
Faster Algorithms for Quantitative Veri�cation in Constant
Treewidth Graphs

Krishnendu Chatterjee and Rasmus Ibsen-Jensen and Andreas Pavlogiannis

Technical Report No. IST-2015-319-v1+1
Deposited at 10 Feb 2015 08:58
http://repository.ist.ac.at/319/1/long.pdf

IST Austria (Institute of Science and Technology Austria)
Am Campus 1
A-3400 Klosterneuburg, Austria

Copyright © 2012, by the author(s).
All rights reserved.
Permission to make digital or hard copies of all or part of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for pro�t or
commercial advantage and that copies bear this notice and the full citation on the �rst page.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior
speci�c permission.

Faster Algorithms for Quantitative Verification in
Constant Treewidth Graphs

Krishnendu Chatterjee† Rasmus Ibsen-Jensen† Andreas Pavlogiannis†

† IST Austria

Abstract. We consider the core algorithmic problems related to verification of
systems with respect to three classical quantitative properties, namely, the mean-
payoff property, the ratio property, and the minimum initial credit for energy
property. The algorithmic problem given a graph and a quantitative property asks
to compute the optimal value (the infimum value over all traces) from every node
of the graph. We consider graphs with constant treewidth, and it is well-known
that the control-flow graphs of most programs have constant treewidth. Let n
denote the number of nodes of a graph, m the number of edges (for constant
treewidth graphs m = O(n)) and W the largest absolute value of the weights.
Our main theoretical results are as follows. First, for constant treewidth graphs
we present an algorithm that approximates the mean-payoff value within a mul-
tiplicative factor of ε in time O(n · log(n/ε)) and linear space, as compared to
the classical algorithms that require quadratic time. Second, for the ratio prop-
erty we present an algorithm that for constant treewidth graphs works in time
O(n·log(|a·b·n|)) = O(n·log(n·W)), when the output is a

b
, as compared to the

previously best known algorithm with running timeO(n2 ·log(n·W)). Third, for
the minimum initial credit problem we show that (i) for general graphs the prob-
lem can be solved in O(n2 ·m) time and the associated decision problem can be
solved in O(n ·m) time, improving the previous known O(n3 ·m · log(n ·W))
and O(n2 · m) bounds, respectively; and (ii) for constant treewidth graphs we
present an algorithm that requires O(n · logn) time, improving the previous
known O(n4 · log(n ·W)) bound. We have implemented some of our algorithms
and show that they present a significant speedup on standard benchmarks.

1 Introduction
Boolean vs quantitative verification. The traditional view of verification has been
qualitative (Boolean) that classifies traces of a system as “correct” vs “incorrect”. In the
recent years, motivated by applications to analyze resource-constrained systems (such
as embedded systems), there has been a huge interest to study quantitative properties
of systems. A quantitative property assigns to each trace of a system a real-number that
quantifies how good or bad the trace is, instead of classifying it as correct vs incorrect.
For example, a Boolean property may require that every request is eventually granted,
whereas a quantitative property for each trace can measure the average waiting time
between requests and corresponding grants.
Variety of results. Given the importance of quantitative verification, the tra-
ditional qualitative view of verification has been extended in several ways,
such as, quantitative languages and quantitative automata for specification lan-
guages [27,17,16,21,15,47,28]; quantitative logics for specification languages [8,10,2];
quantitative synthesis for robust reactive systems [4,5,20]; a framework for quantitative

abstraction refinement [13]; quantitative analysis of infinite-state systems [22,18]; and
model measuring (that extends model checking) [33], to name a few. The core algorith-
mic question for many of the above studies is a graph algorithmic problem that requires
to analyze a graph wrt a quantitative property.

Important quantitative properties. The three quantitative properties that have been
studied for their relevance in analysis of reactive systems are as follows. First, the mean-
payoff property consists of a weight function that assigns to every transition an integer-
valued weight and assigns to each trace the long-run average of the weights of the
transitions of the trace. Second, the ratio property consists of two weight functions (one
of which is a positive weight function) and assigns to each trace the ratio of the two
mean-payoff properties (the denominator is wrt the positive function). The minimum
initial credit for energy property consists of a weight function (like in the mean-payoff
property) and assigns to each trace the minimum number to be added such that the
partial sum of the weights for every prefix of the trace is non-negative. For example,
the mean-payoff property is used for average waiting time, worst-case execution time
analysis [17,13,18]; the ratio property is used in robustness analysis of systems [5]; and
the minimum initial credit for energy for measuring resource consumptions [9].

Algorithmic problems. Given a graph and a quantitative property, the value of a node
is the infimum value of all traces that start at the respective node. The algorithmic
problem (namely, the value problem) for analysis of quantitative properties consists
of a graph and a quantitative property, and asks to compute either the exact value or
an approximation of the value for every node in the graph. The algorithmic problems
are at the heart of many applications, such as automata emptiness, model measuring,
quantitative abstraction refinement, etc.

Treewidth of graphs. A very well-known concept in graph theory is the notion of
treewidth of a graph, which is a measure of how similar a graph is to a tree (a graph has
treewidth 1 precisely if it is a tree) [43]. The treewidth of a graph is defined based on a
tree decomposition of the graph [31], see Section 2 for a formal definition. Beyond the
mathematical elegance of the treewidth property for graphs, there are many classes of
graphs which arise in practice and have constant treewidth. The most important example
is that the control flow graphs of goto-free programs for many programming languages
are of constant treewidth [45], and it was also shown in [30] that typically all Java pro-
grams have constant treewidth. For many other applications see the surveys [6,7]. The
constant treewidth property of graphs has also played an important role in logic and
verification; for example, MSO (Monadic Second Order logic) queries can be solved
in polynomial time [24] (also in log-space [29]) for constant-treewidth graphs; par-
ity games on graphs with constant treewidth can be solved in polynomial time [39];
and there exist faster algorithms for probabilistic models (like Markov decision pro-
cesses) [14]. Moreover, recently it has been shown that the constant treewidth property
is also useful for interprocedural analysis [18].

Previous results and our contributions. In this work we consider general graphs and
graphs with constant treewidth, and the algorithmic problems to compute the exact
value or an approximation of the value for every node wrt to quantitative properties
given as the mean-payoff, the ratio, or the minimum initial credit for energy. We first
present the relevant previous results, and then our contributions.

2

Minimum mean-cycle value Minimum ratio-cycle value

Orlin & Ahuja [40] Karp [34] Our result [Thm 4]
(ε-approximate)

Burns [12] Lawler [37] Our result [Cor 2]

O(n1.5 · log(n ·W)) O(n2) O(n · log(n/ε)) O(n3) O(n2 · log(n ·W)) O(n · log(|a · b · n|))
Table 1: Time complexity of existing and our solutions for the minimum mean-cycle
value and ratio-cycle value problem in constant treewidth weighted graphs with n nodes
and largest absolute weight W , when the output is the (irreducible) fraction a

b .

Bouyer et. al. [9] Our result
[Thm 5, Cor 3]

Our result [Thm 7]
(constant treewidth)

Time (decision) O(n2 ·m) O(n ·m) O(n · logn)

Time O(n3 ·m · log(n ·W)) O(n2 ·m) O(n · logn)

Space O(n) O(n) O(n)

Table 2: Complexity of the existing and our solution for the minimum initial credit
problem on weighted graphs of n nodes, m edges, and largest absolute weight W .

Previous results. We consider graphs with n nodes, m edges, and let W denote the
largest absolute value of the weights. The running time of the algorithms is character-
ized by the number of arithmetic operations (i.e., each operation takes constant time);
and the space is characterized by the maximum number of integers the algorithm stores.
The classical algorithm for graphs with mean-payoff properties is the minimum mean-
cycle problem of Karp [34], and the algorithm requires O(n · m) running time and
O(n2) space. A different algorithm was proposed in [38] that requires O(n · m) run-
ning time and O(n) space. Orlin and Ahuja [40] gave an algorithm running in time
O(
√
n ·m · log(n ·W)). For some special cases there exist faster approximation algo-

rithms [19]. There is a straightforward reduction of the ratio problem to the mean-payoff
problem. For computing the exact minimum ratio, the fastest known strongly polyno-
mial time algorithm is Burns’ algorithm [12] running in timeO(n2 ·m). Also, there is an
algorithm by Lawler [37] that usesO(n ·m · log(n ·W)) time. Many pseudopolynomial
algorithms are known for the problem, with polynomial dependency on the numbers
appearing in the weight function, see [26]. For the minimum initial credit for energy
problem, the decision problem (i.e., is the energy required for node v at most c?) can be
solved in O(n2 ·m) time, leading to an O(n3 ·m · log(n ·W)) time algorithm for the
minimum initial credit for energy problem [9]. All the above algorithms are for general
graphs (without the constant-treewidth restriction).

Our contributions. Our main contributions are as follows.

1. Finding the mean-payoff and ratio values in constant-treewidth graphs. We present
two results for constant treewidth graphs. First, for the exact computation we
present an algorithm that requires O(n · log(|a · b · n|)) time and O(n) space,
where a

b 6= 0 is the (irreducible) ratio/mean-payoff of the output. If ab = 0 then the
algorithm uses O(n · log n) time. Note that log(|a · b · n|) ≤ 3 log(n ·W). We also
present a space-efficient version of the algorithm that requires onlyO(log n) space.
Second, we present an algorithm for finding an ε-factor approximation that requires
O(n · log(n/ε)) time andO(n) space, as compared to theO(n1.5 · log(n ·W)) time
solution of Orlin & Ahuja, and the O(n2) time solution of Karp (see Table 1).

2. Finding the minimum initial credit in graphs. We present two results. First, we
consider the exact computation for general graphs, and present (i) an O(n · m)
time algorithm for the decision problem (improving the previous known O(n2 ·

3

m) bound), and (ii) an O(n2 · m) time algorithm to compute value of all nodes
(improving the previous knownO(n3 ·m · log(n ·W)) bound). Finally, we consider
the computation of the exact value for graphs with constant treewidth and present
an algorithm that requires O(n · log n) time (improving the previous known O(n4 ·
log(n ·W)) bound) (see Table 2).

