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Abstract

Evolution occurs in populations of reproducing individuals. The structure of the population affects the outcome
of the evolutionary process. Evolutionary graph theory is a powerful approach to study this phenomenon. There are
two graphs. The interaction graph specifies who interacts with whom in the context of evolution. The replacement
graph specifies who competes with whom for reproduction. The vertices of the two graphs are the same, and each
vertex corresponds to an individual of the population. A key quantity is the fixation probability of a new mutant.
It is defined as the probability that a newly introduced mutant (on a single vertex) generates a lineage of offspring
which eventually takes over the entire population of resident individuals. The basic computational questions are
as follows: (i) the qualitative question asks whether the fixation probability is positive; and (ii) the quantitative
approximation question asks for an approximation of the fixation probability. Our main results are: (1) We show that
the qualitative question is NP-complete and the quantitative approximation question is #P-hard in the special case
when the interaction and the replacement graphs coincide and even with the restriction that the resident individuals
do not reproduce (which corresponds to an invading population taking over an empty structure). (2) We show that
in general the qualitative question is PSPACE-complete and the quantitative approximation question is PSPACE-hard
and can be solved in exponential time.

Keywords: Evolution; Evolutionary games on graphs, Fixation probability; Computational complexity.

*The full version is attached as appendix.



1 Introduction

In this work we study the basic computational questions for evolutionary games on graphs, and present complexity
results for them. We start with a description of the model of evolution on graphs and its significance. We then state
the basic computational questions and present our results.

Evolutionary dynamics with constant selection. Evolutionary dynamics act on populations. The composition of
the population changes over time under the influence of mutation and selection. Mutation generates new types and
selection changes the relative abundance of different types. A fundamental concept in evolutionary dynamics is the
fixation probability of a new mutant [[10}[16} 21} 122]]: Consider a population of IV resident individuals, each with a non-
negative fitness value, r. A single mutant with fitness value 1 is introduced in the population as the initialization ste;ﬂ
Then the following step is repeated. At each time step, one individual is chosen proportional to the fitness to reproduce
and one individual is chosen uniformly at random for death. The offspring of the reproduced individual replaces the
dead individual. This so-called Moran process continues until either all individuals are mutants or all individuals
are residents. The fixation probability is the probability that the mutants take over the population, which means all
individuals are mutants. A standard calculation shows that the fixation probability is given by (1 — 7)/(1 — V).
The correlation between the relative fitness of the mutant (with respect to resident fitness, i.e., 1/r) and the fixation
probability is a measure of the effect of natural selection in that population structure [26} |19} 31]. A neutral mutant,
r = 1, has fixation probability 1/N. The rate of evolution, which is the rate at which subsequent mutations accumulate
in the population, is proportional to the fixation probability, the mutation rate, and the population size N. Hence
fixation probability is a fundamental concept in evolution.

Evolutionary game dynamics. The fitness values of individual types (resident and mutant) need not be constant, but
could themselves depend on the composition of the population. This idea brings us to evolutionary game theory, where
the individuals of a population interact with each other to receive a payoff. There could be two strategies, R and M,
and a payoff matrix

R M

R (an a2
1
M (a21 as M
The payoff of an individual is the average payoff of the interactions (see [22, Section 7.1]; also Section[2)). Standard
evolutionary game theory assumes a well-mixed population structure, which means all individuals interact with equal

probability. Again a fundamental question is the fixation probability of a mutant [[10} [16} 21} 22], which quantifies
whether or not a mutant is favored by natural selection.

Evolutionary graph theory: Informal model. The outcome of an evolutionary process is dependent on population
structure. Evolutionary graph theory studies this phenomenon. The individuals of the population occupy the vertices
of a graph. The links (edges) determine who interacts with whom. Evolutionary graph theory describes evolutionary
dynamics in spatially structured population where most interactions and competitions occur mainly among neighbors
in physical space [24} [19| 27, 18, [12]]. Another application is cultural evolution (spread of ideas and behaviors) in
social networks [14]. Finally, the hierarchy of cellular proliferation and differentiation in the human body, which is
crucial for physiological function and for reducing cancer initiation, is described by evolutionary graph theory [25].
The evolutionary graph theory considers directed graphs because interactions between individuals need not be sym-
metric [25/ [19]: Examples of population structures and evolutionary processes that resemble directed graphs include
somatic evolution of cancer either in epithelial tissue [25} 23] or in the hematopoeitic system [20]], the spatial distribu-
tion of microbial and other populations along flowing water gradients or social networks, where some people are more
influential than others [/1]].

Evolutionary graph theory: Basic results. For the case of constant fitness (which means residents with relative
fitness r and mutants with relative fitness 1) graphs have been identified that maintain the same selection pressure as
the well mixed population, that amplify selection, or that reduce selection. For example, a star graph is an amplifier of
selection, because the fixation probability of the mutant is given by %; hence the star graph squares the relative
fitness [[19]]. In contrast, ‘isothermal graphs’ where the in-degree and out-degree of all vertices coincide (such as

!n the literature, an alternative notion is to consider that the mutant have fitness r and the residents have fitness 1, we follow the notation that
leads to simpler formulas



regular undirected graphs) have the same fixation probability as the Moran process, 11__7,71} [19, 4]. There are some

graphs and update rules that enhance the evolution of cooperation, which is a particular strategy in evolutionary games,
for example in the well-known Prisoner’s dilemma [[19} 27]]. Evolution of cooperation is a major topic in evolutionary
biology, because cooperation is seen as a main component for the creative tendency of evolution. A crucial aspect of
evolutionary graph theory is the computation of the fixation probability of an invading mutant.

The formal model and computational questions. In the study of evolutionary games on graphs in general there
are two graphs (that have the same vertices) [19, 28]. The “interaction graph” specifies who interacts with whom
for payoff. The “replacement graph” specifies who competes with whom for reproduction. The initial step is the
introduction of a mutant uniformly at random and then at each step a vertex is chosen proportional to the fitness (or
payoff). If the fraction of successors in the interaction graph that are of the same type as the chosen vertex is below a
threshold (i.e., a density constraint is satisfied), then the individual in the vertex reproduces to a successor uniformly at
random among the successors in the replacement graph. The density constraint, which is relevant in many applications
of evolution (see books [3 page 470] [29] page 320]), can also be encoded in the payoff matrix (see Remark[I0). The
relevant computational questions for evolution on graphs are as follows: (1) the qualitative question asks whether
the fixation probability is positive; and (2) the quantitative approximation question asks, given € > 0, to compute an
approximation of the fixation probability within an additive error of e.

Special cases of the model. While in the general model the interaction and replacement graphs are different (we
refer to the model as the I&R model), an important special case is where these two graphs coincide (we refer to the
model as the IEQR model) [19, 27]. Another important special case is when the residents cannot reproduce, and this
corresponds to the case where a mutant arises in an empty geographic location, and the question is whether the mutant
can spread (hence the residents, being non-existing, cannot reproduce). Note that if the residents cannot reproduce in
the standard Moran process (without density constraints), i.e., 7 = 0, the fixation probability is 1.

Our contributions. While previous results characterized the fixation probabilities of specific graphs (such as star or
regular undirected graphs), the complexity of computing the fixation probability for arbitrary input graphs has been
open (explicitly referred to as an important open problem in a survey [30, Open Problem 2.1 and 2.2]). We study the
computational complexity of the basic questions for evolution on graphs and our results are as follows:

1. We show that under no resident reproduction, the qualitative decision question is NP-complete both for the I&R
and IEQR models.

2. We show that under no resident reproduction, the quantitative approximation problem is #P-hard even for the
IEQR model, where € > 0 is part of the input and specified in binary. Our result implies the #P-hardness of the
quantitative approximation in all models.

3. We show that with resident reproduction, the qualitative question is PSPACE-complete for the general I&R
model. Finally, for the general I&R model with resident reproduction, we show that the quantitative approx-
imation question is PSPACE-hard (for all constants 0 < € < 1) and can be solved in polynomial space with
double exponentially small error probability (which we refer to as RPS), and the exact fixation probability can
be computed in exponential time.

Our results are summarized in Table [1| and our main contributions are the lower bounds. Moreover, note that we will
present the lower bounds for constant selection with the density constraints which is a special case of evolutionary
games on graphs (as argued in Remark [T0). We will present the relevant aspects of the lower bounds, and the upper
bounds and other technical details are in the full version.

Related complexity result. To the best of our knowledge, previous to our results, there was only one computational
complexity result for evolutionary games on graphs. For the precise computation of the fixation probability, NP-
hardness for evolutionary games on graphs (named as frequency dependent selection) in the IEQR model was stated
in [19]]. Our result presents much stronger lower bounds: we show NP-hardness even for the qualitative problem and
#P-hardness even for approximation. The problem of computing evolutionary stable strategies without the population
structure (the underlying graphs) but for any number of strategy types has been considered in [9], whereas evolution-
ary games on graphs consider two strategy types (resident and mutants) but the evolutionary dynamics operates on a
population structure. The problem of time scale (or speed) of evolutionary proceeses has also been studied in different
contexts [} 33], which are related to mixing time of Markov chains; however, none of these works consider evolu-
tionary games on graphs or complexity results. While the problem of stochastic processes on automata (probabilistic



automata) have been studied in depth [2, 16 [11]], the computational study of the stochastic process on graphs induced
by evolutionary games has largely been left open [30, Open Problem 2.1 and 2.2].

