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The Value 1 Problem for Concurrent Mean-payoff Games

Krishnendu Chatterjee (IST Austria) Rasmus Ibsen-JenSdnAustria)

Abstract

We consider concurrent mean-payoff games, a very wellistudass of two-player (player 1 vs
player 2) zero-sum games on finite-state graphs where engargition is assigned a reward between 0
and 1, and the payoff function is the long-run average of ¢hmards. The value is the maximal expected
payoff that player 1 can guarantee against all strategigdayer 2. We consider the computation of
the set of states with value 1 under finite-memory stratefgieplayer 1, and our main results for the
problem are as follows: (1) we present a polynomial-timeatgm; (2) we show that whenever there
is a finite-memory strategy, there is a stationary stratbgy does not need memory at all; and (3) we
present an optimal bound (which is double exponential) erpiditience of stationary strategies (where
patience of a distribution is the inverse of the smallesttppesprobability and represents a complexity
measure of a stationary strategy).



1 Introduction

Concurrent mean-payoff games. Concurrent mean-payoff games are played on finite-statghgray
two players (player 1 and player 2) for infinitely many roundis each round, the players simultaneously
choose moves (or actions), and the current state along hétiwo chosen moves determine a probability
distribution over the successor states. The outcome ofdheegor gplay) is an infinite sequence of states
and action pairs. Every transition is associated with a réveetween) and 1, and the mean-payoff (or
limit-average payoff) of a play is the limit-inferior (ornfiit-superior) average of the rewards of the play.
Concurrent games were introduced in a seminal work of Siigpld, wherediscountedsum objectives (or
games that halt with probability 1) were considered. Theegaization to concurrent games with mean-
payoff objectives (or games that have zero stop probas)itivas presented by Gillette in [14]. The player-1
valueval(s) of the game at a stateis the supremum value of the expectation that player 1 caragtee
for the mean-payoff objective against all strategies oygl&. The games are zero-sum where the objective
of player 2 is the opposite.

Important previous results. Many celebrated results have been established for comtumean-payoff
games and its sub-classes: (1) the existence of valuest@nueacy or equivalence of switching of strategy
guantifiers for the players as in von-Neumann’s min-max rié@) for concurrent discounted games was
established in [21]; (2) the result of Blackwell and Ferguestablished existence of values for the celebrated
game of Big-Match [2] (the celebrated Big-Match exampledsrf [14])'; and (3) developing on the results
of [2] and of Bewley and Kohlberg on Puisuex series [1] thestxice of values for concurrent mean-payoff
games was established in [20]. The decision problem of venetie value vdk) is at least a rational
constant\ can be decided in PSPACE [6, 16]; andsguare-root sunmard even for concurrent reachability
games [10], where reachability objectives are the veryiapease of mean-payoff objectives where reward
zero is assigned to all transitions other than a set of simkitel states which are assigned reward 1.

Value 1 problem. While the decision problem for value computation is notosly hard for concurrent
mean-payoff games, an important special case of the proislémncompute the set of states with value 1.
We refer to this problem as the value 1 set computation pnobidiich has been extensively studied in
many different contexts; such as, concurrent games witbhedality objectives [9] as well as with-
regular and prefix independent objectives [5, 4], probsifiiliautomata [7, 12], and probabilistic systems
with counters [3].

Strategies. A strategy in a concurrent game, considers the past histafyeagame (the finite sequence of
states and actions played so far), and specifies a prolyabigiribution over the next moves. Thus a strategy
requires memory to remember the past history of the gameragegly isstationaryif it is independent of
the past history and only depends on the current state. Tihplegity of a stationary strategy is described
by its patiencewhich is the inverse of the minimum non-zero probabilityigised to a move. The notion of
patience was introduced in [11] and also studied in the sbofeconcurrent reachability games [17, 15]. A
strategy idinite-memornyif the memory set used by the strategy is finite. Note thatrfgslementability of

a strategy (such as by an automata), we need a finite-menmatggst.

Examples.We now illustrate concurrent mean-payoff games with a feangples. Consider the four games
(G1, G2, G3, andGy) shown in Figure 1: the transition functions are deterntimiznd shown as arrows; and
transition with rewards 1 are annotated, and all other résvare 0. Each game has four states, namely, 1, 2,
T and_L; and sinceT and L remain the same, in the figurés andG- (alsoG3 andG,) are drawn such
that they shar@ and_L. The stateél has value 1 and state has value 0. In the first gantg;, both state 1

Inote that even showing existence of a value for the specifieMBitch game was open for years, which shows the hardness of
analysis of such games
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Figure 1. The game&; to G4

and state 2 have valug/2 (because of symmetry). The other three example gafigs(zs andG,, are
minor variants oiG; (only one successor is changed).

1. In G4, the edge from state to L is changed to a self-loop. I&, there exists an infinite-memory
strategy to ensure that the mean-payoff is 1, and for every) there is a stationary strategy to ensure
mean-payoffl — e. The witness stationary strategy is as follows: in stateay e action pairs with
probability (¢/4,1 — ¢/4) and in state 2 with probabilityl /2,1/2).

2. In G3, the top edge from state 1 to state 2 is changed to a self-lbop:s, there is no strategy to
ensure that the mean-payoff is 1, but for every 0 there is a stationary strategy to ensure mean-
payoff 1 — e. The witness stationary strategy is as follows: in statedly phe action pairs with
probability (¢/2,1 — ¢/2) and in state 2 with probabilityl — ¢2/2, €2/2).

3. In G4, the bottom edge from state 1 to state 2 is changed to a sgif-lon G4, there exists no
stationary strategy that can ensure positive mean-pawhifey however, for every > 0 there exists
an infinite-memory strategy to ensure mean-payoff e.

Details regarding the analysis of the values of the aboveegaamd in depth discussion on the strategy
constructions for them are available in [18, Section 1.6.2]

Our contributions. Our main contributions are related to the computation ofvaikele 1 problem for
concurrent mean-payoff games where player 1 is restrictdthite-memory strategiés Our main results
are as follows: (1) We present a polynomial-time algorittntémpute the value 1 set. (2) We show that
stationary strategies are sufficient, i.e., whenever fimiémory strategies exist, then there is a stationary
strategy. (3) We establish an optimal double exponentiédipee bound for the witness stationary strategies

%note that once a finite-memory strategy for player 1 is fixedntthere always exists a finite-memory optimal countextetyy
for player 2, and thus the strategies for player 2 are noticésst



(our contribution for patience is the upper bound, and th&chiag lower bound follows from [15, 17] for
the special case of reachability objectives). In additianalso establish a robustness result, which shows
that for concurrent games, if the support of the transitioobpbilities match (but the precise transition
probabilities may differ), then the value 1 set remains angjed.

2 Definitions

In this section we present the definitions of game structisteategies, mean-payoff objectives, the value
and value 1 problem, and other basic notions.

Probability distributions. For a finite setd, aprobability distributionon A is a functions: A — [0, 1] such

that)" ., 0(a) = 1. We denote the set of probability distributions drby D(A). Given a distribution
d € D(A), we denote bySupp(d) = {z € A | §(x) > 0} the supportof the distributiond. For a

distribution, thepatienceof the distribution is the inverse of the minimum non-zerohability assigned to
an element: formally, the patienget(s) is maxae {57y | 6(a) > 0}.

Concurrent game structures. A (two-player)concurrent stochastic game structuie= (S, A,I'1, 'z, 6)
consists of the following components.

o A finite state spacé and a finite setd of actions (or moves).

e Two move assignments;,I's : S — 24\ (). Fori € {1,2}, assignmeni’; associates with each
states € S the non-empty sefl;(s) C A of moves available to playerat states. For technical
convenience, we assume tHat(s) N I';(t) = 0 unlessi = j ands = ¢, for all i,j € {1,2}
ands,t € S. If this assumption is not met, then the moves can be trivihamed to satisfy the
assumption.

e A probabilistic transition function: S x Ax A — D(S), which associates with every state .S and
movesa; € I'i(s) andag € T'2(s) a probability distributiory(s, a1, a2) € D(S) for the successor
state.

For a set)) C S of states we will denote b§) = S \ Q the complement of). We will denote byd,y,i,

the minimum non-zero transition probability, i.8min = min tes ming, e, (s),aners(s)19(8; a1, a2)(t) |
d(s,a1,a2)(t) > 0}. We will denote byn the number of states (i.ea, = |S|), and bym the maximal
number of actions available for a player at a state (e maxcs max{|I'1(s)|, |[T'2(s)|}). We will later
define Markov chains as games whete= 1. Since finding the mean-payoff of Markov chains can be done
in polynomial time, we will only consider the case where> 2. For all states € S, movesa; € I'i(s)
andag € I'y(s), we indicate bySucc(s, a1, a2) = Supp(d(s,ai,az)) the set of possible successorssof
when moves:; anda, are selected. The size of the transition relation of a gamuetsire is defined as

‘5‘ = ZSES zaleFl(s) ZGQEFQ(S) ‘SUCC(S, ar, a2)"

One step probabilities. Given a concurrent game structutg a states, two distributionsé; € D(I'i(s))
and¢é, € D(T'2(s)), the one step probability transition for a détof states, denoted ags,&;,£2)(U) is

D a1l (s),anela(s) tet 0(8: a1, a2)(t) - &1 (ar) - €2(az). Often we will consider the distribution of player 2
to be a single action, i.e{3(a) = 1 for an actiona,, and then use the notatiaiis, &1, az). We will also
write Succ(s, &1, £2) = Ua, esupp(ér),aseSupp(2) SUCC(s; a1, az) for the set of possible successors under the
distributions.



Turn-based stochastic games, turn-based deterministic gaes and MDPs.A game structuré is turn-
based stochastiif at every state at most one player can choose among multiplees; that is, for every
states € S there exists at most onec {1,2} with |I’;(s)| > 1. A turn-based stochastic game with a
deterministic transition function is a turn-based deteistic game. A game structure is a playekiarkov
decision process (MDHj for all s € S we havell';(s)| = 1, i.e., only player 2 has choice of actions in the
game, and player-1 MDPs are defined analogously.

Plays. At every states € S, player 1 chooses a mowe € T'i(s), and simultaneously and inde-
pendently player 2 chooses a mowg € I'y(s). The game then proceeds to the successor gtate
with probability 6(s,ay,a2)(t), for all t € S. A path or aplay of G is an infinite sequence =
((s0,al,a9), (s1,a1,a3), (s2,a?,a3)...) of states and action pairs such that for all> 0 we have
(1) spy1 € Succ(sy,ak,ak); and (2)ab € T'1(s;); and (3)al € Ta(sk). We denote by the set of all
paths.

Strategies. A strategyfor a player is a recipe that describes how to extend prefikasptay. Formally, a
strategy for playei € {1,2} is a mappingr; : (S x A x A)* x S — D(A) that associates with every
finite sequence: € (S x A x A)* of state and action pairs, and the current staite S, representing the
past history of the game, a probability distributief(z - s) used to select the next move. The strategy
can prescribe only moves that are available to playéhnat is, for all sequences € (S x A x A)* and
statess € S, we require thaBupp(o;(z - s)) C I';(s). We denote by, the set of all strategies for player
i € {1,2}. Once the starting stateand the strategies; ando, for the two players have been chosen, the
probabilities of events are uniquely defined [22], whereaentA C (2 is a measurable set of paths. For an
eventA C 2, we denote byr?'-?2(.A) the probability that a path belongs.tbwhen the game starts from
s and the players use the strategiesando,. We denote byE:"??[-] the associated expectation measure.
We will consider the following special classes of strategie

1. Stationary (memoryless) and positional strategi@sstrategyo; is stationary(or memoryless) if it
is independent of the history but only depends on the custie, i.e., for alle,2’ € (S x A x
A)* and alls € S, we haveo;(z - s) = o;(2’ - s), and thus can be expressed as a functipn
S — D(A). For stationary strategies, the complexity of the straiegyescribed by theatienceof
the strategy, which is the inverse of the minimum non-zembability assigned to an action [11].
Formally, for a stationary strategy, : S — D(A) for playeri, the patience isnaxscg pat(o;(s)),
wherepat(o;(s)) is the patience of the distribution(s). A strategy ispure (deterministic)f it does
not use randomization, i.e., for any history there is alwsy®e unique action that is played with
probability 1. A pure stationary strategy is also called gositional strategy, and represented as a
functiono; : S — A. We denote by? the set of stationary strategies for player

2. Strategies with memory and finite-memory strategi@sstrategyo; can be equivalently defined as
a pair of functions(c?, o), along with a setMem of memory states, such that (i) the next move
function o' : S x Mem — D(A) given the current state of the game and the current memory
state specifies the probability distribution over the axdicand (ii) the memory update functiof :
S x Ax Ax Mem — Mem given the current state of the game, the action pairs, andutrent
memory state updates the memory state. Any strategy cangoessed with an infinite sélem of
memory states, and a strategy ifirate-memorystrategy if the seMem of memory states is finite,
otherwise it is arinfinite-memorystrategy. We denote ky!" the set of finite-memory strategies for

playeri.

Absorbing states. A states is absorbingif for all actionsa; € I'1(s) and all actionsiy € I'z(s) we have
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Succ(s, a1, a2) = {s}. Inthe present paper we will also require tHat(s)| = |T'2(s)| = 1if sis absorbing.
Objectives. A guantitative objectived : 2 — R is a measurable function. In this work we will con-
sider limit-average (or mean-payoff) objectives. We will consider concurreatngs with a reward func-
tionr: Sx Ax A — [0,1] that assigns a reward valuésra;,az) for all s € S, a; € T'i(s) and
as € I'y(s). Forapatho = ((so,a?,a), (s1,al,ad),...), the limit-inferior average (resp. limit-superior
average) is defined as followsimInfAvg(w) = liminf,, o0 = 3770 1(s;, a%, ab) (resp.LimSupAvg(w) =
lim sup,, _, o = Z;‘:_(]l r(si,al,ab)). For the analysis of concurrent games with Boolean limérage objec-
tives (with rewards 0 and 1 only) we will also neszhchability and safetyobjectives. Given a target set
U C S, the reachability objectiv®each(U) requires some state fii be visited at least once, i.e., defines
the set

Reach(U) = {w = ((s0,a,a3), (s1,a},a3),...) | 3i > 0.5, € U}

of paths. The dual safety objective for a $&tC S of safe states requires that the 8eis never left, i.e.,
Safe(F) = {w = ((so,a(l],ag), (s1,atl,ad),. )| Vi>0.s € F}.

We also consider the eventual safety objective, nam@Bjichiobjective, that requires for a given déthat
ultimately only states itF" are visited, i.e.,

coBuchi(F) = {w = ((s0,a,a3), (s1,a1,a3),...) | 3j > 0.Vi > j. s; € F}.

Observe that reachability objectives are a very specia aBBoolean reward limit-average objectives where
states inJ are absorbing and are exactly the states with reward 1, arithgi for safety objectives.

Markov chains. A game structure is aMarkov chainif m = 1. We will in that case writé)(s) for the
distributiond(s, a1, az), wherea, is the unique action iii'; (s) andas is the unique action if'y(s). Markov
chains defines a weighted grap$i, £, w), where(s,s’) € E iff 6(s)(s’) > 0 and for all(s,s’) € E we
have thatw((s,s’)) = d(s)(s’). For an eventd C ), we denote byPr,(.A) the probabilityPr?"72(A),
whereo; ando, are the unique strategies for player 1 and player 2, resedctiA states is reachable from
another state’ iff s’ is reachable froms in (S, E,w). A set of statesZ is reachable from a stateiff a
state inZ is reachable frons. For any set of stateg in a Markov chain, letRg(Z), be the set of states
from which Z is not reachable. Clearlyzs(Z) C (S \ Z). A set of stated. is called arecurrent classf
for each pair of states, s’ € L we have that’ is reachable froms and for each pair of statese L and
s” € (S'\ L) we have thas” is not reachable from. A recurrent classn a Markov chain is a bottom scc
(strongly connected component) in the graph of the Markairghwhere a bottom sck is an scc with no
edges leaving the scc.

Properties of Markov chains to be explicitly used in proofs. We will use several basic properties of
Markov chains in our proof and we explicitly state them heret us fix a Markov chain with state spaSe

1. GivenasetZ C S, for all s € S, with probability 1 eitherZ is visited infinitely often orRg(Z) is
reached.

2. GivenZ C S, forall s € S, with probability 1R¢(Z) or Z is reached, i.ePrs(Reach(Rs(Z)UZ)) =
1.

3. Given setZ C SandZ’ C S, such thatZ can only be left from Z’ N Z), then for alls € Z with
probability 1(Rs(Z')N Z) or (Z' N Z) is reached, i.ePrs(Reach((Rs(Z")NZ)U(Z' N Z))) = 1.
Note the similarity with the previous property, only intection with 7 is taken.