3. Experimental results. We have implemented our algorithms for the minimum mean
cycle and minimum initial credit problems and ran them on standard benchmarks
(DaCapo suit [3] for the minimum mean cycle problem, and DIMACS chal-
lenges [1] for the minimum initial credit problem). For the minimum mean cy-
cle problem, our results show that our algorithm has lower running time than all
the classical polynomial-time algorithms. For the minimum initial credit problem,
our algorithm provides a significant speedup over the existing method. Both im-
provements are demonstrated even on graphs of small/medium size. Note that our
theoretical improvements (better asymptotic bounds) imply improvements for large
graphs, and our improvements on medium size graphs indicate that our algorithms
have practical applicability with small constants.

Technical contributions. The key technical contributions of our work are as follows:

1. Mean-payoff and ratio values in constant-treewidth graphs. Given a graph with
constant treewidth, let c∗ be the smallest weight of a simple cycle. First, we present
a linear-time algorithm that computes c∗ exactly (if c∗ ≥ 0) or approximate within
a polynomial factor (if c∗ < 0). Then, we show that if the minimum ratio value ν∗ is
the irreducible fraction a

b , then ν∗ can be computed by evaluatingO(log(|a ·b ·n|))
inequalities of the form ν∗ ≥ ν. Each such inequality is evaluated by computing the
smallest weight of a simple cycle in a modified graph. Finally, for ε-approximating
the value ν∗, we show that O(log(n/ε)) such inequalities suffice.

2. Minimum initial credit problem. We show that for general graphs, the decision prob-
lem can be solved with two applications of Bellman-Ford-type algorithms, and the
value problem reduces to finding non-positive cycles in the graph, followed by one
instance of the single-source shortest path problem. We then show how the invari-
ants of the algorithm for the value problem on general graphs can be maintained by
a particular graph traversal of the tree-decomposition for constant-treewidth graphs.

Our algorithms are simple and easily implementable.

2 Definitions

Weighted graphs. We consider finite weighted directed graphs G = (V,E,wt,wt′)
where V is the set of n nodes, E ⊆ V ×V is the edge relation of m edges, wt : E → Z
is a weight function that assigns an integer weight wt(e) to each edge e ∈ E, and
wt′ : E → N+ is a weight function that assigns strictly positive integer weights. For
technical simplicity, we assume that there exists at least one outgoing edge from every
node. In certain cases where the function wt′ is irrelevant, we will consider weighted
graphs G = (V,E,wt), i.e., without the function wt′.

Finite and infinite paths. A finite path P = (u1, . . . , uj), is a sequence of nodes
ui ∈ V such that for all 1 ≤ i < j we have (ui, ui+1) ∈ E. The length of P is
|P | = j − 1. A single-node path has length 0. The path P is simple if there is no node
repeated in P , and it is a cycle if j > 1 and u1 = uj . The path P is a simple cycle if P is

4

a cycle and the sequence (u2, . . . uj) is a simple path. The functions wt and wt′ naturally
extend to paths, so that the weight of a path P with |P | > 0 and wrt the weight functions
wt and wt′ is wt(P) =

∑
1≤i<j wt(ui, ui+1) and wt′(P) =

∑
1≤i<j wt

′(ui, ui+1).

The value of P is defined to be wt(P) = wt(P)
wt′(P) . For the case where |P | = 0, we

define wt(P) = 0, and wt(P) is undefined. An infinite path P = (u1, u2, . . .) of G
is an infinite sequence of nodes such that every finite prefix P of P is a finite path of
G. The functions wt and wt′ assign to P a value in Z ∪ {−∞,∞}: we have wt(P) =∑
i wt(ui, ui+1) and wt′(P) =∞. For a (possibly infinite) path P , we use the notation

u ∈ P to denote that a node u appears in P , and e ∈ P to denote that an edge e appears
in P . Given a set B ⊆ V , we denote with P ∩B the set of nodes of B that appear in P .
Given a finite path P1 and a possibly infinite path P2, we denote with P1 ◦ P2 the path
resulting from the concatenation of P1 and P2.
Distances and witness paths. For nodes u, v ∈ V , we denote with d(u, v) =
infP :u v wt(P) the distance from u to v. A finite path P : u v is a witness of
the distance d(u, v) if wt(P) = d(u, v). An infinite path P is a witness of the distance
d(u, v) if the following conditions hold:
1. d(u, v) = wt(P) = −∞, and
2. P starts from u, and v is reachable from every node of P .

Note that d(u, v) =∞ is not witnessed by any path.
Tree decompositions. A tree-decomposition Tree(G) = (VT , ET) of G is a tree such
that the following conditions hold:
1. VT = {B0, . . . , Bn′−1 : ∀i Bi ⊆ V } and

⋃
Bi∈VT

Bi = V (every node is covered).
2. For all (u, v) ∈ E there existsBi ∈ VT such that u, v ∈ Bi (every edge is covered).
3. For all i, j, k such that there is a bag Bk that appears in the simple path Bi Bj

in Tree(G), we have Bi ∩Bj ⊆ Bk (every node appears in a contiguous subtree of
Tree(G)).

The sets Bi which are nodes in VT are called bags. Conventionally, we call B0 the root
of Tree(G), and denote with Lv(Bi) the level of Bi in Tree(G), with Lv(B0) = 0.
We say that Tree(G) is balanced if the maximum level is maxBi

Lv(Bi) = O(log n′),
and it is binary if every bag has at most two children bags. A bag B is called the root
bag of a node u if B is the smallest-level bag that contains u, and we often use Bu to
refer to the root bag of u. The width of a tree-decomposition Tree(G) is the size of the
largest bag minus 1. The treewidth of G is the smallest width among the widths of all
possible tree decompositions ofG. The following lemma gives a fundamental structural
property of tree-decompositions.

Lemma 1. Consider a graph G = (V,E), a binary tree-decomposition T = Tree(G)
and a bag B of T . Denote with (Ci)1≤i≤3 the components of T created by removing B
from T , and let Vi be the set of nodes that appear in bags of component Ci. For every
i 6= j, nodes u ∈ Vi, v ∈ Vj and P : u v, we have that P ∩ B 6= ∅ (i.e., all paths
between u and v go through some node in B).

Theorem 1. For every graph G with n nodes and constant treewidth, a balanced bi-
nary tree-decomposition Tree(G) of constant width and O(n) bags can be constructed
in (1) O(n · log n) time and O(n) space [42], (2) deterministic logspace (and hence
polynomial time) [29].

5

In the sequel we consider only balanced and binary tree-decompositions of constant
width and n′ = O(n) bags (and hence of height O(log n)). Additionally, we con-
sider that every bag is the root bag of at most one node. Obtaining this last property
is straightforward, simply by replacing each bag B which is the root of k > 1 nodes
x1, . . . xk with a chain of bags B1, . . . , Bk = B, where each Bi is the parent of Bi+1,
and Bi+1 = Bi ∪ {xi+1}. Note that this keeps the tree binary and increases its height
by at most a constant factor, hence the resulting tree is also balanced.
Throughout the paper, we follow the convention that the maximum and minimum of
the empty set is −∞ and ∞ respectively, i.e., max(∅) = −∞ and min(∅) = ∞.
Time complexity is measured in number of arithmetic and logical operations, and space
complexity is measured in number of machine words. Given a graph G, we denote
with T (G) and S(G) the time and space required for constructing a balanced, binary
tree-decomposition Tree(G). We are interested in the following problems.
The minimum mean cycle problem [35]. Given a weighted directed graph G =
(V,E,wt), the minimum mean cycle problem asks to determine for each node u the
mean value µ∗(u) = minC∈Cu

wt(C)
|C| , where Cu is the set of simple cycles reachable

from u in G. Such a C is called a minimum mean cycle of u. For 0 < ε < 1, we say
that a value µ is an ε-approximation of the mean value µ∗(u) if |µ−µ∗(u)| ≤ ε·|µ∗(u)|.
The minimum ratio cycle problem [32]. This is a generalization of the minimum
mean cycle problem. Given a weighted directed graph G = (V,E,wt,wt′), the min-
imum ratio cycle problem asks to determine for each node u the ratio value ν∗(u) =

minC∈Cu wt(C), where wt(C) = wt(C)
wt′(C) and Cu is the set of simple cycles reachable

from u in G. Such a C is called a minimum ratio cycle of u. The minimum mean cycle
problem follows as a special case of the minimum ratio cycle problem for wt′(e) = 1
for each edge e ∈ E.
The minimum initial credit problem [9]. Given a weighted directed graph G =
(V,E,wt), the minimum initial credit value problem asks to determine for each node u
the smallest energy value E(u) ∈ N∪ {∞} with the following property: there exists an
infinite path P = (u1, u2 . . .) with u = u1, such that for every finite prefix P of P we
have E(u)+wt(P) ≥ 0. Conventionally, we let E(u) =∞ if no finite value exists. The
associated decision problem asks given a node u and an initial credit c ∈ N whether
E(u) ≤ c.

3 Minimum Cycle
In the current section we deal with a related graph problem, namely the detection of a
minimum-weight simple cycle of a graph. In Section 4 we use solutions to the minimum
cycle problem to obtain the minimum ratio and minimum mean values of a graph.
The minimum cycle problem. Given a weighted graph G = (V,E,wt), the minimum
cycle problem asks to determine the weight c∗ of a minimum-weight simple cycle inG,
i.e., c∗ = minC wt(C), where C are taken to be simple cycles in G.
We describe the algorithm MinCycle that operates on a tree-decomposition Tree(G) of
an input graph G, and has the following properties.
1. If G has no negative cycles, then MinCycle returns the weight c∗ of a minimum-

weight cycle in G.

6

2. If G has negative cycles, then MinCycle returns a value that is at most a polynomial
(in n) factor smaller than c∗.

U-shaped paths. Following the recent work of [18], we define the important notion of
U-shaped paths in a tree-decomposition Tree(G). Given a bag B and nodes u, v ∈ B,
we say that a path P : u v is U-shaped in B, if one of the following conditions hold:

1. Either |P | > 1 and for all intermediate nodes w ∈ P , we have B is an ancestor of
Bw,

2. or |P | ≤ 1 and B is Bu or Bv (i.e., B is the root bag of either u or v).