Technical contributions. The complexity study of evolutionary games on graphs brings together many diverse fields
of studies related to logic (namely, game theory, graph theory, evolutionary stochastic processes, and computational
complexity): it involves the study of stochastic processes which arise in the context of evolution, and requires the anal-
ysis of stochastic processes in combination with graph theory. Our main results are computational complexity results
for the analysis of the fundamental evolutionary stochastic processes on graphs, and our main technical contribution is
to develop novel gadgets on graphs that in combination with the evolutionary stochastic processes can mimic runs of a
polynomial-space Turing machine (for the PSPACE lower bounds), or has the ability to count the number of matchings
in bipartite graphs (for the #P-hardness).

No Resident Reproduction Resident Reproduction
IEQR model I1&R model TIEQR model 1&R model
Qual. NP-c (LB) Lem. [2) NP-c (UB) Lem.[1) | NP-h, PSPACE PSPACE-c ((LB) Lem.[7| (UB) Lem.
Appr. | #P-hard, RPS ((LB) Thm. #P-hard, RPS #P-hard, RPS | PSPACE-h, RPS ((LB) Lem.[3] (UB) Lem.

Table 1: Complexity of evolution on graphs. Qual is short-hand for qualitative and appr for approximation. Our
main contributions of lower bounds (LB) and upper bounds (UB) are boldfaced. NP-c (resp., PSPACE-c) means NP-
complete (resp., PSPACE-complete). Similarly, NP-h (resp., PSPACE-h) means NP-hard (resp., PSPACE-hard). RPS
indicates that the problem can be solved in polynomial space, with randomization and double exponentially small error
probability.

2 Models of Evolution on Graphs

In this section we present the basic definitions related to the different models of evolution on graphs and the basic
computational questions.

Evolutionary graphs. An evolutionary graph G = (V, E1, ER) consists of a finite set V of vertices; aset E; C V xV
of interaction edges; and a set g C V' X V of replacement (or reproduction) edges [28]. The sets £y and Er consist
of directed edges, and the graph G; = (V, Ey) is called the interaction graph, and Gr = (V, ER) is called the
replacement graph. The graph G is responsible for determining the interaction of individuals in the graph (which
affects the fitness or payoff), and the graph G  captures the underlying structure for reproduction and replacement of
individuals in the graph. Given an edge (v, u) we say u is a successor of v and v is a predecessor of .

Fitness of individuals. Each vertex of the graph will be occupied by one of two types of individuals, namely, the
resident type and the mutant type. In evolutionary games, along with the evolutionary graph there is a payoff matrix
as defined in Equation (I)) (Section [I)), where the entries of the matrix are rational numbers and represent the payoff
of an interaction, i.e., a11 (resp., aj2) is the payoff of a resident type interacting with another resident (resp., mutant)
type, and ag; (resp., aso) is the payoff of a mutant type interacting with a resident (resp., mutant) type. Given two
types, « and y, we denote by pay(z, y) the payoff of type = versus type y. The fitness of an individual at a vertex v
is a non-negative number and determined as follows: Let Fr(v) = {u | (v,u) € E;} denote the set of interaction
successors of v, then the fitness of v, denoted as f(v), is the average payoff of the interactions but at least 0, i.e.,

flv) = max{%, 0}. A special case of the payoff matrix is the constant fitness (aka constant selection)

matrix defined as follows:
R M

R (r r
M\l 1

i.e., the mutant types always have fitness 1 and the resident types fitness r, where > 0. Intuitively, the fitness of an
individual represents the reproductive strength.



Threshold for density constraints. Along with the evolutionary graph and the payoff matrix, we have two thresholds,
namely, 0z and 6,;, for the resident type and the mutant type, respectively. Intuitively, the thresholds represent a
density constraint, and if an individual is surrounded by a lot of individuals of the same type, then its reproductive
strength decreases. The density constraint, which is relevant in many applications of evolution (see books [3, page
470] [29, page 320]), can also be encoded in the payoff matrix (see Remark [I0).

The evolutionary process. The evolutionary process we consider is the classical birth-death process on an evolution-
ary graph defined as follows:

1. Initially all vertices of the graph are of the resident type and a mutant type is introduced uniformly at random at
one of the vertices of the graph and then the following step (referred to as a generation) is repeated.

2. In every generation, a vertex is selected proportional to the fitness of the individual at the vertex to reproduce.
Let the selected vertex for reproduction be v. Let Same(v) denote the number of vertices in E(v) that are of the
same type as v. If v is a mutant type, and Slg‘;?g‘) < Oy (resp., if v is a resident type, and S|?E‘T?1(;1)}\) < 0R), then the
individual gives birth to an individual of the same type. The new born individual replaces one of the replacement
successors of v, i.e., it replaces a vertex chosen uniformly at random from the set Er(v) = {u | (v,u) € Egr}.
Note that the density constraint implies that if the constraint is violated, then the selected individual does not

reproduce.

Step 2 (or generations) is repeated until nothing can change (in particular, if all vertices have fitness O or have the same
type, then nothing can change).

Fixation probability. The most relevant question from an evolutionary perspective is the fixation probability which is
the probability that the mutant takes over the population, i.e., eventually all vertices become the mutant type.

Computational questions. Given an evolutionary graph, a payoff matrix, and the thresholds for density constraints,
we consider the following questions:

1. the qualitative decision question asks whether the fixation probability is positive; and

2. the quantitative approximation question, given ¢ > 0, asks to compute an approximation of the fixation proba-
bility within an additive error of e.

Special cases. There are several special cases of interest that we will explore.

1. The I&R and IEQR models. One important special case is when the interaction and the replacement graphs
coincide, i.e., £y = Ep [19, 27]. We refer to the general model as the I&R model (with possibly different
interaction and replacement graphs) and the special case where the graphs coincide as the IEQR model.

2. No resident reproduction. Another special case is when the payoff matrix is the constant payoff matrix with
r = (. In this case, the resident types cannot reproduce. This represents the scenario that a mutant invades an
empty geographic location.

3 Qualitative Analysis for No Resident Reproduction

In this section we establish two results for the no resident reproduction model: the qualitative analysis problem is
(1) in NP for the general I&R model; and (2) is NP-hard even in the special case of IEQR model.

3.1 Upper bound

The upper bound is relatively straightforward. We simply check if there exists an initial choice v; for the initial mutant
and a sequence (e;)2<;<n, Of edges of length n — 1 in the replacement graph for reproductions that ensures that all
vertices are mutants. The initial vertex v, and the sequence of edges together define a unique sequence of vertices for
reproduction; and at every stage we check that for the vertex chosen for reproduction the density constraint is satisfied
and it is a mutant. We also need to check that in the end all vertices are mutants. The choice of the initial vertex and
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Figure 1: Ilustration of a predecessor gadget (u, v).

the sequence of reproductions then happen with positive probability and we are done. Observe that since there is no
resident reproduction, if a vertex becomes a mutant, then it remains a mutant. Note that there always exists a sequence
of length n — 1, because if the fixation probability is positive, then we can WLOG assume (till all vertices are mutants)
that in each step ¢ there is a vertex v that is a mutant, with a fraction of mutant neighbors in the interaction graph below
the threshold 65y, and an edge (v, v’) in the replacement graph such that v’ is not a mutant (and becomes a mutant in
step %), as otherwise nothing can change. This shows that if the answer to the qualitative decision question is yes in
the no resident reproduction model, then there is a polynomial witness and polynomial-time verification procedure.

Lemma 1. The qualitative decision question for no resident reproduction in the general I&R model is in NP.

3.2 Lower bound

In this section we present an NP lower bound, and we will prove it for the IEQR model with no resident reproduction.
Moreover, since there is no resident reproduction, the threshold 0 does not matter. We will present a reduction from
the 3-SAT problem (which is NP-complete [[7, (18] [13]]) and use threshold 8,; as % —¢,forany 0 < § < 1—10. However
it would be easy to modify our construction for any threshold 6, in (0, 1). The “right” way to think of the threshold
is that it is % and that the density constraint uses a strict inequality (the exact range of feasibility on § comes from that
each vertex in our lower bound has degree 5 or less). The upper bound is chosen because we will use vertices with

degree five or less.

Notation. Let X = {x1,x2,...,2,} be a set of n Boolean variables. Consider a 3-CNF formula ¢ = C1 ACo A« - A
C,, where each C; is a clause of a list of (precisely) three literals (where a literal is a variable x or its negation Z,
where z € X). Each clause represents a disjunction of the literals that appear in it. An instance of the 3-SAT problem,
given a 3-CNF formula ¢, asks whether there exists a satisfying assignment. We will now construct an evolutionary
graph G(¢), given an instance of a 3-SAT problem, with (i) E; = ERg, (ii) no resident reproduction, and (iii) threshold
O = % —d,for0 < 0 < 1—10 such that there is a satisfying assignment iff the answer to the qualitative decision
problem is YES. We first present two gadget constructions that will be used in the reduction.

