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Abstract. We consider multi-player graph games with partial-obsaeand parity
objective. While the decision problem for three-player gamith a coalition of the
first and second players against the third player is undbledave present a decid-
ability result for partial-observation games where thet fnsd third player are in a
coalition against the second player, thus where the seclaygmis adversarial but
weaker due to partial-observation. We establish tight deriy bounds in the case
where playerl is less informed than playe, namely 2-EXPTIME-completeness
for parity objectives. The symmetric case of playemore informed than playet

is much more complicated, and we show that already in the whsge playerl
has perfect observation, memory of size non-elementargdsssary in general for
reachability objectives, and the problem is decidable &bety and reachability ob-
jectives. Our results have tight connections with patiaservation stochastic games
for which we derive new complexity results.

1 Introduction

Games on graphsGames played on graphs are central in several importantgnstn
computer science, such as reactive synthesis [23, 24ficatidn of open systems [1], and
many others. The game is played by several players on a §tste-graph, with a set of
angelic (existential) players and a set of demonic (unalgrdayers as follows: the game
starts at an initial state, and given the current state,theessor state is determined by the
choice of moves of the players. The outcome of the gamepkay which is an infinite
sequence of states in the graphstfategyis a transducer to resolve choices in a game for a
player that given a finite prefix of the play specifies the neaven Given an objective (the
desired set of behaviors or plays), the goal of the exisieptayers is to ensure the play
belongs to the objective irrespective of the strategieB@fmiversal players. In verification
and control of reactive systems an objective is typicallwamegular set of paths. The class
of w-regular languages, that extends classical regular layegua infinite strings, provides
a robust specification language to express all commonly spedifications, and parity
objectives are a canonical way to define sweregular specifications [29]. Thus games on
graphs with parity objectives provide a general frameworlkaihalysis of reactive systems.

Perfect vs partial observation.Many results about games on graphs make the hypothesis
of perfect observatiofi.e., players have perfect or complete observation atheustate of

the game). In this setting, due to determinacy (or switcluhthe strategy quantifiers for
existential and universal players) [18], the questiongesged by an arbitrary alternation

of quantifiers reduce to a single alternation, and thus anéalgnt to solving two-player
games (all the existential players against all the unitgisgers). However, the assump-
tion of perfect observation is often not realistic in praetiFor example in the control of
physical systems, digital sensors with finite precisionvfate partial information to the
controller about the system state [11, 14]. Similarly, inca@urrent system the modules



expose partial interfaces and have access to the publablesi of the other processes, but
not to their private variables [27, 1]. Such situations artdy modeled in the more general
framework ofpartial-observatiorgames [26—28].

Partial-observation gamesSince partial-observation games are not determined, eitil
perfect-observation setting, the multi-player games jgrols do not reduce to the case of
two-player games. Typically, multi-player partial-obssion games are studied in the fol-
lowing setting: a set of partial-observation existentlalers, against a perfect-observation
universal player, such as for distributed synthesis [232%B The problem of deciding if
the existential players can ensure a reachability (or dy9aibjective is undecidable in gen-
eral, even for two existential players [22, 23]. Howeveth# information of the existential
players form a chain (i.e., existential player 1 more infedithan existential player 2, ex-
istential player 2 more informed than existential playeai3d so on), then the problem is
decidable [23,17,19].

Games with a weak adversaryOne aspect of multi-player games that has been largely
ignored is the presence of weaker universal players thabtibave perfect observation.
However, it is natural in the analysis of composite reactiystems that some universal
players represent components that do not have access trialbles of the system. In this
work we consider games where adversarial players can hatial jpdservation. If there are
two existential (resp., two universal) players with incargble partial observation, then
the undecidability results follows from [22,23]; and if thdormation of the existential
(resp., universal) players form a chain, then they can becetito one partial-observation
existential (resp., universal) player. We consider théofahg case of partial-observation
games: one partial-observation existential player (playeone partial-observation univer-
sal player (player 2), one perfect-observation existéptéyer (player 3), and one perfect-
observation universal player (player 4); (also see Sediam the appendix for further
discussion). Roughly, having more partial-observati@yets leads to undecidability, and
having more perfect-observation players reduces to twéegieobservation players. We
first present our results and then discuss two applicatibaaranodel.