Informally, given a bag B, a U-shaped path in B is a path that traverses intermediate
nodes that exist only in the subtree of Tree(G) rooted in B. The following remark fol-
lows from the definition of tree-decompositions, and states that every simple cycle C
can be seen as a U-shaped path P from the smallest-level node of C to itself. Conse-
quently, we can determine the value c∗ by only considering U-shaped paths in Tree(G).

Remark 1. Let C = (u1, . . . , uk) be a simple cycle in G, and uj =
argminui∈C Lv(ui). Then P = (uj , uj+1, . . . uk, u1, . . . , uj) is a U-shaped path in
Buj

, and wt(P) = wt(C).

Informal description of MinCycle. Based on U-shaped paths, the work of [18] pre-
sented a method for computing algebraic path properties on tree-decompositions with
constant width, where the weights of the edges come from a general semiring. Note
that integer-valued weights are a special case of the tropical semiring. Our algorithm
MinCycle is similar to the algorithm Preprocess from [18]. It consists of a depth-first
traversal of Tree(G), and for each examined bag B computes a local distance map
LDB : B×B → Z∪{∞} such that for each u, v ∈ B, we have (i) LDB(u, v) = wt(P)
for some path P : u v, and (ii) LDB ≤ minP wt(P), where P are taken to be simple
u v paths (or simple cycles) that are U-shaped in B. This is achieved by traversing
Tree(G) in post-order, and for each root bag Bx of a node x, we update LDBx

(u, v)
with LDBx

(u, x) + LDBx
(x, v) (i.e., we do path-shortening from node u to node v, by

considering paths that go through x). See Figure 1 for an illustration.

In the end, MinCycle returns minx LDBx
(x, x), i.e., the weight of the smallest-weight

U-shaped (not necessarily simple) cycle it has discovered. Algorithm 1 gives MinCycle
in pseudocode. For brevity, in line 5 we consider that if {u, v} 6∈ E or {u, v} 6⊆ Bi for
some child Bi of B, then LDBi

(u, v) =∞.

u

x

v

P1
P2

LDB(u, x) LDB(x, v)

Fig. 1: Path shortening in line 10 of MinCycle. When Bx is examined, LDBx
(u, v) is

updated with the weight of the U-shaped path P = P1 ◦ P2. The paths P1 and P2 are
U-shaped paths in the children bags B1 and B2, and we have LDBi

(u, x) = wt(Pi).

7

Algorithm 1: MinCycle

Input: A weighted graph G = (V,E,wt) and a balanced binary tree-decomposition Tree(G)
Output: A value c

1 Assign c←∞
2 Apply a post-order traversal on Tree(G), and examine each bag B with children B1, B2

3 begin
4 foreach u, v ∈ B do
5 Assign LDB(u, v)← min(LDB1(u, v), LDB2(u, v),wt(u, v))
6 end
7 Discard LDB1 , LDB2

8 if B is the root bag of a node x then
9 foreach u, v ∈ B do

10 Assign LD′B(u, v)← min(LDB(u, v), LDB(u, x) + LDB(x, v))
11 end
12 Assign LDB ← LD′B
13 Assign c← min(c, LDB(x, x))

14 end
15 return c

In essence, MinCycle performs repeated summarizations of paths in G. The following
lemma follows easily from [18, Lemma 2], and states that LDB(u, v) is upper bounded
by the smallest weight of a U-shaped simple u v path in B.

Lemma 2 ([18, Lemma 2]). For every examined bag B and nodes u, v ∈ B, we have

1. LDB(u, v) = wt(P) for some path P : u v (and LDB(u, v) = ∞ if no such P
exists),

2. LDB(u, v) ≤ minP :u v wt(P) where P ranges over U-shaped simple paths and
simple cycles in B.

At the end of the computation, the returned value c is the weight of a (generally non-
simple) cycleC, captured as a U-shaped path on its smallest-level node. The cycleC can
be recovered by tracing backwards the updates of line 10 performed by the algorithm,
starting from the node x that performed the last update in line 13. Hence, if C traverses
k distinct edges, we can write

c = wt(C) =
k∑
i=1

ki · wt(ei) (1)

where each ei is a distinct edge, and ki is the number of times it appears in C.

Lemma 3. Let h be the height of Tree(G). For every ki in Eq. (1), we have ki ≤ 2h.

Proof. Note that the edge ei = (ui, vi) is first considered by MinCycle in the root bag
Bi of node xi, where xi = argmaxyi∈{ui,vi} Lv(yi) (line 10). As MinCycle backtracks
fromBi to the root of Tree(G), the edge ei can be traversed at most twice as many times
in each step (because of line 10, once for each term of the sum LDB(u, x)+LDB(x, v)).
Hence, this doubling will occur at most h times, and ki ≤ 2h. ut

8

Lemma 4. Let c be the value returned by MinCycle, h be the height of Tree(G), and
c∗ = minC wt(C) over all simple cycles C in G. The following assertions hold:
1. If G has no negative cycles, then c = c∗.
2. If G has a negative cycle, then

(a) c ≤ c∗.
(b) |c| = O

(
|c∗| · n · 2h

)
.

Proof. By Remark 1, we have that c∗ = wt(P) for a U-shaped path P : x x. By
Lemma 2, after MinCycle examines Bx, it will be c ≤ LDBx(x, x) ≤ c∗, with the
equalities holding if there are no negative cycles in G (by the definition of c∗, as then
LDBx

(x, x) is witnessed by a simple cycle). By line 10, c can only decrease afterwards,
and again by the definition of c∗ this can only happen if there are negative cycles in
G. This proves items 1 and 2a, and the remaining of the proof focuses on showing that
|c| = O

(
|c∗| · n · 2h

)
.

By rearranging the sum of Eq. (1), we can decompose the obtained cycle C into a set of
k′+ non-negative cycles C+

i , and a set of k′− negative cycles C−i , and each cycle C+
i

and C−i appears with multiplicity k+i and k−i respectively. Then we have

|c| = |wt(C)| =

∣∣∣∣∣∣
k′+∑
i=1

k+i · wt(C
+
i) +

k′−∑
i=1

k−i · wt(C
−
i)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
k′−∑
i=1

k−i · wt(C
−
i)

∣∣∣∣∣∣
≤

k−∑
i=1

k−i · |wt(C
−
i)| ≤ |c

∗| ·
k′−∑
i=1

k−i ≤ |c
∗| ·

k∑
i=1

k−i = O
(
|c∗| · n · 2h

)
(2)

The first inequality follows from c < 0, the third inequality holds by the definition of c∗,
and the last inequality holds since k′− ≤ k. Finally, we have

∑k
i=1 k

−
i = O

(
n · 2h

)
,

since k = O(n), and by Lemma 3 we have k−i ≤ 2h. ut

Next we discuss the time and space complexity of MinCycle.

Lemma 5. Let h be the height of Tree(G). MinCycle accesses each bag of Tree(G) a
constant number of times, and uses O(h) additional space.

Proof. MinCycle accesses each bag a constant number of times, as it performs a post-
order traversal on Tree(G) (line 2). Because it computes the local distances in a pos-
torder manner, the number of local distance maps LDB it remembers is bounded by
the height h of Tree(G). Since Tree(G) has constant width, LDB requires a constant
number of words for storing a constant number of nodes and weights in each B. Hence
the total space usage is O(h), and the result follows. ut

The following theorem summarizes the results of this section.

Theorem 2. Let G = (V,E,wt) be a weighted graph of n nodes with constant
treewidth, and a balanced, binary tree-decomposition Tree(G) of G be given. Let c∗,
be the smallest weight of a simple cycle in G. Algorithm MinCycle uses O(n) time and
O(log n) additional space, and returns a value c such that:

9

1. If G has no negative cycles, then c = c∗.
2. If G has a negative cycle, then

(a) c ≤ c∗.
(b) |c| = |c∗| · nO(1).

4 The Minimum Ratio and Mean Cycle Problems
In the current section we present algorithms for solving the minimum ratio and mean
cycle problems for weighted graphs G = (V,E,wt,wt′) of constant treewidth.

Remark 2. If G is not strongly connected we can compute its strongly connected com-
ponents in linear time [44], and use the algorithms of this section to compute the mini-
mum cycle mean ν∗i in every component Gi separately. Afterwards, we compute ν∗(u)
for every node u by iteratively (i) finding the nodes u that can reach the component Gj
where j = argminiν

∗
i , (ii) assigning ν∗(u) = ν∗j , and (iii) removing Gj and repeating.

Since these operations require linear time, they do not impact the time complexity.

In light of Remark 2, we consider graphs that are strongly connected, and hence it
follows that ν∗(u) is the same for every node u, and thus we will speak about the
minimum ratio ν∗ and mean µ∗ values of G.

Claim 1. Let ν∗ be the ratio value of G. Then ν∗ ≥ ν iff for every cycle C of G we
have wtν(C) ≥ 0, where wtν(e) = wt(e)− wt′(e) · ν for each edge e ∈ E.

Proof. Indeed, for any cycle C we have wt(C) ≥ ν∗ ≥ ν. Then

wt(C) ≥ ν ⇐⇒ wt(C)− ν ≥ 0 ⇐⇒ wt(C)− ν · wt′(C)
wt′(C)

≥ 0

⇐⇒ wt(C)− ν · wt′(C) ≥ 0 ⇐⇒
∑
e∈C

(wt(e)− wt′(e) · ν) ≥ 0 ⇐⇒ wtν(C) ≥ 0

with the equality holding iff wt(C) = ν. ut

Hence, given a tree-decomposition Tree(G), for any guess ν of the ratio value ν∗, we
can evaluate whether ν∗ ≥ ν by constructing the weight function wtν = wt − ν and
executing algorithm MinCycle on input Gν = (V,E,wtν). By Item 2a of Theorem 2
and Claim 1 we have that the returned value c of MinCycle is c ≥ 0 iff wtν(C) ≥ 0 for
all cycles C, iff ν∗ ≥ ν (and in fact c = 0 iff ν∗ = ν).

Lemma 6. Let G = (V,E,wt,wt′) be a weighted graph of n nodes with constant
treewidth and minimum ratio value ν∗. Let Tree(G) be a given balanced, binary tree-
decomposition of G of constant width. For any rational ν, the decision problem of
whether ν∗ ≥ ν (or ν∗ = ν) can be solved in O(n) time and O(log n) extra space.