Predecessor gadget. We present a predecessor gadget for a vertex pair (u, v) such that v is the only successor of w.
The gadget ensures the following property (namely, the predecessor gadget property): if all vertices become mutants,
then the vertex u must have become a mutant before vertex v. The construction of the gadget is as follows: Add a
new dummy vertex u’. Let the successors of u be v and v/, and the successor of u’ be only v. Then the only way for
u’ to become a mutant is if v is a mutant, since u is the only predecessor of u’. But u’ can only become a mutant if
u 1s a mutant and v is not (since otherwise the threshold condition with 6, = % — ¢ is not satisfied for u, for any
0<d< %). Hence, if all vertices become mutant, then « must become a mutant before v. There is an illustration of
the predecessor gadget for (u,v) in Figure[l] We will denote by PredEdges(u, v, u’) the set {(u,v), (u,u’), (v',v)}
of edges of the predecessor gadget.

(Extended) Binary tree gadget. Given a vertex rt, and a set L of vertices, we will denote by BinTr(rt, L) a binary
tree with rt as root and L as leaf Verticesﬂ In a binary tree, every non-leaf vertex has out-degree 2. Note that the
binary tree gadget adds additional vertices, and has O(|L|) vertices. By an abuse of notation we will use BinTr(rt, L)
to denote both the set of vertices and the set of edges of the binary tree, and it would either be clear from the context or
explicitly mentioned. Given a binary tree 1" and an extension vertex z ¢ T, an extended binary tree (EBT) consists of
T and an edge from every non-leaf vertex to z. Given a root vertex rt, a set L of leaf vertices, and an extension vertex

2For a fixed L and rt there exists many possible binary trees BinTr(rt, L), however every one of them will work for our purpose
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Figure 2: A binary tree BinTr(x, {v1,v2,v3}) and the corresponding EBT ExBinTr(z, {v1,v2,v3}, 2), where we
extend with the vertex z. The edges to z are dotted to make the similarities easier to see.

z, we denote by ExBinTr(rt, L, z) the edge set of the extended binary tree that extends the binary tree of rt and L. We
will explicitly use the following property for an EBT (namely, qualitative EBT (QEBT) property):

° ( QEBT Property). In an EBT, every non-leaf vertex has out- degree 3, and for density constraint with threshold

—Jd,for0 < 6§ < = (the construction works even if § is up to 6) if the root becomes a mutant and z is not

a mutant, then the root can be responsible for making every vertex in the tree a mutant. However, note that if

z is a mutant, then any vertex in the tree with out-degree 3 cannot make both its children in the underlying tree
mutants due to the density constraint.

There is an illustration of a binary tree BinTr(z, {v1, v2, v3}) and the corresponding EBT ExBinTr(z, {v1,ve, v3}, 2)
in Figure 2]
The evolutionary graph G(¢). We now present the evolutionary graph G(¢p), see Figurefor an illustration, where

we first describe the vertex set and then the edges. Recall that n is the number of variables and m the number of
clauses of the 3-SAT instance ¢.

The vertex set. The set V' of vertices is as follows (intuitive descriptions follow):
{vr,2.,y1,2\} U {c,coa,...,cm} Ui, |1<i<m} u {e,e3,e|1<i<m}
U {xl,xf,xf |z, € X} U {vo, v}
U {ubul [1<i<n} U Uygie,(BinTr(at, L) UBInTr(z!, L]))

The vertex v+ will be the start vertex; and the vertices 2z, vy, and zi are end vertices (that will form a predecessor
gadget for (z,y, ) with dummy vertex z'). We have a vertex ¢; for each clause C; (named the clause vertices);
and one for each literal cl , cl, and c in the clause (named the clause-literal Vertlces) Similarly, we have a vertex
x; for each variable in X (named the variable vertices), and vertices xi and xi (named the variable-value vertlces)

to represent the truth values to be assigned to ;. Corresponding to z! and a: we also have vertices u! and u
(named the duplicate vertices). The vertex vy forms a predecessor gadget (usmg the dummy vertex v() to uf. Let
Lt = {07 [1<k<m,1<j<3, cﬂ = x;} denote a copy of the clause-literal vertices that correspond to z; and

Lf = {c7 |[1<k<m,1<j<3, ck = T, } denote a copy of the clause-literal vertices that correspond to negatlon
of z;. The set BinTr(z!, Lt) (resp., BinTr(x f , Lif )) represents the vertices of a binary tree with the root vertex z!
(resp., xf ) and leaf vertices L’Z§ (resp., L{ ).

The edge set. We now describe the edge set:

e There is an edge from the initial vertex v+ to the first clause vertex c;; and we have two predecessor gadgets;
(i) (21,y.) with dummy vertex 2/, ; and (ii) (vo, u}) with dummy vertex v,

e For each clause vertex c;, there are five edges, three to clause-literal vertices cz (for 5 = 1,2, 3) of the clause,
one to the next clause vertex (for ¢, this next vertex is 1), and to the vertex u’i



e For each variable vertex x;, there are three edges: to xf and x{c , and to the next variable vertex x;41 (for ,, the
next vertex is vp).

f

e Each duplicate vertex uf has three edges: to u; , to xﬁ, and to y, . Similarly, each vertex ufc has three edges: to

uﬁﬂ (ufl has edge to z, instead), to x{ andto y .

e Finally, we have the EBT with z* (for o € {t, f}) as root, L as leaf vertices and y as the extension vertex.
For each vertex in LY, for « € {t, f}, we add edges to the corresponding clause-literal vertex and to u}. This
ensures that every internal vertex of the binary tree has degree three, and leaf vertices have degree two.

The formal description is as follows:

{(vr,e1)} U PredEdges(z1,y.1,2)) U PredEdges(vo, u},v))

{ene) [1<i<m 1< <3} U {(euf) |1<i<m} U {(cicipn) [1<i <m—1}U{(em,21)} U
{(zi,2), (xs,2]) [1<i<n} U {(zi,2541) | 1 <6 <n— 13U {(2n,v0)} U

{(whol) | 1<i<n} U {(u] ufy) [1<i<n =1} U {(u),20)} U {(uf,28), (uf,y) [ 1< i<ma € {t f}}U

(U <icn (ExBinTr(zt, Lty ) UEXBinTr(z] , LY, y1)) U {(@).c}), (@, ub) | e € L&, 1 < i <nm,a € {t, f}}

Example. We will now give an example of the graph G (i) for ¢ = (ZVyVz) A (zVa V Z). See Figure[3] The edges
to u} are dashed and the edge from u$ forall 1 <4 < 3 and « € {¢, f} are dotted, for readability. Also, the vertex u}
is included twice to make it clearer that it is in a predecessor gadget.

Basic facts. We first mention some basic facts about the evolutionary graph obtained.

1. First, observe that the predecessor gadget property implies that for fixation the vertex vo must become a mutant
before vertex uﬁ; and vertex z before vertex vy .

2. Second, for a vertex with degree /, it can reproduce a mutant as long as at most ¢ - (% — §) successors are

mutants. In particular, for vertices with five (resp., three) successors, like the clause (resp., variable) vertices, it
can reproduce a mutant until at most three (resp., two) successors are mutants, because of the bounds on 6,,.
If a vertex has out-degree two (or one), then it can reproduce a mutant until at most one successor is a mutant,
because of the bounds on 6. The conditions follow from the density constraint with threshold % —94.

Two phases for fixation. For mutants to attain fixation (i.e., all vertices become mutants), certain conditions must
be fulfilled. The first basic fact above implies that for the evolutionary process to attain fixation, it must make vertex
T, a mutant (then vertex vy a mutant) before vertex uﬁ We thus split the process of fixation in two phases: in the
first phase u! is not a mutant, and in the second phase u} will be a mutant. We further split the first phase into two
sub-phases, the first sub-phase is related to clause vertices becoming mutants, and the next sub-phase is related to the
variable vertices becoming mutants. The description of the phases for fixation are as follows:

1. (Phase 1:Part A). The mutant must be initialized at the start vertex v+ (since vt has no predecessor). After
vT, the clause vertex ¢; becomes a mutant. Since at most half (three) successors can become mutant from cq
(recall that c; has five successors), and one of them must be ¢y (as the only incoming edge for co is from c;),
it follows that co and at most two clause-literal vertices for clause C; becomes mutant from ¢;. This process is
then repeated for all the clause vertices c; till z; becomes a mutant.

2. (Phase 1:Part B). Each of the vertices x; has three successors, and hence can make two of them mutants. One
of them must be z;4; (as x;4+;1 has only z; as the predecessor), and the other one is at most one of xf or z/

P
This continues till we reach vy. Note that once xﬁ becomes a mutant, then the entire EBT under x’; including

the corresponding clause-literal vertices, but not 3y, and u!, can become mutants, as long as v, and u} are not

mutants. The reasoning is as follows: the leaf vertices has two out-going edges, and since u! is not a mutant, it

can reproduce a mutant to the corresponding clause-literal vertices, and the rest follows from the QEBT property.



