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The Patience of Concurrent Stochastic Games
with Safety and Reachability Objectives

Krishnendu Chatterjee Kristoffer Arnsfelt Hansen Rasmus Ibsen-Jensen

Abstract—We consider finite-state concurrent stochastic games,
played by k ≥ 2 players for an infinite number of rounds, where
in every round, each player simultaneously and independently of
the other players chooses an action, whereafter the successor state
is determined by a probability distribution given by the current
state and the chosen actions. We consider reachability objectives
that given a target set of states require that some state in the
target set is visited, and the dual safety objectives that given a
target set require that only states in the target set are visited. We
are interested in the complexity of stationary strategies measured
by their patience, which is defined as the inverse of the smallest
non-zero probability employed.

Our main results are as follows: We show that in two-
player zero-sum concurrent stochastic games (with reachability
objective for one player and the complementary safety objective
for the other player): (i) the optimal bound on the patience
of optimal and ε-optimal strategies, for both players is doubly
exponential; and (ii) even in games with a single non-absorbing
state exponential (in the number of actions) patience is necessary.
In general we study the class of non-zero-sum games admitting ε-
Nash equilibria. We show that if there is at least one player with
reachability objective, then doubly-exponential patience is needed
in general for ε-Nash equilibrium strategies, whereas in contrast
if all players have safety objectives, then the optimal bound on
patience for ε-Nash equilibrium strategies is only exponential.

I. INTRODUCTION

Concurrent stochastic games. Concurrent stochastic games
are played on finite-state graphs by k players for an infinite
number of rounds. In every round, each player simultaneously
and independently of the other players chooses moves (or
actions). The current state and the chosen moves of the players
determine a probability distribution over the successor state.
The result of playing the game (or a play) is an infinite
sequence of states and action vectors. These games with two
players were introduced in a seminal work by Shapley [31],
and have been one of the most fundamental and well-studied
game models in stochastic graph games. Matrix games (or
normal form games) can model a wide range problems with
diverse applications, when there is a finite number of interac-
tions [28], [34]. Concurrent stochastic games can be viewed
as a finite set of matrix games, such that the choices made in
the current game determine which game is played next, and is
the appropriate model for many applications [16]. Moreover,
in analysis of reactive systems, concurrent games provide the
appropriate model for reactive systems with components that
interact synchronously [11], [12], [2].
Objectives. An objective for a player defines the set of desired
plays for the player, i.e., if a play belongs to the objective of
the player, then the player wins and gets payoff 1, otherwise
the player looses and gets payoff 0. The most basic objectives
for concurrent games are the reachability and the safety

objectives. Given a set F of states, a reachability objective
with target set F requires that some state in F is visited at
least once, whereas the dual safety objective with target set F
requires that only states in F are visited. In this paper, we will
only consider reachability and safety objectives. A zero-sum
game consists of two players (player 1 and player 2), and the
objectives of the players are complementary, i.e., a reachability
objective with target set F for one player and a safety objective
with target set complement of F for the other player. In this
work, when we refer to zero-sum games we will imply that one
player has reachability objective, and the other player has the
complementary safety objective. Concurrent zero-sum games
are relevant for analysis of synchronous reactive systems [11],
[12], [13] as well as they can model many other interesting
problems, such as two-player poker games [27].

Properties of strategies in zero-sum games. Given a zero-
sum concurrent stochastic game, the player-1 value v1(s) of
the game at a state s is the limit probability with which he
can guarantee his objective against all strategies of player 2.
The player-2 value v2(s) is analogously the limit probability
with which player 2 can ensure his own objective against all
strategies of player 1. Concurrent zero-sum games are deter-
mined [15], i.e., for each state s we have v1(s) + v2(s) = 1.
A strategy for a player, given a history (i.e., finite prefix of
a play) specifies a probability distribution over the actions.
A stationary strategy does not depend on the history, but
only on the current state. For ε ≥ 0, a strategy is ε-optimal
for a state s for player i if it ensures his own objective
with probability at least vi(s) − ε against all strategies of
the opponent. A 0-optimal strategy is an optimal strategy. In
zero-sum concurrent stochastic games, there exist stationary
optimal strategies for the player with safety objectives [29],
[22]; whereas in contrast, for the player with reachability
objectives optimal strategies do not exist in general, however,
for every ε > 0 there exists stationary ε-optimal strategies [15].

The significance of patience and roundedness of strategies.
The basic decision problem is as follows: given a zero-
sum concurrent stochastic game and a rational threshold λ,
decide whether v1(s) ≥ λ. The basic decision problem is
in PSPACEand is square-root sum hard [14]1. Given the
hardness of the basic decision problem, the next most relevant
computational problem is to compute an approximation of the
value. The computational complexity of the approximation

1The square-root sum problem is an important problem from computational
geometry, where given a set of natural numbers n1, n2, . . . , nk , the question
is whether the sum of the square roots exceed an integer b. The problem is
not known to be in NP.



problem is closely related to the size of the description
of ε-optimal strategies. Even for special cases of zero-sum
concurrent stochastic games, namely turn-based stochastic
games, where in each state at most one player can choose
between multiple moves, the best known complexity results
are obtained by guessing an optimal strategy and computing
the value in the game obtained after fixing the guessed strategy.
A strategy has patience p if p is the inverse of the smallest
non-zero probability used by a distribution describing the
strategy. A rational valued strategy has roundedness q if q
is the greatest denominator of the probabilities used by the
distributions describing the strategy. Note that if a strategy
has roundedness q, then it also has patience at most q. The
description complexity of a stationary strategy can be bounded
by the roundedness. A stationary strategy with exponential
roundedness, can be described using polynomially many bits,
whereas the explicit description of stationary strategies with
doubly-exponential patience is not polynomial. Thus obtaining
upper bounds on the roundedness and lower bounds on the
patience is at the heart of the computational complexity
analysis of concurrent stochastic games.

Strategies in non-zero-sum games and roundedness. In non-
zero-sum games, the most well-studied notion of equilibrium
is Nash equilibrium [25], which is a strategy vector (one
for each player), such that no player has an incentive of
unilateral deviation (i.e., if the strategies of all other players
are fixed, then a player cannot switch strategy and improve
his own payoff). The existence of Nash equilibrium in non-
zero-sum concurrent stochastic games where all players have
safety objectives has been established in [30]. It follows from
the strategy characterization of the result of [30] and our
Lemma 41 that if such strategies have exponential roundness
and forms an ε-Nash equilibrium, for a constant or even
logarithmic number of players, for ε > 0, then there will be
polynomial-size witness for those strategies (and the approxi-
mation of a Nash equilibrium can be achieved in TFNP, see
Remark 44). Thus again the notion of roundedness is at the
core of the computational complexity of non-zero-sum games.

Previous results and our contributions. In this work we
consider concurrent stochastic games (both zero-sum and
non-zero-sum) where the objectives of the players are either
reachability or safety. We first describe the relevant previous
results and then our contributions.
Previous results. For zero-sum concurrent stochastic games,
the optimal bound on patience and roundedness for ε-optimal
strategies for reachability objectives, for ε > 0, is doubly
exponential [21], [19]. The doubly-exponential lower bound
is obtained by presenting a family of games (namely, Purga-
tory) where the reachability player requires doubly-exponential
patience (however, in this game the patience of the safety
player is 1) [21], [19]; whereas the doubly-exponential upper
bound is obtained by expressing the values in the existential
theory of reals [21], [19]. In contrast to reachability objectives
that in general do not admit optimal strategies, similar to
safety objectives there are two related classes of concurrent
stochastic games that admit optimal stationary strategies,

namely, discounted-sum objectives, and ergodic concurrent
games. For both these classes the optimal bound on patience
and roundedness for ε-optimal strategies, for ε > 0, is
exponential [10], [23]. The optimal bound on patience and
roundedness for optimal and ε-optimal strategies, for ε > 0,
for safety objectives has been an open problem.

Our contributions. Our main results are as follows:

1) Lower bound: general. We show that in zero-sum con-
current stochastic games, a lower bound on patience of
optimal and ε-optimal strategies, for ε > 0, for safety
objectives is doubly exponential (in contrast to the above
mentioned related classes of games that admit stationary
optimal strategies and require only exponential patience).
We present a family of games (namely, Purgatory Duel)
where the optimal and ε-optimal strategies, for ε > 0, for
both players require doubly-exponential patience.

2) Lower bound: three states. We show that even in zero-
sum concurrent stochastic games with three states of
which two are absorbing (sink states with only self-
loop transitions) the patience required for optimal and
ε-optimal strategies, for ε > 0, is exponential (in the
number of actions). An optimal (resp., ε-optimal, for
ε > 0) strategy in a game with three states (with two
absorbing states) is basically an optimal (resp., ε-optimal)
strategy of a matrix game, where some entries of the
matrix game depends on the value of the non-absorbing
state (as some transitions of the non-absorbing state can
lead to itself). In standard matrix games, the patience for
ε-optimal strategies, for ε > 0, is only logarithmic [26];
and perhaps surprisingly in contrast we show that the
patience for ε-optimal strategies in zero-sum concurrent
stochastic games with three states is exponential (i.e.,
there is a doubly-exponential increase from logarithmic
to exponential).

3) Upper bound. We show that in zero-sum concurrent
stochastic games, an upper bound on the patience of
optimal strategies and an upper bound on the patience
and roundedness of ε-optimal strategies, for ε > 0, is as
follows: (a) doubly exponential in general; and (b) ex-
ponential for the safety player if the number of value
classes (i.e., the number of different values in the game) is
constant. Hence our upper bounds on roundedness match
our lower bound results for patience. Our results also
imply that if the number of value classes is constant,
then the basic decision problem is in coNP(resp., NP) if
player 1 has reachability (resp., safety) objective.

4) Non-zero-sum games. We consider non-zero-sum con-
current stochastic games with reachability and safety
objectives. First, we show that it easily follows from our
example family of Purgatory Duel that if there are at
least two players and there is at least one player with
reachability objective, then a lower bound on patience for
ε-Nash equilibrium is doubly exponential, for ε > 0, for
all players. In contrast, we show that if all players have
safety objectives, then the optimal bound on patience of
strategies for ε-Nash equilibrium is exponential, for ε > 0



(i.e., for upper bound we show that there always exists
an ε-Nash equilibrium where the strategy of each player
requires at most exponential roundedness; and there exists
a family of games, where for any ε-Nash equilibrium
the strategies of all players require at least exponential
patience).

In summary, we present a complete picture of the patience
and roundedness required in zero-sum concurrent stochastic
games, and non-zero-sum concurrent stochastic games with
safety objectives for all players. Also see Section VII for a
discussion on important technical aspects of our results.

Distinguishing aspects of safety and reachability. While the
optimal bound on patience and roundedness we establish in
zero-sum concurrent stochastic games for the safety player
matches that for the reachability player, there are many dis-
tinguishing aspects for safety as compared to reachability in
terms of the number of value classes (as shown in Table I).
For the reachability player, if there is one value class, then the
patience and roundedness required is linear: it follows from
the results of [6] that if there is one value class then all the
values must be either 1 or 0; and if all states have value 0,
then any strategy is optimal, and if all states have value 1, then
it follows from [13], [7] that there is an almost-sure winning
strategy (that ensures the objective with probability 1) from
all states and the optimal bound on patience and roundedness
is linear. The family of game graphs defined by Purgatory
has two value classes, and the reachability player requires
doubly exponential patience and roundedness, even for two
value classes. In contrast, if there are (at most) two value
classes, then again the values are 1 and 0; and in value
class 1, the safety player has an optimal strategy that is
stationary and deterministic (i.e., a positional strategy) and
has patience and roundedness 1 [13], and in value class 0 any
strategy is optimal. While for two value classes, the patience
and roundedness is 1 for the safety player, we show that
for three value classes (even for three states) the patience
and roundedness is exponential, and in general the patience
and roundedness is doubly exponential (and such a finer
characterization does not exist for reachability objectives).
Finally, for non-zero-sum games (as we establish), if there
are at least two players, then even in the presence of one
reachability player, the patience required is at least doubly
exponential, whereas if all players have safety objectives, the
patience required is only exponential.

Our main ideas. Our most interesting results are the doubly-
exponential and exponential lower bound on the patience and
roundedness in zero-sum games. We now present a brief
overview about the lower bound example.

The game of Purgatory [21], [19] is a concurrent reacha-
bility game [13] that was defined as an example showing that
the reachability player must, in order to play near optimally,
use a strategy with non-zero probabilities that are doubly
exponentially small in the number of states of the game (i.e.,
the patience is doubly exponential).

In this paper we present another example of a reachability
game where this is the case for the safety player as well. The

# Value classes Reachability Safety
1 Linear One
2 Double-exponential One
3 Double-exponential Exponential

LB, Theorem 29
Constant Double-exponential Exponential

UB, Corollary 34
General Double-exponential Double-exponential

LB, Theorem 20
UB, Corollary 34

TABLE I
STRATEGY COMPLEXITY (I.E., PATIENCE AND ROUNDEDNESS OF
ε-OPTIMAL STRATEGIES, FOR ε > 0) OF REACHABILITY VS SAFETY

OBJECTIVES DEPENDING ON THE NUMBER OF VALUE CLASSES. OUR
RESULTS ARE BOLD FACED, AND LB (RESP., UB) DENOTES LOWER (RESP.,

UPPER) BOUND ON PATIENCE (RESP., ROUNDEDNESS).

game Purgatory consists of a (potentially infinite) sequence of
escape attempts. In an escape attempt one player is given the
role of the escapee and the other player is given the role as
the guard. An escape attempt consists of at most N rounds.
In each round, the guard selects and hides a number between
1 and m, and the escapee must try to guess the number. If
the escapee successfully guesses the number N times, the
game ends with the escapee as the winner. If the escapee
incorrectly guesses a number which is strictly larger than the
hidden number, the game ends with the guard as the winner.
Otherwise, if the escapee incorrectly guesses a number which
is strictly smaller than the hidden number, the escape attempt
is over and the game continues.

The game of Purgatory is such that the reachability player
is always given the role of the escapee, and the safety player
is always given the role of the guard. If neither player wins
during an escape attempt (meaning there is an infinite number
of escape attempts) the safety player wins. Purgatory may be
modelled as a concurrent reachability game consisting of N
non-absorbing positions in which each player has m actions.
The value of each non-absorbing position is 1. This means
that the reachability player has, for any ε > 0, a stationary
strategy that wins from each non-absorbing position with
probability at least 1 − ε [15], but such strategies must have
doubly-exponential patience. In fact for N sufficiently large
and m ≥ 2, such strategies must have patience at least 2m

N/3

for ε = 1− 4m−N/2 [19]. For the safety player however, the
situation is simple: any strategy is optimal.

We introduce a game we call the Purgatory Duel in which
the safety player must also use strategies of doubly-exponential
patience to play near optimally. The main idea of the game
is that it forces the safety player to behave as a reachability
player. We can describe the new game as a variation on the
above description of the Purgatory game. The Purgatory Duel
consists also of a (potentially infinite) sequence of escape
attempts. But now, before each escape attempt the role of
the escapee is given to each player with probability 1

2 , and
in each escape attempt the rules are as described above. The
game remains asymmetric in the sense that if neither player
wins during an escape attempt, the safety player wins.