Proof. By Claim 1, we can test whether ν∗ ≥ ν by testing whether Gν = (V,E,wtν)
has a negative cycle. By Theorem 2, a negative cycle in Gν can be detected in O(n)
time and using O(log n) space. ut

10

4.1 Exact solution
We now describe the method for determining the value ν∗ of G exactly. This is done
by making various guesses ν such that ν∗ ≥ ν and testing for negative cycles in the
graph Gν = (V,E,wtν). We first determine whether ν∗ = 0, using Lemma 6. In the
remaining of this section we assume that ν∗ 6= 0.
Solution overview. Consider that ν∗ > 0. First, we either find that ν∗ ∈ (0, 1) (hence
bν∗c = 0), or perform an exponential search of O(log ν∗) iterations to determine j ∈
N+ such that ν∗ ∈ [2j−1, 2j]. In the latter case, we perform a binary search ofO(log ν∗)
iterations in the interval [2j−1, 2j] to determine bν∗c (see Figure 2). Then, we can write
ν∗ = bν∗c + x, where x < 1 is an irreducible fraction a′

b . It has been shown [41] that
such x can be determined by evaluating O(log b) inequalities of the form x ≥ ν. The
case for ν∗ < 0 is handled similarly.

Lemma 7. Let ν∗ 6= 0 be the ratio value of G. The value bν∗c can be obtained by
evaluating O(log |ν∗|) inequalities of the form ν∗ ≥ ν.

Proof. First determine whether ν∗ > 0, and assume w.l.o.g. that this is the case (the
process is similar if ν∗ < 0). Perform an exponential search on the interval (0, 2 · bν∗c)
by a sequence of evaluations of the inequality ν∗ ≥ νi = 2i. After logbν∗c+1 steps we
either have bν∗c ∈ (0, 1), or have determined a j > 0 such that ν∗ ∈ [νj−1, νj]. Then,
perform a binary search in the interval [νj−1, νj], until the running interval [`, r] has
length at most 1. Since νj − νj−1 = νj−1 ≤ ν∗, this will happen after at most logdν∗e
steps. Then either bν∗c = b`c or bν∗c = brc, which can be determined by evaluating
the inequality ν∗ ≥ brc. A similar process can be carried out when ν∗ < 0. Figure 2
shows an illustration of the search. ut

ν0 ν1 ν2 . . . νj−1 νjν∗

Fig. 2: Exponential search followed by a binary search to determine bν∗c

Let Tmax = maxe wt
′(e) be the largest weight of an edge wrt wt′. Since ν∗ is a number

with denominator at most (n − 1) · Tmax, it can be determined exactly by carrying
the binary search of Lemma 7 until the length of the running interval becomes at most

1
((n−1)·Tmax)2

(thus containing a unique rational with denominator at most (n − 1) ·
Tmax). Then ν∗ can be obtained by using continued fractions, e.g. as in [36]. We rely in
the work of Papadimitriou [41] to obtain a tighter bound.

Lemma 8. Let ν∗ 6= 0 be the ratio value of G, such that ν∗ is the irreducible fraction
a
b ∈ (−1, 1). Then ν∗ can be determined by evaluatingO(log b) inequalities of the form
ν∗ ≥ ν.

11

Proof. Consider that ν∗ > 0 (the proof is similar when ν∗ < 0). It is shown in [41]
that a rational with denominator at most b can be determined by evaluating O(log b)
inequalities of the form ν∗ ≥ ν. We remark that b is not required to be known, although
the work of [41] assumes that a bound on the denominator of ν∗ is known in advance.

ut

Theorem 3. Let G = (V,E,wt,wt′) be a weighted graph of n nodes with constant
treewidth, and λ = maxu |au · bu| such that ν∗(u) is the irreducible fraction au

bu
. Let

T (G) and S(G) denote the required time and space for constructing a balanced bi-
nary tree-decomposition Tree(G) of G with constant width. The minimum ratio cycle
problem for G can be computed in
1. O(T (G) + n · log(λ)) time and O(S(G) + n) space; and
2. O(S(G) + log n) space.

Proof. In view of Remark 2 the graphG is strongly connected and has a minimum ratio
value ν∗. Let ν∗ = bν∗c+ a′

b with |a
′

b | < 1. By Lemma 7, bν∗c can be determined by
evaluating O(log |ν∗|) = O(log |a|) inequalities of the form ν∗ ≥ ν, and by Lemma 8,
a′

b can be determined by evaluating O(b) such inequalities. A balanced binary tree-
decomposition Tree(G) can be constructed once in T (G) time and S(G) space, and
stored in O(n) space. Tree(G) is also a tree-decomposition of every Gν required by
Claim 1. By Theorem 2 a negative cycle in Gν can be detected in O(n) time and using
O(log n) space. This concludes Item 1. Item 2 is obtained by the same process, but with
re-computing Tree(G) every time MinCycle traverses from a bag to a neighbor (thus
not storing Tree(G) explicitly). ut

Using Theorem 1 we obtain from Theorem 3 the following corollary.

Corollary 1. Let G = (V,E,wt,wt′) be a weighted graph of n nodes with constant
treewidth, and λ = maxu |au · bu| such that ν∗(u) is the irreducible fraction au

bu
. The

minimum ratio value problem for G can be computed in
1. O(n · log(λ · n)) time and O(n) space; and
2. O(log n) space.

By setting wt′(e) = 1 for each e ∈ E in Corollary 1 we obtain the following corollary
for the minimum mean cycle.

Corollary 2. Let G = (V,E,wt) be a weighted graph of n nodes with constant
treewidth, and λ = maxu |µ∗(u)|. The minimum mean value problem for G can be
computed in
1. O(n · log(λ · n)) time and O(n) space; and
2. O(log n) space.

4.2 Approximating the minimum mean cycle
We now focus on the minimum mean cycle problem, and present algorithms for ε-
approximating the mean value µ∗ of G for any 0 < ε < 1 in O(n · log(n/ε)) time, i.e.,
independent of µ∗.

12

Approximate solution in the absence of negative cycles. We first consider graphs G
that do not have negative cycles. Let C be a minimum mean value cycle, and C ′ a
minimum weight simple cycle in G, and note that µ∗ ∈ [0,wt(C ′)]. Additionally, we
have

wt(C ′) ≤ wt(C) =⇒ wt(C ′) ≤ n

|C|
· wt(C) =⇒ wt(C ′) ≤ (n) · µ∗

Consider a binary search in the interval [0,wt(C ′)], which in step i approximates µ∗ by
the right endpoint µi of its current interval. The error is bounded by the length of the
interval, hence µi − µ∗ ≤ wt(C ′) · 2−i ≤ (n− 1) · µ∗ · 2−i. To approximate within a
factor ε we require

2−i · (n− 1) ≤ ε =⇒ i ≥ log(n) + log(1/ε) (3)

steps.

Remark 3. Note that for the minimum ratio value we have wt(C ′) ≤W ′ ·n · ν∗, where
W ′ = maxe∈E wt′(e). For ε-approximating ν∗ we would need i ≥ log(n ·W ′/ε) steps.

Approximate solution in the presence of negative cycles. We now turn our attention
to ε-approximating µ∗ in the presence of negative cycles in G. Note that uniformly
increasing the weight of each edge so that no negative edges exist does not suffice, as
the error can be of order ε · |W−| rather than ε · µ∗, where W− is the minimum edge
weight.
Instead, let c be the value returned by MinCycle on input G. Item 2a of Theorem 2
guarantees that for the weight function wt−|c|(e) = wt(e) + |c|, the graph G−|c| =
(V,E,wt−|c|) has no negative cycles (although it might still have negative edges). The
following lemma states that µ∗ can be ε-approximated by ε′-approximating the value
µ′∗ of G−|c|, for some ε′ polynomially (in n) smaller than ε.

Lemma 9. Let µ∗ and µ′∗ be the value ofG andG−|c| respectively, and ε some desired
approximation factor of µ∗, with 0 < ε < 1. There exists an ε′ = ε/nO(1) such that if
µ′ is an ε′-approximation of µ′∗ in G−|c|, then µ = µ′ − |c| is an ε-approximation of
µ∗ in G.

Proof. By construction, we have µ′∗ = µ∗ + |c|, where c defined above is the value
returned by MinCycle on G. Let c∗ be the weight of a minimum-weight simple cycle in
G. By Theorem 2 Item 2b, we have that |c| = |c∗| ·nO(1). Note that |c∗| ≤ (n−1) · |µ∗|,
hence µ′∗ = µ∗ + |c∗| · nO(1) ≤ |µ∗| · α for α = nO(1). Let ε′ = ε/α. By ε′-
approximating µ′∗ by µ′ we have

|µ′−µ′∗| ≤ ε′·|µ′∗| =⇒ |(µ′−|c|)−(µ′∗−|c|)| ≤ ε′·|µ′∗| =⇒ |µ−µ∗| ≤ ε′·|µ∗|·α ≤ ε·|µ∗|

The desired result follows. ut

Theorem 4. Let G = (V,E,wt) be a weighted graph of n nodes with constant
treewidth. For any 0 < ε < 1, the minimum mean value problem can be ε-approximated
in O(n · log(n/ε)) time and O(n) space.