The phase 1 ends with the predecessor gadget of (vg, u) becoming mutants. Note that this phase corresponds to
a partial assignment of truth values to the variables as follows: for a variable x;, if xf was chosen (made mutant),
it corresponds to assigning true to x;; if J;f was chosen, it corresponds to assigning false to x;; otherwise, if
neither was chosen, then it corresponds to no assignment to x; (if fixation is reached without having made an
assignment to some set U of variables, then any possible assignment of values to the variables of U will make
the partial assignment a satisfying assignment).

3. (Phase 2). This phase starts after v} is a mutant. We establish a key property of this phase that will be used in
the proof. Consider the EBT under some variable-value vertex. Each leaf vertex of the tree has out-degree two:
one of the successors is u! and the other is a clause-literal vertex. It follows that once u has become a mutant,
then the leaf vertices cannot reproduce any more. Thus the key property of Phase 2 is as follows: leaf vertices
of EBTs cannot reproduce mutants to clause-literal vertices after Phase 2 starts.

The graph G() has positive fixation probability iff ¢ is satisfiable. We present two directions of the proof.

1. Satisfiablity implies positive fixation. Consider a satisfying assignment to ¢, and intuitively the assignment
chooses at least one literal in each clause. The sequence of mutants reproduced in the two phases for fixation is
as follows:

e (Phase 1). The sequence in Phase 1 is the following: (1) initial vertex vT becomes a mutant which then
reproduces a mutant to c1; (2) in vertex c;, it reproduces upto three mutants, one to c; 41 (to x1 for i = m)
and upto two mutants for vertices ¢! of the clauses which are not chosen by the satisfying assignment (this
corresponds to Phase 1:Part A); (3) for a vertex z; it reproduces two mutants, one to ;11 (to vg for i = n),
and the other to L§ (resp., J:f ) if the assignment chooses x; to be true (resp., false); and moreover, the entire
EBT under z! (resp., x{ ) including the clause-literal vertices become mutants (other than u} and v, ); and
(4) then v}, becomes a mutant and then u} becomes a mutant from vy, and proceed to Phase 2.

o (Phase 2). The sequence in Phase 2 is the following: (1) In every vertex u{* (for « = ¢ or f) it makes z*
mutant (if it is not already a mutant) and then it makes the next vertex in line a mutant (if i = nand o = f,
then the next vertex is z | , otherwise, the next vertex is u{ if « = tand uﬁ 11 if & = f); moreover, once x§*
becomes a mutant, so does the entire binary tree (other than y, ) under it (but not the clause-literal vertices
since u! is a mutant); and (2) finally the (2, %, ) predecessor gadget becomes mutants.

The claim follows.

2. No satisfying assignment implies no fixation. Note that for fixation we need the two phases. In every clause ¢;
at least one of the clause-literal vertices cZ was not made a mutant by ¢; in Phase 1:Part A (or even after that).
This implies that if Phase 2 has started and not all clause-literal vertices cg of a clause ¢; have become mutants,
then at least one of these vertices cannot become a mutant, by the key property of Phase 2. For each (partial)
assignment that is not satisfying, there exists at least one clause, in which no literals are chosen. Recall that the
reproduction of mutants in Phase 1:Part B gives a partial assignment of truth values to variables. Hence, in the
process of reproducing mutants in Phase 1:Part B, there must remain a clause where at most two clause-literal
vertices are mutants. Therefore it implies that if there is no satisfying assignment, then fixation is not possible.

We obtain the following result. Lemma|[I]and Lemma 2] give Theorem
Lemma 2. The qualitative decision question for no resident reproduction in the IEQR model is NP-hard.

Theorem 3. The qualitative decision question for no resident reproduction in both the general I&R model and the
IEQR model is NP-complete.



7 . Clause vertices

1

! / \ | Clause hteral vertices
|

1 2

! 1=y \&\
1

1

| \ \ Variable vertices
1 T

-
-
-
-

-

| sonIaA aredrdng

i SIOTIOA SN[BA-O[QRLIBA JNI],

| SOOTIIOA IN[BA-O[QRLIBA JS[B]

Predecessor gadget (2, ,y, ) |

Predecessor gadget (vo, u})

Figure 3: The graph G(p) for p = (2Vy V) A (2 VaV Z). Edges to u} are dashed and edges from v are dotted for
readability. The vertex u! is included twice to make it clearer that it is in a predecessor gadget. The notation c? = y
indicates that the second variable of the first clause is variable y. The notation 1 = x indicates that the first variable
is variable .



4 Approximation in the IEQR Model with No Resident Reproduction

In this section we show that for € > 0 the problem of approximating the fixation probability within +e is #P-hard, in
the IEQR model with no resident reproduction. Again the threshold 6,; will be % —9,forany 0 < § < % (because
the degree is again bounded by 5).

Perfect matching in bipartite graphs. We present a reduction from the computation of the number of perfect match-
ings in a bipartite graph G = (V, E). In a bipartite graph G, the vertex set V is partitioned into vertices V; (left
vertices) and V. (right vertices) and all edges go from a vertex in V to a vertex in V,. (i.e., E C Vp x V,.). We also
have |V;| = |V;:| = n. A perfect matching PM is a set {e1, ea, ..., e, } of n edges from E such that for every vertex
ve € Vg (resp., v, € V) there exists an edge e, = (v, v).) (resp., e, = (v),v,)) in PM. Given a bipartite graph, the
problem of computing the number of distinct perfect matchings was shown by Valiant [32]] to be #P-complete.
Uniform degree property. First, we will show that we only need to consider bipartite graphs for which there exists
an integer k such that all vertices in V; have either degree 2* or 1. We refer to the property as the uniform degree
property.

Reduction to uniform-degree graphs. We present a reduction from counting the number of perfect matchings in a
general bipartite graph G = (V, E) (with [V;| = |V,.| = n) to counting the number of perfect matchings in a bipartite
graph G’ = (V’, E') with at most 6n vertices and which has the uniform degree property. Let k = [log dax |, Where
dmax is the maximum degree of any vertex in G. The graph G’ will have precisely as many perfect matchings as G.
Observe that 2F < 2n. We construct G’ by adding 2 new pairs of vertices, one on each side, and for each new pair
(v,v"), we add an edge from v to v’. Then, for vertex v € V4, we add edges from v to some newly added vertex in
V! until v has degree 2*. It is clear that any perfect matching in G corresponds to a perfect matching in G’ using the
same edges, and the edges between newly added pairs. Conversely, we also see that in each perfect matching in G’,
for each newly added pair (v, v’), the matching must use the edge between v and v’, since the vertex in (V;/ \ V;) has
degree 1. Thus every perfect matching in G’ corresponds to one in G.

Perfect binary trees. We will consider perfect binary trees as gadgets.

o A perfect binary tree (PBT) is a balanced binary tree (every internal vertex has exactly two children) with all
leaves at the same level (i.e. with 2% leaf vertices, for some non-negative integer k). For a PBT we will use the
following property, which we refer to as the probabilistic PBT (PPBT) property: if the root becomes a mutant,
then eventually all vertices in a path from the root to some leaf will become mutants, where such a path is chosen
uniformly at random. Since every non-leaf vertex has out-degree two, due to the density constraint, each internal
vertex can make one of its children (chosen uniformly) a mutant and hence the PPBT property follows.

The graph Red(G). Given a bipartite graph G with the uniform degree property, let the vertex sets be V; and V,,
respectively. Let N(v) = {u | (v,u) € E} denote the successors of a vertex v € V;. Let VF = {v € V; | [N(v)| =
21 be the set of vertices with degree 2¥; and V! = V; \ V/ be the set of vertices in V, with degree 1. Our reduction,
denoted Red(G), will construct an evolutionary graph (with £; = E and hence we only specify one set of edges),
which consists of three parts: part 1 sub-graph, then edges related to V., and a copy of part 1 with some additional
edges. We first describe the part 1 sub-graph and then its copy.

e (Part 1). We have a start vertex v, a final vertex y, , and we create an EBT By as follows: ExBinTr(vs, Vi, 41 ),
i.e., the start vertex is the root, V; is the set of leaf vertices, and y, is the extension vertex. For every vertex

v € VF, let N(v) = {u',u?,...,u/}, and we consider the set L¥ = {ul u2,... ul} of j = 2F vertices and
construct a PBT P, = BinTr(v, L¥). Note that By is an EBT, but the underlying binary tree is not necessarily
perfect.

e (Edges related to V,.). From every vertex v € V¥, and every u! in L¥, we add two edges: one to u’ € N(v) and
one to y . From every vertex v € V! (with degree 1), we add two edges: to the unique u € N (v) and to y .
Every vertex in V,. has an edge to y .

e (Copy 1 of Part 1 with additional edges). First, we create a copy of the part of the graph described in part 1,
along with one additional vertex z, . For every vertex v of part 1, let the corresponding vertex in the copy be
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called v, and the copy of the extension vertex is 7 | . We describe the difference in the copy as compared to the
graph of part 1: (i) first there is an edge from y, to the copy v, of the start vertex; (ii) for every vertex z which
is a copy of a non-leaf vertex z in P,, for some v € Vek’ (ie., z & Lff), there are three additional edges from Z:
(a) to z (i.e., from the copy to the original vertex), (b) to %, , and (c) to z ; and (iii) for every vertex zZ which is
a copy of a leaf vertex z in P, for some v € Vek, (ie., z € ij), there is only one edge which goes to z (i.e.,
there is no edge to V,. or y, , but an edge from the copy to the original vertex). Hence in the copy of P,, for any
v, internal vertices have degree five, and leaf vertices have degree 1.

e Finally, we have the following edges: {(y.,% ), (y1,21), W, z1)}

We denote by 7 the number of vertices in Red(G), and note that 7 = O(m), where m is the number of edges in G.