The Purgatory Duel may be modelled as a concurrent reach-
ability game consisting of 2N + 1 non-absorbing positions, in
which each player has m actions, except for a single position



where the players each have just a single action.
The key non-trivial aspects of our proof are as follows: first,

is to come up with the family of games, namely, Purgatory
Duel, where the ε-optimal strategies, for ε ≥ 0, for the players
are symmetric, even though the objectives are complementary;
and then the precise analysis of the game needs to combine
and extend several ideas, such as refined analysis of matrix
games, and analysis of perturbed Markov decision processes
(MDPs) which are one-player stochastic games.

Related work. We have already discussed the relevant related
works such as [29], [22], [15], [14], [21], [19], [13] on zero-
sum games. We discuss relevant related works for non-zero-
sum games. The computational complexity of constrained
Nash equilibrium, which asks the existence of Nash (or ε-
Nash, for ε > 0) equilibrium that guarantees at least a payoff
vector has been studied. The constrained Nash equilibrium
problem is undecidable even for turn-based stochastic games,
or concurrent deterministic games with randomized strate-
gies [32]. The complexity of constrained Nash equilibrium in
concurrent deterministic games with pure strategies has been
studied in [4], [5]. In contrast, we study the complexity of
computing some Nash equilibrium in randomized strategies in
concurrent stochastic games, and our result on patience implies
that with safety objectives for all players the approximation of
some Nash equilibrium can be achieved in TFNP.

II. DEFINITIONS

Other number. Given a number i ∈ {1, 2} let î be the other
number, i.e., if i = 1, then î = 2 and if i = 2, then î = 1.

Probability distributions. A probability distribution d over a
finite set Z, is a map d : Z → [0, 1], such that

∑
z∈Z d(z) = 1.

Fix a probability distribution d over a set Z. The distribution
d is pure (Dirac) if d(z) = 1 for some z ∈ Z and for
convenience we overload the notation and let d = z. The
support Supp(d) is the subset Z ′ of Z, such that z ∈ Z ′

if and only if d(z) > 0. The distribution d is totally mixed
if Supp(d) = Z. The patience of d is maxz∈Supp(d)

1
d(z) ,

i.e., the inverse of the minimum non-zero probability. The
roundedness of d, if d(z) is a rational number for all z ∈ Z,
is the greatest denominator of d(z). Note that roundness of
d is always at least the patience of d. Given two elements
z, z′ ∈ Z, the probability distribution d = U(z, z′) over Z
is such that d(z) = d(z′) = 1

2 . Let ∆(Z) be the set of all
probability distributions over Z.

Concurrent game structure. A concurrent game structure for
k players, consists of (1) a finite set of states S, of size N ; and
(2) for each state s ∈ S and each player i a set Ais of actions
(and Ai =

⋃
sA

i
s is the set of all actions for player i, for

each i; and A =
⋃
iA

i is the set of all actions) such that Ais
consists of at most m actions; and (3) a stochastic transition
function δ : S ×A1×A2× · · · ×Ak → ∆(S). Also, a state s
is deterministic if δ(s, a1, a2, . . . , ak) is pure (deterministic),
for all ai ∈ Ais and for all i. A state s is called absorbing if
Ais = {a} for all i and δ(s, a, a, . . . , a) = s. The number δmin

is

min
s,a1,...,ak,s′∈Supp(δ(s,a1,a2,...,ak))

(δ(s, a1, a2, . . . , ak)(s′)) ,

i.e., the smallest non-zero transition probability.

Safety and reachability objectives. Each player i, who has a
safety or reachability objective, is identified by a pair (ti, S

i),
where ti ∈ {Reach,Safety} and Si ⊆ S.

Concurrent games and how to play them. Fix a number k
of players. A concurrent game consists of a concurrent game
structure for k players and for each player i a pair (ti, S

i),
identifying the type of that player. The game G, starting in
state s, is played as follows: initially a pebble is placed on
v0 := s. In each time step T ≥ 0, the pebble is on some state
vT and each player selects (simultaneously and independently
of the other players, like in the game rock-paper-scissors) an
action aiT+1 ∈ AivT . Then, the game selects vT+1 according to
the probability distribution δ(vT , a

1
T+1, a

2
T+1, . . . , a

k
T+1) and

moves the pebble onto vT+1. The game then continues with
time step T +1 (i.e., the game consists of infinitely many time
steps). For a round T , let aT+1 be the vector of choices of the
actions for the players, i.e., (aT+1)i is the choice of player i,
for each i. Round 0 is identified by v0 and round T > 0 is
then identified by the pair (aT , vT ). A play Ps, starting in
state v0 = s, is then a sequence of rounds

(v0, (a1, v1), (a2, v2), . . . , (aT , vT ), . . . ) ,

and for each ` a prefix of P `s of length ` is then

(v0, (a1, v1), (a2, v2), . . . , (aT , vT ), . . . , (a`, v`)) ,

and we say that P `s ends in v`. For each i, player i wins in
the play Ps, if ti = Safety and vT ∈ Si for all T ≥ 0; or if
ti = Reach and vT ∈ Si, for some T ≥ 0. Otherwise, player
i loses. For each i, player i tries to maximize the probability
that he wins.

Strategies. Fix a player i. A strategy is a recipe to choose a
probability distribution over actions given a finite prefix of a
play. Formally, a strategy σi for player i is a map from P `s ,
for a play Ps of length ` starting at state s, to a distribution
over Aiv` . Player i follows a strategy σi, if given the current
prefix of a play is P `s , he selects a`+1 according to σi(P

`
s ),

for all plays Ps starting at s and all lengths `. A strategy
σi for player i, is stationary, if for all ` and `′, and all pair
of plays Ps and P ′s′ , starting at states s and s′ respectively,
such that P `s and (P ′)`

′

s′ ends in the same state t, we have
that σi(P `s ) = σi((P

′)`
′

s′); and we write σi(t) for the unique
distribution used for prefix of plays ending in t. The patience
(resp., roundedness) of a strategy σi is the supremum of the
patience (resp., roundedness) of the distribution σi(P `s ), over
all plays Ps starting at state s, and all lengths `. Also, a strategy
σi is pure (resp., totally mixed) if σi(P `s ) is pure (resp., totally
mixed), for all plays Ps starting at s and all lengths `. A
strategy is positional if it is pure and stationary. For each
player i, let Σi be the set of all strategies for the respective
player.



Strategy profiles and Nash equilibria. A strategy profile
σ = (σi)i is a vector of strategies, one for each player. A
strategy profile σ defines a unique probability measure on
plays, denoted Prσ , when the players follow their respective
strategies [33]. Let u(G, s, σ, i) be the probability that player i
wins the game G when the players follow σ and the play
starts in s (i.e., the utility or payoff for player i). Given a
strategy profile σ = (σi)i and a strategy σ′i for player i, the
strategy profile σ[σ′i] is the strategy profile where the strategy
for player i is σ′i and the strategy for player j is σj for j 6= i.
Fix a state s and ε ≥ 0. A strategy profile σ forms an ε-Nash
equilibrium from state s if for all i and all strategies σ′i for
player i, we have that u(G, s, σ, i) ≥ u(G, s, σ[σ′i], i) − ε. A
strategy profile σ forms an ε-Nash equilibrium if it forms an
ε-Nash equilibrium from all states s. Also a strategy profile
forms a Nash equilibrium (resp., from state s, for some s) if it
forms a 0-Nash equilibrium (resp., from state s). We say that
a strategy profile has a property (e.g., is stationary) if each of
the strategies in the profile has that property.

A. Zero-sum concurrent stochastic games
A zero-sum game consists of two players with complemen-

tary objectives. Since we only consider reachability and safety
objectives, a zero-sum concurrent stochastic game consists
of a two-player concurrent stochastic game with reachability
objective for player 1 and the complementary safety objective
for player 2 (such a game is also referred to as concurrent
reachability game).
Concurrent reachability game. A concurrent reachability
game is a concurrent game with two players, identified by
(Reach, S1) and (Safety, S \S1). Observe that in such games,
exactly one player wins each play (this implies that the games
are zero-sum). Note that for all strategy profiles σ we have
u(G, s, σ, 1) + u(G, s, σ, 2) = 1. For ease of notation and
tradition, we write u(G, s, σ1, σ2) for u(G, s, σ1, σ2, 1), for all
concurrent reachability games G, states s, and strategy profiles
σ = (σ1, σ2). Also if the game G is clear from context we
drop it from the notation.
Values of concurrent reachability games. Given a concurrent
reachability game G, the upper value of G starting in s is

val(G, s) = sup
σ1∈Σ1

inf
σ2∈Σ2

u(G, s, σ1, σ2) ;

and the lower value of G starting in s is

val(G, s) = inf
σ2∈Σ2

sup
σ1∈Σ1

u(G, s, σ1, σ2) .

As shown by [15] we have that

val(G, s) := val(G, s) = val(G, s) ;

and this common number is called the value of s. We will
sometimes write val(s) for val(G, s) if G is clear from the
context. We will also write val for the vector where vals =
val(s).
(ε-)optimal strategies for concurrent reachability games.
For an ε ≥ 0, a strategy σ1 for player 1 (resp., σ2 for
player 2) is called ε-optimal if for each state s we have

that val(s) − ε ≤ infσ2∈Σ2 u(s, σ1, σ2) (resp., val(s) + ε ≥
supσ1∈Σ1 u(s, σ1, σ2)). For each i, a strategy σi for player i
is called optimal if it is 0-optimal. There exist concurrent
reachability games in which player 1 does not have optimal
strategies, see [15] for an example2. On the other hand in
all games G player 1 has a stationary ε-optimal strategy for
each ε > 0. In all games player 2 has an optimal stationary
strategy (thus also an ε-optimal stationary strategy for all
ε > 0) [29], [22]. Also, given a stationary strategy σ1 for
player 1 we have that there exists a positional strategy σ2,
such that u(s, σ1, σ2) = infσ′2∈Σ2 u(s, σ1, σ

′
2), i.e., we only

need to consider positional strategies for player 2. Similarly,
we only need to consider positional strategies for player 1, if
we are given a stationary strategy for player 2.

(ε-)optimal strategies compared to (ε-)Nash equilibria. It
is well-known and easy to see that for concurrent reachability
games, a strategy profile σ = (σ1, σ2) is optimal if and only
if σ forms a Nash equilibrium. Also, if σ1 is ε-optimal and
σ2 is ε′-optimal, for some ε and ε′, then σ = (σ1, σ2) forms
an (ε + ε′)-Nash equilibrium. Furthermore, if σ = (σ1, σ2)
forms an ε-Nash equilibrium, for some ε, then σ1 and σ2 are
ε-optimal3.

Markov decision processes and Markov chains. For each
player i, a Markov decision process (MDP) for player i is
a concurrent game where the size of Ajs is 1 for all s and
j 6= i. A Markov chain is an MDP for each player (that is
the size of Ajs is 1 for all s and j). A closed recurrent set of
a Markov chain G is a maximal (i.e., no closed recurrent set
is a subset of another) set S′ ⊆ S such that for all pairs
of states s, s′ ∈ S, the play starting at s reaches state s′

eventually with probability 1 (note that it does not depend on
the choices of the players as we have a Markov chain). For
all starting states, eventually a closed recurrent set is reached
with probability 1, and then plays stay in the closed recurrent
set. Observe that fixing a stationary strategy for all but one
player in a concurrent game, the resulting game is an MDP
for the remaining player. Hence, fixing a stationary strategy
for each player gives a Markov chain.

B. Matrix games and the value iteration algorithm

A (two-player, zero-sum) matrix game consists of a matrix
M ∈ Rr×c. We will typically let M refer to both the matrix
game and the matrix and it should be clear from the context
what it means. A matrix game M is played as follows: player 1
selects a row a1 and at the same time, without knowing which
row was selected by player 1, player 2 selects a column a2.
The outcome is then Ma1,a2

. Player 1 then tries to maximize
the outcome and player 2 tries to minimize it.

Strategies in matrix games. A strategy σ1 (resp., σ2) for
player 1 (resp., player 2) is a probability distribution over the
rows (resp., columns) of M . A strategy profile σ = (σ1, σ2) is

2note that it is not because that we require the strategy to be optimal for
each start state, since if there was one for each start state separately then there
would be one for all, since this is not just for stationary strategies

3observe that the two latter properties implies the former, but all are
included to make it clear that there is a strong connection



a pair of strategies, one for each player. Given a strategy profile
σ = (σ1, σ2) the payoff u(M,σ1, σ2) under those strategies is
the expected outcome if player 1 picks row a1 with probability
σ1(a1) and player 2 picks column a2 with probability σ2(a2)
for each a1 and a2, i.e.,

u(M,σ1, σ2) =
∑
a1

∑
a2

Ma1,a2 · σ1(a1) · σ2(a2) .

Values in matrix games. The upper value of a matrix game
is val(M) = supσ1

infσ2 u(M,σ1, σ2). The lower value of a
matrix game is val(M) = infσ2

supσ1

∑
a1
u(M,σ1, σ2). One

of the most fundamental results in game theory, as shown
by [34], is that val(M) := val(M) = val(M). This common
number is called the value.
(ε-)optimal strategies in matrix games. A strategy σ1 for
player 1 is ε-optimal, for some number ε ≥ 0 if val(M) −
ε ≤ infσ2 u(M,σ1, σ2). Similarly, a strategy σ2 for player 2
is ε-optimal, for some number ε ≥ 0 if val(M) + ε ≥
supσ1

u(M,σ1, σ2). A strategy is optimal if it is 0-optimal.
There exists an optimal strategy for each player in all matrix
games [34]. Given an optimal strategy σ1 for player 1, consider
the vector v, such that vj = u(M,σ1, j) for each column j.
Then we have that vj = val(M) for each j such that there
exists an optimal strategy σ2 for player 2, where σ2(j) > 0.
Similar analysis holds for optimal strategies of player 2. This
also shows that given an optimal strategy σ1 for player 1 we
have that u(M,σ1, σ2) is minimized for some pure strategy
σ2 and similarly for optimal strategies σ2 for player 2. Given
a matrix game M , an optimal strategy for each player and the
value of M can be computed in polynomial time using linear
programming.
The matrix game As[v] and As. Fix a concurrent reachability
game G. Given a vector v in RS and a state s (in G), the
matrix game As[v] = [ai,j ] is the matrix game where ai,j =∑
s′∈S δ(s, i, j)(s

′) · vs′ . Given a state s, the matrix game
As is the matrix game As[val]. As shown by [29], [22], each
optimal stationary strategy σ2 for player 2 in G is such that
for each state s the distribution σ2(s) is an optimal strategy in
the matrix game As. Also, conversely, if σ2(s) is an optimal
strategy in As for each s, then σ2 is an optimal stationary
strategy in G. Furthermore, also as shown by [29], [22], we
have that val(s) = val(As) for each state s.
The value iteration algorithm. The conceptually simplest
algorithm for concurrent reachability games is the value itera-
tion algorithm, which is an iterative approximation algorithm.
The idea is as follows: Given a concurrent reachability game
G, consider the game Gt where a time-limit t (some non-
negative integer) has been introduced. The game Gt is then
played as G, except that player 2 wins if the time-limit is
exceeded (i.e., he wins after round t unless a state in S1 has
been reached before that). (The game Gt has a value like in
the above definition of matrix games since the game only has
a finite number of pure strategies and thus can be reduced
to a matrix game). The value of Gt starting in state s then
converges to the value of G starting in s as t goes to infinity
as shown by [15]. More precisely, the algorithm is defined on

a vector vt which is the vector where vts is the value of Gt

starting in s. We can compute vts recursively for increasing t
as follows

vts =


1 if s ∈ S1

0 if s 6∈ S1 and t = 0

val(As[vt−1]) if s 6∈ S1 and t ≥ 1 .