Results.Our main results are as follows:

1. Player 1 less informed/Ne first consider the case when player 1 is less informed than
player 2. We establish the following results) a 2-EXPTIME upper bound for parity
objectives and a 2-EXPTIME lower bound for reachabilityestjves (i.e., we estab-
lish 2-EXPTIME-completenessli:) an EXPSPACE upper bound for parity objectives
when player 1 is blind (has only one observation), and EXR3Pfower bound for
reachability objectives even when both player 1 and playare?blind. In all these
cases, if the objective can be ensured then the upper boumesrory requirement of
winning strategies is at most doubly exponential.

2. Player 1 is more informedMe consider the case when player 1 can be more informed
as compared to player 2, and show that even when player 1 fastg#bservation there
is a non-elementary lower bound on the memory required byiwnstrategies. This
resultis also in sharp contrast to distributed games, wifierdy one player has partial
observation then the upper bound on memory of winning gfi@sds exponential.

Applications. We discuss two applications of our results: the sequentighesis problem,
and new complexity results for partial-observatstachastiggames.

1. The sequential synthesis problem consists of a set aafjaimplemented modules,
where first a set of modules needs to be refined, followed byimeraent of some
modules by an external source, and then the remaining medtgerefined so that the
composite open reactive system satisfies a specificativan@ie first two refinements



Reachability Parity Parity J

Player2|Finite- or infinite-memory strategigsinfinite-memory strategieg Finite-memory strategies
Playerl Perfect More informed Perfect [More informed Perfect [More informed
Randomized EXP-c[8] EXP-c[3] Undec. [2,7] Undec. [2, 7]|[EXP-c [9] 2EXP
Pure EXP-c [6] 2EXP-c Undec. [2]| Undec. [2] [EXP-c[9]] 2EXP-c

Table 1. Complexity of qualitative analysis (almost-sure winnirfig) partial-observation stochastic
games with partial observation for player 1 with reachapédind parity objectives. Player 2 has either
perfect observation or more information than player 1(nesults boldfaced). For positive winning,
all entries other than the first (randomized strategiesltygr 1 and perfect observation for player 2)
remain the same, and the complexity for the first entry foitpaswinning is PTIME-complete.

cannot access all private variables, we have a four-plageregvhere the first refine-
ment corresponds to player 1, the second refinement to p2ayke third refinement
to player 3, and player 4 is the environment.

2. In partial-observation stochastic games, there are awtighobservation players (one
existential and one universal) playing in the presence cktainty in the transition
function (i.e., stochastic transition function). The dtaive analysis question is to de-
cide the existence of a strategy for the existential playentsure the parity objective
with probability 1 (or with positive probability) against atrategies of the universal
player. The witness strategy can be randomized or detestitirfpure), and the de-
cision problem for randomized strategies reduces to the ptrategy question [6].
While the qualitative problem is undecidable, the pradiiiceelevant restriction to
finite-memory strategies reduces to the four-player garoblpm, and by the results
we establish in this paper, new decidability and complexitsults are obtained for
the qualitative analysis of partial-observation stocleagimes with playe? partially
informed but more informed than player
The complexity results for almost-sure winning are sumesatiin Table 1. Surpris-
ingly for reachability objectives, whether player 2 is ety informed or more in-
formed than player 1 does not change the complexity for ramizied strategies, but it
results in an exponential increase in the complexity foemirategies.

Organization of the paper.In Section 2 we present the definitions of three-player games
and other related models (such as partial-observatiohastic games). In Section 3 we es-
tablish the results for three-player games with player & ieformed, and in Section 4 we
show hardness of three-player games with perfect obsen/ti player 1 (which is a spe-
cial case of player 1 more informed). Finally, in Section 5shew how our upper bounds
for three-player games from Section 3 extend to four-plaggenes, and we conclude with
the applications in Section 6.

2 Definitions

We first consider three-player games with parity objectaped we establish new com-
plexity results in Section 3 that we later extend to fouryplagames in Section 5. In this
section, we also present the related models of alternatiegautomata that provide useful
technical results, and two-player stochastic games fochvbur contribution implies new

complexity results.