Example. We consider the graph G with six vertices, where Vy = {v1,v9,v3} and V. = {vy4, vs, vg}, such that v; and
v each have edges to v4 and vs and vs has an edge to vg. See Figure [ for an illustration. Observe that G satisfies
the uniform degree property. In Figure |5|we have part 1 of the graph Red(G) along with V.. In Figure@ we have the
remainder of Red(G). Consider some fixed perfect matching PM in G, i.e. v1 — v4 and v3 — v5 and v3 — vg. The
graph Red(G)PM is then the same graph as in Figure [S|and Figure @ except that in Figure [5|it does not contain the
edges from vi or v2.

The process of fixation in Red(G). The process of fixation in Red(G) can be decomposed in two phases. The first
phase (Phase 1) is over when y, becomes a mutant; and the second phase (Phase 2) is over with the fixation. A
key property of Phase 2 is as follows: vertices in V,. cannot become a mutant after ¥, has become a mutant: This is
because for each vertex u in V., every predecessor v of u has exactly two successors, and one them is ¢ (and hence
the density constraint with threshold % — § ensures that if y, is a mutant, then vertices in V,. cannot become mutants
after that).

e Phase 1. In Phase 1, the vertex v, must be the first vertex to become a mutant (since it has no predecessor).
After v, all vertices in Bj turn into mutants (by the QEBT property). Once a vertex v € V¥ becomes a mutant,
then a path in the PBT P, under v is chosen uniformly at random to become mutants (by the PPBT property),
and then the leaf of the path can make the corresponding vertex in V,. a mutant. Once a vertex v in Vé1 with
degree 1 becomes a mutant, then it can reproduce a mutant to the unique neighbor in V,.. In the end, some vertex
in V. reproduces a mutant to y; and Phase 1 ends.

o In Phase 2, first the copy v becomes a mutant from y, . After v, all vertices which are copy of vertices in By
become mutants (again by the QEBT property). Once copies of vertices in Vf become mutant, then the tree
underneath them in the copy become mutants. Consider a vertex % which is a copy of a vertex u € P, for some
v E V}zk’ and there are two cases: (i) if u is a non-leaf vertex, then w has degree five, and can reproduce mutants
until the two children in the tree and the original vertex v are mutants (note if 7 | or z is a mutant, then both the
children and the original copy cannot all become mutants due to the density constraint); (ii) if u is a leaf-vertex,
then u has degree one, and can reproduce mutant for w. Finally, y | makes 7, a mutant, which then makes z; a
mutant.

Fixation and a perfect matching. Observe that fixation implies that all vertices in V,. have become mutant, and
no vertex in V,. can become a mutant in the second phase. Each vertex in V} is responsible for making at most one
neighbor in V,. a mutant (for vertices with degree 1 it is the unique successor in V., and for vertices with degree 2, it
corresponds to the leaf of the path in the perfect binary tree chosen uniformly at random by the PPBT property). This
defines a perfect matching. Conversely, given a perfect matching, Phase 1 and Phase 2 of fixation can be described
using the pairs of the matching (to chose paths uniformly at random in the perfect binary trees). Thus given fixation,
it defines a perfect matching, and we say that fixation has used the perfect matching.

Exact fixation probability. Consider some perfect matching PM. Observe that if there are s > 0 perfect matchings,
then the exact fixation probability is s - xpm, Where zpy is the probability that we have fixation and used PM. This is
because each perfect matching has the same probability to be the chosen matching in Phase 1 by the PPBT property. In
Phase 2, any vertex v which is either a vertex in V! or a leaf in P,, for v € V¥, cannot reproduce by the key property
of Phase 2 (and thus can be viewed as having no out-going edges). Thus in Phase 2, by symmetry, the probability xpm
of fixation for a perfect matching PM is independent of PM.
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Bounds on 2 and s. We show that the probability z for fixation of a fixed matching is at least = 72", where 7 is
the number of vertices in Red(G). Each possible way that all vertices can become mutants happens with probability at
least 7~ 2", because there are at most 71 reproductions (effective reproductions which produce a new mutant) and each
specific reproduction chooses two vertices v and v’ at random from some set of vertices and thus, a specific choice
happens with probability at least 7~2. Thus the lower bound 7 on z follows. Finally, observe that the number s of
perfect matchings can be at most n! (i.e., upper bound on s is n!).

The graph Red(G)"M. Given a perfect matching PM, we can find = as the fixation probability for the graph
Red(G)PM, which is similar to Red(G), except that each leaf vertex u’ in P,, for v € V¥, if (v,u?) is not in the
matching, then we remove all out-edges from u!, and otherwise u! has the same edges as in Red((). It is clear that
the fixation probability in Red(G)PM is =.

Approximating the fixation probability is #P-hard. Our reduction is as follows: Given a graph G with the uniform
degree property, we want to find the number of perfect matchings s in it. First, (i) we find an arbitrary perfect
matching PM in polynomial time using the algorithm of [13] (if there exists none, we are done); (ii) construct Red(G)
and Red(G)™ in polynomial time; and (iii) compute the approximation 3’ of the fixation probability y* in Red(G)

for ¢ = 7%, and the approximation z’ of the fixation probability x in Red(G )PM for epm = 156 = =7~ We now show

how to obtain s from y’ and z’. We have that 3/’ is such that

/< . < ! . = . 77 . i< /., ﬂ
y <z-s+e<(x'+epm) - ste==x s+n!~16 s+16_x S+87
and similarly ¢/ > 2’ - s — g. This shows that
n _y U
- L <gyp 1
s Sx’_x’_SJer’
Since we alsohave 2’ > x —e =1 — nf’w > 1ir’—(',)”we see that% < 1/3 and thus s is the integer closest to %

Theorem 4. The quantitative approximation problem for 0 < e < 1, with € given in binary, for no resident reproduc-
tion in both the general 1&R model and the IEQR model is #P-hard.
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Figure 6: The copy of part 1 of the graph Red(G). Most edges to 7| and to z, are dotted for readability.

S PSPACE-Completeness for the [&R Model with Resident Reproduction

In this section we will establish the polynomial space upper bound and lower bound in the I&R model with resident
reproduction.

5.1 Upper bound
In regards to the approximation problem, we only provide a randomized algorithm with double exponentially small
error probability. We first describe what is a Markov chain and Markov chains associated with an evolutionary graph.

Markov chain. A Markov chain M = (S, A) consists of a finite set .S of states, and a probabilistic transition function
A that assigns transition probabilities A(s, s') for all s,s" € S, ie., 0 < A(s,s’) < 1forall s,s’ € S and for all
s € Swehave ) g A(s,s") = 1. Given a Markov chain, its graph (S, E) consists of the set S as the set of vertices,
and E = {(s,5") | A(s,s’) > 0} positive transition probabilities as the set of edges.

Exponential Markov chain. Given an evolutionary graph G = (V, E, ER), with a payoff matrix, and the density
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constraints, an exponential Markov chain Mg = (S, A) is constructed as follows: (1) S consists of subsets of V'
which denotes the set of vertices of V' which are currently mutants; (2) for s € S and s’ € S there is positive transition
probability if the cardinality of s and s’ differ by 1 and the transition probability A(s, s") is computed depending on the
payoff matrix, £y, Er, and the density constraints. Observe that for the Markov chain Mg, the transition probabilities
of a state in the Markov chain can be constructed in polynomial space, and hence the Markov chain can be constructed
in polynomial (working) space.

Qualitative analysis and approximation of Markov chains. We sketch the arguments for the upper bounds.

e The qualitative analysis is achieved by simply checking if in the graph of the Markov chain the state sy = V' is
reachable from some state s = {v} for v € V. It follows that the qualitative question is in PSPACE.

e For the approximation problem we simulate the Markov chain as follows. We start at an initial state uniformly
at random among those where there is exactly one mutant. Consider a trial run of the Markov chain as follows.
Given the current state, we first check if (i) the current state is V'; else we check (ii) if there is a path from the
current state to sy = V. If (i) is true we have a success; and if (ii) is false we have a failure. If we neither
succeed or fail, we use the transition probability of the Markov chain to obtain the next state till we succeed or
fail. Note that each trial run succeeds or fails eventually with probability 1. We can view the outcome of each
trial run as the outcome of a Bernoulli distributed random variable with success probability equal to the fixation
probability. Hence repeating the trial runs independently an exponential number of times, we can approximate
the fixation probability using Chernoff bounds, within any given € > 0, with double-exponential small error
probability.