We have that vts ≤ vt+1
s ≤ val(s) for all t and s, and for all

s we have limt→∞ vts = val(s), as shown by [15]. As shown
by [19], [20] the smallest time-limit t such that vts ≥ val(s)−ε
can be as large as ε−m

Ω(N)

for some games (of N states and
at most m actions in each state for each player) and s, for
ε > 0. On the other hand it is also at most ε−m

O(N2)

as
shown by [19].

III. ZERO-SUM CONCURRENT STOCHASTIC GAMES:
PATIENCE LOWER BOUND

In this section we will establish the doubly-exponential
lower bound on patience for zero-sum concurrent stochastic
games. First we define the game family, namely, Purgatory
Duel and we also recall the family Purgatory that will be
used in our proofs. We split our proof about the patience in
Purgatory Duel in three parts. First we present some refined
analysis of matrix games, and use the analysis to first prove
the lower bound for optimal strategies, and then for ε-optimal
strategies, for ε > 0.

The Purgatory Duel. In this paper we specifically focus
on the following concurrent reachability game, the Pur-
gatory Duel4, defined on a pair of parameters (n,m).
The game consists of N = 2n + 3 states, namely
{v1

1 , v
1
2 , . . . , v

1
n, v

2
1 , v

2
2 , . . . , v

2
n, vs,>,⊥} and all but vs are

deterministic. To simplify the definition of the game, let
v1

0 = v2
n+1 = ⊥ and v2

0 = v1
n+1 = >. The states > and

⊥ are absorbing. For each i ∈ {1, 2} and j ∈ {1, . . . , n}, the
state vij is such that A1

vij
= A2

vij
= {1, 2, . . . ,m} and for each

a1, a2 we have that

δ(vij , a1, a2) =


vs if a1 > a2

vi0 if a1 < a2

vij+1 if a1 = a2 .

Finally, A1
vs = A2

vs = {a} and δ(vs, a, a) = U(v1
1 , v

2
1).

Furthermore, S1 = {>}. There is an illustration of the
Purgatory Duel with m = n = 2 in Figure 1.

The game Purgatory. We will also use the game Purgatory
as defined by [19] (and also in [21] for the case of m =
2). Purgatory is similar to the Purgatory Duel and hence the
similarity in names. Purgatory is also defined on a pair of
parameters (n,m). The game consists of N = n + 2 states,
namely, {v1, v2, . . . , vn,>,⊥} and each state is deterministic.
To simplify the definition of the game, let vn+1 = >. For

4To allow a more compact notation, we have here exchanged the criterias
for when the safety player wins as a guard and when the escape attempt ends,
as compared to the textual description of the game given in the introduction.



>

v1
2

v1
1

vs

v2
1

v2
2

⊥

Fig. 1. An illustration of the Purgatory Duel with m = n = 2. The two
dashed edges have probability 1

2
each.

each j ∈ {1, . . . , n}, the state vj is such that A1
vj = A2

vj =
{1, 2, . . . ,m} and for each a1, a2 we have that

δ(vj , a1, a2) =


v1 if a1 > a2

⊥ if a1 < a2

vj+1 if a1 = a2 .

The states > and ⊥ are absorbing. Furthermore, S1 = {>}.
There is an illustration of Purgatory with m = n = 2 in
Figure 2.

A. Analysis of matrix games
In this section we present some refined analysis of some

simple matrix games, which we use in the later sections to
find optimal strategies for the players and the values of the
states in the Purgatory Duel.

Definition 1. Given a positive integer m and reals x, y and z,
let Mx,y,z,m be the (m×m)-matrix with x below the diagonal,
y in the diagonal and z above the diagonal, i.e.,

Mx,y,z,m =


y z z . . . z
x y z . . . z
... x

. . .
. . .

...

x
...

. . . y z
x x . . . x y

 .

>

v2

v1

⊥

Fig. 2. An illustration of Purgatory with m = n = 2.

We first explain the significance of the matrix game
Mx,y,z,m in relation to Purgatory Duel. Consider the Purgatory
Duel defined on parameters (n,m), for some n. We will
later establish that for any j, let v (resp., v′) be state v1

j

(resp., v2
j ) of the Purgatory Duel, then we have that Av =

M0,val(v1
j+1),val(vs),m (resp., Av

′
= M1,val(v2

j+1),val(vs),m).
In this section we show that for 0 < z < y we have
that M = M0,y,z,m is such that val(M) > z and each
optimal strategy for either player is totally mixed. Similarly,
for 1 > z′ > y′ we show that M ′ = M1,y′,z′,m is such that
val(M ′) < z and each optimal strategy for either player is
totally mixed. We also compute the value and the patience of
each optimal strategy in the matrix game M0, 12 +ε, 12 ,m (since
we will establish in the next section, using the results of this
section, that val(vs) = 1

2 and val(v1
j ) > val(s) for all j).

Lemma 2. For all positive integers m and reals y and z such
that 0 < z < y, the matrix game M = M0,y,z,m has value
strictly above z.

Proof. Let ε > 0 be some number to be defined later. Consider
the probability distribution σε1 given by

σε1(a) =

{
εa−1 − εa if 1 ≤ a ≤ m− 1

εm−1 if a = m .

If player 2 plays column a against σ1, for a ≤ m − 1, then
the payoff u(M,σ1, a) is y · (εa−1− εa) + y · (1− εa−1); and
if player 2 plays column m, then the payoff u(M,σ1,m) is
y · (εm−1)+z · (1−εm−1). For any ε such that y · (1−ε) > z,
the payoff is strictly greater than z implying that the value of
M is strictly greater than z.



Lemma 3. For all positive integers m and reals y and z such
that 0 < z < y, each optimal strategy for player 1 in the
matrix game M0,y,z,m is totally mixed.

Proof. Consider some strategy σ1 for player 1 in M0,y,z,m

which is not totally mixed. Thus there exists some row a,
where σ1(a) = 0. Consider the pure strategy σ2 that plays
column a with probability 1. Playing σ1 against σ2 ensures
that each outcome is either z or 0, i.e., the payoff is at most
z which is strictly less than the value by Lemma 2.

Lemma 4. For all positive integers m and reals y and z such
that 0 < z < y, each optimal strategy for player 2 in the
matrix game M = M0,y,z,m is totally mixed.

Proof. Given a strategy σ1 for player 1 and two rows a′ and
a′′, let the strategy σ1[a′ → a′′] be the strategy where the
probability mass on a′ is moved to a′′, i.e.,

σ1[a′ → a′′](a) =


σ1(a) if a′ 6= a 6= a′′

0 if a = a′

σ1(a′) + σ1(a′′) if a = a′′ .

Consider some optimal totally mixed strategy σ1 for
player 1, which exists by Lemma 3 and let v be the value
of M . Consider some strategy σ2 for player 2 such that
u(M,σ1, σ2) = v, but σ2 is not totally mixed. We will argue
that σ2 is not optimal. This shows that any optimal strategy
σ∗2 is totally mixed, since any optimal strategy σ2 is such that
u(M,σ1, σ2) = v.

Let b′ be the first column such that σ′2(b) = 0. There are
two cases, either b′ = 1 or b′ > 1. If b′ = 1 let b′′ be the
first action such that σ2(b′′) > 0. Let σ′1 = σ1[b′ → b′′]. The
payoff u(M,σ′1, σ2) of playing σ′1 against σ2 is strictly more
than the payoff u(M,σ1, σ2) of playing σ1 against σ2. This
is because the payoff u(M,σ′1, b

′′) is such that

u(M,σ′1, b
′′) = σ′1(b′′) · y + z ·

b′′−1∑
a=1

σ′1(a)

= σ′1(b′′) · y + z ·
b′′−1∑
a=2

σ′1(a)

= (σ1(b′′) + σ1(1)) · y + z ·
b′′−1∑
a=2

σ′1(a)

> σ1(b′′) · y + z ·
b′′−1∑
a=1

σ1(a)

= u(M,σ1, b
′′) ,

where the second equality comes from that σ′1(1) = 0.
The inequality comes from that y > z. Also, the payoff
u(M,σ′1, b), for b > b′′ is such that

u(M,σ′1, b) = σ′1(b) · y + z ·
b−1∑
a=1

σ′1(a)

= σ1(b) · y + z ·
b−1∑
a=1

σ1(a) = u(M,σ1, b) ,

because σ′1 is not different from σ1 on those actions. We can
then find the payoff u(M,σ′1, σ2) as follows

u(M,σ′1, σ2) =

m∑
b=1

σ2(b) · u(M,σ′1, b)

=

m∑
b=b′′

σ2(b) · u(M,σ′1, b)

= σ2(b′′) · u(M,σ′1, b
′′) +

m∑
b=b′′+1

σ2(b) · u(M,σ′1, b)

> σ2(b′′) · u(M,σ1, b
′′) +

m∑
b=b′′+1

σ2(b) · u(M,σ1, b)

= u(M,σ1, σ2) ,

where the second equality comes from that b′′ is the first
action σ2 plays with positive probability. Since the payoff
u(M,σ1, σ2) is the value, by definition of σ2, and the pay-
off u(M,σ′1, σ2) is strictly more, the strategy σ2 cannot be
optimal. This completes the case where b′ = 1.

The case where b′ 6= 1 follows similarly but considers σ′′1 =
σ1[b′ → 1] instead of σ′1.

Lemma 5. For all positive integers m and 0 < ε ≤ 1
2 , the

matrix game M = M0, 12 +ε, 12 ,m has the following properties:

• Property 1. The patience of any optimal strategy is (i) at
least (2ε)−m+1 and (ii) decreasing in ε.

• Property 2. The value is (i) at most 1
2 + ε · (2ε)m−1 and

(ii) increasing in ε.
• Property 3. Any optimal strategy σ1 for player 1 (resp.,
σ2 for player 2) is such that σ1(1) > 1

2 (resp., σ2(m) >
1
2 ).

• Property 4. For ε = 1
2 , the value is val(M) = 1

2 +
1

2m+1−2 and the patience of any optimal strategy is 2m−
1.

Proof. Let σi be an optimal strategy for player i in M , for each
i. By Lemma 3 and Lemma 4 the strategy σi is totally mixed
for each i. We can therefore consider the vector v. Recall that
vj = u(M,σ1, j) and that for each j such that σ2(j) > 0 we
have that vj = val(M). Hence, since σ2 is totally mixed, all
entries of M are val(M). For any row a′ < m, that va′ =
va′+1 implies that

(
1

2
+ ε) · σ1(a′) +

1

2
·
a′−1∑
a=1

σ1(a)

= (
1

2
+ ε) · σ1(a′ + 1) +

1

2
·
a′∑
a=1

σ1(a)⇒

ε · σ1(a′) = (
1

2
+ ε) · σ1(a′ + 1)⇒

σ1(a′) =
1
2 + ε

ε
· σ1(a′ + 1) ,

indicating that σ1(a′) > σ1(a′ + 1) and thus the patience is



1/σ1(m). Also, since σ1 is a probability distribution

1 =

m∑
a=1

σ1(a)

= σ1(m) ·
m∑
a=1

( 1
2 + ε

ε

)m−a
We then get that

σ1(m) =
1∑m

a=1

(
1
2 +ε

ε

)m−a
We have that

1
2 +ε

ε = 1 + 1
2ε is decreasing in ε. This

indicates that σ1(m) is increasing in ε and thus the patience
is decreasing in ε. This shows (ii) of Property 1 for player 1.
We also have that val(M) = vm indicating that

val(M) = vm

= σ1(m) · (1

2
+ ε) +

1

2
·
m−1∑
a=1

σ1(a)

= ε · σ1(m) +
1

2

and thus, the value is increasing in ε (because ε and σ1(m)
both are). This shows (ii) of Property 2.

Also, we get that,

σ1(m) =
1∑m

a=1

(
1
2 +ε

ε

)m−a
=

εm−1∑m
a=1( 1

2 + ε)m−a · εa−1

=
εm−1(

1
2

)m−1
+ ε · p(ε)

,

where p is some polynomial of degree m−1 in which all terms
have a positive sign (p is found by multiplying out

∑m
a=1( 1

2 +
ε)m−a · εa−1). Hence, we have that σ1(m) is at most

σ1(m) =
εm−1(

1
2

)m−1
+ ε · p(ε)

< (2ε)m−1 .

Thus, the patience is at least (2ε)−m+1. This shows (i) of
Property 1 for player 1. Using that val(M) = ε · σ1(m) + 1

2
from above, we get that val(M) < 1

2 +ε·(2ε)m−1. This shows
(i) of Property 2.

Furthermore, we can also consider the vector v′ such that
v′j = u(M, j, σ2) for all j (which like v has all entries equal
to val(M)). Since the expression, when σ2 is taken to be an
unknown vector, for the j’th entry of v′ is the same as for the
m+ 1− j’th entry of v, when σ1 is taken to be an unknown
vector, we see that σ1(a) = σ2(m + 1 − a), implying that
the patience of player 2’s optimal strategies is also at least
(2ε)−m+1 and that it is decreasing in ε. This shows Property 1
for player 2.

Observe that since the value is above 1
2 , by Lemma 2, we

have that σ1(1) > 1
2 (because otherwise, if player 2 plays 1

with probability 1, the payoff will not be above 1
2 ) and thus

also σ2(m) > 1
2 . This shows Property 3.

Also, for ε = 1
2 we see that

σ1(m) =
1∑m

a=1

(
1
2 +ε

ε

)m−a
=

1∑m
a=1 2m−a

=
1

2m − 1
.

Similarly to above, we also get that σ2(m) = 1
2m−1 and that

val(M) = 1
2 + 1

2m+1−2 . This shows Property 4 and completes
the proof.

Lemma 6. Given a positive integer m and reals y and z such
that 1 > z > y, the matrix game M = M1,y,z,m has the
following properties:
• The value val(M) < z.
• Each optimal strategy σi for player i is such that there

exists an optimal strategy σî for player î in M0,1−y,1−z,m

where σi(j) = σî(m− j + 1).

Proof. Let a positive integer m and reals y and z such that
1 > z > y be given. Consider M and let v be the value of M .
Exchange the roles of the players by exchanging the rows and
columns and multiply the matrix by −1. We get the matrix

M1 =


−y −1 −1 . . . −1
−z −y −1 . . . −1

... −z
. . . . . .

...

−z
...

. . . −y −1
−z −z . . . −z −y

 .

We then have that each optimal strategy σ1 in M is an optimal
strategy for player 2 in M1 and similarly, each optimal strategy
σ2 for player 2 in M is an optimal strategy for player 1 in
M1 (and vice versa). Also, the value v1 of M1 is v1 := −v.