2.1 Three-player games

Games Given alphabets!; of actions for playet (i = 1,2, 3), athree-player gamés a
tupleG = (Q, qo, 0) where:



— @ is afinite set of states witly € @ the initial state; and
—0:0Q x A} x Ay x A3 — @ is a deterministic transition function that, given a cutren
stateq, and actions; € Ay, ax € As, ag € As of the players, gives the successor
stateq’ = §(q, a1, az, as).
The games we consider are sometimes caltatturrentbecause all three players need to
choose simultaneously an action to determine a succesder $he special class afrn-
basedgames corresponds to the case where in every state, one pis/the turn and his
sole action determines the successor state. In our frarkeavturn-based state for player
is a statey € @ such that(q, a1, a2, a3) = (g, a1,ah,al) forall a; € Ay, az,al € As,
andas, aj € As. We define analogously turn-based states for playerd playeB. A game
is turn-based if every state @f is turn-based (for some player). The class of two-player
games is obtained whefy is a singleton. In a gam@, givens C @, a; € A1, as € As,
let post®(s,ai,az, —) ={¢ € Q| 3qg € s-Faz € Az : ¢’ = §(q,a1,az,a3)}.

ObservationsFori = 1,2, 3, a set®; C 29 of observationgfor player;) is a partition of
Q (i.e., O, is a set of non-empty and non-overlapping subset3,aind their union covers
Q). Letobs; : @ — O; be the function that assigns to each siate @ the (unique)
observation for playef that containg, i.e. such thaty € obs;(¢). The functionsobs;
are extended to sequenges= ¢ . .. g, Of states in the natural way, nameliss; (p) =
obs;(qo) . . . obs;(g,). We say that playetis blind if O; = {Q}, that is player has only
one observation; playerhasperfect informationif O, = {{¢} | ¢ € Q}, thatis player
can distinguish each state; and playés less informedhan playee (we also say player 2
is more informed) if for alb, € O, there exist®; € O; such thabs C o;.

Strategies Fori = 1,2,3, let &; be the set oktrategieso; : O — A; of playeri
that, given a sequence of past observations, give an aaropldyeri. Equivalently, we
sometimes view a strategy of playieas a functiow; : Q+ — A; satisfyingo;(p) = o:(p’)
for all p, p’ € QT such thabbs;(p) = obs;(p’), and say that; is observation-based

Outcome Given strategies; € X; (i = 1,2,3) in G, theoutcome playirom a stateg
is the infinite sequencgf!*7>7* = qoq; ... such that for allj > 0, we haveg; 1 =

0(qj, a{7 a& aé) wherea{ =0;(qo...q;) (fori =1,2,3).

ObjectivesAn objectiveis a seto C Qv of infinite sequences of states. A plaatisfies
the objectivax if p € «. An objectivea is visiblefor player: if forall p, p’ € Q¥,if p € «
andobs;(p) = obs;(p’), thenp’ € a. We consider the following objectives:

— Reachability Given a sefl” C @ of target states, theeachabilityobjectiveReach(7)
requires that a state ifi be visited at least once, that Reach(7) = {p = qoq1 - - - |
dk>0:qx € T}

— Safety Given a sefl C @ of target states, theafetyobjectiveSafe(7") requires that
only states irif” be visited, that isSafe(7T) = {p =qoq1 - | Vk > 0: ¢, € T }.

— Parity. For a playp = goq1 ... we denote byinf(p) the set of states that occur in-
finitely often in p, that is,Inf(p) = {¢ € Q | V&K > 0-3In > k : ¢, = ¢}. For
deN,letp: Q@ — {0,1,...,d} be a priority function, which maps each state to a
nonnegative integer priority. The parity objectierity(p) requires that the minimum
priority occurring infinitely often be even. FormallRarity(p) = {p | min{p(q) |
q € Inf(p)} is ever}. Parity objectives are a canonical way to expresggular objec-
tives [29]. If the priority function is constant over obsations of playet, that is for all
observationsy € O; we havep(q) = p(¢’) for all ¢,¢" € ~, then the parity objective
Parity(p) is visible for player.



Decision problemGiven a gamé& = (Q, qo, ) and an objectiver C Q¥, thethree-player
decision problenis to decide ifdo; € X - Vog € Xy - Jos € X3¢ Par 7% € a.