Lemma 5. The qualitative decision problem in the general I&R model is in PSPACE. The quantitative approxima-
tion problem can be solved for the general 1&R model in polynomial space with double exponentially small error

probability.

Remark 6. Observe that since precise probabilities to reach a state in a Markov chain can be computed in polyno-
mial time in the size of the Markov chain [17], it follows that the precise fixation probabilities can be computed in
exponential time.

5.2 Lower bound

We show two lower bounds: (i) the qualitative decision question is PSPACE-hard; and (ii) the question that given an
evolutionary graph with the promise that the fixation probability is either O or close to 1, deciding which is the case is
PSPACE-hard. We will present a reduction from the membership problem of a deterministic polynomial space Turing
machine (which is PSPACE-hard by definition) to an evolutionary graph (with separate E'; and F'r) and a constant
fitness matrix (but » > 0, and hence residents can reproduce). Given an instance of a Turing machine A with binary
input I of length n, whether A accepts I using space at most P(n), where P is a polynomial, we present the reduction
in two stages. First we will present a reduction such that if a specific vertex is the first to become a mutant, then
the fixation probability is precisely 1 if A accepts input I using at most P(n) space, otherwise it is 0. Thus since
all vertices are chosen uniformly at random for the initial mutant, there is a fixation probability of at least % if the
machine accepts (where N is the number of vertices in the evolutionary graph). This already shows the hardness for
the qualitative problem. Later we show how to amplify the fixation probability to show the hardness for approximation.

Density constraint. Our construction will be for 6z = 65, = 0, but a similar construction will work for any choice
of Or, 0 € [0,1). The thresholds 8z = 05, = 0 indicates that a vertex v can reproduce precisely as long as all its
successors in E are of the opposite type of v, because of the density constraint.

Ideas behind the reduction. We will use the following ideas in our construction:

1. Changing Turing machine: We will first reduce the problem to a similar Turing machine A’, which has states
A'(S) ={0,1,2} x A(S), where A(S) is the set of states of A. For each transition ¢ from state s to state s in
A there are three corresponding transitions in A’, one for each i € {0, 1,2}, which updates the tape content and
the position of the tape-head in the same way as ¢, but goes from state (¢ mod 3, s) to state (¢ + 1 mod 3, s)
in A’. This reduction given two successive configurations of the Turing machine allows to detect which is the
former and which the later.
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Figure 7: Boolean-value gadget: Dashed edges are in 7 and non-dashed are in E'g.

2. States which are nearly always a mutant/resident: Similar to the previous lower bounds, we have a vertex v,
without any predecessor in E'r. Thus, if v, is not made a mutant at the start, then it cannot become a mutant.
Hence we will only consider the case when v, is a mutant in the beginning and stays a mutant forever. We
will also have a vertex 05, and our construction will ensure that it stays a resident until all other vertices are
mutants and then (after a few more steps) all vertices become mutants, and we get fixation. We will use the
vertices v, and U to ensure that a given vertex has a desired type, and otherwise the vertex cannot reproduce.
Our construction will ensure (using the density constraint) the following properties:

e A vertex v with U as a successor under E'; can only reproduce if it is a mutant (using the density constraint
and v, is a resident). Similarly, a vertex v with v, as a successor under E; can only reproduce if it is a
resident.

3. Boolean-value gadgets: The vertices of the graph will encode values of tape cells of the Turing machine, along
with the states and tape head positions of the Turing machine. We describe how to implement a boolean-value
gadget in the evolutionary graph, which can be checked and set to a boolean value using a single external
resident predecessor. In effect the value setting is done at random, but the resident predecessor will keep on
setting the value of the boolean-value gadget either to true or false and eventually, with probability 1 it will be
set to the right value. We first describe the construction of the gadget, then its requirement, and finally present
the principle with which the gadget works (given the requirement is fulfilled).

e (Construction): Each boolean-value gadget j consist of four vertices: Two value vertices, namely, (i) v{v
(the true-value-vertex) which is a mutant if the boolean value is true; and (ii) v}v (the false-value-vertex)
which is a mutant if the boolean value is false. If neither of the value vertices are mutants, we interpret
that the gadget has no value. Besides the value vertices, there are two vertices (called the setter vertices)
which will be required to be mutants: (i) vZ, (the true-setter-vertex) and (ii) v}s (the false-setter-vertex).

The edge sgt is as follqws: (i) both v{s and v;s have vy, v;,, v}v as successors under Ey; (ii) v{s (resp., vjc's)
has only vJ, (resp., v}v) as a successor under Er (see Figure . The purpose of the edges in E; are as
follows: the edge to s enforces that the setter vertex is a mutant before reproduction; and the other two

edges enforce that only if the gadget has no value (i.e., both value vertices are resident), then the setter
vertex can reproduce a mutant (by the density constraint and that 0z = 65, = 0).

o (Requirement): The only requirement for the gadget to work is that both the setter vertices are mutants and
the setter vertices have no other successors (except for the ones specified above).

e (Principle): The main principle of the gadget is as follows: the two setter vertices become mutants (in
an initial phase and remain mutants, to ensure the requirement). In a consistent phase, exactly one of the
two value vertices will be a mutant and the other cannot become a mutant due to density constraints. The
consistent phase represents a boolean value. To change the boolean value the procedure is as follows: an
external resident vertex can check using E; that the Turing machine should change the value of the gadget,
say from false to true. Then the external resident vertex reproduces a resident to the false-value-vertex U?v.
At this point, the boolean gadget has no value (i.e., not in a consistent phase), and both the setter vertices
can reproduce mutants (especially, there is a positive probability to reproduce a mutant from v}, to v},). If
a mutant is reproduced to v}v, then the external vertex can keep reproducing residents to v}v, which ensures
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that eventually with probability 1 the vertex v{v is a mutant and the boolean gadget restores to a consistent
phase (with a true value). The process of setting a true value to false is similar by reproducing residents to
vl
The construction of the graph G(A, I, P). We now start the description of the construction of the evolutionary graph
given an instance of the membership problem of a polynomial-space Turing machine. We start with the boolean-value
gadgets for the Turing machine.

Turing machine boolean-value gadgets. For eachiin {—1,0,1,..., P(n)+1} there are (2-|A’(S)|+1) boolean-value
gadgets. One boolean-value gadget ¢ corresponds to the content of the tape at position i. For each state s in A’(S),
each position 7, and each content ¢ (where ¢ = 0 or 1), there is a boolean-value gadget (4, s, ¢) for the tape-head being
in position %, in state s, and the tape content at position ¢ being c. We say that the Turing machine is in a super-position
if more than one boolean-gadget (i, s, ¢) is true. The value vertices in most of these boolean-value gadgets have no
successors in either E; or Er. We now describe the exceptions. For each accepting state s in A’(.S) and for each ¢
in {0,1,..., P(n)}, consider the value vertices vf;f*” and v,Ef;S’“) of the boolean-value gadgets (¢, s,1) and (4, s, 0).
The value vertices have one successor Uy in E7 and a special vertex v in Fr. The key idea is as follows: If the
machine accepts, then one of these value vertices become a mutant, and then they will make v+ mutant. The edge to
v, under Ey ensures that the vertex reproduces only if it is a mutant. Our construction will ensure that once v is a
mutant, then fixation follows given v; is already a mutant.

The three stages. We will split the construction with the following stages in mind. (1) The initialization stage consists
of two parts. First, for each Turing machine boolean-value gadget, the initial values are set in two steps. A gadget
with initial value false (resp., true) is partly initialized if the false-setter-vertex (resp., true-setter-vertex) becomes a
mutant which then reproduces a mutant to the false-value-vertex (resp., true-value-vertex) of the gadget. In the first
stage of the initialization, all Turing machine boolean-value gadgets are partly initialized (using another boolean-value
gadget named b ); and then checked that the partial initialization is achieved (using a check vertex called ¢;). In the
second stage, all the remaining setter vertices in the Turing machine boolean-value gadgets become mutants, and each
gadget gets to a consistent phase. The second stage of initialization and checking are achieved (similar to the first
stage) with boolean-value gadget bs and check vertex cs, respectively. The boolean-value gadget b; is only set to true
after the boolean-value gadgets of the Turing machines are partly initialized. Similarly, the boolean-value gadget by
is only set to true after all the boolean-value gadgets for the Turing machine have finished initialization (i.e., are in
a consistent state). (2) The execution stage which corresponds to the execution of the Turing machine on the input.
(3) The post-acceptance stage which corresponds to the steps after acceptance of the Turing machine to ensure fixation.