Let M2 be the matrix where M2
a,b = M1

m+1−a,m+1−b, i.e.,

M2 =


−y −z −z . . . −z
−1 −y −z . . . −z

... −1
. . . . . .

...

−1
...

. . . −y −z
−1 −1 . . . −1 −y

 .

For each i, and for any optimal strategy σi for player i in M1

the strategy σ′i is optimal for player i in M2, where σ′i(a) =
σi(m+ 1− a) for each a (and vice versa). Also, the value v2

of M2 is v2 := v1 = −v.
Next, let M3 be the matrix M2 where we add 1 to each

entry, i.e.,

M3 =


1− y 1− z 1− z . . . 1− z

0 1− y 1− z . . . 1− z
... 0

. . . . . .
...

0
...

. . . 1− y 1− z
0 0 . . . 0 1− y

 .



For each i, it is clear that an optimal strategy in σi for player i
in M2 is an optimal strategy for player i in M3 and that
the value v3 is v3 := 1 + v2 = 1 − v. Also, we see that
M3 = M0,1−y,1−z,m and that 0 < 1− z < 1− y.

We then get that 1 − v > 1 − z from Lemma 2 and thus
v < z.

B. The patience of optimal strategies

In this section we present an approximation of the values
of the states and the patience of the optimal strategies in the
Purgatory Duel. We first show that the values of the states
(besides > and ⊥) are strictly between 0 and 1.

Lemma 7. Each state

v ∈ {v1
1 , v

1
2 , . . . , v

1
n, v

2
1 , v

2
2 , . . . , v

1
2 , vs}

is such that val(v) ∈ [ 1
mn+2 , 1− 1

mn+2 ]

Proof. Fix v ∈ {v1
1 , v

1
2 , . . . , v

1
n, v

2
1 , v

2
2 , . . . , v

1
2 , vs}. The fact

that val(v) ≥ 1
mn+2 follows from that if player 1 plays

uniformly at random all actions in every state vij for all i, j,
then against all strategies for player 2 there is a probability of
at least 1

m to go (1) from v1
j to v1

j+1, for all j; and (2) from
vs to v1

1 ; and (3) from v2
j to vs, for all j. By following such

steps for at most n+ 2 steps, the state v1
n+1 = > is reached.

Similarly that val(v) ≤ 1− 1
mn+2 follows from player 2 playing

uniformly at random all actions in every state vij for all i, j
(and using that > cannot be reached from ⊥).

Next we show that every optimal stationary strategy for
player 2 must be totally mixed.

Lemma 8. Let σ2 be an optimal stationary strategy for
player 2. The distribution σ2(vij) is totally mixed and
val(v1

j ) > val(vs) > val(v2
j ), for all i, j.

Proof. Let v = vij for some i, j. We will use that val(v) =

val(Av). For i = 1 we have that Av = M0,val(v1
j+1),val(vs),m

and for i = 2 we have that Av = M1,val(v2
j+1),val(vs),m.

Consider first i = 1. We will show using induction in j (with
base case j = n and proceeding downwards), that val(v1

j ) >
val(vs) and that the distribution σ2(v1

j ) is totally mixed.
Base case, j = n: We have that Av = M0,1,val(vs),m.

By Lemma 7 we have that 1 > val(vs) > 0 and thus, that
val(v) > val(vs) follows from Lemma 2. That σ2(v) is totally
mixed follows from Lemma 4.

Induction case, j ≤ n − 1: We have that Av =

M0,val(v1
j+1),val(vs),m. By Lemma 7 we have that val(vs) > 0

and by induction we have that val(v1
j+1) > val(vs) and thus,

that val(v) > val(vs) follows from Lemma 2. That σ2(v) is
totally mixed follows from Lemma 4.

The argument for i = 2 is similar but uses Lemma 6 to-
gether with Lemma 3, instead of Lemma 4 and Lemma 2.

Next, we show that if either player follows a stationary
strategy that is totally mixed on at least one side (that is, if
there is an i′, such that for each j the stationary strategy plays
totally mixed in vi

′

j ), then eventually either > or ⊥ is reached
with probability 1.

Lemma 9. For any i and i′, let σi be a stationary strategy
for player i, such that σi(vi

′

j ) is totally mixed for all j. Let σî
be some positional strategy for the other player. Then, each
closed recurrent set in the Markov chain defined by the game
and σi and σî consists of only the state > or only the state
⊥.

Proof. In the Markov chain defined by the game and σi and
σî, we have that there are at most two closed recurrent sets,
namely, the one consisting of only > and the one consisting
of only ⊥. The reasoning is as follows: If either > or ⊥ is
reached, then the respective state will not be left. Also, for
each j, since σi is totally mixed there is a positive probability
to go to either vi

′

0 or vi
′

j+1 from vi
′

j (the remaining probability
goes to vs). The probability to go from vs to vi

′

1 in one step
is 1

2 . Also if neither > nor ⊥ has been reached, then vs is
visited after at most n+ 1 steps. Hence, in every n+ 1 steps
there is a positive probability that in the next n + 1 steps
either > or ⊥ is reached (i.e., from vs there is a positive
probability that the next states are either (i) vi

′

1 , . . . , v
i′

j , v
i′

0 ;
or (ii) vi

′

1 , . . . , v
i′

n , v
i′

n+1). This shows that eventually either >
or ⊥ is reached with probability 1.

Remark 10. Note that Lemma 9 only requires that the strategy
σi is totally mixed on one “side” of the Purgatory Duel. For
the purpose of this section, we do not use that it only requires
one side to be totally mixed, since we only use the result
for optimal strategies for player 2, which are totally mixed
by Lemma 8. However the lemma will be reused in the next
section, where the one sidedness property will be useful.

The following definition basically “mirrors” a strategy σi
for player i, for each i and gives it to the other player. We
show (in Lemma 12) that if σ2 is optimal for player 2, then
the mirror strategy is optimal for player 1. We also show that
if σ2 is an ε-optimal strategy for player 2, for 0 < ε < 1

3 ,
then so is the mirror strategy for player 1 (in Lemma 16).

Definition 11 (Mirror strategy). Given a stationary strategy
σi for player i, for either i, let the mirror strategy σσi

î
for

player î be the stationary strategy where σσi

î
(vî
′
j ) = σi(v

i′

j )
for each i′ and j.

We next show that player 1 has optimal stationary strategies
in the Purgatory Duel and give expressions for the values of
states.

Lemma 12. Let σ2 be some optimal stationary strategy for
player 2. Then the mirror strategy σσ2

1 is optimal for player 1.
We have val(vs) = 1

2 and val(vij) = 1− val(vîj), for all i, j.

Proof. Consider some optimal stationary strategy σ2 for
player 2. It is thus totally mixed, by Lemma 8. Let σ1 = σσ2

1

be the mirror strategy for player 1.
Playing σ1 against σ2 and starting in vs we see that we have

probability 1
2 to reach > and probability 1

2 to reach ⊥, by
symmetry and Lemma 9. This shows that the value is at least
1
2 because σ2 is optimal. On the other hand, consider some
stationary strategy σ′1 for player 1, and the mirror strategy



σ′2 = σ
σ′1
2 for player 2. If player 2 plays σ′2 against σ′1,

then the probability to eventually reach ⊥ is equal to the
probability to eventually reach > and then there is some
probability p (perhaps 0) that neither will be reached. The
payoff u(vs, σ

′
1, σ
′
2, 1) is then 1−p

2 ≤ 1
2 . This shows that

player 1 cannot ensure value strictly more than 1
2 , which is

then the value of vs. Finally, we argue that σ1 is optimal. If not,
then consider σ∗2 such that u(vs, σ1, σ

∗
2 , 1) < 1/2, and then the

mirror strategy σ∗1 = σ
σ∗2
1 ensures that u(vs, σ

∗
1 , σ2, 1) > 1/2

contradicting optimality of σ2.
Similarly, for any i, j, playing σ1 against σ2 and starting in

vij we see that the probability with which we reach > is equal
to the probability of reaching ⊥ starting in vîj and vice versa,
by symmetry. Also, by Lemma 9 the probability to eventually
reach either ⊥ or > is 1. Observe that the probability to reach
⊥ starting in vîj is at least 1−val(vîj), by optimality of σ2 and
that with probability 1 either ⊥ is reached or > is reached.
Also, again because σ2 is optimal, the probability to reach >
starting in vij is at most val(vij). This shows that val(vij) ≥
1− val(vîj). Using an argument like the one above, we obtain
that val(vij) = 1 − val(vîj) and that σ1 is optimal if the play
starts in vij .

Finally, we give an approximation of the values of states in
the Purgatory Duel and a lower bound on the patience of any
optimal strategy of 2(m−1)2mn−2

.

Theorem 13. For each j in {1, . . . , n}, the value of state v1
j

in the Purgatory Duel is less than 1
2 + 2(1−m)·mn−j−1 and

for any optimal stationary strategy σi for either player i, the
patience of σi(v1

j ) is at least 2(m−1)2mn−j−1

.

Proof. Consider some optimal stationary strategy σ2 for
player 2. We will show using induction in j that val(v1

j ) is
less than 1

2 + 2(1−m)·mn−j−1 and that the patience of σ2(v1
j )

is at least 2(m−1)2mn−j−1

. Note that using Lemma 12, a similar
result holds for optimal strategies for player 1. Let v = vij .

Base case, j = n: We see that the matrix Av is M0,1, 12 ,m

and thus, by Lemma 5 (Property 1 and 2) we have that the
value

val(v) = val(Av)

=
1

2
+

1

2m+1 − 2

<
1

2
+ 2−m

=
1

2
+ 2(1−m)·m0−1 ,

and σ2(v) has patience 2m − 1 > 2(m−1)2·m−1

.
Induction case, j ≤ n − 1: We see that the matrix

Av is M = M0,val(vij+1), 12 ,m. By induction we have that
val(vij+1) < 1

2 + 2(1−m)·mn−j−1−1. Let ε = 2(1−m)·mn−j−1−1

and consider M ′ = M0, 12 +ε, 12 ,m. By Lemma 5 (Property 1
and 2) we get that val(M ′) ≥ val(M) and that the patience

of M ′ is smaller than the one for M . Also, we get that

val(M ′) <
1

2
+ ε · (2ε)m−1

=
1

2
+ 2m−1 · 2(1−m)·mn−j−m

=
1

2
+ 2(1−m)·mn−j−1 ,

and that the patience of M ′ (and thus M ) is at least

(2ε)−m+1 = 2m−1 · 2(1−m)2·mn−j−1−m+1

= 2(1−m)2·mn−j−1

.

This completes the proof.

Remark 14. It can be seen using induction that the value of
each state in the Purgatory Duel is a rational number. First
notice that v1

n and v2
n are the value of a matrix game with

numbers in {0, 1
2 , 1} and hence are rational. Similarly, using

induction in i, we see that for j ∈ {1, 2} the number vji is
rational, since it is the value of a matrix game with numbers
in {vj0, 1

2 , v
j
i+1} (recall that v1

0 = 0 and v2
0 = 1).

C. The patience of ε-optimal strategies

In this section we consider the patience of ε-optimal strate-
gies for 0 < ε < 1

3 . First we argue that each such strategy for
player 2 is totally mixed on one side.

Lemma 15. For all 0 < ε < 1
2 , each ε-optimal stationary

strategy σ2 for player 2 is such that σ2(v2
j ) is totally mixed,

for all j.

Proof. Fix 0 < ε < 1
2 and fix some stationary strategy σ2

such that there exists j such that σ2(v2
j ) is not totally mixed.

We will show that σ2 is not ε-optimal.
Let η be such that 0 < η < 1

2 − ε. Let a be an action
such that σ2(v2

j )(a) = 0. Let ση1 be an η-optimal strategy in
Purgatory (not the Purgatory Duel) (with the same parameters
n and m). Let σ1 be the strategy such that (i) σ1(v2

j′)(1) = 1
for each j′; and (ii) σ1(v2

j )(a) = 1; and (iii) σ1(v1
j ) = ση1 (vj).

Consider a play starting in vs. Whenever the play is in state
v2
j′ , for some j′ 6= j in each step there is a probability of

either going back to vs or going to v2
j′+1. Thus, the play

either reaches v2
j or has gone back to vs. If it reaches v2

j ,
then the next state is either vs or > (i.e., v2

j+1 cannot be
reached). If the play is in v1

1 , then there is a positive probability
to reach > before going back to vs, which is at least 1−η

η
times the probability to reach ⊥ before going back to vs,
since σ1 follows an η-optimal strategy in Purgatory. Hence,
the probability to eventually reach > is at least 1− η > 1

2 + ε
and thus σ2 is not ε-optimal, since the value of vs is 1

2 by
Lemma 7.

We now show that if we mirror an ε-optimal strategy, then
we get an ε-optimal strategy.

Lemma 16. For all 0 < ε < 1
3 , each ε-optimal stationary

strategy σ2 for player 2 in the Purgatory Duel, is such that
the mirror strategy σσ2

1 is ε-optimal for player 1.



Proof. Fix 0 < ε < 1
3 and let σ2 be some ε-optimal stationary

strategy for player 2. Also, let σ1 = σσ2
1 be the mirror strategy.

By Lemma 15 the strategy σ2 is such that σ2(v2
j ) is totally

mixed, for all j. We can then apply Lemma 9 and get that
either > or ⊥ is reached with probability 1. Hence, since σ2

is ε-optimal we reach ⊥ with probability at least 1−val(v)−ε
starting in v against all strategies for player 1, for each v. It
is clear that any play P of σ2 against any given strategy σ′1
for player 1 starting in v corresponds, by symmetry, to a play
P ′ of σσ

′
1

2 against σ1 starting in f(v), where

f(v) =


vs if v = vs

vîj if v = vij
⊥ if v = >
> if v = ⊥ ,

such that in round i we have that Pi = f(P ′i ) and the plays
are equally likely. Thus, the probability to reach f(⊥) = >,
starting in state f(v), for each v is at least 1 − val(v) − ε =
val(f(v)) − ε, where the equality follows from Lemma 12.
Hence, σ1 is ε-optimal for player 1.

Next we give a definition and a lemma, which is similar
to Lemma 6 in [24]. The purpose of the lemma is to identify
certain cases where one can change the transition function of
an MDP in a specific way and obtain a new MDP with larger
values. We cannot simply obtain the result from Lemma 6
in [24], since the direction is opposite (i.e., Lemma 6 in [24]
considers some cases where one can change the transition
function and obtain a new MDP with smaller values) and our
lemma is also for a slightly more general class of MDPs.

Definition 17. Let G be an MDP with safety objectives. A
replacement set is a set of triples of states, actions and dis-
tributions over the states Q = {(s1, a1, δ1), . . . , (s`, a`, δ`)}.
Given the replacement set Q, the MDP G[Q] is an MDP over
the same states as G and with the same set of safe states, but
where the transition function δ′ is

δ′(s, a) =

{
δi if s = si and a = ai for some i
δ(s, a) otherwise

Lemma 18. Let G be an MDP with safety objectives. Consider
some replacement set

Q = {(s1, a1, δ1), . . . , (s`, a`, δ`)} ,

such that for all t and i we have that∑
s∈S

(δ(si, ai)(s) · vts) ≤
∑
s∈S

(δi(s) · vts) .