2.2 Related models

The results for the three-player decision problem have tighnections and implications
for decision problems on alternating tree automata anigpatbservation stochastic games
that we formally define below.

Trees An Y-labeled tredT', V') consists of a prefix-closed sé&tC N* (i.e.,ifz-d e T
with z € N* andd € N, thenz € T), and a mappind” : 7' — X that assigns to each
node ofT" a letter inX. Givenz € N* andd € N such thatr - d € T, we callz - d the
successoin directiond of z. The nodes is theroot of the tree. Aninfinite pathin 7" is an
infinite sequence = dids ... of directionsd; € N such that every finite prefix of is a
node inT.

Alternating tree automataGiven a parametet € N\ {0}, we consider input trees of
rankk, i.e. trees in which every node has at mbstuccessors. Ldk] = {0,...,k — 1},
and given a finite sa¥/, let Bt (U) be the set of positive Boolean formulas ovérthat is
formulas built from elements ity U {true, false} using the Boolean connectivesandv.
An alternating tree automatoaver alphabel is a tupleA = (S, sg, 0.4) where:

— Sis afinite set of states witky € S the initial state; and

—04:8%x X — Bt(S x [k]) is a transition function.
Intuitively, the automaton is executed from the initialtstay and reads the input tree in a
top-down fashion starting from the roet In states, if o € X is the letter that labels the
current nodex of the input tree, the behavior of the automaton is given lgyftrmulas
v = d.4(s,a). The automaton choosesatisfying assignmemf ¢, i.e. asetZ C S x [k]
such that the formule is satisfied when the elements &f are replaced byrue, and
the elements ofS x [k]) \ Z are replaced byalse. Then, for eacHs;,d;) € Z a copy
of the automaton is spawned in state and proceeds the node- d; of the input tree.
In particular, it requires that - d; belongs to the input tree. For examplegif(s,a) =
({s1,0) A (s2,0)) V ({s3,0) A (84,1) A (s5,1)), then the automaton should either spawn
two copies that process the successar of direction0 (i.e., the node: - 0) and that enter
the states; ands, respectively, or spawn three copies of which one processésand
enters states, and the other two process 1 and enter the stateg andss respectively.

Language and emptiness problefrun of A over aX-labeled input tre€T", V) is a tree
(T}, r) labeled by elements af x S, where a node df’,. labeled by(z, s) corresponds to
a copy of the automaton proceeding the ned# the input tree in state. Formally, arun
of A over an input treéT, V') is a(T x S)-labeled tregT,., r) such thatr(e) = (g, so)
and for ally € T, if r(y) = (=, s), thenthe sef(s’,d’) | dd e N:r(y -d) = (z - d',s')}
is a satisfying assignment for4 (s, V(x)). Hence we require that, given a nogén T,
labeled by(z, s), there is a satisfying assignmeitC S x [k] for the formulad 4(s, a)
wherea = V' (z) is the letter labeling the current nodef the input tree, and for all states
(s',d") € Z there is a (successor) noged in T, labeled by(z - d', s').

Given an accepting conditiop C S*, we say that a ru7,., r) is acceptingf for all
infinite pathsd,ds ... of T, the sequence; ss ... such that(d;) = (-, s;) foralli > 0
is in p. Thelanguageof A is the setlL;(.A) of all input trees of rank over which there
exists an accepting run od. The emptiness problem for alternating tree automata is to
decide, given4 and parametek, whetherL;(A) = @. For details related to alternating
tree automata and the emptiness problem see [12, 20].



Two-player partial-observation stochastic gam@s/en alphabet!; of actions, and s&®;
of observations (for player € {1,2}), atwo-player partial-observation stochastic game
(for brevity, two-player stochastic game) is a tuple= (@, qo, ) whereq is a finite set
of statesgy € @ is the initial state, and : Q x A; x As — D(Q) is a probabilistic
transition whereD(Q) is the set of probability distributions : @ — [0,1] on @, such
thatzqu k(q) = 1. Given a current state and actions, b for the players, the transition
probability to a successor stateis d(q, a, b)(¢).

Observation-based strategies are defined as for threespaynes. Aroutcome play
from a statey, under strategies , o- is an infinite sequence = gy agbg ¢1 - - - such that
a; =01(q0--- i), bi = 02(qo - - - ¢:), andd(q;, a;, b;)(qi+1) > 0 forall i > 0.