13

Proof. In view of Remark 2 the graph G is strongly connected and has a minimum
mean value µ∗. First, we construct a balanced binary tree-decomposition Tree(G) of G
inO(n·log n) time andO(n) space Theorem 1. Let c be the value returned by MinCycle
on the input graph G. If c ≥ 0, by Lemma 4 we have µ∗ ≥ 0, and by Eq. (3) µ∗ can
be ε-approximated in O(log(n/ε)) steps. If c < 0, we construct the graph G−|c| =
(V,E,wt−|c|). By Lemma 9, µ∗ can be ε-approximated by ε′ approximating the mean
value µ′∗ of G−|c|, where ε′ = ε

nO(1) . By construction, G−|c| does not contain negative
cycles, thus µ′∗ ≥ 0, and by Eq. (3) µ′∗ can be approximated in O(log(n/ε′)) =
O(log(n/ε)) steps. By Lemma 5, each step requires O(n) time. The statement follows.

ut

5 The Minimum Initial Credit Problem
In the current section we present algorithms for solving the minimum initial credit prob-
lem on weighted graphs G = (V,E,wt). We first deal with arbitrary graphs, and pro-
vide (i) an O(n ·m) algorithm for the decision problem, and (ii) an O(n2 ·m) for the
value problem, improving the previously best upper-bounds. Afterwards we adapt our
approach on graphs of constant treewidth to obtain an O(n · log n) algorithm for the
value problem.
Non-positive minimum initial credit. For technical convenience we focus on a variant
of the minimum initial credit problem, where energies are non-positive, and the goal
is to keep partial sums of path prefixes non-positive. Formally, given a weighted graph
G = (V,E,wt), the non-positive minimum initial credit value problem asks to deter-
mine for each node u ∈ G the largest energy value E(u) ∈ Z≤0 ∪ {−∞} with the
following property: there exists an infinite path P = (u1, u2 . . .) with u = u1, such
that for every finite prefix P of P we have E(u) + wt(P) ≤ 0. Conventionally, we let
E(u) = −∞ if no finite such value exists. The associated decision problem asks given
a node u and an initial credit c ∈ Z≤0 whether E(u) ≥ c. Hence, here minimality is
wrt the absolute value of the energy. A solution to the standard minimum initial credit
problem can be obtained by inverting the sign of each edge weight and solving the
non-positive minimum initial credit problem in the resulting graph.
We start with some definitions and claims that will give the intuition for the algorithms
to follow. First, we define the minimum initial credit of a pair of nodes u, v, which is
the energy to reach v from u (i.e., the energy is wrt a finite path).
Finite minimum initial credit. For nodes u, v ∈ V , we denote with Ev(u) ∈ Z≤0 ∪
{−∞} the largest value with the following property: there exists a path P : u v such
that for every prefix P ′ of P we have Ev(u) + wt(P ′) ≤ 0. Note that for every pair of
nodes u, v ∈ V , we have E(u) ≥ Ev(u) + E(v). Conventionally, we let Ev(u) = −∞
if no such value exists (i.e., there is no path u v).

Remark 4. For any u ∈ V , let P : u v be a witness path for Ev(u) > −∞. Then

Ev(u) + wt(P) ≤ 0 =⇒ Ev(u) ≤ −wt(P) ≤ −d(u, v)

i.e., the energy to reach v from u is upper bounded by minus the distance from u to v.

Highest-energy nodes. Given a (possibly infinite) path P with wt(P) < ∞, we say
that a node x ∈ P is a highest-energy node of P if there exists a highest-energy prefix

14

P1 of P ending in x such that for any prefix P2 of P we have wt(P1) ≥ wt(P2).
Note that since the weights are integers, for every pair of paths P ′1, P ′2, it is either
|wt(P ′1) − wt(P ′2)| = 0 or |wt(P ′1) − wt(P ′2)| ≥ 1. Therefore the set {wt(Pi)}i of
weights of prefixes of P has a maximum, and thus a highest-energy node always exists
when wt(P) <∞. The following properties are easy to verify:

1. If x is a highest-energy node in a path P : u v, then Ev(x) = 0.
2. If x is a highest-energy node in an infinite path P , then E(x) = 0.

The following claim states that the energy E(u) of a node u is the maximum energy
Ev(u) to reach a 0-energy node v.

Claim 2. For every u ∈ V , we have E(u) = maxv:E(v)=0 Ev(u).

Proof. The direction E(u) ≥ maxv:E(v)=0 Ev(u) is straightforward. For the other di-
rection, consider that E(u) > −∞ (trivially, −∞ ≤ maxv:E(v)=0 Ev(u)) and let P be
a witness path for E(u). Since E(u) > −∞, we have wt(P) < ∞, and P has some
highest-energy node x, thus E(x) = 0. Since x is on the witness P of E(u), we have
E(u) ≤ Ex(u) ≤ maxv:E(v)=0 Ev(u). The result follows. ut

5.1 The decision problem for general graphs
Here we address the decision problem, namely, given some node u ∈ V and an initial
credit c ∈ Z≤0, determine whether E(u) ≥ c. The following claim states that if E(u) ≥
c, then a non-positive cycle can be reached from u with initial credit c, by paths of
length less than n.

Claim 3. For every u ∈ V and c ∈ Z≤0, we have that E(u) ≥ c iff there exists a simple
cycleC such that (i) wt(C) ≤ 0 and (ii) for every v ∈ C we have that Ev(u) ≥ c, which
is witnessed by a path Pv : u v with |Pv| < n.

Proof. For the one direction, if wt(C) ≤ 0 we have wt(Cω) < ∞, thus C contains
a 0-energy node w. By Claim 2, E(u) = maxv:E(v)=0 Ev(u) ≥ Ew(u) ≥ c. For the
other direction, let P be a witness path for E(u), and we can assume w.l.o.g. that P
does not contain positive cycles. Then for every prefix Pv : u v of P we have
E(u) + wt(Pv) ≤ 0, thus Ev(u) ≥ E(u) ≥ c, and the n-th such prefix contains a non-
positive cycle C. The result follows. ut

Algorithm DecisionEnergy. Claim 3 suggests a way to decide whether E(u) ≥ c. First,
we start with energy c from u, and perform a sequence of n− 1 relaxation steps, simi-
lar to the Bellman-Ford algorithm, to discover the set V cu of nodes that can be reached
from u with initial credit c by a path of length at most n − 1. Afterwards, we per-
form a Bellman-Ford computation on the subgraph G � V cu induced by the set V cu . By
Claim 3, we have that E(u) ≥ c iff G � V cu contains a non-positive cycle. Algorithm 2
(DecisionEnergy) gives a formal description. The for loop in lines 6-12 is similar to the
procedure ROUND from the algorithm of [9].

Detecting non-positive cycles. It is known that the Bellman-Ford algorithm can detect
negative cycles. To detect non-positive cycles in a graph G with n nodes and weight
function wt, we execute Bellman-Ford on G with a slightly modified weight function

15

wt′ for which wt′(e) = wt(e)− 1
n . Then for any simple cycle C inG we have wt(C) ≤

0 iff wt′(C) < 0. Indeed,

wt′(C) < 0 ⇐⇒
∑
e∈C

wt(e)−
∑
e∈C

1

n
< 0 ⇐⇒ wt(C) <

|C|
n
⇐⇒ wt(C) ≤ 0

since |C| ≤ n and wt(C) ∈ Z.

Algorithm 2: DecisionEnergy
Input: A weighted graph G = (V,E,wt), a node u ∈ V , an initial energy c ∈ Z≤0

Output: True iff E(u) ≥ c
// Initialization

1 foreach v ∈ V do
2 Assign D(s)←∞
3 end
4 Assign D(u)← c
5 Assign V c

u ← {u}
// n− 1 relaxation steps to discover V c

u

6 for i← 1 to n− 1 do
7 foreach (v, w) ∈ E do
8 if D(w) ≥ D(v) + wt(v, w) and D(v) + wt(v, w) ≤ 0 then
9 Assign D(w)← D(v) + wt(v, w)

10 Assign V c
u ← V c

u ∪ {w}
11 end
12 end
13 Execute Bellman-Ford on G � V c

u

14 return True iff a non-positive cycle is discovered

The correctness of DecisionEnergy follows directly from Claim 3. The time complexity
is O(n ·m) time spent in the for loop of lines 6-12, plus O(n ·m) time for the Bellman-
Ford. We thus obtain the following theorem.

Theorem 5. Let G = (V,E,wt) be a weighted graph of n nodes and m edges. Let
u ∈ V be an initial node, and c ∈ Z≤0 be an initial credit. The decision problem of
whether E(u) ≥ c can be solved in O(n ·m) time and O(n) space.

5.2 The value problem for general graphs
We now turn our attention to the value version of the minimum initial credit prob-
lem, where the task is to determine E(u) for every node u. The following claim es-
tablishes that if for all energies to reach some node v we have Ev(w) < 0, then
Ev(u) = −d(u, v), i.e., the energy to reach v from every node u is minus the distance
from u to v.

Claim 4. If for all w ∈ V \ {v} we have Ev(w) < 0, then for each u ∈ V \ {v} we
have Ev(u) = −d(u, v).

16

Proof. Let P : u v be a witness path to the distance, i.e., wt(P) = d(u, v) < ∞
(if d(u, v) =∞ the statement is trivially true). Since every highest-energy node x of P
has Ev(x) = 0, we have that x = v. Hence, P is a highest-energy prefix of itself, and
for each prefix P ′ of P we have −wt(P) + wt(P ′) ≤ 0 and thus Ev(u) ≥ −wt(P) =
−d(u, v). By Remark 4, it is Ev(u) ≤ −d(u, v). The result follows. ut

An O(n2 ·m) time solution to the value problem. Claim 4 together with Theorem 5
lead to anO(n2 ·m) method for solving the minimum initial credit value problem. First,
we compute the set X = {v ∈ V : E(v) = 0} in O(n2 ·m) time, by testing whether
E(u) ≥ 0 for each node u. Afterwards, we contract the set X to a new node z, and by
Claim 2 for every remaining node u we have E(u) = maxv∈X Ev(u) = Ez(u). Since
u 6∈ X , the energy of u is strictly negative, and thus Ez(u) < 0. Finally, by Claim 4, we
have Ez(u) = −d(u, z). Hence it suffices to compute the distance of each node u to z,
which can be obtained in O(n ·m) time.
In the remaining of this subsection we provide a refined solution of O(k · n ·m) time,
where k = |X| + 1 is the number of 0-energy nodes (plus one). Hence this solution is
faster in graphs where k = o(n). This is achieved by algorithm ZeroEnergyNodes for
computing the set X faster.
Determining the 0-energy nodes. The first step for solving the minimum initial credit
problem is determining the set X of all 0-energy nodes of G. To achieve this, we con-
struct the graph G2 = (V2, E2,wt2) with a fresh node z 6∈ V as follows:
1. The node set is V2 = V ∪ {z},
2. The edge set is E2 = E ∪ ({z} × V),
3. The weight function wt2 : E2 → Z is

wt2(u, v) =

{
0 if u = z
wt(u, v) otherwise

Remark 5. Since for every outgoing edge (z, x) of z we have wt2(z, x) = 0, if z is a
highest-energy node in a path of G2, so is x. Hence every non-positive cycle in G2 has
a highest-energy node other than z.