4. Given setZ C S andZ’ C S, such thatZ can only be left fromZ’ N Z) and from each state in
(Z' N Z) there is a positive probability to leavg, then for alls € Z with probability 1(Rs(Z') N Z)
or (S\ Z) is reached, i.ePry(Reach((Rs(Z')NZ) U (S\ Z2))) = 1.

5. From every state € S, with probability 1 some recurrent clagsis reached; and given a recurrent
classL is reached, with probability 1 every statelins reached.

6. ConsiderZ C S andZ’ C S such that for alk € Z the setZ’ is reachable. Then for afl € S with
probability 1 eitherRs(Z) or Z' is reached, i.ePrs(Reach(Rs(Z) U Z')) = 1.

7. ConsideZ C SandZ’ C S suchthatforalk € (S\(ZUZ")), we have thab(s)(Z)-e > d(s)(Z’),
fore > 0. Then, foralls € (S'\ (Z U Z’)) the probability to reacty or Rs(Z U Z’) is at leastl — e,
i.e.,,Prg(Reach(ZURg(ZUZ"))) > 1 —e.

8. ConsiderZ C S andZ’ C S such that for alk € Z the setZ’ is reachable. Then for a#l € Z with
probability 1(S \ Z) or Z' is reached, i.ePrs(Reach((S'\ Z)U Z’)) = 1.

We will refer to these properties as Markov property 1 to Marfroperty 8, respectively.

p-calculus. Consider au-calculus expressio® = uX.1)(X) over a finite setS, wherey : 25 — 25
is monotonic. The least fixpoink = ©X.1(X) is equal to the limitlimy_, ., X, whereX, = 0, and
Xi+1 = ¥(Xg). For every state € ¥, we define thdevel k > 0 of s to be the integer such that¢ X,
ands € Xy 1. The greatest fixpoinft = v X.¢)(X) is equal to the limitimy_,., X, whereX, = S, and
Xi+1 = ¥(Xg). For every state ¢ ¥, we define thdevel k > 0 of s to be the integer such thate X},
ands ¢ Xj.1. Theheightof a u-calculus expressionX.i)(X), wherey € {u, v}, is the least integek
such thatX;, = limg_,o, X;. An expression of height can be computed ih + 1 iterations. Au-calculus
formula with nested: andr operators is a very succinct description of a nested iteratigorithm.

The value problem. Given an objective®, and a clas< of strategies for player 1, the value for
player 1 under the class of strategies is the maximal payoff that player 1 can guemntith a strat-
egy in classC. Formally, va[®,C)(s) = sup,,ecinfoex, EV7?[@]. In this work we will con-
sider the computation of thealue 1 setunder finite-memory strategies, i.e., the computation ef bt
{s € S| val(LimInfAvg(r), 2f)(s) = 1}. Observe that to ensure value 1, player 1 must ensure thali for
e > 0, the probability to visit reward 1 is at least— ¢, and hence it follows if all rewards less than 1 are
decreased to 0 the value 1 set still remains the same, and fargimplicity for the value 1 set computation

we will consider Boolean reward functions.

3 The Value 1 Set Computation

In this section we will present a polynomial-time algorithencompute the value 1 set, yab, 1), for
mean-payoff objective®. We start with a very basic and informal overview of the ailigon.

Basic overview of the algorithm. The algorithm will compute the value 1 sBt by iteratively adding
chunks of states that are guaranteed to be in the value 1rmgktha iteration will finally converge toV.
Let U C W be the set of states that are already guaranteed to be inlthe aet (already identified as
subset ofii” in some previous iteration). Then a new chuXikof states are added such tlhatC X C W,
and the new chunk of states are also added iteratively (gogitdm is a nested iterative algorithm). For the
setX, letU C Y C X be the subset that is already added, and then a new ciuakZ C X is added
such that player 1 can ensure that one of the following thoeeliions hold: (1) the probability to reach
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Figure 2: Pictorial illustration of Equation 1.
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Figure 3: Pictorial illustration of Equation 2.
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U in one step can be made arbitrarily large as compared to timbpility to leavell in one step (thet/

can be reached with probability arbitrarily close to 1); 8 the probability to stay inX in one step is 1
and the probability to reach in one step is positive (theri can be reached with probability 1); or (3) the
probability to stay inX in one step is 1, the one step expected reward and the pribp&istay inZ in one
step can be made arbitrarily close to 1. Figure 2, Figure @ Fagure 4 illustrate the above three conditions,
respectively, pictorially. Note that the above three cbads ardocal (one-step) conditions and we will first
define an one-step predecessor operator to capture the anmlidons. We will then show how to compute
the one-step predecessor operator in polynomial time, aathfishow how to use the one-step predecessor
operator in a nested iterative algorithm to compute theevalget in polynomial time.
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Figure 4. Pictorial illustration of Equation 3.



3.1 One-step predecessor operator

We first formally define the one-step predecessor operatdr wias described informally in the basic
overview of the algorithm. Given a stateand two distributionsf; € D(I'i(s)) and& € D(I'a(s)),

the expected one-step rewdtgpRew(s, {1,¢2) is defined as follows ", o, () ayera(s) €1(a1) - &2(az) -
r(s,a1,as). We often use distributions for player 2 that plays a singtéa a, with probability 1, and use
as to denote such a distribution. For sétsC Y C Z C X C W, the one-step predecessor operator for
limit-average (mean-payoff) objectives, denoted_asAvgPre(W,U, XY, Z), is the set of states such
that for all0 < e < % there exists a distributiogf overI';(s) such that for all actionss in I'y(s), we have
that

(6 : 5(37557 az)(U) > 5(87557 a2)(W)) (1)
V (305, a2)(X) = 1A 8(s, 8, a2)(¥) > 0) @
vV (5(3,5{,@2)(X) =1 A ExpRew(s, £, a2) > 1 —€eNd(s,£,a2)(Z2) > 1— e) . (3)

We denote the above conditions as Equation 1, Equation 2Egndtion 3, respectively. Also our nested
iterative algorithm (as informally described) that usesltmAvgPre(W, U, XY, Z) operator will ensure
the required inclusiod C Y C Z C X C W. Before presenting the algorithm for the computation of
theLimAvgPre set, we first discuss the special case when we only have thedirdition Equation 1, then
describe some key properties of witness distributions, famadly present an iterative algorithm to compute
LimAvgPre.

The LPre operator and witness parametrized distribution. An algorithm for the computation of the
predecessor operator (called thBre operator) for reachability games was presented in [9] wioaty
Equation 1 is required to be satisfied. We extend the restilf8, @] to obtain the following properties
(details presented in technical appendix):

¢ (Input and output)The algorithm takes as input a statéwo setd/ C W of states, two sets of action
setsA; C I'i(s) andAs C I'y(s), and either rejects the input or returns the largestdget A such

that the following conditions hold: for evefy< e < % there exists a witness distributigh € D(A;),

_ _ —([A1]-1) _ _ . . -
with patience at mos(%) ' , such that (i) for all actions, € A3 Equation 1 is satisfied;
and (ii) for all actionsz), € (A2 \ Az) we haveSucc(s, £5,ah) C W. The setds is largest in the sense
thatif A4 C A, andA, satisfies the above conditions, thén C As. Notice that this indicates that for
all ay € (A2\ A3) we haveSucc(s, &5, a2) NU = (0, because otherwise; would be inAs. Moreover,
the distribution¢§ has the largest possible support, i.e., for all actions (A; \ Supp(&S)), there
exists an actioms in (Ay \ Asz) such thaSucc(s,ar,az) N W # (. An input would only be rejected

if for each actiomu; € A; there exists an actiom, € A, such thaSucc(s, a1, as) N W # (.

o (Parametrized distribution)Finally, the witness family of distributiong], for 0 < e < % is presented
in a parametrized fashion as follows: the supgorpp(£$) forall 0 < e < % is the same (denoted as
A*), and the algorithm gives the support sEt, and a ranking function that assigns a number from
0 to at most|A*| to every action inA*, and for any0 < e < % the witness distributiog] plays
actions with ranki with probability proportional ta*. In other words, the support sdt* and the
ranking number of the actions iA* is a polynomial witness for the parametrized family of wigge

distributions¢s, for all 0 < e < 2.



We summarize the important properties which we explicigg later:LPre(s, W, U, Ay, Ag) for U C W
returns the following (see Technical Appendix for corress proof):

1. (Reject property ofLPre). Reject and then for alk; € A; there existsas € Ay such that
Succ(s,ar,az) "W # ()

2. (Accept properties dfPre). Accepts and returns the sét C A, and a parametrized distributigs,
for0 <e< % with supportSupp(£5) € A;, such that the following properties hold:

o (Accept property a). For all; € A3, the distributions{ satisfies Equation 1 far,.

e (Accept property b). For alby € (As \ A3), we haveSucc(s,&§,a2) N W = ) and
Succ(s, £5,a2) N U = 0.

o (Accept property c). For alt; € (A; \ Supp(&])), there exists an actiom, in (Az \ A3) such
thatSucc(s, a1, az) N W # 0.

e (Accept property d). The sets is largest in the sense that for al} € (As \ As) and for
all parametrized distribution§; over A;, the Equation 1 cannot be satisfied, while satisfying

actions inA, using Equation 1, or Equation 2, or Equation 3, for aqyY, Z such thatU C
YCZCXCW.

One action with large probability property. We will now show that if a state belongs ttimAvgPre, then
there is a family of witness distributions where one actida played with very large probability.

Lemmal. GivenU CY C Z C X C W, if s € LimAvgPre(W,U, X,Y, Z), then for all0 < € < 57
there is a witness distribution to satisfy at least one ofttivee conditions (Equation 1, Equation 2, or
Equation 3) ofLimAvgPre where an actior € T';(s) is played with probability at least — € - Jin.

Proof. Given0 < e < 57 let £§ be a witness distribution such that for all actiondif{s) at least one of
the three conditions farimAvgPre is satisfied. Let’; be the set of actions; in I's(s) such that§ andas
satisfy Equation 1; respectivelg, for Equation 2, and’; for Equation 3. Let be some action such that
&{(a) > % (note that such an action must exist){{{a) > 1 — € - dmin, then we already have the desired
actiona; and we are done. Otherwise, we consider the distribufjatefined as follows:

5/( ) 1_6'5min ifa:al
a = €
L € Omin - %‘18) otherwise.

We now consider three cases to shgjis also a witness distribution to satisfy at least one of tiree
conditions ofLimAvgPre for e.

1. Consider an actioa, in C;. Sinceas in C; ande < 57 we must have thatucc(s, a, az) "W # (),
because otherwise give#j anda, the setl is reached with probability at Ieaé!tn% (asa is played
with probability at Ieast,}—1 by £5), i.e.,0(s, &5, an)(W) > 5“7“ > e. This contradicts that, satisfies
Equation 1 forS for the givene < 57 Hence givern andas, the probability to leave the sét
is 0; and since all the other actions are only scaleg| ias compared t¢ we have

s, €5, 02)(U) _ 6(5,€,02)(0)
(5, €5,02) (W) = 8(5,€1,02) (W)

Hence, givert] the actionas must also satisfy Equation 1 fer
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2. Consider an actiom in Cs. Sinceas in Cs (i.€., satisfies Equation 2) we must haie:c(s, &5, a2) C
X (stay in X with probability 1) andSucc(s,&5,a2) N'Y # 0 (next state inY” with positive
probability). Sinceg] assigns positive probability to precisely the same set tibae ass, i.e.,
Supp(&]) = Supp(&5), we have thaBucc(s, &), az) = Succ(s, &5, a2) € X (stay inX with proba-
bility 1) andSucc(s, £, a2) NY = Succ(s, &, a2) NY # 0 (next state it” with positive probability).
Hence we have tha@t andas must also satisfy Equation 2.

3. Finally consider an actiom, in C5. We must have that (Jucc(s, a,az) C Z and (ii) (s, a,az) = 1;
because otherwise we would either not end ugiar not get reward 1 with probability at Iea@n%%
whenas is played against§ (contradicting that, satisfies Equation 3). Sin€g playsa with larger
probability than¢{, and all other actions are scaled with probabilitiegofit follows that for every
ay in C's we must have thaf] anda, satisfy Equation 3.

The desired result follows. O

The action with large probability. In Lemma 1 we showed that some action is played with largeagitity.

In the lemma the action was chosen depending, daut since there are only finitely many actions and if an
action satisfies for some < € < % then it also satisfies for adl such that < ¢ < % and thus it follows
that there is an action that is played with large probabiMye will call a parametrized distributiogy, for
0<e< % ana-large distribution if the distribution plays actiolwith probability at least — € §;nin. Thus
the existence of witnesslarge distributions, if such distributions exist, follevfrom Lemma 1. The main
crux of the algorithm would be to find an actiarand a parametrized distribution thatidarge as a witness
distribution forLimAvgPre. Our algorithm will use thé_Pre operator iteratively. The key information we
need is encoded as a matrix as follows.

The matrix for action sets. Given a states, and the set¢/ C Y C Z C X C W, we define an
IT1(s)| x [T2(s)|-matrix M, such thatM,, ., € {W,W,U, X,Y, Z°, Z1}, that corresponds to the type of
successor encountered if player 1 plays actipand player 2 plays actiom,. Let

W if Succ(s, a1, a2) "W # 0

U  if Succ(s,a1,a2) NU # 0 andSucc(s, ay,az) N W = ()

W if Succ(s,a1,a2) N (W \ X) # 0 andSucc(s, ar,az) N (W UU) =0

Y if Succ(s,a1,a2) N (Y \U) # 0 andSucc(s, a1, a) N (WUU U W\ X)) =0
My, ay = ¢ X if Suce(s,ar,a2) N (X \Z)#0

andSucc(s,ar,a) N(WUU U W\ X)U Y \U)) =10

if Succ(s,ar,a2)N(Z\Y) #0
andSucc(s,ar,a2) N(WUUUW\X)U Y \U)U(X\2)) =0
and 1(s,ay,a2) = ¢, for £ € {0,1} .

ol

The matrix uses tha/ C Y C Z C X C W, to ensure that the matrix is well-defined. Notice that
encodes all the information needed fjre (the entries equal t&, Y, X, Z!, Z° all ensures bothl” andU
are not reached/ ensures thal/ is reached with probability at leadt,;, and1V is not reached. The entries
W ensures thall’ is reached with probability betweei,;, and1). Hence, we could alternatively givel
as input tolPre.

Intuitive description of the algorithm. We first present an intuitive description of our algorithntd dhen
present it formally. The basic idea of the algorithm is to UBee iteratively and the existence aflarge
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witness distributions. Given a candidate actigrwe rejecta or accepta using the following procedure.
First, given the actiom, if there is an actioms such thafi? is left with positive probability giverm andas
(i.e., My, = W), then we reject.. Second, we check if playing with probability 1 satisfies all actions
(by either of the three conditions), and if so we accept. Iftree of the first two conditions hold, then we
use an iterative procedure. L&tbe the set of actions which are guaranteed to be satisfiedqbation 1)
by playing ana-large distribution (' consists of each actiom, such thatd/, ,, = U). We runLPre, and
start with(I'; (s) \ {a}) asavailable actiondor player 1 (we are only interested inlarge distributions and
we do not considex for LPre) and(I'2(s) \ C') as available actions for player 2. lPre rejects, we also
reject: this is because no matter which actign# « is played with the largest probability (and we could
not playa alone) there is an actiom, such thatV/,, ,, = w andM, ., # U, which ensures that all three
equations are violated. lfPre accepts, then we obtain a witness distributfgrand a setds of actions of
player 2 such tha; satisfies Equation 1 for all actions iy. We then creat€], which is¢; scaled so that it
plays ana-large distribution (note that playsa with probability 0). Afterwards we check if all actions for
player 2 are satisfied b§}. If so, we accept. Otherwise, we check that whether for eatibrea, outside
(A3 U C') we can satisfy either Equation 2 or Equation 3: dgrto be satisfied using Equation 3, we must
have thatVl, ., = Z'; and foras to be satisfied using Equation 2, the distributggrmust play some action
a1 with positive probability such that/,, ,, = Y. If for someay outside(Az U C), neitherM, ., = AR
norM,, ., =Y, for somea; played with positive probability, we reject. Otherwisew did not reject, we
remove each actiom for player 1 from available actions, for which there existiaig € (A3 UC'), such that
M, .., = W. Note that ifM,, ,, = W, then we cannot satisfy, using either Equation 2 or Equation 3, if
we playa; with positive probability. If the set of available actionse$ not contairm, then we cannot play
a With positive probability in aru-large distribution, which clearly means that sedarge distribution exists
and thus we reject. If this new, smaller set of actions foygial contains:, we iterate on with the new set
as the set of available actions for player 1, and the availsél for player 2 always remains @(s) \ C).
Since, in every iteration, we get a smaller set of actionplayer 1, we terminate at some point.