Let v′
t

be the value vector for G[Q] with finite horizon t.
(1) For all states s and time limits t we have that

vts ≤ v′
t

s .

(2) For all states s, we have that

val(G, s) ≤ val(G[Q], s) .

Proof. We first present the proof of first item. We will show,
using induction in t, that vts ≤ v′

t

s for all s. Let δ′ be the
transition function for G[Q].

Base case, t = 0: Consider some state s. Clearly we have
that vts = v′

t

s because we have not changed the safe states.
Induction case, t ≥ 1: The induction hypothesis state that

vt−1
s ≤ v′

t−1

s for all s. Consider some state s. Consider any
action a′ such that there is an i such that s = si and a = ai.
We have that∑

s′

(δ(s, a′)(s′) · vt−1
s′ ) ≤

∑
s′

(δ′(s, a′)(s′) · vt−1
s′ )

by definition for such a′ (the statement is true for all time
limits and thus also for t − 1). For all other actions a′′ we
have that∑

s′

(δ(s, a′′)(s′) · vt−1
s′ ) =

∑
s′

(δ′(s, a′′)(s′) · vt−1
s′ ) ,

since δ(s, a′′) = δ′(s, a′′). Hence,

min
a

∑
s′

(δ(s, a)(s′) · vt−1
s′ ) ≤ min

a

∑
s′

(δ′(s, a)(s′) · vt−1
s′ )

We then have, using the recursive definition of vts, that

vts = min
a

∑
s′

(δ(s, a)(s′) · vt−1
s′ )

≤ min
a

∑
s′

(δ′(s, a)(s′) · vt−1
s′ )

≤ min
a

∑
s′

(δ′(s, a)(s′) · v′t−1

s′ )

= v′
t

s .

where we just argued the first inequality; and the second
inequality comes from the induction hypothesis and that each
factor is positive. (Note that the optimal strategy for player 2
in a matrix game As[vt−1] of 1 row is to pick one of the
columns with the smallest entry with probability 1 and thus
vts = val(As[vt−1]) = mina

∑
s′(δ(s, a)(s′) · vt−1

s′ ) and
similarly for v′

t

s). This completes the proof of the first item.
The second item follows from the first item and since the
value of a time limited game goes to the value of the game
without the time limit as the time limit grows to ∞, as shown
by [15].

We next show that for player 1, the patience of ε-optimal
strategies is high.

Lemma 19. For all 0 < ε < 1
3 , each ε-optimal stationary

strategy σ1 for player 1 in the Purgatory Duel has patience
at least 2m

Ω(n)

. For N = 5 the patience is 2Ω(m).

Proof. Consider some ε-optimal stationary strategy σ1 for
player 1 in the Purgatory Duel. Fixing σ1 for player 1 in the
Purgatory Duel we obtain an MDP G′ for player 2. Let vt be
the value vector for G′ with finite horizon (time-limit) t and



let δ be the transition function for G′. For each i, let

δi(s) =


δ(v2

n, i)(s) if vs 6= s 6= ⊥
δ(v2

n, i)(⊥) + δ(v2
n, i)(vs) if vs = s

0 if ⊥ = s

(Note that δi is the same probability distribution as δ(v2
n, i),

except that the probability mass on ⊥ is moved to vs.) Con-
sider the replacement set Q = {(v2

n, 1, δ1), . . . , (v2
n,m, δm)}

and the MDP G′[Q]. We have for all t and i that∑
s∈S

(δ(v2
n, i)(s) · vts) ≤

∑
s∈S

(δi(s) · vts)

because
vt⊥ = vtv2

n+1
= 0 ≤ vtvs

for all t and the only difference between δ(v2
n, i) and δi is that

the probability mass on ⊥ is moved to vs. We then get from
Lemma 18(2) that val(G′, vs) ≤ val(G′[Q], vs). Let σ2 be an
optimal positional strategy in G′[Q]. It is easy to see that σ2

plays action 1 in v2
j for all j, because the best player 2 can

hope for is to get back to vs since ⊥ cannot be reached from
v2
j in G′[Q] for any j and if he plays some action which is

not 1, then there is a positive probability that > will be reached
in one step. Thus, the MDP G′[Q] corresponds to the MDP
one gets by fixing the strategy σ′1 where σ′1(vi) = σ1(v1

i ) for
player 1 in Purgatory. But the probability to reach > in G′[Q]
is at least 1

2 − ε and hence σ′1 is ( 1
2 + ε)-optimal in Purgatory

(note that this is Purgatory and not Purgatory Duel). As shown
by [19] any such strategy requires patience 2m

Ω(n)

. Thus, any
ε-optimal stationary strategy for player 1 in the Purgatory Duel
requires patience 2m

Ω(n)

.
It was shown by [19] that the patience of ε-optimal strate-

gies for Purgatory with n = 1 Purgatory state is 2Ω(m), and
thus similarly for the Purgatory Duel with N = 5.

We are now ready to prove the main theorem of this section.

Theorem 20. For all 0 < ε < 1
3 , every ε-optimal stationary

strategy, for either player, in the Purgatory Duel (that has
N = 2n + 3 states and at most m actions for each player
at all states) has patience 2m

Ω(n)

. For N = 5 the patience is
2Ω(m).

Proof. The statement for strategies for player 1 follows from
Lemma 19. By Lemma 16, for each ε-optimal strategy for
player 2, there is an ε-optimal strategy for player 1 (i.e., the
mirror strategy) with the same patience. Thus the result follows
for strategies for player 2.

IV. ZERO-SUM CONCURRENT STOCHASTIC GAMES:
PATIENCE LOWER BOUND FOR THREE STATES

In this section we show that the patience of all ε-optimal
strategies, for all 0 < ε < 1

3 , for both players in a concurrent
reachability game G with three states of which two are
absorbing, and the non-absorbing state has m actions for each
player, can be as large as 2Ω(m). The proof consists of two
phases, first we show the lower bound in a game with at most
m2 actions for each player; and second, we show that all but

2m− 1 actions can be removed for both players in the game
without changing the patience.

The first game, the 3-state Purgatory Duel, is intuitively
speaking the Purgatory Duel for N = 5, where we replace the
states v1

1 , v2
1 and vs with a state v′s while in essence keeping

the same set of ε-optimal strategies. The idea is to ensure that
one step in the 3-state Purgatory Duel corresponds to two steps
in the Purgatory Duel with N = 5, by having the players pick
all the actions they might use in the next two steps at once.
The game is formally defined as follows:

The 3-state Purgatory Duel consists of N = 3 states, named
v′s,>′ and ⊥′ respectively. The states >′ and ⊥′ are absorbing.
The state v′s is such that

A1
v′s

= A2
v′s

= {(i, j) | 1 ≤ i, j ≤ m} .

Also, let δ′ be the transition function for the Purgatory Duel
with N = 5. Let p be the function that given a state in
{vs,⊥,>} in the Purgatory Duel for i = 1 outputs the primed
state (which is then a state in the 3-state Purgatory Duel).
Recall that U(s, s′) is the uniform distribution over s and s′.
Observe that the deterministic distributions δ′(v1

1 , a1, a2) and
δ′(v2

1 , a1, a2) are in {vs,>,⊥} for all a1 and a2. For each pair
of actions (a1

1, a
2
1) ∈ A1

v′s
and (a1

2, a
2
2) ∈ A2

v′s
in the 3-state

Purgatory Duel, we have that

δ(v′s, (a
1
1, a

2
1), (a1

2, a
2
2)) =

U(p(δ′(v1
1 , a

1
1, a

1
2)), p(δ′(v2

1 , a
2
1, a

2
2))) .

To make the game easier to understand on its own, we now
give a more elaborate description of the transition function δ
without using the transition function for the Purgatory Duel. To
make the pattern as clear as possible we write U(s, s) instead
of s for all s.

δ(v′s, (a
1
1, a

2
1), (a1

2, a
2
2)) =

U(⊥′,>′) if a1
1 > a1

2 and a2
1 > a2

2

U(⊥′,⊥′) if a1
1 > a1

2 and a2
1 = a2

2

U(⊥′, v′s) if a1
1 > a1

2 and a2
1 < a2

2

U(>′,>′) if a1
1 = a1

2 and a2
1 > a2

2

U(>′,⊥′) if a1
1 = a1

2 and a2
1 = a2

2

U(>′, v′s) if a1
1 = a1

2 and a2
1 < a2

2

U(v′s,>′) if a1
1 < a1

2 and a2
1 > a2

2

U(v′s,⊥′) if a1
1 < a1

2 and a2
1 = a2

2

U(v′s, v
′
s) if a1

1 < a1
2 and a2

1 < a2
2 .

Furthermore, S1 = {>′}. We will use τi for strategies in the 3-
state Purgatory Duel to distinguish them from strategies in the
Purgatory Duel. There is an illustration of the Purgatory Duel
with N = 5 and m = 2 in Figure 3 and the corresponding
3-state Purgatory Duel in Figure 4.

Given a strategy τi for player i in the 3-state Purgatory Duel
we define the strategy σi in the Purgatory Duel with N = 5
which is the projection of τi and vice versa (note that the other
direction maps to a set of strategies).



>

v1
1

vs

v2
1

⊥

Fig. 3. An illustration of the Purgatory Duel with N = 5 and m = 2. The
two dashed edge have probability 1

2
each.

>′

v′s

⊥′

Fig. 4. An illustration of the 3-state Purgatory Duel m = 2. The
non-dashed edges have probability 1

2
each. The order of the actions is

(1, 1), (1, 2), (2, 1), (2, 2). The actions (i.e., (2, 2) for player 1 and (1, 1)
for player 2) with white background cannot be played in a restricted strategy.

Definition 21. Given a strategy τi for player i in the 3-state
Purgatory Duel, let στii be the stationary strategy for player i
in the Purgatory Duel with N = 5 where

στii (v1
1)(a1

1) =
∑
a2

1

τi(v
′
s)(a

1
1, a

2
1)

and
στii (v2

1)(a2
1) =

∑
a1

1

τi(v
′
s)(a

1
1, a

2
1) .

Also, for any stationary strategy σi in the Purgatory Duel with
N = 5, let T σi

i be the set of stationary strategies in the 3-state
Purgatory Duel such that τi ∈ T σi

i implies that στii = σi.

Lemma 22. Consider any ε ≥ 0. Let G be the Purgatory
Duel with N = 5 and G′ be the 3-state Purgatory Duel. For
any ε-optimal stationary strategy τi for player i in G′, we
have that στii is ε-optimal starting in vs in G. Similarly, for
any ε-optimal stationary strategy σi in G starting in vs each
strategy in T σi

i is ε-optimal in G′. Also, val(v′s) = 1
2 .

Proof. Consider some pair of strategies τi and στii for player i
in G′ and G, respectively. Fixing τi and στii as the strategy
for player i we get two MDPs H ′ and H , respectively. We
will argue that val(H ′, v′s) = val(H, vs). Let v′

t
and vt be the

vector of values for the value iteration algorithm in iteration t
when run on H ′ and H respectively (i.e., the values of H ′ and
H with time limit t). We have that v2t

vs = v′
t

v′s
by definition of

the value-iteration algorithm and the transition function in the
3-state Purgatory Duel. Hence, since v2t

vs and v′
t

v′s
converges

to the value of state vs and v′s in H and H ′ respectively, they
have the same value. We know that the value of vs is 1

2 and
thus that is also the value of v′s.

Corollary 23. The patience of ε-optimal stationary strategies
for both players, for 0 < ε < 1

3 , in the 3-state Purgatory Duel
is at least 2Ω(m), where m2 is the number of actions in state
vs.

Proof. The patience of ε-optimal strategies, for 0 < ε < 1
3 , in

the Purgatory Duel with N = 5 is 2Ω(m) from Theorem 20.
Thus, by Lemma 22, the patience of the 3-state Purgatory Duel
is 2Ω(m).

The restricted 3-state Purgatory Duel. The above corollary
only shows that the for the 3-state Purgatory Duel, in which
one state have m2 actions and others have 1, the patience is
at least 2Ω(m). We now show how to decrease the number of
actions from quadratic down to linear, while keeping the same
patience.

From Lemma 5 and Lemma 6 we see that for any optimal
strategy σ1 for player 1 (resp., σ2 for player 2) in the Purgatory
Duel with N = 5, we have that σ1(v1

1)(1) > 1
2 and that

σ1(v2
1)(1) > 1

2 (resp., σ2(v1
1)(m) > 1

2 and that σ2(v2
1)(m) >

1
2 ). Hence, there exists an optimal strategy for player 1 in the
3-state Purgatory Duel that only plays actions on the form
(1, a2

1) and (a1
1, 1) with positive probability. More precisely,

the strategy τ1 where (1) τ1(vs)((1, a
2
1)) = σ1(v2

1)(a2
1); and

(2) τ1(vs)((a
1
1, 1)) = σ1(v1

1)(a1
1); and (3) has the remaining



probability mass on (1, 1) is optimal in the 3-state Purgatory
Duel, since στ11 is σ1. Similarly for player 2 and the actions
(m, a2

2) and (a1
2,m). Let

R1 = {(i, j) | i = 1 ∨ j = 1, 1 ≤ i, j ≤ m}

and

R2 = {(i, j) | i = m ∨ j = m, 1 ≤ i, j ≤ m} .

Observe that |R1| = |R2| = 2m − 1. We say that a strategy
for player i, for each i, is restricted if the strategy uses only
actions in Ri. The sub-matrix corresponding to the restricted
3-state Purgatory Duel for m = 2 is depicted as the grey sub-
matrix in Figure 4. This suggests the definition of the restricted
3-state Purgatory Duel, which is like the 3-state Purgatory
Duel, except that the strategies for the players are restricted.
We next show that ε-optimal strategies in the restricted 3-state
Purgatory Duel also have high patience (note, that while this
is perhaps not surprising, it does not follow directly from the
similar result for the 3-state Purgatory Duel, since it is possible
that the restriction removes the optimal best reply to some
strategy which would otherwise not be ε-optimal). The key
idea of the proof is as follows: (i) we show that the patience of
player i in the 3-state Purgatory Duel remains unchanged even
if only the opponent is enforced to use restricted strategies;
and (ii) each player has a restricted strategy that is optimal in
the 3-state Purgatory Duel as well as in the restricted 3-state
Purgatory Duel.

Lemma 24. The value of state v′s in the restricted 3-state
Purgatory Duel is 1

2

Proof. Each player has a restricted strategy which is optimal
in the 3-state Purgatory Duel and ensures value 1

2 . Thus,
these strategies must still be optimal in the restricted 3-state
Purgatory Duel and still ensure value 1

2 .

The next lemma is conceptually similar to Lemma 15 for
N = 5 (however, it does not follow from Lemma 15, since
the strategies for player 1 are restricted here).

Lemma 25. Let τ2 be an ε-optimal stationary strategy for
player 2 in the restricted 3-state Purgatory Duel, for 0 < ε <
1
2 . Then,

∑m
i=1 τ2(v′s)(i, j) > 0, for each j.

Proof. Fix 0 < ε < 1
2 . Let τ2 be a stationary strategy

in the 3-state Purgatory Duel (note, we do not require that
τ2 is restricted), such that there exists an a2 for which∑
a1
τ2(v′s)((a1, a2)) = 0. Let a′ be smallest such a2.