Note that for every u ∈ V , the energy E(u) is the same in G and G2.
Algorithm ZeroEnergyNodes. Algorithm 3 describes ZeroEnergyNodes for obtaining
the set of all 0-energy nodes in G2. Informally, the algorithm performs a sequence of
modifications on a graph G , initially identical toG2. In each step, the algorithm executes
a Bellman-Ford computation on the current graph G with z as the source node, as long
as a non-positive cycle C is discovered. For every such C, it determines a highest-
energy node w of C, and modifies G by replacing every incoming edge (x,w) with an
edge (x, z) of the same weight, and then removing w. See Figure 3 for an illustration.
As 0-energy nodes are discovered, ZeroEnergyNodes performs a sequence of modifi-
cations to the graph G . We denote with Gk the graph G after the k-th node has been
added to X (and G0 = G2). We also use the superscript-k in our graph notation to
make it specific to Gk (e.g. dk(u, z) and Ekz(u) denote respectively the distance from u
to z, and the energy to reach z from u in Gk). The following two lemmas establish the
correctness of ZeroEnergyNodes.

Lemma 10. For every w ∈ X we have E(w) = 0.

17

Algorithm 3: ZeroEnergyNodes
Input: A weighted graph G2 = (V2, E2,wt2)
Output: The set {v ∈ V2 \ {z} : E(v) = 0}

1 Initialize sets V ← V2, E ← E2 and map wt ← wt2
2 Let G = (V ,E ,wt)
3 Initialize set X ← ∅
4 while True do
5 Execute Bellman-Ford from source node z in G
6 if exists non-positive cycle C then
7 Determine a highest-energy node w 6= z in C
8 Assign X ← X ∪ {w}
9 foreach edge (x,w) ∈ E do

10 if (x, z) 6∈ E then
11 Assign E ← E ∪ {(x, z)}
12 Assign wt(x, z)← wt2(x,w)

13 else
14 Assign wt(x, z)← min(wt2(x,w),wt(x, z))
15 end
16 end
17 Assign V ← V \ {w}
18 else
19 return X
20 end
21 end

Proof. The proof is by induction on the size of X . It is trivially true when |X| = 0. For
the inductive step, letw be the k+1-th node added inX . By line 7,w is a highest-energy
node in a non-positive cycle C of Gk. We split into two cases.

1. If z 6∈ C, then C is also a cycle of G, hence w is a highest-energy node in the
infinite path P = Cω of G, and E(w) = 0.

2. If z ∈ C, let x be the node before z in C. By the modifications of lines 11 and 14, it
is wtk(x, z) = wt2(x,w

′), where w′ is a node that has been added to X when the
algorithm run on G i for some i < k. It follows that w is a highest-energy node in a
path P : z w′ in G2, and thus a highest-energy node in a suffix P ′ : w w′ of
P , where P ′ is a path in G. Hence Ew′(w) = 0. By the induction hypothesis, w′ is
a 0-energy node, i.e., E(w′) = 0, thus by Claim 2 we have E(w) ≥ Ew′(w) = 0.

The result follows. ut

Lemma 11. For every w ∈ V : E(w) = 0 we have w ∈ X .

Proof. Consider any w ∈ V : E(w) = 0. For some i ∈ N, we say that G i “is aware of
w” if either G i has a non-positive cycle C : w w, or w ∈ X when |X| = i. Note that
when ZeroEnergyNodes terminates there are no non-positive cycles in G |X|. Hence, it
suffices to argue that there exists a k ∈ N such that for each i ≥ k, G i is aware of w.
We first argue that there exists a k for which Gk is aware of w.

Let P be a witness for E(w) = 0, hence P traverses a non-positive cycle C1 in G, thus
C1 exists in G0. Then there exists a smallest j ∈ N such that some node w′ of P is
identified as a highest-energy node in a non-positive cycle C2 (possibly C1 = C2), and

18

inserted to X . If w = w′, we have that Gj is aware of w. Otherwise, since E(w) = 0
and w′ is a node in the witness P , we have Ew′(w) = 0. By the choice of w′, the
path P exists in Gj , therefore Ejw′(w) = Ew′(w) = 0, and by Remark 4, we have
dj(w,w′) ≤ 0. It is straightforward that after the modifications in lines 11 and 14, we
have that dj+1(w, z) ≤ dj(w,w′) ≤ 0, and since wt j(z, w) = wt2(z, w) = 0, we have
a non-positive cycle C : w w in Gj+1 through z. Hence either Gj or Gj+1 is aware
of w, thus there exists a k ∈ N for which Gk is aware of w.
Finally, observe that the distance di(w, z) does not increase in any G i for i ≥ k until w
is inserted to X , hence for each i ≥ k, the graph G i is aware of w. The desired result
follows. ut

Determining the negative-energy nodes. Having computed the set X of all the 0-
energy nodes ofG, the second step for solving the minimum initial value credit problem
is to determine the energy of every other node u ∈ V \ X . Recall the graph G |X| =
(V |X|,E |X|,wt |X|) after the end of ZeroEnergyNodes.

Lemma 12. For every u ∈ V \X we have E(u) = −d|X|(u, z).

Proof. Consider any node u ∈ V \ X = V |X| \ {z}. By Claim 4, in the graph
G we have E(u) = maxv:E(v)=0 Ev(u), and by the correctness of ZeroEnergyNodes
from Lemma 10 and Lemma 11 we have X = {v : E(v) = 0}, thus E(u) =
maxv∈X Ev(u). It is straightforward to verify that at the end of ZeroEnergyNodes,
we have maxv∈X Ev(u) = E

|X|
z (u), i.e., the maximum energy to reach the set X in

G is the energy to reach z in G |X|. For all v ∈ V |X| \ {z} it is E
|X|
z (v) < 0, oth-

erwise we would have E(v) = 0 and thus v ∈ X and v 6∈ V |X|. Then by Claim 4,
E
|X|
z (u) = −d|X|(u, z). We conclude that E(u) = −d|X|(u, z). ut

Hence, to compute the energy E(u) of every node u ∈ V \ X , it suffices to compute
its distance to z in G |X|. This is straightforward by reversing the edges of G |X| and
performing a Bellman-Ford computation with z as the source node. Figure 3 illustrates
the algorithms on a small example. We obtain the following theorem.

Theorem 6. Let G = (V,E,wt) be a weighted graph of n nodes and m edges, and
k = |{v ∈ V : E(v) = 0}|+ 1. The minimum initial credit value problem for G can be
solved in O(k · n ·m) time and O(n) space.

Proof. Lemma 10, Lemma 11 and Lemma 12 establish the correctness, so it remains to
argue about the complexity. The while block of line 4 is executed at most once for each
0-energy node, hence at most k times. Inside the block, the execution of Bellman-Ford
in line 5 requires O(n · m) time and O(m) space. Since the Bellman-Ford algorithm
uses backpointers to remember predecessors of nodes in distances, a highest-energy
node w of a non-positive cycle C in line 7 can be determined in O(n). Finally, the for
loop of line 9 will consider each edge (x,w) at most once, hence it requires O(m) for
all iterations of the while loop. Thus ZeroEnergyNodes usesO(k ·n ·m) time andO(n)
space in total. The last execution of Bellman-Ford to determine the energy of negative-
energy nodes does not affect the complexity. The result follows. ut

Corollary 3. Let G = (V,E,wt) be a weighted graph of n nodes and m edges. The
minimum initial credit value problem for G can be solved in O(n2 ·m) time and O(n)
space.

19

G0

u v

w x

y

z

−2

−1

3

−1

−1

0 0

0 0

0

G1

u v

w
0
x

y

z

3

−2

−1

−1

0 0

0

0

G2

0
u v

w
0
x

y

z

3

−1

−1

0

0

00
u

−2
v

−3
w

0
x

−1
y

z

Fig. 3: Solving the value problem using operations on the graph G . Initially we examine
G0, and a non-positive cycle is found (boldface edges) with highest-energy node x.
Thus E(x) = 0, and we proceed with G1, to discover E(u) = 0. In G2 all cycles are
positive, and the energy of each remaining node is minus its distance to z.

5.3 The value problem for constant-treewidth graphs
We now turn our attention to the minimum initial credit value problem for constant-
treewidth graphs G = (V,E,wt). Note that in such graphs m = O(n), thus Theorem 6
gives an O(n3) time solution as compared to the existing O(n4 · log(n · W)) time
solution. This section shows that we can do significantly better, namely reduce the time
complexity toO(n · log n). This is mainly achieved by algorithm ZeroEnergyNodesTW
for computing the set X of 0-energy nodes fast in constant-treewidth graphs.
Extended + and min operators. Recall the graph G2 = (V2, E2,wt2) from the last
section. Given Tree(G), a balanced and binary tree-decomposition Tree(G2) of G2

with width increased by 1 can be easily constructed by (i) inserting z to every bag of
Tree(G), and (ii) adding a new root bag that contains only z. Let I = Z× V × Z. For
a map f : V2 × V2 → Z, define the map gf : V2 × V2 → I as

gf (u, v) =

{
(f(u, v), u, 0) if f(u, v) < 0 or v = z
(f(u, v), v, f(u, v)) otherwise

and for triplets of elements α1 = (a1, b1, c1), α2 = (a2, b2, c2) ∈ I, define the opera-
tions
1. min(α1, α2) = αi with i = argminj∈{1,2} aj
2. α1 + α2 = (a1 + a2, b, c), where c = max(c1, a1 + c2) and b = b1 if c = c1 else
b = b2.