1. Preprocessing step: Before the initialization phase we describe two vertices and their roles.

(a) Start vertex: The vertex vs has no predecessor in E'rp (hence must be the first vertex to become a mutant)
and no successors in Ej. The vertex has two successors in Er, namely, vertex v, and the false-setter-
vertex v;ﬁsl for b;. This ensures that after v, both v})j (to partly initialize b;) and v; can become mutants
(note that since v, has no successor in E it can always reproduce mutants).

(b) Last resident: The vertex v1 has no successors in either set (i.e., no out-going edges in E; or E'y). If there
is fixation, then this vertex will become a mutant in the beginning (from v), then will become a resident
close to the end of fixation (only after acceptance); and then finally become a mutant again as the last
vertex.

2. Initialization state, part 1: We first partly initialize the boolean-value gadgets of the Turing machine and it is
achieved as follows: first the partial initialization is done (by vj?; ), and then it is checked (by an additional vertex
Cl).

(a) First part of initialization: The false-value-vertex v}’; for by has U, as the only successor in E7 (to enforce
that the vertex is a mutant before reproduction). The successors under Er are as follows:

e The true-setter-vertex vf;. This allows vf}; to finish the initialization of b;.

17



e For each boolean-value gadget of the Turing machine, v}’; has either the true-setter-vertex or the false-
setter-vertex as successor depending on the initial value for the gadget being true or false, respectively.
This allows vfl to partly initialize the boolean-value gadgets of the Turing machine.

(b) Check if first part of initialization is done: We have a check vertex c;. The check vertex c; has out-going
edges in E consisting of the following:

e Edgesto v, vy, v;} , v}’; , vtl The purpose of the edge to v; is to ensure that c; is itself a resident before

reproduction. The rest of the edges enforce that all these vertices are mutants before c; reproduces
residents, to ensure that v; is a mutant, and the boolean-value gadget b; has value false.

e For z € {t, f}, an edge to each setter-vertex v’, and the corresponding value vertex v?, in the Turing
machine boolean-value gadgets where the setter vertex is a successor of va under E'r. These edges
enforce that these gadgets are partly initialized before ¢; reproduces residents.

The successor of ¢q in Ey is v]l?; to set the boolean-value gadget b; to true. Thus c; is an external resident
vertex to set the boolean-value gadget b; to true. Note that by is only set to true after all the boolean-value
gadgets of the Turing machine are partly initialized.

¢) Go to part two of initialization: The true-value-vertex v2! for b1 has the false-setter-vertex 22 for by as a
)4 tv fs

successor in Eg, and U as successor in E;. The edge in E; enforces that vm is itself a mutant, if it can
reproduce. The edge in E'r ensures that the boolean-value gadget b, can become partly initialized. Also,
we will later use vtl to check that the first part of the initialization is over (by checking that it is a mutant).

3. Initialization stage, part 2: The second phase of initialization begins when the check vertex c; has set the
boolean-value gadget b; to true. In this phase, the initialization of the Turing machine (which was partly done in
the first part) is completed and checked. The procedure is similar to the first part and the details are as follows.

(a) Second part of initialization: The false-value-vertex fubj for by has ¥ as the only successor in Ey (to
enforce that the vertex is a mutant before reproduction). The successors in Er consists of the following:

e The true-setter-vertex v?2 for by. This allows vfbj to finish the initialization of bs.

e Each setter-vertex in a boolean-value gadget in the Turing machine which is not a successor for ’u;i;

under Er. This allows v;??f to finish the initialization of the boolean value gadgets in the Turing
machine.

(b) Check if second part of the initialization is done: The successors of check vertex ¢y in Ey are

e The vertices v, v} vj?ﬁ,vj?j, and vj?j The purpose of the edge to v, is to enforce that if ¢y can

reproduce, then it is itself a resident. The edge to vf; enforces that the first part of initialization
is over, and the remaining edges enforce that by has been initialized to false, before co reproduces
residents.

e The successors of v;f under E'r. The purpose of these edges is to ensure that the boolean-value
gadgets of the Turing machine have been initialized before co reproduces residents.

The only successor of co under E'x is vf Thus c5 is an external resident vertex to bo, to set the value of
bs to true. Again note that the value of b is set to true, only after the boolean-value gadgets of the Turing
machine have been initialized. Another important point is that after the initialization, since the setter
vertices of the boolean-value gadgets are all mutants, the requirement for all such gadgets are fulfilled.

(¢) Initialization is done: The true-value-vertex vtu for by has no successors in £ or E'r and is used to check
that the second part of initialization is done (by checking that it is a mutant).

4. The execution stage: For each i € {0,1,..., P(n)}, each state s of A’(.S), and each possible content ¢ € {0, 1}
of the tape at position 7 there are five check vertices, namely, cgl 5:) cg’s’c’o), cg’s’c’l), cgf’s’c’o), and cgl’s’c’l).

Let the content of the tape at position 7 just after having been in state s be b (and the content before was ¢) and
the complement value of b be b. Let the next position of the tape head be i’ and the state s, given that the Turing
machine is in state s, the tape head is at position i, and the tape-content is c (this is defined by description of the
Turing machine).
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Intuitively, we will split each step of the execution into three parts. First, (1) we update the content of the tape
at position 4 (if needed); (2) then we set the next configuration (i.e. the boolean-value gadget (i, s, ¢), where
¢’ is the content of the tape at position ") of the Turing machine to true; and (3) then at the end we set the
current configuration to false (i.e. the boolean-value gadget (i, s, ¢)). Each check vertex associated with part j
has subscript j, for j € {1,2,3}. We have one check vertex for the first part and two for each of the others,
because we do not know a priori the content ¢’ of the tape at position i’. Note that we enter a super-position
after part 2, but by construction of A’ we can still distinguish (¢, s, ¢) from (¢/, ', ¢’). Note that for i = —1 and
P(n) + 1 we do not have check vertices, ensuring that if the Turing machine head enters one of these positions,
then the machine does not accept, and in G(A4, I, P) the evolutionary process stops without fixation.

(a) Updating the tape: First we will describe the successors of the check vertex cli’s’c). The set of successors
for ¢ in E; consists of
o The vertices v, vf; ) vg

. 1,8,C
is over, before cg ,:¢) reproduces.

e The true-value-vertex v for the tape-head being in position 7, in state s, with the tape content at

position ¢ being c. In other words, this enforces that the Turing machine is in that position/state/has
(4,s,c)
1

~. Theses edges enforce that the vertex cg’*”) is aresident, and the initialization

that content, before ¢ reproduces residents.

-1 1" "
o For each i/, 5", c¢” such that i # " or s # s" or ¢ # ¢”, the false-value-vertex v}z <) for the

tape-head being in position 7"/ and in state s of A’(.S) while the content of the tape below is ¢”’. This

%,8,¢)

enforces that the Turing machine is not in a super-position before c; reproduces residents.

e The b-value-vertex vgv for position ¢ of the tape. This enforces that the content of the tape at position
(4,5,

7 should be updated, before c; reproduces residents.
The set Eg is then the b-value-vertex U%u for position ¢ of the tape. Thus cgi’s’c) is an external resident
vertex that changes the value of the tape to b.
(b) Moving the tape head, part 1: Next we will describe the successors of the check vertex cgi*s’“ ), for

¢’ € {0,1}. The set of successors for ¢ in Ey, is similar to the vertex cgi’“), (except that cgi’s’“ )

has one more, and the one checking the tape has changed, and the first three items are exactly similar) and
consists of

(4,8,¢,¢")
2

e The vertices v, vi’}, , vi’f,.

o The true-value-vertex v§§*”) for the tape-head being in position ¢, in state s, and with content at ¢

being c.

o For each i/, s, c” such that i # i or s # s" or ¢ # ¢, the false-value-vertex v}(cfj <) for the
tape-head being in position ¢” and in state s” of A’(S) while the content of the tape below is ¢”.

e The b-value-vertex v}, for position i of the tape. This enforces that the content of the tape at position

(4,5,¢,¢")
2

1 has the right value, before ¢ reproduces residents.

e The ¢’-value vertex vf;v for the content of the tape at position 7’. This enforces that the content of

the tape at position 4’ (the place the head is moving to) is ¢/, before céi’s’c’c )

Observe that the check vertex ¢§““") for ¢/ # ¢’ checks for the opposite value.

reproduces residents.

(s,

The set E'r is then the false-value-vertex vy, ) for the tape-head being in position 4/, in state s’, and

the content of the tape being ¢’ (the vertex céi’s’c’c ) is the external resident vertex). This puts the Turing

machine in a super-position.

(c) Moving the tape head, part 2: Last we will describe the successors of the check vertex céi’s’c’c ), for
¢ € {0,1}. The first two items are exactly similar as the previous two cases. The set of successors for

. /
ng,s,c,c ) in E; consists of
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e The vertices v, vf}, , vff,.

o The true-value-vertex US;S’C) for the tape-head being in position ¢, in state s, and with content at ¢

being c.

o The true-value-vertex ng) <) for the tape-head being in position ¢/, in state s’, and with content at

1 being ¢’. This enforces that the Turing machine is in the super-position introduced in the last step,
(i,5,¢,¢")
3

before ¢ reproduces residents.