Fix 0 < η < 1
2 − ε. We show that there exists a restricted

stationary strategy τ1 for player 1, ensuring that the payoff is
at least 1− η > 1

2 + ε. There are two cases. Either (i) a′ = 1
or (ii) not.

In case (i), let σ1(v′s) be an η-optimal strategy for player 1
in the Purgatory with parameters (3,m). Then consider the
strategy τ1(v′s), where τ1(v′s)((a, 1)) = σ1(v′s)(a), for each a.
Observe that τ1 is a restricted strategy. Consider what happens
if τ1 is played against τ2: In each round i, as long as vi =
v′s, the next state is either defined by the first or the second
component of the actions of the players. If it is defined by

the second component, then the next state vi+1 is always v′s,
because player 1’s first component is 1 and player 2’s first
component greater than 1. Consider the rounds where the next
state is defined by the first component. In such rounds > is
reached with probability (1− η) · p, for some p > 0 and ⊥ is
reached with probability at most η ·p, because player 1 follows
an η-optimal strategy in Purgatory on the first component. But
in expectation, in every second round the first component is
used and thus > is reached with probability at least 1 − η,
which shows that σ2 is not ε-optimal.

In case (ii), consider the strategy τ1, such that
τ1(v′s)((1, a

′)) = 1. Observe that τ1 is a restricted strategy.
Consider what happens if τ1 is played against τ2: In each
round i, as long as vi = v′s, the next state is either defined
by the first or the second component of the players choice.
If it is defined by the first component, then the next state
vi+1 is always v′s or >, because the choice of player 1 is
1. Consider the rounds where the next state is defined by
the second component. In each such round either > or v′s
is reached and > is reached with positive probability, since
player 1 plays a′ > 1 and player 2 always plays something else
and 1 with positive probability. But in expectation, in every
second round the second component is used and hence > is
reached with probability 1 eventually, which shows that σ2 is
not ε-optimal.

We will now define how to mirror strategies in the restricted
3-state Purgatory Duel.

Definition 26. Given a stationary strategy τi for player i in
the restricted 3-state Purgatory Duel, for either i, let τ τi

î
be

the stationary strategy for player î (referred to as the mirror
strategy of τi) in the restricted 3-state Purgatory Duel where
τ τi
î

(v′s)((a1, a2)) = τi(v
′
s)((a2, a1)) for each a1 and a2.

We next show that each ε-optimal stationary strategy for
player 2 can be mirrored to an ε-optimal stationary for
player 1. The statement and the proof idea are similar to
Lemma 16, but since the strategies for the players are restricted
here, there are some differences.

Lemma 27. For all 0 < ε < 1
2 , each ε-optimal stationary

strategy τ2 for player 2 in the restricted 3-state Purgatory Duel
is such that the mirror strategy τ τ21 is ε-optimal for player 1
in the restricted 3-state Purgatory Duel.

Proof. Fix ε, such that 0 < ε < 1
2 . Consider some ε-optimal

stationary strategy τ∗2 for player 2 in the restricted 3-state
Purgatory Duel. Let τ∗1 = τ

τ∗2
1 be the mirror strategy for

player 1 given τ∗2 and let τ2 be an optimal best reply to τ∗1 . Let
τ1 = τ τ21 be the mirror strategy for player 1 given τ2. Observe
that eventually either > or ⊥ is reached with probability 1,
when playing τ∗1 against τ2, by Lemma 25 and the construction
of the game (since there is a positive probability that the
second component matches in every round in which the play
is in v′s). We have that u(v′s, τ1, τ

∗
2 ) ≤ 1

2 + ε, since τ∗2 is ε-
optimal. This indicates that >′ is reached with probability at
most 1

2 + ε when playing τ1 against τ∗2 . Hence, by symmetry



⊥′ is reached with probability at most 1
2 + ε when playing τ∗1

against τ2. Thus, since ⊥′ or >′ is reached with probability 1,
we have that u(v′s, τ

∗
1 , τ2) ≥ 1

2 − ε, showing that τ∗1 is ε-
optimal.

We next show that ε-optimal stationary strategies for
player 1 requires high (exponential) patience. The statement
and the proof idea are similar to Lemma 19, but since the play-
ers strategies are restricted here, there are some differences.

Lemma 28. For all 0 < ε < 1
3 , each ε-optimal stationary

strategy σ1 for player 1 in the restricted 3-state Purgatory
Duel has patience 2Ω(m).

Proof. Fix some 0 < ε < 1
3 and some ε-optimal stationary

strategy σ1 for player 1 in the restricted 3-state Purgatory
Duel. The restricted 3-state Purgatory Duel then turns into
an MDP M for player 2 and we can apply Lemma 18(2). We
have that p =

∑
a1

1
σ1(v′s)(a

1
1, a

2
2)/2 is the probability that

player 1 plays an action with second component a2
2 and the

next state is defined by the second component. Let d(a2
1, a

2
2)

be the probability distribution over successors if player 2 plays
(a2

1, a
2
2) in v′s. Observe that the play would go to ⊥ if both

players played a2
2 and the next state is defined by the second

component and thus

d(a2
1, a

2
2)(⊥)− p ≥ 0 .

Let

d′(a2
1, a

2
2)(v) =


d(a2

1, a
2
2)(v′s) + p if v = v′s

d(a2
1, a

2
2)(⊥)− p if v = ⊥

d(a2
1, a

2
2)(>) if v = > .

Consider the MDP M ′, which is equal to M , except that
it uses the distribution d′(a2

1, a
2
2) instead of d(a2

1, a
2
2). By

Lemma 18(2) we have that

val(M ′) ≥ val(M) ≥ 1

2
− ε ≥ 1

6
.

It is clear that player 2 has an optimal positional strategy in
M ′ that plays (a2

1,m) for some a2
1 (this strategy is restricted),

since playing (a2
1, a

2
2), for some a2

2 < m, just increases the
probability to reach > in one step (because player 1 might
play some action a1

2 > a2
2 and otherwise the play will go back

to v′s). But M ′ corresponds to the MDP obtained by playing
σ1 in the Purgatory with N = 3 (where v′s corresponds to
v1), except that with probability 1

2 the play goes from v′s back
to v′s in the restricted 3-state Purgatory Duel no matter the
choice of the players. This difference clearly does not change
the value. Hence, σ1 ensures payoff at least 1

6 in the Purgatory
with N = 3 and hence has patience 2Ω(m) by [19].

We are now ready for the main result of this section.

Theorem 29. For all 0 < ε < 1
3 , every ε-optimal stationary

strategy, for either player, in the restricted 3-state Purgatory
Duel (that has three states, two of which are absorbing, and
the non-absorbing state has O(m) actions for each player)
has patience 2Ω(m).

Proof. By Lemma 28, the statement is true for every ε-optimal
stationary strategy for player 1. By Lemma 27, every ε-optimal
stationary strategy for player 2 corresponds to an ε-optimal
stationary strategy for player 1, with the same patience, and
thus every ε-optimal stationary strategy for player 2 has
patience 2Ω(m).

V. ZERO-SUM CONCURRENT STOCHASTIC GAMES:
PATIENCE UPPER BOUND

In this section we give upper bounds on the patience of
optimal and ε-optimal stationary strategies in a zero-sum
concurrent reachability game G for the safety player. Our
exposition here makes heavy use of the setup of Hansen et al.
[20] and will for that reason not be fully self-contained. We
assume for concreteness that the player 1 is the reachability
player and player 2 the safety player.

Hansen et al. showed [20, Corollary 42] for the more general
class of Everett’s recursive games [15] that each player has an
ε-optimal stationary strategy of doubly-exponential patience.
More precisely, if all probabilities have bit-size at most τ , then
each player has an ε-optimal strategy of patience bounded
by ( 1

ε )τm
O(N)

. For zero-sum concurrent reachability games
the safety player is guaranteed to have an optimal stationary
strategy [29], [22]. Using this fact one may use directly the
results of Hansen et al. to show that the safety player has an
optimal strategy of patience bounded by ( 1

ε )τm
O(N2)

. We shall
below refine this latter upper bound in terms of the number of
value classes of the game. The overall approach in deriving
this is the same, namely we use the general machinery of real
algebraic geometry and semi-algebraic geometry [3] to derive
our bounds. In order to do this we derive a formula in the
first order theory of the real numbers that uniquely defines the
value of the game, and from the value of the game we can
express the optimal strategies. The improved bound is obtained
by presenting a formula where the number of variables depend
only on the number of value classes rather than the number
of states.

Let below N denote the number of non-absorbing states,
and m ≥ 2 the maximum number of actions in a state for either
player. Assume that all probabilities are rational numbers with
numerators and denominators of bit-size at most τ , where the
bit-size of a positive integer n is given by blg nc + 1. We
let K denote the number of value classes. We number the
non-absorbing states 1, . . . , N and assume that both players
have the actions {1, . . . ,m} in each of these states. For a
non-negative integer z, define bit(z) = dlg ze.

Given valuations v1, . . . , vN for the non-absorbing states,
we define for each state k a m×m matrix game Ak(v) letting
entry (i, j) be skij +

∑N
`=1 p

k`
ij v`, where pk`ij = δ(k, i, j)(`)

and skij is the probability of a transition to a state where
the reachability player wins, given actions i and j in state
k. The value mapping operator M : RN → RN is given
by M(v) =

(
val(A1(v), . . . , val(AN (v)))

)
. Everett showed

that the value vector of his recursive games are given by the
unique critical vector, which in turn is defined using the value
mapping. We will instead for concurrent reachability games



use the characterization of the value vector as the coordinate-
wise least fixpoint of the value mapping. The value vector v
is thus characterized by the formula

M(v) = v ∧ (∀v′ : M(v′) = v′ ⇒ v ≤ v′) . (1)

Similarly to [20, proof of Theorem 13] we obtain the following
statement.

Lemma 30. There is a quantifier free formula with N
variables v that expresses M(v) = v. The formula uses
at most N(m + 2)4m different polynomials, each of degree
at most m + 2 and having coefficients of bit-size at most
2(N + 1)(m+ 2)2 bit(m)τ .

Now, if we instead introduce a variable for each value class,
we can express M(v) = v using only K free variables, by
identifying variables of the same value class. For w ∈ RK ,
let v(w) ∈ RN denote the vector obtained by letting the
coordinates corresponding to value class j be assigned wj .
We thus simply express M(v(w)) = v(w) instead. Combining
this with (1) we obtain the final formula.

Corollary 31. There is a quantified formula with K free
variables that describes whether the vector v(w) is the value
vector of G. The formula has a single block of quantifiers
over K variables. Furthermore the formula uses at most
2N(m + 2)4m + K different polynomials, each of degree
at most m + 2 and having coefficients of bit-size at most
2(N + 1)(m+ 2)2 bit(m)τ .

We shall now apply the quantifier elimination [3, Theo-
rem 14.16] and sampling [3, Theorem 13.11] procedures to
the formula of Corollary 31.

First we use Theorem 14.16 of Basu, Pollack, and Roy [3]
obtaining a quantifier free formula with K variables, express-
ing that w(v) is the value of G. Next we use Theorem 13.11
of [3] to obtain a univariate representation of w such that
v(w) is the value vector of G. That is, we obtain univari-
ate real polynomials f, g0, . . . , gK , where f and g0 are co-
prime, such that w = (g1(t)/g0(t), . . . , gK(t)/g0(t)), where
t is a root of f . These polynomial are of degree mO(K2)

and their coefficients have bit-size τmO(K2). Our next task
is to recover from w an optimal strategy for the safety
player. For this we just need to select optimal strategies for
the column player in each of the matrix games Ak(v(w)).
Such optimal strategies correspond to basic feasible solutions
of standard linear programs for computing the value and
optimal strategies of matrix games (cf. [20, Lemma 3]).
This means that there exists (m + 1) × (m + 1) matrices
M1(w), . . . ,MN (w), such that (qk1 (w), . . . , qkm(w)) is an
optimal strategy for the column player in Ak(v(w)) where
qki (w) = det((Mk(w))i)/det(Mk(w)), where (Mk(w))i
denotes the matrix obtained from Mk(w) by replacing column
i with the (m + 1)th unit vector em+1. As the matrices
M1(w), . . . ,Mk(w) are obtained from the matrix games
A1(v(w)), . . . , AN (v(w)), the entries are degree 1 polynomial
in w and having rational coefficients with numerators and
denominators of bit-size at most τ as well. Using a simple

bound on determinants [3, Proposition 8.12], and substituting
the expression gj(t)/g0(t) for wj for each j, we obtain a
univariate representation of (qk1 (w), . . . , qkm(w)) for each k
given by polynomials of degree mO(K2) and their coefficients
have bit-size τmO(K2). Substituting the root t using resultants
(cf. [20, Lemma 15]) we finally obtain the following result.

Theorem 32. Let G be a zero-sum concurrent reachability
game with N non-absorbing states, at most m ≥ 2 actions
for each player in every non-absorbing state, and where
all probabilities are rational numbers with numerators and
denominators of bit-size at most τ . Assume further that G has
at most K value classes. Then there is an optimal strategy for
the safety player where each probability is a real algebraic
number, defined by a polynomial of degree mO(K2) and
maximum coefficient bit-size τmO(K2).

By a standard root separation bounds (e.g. [35, Chapter 6,
equation (5)]) we obtain a patience upper bound.

Corollary 33. Let G be as in Theorem 32. Then there is
an optimal strategy for the safety player of patience at most
2τm

O(K2)

.

In general the probabilities of this optimal strategy will be
irrational numbers. However we may employ the rounding
scheme as explained in Lemma 14 and Theorem 15 of Hansen,
Koucký, and Miltersen [21] to obtain a rational ε-optimal
strategy. Letting ε = 2−` we may round each probability,
except the largest, upwards to L = lg 1

ε +lg lg 1
ε +NτmO(K2)

binary digits, and then rounding the largest probability down
by the total amount the rest were rounded up. Here we use
that by fixing the above strategy of patience at most 2τm

O(K2)

for the safety player and an pure strategy for the reachability
player one obtains a Markov chain where each non-zero
transition probability is at least (2τm

O(K2)

)−1. We thus have
the following.

Corollary 34. Let G be as in Theorem 32. Then there is an ε-
optimal strategy for the safety player where each probability is
a rational number with a common denominator of magnitude
at most 1

ε lg 1
ε2Nτm

O(K2)

.

We now address the basic decision problem. Let s be a
state and let λ be a rational number with numerator and
denominator of bit-size at most κ, and consider the task of
deciding whether v2(s) ≥ λ. An equivalent task is to decide
whether v2(s)−λ ≥ 0. Since v2(s) is a real algebraic number
defined by a polynomial of degree mO(K2) and maximum
coefficient bit-size τmO(K2) it follows that v2(s)−λ is a real
algebraic number defined by a polynomial of degree mO(K2)

and maximum coefficient bit-size (κ + τ)mO(K2). This can
be seen by subtracting λ from the univariate representation
of v2(s) and substituting for the root t using a resultant.
By standard root separation bounds this means that either is
v2(s) − λ = 0 or |v2(s) − λ| > η, for some η of the form
d = 2−(κ+τ)mO(K2)

. Given an η/2-optimal strategy σ2 for the
safety player, by fixing the strategy σ2 we obtain an MDP for



player 1, where we can find the value ṽ2(s) of state s using
linear programming, and the computed estimate ṽ2(s) for
v2(s) is within η/2 of the true value. Thus if ṽ2(s) ≥ λ−η/2
we conclude that v2(s) ≥ λ (and similarly if ṽ2(s) ≥ λ+ η/2
we conclude that v2(s) > λ). Now, if we fix K to be a
constant and consider the promise problem that G has at most
K value classes, then a rational η/2-optimal strategy σ2 exists
with numerators and denominators of polynomial bit-size by
Corollary 34. Now, by simply guessing non-deterministically
the strategy σ2 and verifying as above we have the following
result.