In words, if f is a weight function, then gf (u, v) selects the weight of the edge (u, v),
and its highest-energy node (i.e., u if f(u, v) < 0, and v otherwise, except when v = z),
together with the weight to reach that highest energy node node from u. Recall that
algorithm MinCycle from Section 3 traverses a tree-decomposition bottom-up, and for
each encountered bag B stores a map LDB such that LDB(u, v) is upper bounded by
the weight of the shortest U-shaped simple path u v (or simple cycle, if u = v). Our
algorithm ZeroEnergyNodesTW for determining all 0-energy nodes is similar, only
that now LDB stores triplets (a, b, c) where a is the weight of a U-shaped path P , b is

20

a highest-energy node of P , and c the weight of a highest-energy prefix of P . For two
triplets α1 = (a1, b1, c1), α2 = (a2, b2, c2) ∈ I corresponding to U-shaped paths P1

and P2, min(α1, α2) selects the path with the smallest weight, and α1+α2 determines
the weight, a highest-energy node, and the weight of a highest-energy prefix of the path
P1 ◦ P2 (see Figure 4).

b1

c1

a1

P i
1

w
t(
P

i 1
)

b2

c2

a2

P i
2

w
t(
P

i 2
)

b

c

a

P i

w
t(
P

i)

Fig. 4: Illustration of the α1 + α2 operation, corresponding to concatenating paths P1

and P2. The path P ij denotes the i-th prefix of Pj . We have P = P1 ◦ P2, and the
corresponding tripplet α = (a, b, c) denotes the weight a of P , its highest-energy node
b, and the weight c of a highest-energy prefix.

Algorithm ZeroEnergyNodesTW. The algorithm ZeroEnergyNodesTW for computing
the set of 0-energy nodes in constant-treewidth graphs follows the same principle as
ZeroEnergyNodes for general graphs. It stores a map of edge weights wt : E2 → Z ∪
{∞}, and initially wt(u, v) = wt2(u, v) for each (u, v) ∈ E2. The algorithm performs
a bottom-up pass, and computes in each bag the local distance map LDB : B ×B → I
that captures U-shaped u v paths, together with their highest-energy nodes. When a
non-positive cycle C is found in some bag B, the method KillCycle is called to modify
the edges of a highest-energy node w of C and its incoming neighbors by updating the
map wt . These updates generally affect the distances between the rest of the nodes in
the graph, hence some local distance maps LDB need to be corrected. However, each
such edge modification only affects the local distance map of bags that appear in a path
from a bag B′ to some ancestor B′′ of B′. Instead of restarting the computation as in
ZeroEnergyNodes, the method Update is called to correct those local distance maps
along the path B′ B′′.
The following lemma establishes the correctness of ZeroEnergyNodesTW. Similarly
as for Lemma 10 and Lemma 11 we denote with Gk the graph obtained by considering
the edges (u, v) for which wt(u, v) <∞ when |X| = k.

Lemma 13. For every v ∈ V \ {z} we have v ∈ X iff E(v) = 0.

Proof. We only need to argue that ZeroEnergyNodesTW correctly computes the non-
positive cycles in every Gk, as then the correctness follows from the correctness
Lemma 10 and Lemma 11 of ZeroEnergyNodes. Since by Remark 1 every cycle is
a U-shaped path in some bag, it suffices to argue that whenever ZeroEnergyNodesTW

21

Algorithm 4: ZeroEnergyNodesTW
Input: A weighted graph G2 = (V2, E2,wt2) and a binary tree-decomposition Tree(G2)
Output: The set {v ∈ V2 \ {z} : E(v) = 0}
// Initialization

1 Assign X ← ∅
2 foreach u, v ∈ V2 do
3 if (u, v) ∈ E2 then
4 Assign wt(u, v)← wt2(u, v)
5 else
6 Assign wt(u, v)←∞
7 end
8 end
// Computation

9 Apply a post-order traversal on Tree(G), and examine each bag B with children B1, B2

10 begin
11 foreach u, v ∈ B do
12 Assign LDB(u, v)←min(LDB1(u, v), LDB2(u, v), gwt (u, v))
13 end
14 if B is the root bag of a node x then
15 foreach u, v ∈ B do
16 Assign LD′B(u, v)←min(LDB(u, v), LDB(u, x)+ LDB(x, v))
17 end
18 Assign LDB ← LD′B
19 if ∃u ∈ B with LDB(u, u) = (a, b, c) where a ≤ 0 then
20 Assign X ← X ∪ {b}
21 Execute KillCycle on b and B
22 end
23 return X

Method 5: KillCycle
Input: A 0-energy node w and a bag B of Tree(G2)
Output: Updates the local distance function LDB

1 foreach edge (x,w) ∈ E2 do
2 Assign wt(x, z)← min(wt2(x,w),wt(x, z))
3 Assign wt(x,w)←∞
4 Assign y ← argmaxu∈{x,w} Lv(u)
5 Let B′ be the smallest-level ancestor of By examined by ZeroEnergyNodesTW so far
6 Execute Update on By and its ancestor B′

7 end
8 return LDB

22

Method 6: Update
Input: A bag B′ and an ancestor B′′

Output: The local distances LDB along the path B′ B′′

1 Traverse the path B′ B′′ bottom-up, and examine each bag B with children B1, B2

2 begin
3 foreach u, v ∈ B do
4 Assign LDB(u, v)←min(LDB1(u, v), LDB2(u, v), gwt (u, v))
5 end
6 if B is the root bag of a node x then
7 foreach u, v ∈ B do
8 Assign LD′B(u, v)←min(LDB(u, v), LDB(u, x)+ LDB(x, v))
9 end

10 Assign LDB ← LD′B
11 if ∃u ∈ B with LDB(u, u) = (a, b, c) where a ≤ 0 then
12 Assign X ← X ∪ {b}
13 Execute KillCycle on b and B
14 end

examines a bag B (either directly, or through Update), every U-shaped simple cycle in
B has been considered by the algorithm. This is true if no calls to KillCycle are made
(if block in line 19), as then ZeroEnergyNodesTW is the same as MinCycle, and hence
it follows from Lemma 2.

Now consider that KillCycle is called and B′ is the smallest-level bag examined by
ZeroEnergyNodesTW so far. Let w be the 0-energy node, x an incoming neighbor of
w, and y = argmaxu∈{x,w} Lv(u) (as in line 4 of KillCycle). By the definition of U-
shaped paths, the edge (x,w) appears only in paths that are U-shaped in bags along
the path By B′. Hence, after setting wt(x,w) = ∞ (line 3 of KillCycle), it suffices
to update the local distance maps of these bags. Similarly, after setting wt(x, z) ←
min(wt2(x,w),wt(x, z)) (line 2 of KillCycle), since Bz is the root of Tree(G2), it
suffices to update the local distance maps in the bags along the path Bx B′. Either
x = y, or, by the properties of tree-decompositions, Bx is an ancestor of By . Hence in
either case Bx B′ is a subpath of By B′, and both edge modifications in lines 2
and 3 are handled correctly by calling Update on By and its ancestor B′. The result
follows. ut

Lemma 14. Algorithm ZeroEnergyNodesTW runs in O(n · log n) time and O(n)
space.

Proof. Let h = O(log n) be the height of Tree(G2).

1. The method Update performs a constant number of operations to each bag in the
path B′ B′′ where B′′ is ancestor of B′, hence each call to Update requires
O(h) time.

2. The method KillCycle performs a constant number of operations locally and one
call to Update for each incoming edge of w. Hence if w has kw incoming edges,
KillCycle requires O(h · kw) time. Since KillCycle sets wt(x,w) = ∞ for all in-
coming edges of w, the node w will not appear in non-positive cycles thereafter.

3. The algorithm ZeroEnergyNodesTW is similar to MinCycle which runs in O(n)
time and space (Lemma 5). The difference is in the additional if block in line 19.

23

Since KillCycle is called when a non-positive cycle is detected, it will be called
at most once for each node u ∈ V2 \ {z} (from either ZeroEnergyNodesTW or
Update). It follows that the total time of ZeroEnergyNodesTW is

O

(
n+

∑
u

(h · ku)

)
= O(n+ h · |E2|) = O(n · log n)

where ku is the number of incoming edges of node u. Since KillCycle stores con-
stant size of information in each bag of Tree(G2), the O(n) space bound follows.

ut

After the setX of 0-energy nodes has been computed, it remains to execute one instance
of the single-source shortest path problem on the graph G |X| (similarly as for our solu-
tion on general graphs). It is known that single-source distances in tree-decompositions
of constant treewidth can be computed in O(n) time [23,18]. We thus obtain the fol-
lowing theorem.

Theorem 7. Let G = (V,E,wt) be a weighted graph of n nodes with constant
treewidth. The minimum initial credit value problem forG can be solved inO(n · log n)
time and O(n) space.

6 Experimental Results
6.1 Minimum mean cycle
We have implemented our approximation algorithm for the minimum mean cycle prob-
lem, and we let the algorithm run for as many iterations until a minimum mean cycle
was discovered, instead of terminating after O(log(n/ε)) iterations required by The-
orem 4. We have tested its performance in running time and space against six other
minimum mean cycle algorithms from Table 3 in control-flow graphs of programs. The
algorithms of Burns and Lawler solve the more general ratio cycle problem, and have
been adapted to the mean cycle problem as in [26].

Madani [38] Burns [12] Lawler [37] Dasdan-Gupta [25] Hartmann-Orlin [32] Karp [35]

Time O(n2) O(n3) O(n2 · log(n ·W)) O(n2) O(n2) O(n2)

Space O(n) O(n) O(n) O(n2) O(n2) O(n2)

Table 3: Asymptotic complexity of compared minimum mean cycle algorithms.

Setup. The algorithms were executed on control-flow graphs of programs from the Da-
Capo benchmark suit [3], obtained using the Soot framework [46]. For each benchmark
we focused on graphs of at least 500 nodes. This supplied a set of medium sized graphs
(between 500 and 1300 nodes), in which integer weights were assigned uniformly at
random in the range {−103, . . . , 103}. Memory usage was measured with [11].
Results. Figure 5 shows the average time and space performance of the examined al-
gorithms (bars that exceeded the maximum value in the y-axis have been truncated).

24

Our algorithm has much smaller running time than each other algorithm, in almost all
cases. In terms of space, our algorithm significantly outperforms all others, except for
the algorithms of Lawler, Burns, and Madani. Both ours and these three algorithms have
linear space complexity, but ours also suffers some constant factor overhead from the
tree-decomposition (i.e., the same node generally appears in multiple bags). Note that
the strong performance of these three algorithms in space is followed by poor perfor-
mance in running time.

Fig. 5: Average performance of minimum mean cycle algorithms.