(7;// s C“)
) 3

e For each i”,s"”, " such that (i",s"”,¢") & {(i,s,¢), (i, s, )} the false-value-vertex Vg, for
the tape-head being in position 7", in state s” of A’, with the tape content ¢’ under it. This enforces

(i,5,¢,¢)
3

that the Turing machine is not in any further super-position, before c reproduces residents.

The set E'r is then the true-value-vertex vtfjs’c) for the tape-head being in position i, in state s with tape
content c. Thus the vertex ng,s,c,c’) is an external resident vertex that resolves the super-position by setting
the boolean (i, s, c) to false. Afterwards we are not in a super-position and the Turing-machine is in
position ¢/, in state s’, with content of the tape at position ' being ¢’. Note that the construction of A’
ensures that check vertex i ***?) and check vertex ¢ """ cannot reproduce, since we cannot get
back to state s in the next step from s’ in the Turing machine A’ (i.e., we cannot resolve the super-position

backwards).

We remark that in the execution stage, at any point there is exactly one boolean-gadget that is active in the sense
that reproduction can change the value of the boolean-value gadget, and nothing else can change. Moreover, the
active boolean-value gadget is set to the right value by reproduction in finitely many steps with probability 1.

5. The post-acceptance stage: We will now describe the vertices that makes fixation happen after acceptance.

(a) After accept: The vertex vT has vertex v, as successor in £ and all vertices besides v, and U as successors

(b)

(©

in Er. Once v is a mutant and ¥ is a resident, it ensures that eventually all vertices other than 75 become
mutants. This is because, nothing changes any of the check vertices (i.e. the vertices c; and co and the
vertices cgi’s’c), cg’s’c’o), cg’s’c’l), cgi’s’c’o), and cgi’s’c’l), for any i, s, ¢) back to residents after they have
become mutants and thus eventually all those vertices become mutants. At that point no vertex can change
any vertex in any boolean-value gadget in the Turing machine to residents and thus, eventually they also

become mutants.

The vertex which is nearly always a resident: The vertex U has all other vertices as successors in Ey and
vertex v; in Egr. In other words, after the vertex v+ has made all other vertices into mutants, v, makes v;
a resident.

Changing vertex U, to a mutant: The vertex yT has U and v as successors in E; and vertex Uy as successor
under Ei. The vertex y changes U5 to a mutant. Note that the only predecessor of y1 in Eg is vt and
especially, it cannot become a mutant before after v; has become a mutant (which happens in the first part
of the initialization). Thus, it can first reproduce once v, has made v; back into a resident, which first
happens once all other vertices are mutants. After U5 has become a mutant, then v, makes v; a mutant.
Note that v or v+ might make v; a mutant before y+ has made v, a mutant, but in that case, v, will just
try again by making v, a resident, and eventually, y then makes U5 into a mutant. Hence fixation happens
with probability 1.

Ilustrations. There is an illustration of the construction of G(A, I, P) in Figure not explicitly including the Turing
machine (it is shown as just a gray box) and not including the edges (1) in E; to and from v, (each of the 8 vertices
in the boolean-value-gadgets, the place where “Execution” is written and the vertices v, and v2 has one to U5 and T
has one to each other vertex); and (2) in Er from v, (there is one to each other vertex, besides v and vs). Also, the
gray edges are used for partial initialization. The location where “Part init.” is written is for partial initialization. The
location where “Finish init.” is written is for the remaining part of initializing the booleans in the Turing machine. The
location where “Execution” is written is the active part of the Turing machine.
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In Figure [0] there is an illustration of the operation of the Turing machine. Each vertex which is black with white
text is a mutant and each other vertex is a resident. The Turing machine is such that it if it is in state 1 and reads a
0, the Turing machine writes 1 to the tape, moves right and goes to state 2. The illustration only contains the small
part of the Turing machine needed for the move from being in position 1 in state 1 with tape content 0, when the tape
content at position 2 is 0 (i.e. v}v is a mutant). The Turing machine is in state 1 at position 1 and the content of

(1,1,0) (

the tape is O at position 1 (as seen by v, and v}v being mutants). This causes 611,1,0) to reproduce (it is the only

vertex that can) and makes v}v into a resident and then both v}, and v/}s can reproduce. If v}s reproduces we repeat (i.e.

C§1,1,0) reproduces). Eventually v}, reproduces and afterwards, the vertex 021’1’0’0) }3 -2:0)

into a resident (this lets vfsz’Q’O) and vg’Q’O) reproduce like before - again, if v}f’z’o) reproduces, then so does 651,1,0,0)

repeatedly). Eventually, 0582’2’0) reproduces, which lets cgl’l’o’o) reproduce and changes vgi’l’o) to resident. That lets

vﬁj 19 and v;t,’l’o) reproduce. If vt(sl 1,0) does, then C§1,1,0,0) does as well, repeatedly. Eventually, v](c;’l’o) reproduces

and the Turing machine is in state 2 at position 2, with 0 on the tape at position 1 (as seen by vg’Q’O) and vj%” being

mutants).

can reproduce and makes v

The graph G(A4, I, P) has the wanted properties. It is straightforward, following the description in the construction,
to see that if v becomes mutant at first, then fixation is ensured with probability 1 if A accepts input I using at most
P(|I]) space. If A does not accept I using at most P(]I]) space, then v cannot become a mutant. It follows that given
vs becomes a mutant at first, then the fixation probability is 1 if A accepts I with space at most P(]I]), otherwise the
fixation probability is 0. Note that initialization, each step of the execution, and the fixation stage might take long, but
we have that each ends with probability 1 after a finite number of steps. Note that the PSPACE-hardness for qualitative
question follows.

Lemma 7. The qualitative decision question for the general I&R model is PSPACE-hard.

Amplifying the probability: The graph G'(A, I, P, p). We now describe how to, given a polynomial p, increase the

fixation probability of the graph G(A, I, P), if the Turing machine accepts with polynomial space from % tol— A

p(n)”
The graph G'(A, I, P,p) from G(A, I, P) and p. We create a new graph G'(A, I, P, p) as follows: We add k =
N - (p(n) — 1) new vertices v',v?2, ... vk, such that, for all i # k, the vertex v’ has ¥ as the only successor in Ey

and v**! in ER. The vertex v* has 7, as the only successor in £ and v and v! as the successors in Er. The check
vertex ¢; has, besides the successors in E; defined in the construction of G(A, I, P) also the vertices v* for all i as
successors in F.

The graph G’(A, I, P, p) has the desired properties. Observe that if some vertex v has become a mutant at the
start, then each vertex v/ can become mutants (one after the other) and eventually also v,. Note also that the vertex
v’ can keep reproducing mutants till ¥ has become a mutant. At the time when 7, has become a mutant, the vertex
¢ must have changed b; to true (given that v* was the first mutant for some 7). But in that case all vertices v/ have
become mutants and remain mutants. Hence, using a argument like the above, we see that if we pick some vertex v°
to be the initial mutant, then the fixation probability is 1 if the Turing machine accepts and O otherwise. This shows

that the fixation probability is either 1 — gty = 1 — 57qy» or 0, as desired.

" p(n)

Lemma 8. Given an evolutionary graph G = (V, E, ER) in the general I&R model, a polynomial p, with the promise
that the fixation probability in G is either (i) 0 or (ii) 1 — m, deciding between (i) and (ii) is PSPACE-hard.

Hence we have the following result.

Theorem 9. The following assertions hold for evolutionary graphs G in the general 1&R model: (1) The qualitative
decision question is PSPACE-complete. (2) For 0 < € < 1 (specified in unary), with the promise that the fixation
probability in G is either (i) 0 or (ii) 1 — ¢, deciding between (i) and (ii) is PSPACE-hard; and the approximation of the
fixation probability with double exponentially small error probability can be achieved in polynomial space. (3) The
fixation probability can be computed in exponential time.
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Remark 10 (Matrix encoding of density constraints). Note that in our results for lower bounds we consider density
constraints of % — 9, for 0 < 6 < 1/10 (in Section |3|and Section W) and 0 in this section. In all the lower bounds,
the payoff matrix is constant, and for the first two lower bounds r = 0. The density constraints can be encoded as a
payoff matrix (that is not constant) as follows:

R M R M
R (0 O ) R (—-N 1 )
M\1 -1/)7 M 1 -N)7
the first payoff matrix encodes that a vertex that is a mutant can reproduce only if strictly less than half of the successors
in Er are mutants; and the second matrix (for vertex set of size N) encodes that a vertex can reproduce only if all

the successors in E1 are of the opposite type. Note that with the matrix encoding the PPBT property still holds for
#P-hard lower bounds, and hence the lower bound proof argument remains unchanged.

Concluding remarks. In this work we studied the complexity of basic computation questions for evolution on graphs.
We established many lower and upper bounds. An interesting open question is the exact complexity of the quantitative
approximation question for the general I&R model. Our paper widens the reach of complexity investigations to the
computation of fixation probability in evolutionary graph theory, a fundamental problem in evolution. While we
establish several important complexity results (in many cases precise complexity bounds), further investigations are
necessary to establish precise complexity bounds for some of the problems.
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