Qualitative analysisGiven an objectivey that is Borel measurable (all Borel sets in the
Cantor topology and all objectives considered in this papemeasurable [15]), a strategy
o, for player1 is almost-sure winningresp.,positive winning for the objectivex from

qo if for all observation-based strategies for player2, we havePr;”*(a) = 1 (resp.,
Prg1»?*(a) > 0) wherePrg2-7*(-) is the unique probability measure induced by the natural
probability measure on finite prefixes of plays (i.e., thedoiat of the transition probabili-
ties in the prefix).

3 Three-Player Games with Player 1 Less Informed

We show that for reachability and parity objectives the ¢hpéayer decision problem is
decidable when player is less informed than playe. The complexity of this problem
ranges from EXPTIME-complete when playzhas perfect information, to EXPSPACE-
complete when playeris blind, and 2-EXPTIME-complete in general.

Remark 1.0Observe that once the strategies of the first two players xaed fve obtain a
graph, and in graphs perfect-information coincides witindfor construction of a path
(see [5, Lemma 2] that counting strategies that count theburaf steps are sufficient
which can be ensured by a player with no information). Henitboumt loss of generality
we consider that player 3 has perfect observation, and tiepliservation for player 3.

Theorem 1 (Upper bounds).Given a three-player gamé& = (Q, qo, d) with player1
less informed than playe2 and a parity objectivey, the problem of deciding whether
Jo1 € X1 -Vog € Yy -Joz € X3 1 pg172:7% € o can be solved in 2-EXPTIME. If playeér
is blind, then the problem can be solved in EXPSPACE.

Proof. The proofis by a reduction of the decision problem for thpéserer games to a deci-
sion problem for partial-observation two-player game$lie same objective. We present
the reduction for parity objectives that are visible fory@e2 (defined by priority functions
that are constant over observations of pl&)eThe general case of not necessarily visible
parity objectives can be solved using a reduction to visibjectives, as in [5, Section 3].
Given a three-player gam@ = (Q, g0, ) over alphabet of actiond; (i = 1,2, 3),

and observation®;, O, C 2% for playerl and player, with playerl less informed than
player2, we construct a two-player ganié = (Qm, {qo},dx) over alphabet of actions
Al (i = 1,2), and observation®; C 2@# and perfect observation for player 2, where
(intuitive explanations follow):

- Qp={5€29|s£2AN3os€0y:5C 03};

— A/l = Al X (2Q X AQ — 02), andA’2 = AQ,



-0l ={{s€eQulsCo}|or €0}, andletobs| : Qu — O} be the correspond-
ing observation function;
- 5H(S7 (ala f)7 a2) = pOStG(Sv ar, az, _) N f(S? a2)'
Intuitively, the state spac@y is the set of knowledges of play@rabout the current
state inG, i.e., the sets of states compatible with an observationayfgp2. Along a play
in H, the knowledge of playeX is updated to represent the set of possible current states in
which the gamé&- can be. InH player2 has perfect observation and the role of player
the gaméeH is to simulate the actions of both playieand playes in GG. Since playeg fixes
his strategy before play&in G, the simulation should not let play@rknow player3’s
action, but only the observation that playewill actually see while playing the game. The
actions of playetl in H are pairgas, f) € A} whereqa, is a simple action of player in
G, andf gives the observatiofi(s, az) received by playe? after the response of playar
to the actionasy of player2 when the knowledge of playeX is s. In H, player1 has
partial observation, as he cannot distinguish knowled§pkager2 that belong to the same
observation of playet in G. The transition relation updates the knowledges of playas
expected. Note thdtD,| = |0j], and therefore if playet is blind in G then he is blind
in H as well.
Given a visible parity objective = Parity(p) wherep : Q@ — {0, 1,...,d} is constant
over observations of playe, let o’ = Parity(p’') wherep'(s) = p(q) for all ¢ € s and
s € Qpu. Note that the function’ is well defined since is a subset of an observation
of player2 and thusp(q) = p(¢’) for all ¢,¢' € s. However, the parity objective’ =
Parity(p’) may not be visible to playerin G. We establish that given witness strategies in
G we can construct witness strategiesinand vice-versa, and the details of the strategy
constructions are presented in Section 7 of the appendix. a

Theorem 2 (Lower bounds).Given a three-player gamé& = (Q, qo,d) with player1
less informed than playe@rand a reachability objectiva, the problem of deciding whether
Joy € Xy - Vo3 € Xy -Joz € X3 1 pfl7»% € « is 2-EXPTIME-hard. If playet is blind
(and even when player 2 is also blind), then the problem is EXCE-hard.