The algorithm ALGOPRED. We now describe the steps of the algorithm which we refer esGPRED
(algorithm for predecessor computation). For a statee consider every actiom € I';(s) as a candidate
for the existence of an-large witness distribution. For each actiomve execute the following steps:

1. (Reject 1).Reject the choice af if there existszy € I's(s) such thatM, 4, = W.

2. (Accept 1).Accepta if for all az € T'2(s) we haveM,, ., € {U,Y, Z'}, and then return the distribu-
tion that plays: with probability 1, and return “Accept” for state

3. LetC be the set of actions, in T's(s) such thatM,, ., # U. Initialize BY and A{ as(I'y(s) \ {a}).
The remainder of the algorithm will be done in iterations.

4. (lteration). In iterationi > 1, runLPre(s, W, U, (A" N B{™") \ {a}),C).
(Reject 2): ifLPre(s, W, U, ((A7"" n B{™") \ {a}), C) rejects the input, then reject this choicedof
Otherwise let4} be the returned set; and Igt’ be a witness parametrized distribution (parametrized

by0 <e< % which is obtained by the support @j’i and the ranking of the actions in the support).
We will now define some sets of actions.

(@) LetA] = Supp(¢;”) U {a}.
(b) LetB: be all actionsz; in 'y (s) such that for alky € (C'\ A%) we haveM,, ., # W.

(c) LetBi be all actionsiz in (C'\ A3) such that either (i), ., = Z*; or (i) there exists an action
ay € A} with My, 0, =Y.
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5. We reject in the following cases:

e (Reject 3) If (AL N BY) \ {a}) = 0, then reject this choice af.
e (Reject 4)If (C'\ AY) # Bi, then reject this choice af.
e (Reject 5) If a ¢ B, then reject this choice af.

6. (Accept 2) Otherwise ifA] C Bi, then return accept, and return the parametrized distributigh
for0 <e< % that playsa with probability 1 — € - 6, @and with probabilitye - d,,;, follows £77*, and
also “Accept” states.

7. If the action is neither accepted nor rejected, then gtetationi + 1 in step 4.

If all choices of actioru € I'1(s) get rejected, then “Reject” state

The parametrized distribution for Accept 2 is returned asspecial actiom (to be played with proba-
bility 1 — € - dmin, fOr0 < e < %), the support set Qﬁ’i and the ranking function of the support as given
by theLPre operator (which gives the parametrized distribution@irwhich is multiplied bye - §,,;, to get
the parametrized-large witness distributiog] anda is played with the remaining probability).

lllustrations with examplesiVe illustrate our algorithm on four/-matrices shown in Figure 5. First observe
that the only feasible candidate for aflarge distribution is the first row, because each other romtains
anW entry, and thus will be rejected at the start. The first maghigwn in Figure 5a will be accepted by
the algorithm and the other three will be rejected by therilgm.

1. Consider first the matrix in Figure 5a. Then the algoritlsnnun with the first row as, it will call
LPre with the all rows but the first row for player 1 and all columns the first column for player 2
(since given the first row, the first column satisfies EqualipnTheLPre algorithm will then return
the distributiond of playing the second row with probability— 5 and the third row with probability
5. It also returns the set3 containing the second and third column (they satisfy Equati). We
then get accept in that iteration, because column 4 and ecolugan be satisfied by Equation 2 and
column 6 can be satisfied by Equation 3.

2. Consider now the second matrix, the one in Figure 5b. Itgeil rejected at start, because in this case
each row contains ai entry.

3. The third matrix, the one in Figure 5c, will get rejectedhie second iteration. In the first iteration,
LPre will return the same distributiod as for the first matrix along with the sam;. This time,
we cannot accept directly, becauseo longer satisfies any of the three equations, for columnt5. A
that point, the algorithm considers that each columre {4, 5,6} such that\/,, ,, = Y for some
a1 € {1,2,3} or M, ,, = Z' (wherea = 1). Thus, the algorithm removes row 2, from the set of
possible rows, because column 5 is such fa = W, and5 ¢ A3 and iterate. Then the algorithm
calls LPre and gets back reject, because each of the rows left contaleast one instance .
Hence the algorithm rejects.

4. For the last matrix, the one in Figure 5d, the algorithnisdalPre and getsd and As, but this time
the algorithm rejects at that point, because row 6 (whiclotsim A3) does not contain an actian
played with positive probability such that,,, ¢ = Y or is such that\l, s = Z'.
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U @ w X v Zt
u ww X vy Zz M=|W U WY W X
vy | W v wy X X W W U X X X
Sl wWWwW U X X X w W W W W W
ww W W W W
(b) This illustrates aM-matrix, which has noa-
(a) This illustrates a/-matrix, which has an-large large distribution. The cicled entry is the only entry
distribution, where: corresponds to the first row. changed as compared to Figure 5a.
uw w x v 2 v ww X Y
o | WU ow oy (W) x M= | W U W Y X
ww U X X X wWw U X X X
wwww W W ww W w W W
(c) This illustrates aM-matrix, which has noa- (d) This illustrates @1-matrix, which has na-large
large distribution. The cicled entry is the only entry distribution. The circled entries are the only entries
changed as compared to Figure 5a. changed as compared to Figure 5a.

Figure 5

Lemma 2. GivenU C Y C Z C X C W and a states, if algorithm ALGOPRED acceptss, then

s € LimAvgPre(W,U, XY, Z). Furthermore, for every) < e < % there exists a witness distributicfj
_ _ —(IT1(s)[-1) _ _ . .
with patience at mos@%) ' to satisfy at least one of the three required conditions @igu 1,

Equation 2, or Equation 3) fotimAvgPre for every actionuy € I's(s).

Proof. We will next show that if AGOPRED returns a parametrized distributigf, then for all0 < € < %
and for all actionsiy € I'y(s), at least one of the three conditionsLoAvgPre is satisfied. This will show
thats € LimAvgPre(W, U, X,Y, Z). The algorithm accepts stateand returns a distribution at two places,
namely, (Accept 1) and (Accept 2). For the case of Acceptd atgorithms returns a distribution that plays
some actior with probability 1; and for the case of Accept 2 it returns stidbution that plays some subset
of actions (at least 2) with positive probability. We anaymth the cases below.

1. Case Accept 1In the first case for all actions, we have that\/, ., € {U,Y,Z'}. We analyze the
three sub-cases.

(@) If M,,q, = U, thenSucc(s, a, s2) NU # 0 (i.e., the next state is iti with positive probability)
andSucc(s, a, az) "W = {) (i.e., the next state is i/ with probability 0) and hence Equation 1
is satisfied.

(b) If M, ., =Y, then (i)Succ(s,a,az) N (Y \U) # 0 which implies thaSucc(s, a,a2) NY # 0,
since(Y \ U) C Y; and (i) Succ(s,a,a2) N (W UU U (W \ X)) = 0 which implies that
Succ(s,a,a2) N (X UU) = () because aX’ C W we have(W UU U(W \ X)) = X UU; and
henceSucc(s, a,a2) C X. The first condition ensures that the next state i¥ iwith positive
probability and the second condition ensures the next stateX with probability 1, and thus
Equation 2 is satisfied.
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(¢) If Myq, = Z1, then ())Succ(s, a,a2) N (Z\Y) # 0 which implies thaBucc(s, a, az) N Z # 0;
and (i) Succ(s,a,a2) " (WUU U W\ X)U (Y \U)U (X \ Z)) = 0 which implies that
Succ(s,a,a2)N(ZUUUY) = (), because a8 C X C W we have(W UU U(W \ X)UY U
(X\2)) = (ZUuUUY), and henc&ucc(s,a,az) C Z (i.e., next state i with probability 1);
and (iii) r(s,a,a2) =1 (i.e., expected reward is 1). It follows that Equation 3 iss$ied.

2. Case Accept 2In the second case, we consider the case when the algorithmse parameterized
distribution&f, for0 < e < % in iterationi. Let the action played with probability — € - §,i, bea.
Such an action clearly exists, by construction. Forany I'y(s) such thatV, ., = U, then the next
state is inU with probability at leasf1 — € - duin) - Smin @nd the next state is I with probability
at moste - 4,y and the ratio is at least: ¢; thus the distributiorg] anda, satisfy Equation 1 fo - e.
AsO <e< % is arbitrary the result follows for all, such thatV/, ,, = U. We consider the sét of
remaining actions iy (s), i.e., for alla; € C we haveM, ,, # U.

Satisfying Equation 1 isd;. We have thatVl, ., # W, for all a; € T's(s), because otherwise the
guess of actiorm would have been rejected, in (Reject 1). We also haveltRed(s, W, U, B, C),
for B C (T'1(s) \ {a}) must return an distributiog] over B’ and a setd’ C C, such that for all
ay € A’, the actionas and the distributiort) satisfies Equation 1 (by Accept property aldire).

In the last iteration the set}, is the set returned blyPre(s, W, U, ((A™' n Bi™1) \ {a}),C), and
the distributiongi’i satisfies Equation 1 for all actions i, (again by Accept property a dfPre
since A} is the returned subset 6f). Since¢< only playsa with high probability and only scales the
distributiongi’i it follows (similarly to Case 1 of Lemma 1) thgf satisfies Equation 1 for all actions
in AL,

Satisfying Equation 2 or Equation 3 {i"\ A%). By definition of Bi and A (Step 4 (a) and Step 4 (b)
of the algorithm), and thatt! C B? (from Accept 2 of the algorithm), it follows that the distuition
& is such that for alky € (C'\ A%) anda; € Supp(&§) U {a} = A% we haveM,, ., # W. Also
forall ax € (C'\ AY) and alla; such that$(a;) > 0, we have from Accept property b &Pre that
Mg, 4y # W andM,, ., # U. Notice that therefore for all; € Supp(¢5) andas € (C\ AS) we have
My, oy € {X,Y,Z° Z1}, which implies thaBucc(s, £, a2)(X) = 1. For allay € (C'\ A3) we have
that either ()M, ., = Z*; or (ii) & assigned positive probability to some such thatV/,, ., = Y,
because otherwisg"' \ A%) # B and we would have rejected this choiceaofby Reject 4 of the
algorithm). Notice thad/, ., = Z' implies thatSucc(s, a,a2)(Z) = 1 and that (s, a, a2) = 1, thus,
since the distribution the algorithm returned wakarge, we get that we reachi in one step with
probability at leasl — ¢ - ,,;, and get reward 1 with probability at ledst ¢ - §,i,, hence Equation 3
is satisfied. If the second case holds (i€, ., = Y), we haveSucc(s, i, a2) N (Y \U) # 0 (i.e.,
Y is reached with positive probability in one step), thus iy that Equation 2 is satisfied.

Therefore the distributiogy is a witness distribution to satisfy the required condgidar 0 < € < %
for LimAvgPre. It follows thats € LimAvgPre(W, U, X, Y, Z).

Patience. The distribution returned bylLPre over |[I'i(s)] — 1 actions has patience at most

=(IT1(s)[-2) - _ L .
(%) ' . Hence it is clear from the algorithm that the distributi@iurned by the algorithm

>—(|F1(S)|—1)

has patience at moét“;%in O

Our next goal is to present a lemma that complements thequevemma. In other words, we would
show that if ALGOPRED rejects an actiom, then there would be ne-large distributions as withesses for

14



LimAvgPre. The algorithm rejects an actianat four places, and we will show that all the rejections are
sound(i.e., if a is rejected, then there is nelarge witness distribution). We first show that the firseogjon
is sound.

Soundness of Reject 1We consider the case of Reject 1. In this case, there exisastaoma, such that
M, ., = W. Given ana-large distributions, the one step probability to readH (i.e.,d(s, &5, az)(W)) is
atleastr = (1 — € Oin) - Omin > €, Sincee < % anddnin < 1, and even iU is reached with the remaining
probability (i.e., even i (s, &S, a2)(U) = 1 — z), it follows that Equation 1 is violated, for all < ¢ < %
The remaining two expressions cannot be satisfied becguse W and since we leavél’ with positive
probability we as well leav&” with positive probability. It follows that the rejection attiona is sound for

Reject 1.

Rejects initeration. The other places the algorithm can reject actipre., (Reject 2), (Reject 3), (Reject 4),
and (Reject 5), are part of the iterative procedure. To psoemdness of these rejects we will define a loop
invariant and prove the loop invariant inductively. We valso show that with the loop invariant we can
establish soundness of the rejects in the iterative proeeaiiwell as the termination of the algorithm.

The loop invariant. Theloop invariantis as follows:

e Any a-large witness distributio#s for LimAvgPre only plays actions iriAi N B}) U {a} with positive
probabilities, for ali > 0, i.e.,Supp(£$) C (A8 N Bi) U {a}.

We will also establish thenonotonicity(strictly decreasing till a fixpoint is reached) propertatthAt N
Bi) U{a} C (A7 n Bi~Y) U {a}, for alli > 0; and equality implies termination in iteratian
Inductive proof of loop invariant. We present the basic inductive argument for the loop ina&ria

e The base casei = 0. The base case, far= 0 is trivial, sinceAY = B} = (T'1(s) \ {a}), thus
implying that(A} N BY) U {a} = T'(s).

e The induction case,; > 0. By inductive hypothesis, any-large witness distributiog{ only plays
actions in(A,™' N Bi™Y) U {a} with positive probabilities, and we need to establishifowe will
show that any:-large witness distribution can only play actionsdhU {a} = A{, (see the following
description ofA} which uses the inductive hypothesis). We refer to this asired property 1 for
loop invariant. Similarly, we establish the same 18} (see the following description @B which
uses the inductive hypothesis). We refer to this as requiregderty 2 for loop invariant. Hence any
witnessa-large distribution can only play actions (¢ N B:) U {a}.

The above proof requires to establish the key propertiedioéind B:. Before establishing them we first
show the monotonicity property.

Monotoncity property. We will show that we havé A} N B}) U {a} C (A" n Bi™) U {a}, for all

i > 0, and equality implies termination of the inner loop in itéwa ;. Notice that this implies that for
any choice ofa the inner loop rejects or finds a distribution after at mosK'; (s)| iterations. We have
that A7 = Supp(£$) U {a} (by Step 4 (a) of AGOPRED), where¢s is a witness distribution returned by
LPre(s, W, U, ((A"' n Bi~1)\ {a}),C). SinceSupp(&5) € (A7 n Bi7Y)\ {a}), if LPre accepts, we
have thatd} C (A" 'nB Y U{a}. Thus we get thatd’ N B})U{a} C Al U{a} C (AT nBIYu{al.
This establish monotonicity and now we show the terminatiéssume that A} N B}) U {a} = (A7 N
Bi~1) U {a}. Therefore we have thgf can only use actions if{A:~* N Bi~!) \ {a}), which is thus also
(AT N BY) \ {a}). But then either (i ¢ B! or (i) Supp(¢5) U {a} = A} C (A% N Bi) U {a}; which
implies thatA! C B:. But in the first case we reject (in (Reject 5)) and in the sdazase we accept (in
(Accept 2)). This establishes the termination property.
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The properties of the sets for loop invariant. We now present the associated properties of the4gtsl?,
Bi, and B} to complete the inductive proof of the loop invariant.

1. The property of the setl}. We first argue thatd}, has certain properties which will imply the key
properties forAs,.

(a) SincelPre(s, W, U, ((A7" nB{™")\{a}), C) accepts, we have thalfy is a subset of". There
exists a witness parametrized distributignover((A:"'NB: 1)\ {a}) such that for alty € A}
we have that| anda, satisfies Equation 1 (by Accept property alfre).

(b) Also forallas € (C\ A}) we have thaiM,, ., # W for all a; € Supp(&5) (Accept property b
of LPre).

(c) Notice also that for any actian, € C, if a distribution overd’ ' N Bi~! cannot satisfy:, using
Equation 1, then no distribution ovér’™! N Bi~1) U {a} can either, sincé/, ., # U (from
the definition of the seC’) and hencd/ cannot be reached as long as the distribution plays
a. For an distributiong] to be a witness distribution, all actions Ify(s) must satisfy either
(i) Equation 1; or (ii) Equation 2; or (iii) Equation 3. But #n actionas must satisfy either
Equation 2 or Equation 3, we must have t§atensures thal is reached with probability O
(i.e., Succ(s, &}, a2) € X). Hence, sinceX C W we also must have that’ is reached with
probability 0.

By Accept property d of Pre we have that, sincd, is returned byt Pre, noa-large witness distribu-
tion &} can satisfy any action, in (C'\ A%) using Equation 1, while satisfying all actionséhusing
Equation 1, or Equation 2, or Equation 3. Also, for@llin (C'\ A%) and alla; € Supp(&5) we have
that M,, ., # U (by Accept property b oEPre). Furthermore, by definition of' for all a; € C we
have thatM, ,, # U. Therefore we have established the following key propeifte Aj:

e Any a-large witness distributiosl; must satisfy all actions, in (C'\ A%) using either Equation 2
or Equation 3.

e Forallay € (C\ A%) anda; € Supp(&5) U {a} = A} we have thaiVl,, o, # U .