Madani Burns Lawler Dasdan-Gupta Hartmann-Orlin Karp Ours

antlr 55814 61571 165789 284996 21893 7824 18402
bloat 138416 188356 350302 105145 144171 89949 22391
chart 216962 137112 573767 154062 107229 90717 40890

eclipse 216859 242323 667869 172792 148523 107864 23486
fop 83080 147384 406371 59176 121742 31557 19306

hsqldb 131041 153232 208328 86840 228632 40486 19957
javac 58443 110149 122996 179647 14719 34188 20874
jflex 214297 524822 554093 116820 133323 53329 23860

jython 139106 200922 503766 94052 75569 34864 28760
luindex 199650 217980 1240411 274319 228856 92379 22142
lusearch 433211 447280 1180051 263467 333297 101584 55652

pmd 180551 155118 585315 118578 155682 48326 21978
xalan 120897 156111 394458 81103 96873 47996 14493

Table 4: The time performance of Figure 5 (in µs).

25

Madani Burns Lawler Dasdan-Gupta Hartmann-Orlin Karp Ours

antlr 16805 21018 11144 486435 489176 322384 168648
bloat 29723 24500 19458 1245272 1249444 826645 306026
chart 27130 30567 18172 2025448 2029294 1347048 278586

eclipse 24215 26488 16293 965063 968595 640720 254393
fop 16845 17975 11052 576174 578646 382338 169738

hsqldb 16798 19309 11144 486435 489096 322384 168648
javac 14681 17047 9664 372697 375453 247019 144721
jflex 24561 26946 16322 1244495 1248036 826743 251549

jython 22518 23337 14899 1059291 1062570 703581 228207
luindex 39309 40223 25604 3521607 3526792 2342833 399076
lusearch 41488 33350 26991 3387914 3393343 2253403 422679

pmd 32204 24481 21021 1391551 1395786 923975 326137
xalan 16798 17763 11144 486435 489102 322384 168648

Table 5: The space performance of Figure 5 (in KB).

6.2 Minimum initial credit
We have implemented our algorithm for the minimum initial credit problem on gen-
eral graphs and experimentally evaluated its performance on a subset of benchmark
weighted graphs from the DIMACS implementation challenges [1]. Our algorithm was
tested against the existing method of [9]. The direct implementation of the algorithm
of [9] performed poorly, and for this we also implemented an optimized version (using
techniques such as caching of intermediate results and early loop termination).
Setup. For each input graph we first computed its minimum mean value µ∗ using Karp’s
algorithm, and then subtracted µ∗ from the weight of each edge to ensure that at least
one non-positive cycle exists (thus the energies are finite).
Results. Figure 6 depicts the running time of the algorithm of [9] (with and without
optimizations) vs our algorithm. A timeout was forced at 1010µs. Our algorithm is
orders of magnitude faster, and scales better than the existing method.

Fig. 6: Comparison of running times for the minimum initial credit problem.

26

n Existing Existing Optimized Ours

50 9453565 1680924 48635
58 39744129 3394193 121774
66 55766874 6201044 267825
74 180080064 12833610 136239
82 267993314 13563936 116518
90 342779026 25453589 383292
98 74622910 12648395 501365
106 791441986 60294150 385799
114 1133055323 80584700 432290
122 1004898322 67982455 564838
130 2354354250 165193753 348112
138 881117317 114743182 636481
146 7050113907 311146051 501314
162 5179877563 324877384 1154447
178 Timeout 589873640 635155
194 3799301931 391240954 2672127
218 Timeout 2596083382 866213
242 Timeout 2774469734 1779512
266 Timeout 2839496222 7676638
290 Timeout 6526762301 1332403
322 Timeout 5929433611 1282258

Table 6: The time performance of Figure 6 in µs.

27

References

1. DIMACS implementation challenges, http://dimacs.rutgers.edu/
Challenges/

2. Almagor, S., Boker, U., Kupferman, O.: Formalizing and reasoning about quality. In: ICALP.
pp. 15–27 (2013)

3. Blackburn, S.M.e.a.: The dacapo benchmarks: Java benchmarking development and analysis.
In: OOPSLA (2006)

4. Bloem, R., Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Better quality in synthesis
through quantitative objectives (2015)

5. Bloem, R., Greimel, K., Henzinger, T.A., Jobstmann, B.: Synthesizing robust systems. In:
FMCAD. pp. 85–92 (2009)

6. Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybern. (1993)
7. Bodlaender, H.: Discovering treewidth. In: SOFSEM 2005: Theory and Practice of Computer

Science, LNCS, vol. 3381. Springer (2005)
8. Boker, U., Chatterjee, K., Henzinger, T.A., Kupferman, O.: Temporal specifications with

accumulative values. In: LICS. pp. 43–52 (2011)
9. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N., Srba, J.: Infinite runs in weighted timed

automata with energy constraints. In: Formal Modeling and Analysis of Timed Systems,
Lecture Notes in Computer Science, vol. 5215, pp. 33–47. Springer Berlin Heidelberg (2008)

10. Bouyer, P., Markey, N., Matteplackel, R.M.: Averaging in LTL. In: CONCUR. pp. 266–280
(2014)

11. Brosius, D.: Java agent for memory measurements, https://github.com/jbellis/
jamm

12. Burns, S.M.: Performance analysis and optimization of asynchronous circuits. Tech. rep.
(1991)

13. Cerny, P., Henzinger, T.A., Radhakrishna, A.: Quantitative abstraction refinement. In: POPL.
pp. 115–128 (2013)

14. Chatterjee, K., Lacki, J.: Faster algorithms for Markov decision processes with low treewidth.
In: CAV (2013)

15. Chatterjee, K., Doyen, L., Edelsbrunner, H., Henzinger, T.A., Rannou, P.: Mean-payoff au-
tomaton expressions. CoRR abs/1006.1492 (2010)

16. Chatterjee, K., Doyen, L., Henzinger, T.A.: Expressiveness and closure properties for quan-
titative languages. LMCS 6(3) (2010)

17. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. ACM Trans. Comput.
Log. 11(4) (2010)

18. Chatterjee, K., Goyal, P., Ibsen-Jensen, R., Pavlogiannis, A.: Faster algorithms for algebraic
path properties in recursive state machines with constant treewidth. In: POPL (2015)

19. Chatterjee, K., Henzinger, M., Krinninger, S., Loitzenbauer, V., Raskin, M.A.: Approximat-
ing the minimum cycle mean. Theor. Comput. Sci. (2014)

20. Chatterjee, K., Henzinger, T.A., Jobstmann, B., Singh, R.: Measuring and synthesizing sys-
tems in probabilistic environments. In: JACM. pp. 380–395 (2015)

21. Chatterjee, K., Henzinger, T.A., Otop, J.: Nested weighted automata. Tech. rep., IST Austria
(2014)

22. Chatterjee, K., Velner, Y.: Mean-payoff pushdown games. In: LICS (2012)
23. Chaudhuri, S., Zaroliagis, C.D.: Shortest Paths in Digraphs of Small Treewidth. Part I: Se-

quential Algorithms. Algorithmica (1995)
24. Courcelle, B.: The monadic second-order logic of graphs. i. recognizable sets of finite graphs.

Information and Computation 85
25. Dasdan, A., Gupta, R.: Faster maximum and minimum mean cycle algorithms for system-

performance analysis. Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on 17(10), 889–899 (Oct 1998)

28

http://dimacs.rutgers.edu/Challenges/
http://dimacs.rutgers.edu/Challenges/
https://github.com/jbellis/jamm
https://github.com/jbellis/jamm

26. Dasdan, A., Irani, S.S., Gupta, R.K.: An experimental study of minimum mean cycle algo-
rithms. Tech. rep. (1998)

27. Droste, M., Kuich, W., Vogler, H.: Handbook of Weighted Automata. Springer Publishing
Company, Incorporated, 1st edn. (2009)

28. Droste, M., Meinecke, I.: Weighted automata and weighted mso logics for average and long-
time behaviors. Inf. Comput. 220, 44–59 (2012)

29. Elberfeld, M., Jakoby, A., Tantau, T.: Logspace versions of the theorems of Bodlaender and
Courcelle. In: FOCS (2010)

30. Gustedt, J., Mhle, O., Telle, J.: The treewidth of java programs. In: Algorithm Engineering
and Experiments. LNCS, Springer (2002)

31. Halin, R.: S-functions for graphs. Journal of Geometry (1976)
32. Hartmann, M., Orlin, J.B.: Finding minimum cost to time ratio cycles with small integral

transit times. NETWORKS 23, 567–574 (1993)
33. Henzinger, T.A., Otop, J.: From model checking to model measuring. In: CONCUR. pp.

273–287 (2013)
34. Karp, R.M.: A characterization of the minimum cycle mean in a digraph. Discrete Mathe-

matics 23(3), 309 – 311 (1978)
35. Karp, R.M.: A characterization of the minimum cycle mean in a digraph. Discrete Mathe-

matics (1978)
36. Kwek, S., Mehlhorn, K.: Optimal search for rationals. Inf. Process. Lett. 86(1), 23–26 (2003)
37. Lawler, E.: Combinatorial Optimization: Networks and Matroids. Saunders College Publish-

ing (1976)
38. Madani, O.: Polynomial value iteration algorithms for deterministic MDPs. In: UAI’02

(2002)
39. Obdrzálek, J.: Fast mu-calculus model checking when tree-width is bounded. In: CAV (2003)
40. Orlin, J.B., Ahuja, R.K.: New scaling algorithms for the assignment and minimum mean

cycle problems. Math. Program. (1992)
41. Papadimitriou, C.H.: Efficient search for rationals. Information Processing Letters 8(1), 1 –

4 (1979)
42. Reed, B.A.: Finding approximate separators and computing tree width quickly. In: STOC

(1992)
43. Robertson, N., Seymour, P.: Graph minors. iii. planar tree-width. Journal of Combinatorial

Theory, Series B (1984)
44. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM Journal on Computing

(1972)
45. Thorup, M.: All Structured Programs Have Small Tree Width and Good Register Allocation.

Information and Computation (1998)
46. Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P., Sundaresan, V.: Soot - a java byte-

code optimization framework. In: CASCON ’99. IBM Press (1999)
47. Velner, Y.: The complexity of mean-payoff automaton expression. In: ICALP (2012)

29