Proof. The proof of 2-EXPTIME-hardness is obtained by a polynottirak reduction of
the membership problem for exponential-spatternating Turing machines to the three-
player problem. The same reduction for the special case mdrential-spacaondeter-
ministic Turing machines shows EXPSPACE-hardness when plaiglind (because our
reduction yields a game in which playgis blind when we start from a nondeterministic
Turing machine). The membership problem for Turing machiedo decide, given a Tur-
ing machineM and a finite wordv, whetherM acceptsv. The membership problemis 2-
EXPTIME-complete for exponential-space alternating figninachines, and EXPSPACE-
complete for exponential-space nondeterministic Turirghmes [21].

An alternating Turing machine is a tupld = (Qv, Qn, X, I, A, qo, Gace; grej) Where
the state spac® = Qv U @, consists of the sap,, of or-states, and the sét, of and-
states. The input alphabet s, the tape alphabet iF = X U {#} where+ is the blank
symbol. The initial state igy, the accepting state ig.., and the rejecting state ds.;. The
transition relationisA C Q x I'x Q@ x I'x {—1, 1}, where a transitiofig, v, ¢’, 7', d) € A
intuitively means that, given the machine is in stgtand the symbol under the tape head
is 7, the machine can move to stajg replace the symbol under the tape heachhy
and move the tape head to the neighbor cell in direcfioA configurationc of M is a
sequence € (I' U (Q x I"))¥ with exactly one symbol irQ x I', which indicates the
current state of the machine and the position of the tape.dainitial configuration of
Monw = agay ...aniSco = (qo,a0) a1 -az -+ - ar - #*. Given the initial configuration



of M onw, it is routine to define the execution trees/df where at least one successor
of each configuration in an or-state, and all successorsafdhfigurations in an and-state
are present (and we assume that all branches reach eitheor g,.;), and to say that
M acceptsw if all branches of some execution tree reagh.. Note thatQ, = @ for
nondeterministic Turing machines, and in that case theutixactree reduces to a single
path. A Turing machiné/ uses exponential space if for all words all configurations in
the execution of\/ onw contain at mos2® (D non-blank symbols.

We present the key steps of our reduction from alternatingngumachines. Given
a Turing machine\/ and a wordw, we construct a three-player game with reachability
objective in which playeil and player2 have to simulate the execution 8 onw, and
playerl has to announce the successive configurations and tramssitidghe machine along
the execution. Player announces configurations one symbol at a time, thus the ladipha
of playerlis A, = I'U (Q x I') U A. In an initialization phase, the transition relation
of the game forces playérto announce the initial configuratieg (this can be done with
O(n) states in the game, where= |w|). Then, the game proceeds to a loop where player
keeps announcing symbols of configurations. At all timesg@lihe execution, some finite
informationis stored in the finite state space of the gaméndaow of the last three symbols
71,22, z3 announced by playdr, as well as the last symbbkad € @ x I" announced by
player1 (that indicates the current machine state and the posifitimectape head). After
the initialization phase, we should haxe = zo = z3 = # andhead = (g0, ap). When
player1 has announced a full configuration, he moves to a state ofahegvhere either
player1 or player2 has to announce a transition of the machine:Hexd = (p, a), if
p € Qv, then playerl chooses the next transition, andife Q 4, then player chooses.
Note that the transitions chosen by playeare visible to played and this is the only
information that played observes. Hence playéris less informed than playe, and
both playerl and player2 are blind when the machine is nondeterministic. If a tramsit
(q,7,q',7',d) is chosen by playet, and eithep # q or a # ~, then playet loses (i.e.,
a sink state is reached to let playielose, and the target state of the reachability objective
is reached to let player lose). If at some point player announces a symbgb, a) with
P = qace, then playen wins the game.