2. The property of the set’. By accept property ¢ dfPre and since we did not reject in Reject 1, the set
Al isthe largest set, such that for all € A there exists nay in (C'\ A%) with M,, ., = W. But this
means that any distribution that satisfies for all action&(in, A%) either Equation 2 or Equation 3,
must play only actions iMi. But from our description ofd} we obtain that alla-large witness
distributions must ensure that all actiongdi\ A%) are satisfied using either Equation 2 or Equation 3.
Therefore we have established the following key property£6: All a-large witness distributions
must play only actions inl} with positive probability. This proves the required prdyek of the loop
invariant.

3. The property of the seBj. From the first key property ofi} we have that any--large witness
distribution must ensure that all actions(i@l \ A%) satisfy either Equation 2 or Equation 3. From the
second key property of}, for alla; € A% and allay € (C'\ A%), we have thab/,, ., # U. The key
property ofA¢ implies that any:-large witness distribution must play only actionsAg.

Hence, for am-large witness distributiog], for all s in (C'\ A%) we must have that either (), ., =
Z! (to satisfy Equation 3); or (ii) there is an actien in A} such thatM,, ., = Y (to satisfy
Equation 2 — it would also be satisfied iff,, ., = U but we know that)M,, ., # U by Accept
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property b ofLPre). But that is precisely the definition @ (Step 4 (c) of AGOPRED). Therefore,
we have the following key property faB:: Actionsas in (C'\ (4% U B})) cannot be satisfied by
Equation 1 or Equation 2 or Equation 3 by amarge witness distribution.

4. The property of the seB:. We know from the first key property o} that all actions in(C \ A5)
must satisfy Equation 2 or Equation 3. But to do so we musgléawith probability0. But B! is the
largest set of actions such that for all actiensn B! and for all actionsi, in (C'\ A%), we have that
Mg, 0, 7 W (Step 4 (b) of AGOPRED). Hence we have that astlarge distribution that plays an
action in(I'; (s) \ B%) with positive probability violates both Equation 2 and Etipra 3 for somen,
in (C'\ A%). Therefore, we have the following key property #8{: All a-large witness distributions
only plays actions imB:. This also proves the required property 2 of the loop invaria

This establishes the inductive proof of the loop invariant.

Lemma 3. ForagivenU C Y C Z C X C W, if Algorithm ALGOPRED rejects states, then
s ¢ LimAvgPre(W,U, X,Y, Z). Also, algorithmALGOPRED accepts or rejects a choice of actianas
a candidate for the existence @flarge witness distributions at mostin(|I';(s)|, |T'2(s)|) iterations of the
inner loop.

Proof. In the algorithm there are five places where a choicemfght get rejected. We have already argued
the soundness of Reject 1. We prove the soundness of therejbets below.

1. (Reject 2)If LPre(s, W, U, (A n Bi™)\ {a}), C) is rejected, then for all actions in ((A°™' n
Bi~1)\ {a}), there exists an actiom, in C such thatM,, ., = W, by the reject property dfPre.
But then consider any distributiofy over ((A7™' N Bi™!) \ {a}), some actioru; is played with
probability at Ieastrln. Hence the action, such thatM,,, ,, = W, cannot be satisfied using neither
(i) Equation 1; nor (ii) Equation 2; nor (i) Equation 3. Thatter two becaus&V is entered with
positive probability in one step and hen&eis left with positive probability in one step. The first is
because we readl’ with probability at least: = % and even if we reaclf with probability 1 — x,
we still do not satisfy Equation 1. Now consider some distiin &, over (A7™' N Bi™') U {a}.
Either it playsa with probability 1 or not. If it does, then it cannot be a wissedistribution, since
it otherwise would have been accepted in Accept 1. If it doatstimen the argument is similar to
the previous argument (in the case of Equation 1, the arguaism uses thad/, ,, # U from the
definition of C'). Hence no witness distribution exists that only uses astio (A, N B{™) U {a}.
Thus Reject 2 is a sound reject, by the loop invariant.

2. (Reject 3). If a is not accepted by Accept 1, thencould not be played with probability 1. For
Reject 3, the conditiori(4} N BY) \ {a}) = 0 is satisfied. Thus na-large witness distribution can
play anything but by the loop invariant. Therefore nelarge witness distribution can exist in this
case. Thus, Reject 3 is a sound reject.

3. (Reject 4) Consider am-large witness distributiotS. The key property oB3 implies that any action
az € (C'\ (A4 U BY)) cannot be satisfied using either of the equations. But sitice (C'\ A%) we
must have thaB} = (C' \ A%) for anya-large witness distribution to exists. Therefore we caaaej
the choice ofs if (C'\ A%) # Bi. Hence Reject 4 is a sound reject.

4. (Reject 5). From the key property of the sé:, we have that itz ¢ B, then noa-large witness
distribution can play: with positive probability, which implies that ne-large witness distribution
can exist. Hence Reject 5 is also a sound reject.
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Termination. We have already established (in "monotonicity and ternmmator loop invariant”) that
(AN B U{a} € (AN B Y U {a}, for all i > 0 and equality implies termination of the inner
loop in iterationi. Notice that this implies that for any choice ofthe inner loop rejects or finds a
distribution after at mosf'; (s)| iterations. We will now show that}, C A%, for all i > 0 and equality
implies termination in iteratio. Notice that this implies that for any choice @the inner loop rejecta
or finds a distribution after at mo$,(s)| iterations. We have that, C A%™!, because&$’ could also
be returned in iteration — 1 and LPre maximizes the number af;’s for which gi”'(al) > 0 (Accept
property c). Assume thaty, = A5, Then(C'\ 43) = (C \ AS™!) and thusB; = Bi~'. We also have
that A} C (AN B Y u{a}, thus implying thatd? C (A%~ IOB’)U{(L} ThereforeAZ C Bi, since if
Bi does not contain, neither doesB’ ! and thus we would have rejected the choice mc iterationi — 1,
because of (Reject 5). The deswed result follows. O

Lemma 4. GivenU C Y C Z C X C W and a states, ALGOPRED terminates in timeO(|T'; (s)|? -
IT2(s)2 + D 1€l (s),a2€Ta(s) 1SUPP(S, a1, az)]). Alternatively, ifAM is given as input, the running time is
O(IT1(s)[? - T2(s) ).

Proof. The calculation of}/ can be done in time_, ., () a,ery(s) [SUPP(s; a1, az)|. As mentioned in
the definition ofM, we could alternatively us®/ as input toLPre since it encodes all information needed.
There ardl'; (s)| different choices for which actioa to play with high probability. Giver, there are at
mostmin(|T';(s)|, |[T'2(s)|) iterations of the inner loop, see Lemma 3. Each iteratiorhefitiner loop can
be done inO(|T"1(s)| - |T'2(s)|) time, and is dominated by the running timeld?re, which runs in time
O(T1(s)| - |T'2(s)]) on M, see [9]. Hence, if\/ is given as input we get a running time Of(|T';(s)] -
min(|T1(s)], |T2(s)]) - [T1(s)| - [T2(s)|), which is less tha® (|1 (s)|? - [T2(s)[?).

O

Combining Lemma 2, Lemma 3 and Lemma 4 we get the followingiam

Lemma 5. The algorithm ALGOPRED, for a given states and setsU C Y C Z C X

-
W, correctly computes it € LimAvgPre(W,U, X,Y, Z) and runs in timeO(|T'1(s)? - |Ta(s)]® +
Zalefl(s) (lQEFQ ’Supp(s al?az)‘)

3.2 lterative algorithm for value 1 set computation

In this section we will present the nested iterative algonitfor the value 1 set computation. The nested
iterative algorithm is succinctly represented as the Yailhg nested fixpoint formulay{-calculus formula)
that uses théimAvgPre one-step predecessor operator. Let

W* =vW.uUvX.uYvZ LimAvgPre W, U, XY, Z) .

We will show thatWW* = val;(LimInfAvg, 2{). First in the next subsection we show tHat* C
val; (LimInfAvg, ¥7) C val; (LimInfAvg, ©"); and in the following subsection will establish the other in
clusion.

3.2.1 Firstinclusion: W* C val (LimInfAvg, 27

Let ©; denote the random variable for the reward atittie step of the game. We will show that for all states
sin W* for all e > 0, there exists a stationary (hence finite-memory) stratggipr player 1 such that for
all positional strategies- for player 2 we have that
lim ZE:O B [©]
t—oo t

>1—¢€.
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This will show thati* C val;(LimInfAvg, 7) C val;(LimInfAvg, $I). Notice that the statement is
trivially satisfied ifiW* = (), and hence we will assume that this is not so.

Computation of W*. We first analyze the computation @f *. SincelV* is a fixpoint, we can replacd”
by W* and get rid of the outer mostoperator, and the rest of thecalculus formula also computég™.
In other words, we have

W* = uUvX.pYvZ LimAvgPre(W* U, X,Y, Z) ,

Thus the computation ofW* is achieved as follows: Uy is the empty set; andU; =
vX.uY.vZ.LimAvgPre(W* U;_1,X,Y, Z), fori > 1. Let? be the least index such thédt = W*. For any
i > 0, we also have thalt; o is the empty set and thag ; = vZ.LimAvgPre(W*,U;_1,U;,Y; j—1, Z), for

j > 1. For a states € W*, let the rank of state (denotedk(s) = (4, 7)) be the tuple ofi, j) such that is
the least index witls € U; (i.e.,s € U; \ U;—1); andj is the least index with € Y; ; (i.e.,s € Y; ; \ Y; j_1).
Forl < i </, letrk(i) = j be the least index when the fix point convergeslfgri.e., the leasj§ such that
Y;; = Y j+1. By definition of IW*, for all statess € W*, if rk(s) = (¢, j), then we must have that for all
e > 0 there is a distributio§ overI';(s) such that for all actions, € I'y(s) for player 2 we have that

(E ’ 5(37 gi) a?)(Ui—l) > 6(87 557 a2)(W*)) (4)
v (5(375576@)([]2') =1A 5(376570’2)(}/;7]'—1) > 0) ()
V (5(s,§f,a2)(U,~) =1 A ExpRew(s, &, a2) > 1 — €A (s, &7, a2)(Yi ) > 1 — e) : (6)

whereW" = § \ W* is the complement ofV’*. We refer to the above as Equation 4, Equation 5, and
Equation 6, respectively.

The construction of stationary witness strategyo{. Fix 0 < € < % The desired witness stationary

strategyo{ will be constructed from a finite sequence of stationarytstyias,

o_i,l,O 0_?1,1’ . ,O'?l’rk(l), O_;,Z,O’ o i2 rk(2)’ o 70_?(,0’ o EZ rk(Z)
The strategies will be constructed inductively. First wé eonstruct it for states i#/; and(U, \ U,—1), and
then we will present the inductive construction féF; \ U;—1), for2 <i </ —1.

o (Base case)We will first describe the construction of the straten;ig)1 (resp.oy b 0)

1,0 4,0

1. The stationary strategp;f1
(resp (}/é rk(¢ \ YVZ rk(¢ ))

2. Forstates in (Yq n 1) \Yl rk(1)—1) (resp.(Y o) \ Yo re(e)—1)) the strategy plays the distribution
¢ overl'y(s), forn = S

(resp.oy) is arbitrary except for states Y w1y \ Yi,k(1)-1)

3. We next describe the construction of the stratepy’ (resp.o%"), for j > 1, using induction
in j.

€1,j—1 e,,j—1

(@) The strategyr’ Li (resp oy £9) plays aso; (resp. o}
(Y5 \ Y k()= (j+1)) (resp (Ye rk(£)—j \Yz tk()—(+1)))-
(b) For state$ in (Yl k(D)= \ Y1,rk(1)=(j+1) ) (resp. (Ye,r(e)—j \ York(e)—(j+1))) the strategy

) except for states in

o co 0\ (2m)!
plays the dlstrlbutlomj1 overl“l(s), forn = (f) .

19



e (Inductive case).We will next construct the strategy for the remaining statleswo steps, first for
€,1,0 ;

oy and then foraj”’j, for2 <i</¢-1andj > 1. We will do so using induction backwardsin
That is the base caseiis= ¢ and we then proceed downward.

€,1,0

1. The strategy"*° plays as the strategy/" ™" for y = ( bpin >(2m)'km, excent for sates
in (Y o) \ Yirk(i)—1)-
2. For states in Yj (i) \ Yik(i)—1 the strategy playg; overI';(s), forn = .
3. We now finally construat ™, for 2 < i < ¢ — 1, using induction inj.
(a) The strategy ;" plays asr{"/ " except for states iflY; (i), \ Yir)_(j+1))-
(b) For statess in (Yjni)—; \ Yirk@i)—(j+1)) the strategy playsg] over I'y(s), for n =

e (The entire strategy)Let 05" = 00" for all i. Leto§ play aso?! in U; ando??, for 8 = &, in
the remaining states.

] . ] _(M_l)
Lemma 6. The patience 0" (s) for statess of rank (i, rk(i) — 7) is at most(e"iTmin) ’

: : ; . —(m=1)
Proof. By construction, the patience(s) of statess of rank (i, rk(7)) is (%) (by Lemma 2).
Also for j > 1, the patiencwi’i(s) of statess of rank (i, rk(i) — j) is at most

(2m)J —(m—1) ‘
(<8 ) ™ i e b\ B D g o)

2 B 4 9
(€ Omin —@m2 =15 N T S
= 1 5 5
_ (€ Omin —(@m)?m € * Omin (2m)’ Omin - Omin
S\ A 4 2 2
< € 5min —(2m)j~m € 5min
> 1 1

€ - 5min _((2mgj+1 1)

() |

2

, o (2m)? -m m)J _\ (2m) -
where the inequality is as foIIows<—E‘52ﬁn> . <6m_n> = (5. <5mm) : <6mm) <
since(2m)’ > m > 1 ande < 1. The desired result follows.

Lemma 7. Let0 < € < % be given. The patience of the witness stationary strategys less than

E'(Smin _(zm)n
4 .
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Proof. We first present the bound féf; (alsoUz) and then for other states.

The patience ofcy’ ! for states in U, (also similar for Us). For each state in Uy, the corresponding
rk(1)
N _ —(Emp—n) - .
distributiono$' (s) has patience at moéf"i%) ’ , since no states are i o. Similarly for s in

U, and the corresponding distributi@:rj’1

The n for which the strategy o7’ 2 follows al” Inductive statement. We will argue using induction that
for each states € (W* \ U;_1), fori > 3, we have that the strate@j follows the strategy;” ¢ for

n> <6'5min>z k/ k(
- 4

)rk(k’)

(zm)rk@)
Base caseFor each state € (S \ U), the strategy’ 2 follows the strategy ", 3 for n> (—)

by construction, which is the wanted expression.
Induction casei + 1. Fori > 4, for each state € (S \ U;_1), the strategyri’2 follows the strategyrf’i,

forn > ( >Zi—1z [T, (2m)*¢)
n > (=Zpn

strategyo” ", for i/ > (—n

] . (2m)rk(i)
77/ > <77 5m1n>
4

(E%W>ZZBH L 2my*+)
4

, by induction. In each statec (S \ U;), the strategy?" follows the

7' i+1

for

(2m)rk( @)
) , by construction. Thus, the strategi/ follows o

(2m)rk(i)

* Umin
>
4
i i . (2m)rk(i)
6'5 . 1+Zk:12 k,ik@m)rk(k’)
min
2 -

€ * Omin PO HZ/:k(zm)rk(k’)
- ( a

The first inequality comes from our preceding explanatiohe Second inequality uses the inductive hy-
pothesis. The third uses thage > < mm . The last equality is the inductive hypothesisfar1 and follows
from

i—1 i—1

(2m)rk(i) + (2m)rk(i) . Z H (2m) k(E") _ 2m rk(i _|_ Z H 2m rk(k")

k=2 k'=k k=2k'=

_ Z H 2m) ()

k=2Fk'=

Patience ofo—e’z( ) for states in U;, for i > 3. We see that foi > 3 and for eacts in U; we have that

2my*-t . :
o’ ( ) follows 51 for n’ > (%) (sinceY; is empty), by construction. Hence, we get that
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i oI, (2m)™* (<)

/ m - . . - - .
0?2(3) =¢] fory > (%) : , using a similar argument as the one used in the inductive

case. Sincek(:z) > 1 andm > 1, we see that each term in the s@izz HL,:k(2m)“k(’f') is at least twice
as large as the following. Thus, we have that

ST em)™ ) <2 T @m)**) = 2. @m)Zw—="*) < 2. (2m)"~! < (2m)" .
k=2 k'=k k=2
The first inequality is becaudg; must contain at least 1 state. The second comes from 1. Hence,

A (@m)n ! . - .
n > (%) . Using an argument similar to the one used to prove Lemma §eihat the patience

/ _((27721)” _1)
for ¢! is then at mos(“{Tmin)

Patience ofs{. We now need to consider the strategy. It follows af’l in Uy and 0—15’2 elsewhere, for

B = 5, We see that
5 } 5min
4

(2m)"

€ * Omin =0
- (=)

€ * Omin —(@m)*
< (=)

The inequality is becaus€ = 16 > 8 (and the last expression more than squares the preceditdg. T
completes the proof. O

m n
_(%_1)

Basic overview of the proof.We first present the basic overview of the proof. &ebe a stationary strategy
that follows distribution¢] overI'y(s) in states € W* for somen > 0 and leto, be a positional counter-
strategy for player 2. For statein W*, o1 (s) andos(s) satisfies at least one of Equation 4, Equation 5, or
Equation 6 ins. LetC7"7* C W* (resp.C5"7* C W* andC5"?* C W*) be the set of states i/ * that
satisfies Equation 4 (resp. Equation 5 and Equation 6). Wepraive thato{ ensures value at leakt- € for
each states in W*. We will split the proof into four parts, first we will show s@nproperties for states in
Ui, then for states i/, \ Uy_1, and finally for states id/; \ U;_; for 2 <i < ¢ — 1. In the fourth part, we
will then combine the three properties to establish therddsiesult. The three properties are as follows

e (Property 1). For all statess in U; we will show thato—i’1 ensuresSafe(U;) with probability 1 and
€,1

t o102

mean-payoff at least — ¢ (i.e., for all positional strategies, we havelim;_,,, <=0 Bs' 1

1—e).

