expression in plas-
matocytes. (B) Still from live imaging
with a spinning disc microscope of a
srpHemo-QF2 QUAS-mCD8-GFP/+;
repo-GAL4 UAS-moe::mCherry/+ em-
bryo demonstrating independent genet-
ic control of plasmatocytes (in green)
and the central nervous system (in pur-
ple). Anterior is to the left and the ven-
tral side is up. (C–E) Stereomicroscope
images of live samples. (C) srpHemo-
QF2 QUAS-CD8::GFP third-instar larva
showing expression in plasmatocytes

(arrow), fat body (arrowhead), and cells along the dorsal vessel (asterisk). (D) Close up of plasmatocytes sitting on the body wall viewed through
the cuticle from the region indicated in white box in (C). (E) srpHemo- QF2 QUAS-CD8::GFP adult. Anterior is to the left in all, dorsal is up in (A), (C–E),
ventral is up in (B). Scale bars correspond to 20 mM in (A and B) and 500 mM in (C–E).
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we visualized plasmatocytes using the above-described srpHemo-
H2A::3xmCherry and utilized the ubiquitous driver tub-GAL4 to
express UAS-CD8::GFP in the entire embryo (Figure 5, A–A”).
The addition of srpHemo-GAL80 was able to block tub-GAL4-based
expression of CD8::GFP in plasmatocytes (Figure 5, B and B”), but did
not affect any of the surrounding cells (Figure 5, B and B’). To visualize
this effect in larvae and adults, we shifted to GAL4-based expression of
GFP just in plasmatocytes using srp-GAL4 UAS-2xeGFP. We observed
the same capacity of the srpHemo-GAL80 to suppress the effect of
GAL4 in plasmatocytes, resulting in no GFP expression in first- to
third-instar larvae (compare Figure 5, C–C” to Figure 5, D–D” and
Figure S6, D–D” to Figure S6, E–E”) and adults (compare Figure 5, E–
E” to Figure 5, F–F”). We also noted that srp-GAL4 at these stages
labeled only a subset of the plasmatocytes visualized with srpHemo-
3xmCherry (Figure S6, D and E). Thus, srpHemo-GAL80 can insulate
plasmatocytes from the effects of broadly expressed GAL4 drivers in
the embryo, larva, and adult.

DISCUSSION
In recent years, plasmatocytes have been shown to be able to detect
multiple physiological conditions, and produce adaptive and sometimes
deleterious responses to them. Much of this work has focused on the

signals sent from plasmatocytes to the surrounding tissues and the
resulting effects (Ayyaz et al. 2015). To investigate the reverse aspect,
namely how tissues signal to plasmatocytes and influence immune cell
number or behavior, tools permitting the visualization or isolation of
plasmatocytes in conditions where only surrounding tissues have been
genetically altered are required.We have created three extremely bright
lines that allow the easy detection of the plasmatocyte nucleus, cyto-
plasm, or actin cytoskeleton live or upon fixation from embryonic stage
8 until the adult in homozygotes and heterozygotes. The cytoplasmic
line is particularly effective for FACS purification at all stages, facilitat-
ing quantitative assessment of the numbers of plasmatocytes and the
levels of proteins expressed in them. This will also support next-
generation sequencing analysis of the plasmatocyte transcriptome atmany
stages and eventually at the single-cell level. Our additional creation
of srpHemo-QF2 and srpHemo-GAL80 facilitate targeted genetic manip-
ulations in combination with other GAL4 drivers. Thus, we have pro-
duced a comprehensive set of tools permitting the analysis and genetic
screening of plasmatocyte behaviors at all stages of the Drosophila life
cycle.

Several of these new tools will permit experiments on plasmatocyte
migration that were not feasible until now. Plasmatocytes are born from
themesodermand start tomigrate at embryonic stage 8, three stages and