Theorem 35. For a fixed constant K, the promise problem
of deciding whether v1(s) ≥ λ given a zero-sum concurrent
stochastic game with at most K value classes is in coNP if
player 1 has reachability objective and in NP if player 1 has
safety objective.

Note that interestingly it does not follow similarly that the
promise problem is in (coNP ∩ NP), because the games are
not symmetric.

Remark 36 (Complexity of approximation for constant value
classes). As a direct consequence we have that for a game
G promised to have at most K value classes, the value of a
state can be approximated in FPNP. This improves on the
FNPNP bound of Frederiksen and Miltersen [17] (that holds
in general with no restriction on the number of value classes).

VI. NON-ZERO-SUM CONCURRENT STOCHASTIC GAMES:
BOUNDS ON PATIENCE AND ROUNDEDNESS

In this section we consider non-zero-sum concurrent
stochastic games where each player has either a reachability
or a safety objective. We first present a remark on the lower
bound in the presence of even a single player with reachability
objective, and then for the rest of the section focus on non-
zero-sum games where all players have safety objectives.

Remark 37. In non-zero-sum concurrent stochastic games,
with at least two players, even if there is one player with
reachability objectives, then at least doubly-exponential pa-
tience is required for ε-Nash equilibrium strategies. We have
the property if k = 2 and one player is a reachability player
and the other is a safety player, from Section III-C. It is also
easy to see that Lemma 9 together with Lemma 15 implies that
if player 1 is identified with the objective (Reach, {>}) and
player 2 is identified with the objective (Reach, {⊥}) and they
are playing the Purgatory Duel, then each strategy profile σ,
that forms a ε-Nash equilibrium, for any 0 < ε < 1

3 , in the
Purgatory Duel, has patience 2m

Ω(n)

. This is because player 2
has a harder objective (a subset of the plays satisfies it) than
in Section III-C, but can still ensure the same payoff (by using
an optimal strategy for player 2 in the concurrent reachability
variant, which ensures that ⊥ is reached with probability at
least 1

2 ). In this case, we say that a strategy is optimal (resp.,
ε-optimal) for a player, if it is optimal (resp., ε-optimal) for the
corresponding player in the concurrent reachability version.

It is clear that only if both strategies are optimal (resp., ε-
optimal), then the strategies forms a Nash equilibrium (resp.,
ε-Nash equilibrium). Thus the doubly-exponential lower bound
follows even for non-zero-sum games with two reachability
players. The key idea to extend to more players, of which at
least one is a reachability player, is as follows: Consider some
reachability player i. The game for which the lower bound
holds can be described as follows. First player i picks another
player j and they then proceed to play the Purgatory Duel with
parameters n,m against each other. This can be captured by
a game with k(2n + 1) + 3 states, where each matrix has
size at most max(m, k). Each player must then use doubly-
expoential patience in every strategy profile that forms an ε-
Nash equilibrium, for sufficently small ε > 0. First consider
a player j that is different from i, and a strategy for player j
with low patience. It follows that player i would then simply
play against player j and win with good probability. Second,
consider a strategy for player i with low patience and there
are two cases. Either player i gets a payoff close to 1

2 or not.
If he gets a payoff close to 1

2 , then the player he is most likely
to play against can deviate to an optimal strategy and increase
his payoff by an amount close to 1

2k , which player i loses. On
the other hand, if player i gets a payoff far from 1

2 , then he
can deviate to an optimal strategy and then he gets payoff 1

2 .

The rest of the section is devoted to non-zero-sum concur-
rent stochastic games with safety objectives for all players,
and first we establish an exponential upper bound on patience
and then an exponential lower bound for ε-Nash equilibrium
strategies, for ε > 0.

A. Exponential upper bound on roundedness

In this section we consider non-zero-sum concurrent safety
games, with k ≥ 2 players, and such games are also called
stay-in-a-set games, by [30]. We will argue that, for all 0 <
ε < 1

4 , in any such game, there exists a strategy profile σ that
forms an ε-Nash equilibrium and have roundedness at most

−32 · k2 · ln(ε) · n · (δmin)−n ·m
ε

.

Note that the roundedness is only exponential, as compared
to the doubly-exponential patience when there is at least
one reachability player (Remark 37). Note that the bound is
polynomial in m and k; and also polynomial in n if δmin = 1.
Players already lost, and all winners. For a prefix of a play
P `
′

s , for a starting state s, play Ps and length `′, let L̂(P `
′

s )
be the set of players that have not lost already in P `

′

s (note
that for each i, player i has lost in a play prefix if a state not
in Si has been visited in the prefix). Let P `

′

s be some prefix
of a play and we define W (P `

′

s ) as the event that each player
in L̂(P `

′

s ) wins with probability 1.
Player-stationary strategies. As shown by [30], there exists a
strategy profile σ = (σi)i that forms a Nash equilibrium. They
show that the strategy σi, for any player i, in the witness Nash
equilibrium strategy profile has the following properties: For
each set of players Π and state s, there exists a probability
distribution σ̂i(Π, s), such that for each prefix of a play P `

′

s ,



play Ps and length `′, if P `
′

s ends in s′, we have that σi(P `
′

s ) =
σ̂i(L̂(P `

′

s ), s′) (i.e., the strategy only depends on the players
who have not lost yet and the current state). Also, there exists
some positional strategy σ′i, such that σ̂i(Π, s) = σ′i(s), for
all i 6∈ Π (i.e., players who have lost already play some fixed
positional strategy). This allows them to only consider the sub-
game GΠ, which is the game in which each player i not in Π
plays σ′i. Also, if there is a strategy profile which ensures that
each player in Π wins with probability 1 if the play starts in s
of GΠ, then the probability distribution σ̂i(Π, s) is pure5 and it
ensures that the players in Π wins with probability 1. We call
strategies with these properties player-stationary strategies.
The real number ε and the length `. In the remainder of
this section, fix 0 < ε < 1

4 and fix the length `, such that

` = −n · k · ln(ε/(4k)) · (δmin)−n .

We will, in Lemma 39, argue that any player-stationary
strategy is such that with probability 1 − ε no player loses
after ` steps. Also several lemmas in this section will use `
and ε.
The event E(P `

′

s ). Given a play Ps, starting in state s for
some s and any `′, let E(P `

′

s ) be the event that either the
event (L̂(P `

′

s ) ( L̂(P `
′−1
s )) (i.e., some player lost at the `′-

th step) or the event W (P `
′

s ) (i.e., the remaining players win
with probability 1) happens. In [30, 2.1 Lemma] they show6:

Lemma 38. Fix a player-stationary strategy profile σ. Let
T ≥ 0 denote a round (or a step of plays). Let Y T,s be
the set of plays, where for all plays Ps in Y T,s, either the
remaining players win with probability 1 in round T (i.e., the
event W (PTs ) happens) or some player loses in round T (i.e.,
the event L̂(PTs ) ( L̂(PT−1

s ) happens). For a constant c and
length `′, let yc,`′ = Prσ[∃T : `′ < T ≤ `′+cn ∧ Ps ∈ Y T,s]
denote the probability that event Y T,s happens for some T
between `′ and `′ + cn. Then, for all constants c and length
`′, we have that

yc,`′ ≥ 1− (1− (δmin)n)c .

Note that T above depends on the play Ps. It is straight-
forward that players can lose at most k times in any play
Ps, simply because there are at most k players, and if the
remaining players win with probability 1 in round T , then they
also win with probability 1 in round T + 1, by construction
of σ.
Proof overview. Our proof will proceed as follows. Con-
sider the game, while the players play some player-stationary
strategy profile that forms a Nash equilibria. First, we show
that it is unlikely (low-probability event) that the players do
not play positional (like they do if the event W (P `

′

s ) has
happened) after some exponential number of steps. Second,

5it is not explicitly mentioned in [30] that the distributions are pure, but
it follows from the fact that if all players can ensure their objectives with
probability 1, then there exists a positional strategy profile ensuring so, by
just considering an MDP (with all players together) with a conjunction of
safety objectives

6they do not explicitly show that the constant is 1−(δmin)
n, but it follows

easily from an inspection of the proof

we show that if we change each of the probabilities used
by an exponentially small amount as compared to the Nash
equilibria, then it is unlikely that that there will be a large
difference in the first exponentially many steps. This allows us
to round the probabilities to exponentially small probabilities
while the players only lose little.

Lemma 39. Fix some player-stationary strategy profile σ.
Consider the set P of plays Ps, under σ, such that W (P `s )
does not happen. Then, the probability Prσ[P ] is less than
ε/4.

Proof. Fix 0 < ε < 1
2 and a player-stationary strategy profile

σ. Let c = − ln(ε/(4k)) · (δmin)−n > 1. We will argue that
the event E(P `

′

s ) happens at least k times with probability at
least 1− ε/4 over c · n · k = ` steps.

We consider two cases, either δmin = 1 or 0 < δmin < 1. If
δmin = 1, the event ∃1 ≤ T ≤ n : E(P `

′+T
s ) always happens

(otherwise, in case it did not in some play, then a deterministic
cycle satisfying the safety objectives of all players who have
not lost yet is executed, and then the players could win by
playing whatever they did the last time they were in a given
state). If 0 < δmin < 1, we see that c ≥ c′ = ln(ε/(4k))

ln(1−(δmin)−n) ,
since 1+x ≤ ex and that ∃1 ≤ T ≤ c′ ·n : E(P `

′+T
s ) happens

with probability at least 1 − ε/(4k) by Lemma 38. In either
case, we have that the event ∃1 ≤ T ≤ c · n : E(P `

′+T
s )

happens with probability at least 1− ε/(4k).
Next, split the plays up in epochs of length c·n each, and we

get that the event E(PTs ) happens at least once for T ranging
over the steps of an epoch with probability at least 1−ε/(4k)
and hence happens at least once in each of the first k epochs
with probability at least 1 − ε/4 using union bound. At that
point the remaining players win with probability 1. The first
k epochs have length c · k ·n = ` and the lemma follows.

We use the above lemma to show that any strategy profile
close to a Nash equilibrium ensures payoffs close to that
equilibrium. To do so, we use coupling (similar to [10]).
Variation distance. The variation distance is a measure of
the similarity between two distributions. Given a finite set Z,
and two distributions d1 and d2 over Z, the variation distance
of the distributions is

var(d1, d2) =
1

2
·
∑
z∈Z
|d1(z)− d2(z)| .

We will extend the notion of variation distances to strategies
as follows: Given two strategies σi and σ′i for player i the
variation distance between the strategies is

var(σi, σ
′
i) = sup

P `
s

var(σi(P
`
s ), σ′i(P

`
s )) ;

i.e., it is the supremum over the variation distance of the
distributions used by the strategies for finite-prefixes of plays.
Coupling and coupling lemma. Given a pair of distributions,
a coupling is a probability distribution over the joint set of
possible outcomes. Let Z be a finite set. For distributions
d1 and d2 over the finite set Z, a coupling ω is a dis-
tribution over Z × Z, such that for all z ∈ Z we have



∑
z′∈Z ω(z, z′) = d1(z) and also for all z′ ∈ Z we have∑
z∈Z ω(z, z′) = d2(z′). One of the most important properties

of coupling is the coupling lemma [1] of which we only
mention and use the second part:
• (Coupling lemma). For a pair of distributions d1 and d2,

there exists a coupling ω of d1 and d2, such that for a
random variable (X,Y ) from the distribution ω, we have
that var(d1, d2) = Pr[X 6= Y ].

Smaller support. Fix a pair of strategies σi and σ′i for player i
for some i. We say that σ′i has smaller support than σi, if for
all P `s we have that

Supp(σ′i(P
`
s )) ⊆ Supp(σi(P

`
s )) .

Lemma 40. Let σ = (σi)i and σ′ = (σ′i)i be player-stationary
strategy profiles, such that

var(σ, σ′) ≤ ε

` · k · 4
,

and such that σ′i has smaller support than σi, for all i. Then
σ′ is such that

u(G, s, σ′, i) ∈ [u(G, s, σ, i)− ε/2, u(G, s, σ, i) + ε/2]

for each player i and state s.

Proof. Fix σ and σ′ according to the lemma statement. For
any prefix of a play P `

′

s , for any state s and length `′ and
player i, we have that var(σi(P `

′

s ), σ′i(P
`′

s )) ≤ ε
`·k·4 and thus,

we can create a coupling ω = (X
P `′

s
i , Y

P `′
s

i ) between the two

distributions σi(P `
′

s ) and σ′i(P
`′

s ), i.e., XP `′
s

i ∼ σi(P
`′

s ) and

Y
P `′

s
i ∼ σ′i(P `

′

s ) is such that Pr[X
P `′

s
i 6= Y

P `′
s

i ] ≤ ε
`·k·4 . Then,

consider some state s and consider a play Ps, picked using

the random variables XP `′
s

i , and a play Qs, picked using the

random variables Y P
`′
s

i (where, if the players uses the same
action in P `

′

s and Q`
′

s , then the next state is also the same,
using an implicit coupling). Then according to Lemma 39, the
probability that W (P `s ) occurs is at least 1−ε/4. In that case,
we are interested in the probability that Qs = Ps. Observe
that we just need to ensure that P `s and Q`s are the same, since
at that point the players play according to the same positional
strategy, because of the smaller support. For each `′′ ≤ `, if the
first `′′ steps match, then the next step match with probability
at least 1− ε

`·k·4 ·k, since each of the k players has a probability
of ε

`·k·2 to differ in the two plays. Hence, all ` steps match
with probability at least 1− ε

`·k·4 · ` ·k = 1−ε/4. Hence, with
probability at least 1 − ε/2 we have that Ps equals Qs and
thus, especially, the payoff for each player must be the same
in that case. But observe that Ps is distributed like plays under
σ and Qs is distributed like plays under σ′ and the statement
follows.

We will next show that we only need to consider devia-
tions to player-stationary strategies for the purpose of player-
stationary equilibria.

Lemma 41. For all player-stationary strategy profiles σ and
each player i, there exists a pure player-stationary strategy σ′i
for player i maximizing u(G, s, σ[σ′i], i).

Proof. Observe first that it does not matter what player i
does if he has already lost, and we can consider him to play
some fixed positional strategy in that case. Also, when the
remaining players play according to σ, we can view the game
as being an MDP, in the games GΠ. The objective of player i
is then to reach a sub-game of GΠ and a state in that sub-
game, from which he cannot lose. But it is well-known that
such reachability objectives have positional optimal strategies
in MDPs. Hence, this strategy forms a pure player-stationary
strategy in the original game.