O] >

e (Property 2).For all statess in (U, \ Uy—1) we will show thatai’z ensures that against all positional
strategiesr, we have that

1. given the everbafe(U, \ Uy_1), the mean-payoff is at least— ¢;
el —x%

2. Pr;t "7*(Safe(U, \ U;—1) U Reach(Uy_; UW ")) = 1; and
el

3. Prgt 7 (Safe(Up \ Uy—1) UReach(Up—1)) > 1 —e.
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e (Property 3).For all statess in (Ug \ Uy—(;41)), for 1 <7 < £ — 2, we will show thata?i ensures that
against all positional strategies we have that

1. given the eventt),; coBuchi(Us—; \ U;_(;41)), the mean-payoff is at least— ¢;
e l—1 —x

2. Pr! ’02(Uj§i coBuchi(Up—; \ Up_(j4+1)) UReach(Uy_i41) UW ")) = 1; and
e l—1i

3. Prgl ’OQ(UJ-SZ- COBUChi(Ug_j \ Ug_(j+1)) U Reach(Ug_(iH))) >1—e

In Lemma 8, Lemma 9, and Lemma 12 we establish Propertiesahd?3, respectively. We first present the
basic intuition of the proof of Lemma 8.

The basic intuition of Lemma 8. The key idea of the proof is as follows. Once we fix the stratefir both
the players we have a Markov chain. (gt andCs denote the set of statesiiij that satisfy Equation 5 and
Equation 6, respectively. Siné& is empty, no state ify; can satisfy Equation 4. For statein Cs of rank
(1,4), the fact that Equation 5 is satisfied ensures that a statnéf(t, ;j'), for ;/ < j, is visited froms
with positive probability. Lepat(j) denote the patience of the strate:tj)’/1 for states of rank1, rk(1) — j).
We now consider the following case analysis.

1. First we consider the set of stateg1 (1) \ Y1 rk(1)—1) @nd show that if we stay in the s@t; (1) \
Y1 (1)-1), then the mean-payoff is at ledst- . The argument is as follows: By Markov property 5,
we must reach a recurrent class with probability 1. A recurctass contained iV; 1) \ Y1 rk(1)-1)
must consist of only states ifi; (since from states s we reach lower rank states with positive
probability), and since Equation 6 is satisfied for stateSynt follows that the mean-payoff value is
atleastl —e. Hence, if we have a recurrent class of the Markov chain eoedain (Uy \ Y7 y1)—1) =
(Y1) \ Y1,rk(1)—1), then the mean-payoff of the recurrent class is at least. This completes the
argument. Also, if the sét; 1) \ Y1 rk(1)—1) is left, then we caoundthe number of visits to states
in Cs (and in the worst case each such visit gives reward 0) in ¢apes encountered before leaving
the set(Y yk(1) \ Yi,k(1)—1)- This bound on the number of visits in expectatiorCtp(which we say
has not been accounted for by visitsg) is x(0) = (6min) " - pat(0). There is an illustration of this
base case in Figure 6.

2. Now we consider that we are at some intermediate part o€dheputation, i.e., in some state in
(Y1,ek(1)—j \ Y1,rk(1)=(j+1))s for j > 1. Inductively we have an upper bourdj) on the number of
times that states i@y were visited (in the worst case each such visit gives rewpirdéxpectation that
has not been accounted for by visits to stateSjtill we reach the setY; 1)\ Y1,rk(1)—(j+1)) from
any state int’ ;)—j41. The one-step probability distributicf{ is chosen such that- x(j) < e.

In other words,n decreases rapidly asincreases, and the smajlensures that if the play stays
in (U1 \ Y1 1)—(j+1))» then the mean-payoff is at least- ¢, i.e., if we have a recurrent clags
contained iUy \ Y1 rk(1)—(j+1)) @nd(L NY7 y1y—;) is non-empty, then all states (i N Y} yy(1)—;)
belong toC'3, and the mean-payoff of the recurrent class is at least. Moreover, we can also upper
bound the number of visits to statesdh in expectation that has not been accounted for by visits
to states inCs before reaching the s&f (1)—¢j+1) if we leave(Uy \ Y7 w1)—(i+1)) Y k(j + 1) =
(k(5) + 1) - (6min) ' - pat(j), and then proceed inductively. There is an illustrationhis tnductive
case in Figure 7.

Lemma 8. (Property 1).Let0 < € < % The strategyri’1 ensures that for alk € U; and all positional

t 0;’1702
Es [61}
t

€,1
strategiess for player 2 we hav@r;' *7*(Safe(U;)) = 1 andlimy_, o, <=2 >1—e.
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Figure 6: Pictorial illustration of the intuitive explaia of the base case of Lemma 8.

Y1 k(1)—(i+1)
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Figure 7: Pictorial illustration of the intuitive explaia of the inductive case of Lemma 8.
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6,1
Proof. Given ai’l, let 05 be an arbitrary positional counter-strategy for player 2t (12;71 PNU =G,

ie., giveno—i’1 ando,, we have that’;, Cs, C5 are the set of states 0§ that satisfy Equation 4, Equation 5,
Equation 6, respectively. Notice that sinGg is the empty set we have th@f is also empty. Therefore we
cannot leave/; if player 1 followsﬁ’1 (because both Equation 5 and Equation 6 require that we istay i
U1). This ensures th&afe(U ) is satisfied with probability 1. We now focus on the mean-filayo

Basic notations.Let us consider the Markov chain obtained gi\zlélr'l1 andosy. For a states € Uy, let the
rank of s berk(s) = (1,7), and then we denotgby rky(s) (the second component of the rank). Given a
play P in the Markov chain, and a numbege N, let7( P, t) be the expected number of times we get reward
0 in the firstt steps ofP. This implies that(P,0) = 0. For each state € Uy, let P! be (a prefix of)

a play in the Markov chain, which ends if a stateip; is reached after the starting poinfi.e., the play
does notend at if s € Y7 ;), and ifY7 ; is not reached, then the walk does not end. We will also use the

. . o\ —(2m) Tt
following notations: for0 < j < rk(1) — 1, let us denote by:(j + 1) = 5 - (“5%) " ; and let

_( (2m)j+1
. . . 2
pat(s) = (<)

Using recurrent class propertyFirst, observe that sincg o is the empty set, the séf , can never be
reached, and hend@’ represents the entire play from the start statior s € U;. By Markov property 5

in the Markov chain, the recurrent classes are reached irta finmber of steps with probability 1, and
given arecurrent classis reached, every state inis reached with probability 1 in a finite number of steps.
Given a recurrent clask in Uy, and consider a state' in L that has the maximum rank among states in
L (i.e.,rka(s*) = maxg ¢ rko(s')). Then all states visited after has rank at most the rank ef. Hence
every playP? with probability 1, after finitely many steps reaches a stétsuch that all states’ visited
afters* satisfy thatrks(s’) > rko(s*). Since the mean-payoff is invariant under finite prefixespnlg need

to obtain bounds for the mean- payoffBjk(S (and this play has infinite length by definition as no state
with smaller rank is reached in the Markov chain aftéy.

Inductive proof statementVe will show, inductively, that for alb < j < rk(1), all ¢ > 1, and all states
s € Uy, if rka(s) = rk(1) — 7, then

~1
, the patience oefri’l for states inJ; of rank(1,rk(1) — ) (by Lemma 6).

] 1 ’5min (2m)7+1
;(P;kg(s)—l’t)gt.e_i_/i(];_ ):t‘f‘f‘i'(e ) >

This will |mpIy the desired result, since then the mean-flagd Prk2(5 )=l is at leastl — ¢ the play

Psrkz(s )1 has infinite length and therefore the expected number ofrcea must bet — (P'k2(s )

in the firstt steps for allt, because all rewards are either 0 or 1, and hence the meaiff- piayark2 71ig

) (e
inf;_ oo % >1—ce.

rka (s rka(s)—

Splitting the playConsider a play’s "fors e U, . We will split up the playPs
infinite) sequence afank preservmgplays( 'kQ(SZ))DO, such thatsy = s, and fori > 0, the playPs,
ends in states;; (which is formally a random variable and must be such thats;) = rk2(3Z+1) by
definition ofPrk2(S ) and since if a state of lower rank thely (s) is reached, then the pIaVer(S ends).

In other words, the next play begins where the previous plailseand all the starting points of the play
has the same rank. Similarly we will split up plaiy"é for 0 < j < rka(s), into a finite sequence oank
decreasingplays (P9~ Yi=0, such thatsy = s, and fori > 0, the play Pr2*9=1 ends in state;;
(which must be such thaky(s;) > rka(si+1) > 7). Note that since the play sequence is decreasing, the

Yinto a (possible
rka(s;)
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M Y1 rk(s0)

:Ul

Steps

T 17T

ES

Figure 8: Pictorial illustration of a plaq’?SO spl|t into a finite sequencéPrk(S ) =0 of rank preserv-

ing plays. Straight line segments indicate that all statessaown on them, while non-straight segements
indicate that there might be states which are not shown.

sequence of plays is finite and the length of the sequencerissttks(s) — j. Pictorial illustrations of rank
preserving (both when the sequence is finite and infinite)rankl decreasing plays are given in Figure 8,
Figure 9, and Figure 10, respectively.

(Base case).We first consider the base case, whgre- 0, i.e., we consides such thatrka(s) = rk(1).
Consider the rank preserving split up of the pJ**)~! into the sequence of pla3(§3;k2(s'))l> 0, men-
tioned above. As already mentioned, safety/in= Y1 (1) is guaranteed, and hence each p‘l%iff has

length 1. We will COﬂSIde’f’(Per( ) t), for all s’ such thatk(s") = rk(s). We will now split the proof into
the following two cases: (1) € 02; and (2)s’ € Cs; (as already argued at the start of the proof of this
lemma, the sef’; is empty).

1. In each state’ in (Ca2 N (Y1 n(1) \ Yi,rk(1)—1)) We reach a state” of rankrky(s”) = rka(s) — 1in
m—1 (m-1)
the next step with probability at Ieaétm) Omin = . (%) (smce(ﬁ 5) is

an upper bound on the patience of states of rdnkk(1)) in o7’ by Lemma 6), otherwise we reach
—m

a state of rankk(s). Hence the expected number of visits to state§'iris at most; - (“i%)

before we reacly; ,(1)—1. In the worst case we get a reward0oh each such step.

2. In each step we are in statein (C3 N (Y7 1) \ Y1,k(1)—1)) we get reward 1 with probability at least
1 — € (by Equation 6).

For the pIayPrkz(s) — (P*2()). . the expected number of indicéssuch thats; € C, is at most
<. (%) (by the first item above). The remaining (in the worst caséeastt — < - (%) "in
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Yl,rk so)—1 X
Yl,rk((so) Y, =U

Steps

P17

Figure 9: Pictorial illustration of a play!*)~! split into an infinite sequencéP!f(si)) of rank pre-
i>0

serving plays. Note that the last play could be infinite (Whig not pictorially illustrated). Straight line

segments indicate that all states are shown on them, whilestraight segements indicate that there might

be states which are not shown.

Yie—j
——=) V] ys)-2

Yisi—1

Kk(sl) }/e — U1

Steps

Ot

i
SRV

Figure 10: Pictorial illustration of a plag’; 7 split into a (always finite) sequenc(dﬂf(si)_l) o of rank

1>
decreasing plays. Note that the last play could be infinitei¢kvis not pictorially illustrated). Straight line
segments indicate that all states are shown on them, whilestraight segements indicate that there might

be states which are not shown.
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expectation) indices are such that; € Cs, for which the expected reward is at least ¢ (by the second

item above). Thus we have
(e . 5min> - € <e . 5min> —2m k(1)
_— <t -e4+--(—— =t-e+ —=

F(P*E)=1 1y < 4. <.

4

as desired.
(Inductive case).We now consider the inductive case for 1, i. e we now consides such thatks(s) =
rk(1) — j. Consider the rank preserving split of the pIHﬁMS as(Per(S ))izo as explained before the

base case. We will con&de(Per(S) t), for all s’ with rk(s") = rk(s). As in the base case, we will split
the proof into the two cases: (3) € Cs; and (2)s’ € Cs; (and recallC; is empty). Before we consider the
case analysis, we first present the use of the inductive hgpist.

Use of inductive hypothesig he inductive hypothesis will be used in the same way for loatbes in the
case analysis. Lete N be given. For all states’ € U; such thatks(s”) > rka(s) = rk(1) — 7, we will

use the inductive hypothesis to upper bo&“t(iﬂ’sr,lf(l)_j,t). Consider the rank decreasing split]@sﬁ(l)ﬂ
as (Per( - 1)2-20. There are mosj such plays in the sequence, one for each rank strictly hittaar
rk(1) — - J. We only argue about the worst case, and in the worst eagesuch thatky(s}) = rk(1) —i. Let
t; be the random variable indicating the number of steps amtongrstt steps such tha’t?;,lﬁ(l)_j is exactly
P we see thaf(Ps "7 1) = S0 F (P! P71l 1y By the inductive hypothesis we have that

S

F(P:(si)_ ) <tet @ for eacht’ > 1. Thus, we get that
j—1 7j—1 .
1
AP 7 ,ti)gz<ti-e+“(l2+ )>§t-e+f<(j)
=0 1=0

The first inequality is the inductive hypothesis, and we ncgwathatzj ! “(’;1) < k(7). We have

Jz_:l /{('i—i— 1) _ E Jz_:l 6’5min —(2m)it! < E 6’5min —(2m)J - K( )
. 4 2 A — R

1=0

because each term of the sum is o¥dimes as large as the preceding (becaise)'*! > 1 + (2m)?, for
m > 2 andi > 0 and the factor of 4) and thus, the last term is odé¢imes larger than the sum of all the
other terms (we just use that it is larger). We now considerctse analysis.

e (States |nC'2) In this case we conS|der(Prk2(S t), for s’ € Cy, such thatk(s') = rk(s). We
know thato"", has patienceat(;) for StatESSH € U, such thatrky(s”) = rke(s) = rk(1) — j (from
Lemma 6). In expectation the plag(*2*)~" is therefore in a state’ in C such thark(s”) = rk(s)
at mostpat(j) - (dmin) ~* times before reaching a state with lower rank (i.e., befoegpiay ends). If
the play does not end, whenever we have beethirwe reach some staté in U; (as safety td/; is
guaranteed). Also, in the worst case we get a reward of O ietkey step we are in a state of rank
rka(s) in Cy. There are two sub-cases. Eithig(s”) = rka(s) or rka(s”) > rka(s) (because if the
rank is lower the walk ends). In the first sub-case the ng(s’) has length 1. In the other case, we
have already given an upper boundm(nPrk(l) t'), for all ¢ > 1, using the inductive hypothesis.

We therefore have that

FPE) ) <14 7PEY T 1) <14 (t—1) e+ k() =t e+ (1 —€) +1(j) < t-e+2-K(j)
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where we have just explained the first inequality. The sedoneduality is our use of the inductive

—(2m)J
hypothesis as previously explained. The last inequaligsubats(j) = 5 - (%) e >8>1

(2m)?
> 8 fori,m > 1)andl — e < 1.