Figure 5 srpHemo-GAL80 blocks the effect of GAL4 drivers on plasmatocytes. (A–F) Confocal images of fixed (A and B) and live (C–F) samples.
(A–A”) Stage 11 srpHemo-H2A::3xmCherry/+, tub-GAL4 UAS-CD8::GFP/+, embryo showing the ubiquitous GAL4-dependent labeling of cell
membranes by (A and A’) UAS-CD8::GFP, including in plasmatocytes labeled by the nuclear mCherry (A–A”). (B–B”) Stage 11 srpHemo-
H2A::3xmCherry srpHemo-GAL80/+, tub-GAL4 UAS-CD8::GFP/+, embryo demonstrates that the expression of GAL80 in plasmatocytes labeled
by nuclear mCherry (B”) leads to the suppression of CD8::GFP (B,B’). (C–C”) First-instar srpHemo-H2A::3xmCherry/+, srp-GAL4 UAS-2xeGFP/+,
larva shows that plasmatocytes labeled by the nuclear mCherry also express cytoplasmic GFP. However, in a larva also carrying srpHemo-GAL80,
the plasmatocytes (D) no longer express the GAL4-controlled GFP (D’ and D”). (E–E”) Legs of srpHemo-H2A::3xmCherry/+, srp-GAL4 UAS-
2xeGFP/+, adults; GFP is expressed in plasmatocytes under GAL4 control (E’ and E”), but not in the presence of srpHemo-GAL80 (F’ and F”).
Scale bars correspond to 20 mm in (A and B), 20 mm in (C and D), and 50 mm in (E and F).
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3 hr before stage 11 when the previous visualization techniques using
GAL4 and fluorescent reporters allowed their detection. Thus, the
mechanisms that trigger the initiation of their movement, their co-
ordination while they are in closer contact, or their choices to split into
different paths (all of which occur prior to stage 10) have not been
investigated. The extant direct fusion srp-moe::GFP line is weakly
expressed in the embryo, absent in late larvae and adults, and utilizes
a fluorophore whose activation and emission spectra is shared by many
autofluorescent molecules in the fly. Thus, our srpHemo direct fusion
lines that start expression at stage 8 will serve as the foundation for
studies to address these migratory questions, with the nuclear line
facilitating tracking and the actin labeling line aiding examination of
the cytoskeletal underpinnings of this developmental movement. These
lines will also aid investigations into the migration posited to underlie
the final homing of plasmatocytes to their positions on the larval body
wall, where they proliferate (Makhijani et al. 2011; Van De Bor et al.
2015), and to the dorsal clusters in the adult (Ghosh et al. 2015),
which could shed light on resident macrophage homing in vertebrates.

The movement of plasmatocytes allows them to reach tissues where
they are known to play important roles, responding towounds (Stramer
et al. 2005; Wood et al. 2006), engulfing dead cells (Tepass et al. 1994;
Franc et al. 1996; Weavers et al. 2016a), promoting or killing tumors
(Cordero et al. 2010; Parisi et al. 2014), regulating stem cell prolifera-
tion (Ayyaz et al. 2015; Van De Bor et al. 2015), and monitoring me-
tabolism (Woodcock et al. 2015). The nature, though not the identity,
of the cues that guide them to these tissues is somewhat understood for
wounds (Razzell et al. 2013; Weavers et al. 2016b) and tumors (Pastor-
Pareja et al. 2008), and remains completely unknown for the rest.
Screens utilizing GAL4 expression of RNAi constructs in these tissues
and monitoring plasmatocyte responses will be greatly aided by all
three of our direct fusion lines, which are visible as heterozygotes. Such
screens seeking to quantitatively examine effects on plasmatocyte pro-
liferation throughout the organism should utilize FACS analysis and
our srpHemo-3xmCherry line, which is effective from stage 8 to the
adult. FACS analysis will detect changes in proliferation in both the
lymph gland and the tissue-resident populations, as we see expression
in plasmatocytes in both regions. If the chosen driver expresses broadly,
our srpHemo-GAL80 can be used to block the activity of GAL4 in
plasmatocytes from stage 9 in the embryo to the adult and allow the
RNAi screen to only affect surrounding tissues. How tissues and plas-
matocytes signal back and forth to one another can be investigated
using our srpHemo-QF2 line in addition to extant GAL4 drivers to
modulate the genetic behavior on both sides. If the process is only
being investigated in L3 larvae and beyond, then the extant hml-QF2
(Lin and Potter 2016) can be used (Table 3). Thus, these lines should

allow the identification of new mechanisms underlying plasmatocyte
migration, and regulatory interactions between plasmatocytes and sur-
rounding tissues at all stages of the Drosophila melanogaster life cycle.

We hope that these reagents will also spur on new types of studies in
the adult. The previously created hml-DsRed is visible in third-instar
larvae, yet in adults hml-dsRed is hard to detect; our srpHemo-
3xmCherry line (Figure 2, C–G and Figure 3D) thus enables experi-
ments that were previously difficult. While plasmatocytes have been
shown to regulate metabolism and affect aging (Woodcock et al.
2015), further investigations of how aging tissues signal to stimulate
adaptive or deleterious plasmatocyte responses require direct visual-
ization and FACS analysis of plasmatocytes in the adult. The role of
other tissues in potentially influencing plasmatocyte responses to in-
fection (Buchon et al. 2014) is another area that these lines could
beneficially impact, by enabling screens as described above.

Given the wide range of processes Drosophila plasmatocytes have
been shown to participate in, this set of tools will immediately prove
useful to a broad number of scientists studying Drosophila develop-
ment, aging, cancer, stem cells, wounds, immunity, and metabolism.
Since plasmatocytes interact with tissues throughout the organism at all
stages, these tools will also facilitate the discovery and investigation of
many as yet unidentified regulatory processes. The genetic conservation
observed between Drosophila and vertebrates strongly suggests that this
future work will also prove beneficial for studies in higher organisms.
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