We will use Lemma 3 from [10]. The proof only appears
in [9], where the lemma is Lemma 4.

Lemma 42. (Lemma 3, [10]). Let Z be a set of size `. Let
d1 be some distribution over Z and let q ≥ ` be some integer.
Then there exists some distribution d2, such that for each z ∈
Z, there exists an integer p such that d2(z) = p

q and such that
|d1(z)− d2(z)| < 1

q .

We are now ready to show the main theorem of this section.

Theorem 43. For all concurrent stochastic games with all
k safety players, for all 0 < ε < 1

4 , there exists a player-
stationary strategy profile σ that forms an ε-Nash equilibrium
and has roundedness at most

4n · k2 ·m · ε−1 · ln(4k/ε) · (δmin)−n .

Proof. Fix some player-stationary strategy profile σ that forms
a Nash-equilibrium and some 0 < ε < 1

4 and let

` := −n · k · ln(ε/(4k)) · (δmin)−n .

Consider some distribution d1 over some set Z. Observe
that for each distribution d2 with smaller support than d1 and
such that |d1(z)−d2(z)| < 1

q , for each z ∈ Supp(d1), we have
var(d1, d2) ≤ |Supp(d1)|

q . Then, applying Lemma 42, for q =
`·k·4·m

ε and Z = Supp(d), to each probability distribution d
defining σ, we see that there exists a player-stationary strategy
profile σ′ = (σ′i)i, such that (1)

var(σ, σ′) ≤ m

q
=

ε

` · k · 4
;

and (2) σ′i has smaller support than σi; and (3) σ′i(P
`
s ) is

a fraction with denominator q. Observe that the strategy has
roundedness q.

We now argue that σ′ is an ε-Nash equilibrium. Consider
some player i and a player-stationary strategy σ′′i maximizing
the probability that player i wins when the remaining players
play according to σ′, which is known to exists by Lemma 41.
From Lemma 40, we have that

u(G, s, σ[σ′′i ], i) ≥ u(G, s, σ′[σ′′i ], i)− ε/2

and
u(G, s, σ, i) ≤ u(G, s, σ′, i) + ε/2 .



Thus, u(G, s, σ′, i) ≥ u(G, s, σ′[σ′′i ], i) − ε. This completes
the proof.

Remark 44 (Finding an ε-Nash equilibria in TFNP). We
explain how the results of this section imply that for non-
zero-sum concurrent stochastic games with safety objectives
for all players, if the number k of players is only a constant
or logarithmic, then we can compute an ε-Nash equilibria in
TFNP, where ε > 0 is given in binary as part of the input.
Note that there is a polynomial-size witness (to guess) for a
stationary strategy with exponential roundedness. Observe that
a player-stationary strategy for a player is defined by 2k−1 +1
stationary strategies, one used in case that the respective
player has lost, and one for each subset of other players.
Thus, we can guess polynomial-size witnesses of k player-
stationary strategies with exponential roundedness, given that
the number of players is at most logarithmic in the size of
the input. Hence, according to Theorem 43, we can guess a
candidate strategy profile σ that forms an ε-Nash equilibrium
in non-deterministic polynomial time. For each player i, con-
structing the (polynomial-sized) MDP described in the proof of
Lemma 41 and then solving it using linear programming gives
us the payoff of playing the strategy maximizing the value for
player i while the remaining players follows σ. If, for each
player i, the payoff only differs at most ε from what achieved
by player i when all players follows σ, then the strategy profile
σ is an ε-Nash equilibrium. It follows that the approximation
of some ε-Nash equilibria can be achieved in TFNP, given
that the number of players is at most logarithmic.

B. Exponential lower bound on patience

In this section, we show that Ω((δmin)−(n−3)/6) patience
is required, for each strategy profile that forms an ε-Nash
equilibrium, for any 0 < ε < 1

6 , in a family of games
{G(δmin)

c | c ∈ N ∧ δmin < 6−3} with two safety players.

Game family Gδmin
c . For a fixed number c ≥ 1 and 0 <

δmin < 6−3, the game Gδmin
c is defined as follows: There are

n = 4 · c + 3 states, namely, S = {vs, v1, v2,>,⊥} ∪ {v`j |
j ∈ {1, 2} ∧ ` ∈ {1, . . . , 2 · c − 1}}. For player i in state
vj , for j = 1, 2, there are two actions, called aj,1i and aj,2i ,
respectively. For each other state s and each player i, there
is a single action, a. For simplicity, for each pair of states
s, s′ we write d(s, s′) for the probability distribution, where
d(s, s′)(s) = 1−δmin and d(s, s′)(s′) = δmin. Also, we define
v0

1 as > and v0
2 as ⊥. The states ⊥ and > are absorbing.

The state vs is such that7 δ(vs, a, a) = U(v1, v2). For each
j ∈ {1, 2}, the transition function of state vj is

δ(vj , a
j,`
1 , aj,`

′

2 ) =


d(vs, v

c−1
j ) if ` = `′

d(vs, v
2c−1

ĵ
) if ` < `′

v0
ĵ

if ` > `′

For each other state v`j , the transition function is δ(v`j , a, a) =

d(vs, v
`−1
j ). The objective of player 1 is (Safety, S \{⊥}) and

7recall that U(s, s′) is the uniform distribution over s and s′

> v1
1 v2

1 v3
1

v1 vs v2

⊥v1
2v2

2v3
2

1
2

1
2

Fig. 5. An illustration of the game Gδmin
2 . The probabilities are as follows:

The probability of each dashed edge is 1− δmin; and the probability of each
dotted edge is δmin; and the probability of each solid edge is 1. The only
exception is the edges from vs, where the probability is written on each edge
(it is 1

2
in each case).

the objective of player 2 is (Safety, S \ {>}). See Figure 5
for an illustration of Gδmin

2 .

Near-zero-sum property. Observe that either ⊥ or > is
reached with probability 1 (and once > or ⊥ is reached,
the game stays there). The reasoning is as follows: there is a
probability of at least (δmin)2c to reach either > or ⊥ within
the next 2c + 1 steps from any state. If the current state is
vs, then the next state is either v1 or v2, and from v1 or v2

through v`j for each ` from 1 to 2c− 1, for some j, either >
or ⊥ is reached, and each of the steps from v1 or v2 onward
happens with probability at least δmin, no matter the choice
of the players. Hence, the game is in essence zero-sum, since
precisely one player wins with probability 1.

Proof overview. Our proof has two parts. We show that there
is a strategy for player i, for each i, that ensures that against
all strategies for the other player, the payoff is at least 1

2 for
player i. Also, we show that for each strategy of player i with
patience at most (δmin)−2/3·c, there is a strategy for the other
player such that the payoff is less than 1

6 for player i. This
then allows us to show that no strategy profile that forms a
1
6 -Nash equilibrium has patience less than (δmin)−2/3·c.

Lemma 45. For each i, player i has a strategy σi such that

inf
σî

u(G, vs, σ1, σ2, i) =
1

2
.

Proof. Consider the stationary strategy σ1, where

σ1(v1)(a1,1
1 ) = σ1(v2)(a2,1

1 ) =
1 + (δmin)−c

2 + (δmin)−c + (δmin)c



and

σ1(v1)(a1,2
1 ) = σ1(v2)(a2,2

1 ) =
1 + (δmin)c

2 + (δmin)−c + (δmin)c
.

Observe that fixing σ1 as the strategy for player 1, the game
turns into an MDP for player 2. Such games have a positional
strategy ensuring that the payoff for player 2 is as large as
possible. Going through all four candidates for σ2, one can see
that maxσ2 u(G, vs, σ1, σ2, 2) = 1

2 . Because of the near-zero-
sum property, this minimizes the payoff for player 1 (since
u(G, vs, σ1, σ2, 1) + u(G, vs, σ1, σ2, 2) = 1), which is then
infσ2 u(G, vs, σ1, σ2, 1) = 1

2 . The strategy for player 2 follows
from σ1 and the symmetry of the game.

We next argue that if player i uses a low-patience strategy,
then the opponent can ensure low payoff for player i.

Lemma 46. Let σi be a strategy for player i with patience at
most (δmin)−2/3·c. Then there exists a pure strategy σî such
that u(G, vs, σ1, σ2, î) > 1− 1

6 .

Proof. Consider first player 1 (the argument for player 2 fol-
lows from symmetry). Let σ1 be some strategy with patience
at most (δmin)−(n−3)/6 = (δmin)−2/3·c.

The pure strategy σ2 is defined given σ1 as follows. For
plays P `s ending in state v1 or v2 we have that

σ2(P `s ) =

{
aj,j2 if σ1(P `s )(aj,22 ) > 0

aj,̂j2 if σ1(P `s ) = aj,12 .

To argue that u(G, vs, σ1, σ2, 2) > 1− 1
6 , we consider a play

Pvs picked according to (σ1, σ2), such that either ⊥ or > is
eventually reached. This is true with probability 1. Consider
the last round `, such that v` = vj , for some j = 1, 2. We
now consider four cases: Either we have that

1) j = 1 and σ1(P `s )(aj,22 ) > 0 or
2) j = 1 and σ1(P `s ) = aj,12 or
3) j = 2 and σ1(P `s )(aj,22 ) > 0 or
4) j = 2 and σ1(P `s ) = aj,12 .

The probability to eventually reach ⊥ is then at least the
minimum probability to eventually reach ⊥ in each of the
four cases. In case (2) and case (4), we see that player 2 wins
with probability 1. In case (1) observe that from a round `′

where σ1(P `
′

s )(a1,2
2 ) > 0 player 1 wins (i.e., reaches > before

entering vs again) with probability (1−(δmin)2/3·c)·(δmin)c <
(δmin)c and player 2 wins (i.e., reaches ⊥ before entering vs
again) with probability (δmin)2/3·c. Hence, the probability that
player 1 wins if such a round is round ` is at most

(δmin)c

(δmin)2/3·c + (δmin)c
<

(δmin)c

(δmin)2/3·c = (δmin)c/3 <
1

6
,

where the last inequality comes from that c ≥ 1 and
δmin < 6−3. In case (3) observe that from a round `′

where σ1(P `
′

s )(a2,2
2 ) > 0 player 1 wins (i.e., reaches >

before entering vs again) with probability at most (1 −
(δmin)2/3·c) · (δmin)2c < (δmin)2c and player 2 wins (i.e.,
reaches ⊥ before entering vs again) with probability at least

(δmin)2/3·c · (δmin)c = (δmin)5/3·c. Hence, the probability that
player 1 wins if such a round is round ` is at most

(δmin)2·c

(δmin)5/3·c + (δmin)2·c <
(δmin)2·c

(δmin)5/3·c = (δmin)c/3 <
1

6
,

where the last inequality comes from that c ≥ 1 and δmin <
6−3. The desired result follows.

We now prove the main result that no strategy with patience
only (δmin)−2/3·c can be a part of a 1

6 -Nash equilibrium.

Theorem 47. For all c ∈ N and all 0 < δmin < 6−3, consider
the game Gδmin

c (that has n = 4c+ 3 states and at most two
actions for each player at all states). Each strategy profile
σ = (σi)i that forms an 1

6 -Nash equilibrium has patience at
least (δmin)−(n−3)/6.

Proof. Fix some c ∈ N and 0 < δmin < 6−3. The proof will
be by contradiction. Consider first player 1 (the argument for
player 2 follows from symmetry). Let σ1 be some strategy
with patience at most (δmin)−(n−3)/6 = (δmin)−2/3·c.

Consider some strategy σ2 for player 2. We consider two
cases, either

u(G, vs, σ1, σ2, 2) ≤ 1

2
+

1

6
=

2

3

or not. If
u(G, vs, σ1, σ2, 2) ≤ 2

3
,

then player 2 can play a strategy σ′2, shown to exist in
Lemma 46, instead and get payoff strictly above 1 − 1

6 = 5
6 ,

showing that (σ1, σ2) is not an 1
6 -Nash equilibrium. On the

other hand, if

u(G, vs, σ1, σ2, 2) >
2

3
,

then u(G, vs, σ1, σ2, 1) < 1
3 and player 1 can play a

strategy σ′1, shown to exist in Lemma 45, for which
u(G, vs, σ

′
1, σ2, 1) ≥ 1

2 . Hence, (σ1, σ2) does not form an
1
6 -Nash equilibrium in this case either. The desired result
follows.

Remark 48. Using ideas similar to Remark 37 we can
construct a game with k ≥ 3 safety players in which the
patience is at least (δmin)−(n−3)/(6k) for all strategy profiles
that forms an 1

6k -Nash equilibrium.

VII. DISCUSSION

In this section, we discuss some interesting technical aspects
of our results.

Remark 49 (Difference of exponential bounds). In this work
we present two different exponential bound on patience. The
first for zero-sum concurrent stochastic games, and the second
for non-zero-sum concurrent stochastic games with safety
objectives for all players. However, note that the nature of
the lower bounds are very different. The first lower bound is
exponential in the number of actions, and the size of the state
space is constant. In contrast, for non-zero-sum concurrent
stochastic games with safety objectives for all players, if the



size of the state space is constant, then our upper bound on
patience is polynomial. The second lower bound in contrast
to the first lower bound is exponential in the number of states
(and the upper bound is polynomial in m and also the number
of players).

Remark 50 (Concurrent games with deterministic transitions).
We now discuss our results for concurrent games with de-
terministic transitions. It follows from the results of [8] that
for zero-sum games, there is a polynomial-time reduction
from concurrent stochastic games to concurrent games with
deterministic transitions. Hence, all our lower bound results
for zero-sum games also hold for concurrent deterministic
games. Observe that this is also true for our lower bound
on non-zero sum games with at least one reachability player,
since we reduce the problem to the zero-sum case. However,
in general for non-zero-sum games polynomial-time reductions
from concurrent stochastic games to concurrent deterministic
games are not possible. For example, for concurrent stochastic
games with safety objectives for all players we establish an
exponential lower bound on patience of strategies that consti-
tute an 1/6-Nash equilibrium, whereas in contrast, our upper
bound on patience shows that if the game is deterministic (i.e.,
δmin = 1) and ε is constant, then there always exists an ε-Nash
equilibrium that requires only polynomial patience.

Remark 51 (Nature of strategies for the reachability player).
Another important feature of our result is as follows: for zero-
sum concurrent stochastic games, the characterization of [18]
of ε-optimal strategies as monomial strategies for reachability
objectives, separates the description of the strategies as a
part that is a function of ε, and a part that is independent
ε. The previous double-exponential lower bound on patience
from [21], [19] shows that the part dependent on ε requires
double-exponential patience, whereas the part that is inde-
pendent only requires linear patience. A witness for ε-optimal
strategies in Purgatory (as described in [13] for the value-
1 problem for general zero-sum concurrent stochastic game)
can be obtained as a ranking function on states and actions,
such that the actions with rank 0 are played with uniform
probability (linear patience); and an action of rank i at a state
of rank j is played with probability roughly proportional to εi

j

.
In contrast, since we show lower bound for optimal strategies
(and the strategies are symmetric) in Purgatory Duel, our
lower bound implies that also the part that is independent
of ε requires double-exponential patience in general (i.e., the
probability description of ε-optimal strategies needs to be
doubly exponentially precise).
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