(since4®m™’ > 16 and hence<ﬂ>
e (States inCs). In this case we conS|de1(Prk2 ) ,t), for s € Cj, such thatrk(s’) = rk(s). By
1
k(7))
For the pIayPrk2( ) the next states; after the start state is in U; with probability 1; the reward
is 1 with probabllity at least — 7, and as wells’ € Y; rk(1)—i With probability at least —  (since

Equation 6 is ensured). With the remaining probability ofratsty, the pIayP ra(s") goes to a state
s” in U;. As before the worst case (for the proof) is that with the riaimg probability of at most
the states” is such thatky(s”) > rko(s), for which we have a upper bound by inductive hypothesis

on r(P'k( )i ,t"), for all #’ > 1. Thus we have that

. 1\ (2m)
construction, the strategy,’" plays the distributiorg} overD; (s'), for n = (%) =:.

FPHE) by < FPROT 1) < ((E— 1) - e+ ()

S
€ €
:77+(t—1)'77'6+§S77+(t—1)-6+§ét'6-

The first inequality is by the preceding explanation. Thesddnequality uses the inductive hypoth-
esis as previously described. In the first equality, we uaelif definition we have - k(j) = 5. In
the third inequality we use that- ¢ < e sincen < 1 andt¢ > 1; and the final inequality uses that since
n < g we haven + § < eandn-e <e, fore < 1; fori,m > 1 which ensureg) < {.

We now combine the above case analysis to establish thetimeILmroof. We will now consider
F(Pr)=1 4y and our rank preserving sphtPr< )) of P2~ Foralli > 0, lett; be the ran-
dom varlable |nd|cat|ng the number of ste@%‘?(s is exactIyPs'kz(sl) among the first steps ofPr ().
We see thaf(Pr® 7! 1) = ok Or(P§f2(s ,t;) (the random variablé indicates the highest index such
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thatt, > 1, implying thatt; > 1 for 0 < i < k). Hence, we have that

k
(Prkg(s Z 7 Prk2 53)

=0

D (IR S N SRR
s;€Ca, i<k s;€C3, i<k

< Y iet2mGNF Y (o)
s;,€Co, i<k s;,€Cs, i<k
k

=> -9+ > (2-K())
=0 s;,€C2, i<k

<t-e+pat(§) - (Omin) ' -2 k(j)

j+1 .
e 0\ (FE 1 em))

:t-e+(5min)_l'e'<

4
C5 o\ —(@myyrt-1)
St‘€+(5min)_1'€'<6 (5m1n>

4
i+l
€ €+ Omin —(@m)y’
<t-e+-—-
< e+4< ’ )
)+ 1

The first equality follows from our preceding explanation. heTfirst inequality uses our bound on
7( ;fQ(Si),t,-) from the respective items above, depending on whether Cs or s; € (5. The second
inequality uses that there are at mpst(;) - (d,in) ' indicesi such thats € Cy, from the first item above,

and thatt = Zk . The third inequality uses tham)’ < 2% for m > 2 andj > 1. The last
follows from < ;fm < mm and gives the expression we required to establish our iivduciaim for j.
This completes the inductive proof and gives us the desesudlt. O

The combinatorial property established in Lemma 8. The proof of Lemma 8 shows that the strategy
ai’l against all positional counter-strategies of the oppoerestires that in the resulting Markov chain all
recurrent classes that intersect withare contained i/, all states i/, have successors only i (i.e.,
the recurrent classes I are reached with probability 1 from all statesliin); and in every recurrent class
in U; the mean-payoff value is at lealst- .

Lemma 9. (Property 2).Let0 < € < % The strategyr?é ensures that against all positional strategies
for all statess € (U, \ Uy,—1) we have that

1. given the everiafe(U, \ Uy—1), the mean-payoff is at least— ¢;
€l —x
2. Prgt "7*(Safe(U; \ U;_1) UReach(U,_y UW)) = 1; and

el
3. Prgt 7 (Safe(Up \ Uy—1) UReach(Up_1)) > 1 —e.
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Proof. Giveno?’ <t let o9 be an arbitrary positional counter-strategy for player 2.3&k that’ Yis stationary

€l
and follows the distributio” overT'; (s) for some0 < n < € in states € (W*\ U,—1). Let Cff 7 =,
ie., givenai’z ando,, we have that’;, Co, C5 are the set of states o/, \ U,_1) that satisfy Equation 4,
Equation 5, Equation 6, respectively. Ligt be the set of states {#/,\ U,—1), from which(C1N(Up\Uy—1))
is not reachable in the Markov chain (i.e., in the graph ofiftazkov chain givemj’z andos, the setRg is
the set of states iU, \ Uy—;) from which no state ifC, N (U, \ Uy—1)) is reachable). Equivalentlyzg
is the set from whichU,_; U ") cannot be reached (the definitions are equivalent, becéose each
states in (U \ Up—_1) = (S\ (Ui, UW ")), the set(U,_; UTW") can be reached in one-step ific C}).
Consider now the segment of the play from state (U, \ U,—1) till the play leavegU, \ Uy_1).

1. First we consider the case where Rg. This corresponds to the proof of correctness for states in
U; (note that in the correctness proof(df the setC; was empty; and it’; is not reached, then the
proof is identical to Lemma 8, by construction of the strgjeddence we have th&afe(U, \ U;_1)
is ensured with probablhty 1 (becausi, \ U,_1) can only be left from states i@, N (U, \ Up—1))

-
andhmt_ﬂ)o M

the lemma.

— ¢ (as in Lemma 8). This establishes all the required conditmfn

2. By Markov property 2, we have thRtach(U,_; uw” U Rg) happens with probability 1 (sindg is
the set from whichU,_; UW") cannot be reached). Note that sifi6e, (U,_; UW ")) = (Up\Up_1),
it follows thatReach(U;_; UW "URg) with probability 1 impliesReach(U,_ UW " )USafe(U,\Up_1)
is also ensured with probability 1, sin¢&, \ U,_1) cannot be left onceks is reached. This also
shows that every recurrent class containedlin\ U,_;) must be contained s (and by the first
item has mean-payoff value at ledst- €). This shows that given the eveBafe(U, \ U,;_1), the
mean—payoff is at least — ¢. From every state iU, \ Uy—1), in the Markov chain, we have that
6(s)(Up—1) - € > 8(s)(W") (from states which are not ifi;, both probabilities are 0 and; by

Equation 4). Hence Markov property 7 implies that e\esch(U;_1URg) happens W|th probability

1—e (sinceRy is the set from whickiU,_; UTW" ) cannot be reached), i.e., we hai’/el ’UQ(Safe(U,g\
Ur—1) UReach(Uy_1)) > 1 —e.

The desired result follows. O

Remark 10. Lemma 9 proves the desired result only for statedin\ U,_,) and can be considered as the
base case of Lemma 12 which proves a similar result for stat@lg, ; \ Uy_(; 1)), for1 <i </ —2. The
case for stategU; \ Uy) = U, is handled by Lemma 8. Note thgdfe(U, \ Uy—1) C coBuchi(Uy \ Up—1)
and since mean-payoff objectives are independent of firgfexps, it also follows from Lemma 9 that given
the eventoBuchi(U; \ U,—1), we have that the mean-payoff is at least e.

Before presenting the proof for Property 3 we first preseataha that we will use to prove the property.

Lemma 11. Given0 < z < % and0 < ¢,n < 1, consider the four-state Markov chads;"“" shown in

) . ; z-(1-m)
Figure .11. The probability to eventually reach from sy and s3 is and e ERsFaseE
respectively.

TS = (7

Proof. Lety, andys denote the probability to reach from s; andss, respectively. Then we have

€
p=r+1-0+7

2)'33)'y3; ys=(1-mn)-y2 .
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(Ur—(i4+1) U Rs) (Ue—i \ Ur—i+1y U Rs))  (Ur\ (Ur—i URg)) W

G|

Figure 11: Pictorial illustration of the Markov chafi;".

Hence we have

yz=x+(1—(1+§)-x)'(1—?7)'y2 -

Solving forys, and then inserting intgs = (1 — 1) - y2, we obtain the desired result. O

€,0—1

Lemma 12. (Property 3).Let0 < € < % and1l < i < ¢ —2. The strategyr;” ~ ensures that against all
positional strategies, for all statess € (U, \ U;—_(;11)) we have that

1. given the everttjjgi coBuchi(Uy—; \ Ur_(j41)), the mean-payoff is at least— «;

e l—1

2. Pr! ’02(Uj§i coBuchi(Up—; \ Uy (j41)) U Reach(Uy_(;41) U W")) =1; and

e l—1
3. Pry' 7*(Uj<; coBuchi(Up—; \ Up(j41)) U Reach(Up_11))) > 1 — e

. €,0—i
Proof. Givenai’z_l, let oo be an arbitrary positional counter-strategy for pIayer@:(]Zfl’ 2=y e,
given ai’g‘i andoy, we have thaCy, Cz, Cs are the set of states 6, \ U,_(;41) that satisfy Equation 4,
Equation 5, Equation 6, respectively. This proof is simitathe proof of Lemma 9. The proof will be by
induction in¢, wherei = 0 is the base case. Hence, the base case is settled by Lemma See\tieat
ai’é_i is stationary and follows the distributigff overT'; (s) for somen > 0 in states € (W* \ Uy_(;41))-
We consider the Markov chain obtained by fixing the two sti@® In the worst case, stateslin~ are
absorbing with reward 0; and since the target is to redgh;,, ) we consider that the plays end if they
leaveT = (W*\ U;_(i11)), i.€., we are interested in the segment of the plaifift \ U,_(;,1)). The play
can only end from a state @, N7 becaus€’ = J;;,(Usr—; \Up—(j+1)) and if a states in (Up—; \ Uy 41))
satisfies either Equation 5 (ifk) or Equation 6 (inC’3), then the setU,_; \ Uy_(;41)) is not left froms in
one-step. Now consider a pldyin the Markov chain. LeRg be the subset ¢f, from whichC; N7 is not
reachable in the Markov chain. There are two cases

1. (P starts in s € Rg). Let (¢ —i',j) = rk(s). Note thati’ < 4, by definition of Rg. Precisely,
like in the proof of Lemma 9, we have thétfe(U,—i» \ Uy—(y41)) is ensured with probability 1,
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because the s€U,_; \ U;_(41)) cannot be left from states i@, or C3. Hence, ifi’ < i, then

we are done, by induction, sinoé’é_i follows a{“é_”l in such states, by construction @Te_i, for
(2m)rk(l7i) ]
n= (%) and we have thaj < ¢, form > 2 andrk(¢ — i) > 1. If ¢/ = 4, then, precisely

like in the proof of Lemma 9, the set,_; \ U,_(; 1)) cannot be left irC; or C3 and hence, using an
el—1

t o 192

argument like Lemma 8, we have that;_ 2o Eslt [64] > 1 — ¢, because of the similarities

between the construction of the strateggf andaj’1 for states in(U,_; \ U;_(;41y) and states ity
respectively. Observe that this case is the same as thesponging case in Lemma 9 and ensures all
the required items of the lemma.

. (P starts outside Rg: Item (1) of the lemma statement) First observe that we can only ensure
Safe(Ur—; \ Us—(j+1)), for some;j < i, from states iniZs, since from all other states; is reachable
and for everyj, states in(C1 N (Ur—; \ Uy—(j41))), can reachl;_(;, 1) in one-step with positive
probability, by Equation 4. Hence, [if};; coBuchi(U,—; \ U;_(;11)) is ensured, then given the event
U;<i coBuchi(Up—; \ U;_(;41)) @ recurrent class that is reached must be containg@lsin Hence
given the eventJ,; , coBuchi(Us—; \ U;_(j11)), the setis is reached in a finite number of steps with
probability 1. Since mean-payoffs are independent of fipiefixes, the finite prefix to readks does
not change the mean-payoff. Moreover, since if we star® inthe mean-payoff is at leadt— e, it
follows that given the evertgjq coBuchi(U;—; \ Uy_(;j+1)) we have that the mean-payoff is at least
1—e

. (P starts outside Rg: Item (2) of the lemma statement) For0 < i’ < 4, let&;; denote the following
event,
Eir = U coBuchi(Up—; \ Uy 41)) U Reach(Uy_i 1) Umwh).
J<#

e,0—i'
Let SRs, ¢ —i') = Pryt  "7*(&), forall 0 < 7 < i, denote thesuccess probabilitpf the event
Er. We need to argue that §R¢ — i) = 1, for all states in(U, \ U;—(;+1)). By induction we
have that SB,¢ — (i — 1)) = 1, from states in(U, \ Uy_;). Sinceai’z_i has the same support

as ai’z_(i_l) for all states in(U, \ U,—;), it follows that for each state in (U, \ U,—;) we have
SR, ¢ — i) = 1. If the event,,_ ;1) coBuchi(Up—; \ Uy (j11)) U Reach(W") happens, then

el—i
we are done. Thus, in the worst case we have Fhat *”?(Reach(U;_;)) = 1 from states in
(U \Uy—;) (clearly, from such statds,_; is reachable in the Markov chain since they are reached with
probability 1). We only need to argue about the worst caseRl;ebe the subset diU,_; \ Ur—(i+1))»
from which (C1 N (Uy—; \ Us—(i41))) cannot be reached in the Markov chain. Hence, for each state
sin (Up—i \ Us—(i+1)), the states must either be iR (in which caseRY is reachable) or the set
(C1 N (Up—i \ Up—(i+1))) must be reachable from From the se{C1 N (Ur—; \ Up—(;41))), the set
Ur—(i+1) Is reached in one-step with positive probability. We therefget that from any state ifi =
(Ue\Ur—i) U (Up—i \Us—(i41))), the se(U,_;41) U RY) is reachable, by transitivity of reachabillity.

el—1i
Hence, by Markov property 8 we have tHat;' *** Reach((S\ T') U U;_(;i+1) U R) = 1, from
any states € T'. Note that from states iR, no state inCy N (Up—; \ Ur—(i+1)) is reachable, and the
set(Up—; \ Us—(i+1)) can be left only from states ifiy N (Uy—; \ Uy—(;+1))- Hence reachability té'g
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ensuregoBuchi((Uy—; \ Up_(;41)))- Thus we have that

Reach((S\T) U Ué—(i—i—l) U Riq) = Reach(Ug_(iH) uw™ u UZ—(i—i—l) U ng)
= Reach(U_(;1y U W' URY)
- Reach(Ug_(iH) UW*) U coBuchi(Uy—; \ Ug_(i+1)) cé; .

The first equality uses thdiS \ 7') = (Uy_(j41) U W"). The first inclusion uses thd&each(RY)
ensuregoBuchi(Uy—; \ Uy—(;41)). Hence, from each statec 7' we have that SR,/ — i) = 1 as
desired.

. (P starts outside(Rg N T'): Item (3) of the lemma statement.) We will now show that the proba-
bility of the event(lJ, ; coBuchi(Us—; \ Ur_(j41)) UReach(U,—;)) is at leastl — e. We will do so by
modeling the worst case using the Markov chaffi®” of Lemma 11. There is an illustration of the

x,€

Markov chainG" in Figure 11. We have one state representing each of thevolipsets

(1) (Ue—(i+1) U Rs)

(@) (Ue—i\ (Ur—(i+1) U Rs))
3) (Ue\ (Ur—i U Rs))

@ W

We will refer to the states as, so, s3 andsy, respectively. We will now argue about the transition
probabilities, and first consider the absorbing states.

The states;. We are interested in the probability thdf, ;1) U Rs) is eventually reached. This
probability does not depend on what happens &fter ;1) U Rs) is reached. Hence, we consider
s1 as absorbing, like g,

The states,. In the worst casé&V " cannot be left, once reached. Thusis an absorbing state, like
in G,

The states,. For each state € (Uy—; \ (Uy—(i+1) U Rs)) € (Ur—; \ Us—(i41)), we must eventually
reach a state in eithéCy N (Ui \ Uy—i41))) = (C1 NT) N (Up—i \ Up—(i41))) OF (Rs N (Up—; \
Ur—(i+1)), with probability 1, by Markov property 3 (recall that we cent reach states outside,; \
Ui—(i+1)), except from states ifC1 N (Up—; \ Uy—(i41))) by Equation 4, Equation 5 and Equation 6.
Also, (Rs N (Up—; \ Up—i41))) is the subset ofU;_; \ Uy_(;41)) from which (Cy N'T") cannot be
reached). If we reacRg, an argument similar to the first item in the proof of this leensiows that
we satisfy the desired statement. Thus, in the worst caséweggreachCy N (Uy—; \ Uy—_i41)))-
For each state in (C1 N (Up—; \ Up—(i41))), letzs = 5(8,Ui’€_i702)(Ug_(i+1)) be the one-step
transition probability tadJ,_ ;1 1). By Equation 4, and the construction of the strategy, we Hiaze
S > 0(s, oS y)(W™). Clearly, in the worst case we have thatz, = (s, o o) (W)
(recall thatW" is absorbing). Also, the fact, > &(s,05" ", 05)(W") implies thatz, > 0 and
_(w_l)

therefore we have that, > pa‘if&igi), wherepat (¢ — i) = (%) , is an upper bound

on the patience of the distributim‘i’é—i(s), by Lemma 6. Thus with probability; we go toU,_; 1),
with probability § - x, we go tol ", and with the remaining probability ¢t — (1 + $) - Ts) we go
to a state inl’, which in the worst case is a state (i@, \ (U,—; U Rg)). This is so, because, in
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the worst case, to readit,_; ;1) U Rs) from (U, \ (U;—; U Rs)) we must go through a state in
(Ue—i \ (Ui—(i+1) U Rs)), and hence the probability to rea€h_ ;) is minimized whenz; is as
small as possible, for all. Thatis,z, = Siins, for all s € (C1 N (Up—i \ Up)). Letz = oo,
Thus, the transition probabilities are as follows: (i) fremto s4 is § - z; (ii) from s to s; is z; and
(iii) from sy to sz is1 — (1 + §) - z. Thus,s; is like in G}

The statess. For each state e (U\(Ur—iURs)) C (U/\Uy—;), by induction and smcelz "follows
o7 we satisfy thaPr2! i JQ(UjSi_l coBuchi(Uy—; \ Uy_(;+1)) UReach(U,—;)) > 1 —1n, where

2m) (=D . — . -
nis ( 5) . By item (2) of the lemma statement, we erli&r with the remaining proba-

el—1
bility (which is absorbing). Hence, the worst case must bereRr? 7 (Ujgi_1 coBuchi(U,—; \

e l—1 — .
Us—(j+1)) U Reach(Uy—;)) = 1 —n (and thusPrs*  *“*(Reach(W")) = ). As previously argued,
in the first item and second item of this lemma, the e\gnt, ; coBuchi(U;—; \ U;_(;,1)) ensures
reachability toRg (i.e., ensure®Reach(Rg)). In the worst case for the proof the probability to reach
(RsUU;_;_1)is m|n|m|zed and thus in the worst case we hBvg JQ(ReaCh((Ug_i\(Ug_(H_l)
Rs)))=1-—n andPrS1 . ’OQ(Reach(W )) = n. Thus, fromss the transition probability ta, and
s4 arel — n andn, respectively. Thusss is like in G
The probability to eventually reach s; from s, or s3. We have that: < 3 (sincepat(¢ — i) < 3,
form > 2 andrk(¢—1i) > 1). Also,0 < n,e < 1 (in the case of), becausen > 2 andrk(¢ —i) > 1).
Hence we can apply Lemma 11 and get that the probability totealy reachs; from s, andss is

z z-(1—n) . . .
RN RN o gurn and TEATa() respectively. Cleary, the probability frosg is the smallest. We

will show that it is greater thaih — e. We have that

z-(1—n) _ 1 S 1 S1 e

n+(1+5) -z 1-n sy tlts lte

We will argue about the first inequality last. The second uradity follows from1 > 1 — €2 =

(I14+¢)-(1—¢ = % > 1 — e. To show the first inequality we will argue tthU"Tn) < §or,

equivalently, tha% < 1, sincee > 0. We have that

(2m)Tk(E—1)
~emi =

:77%<1.

2.7 <4'77_4-77-pat(€—z')_ € * Omin

r-(1—n)-¢ z-€ Omin - € =7 4
The inequalities comes from < (which is the case because > 2 andrk(¢ — i) > 1). The
first equality is because = pat'("’" 5 by definition. The second equality is becawse(! — i) =

— M rk(£—1)
2

E'(smin _1) € Omin (2m) Tall
(T> , by definition. The third equality uses that= ( ) , by defini-
tion.

Ensuring item (3) of the lemma statement.We see that the probability to rea¢ti,_; ) U Rs)
from 7" is more tharl — e (by recalling the definition of;, s5 andss) and thus item (3) of the lemma
statement is ensured, because from statd#ithe event J;; Safe(U,—; \ U;_(;,1)) is ensured (as
argued in the beginning of the lemma) and hence readRingnsures J, ; coBuchi(Ur—;\U;—(j11))-
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The desired result follows. O

Lemma 13. Let0 < € < % The stationary strategy| ensures that for all statesc W* and all strategies
o2 We havdEgi’Uz[LimSupAvg] > Egim[Limlanvg] >1—e

Proof. By constructiono plays a&;f’l in U; and 01672, for 3 = 5, in the remaining states. Therefore
o{ ensures that the mean-payoff of any play that stariS;ins at leastl — 5, by Lemma 8. Since is
stationary, once is fixed we obtain an MDP for player 2, and in MDPs positionedtgfyies always suffice
to minimize mean-payoff objectives [13]. Hence, Lemma 1@wshthat if the play starts in € (U, \ Uy),
then with probabilityl — 3 the play either stays i(U; \ U;_1) for somej > 2 and ensures mean-payoff of
at leastl — 3 or reached/1, from which we will get mean-payoff — 3. By simple multiplication (using
that rewards are at least 0) we therefore see that we get pasearif at least

1-8)°=1+p82-28>1—c¢
The desired result follows. O

Lemma 13 implies the following inclusion.

Lemma 14. We haveV* C val; (LimInfAvg(r), ¥7) C val; (LimSupAvg(r), 7).

3.2.2 Second inclusion?¥" C S \ val; (LimInfAvg, 1)

We will now show that for all states € W that there exists a constant> 0 such that no finite-memory
strategyo, for player 1 can ensure value more than % Again the statement is trivially true " is
empty, and hence we assume that this is not the case.

Computation of W". We first analyze the computation & . To analyze the computation &F we
consider the iterative computatidfi

o LetW,beSandW; beulU.vX.uY.vZ LimAvgPre(W,_1,U, X, Y, Z).

o LetX;obeS andX;; bevX.pY.vZ LimAvgPre(W;_1,W;, X; j_1,Y, Z).

e AlsoletZ; ;o beS andZ; ;; beLimAvgPre(W;_1, Wi, X; j_1, X; j, Zj j k—1)-

Let? > 0 be the smallest number such th&} = W, , = W*. Letrk(i), be the smallest numbgrsuch
thatX; ; = X, j41. Also, letrk(i, j), be the smallest numbérsuch thatZ; ; » = Z; j x+1. We have that
for any states in W", there must be some smallest numbstich thats is not in W; (sincely is S, we
have that > 0). Also, there must be some smallgstuch thats is not in X; ; and similar fork andZ; ; ..
We define the rank of a statec W asrk(s) = (4, j, k), wherei (resp. j, andk) is the smallest number
such thats not in W; (resp. X, ; andZ; ; ;). By definition of ", there exists a constant> 0, such that
for a states, with rk(s) = (4,7, k), for all distributions¢; overI';(s) there must exist an counter-action
ag’& € I'y(s) for player 2 such that all the following conditions hold (j.the negation of the conditions of
LimAvgPre hold):

(c-0(s,€1,a3)(W;) < 8(s,&1,a3)(Wi1))
A(6(s,&1,a5)(Xij—1) <1V (s,&1,a3)(X;,5) =0)

A(6(s,&1,a3)(Xi-1) <1V ExpRew(s,&1,a3) <1 —cV (s, &1,a3)(Zijk—1) <1—c) .
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If the above conditions hold, then one of the following thoeaditions hold as well. We first explain the
following cases: (i) ifd(s, &1, a3 )(W;) > 0, thenc - 8(s, &1, a5 ) (Wi) < 6(s, &1, a5 ) (W,_1) must
hold to ensure the first condition above (this correspond3atee (3) below); (ii) ifd (s, &1, a;’&)(wi) =0,
then the first condition above is satisfied; then we have tiecaises: (a) iﬁ(s,gl,ag’gl)(Xm_l) < 1,
then both the second and third condition is satisfied (thisesponds to Case (2) below); (b) otherwise
we must hav@(s,gl,ag’&)(X,-J) = 0 to satisfy the second condition above gfittpRew (s, 1, a;,&) <
1—c VvV (s, &, ag’&)(Zlvj,i_l) < 1—c) to satisfy the third condition above (this corresponds teeJa)
below). Thus we have that either

e Case(1). There is az3** such that

0(s,61,a3*) (W) =0
A 8(s, 1,05 (Xiy) =0
A (Eprew(s,gl,ag’&) <l—-c V 5(s,fl,a§’£1)(Zl7j,i_1) <1l-c¢

or,

e Case(2). There is au5*' such that

(0(s,€1,a5 )W) =0) A (8(s,&1,a55) (X, 5-1) < 1)
or,

e Case(3). There is a3** such that
(c-0(s, &1, a5 ) (W) < 6(s,€0,a5" )Y Wi1)) A (8(s,&1,a5)(Wi) > 0)

We will use the above three cases explicitly in our proof.

The counter-strategy oo given o1. Fix an arbitrary finite-memaory strategy, for player 1. Let the finite
set of memories used lay be Mem. A counter-strategy, giveno; is defined as follows: given the current
states of the game, and current memory statec Mem, let £ be the distribution played by,. The
strategyo,, for player 2 plays an actiom;’§l (if there are more than one option f@j"51, pick one arbitrarily)
with probability one. Ifo; uses memory sétlem, theno, also uses the memory ddiem and has the same
memory update function.

Upper bound on value ensured byr;. We will show that givers; and the counter-strategy, the mean-
payoff value is at most — % for all starting states ifi’". Also note that the upper bound on the value is
independent of the size of the memory, and this shows thaeicomplement oft* the values achievable
by finite-memory strategies is strictly bounded below 1.

The gameG x Mem. Consider the gamé& and a product with any deterministic automatémwith state
spaceQ. Every state inflW" x Q in the synchronous product game belongs to thegetcomputed in
the product game and the ranks also coincide (by the prepeofiu-calculus formulae). Consider the
synchronous product gante x Mem of G and the memories af; and o2, where states corresponds to
pairs in(S, Mem) and wher&((t,m), a,b)((t',m’)) = (s, a,b)(t) whereo}(t,a,b,m) = m’ and hence
alsooy(t,a,b,m) = m’. In this game the strategy correspondingstocan be interpreted as a stationary
strategyo’. Also the strategy correspondingde can be interpreted as a positional strategyn G x Mem.
Hence given the strategies andos we can obtain a Markov chain @# x Mem, considering the stationary

37



strategiesr] ando’, on the product game. Also for all states W" in G, all the corresponding statels m)
in G x Mem belong tol’" computed in the product game and has the same rankas.

Upper bound on value ensured byr;. We show that givewr; and the counter-strategy the mean-payoff
value is at most — % for all starting states ifi". The proof is split in the following cases, and the basic
intuitive arguments are as follows:

1. Consider a play that starts ¥, ;. We show that the play always stays¥n ; and Case (1) is satisfied
always. Thus we show that from every state there is a patmgtheat most where reward 0 occurs
at least once.

2. For a play that starts i/; \ X 1, we always satisfy either Case (1) or Case (2). First we ksftab
that the event of Case (2) being satisfied infinitely oftengrabability 0. Hence from some point on
Case (1) is always satisfied, and then the argument is sitoithe previous case.

3. Finally we consider a play that startsTif- \ W1. Whenever Case (3) is satisfied, and if the current
state isW ;, for j > 1, thenW;_; is reached with positive probability in one-step. We esshbihat
either (i) we are similar to the previous case or (ii) redictor W, and the probability to reach’; is
at leastc”.

Intuitively, in the first two cases above, we reach a rectirciss that consists of states satisfying Case (1)
only, and in such recurrent classes the mean-payoff valaensstl — ¢". In the last case, either we reach
a recurrent class of the above type, or whenever we satisfg (32 with positive probability > 0 we make
progress to a recurrent class of the above type. The abogenatysis establish the proof. We now present
the formal proof.

Lemma 15. Fix an arbitrary finite-memory strategy; and consider the counter-strategy giveno,. For
all states ini¥~ we have thaE{"**[LimSupAvg] < 1 — <.

Proof. In gameG x Mem, let C; be the set of states where Cdsgis satisfied. That isC';, C5, andCs
satisfy Case (1), Case (2), and Case (3), respectively. Wader the Markov chain gives; andos, and
consider a playP? starting from state. We will consider three cases to establish the result.

1. Plays starting in s € X; 1. Recall thatX ; is the complement ok ;. Consider state in Z ; ,
for somek > 1 (that is: states inX; ;). SinceWy = X1 = S, we have that the play corresponding
to P*in G x Mem is always inC’; (note that only in Case (1) do we have probability 0 to gdifg
and X1 ). Hence the play”® always stays inX; ;. Hence, from states i#r; 1 4, if player 1 plays
according tas; and player 2 plays, with probability c we either(i) reach a state i 1 x—1, Or
(77) get a reward of. SinceZ; 1 = S we must get a reward ofwith at least probability: when in
Z1.1.1- Hence, for all states i ; 1, given player 1 followsr; and player 2 followsrs, there is a path
of play of length at mostk(1,1) > rk(1) where each step happens with probability at leastd the
reward O happens at least once. Thus, for any stateX ;, the playP* stays inX; ; and gives a
expected average reward of at mbst <, with probability 1, whergj = rk(1). In other words, we
have established the following property: in the Markov ol recurrent classes that intersect with
(X1, x Mem) are contained iffiX;; x Mem) and have mean-payoff at mast- <-.

2. Plays starting in s € (W, \ X1 1). Consider now statein (W, \ X1,1). SinceW, = S, we have
that the playPs,.,., corresponding t@* in G x Mem, is always in(C; UC>) (note that in Case (3) we
have positive probability to gott;). This is the only property ofi¥; \ X1 1) we will use. Notice

3Note thatC’; # (S\ C;), fori € {1,2, 3}, in general, wher€; is the set defined in Subsection 3.2.1, but this notationds us
becaus&'1, C2, Cs serve similar roles for properties & asCi, Cs, Cs did for properties ofd *
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that this ensures thdt® always stays if¥;. Let Rg be the set of states from which no statelp
can be reached. There are now two cases, effjgl, reaches a state iR or it does not.

e The play F}),,, reaches a state inRs. Let j = rk(1). Then the mean-payoff is at maist- cj—]
after reachingR g, by a argument similar to the one for stateﬁml. Therefore, in this case, the
mean-payoff ofP* is at mostl — ‘;—] since the mean-payoff is independent of the finite-prefix.

e The play F,.,, does not reach a state ins. In this case, we must visit statesdr infinitely
often with probability 1, by Markov property 1. Whenever we & a states’ in C'o N (X1 ¥
Mem) \ (X1 -1 x Mem)), we have probability at leagt: émin to reach(X; ;1 x Mem) in
one-step Wherép is the maximum patience of any distribution playeddy Whenever we
are in a state’ in C; N ((X1; x Mem) \ (X1,;-1 x Mem)), we have probability 0 to leave
((X1,; x Mem) \ (X7,_1 x Mem)) in one-step. Therefore we must regchy ; x Mem) in a
finite number of steps with probability 1 and frofi'; ; x Mem) we get a mean-payoff of at
most1 — c]—] wherej = rk(1), as we have already established in the first ftem

Therefore, in both cases we get a mean-payoff of at mes%.j with probability 1, wherej = rk(1),
i.e., all recurrent classes have mean-payoff of at nhost‘%.

3. Plays starting ins € (W' \ W;). Consider now state in (W~ \ ;). Consider the play’* in
G and the corresponding plais.,, in G x Mem. Fori > 1, let L, = W; U W,_; and note that
L; = W;\ W,_;. Let R; be the set of states ih; from which no state iC’;s N L; is reachable; (note
thatR; C L; N (C1 U Cs)). Note that fromL;, the setZ; can be left only from states i3 N L;. We
now consider two sub-cases.

» We first consider the case where we re@thLet j = rk(i). In this case, the mean-payoff is at
most1 — CJ—J by an argument similar to the argument fon W; \ X ;. The argument fog in

W1 \ X1, only uses that states ifi; U C5 are visited. Once®; is reached we are guaranteed
that only states irR; are visited, and hence the recurrent classeB;ilhas mean-payoff of at
most1 — <.

n

e If R; is not reached, then since from every si@tgn L; we have positive transition probability
to L;, it follows that L; is reached with probability 1, by Markov property 4. But if weach
eitherW; or W,_, we have a probability of at leasthat it will be 1¥;_; (since it can only be
done wheneveP;,.., is in Cs N L;, which ensures so).

Each time we repeat the second case, all statds,iwill never be visited again, in the worst case.
Since each sef; must contain atleast one state, we see that, if we repeattioad casé times and
thereafter enteR; (and are thus in the first case), then- & > rk(i’). We have a probability of*

Cnfk

to follow such a play and we then get value at mibst ~—-. Even if we got mean-payoff 1 with the

remaining probability ofl — ¢*, we still have a expected mean-payoff of at mbst ncfk. Thus, we

see that in the worst cage= 0 with probability 1, in which case we get mean-payoff at mbs{%

The desired result follows. O

4InEct, alternatively we can prove this case using conttamh, sinceg X 1,1 xMem) C C; and therefor¢ X ;1 x Mem) C Rs,
since(X1,1 x Mem) cannot be left in the Markov chain
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Lemma 15 implies the following inclusion.

Lemma 16. We haveval (LimSupAvg(r), ) € .

4 Improved Rank-Based Algorithm

In this section we present an improved rank-based algoyitiinich is based on the same principle as the
small-progress measure algorithm [19] (for parity gam&ghile the naive computation of the-calculus
formula for the value 1 set requiréy(n?) iterations, the improved algorithm will requir(n?) iterations.

Basic idea.The basic idea of the algorithm is to consider the rankingfion rk from Section 3.2.1 and use
that to obtain an algorithm. Notice thad(s) for s € W* is always a paifi, j) suchtha <i+j <n+1
and wherel < i,5 < n. We see that for any numbérthere arek — 1 pairs (i, j) such that 4+ j = k and

such thatl <i,j < k—1. Hence, there arg_}}_, k = "("2“) such pairgi, j) suchthal <i+j <n+1

and wherel < 4,5 < n. Furthermore we also have a special rankor not being inW*. The ranks are
lexicographically ordered as follows

(L)< (L,2)<---<(Lin)<(2,])<---<(n, 1) < T .

We will thus say thati,j) < T for all 4,5 and (4,j) < (¢/,5')if i < ¢ ori = ¢ andj < j; (and for
(i,7) < (¢, 5") we changej < j'). To distinguish with the ranking function in Section 3.2 denote the
ranking function of the improved algorithm &s(s).

Definition of matrix. Consider a given assignment of ranks to statess betsome state of rank’(s) # T
and therefore of ranki, j) for somei andj; and also consider a statéof rank (i, j'). We define some
sets,Us, Ys, Zs, X5, W, as follows:

1. The state’ isinUs,, if i > 7'.

2. The statey’ isinY, if i > i ori/ =iandj > j'.
3. The statey’ isin Zg, if i > i’ ori/ =iandj > j'.
4. The states’ is in X, if ¢ > 7.

5. The state’ is in W, independent of.

Also if a states” has rankT, then it is in the setV,. This set also does not depend anLet M # €

ai,a2
(W, Us, Wy, Yy, X, ZL, 70}, for a; € T1(s) anday € T'y(s), be the matrix similar to the matrix/ from
Section 3.1, except that instead of B6tuselV, and similar forU, Y, Z, X andW.

The RANKALGO algorithm. We will refer to our algorithm as RNKALGO and the description is as
follows:

1. For each state setrk’(s) < (1,1)
2. Leti + 0andS® « S.
3. (Iteration) WhileS? is not the empty set:
(@) LetQ' = S*U {s|3Ja; € T'1(s),TJag € T'y(s). Succ(s,ar,az) NS* # 0} be the set of states in

St and their predecessors.
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(b) For each state € @Q° such thatrk/(s) # T, run ALGOPRED on M* (if M* has not changed
since the last time AGOPRED was run onM ¢, then use the result from the last time instead of
rerunning A GOPRED). Let S**! be the set of states whichL&OPRED rejected.

(c) Increment the rank (according to the lexicographic dngg of all states inS***.
(d) Leti < i+ 1.

4. Return the set of states which does not have rank

4.1 Running time of algorithm RANKALGO

We now analyze the running time of the algorithm. We first gralthe work done for updating matrices
M? and then analyze the work done foL 80PRED computation.

e Work to update matrix.For a states of rank (i, j), notice that we do not need to recalculate the
entire M* whenever some successgrof s changes rank, but only the entrigs;, as) such that
s’ € Succ(s, a1, az). Also notice that we do not need to chani€ at all whenevers’ changes rank
to ranks other than if(i, 1), (4, j), (i, + 1), (¢ +1,1), T}. Hence, as long ashas some ranki, j),
we can do all updates a¥/® in time O(Zaepl(s),bem(s) |Supp(s, a,b)|). We also recalculatd/*
whenevers changes rank, and since each state has at M@pst) different ranks therefore we use
O(1n* - 3 cs Daers (s) bers(s) [SuPP(s, a, b)|) time to do all updates af/* for all statess.

o Work of ALGOPRED. Note that each entry af/* can take at most 7 different values, and as long as
has a fixed rank each update makes some entry worse than.dd@ree as long ashas some fixed
rank (i, 7) we can do no more thah- |I';(s)| - [T'2(s)| updates of\/*. Hence we run AGOPRED at
most™ ™) 6. |1y ()| - [Ta(s)| times for a fixeds.

Therefore, we get a total running time ofO(n* - Y  o(Ti(s)* - [Ta(s)]® +
Zalef‘l(s) az€T3(s ]Supp(s ay,az)|)), using Lemma 4.

4.2 Proof of correctness of algorithmRANKALGO

The correctness proof is similar to the results of [19]. Theop of [19] shows the equivalence @f
calculus formula and a rank-based algorithm (called spralgiress measure algorithm) for parity games;
and the crucial argument of the correctness was based ocadhhét the predecessor operator is monotonic.
Our correctness proof is similar and uses thaiAvgPre is monotonic. We just present the proof of one
inclusion and the other inclusion is similar. For S|mpycvt/e will say that the rank of is rk(s) = T if

s € W". LetW* be the output of the algorithm. We show that = W,

W* C W* . rk’(s) < rk(s). We only need to show the statement fafs) # T since otherwise the
statement follows by definition. Hence, assume towardsradittion thatrk’(s) > rk(s) and letrk(s) =
(i,7). Also, we can WLOG assume thatgets assigned a rank higher thes) in the first iteration for
which any state’ gets assigned rank higher thésis’) by the algorithm. Therefore in that iteration all states
s’ are such that the rank assigned by the algorithm is at rR@s} ands has rankk(s) assigned. Therefore
W* C W, Uiy C U, U; € X, Y -1 CYs,Y; 5 C Zg. ButsisinLimAvgPre(W*, U;_1,U;, Y j—1,Yi ;)

by definition sinces is such thatk(s) = (i, j). By monotonicity ofLimAvgPre we have that is also in
LimAvgPre(Ws, Us, X5, Ys, Z5), contradicting that changes rank.

Lemma 17. The algorithmRANK ALGO correctly computes the sedl; (LimInfAvg(r), $1°) of states in time
O(n? - 3 oes(ITL(8)® - IT2(8)° + Xa, ey (s),azers(s) 1SUPP(s; a1, a2)])).
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5 Main result and Concluding Remarks

We now summarize the main result, and conclude with an opegtigun.
Theorem 18. The following assertions hold for concurrent mean-payafhgs.

1. (Value 1 set characterizationLet W* = vW.uU.vX.uY.vZ LimAvgPre(W,U, X,Y, Z), then we
have

W* = val (LimSupAvg(r), £7) = val; (LimSupAvg(r), )

= val; (LimInfAvg(r), ©¥) = val; (LimInfAvg(r), =)

2. (Running time).The value 1 seteal; (LimSupAvg(r), 27) = vah (LimSupAvg(r), ") can be com-
puted in timeO(n? - 37 s(O(IT1()? - [T2()]* + X0, ery (s),azera(s) [SUPP(s, a1, a2)])).

3. (Optimal patience). For all ¢ > 0, there exist stationarye-optimal strategies in the set
: : L\ @)
val; (LimSupAvg(r), 7)) with patience at mos@—ﬁ"i’f*") :

Proof. The first item follows from Lemma 16 together with Lemma 14. eTdecond item comes from
Lemma 17. The third item follows from Lemma 7. O

Notice that the patience closely matches the patience rautaior the concurrent reachability game
Purgatory, by Hansen, Ibsen-Jensen and Miltersen [15,réhea0] (the bound fom = 2 is also in [17]).
Concurrent reachability games is a subclass of concurreanrpayoff games and always haveptimal
stationary strategies, for all > 0, and all states in Purgatory have value 1. Thus the exampledas a
closely matching lower bound for patience.

Robustness.Our results show that the value 1 set computation can bewchigy an iterative algorithm
with theLimAvgPre operator. Our algorithm for theimAvgPre operator computation is based on the matrix
construction)/, and observe that the entries in the matrix depends onlyeosutpport set, but not the precise
probabilities. It follows that given two concurrent gamesene the support sets of the transition functions
match, but the precise transition probabilities may difflee value 1 set remains unchanged.

Concluding remarks. In this work we considered concurrent mean-payoff games @medented a
polynomial-time algorithm to compute the value 1 set fortéinhemory strategies for player 1. An in-
teresting open question is whether the value 1 set with tefimemory strategies can also be computed in
polynomial time.
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6 Technical appendix — Computation oflLPre

We now present the details of the computationL&fe(s, W, U, A1, A2). We will establish the Reject
property and Accept properties a—dld?re. We first recall the properties:

(Accept properties ofPre). Accepts and returns the sdg C A, and a parametrized distributicgj, for
0<e< % with supportSupp(£§) € A;, such that the following properties hold:

o (Accept property a). For all; € A3, the distributions{ satisfies Equation 1 far,.

o (Accept property b). For alt; € (As \ A3), we haveSucc(s, £, az) N W = () andSucc(s, £, az) N
U = .

o (Accept property c). For all; € (A; \ Supp(¢5)), there exists an actiom, in (A \ A3) such that
Succ(s, ar,az) "W # ().

e (Accept property d). The seds is largest in the sense that for al} € (As \ As) and for all
parametrized distribution§; over 4;, the Equation 1 cannot be satisfied, while satisfying astian
A, using Equation 1, or Equation 2, or Equation 3, for ahyy, Z suchthaly CY C Z C X C W.

The computation oEPre(s, W, U, Ay, A3) will be done similar to the computation of the similar named
LPre(s, W, U) in[9, 8], and we will follow notations from [8]. We will use ghtwo methods Stay and Cover,
defined as follows:

Stay(s, W, A1, Ay, A) = {a1 € A1 | Vag € (A2 \ A).[(Succ(s,ar,a2) NW) = 0]}
Coverl(s,U, A1, Az, A) = {as € Ay | Fay € (A1 N A).[(Succ(s,ar,a2) NU) # 0]}
The algorithmLPre(s, W, U, Ay, As) is then as follows:

1. LetA* < pA.[Stay(s, W, A1, Az, A) UCover(s,U, Ay, Ay, A)] and for alla; € (A* N Ay) let£(ay)
be the level ofz; in the formula.

2. If (A* N A;) is empty, return reject. Otherwise, return accept &At N Ay, &), where(s is the
parametrized distribution, with suppa* N A;), and the ranking function af; € (A* N A;) is
l(a1)—1

( 12) _

The algorithm forLPre(s, W, U) of [9, 8] can be obtained as a special case of our descripboneaas

follows:

1. Let (As,&f) < LPre(s,W,U,T'1(s),T2(s)). If either (i) LPre(s, W,U,T'1(s),T'2(s)) rejects; or
(i) As # I'a(s), then return reject, otherwise return accept &nd

We will now show that Pre(s, W, U, A;, As) satisfies the desired properties.
Lemma 19. The algorithmLPre(s, W, U, A1, A,) satisfies the Reject propertyldPre and Accept properties
: . |A1]—-1
a—d. Also, the patience ¢f is at most(%) e

Proof. We establish the desired properties.

The reject property of LPre. We see that Pre(s, W, U, A1, As) only rejects if(A* N Ay) is empty. By
definition of Stays, W, A;, A2, A) we haveg( A*NA; ) is empty iff foralla; € A; there existaiy € (A2\A*)
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such that{Succ(s, ay,az) N W) # (). We also see the reverse, since we see that(also) A*) is empty if
(A* N A;) is empty by definition of Covés, U, Ay, A, A). This implies that the empty set is a fixpoint of
pA.[Stay(s, W, Ay, Az, A) U Covel(s, U, Ay, Ay, A)] and thus must bel*. SinceA* is empty, it follows
that for alla; € A; there existsis € (4s \ A*) = Ay such that(Succ(s, a1,a2) N W) # (. Hence, if
LPre(s, W, U, A1, A) rejects, then the reject property loPre is satisfied.

Properties of the setA*. We have that il.Pre(s, W, U, A;, A2) returns(As, £5), thenA* = (Supp(&f) U
Asz) and A* is a fixpoint of uA. [Stay(s, W, Ay, A, A) U Cover(s, U, A1, Az, A)].

Accept property a. We note that if we restrict the set of actions of player 14ton A; and actions of
player 2 toAs, thenLPre(s, W, U) would return accept and the same parametrized distribuéind then
the proof of [8, Lemma 4] ensures Accept property a and theatkpatience.

Accept property b. We see that for an action; to be in(A* N A;) = Supp(&f), by definition of
Stay(s, W, Ay, Ay, A*), for all as in (A* N Ay) = A3 we have thafSucc(s, a1, a2) N W) = () (or equiv-
alently that(Succ(s,£$,a2) N W) = (). This establishes the first half of Accept property b. Ala®
see that if an an actiony is in (Ay \ A*) = (Az \ A3), then by definition of Covés, U, A;, Ay, A*)
for all a; in (A* N A;) = Supp(&$) we have that(Succ(s,aq,a2) N U) = 0 (or equivalently that
(Succ(s, &f,a2) NU) = 0). This establishes the second half of Accept property b.
Accept property c. For A* to be a fixpoint we must have, by definition of StayiV, A;, Ay, A*), that for
each actiony; € (4; \ A*) = (A1 \ Supp(&))) that the condition to be in Stéy, W, A;, A, A*) must be
violated and thus, there exists € (A4 \ A*) = (A3 \ A3) such that(Succ(s,ai,az) N W) # (. This
establishes Accept property c.
Accept property d. Along with U and W consider anyX,Y,Z such thatU C Y C Z C X C W.
Consider a real numbér < ¢ < (|SA—1| and a distributior¢; over A;. We will show that if Equation 1 is
satisfied by¢; for some actioruy € (As \ As), then there is some actiay € A, which is not satisfied by
either (i) Equation 1; or (ii) Equation 2; or (iii) Equation 3he proof will be by contradiction and assume
towards contradiction that such an actionexists. Letd, C A, be the set of actions which does satisfy
Equation 1 by, and let the remaining actions be satisfied by either Equ&ionEquation 3. Notice that
Ay z A3, sinceay € A4 andas ¢ A3.

We consider two cases depending on whether o8npp(&1) C Supp(&f) to establish the result.

e We first consider the case, whe$epp(£;) C Supp(£$). Then Equation 1 is violated for alf, €
(A2 \ As), sinceU cannot be reached by Accept property b. In particular, ittrbasviolated foras.
That is a contradiction.

e We next consider the case, whefepp(§1) € Supp(&f). Leta; € (Supp(&1) \ Supp(&f)) be an
action, such thati; € argmax,, e(supp(gl)\supp(g;))_&(0'1)- By Accept property c, there exists an
actional, € (A2 \ As) such thatSucc(s,ai,ab) N W # (), sincea; € (Supp(&1) \ Supp(&5)) C
(A1 \ Supp(&5)). We again split into two cases. Eith€y is in A4 or not.

— We first consider the case thef € A,. We will show that we go té1” with too high probability,
compared to the probability with which we gotto We see that(s, &1, ab) (W) > dmin-&1(a1),
by definition ofa),. Each actiord) in Supp(£$) ensures thatucc(s, a}, ay) N U = () by Accept
property b, since, ¢ As. It follows thatd(s, &1, al)(U) < &1(ar) - (JA1| — 1). This is because
each actioru) such that{(a}) > £(a1) are inSupp(¢5) by definition ofa; and there are at
most|A;| — 1 actions in(Supp(&1) \ Supp(&5)) (sinceg; and¢§ are distributions over; and

|Supp(&§)| > 1). Butthend(s, &1, a5)(U) - € < §(s, &1, a5)(W) and thus Equation 1 is violated
by & andd),. This contradicts either thaf, € A, or the definition ofA,.
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— We next consider the case thef € (A, \ A4). Recall thatSucc(s, &1, a,) N W # ). Hence,
Equation 2 and Equation 3 are violated, siSeec(s, &1, a)) N X # 0 (becauseX C W and if
W is reached with positive probability, thex is reached with positive probability). Moreover,
Equation 1 cannot be satisfied either, singeZ A,. Thus we have a contradiction.

Thus, in all cases we reach contradiction and, hence Acecepepy d is satisfied.
The desired result follows. O
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