The role of playee is to check that playet faithfully simulates the execution of the
Turing machine, and correctly announces the configuratiditer every announcement of
a symbol by playei, the game offers the possibility to play2to compare this symbol
with the symbol at the same position in the next configuratida say that playe2 checks
(and whether playet checks or not is not visible to playé), and the checked symbol is
stored ag,. Note that playe® can be blind to check because plageiixes his strategy
after playerl. The windowz,, z5, z3 stored in the state space of the game provides enough
information to update the middle cell in the next configuration, and it allows the game to
verify the check of playe?2. However, the distance (in number of steps) between the same
position in two consecutive configurations is exponengaly™ for simplicity), and the
state space of the game is not large enough to check that stistaace exists between
the two symbols compared by play2rWe use playeB to check that playe?2 makes a
comparison at the correct position. When pla¥€ecides to check, he has to count from
to 2" by announcing after every symbol of playiea sequence of bits, initially all zeros
(again, this can be enforced by the structure of the game@th) states). It is then the
responsibility of playeB to check that playe2 counts correctly. To check this, play®can
at any time choose a bit positigne {0,...,n — 1} and store the bit valuk, announced
by player2 at positionp. The value o, andp is not visible to playeg. While player2
announces the bits,, 1,...,b,_1 at positionp + 1, ...,n — 1, the finite state of the game



is used to flip the value di, if all bits b1, . ..,b,—1 are equal td, hence updating, to
the value of thep-th bit in what should be the next announcement of pl&yén the next
bit sequence announced by plagethe p-th bit is compared witlb,,. If they match, then
the game goes to a sink state (as plaéas faithfully counted), and if they differ then
the game goes to the target state (as pla@yisrcaught cheating). It can be shown that this
can be enforced by the structure of the game Wwith?) states, that i€)(n) states for each
value ofp. As before, whether play@rchecks or not is not visible to player

Note that the checks of play2iand playeB are one-shot: the game will be over (either
in a sink or target state) when the check is finished. This @ugh to ensure a faithful
simulation by playet, and a faithful counting by playe, becausél) partial observation
allows to hide to a player the time when a check occurs,(@nglayer2 fixes his strategy
after playerl (and player3 after player2), thus they can decide to run a check exactly
when playerl (or player2) is not faithful. This ensures that playérdoes not win if he
does not simulate the execution &f on w, and that playe? does not win if he does not
count correctly.

Hence this reduction ensures thdt acceptaw if and only if the answer to the three-
player game problem is &5, where the reachability objective is satisfied if playeven-
tually announces that the machine has reaehgd(that is if M acceptaw), or if player2
cheats in counting, which can be detected by player a0

4 Three-Player Games with Player 1 Perfect

When player 2 is less informed than player 1, we show thattptayer games get much
more complicated (even in the special case where playes perfect information). We
note that for reachability objectives, the three-playaiisioen problem is equivalent to the
qualitative analysis of positive winning in two-player shastic games, and we show that
the techniques developed in the analysis of two-playehstsiic games can be extended to
solve the three-player decision problem with safety objestas well.

For reachability objectives, the three-player decisiarbpem is equivalent to the prob-
lem of positive winning in two-player stochastic games vettbe third player is replaced by
a probabilistic choice over the action set with uniform abttity. Intuitively, after playen
and player2 fixes their strategy, the fact that play&ican construct a (finite) path to the
target set is equivalent to the fact that such a path hasympibbability when the choices
of player3 are replaced by uniform probabilistic transitions. It éo#s from this equiv-
alence (of winning in three-player games and positive wignin two-player games) for
reachability objectives that the result of Theorem 1 gdimasithe complexity result of [6,
Theorem 1], which established EXPTIME-completeness iolsstic two-player reacha-
bility games with playe® having perfectinformation. In particular, when both playand
player2 have partial observation, Theorem 1 can be used to showwbagblayer stochas-
tic games with reachability objective can be solved in 2-EXMBE when playerl is less
informed than playe?, extending the results of [6].

Reachability objectivesEven in the special case where playeras perfect information,
and for reachability objectives, non-elementary memongeisessary in general for player

to win. This result follows from the equivalence of threeysr reachability and two-player
stochastic games with positive reachability as discusbesleg and from the result of [6,
Example 4.2 Journal version] showing that non-elementaynory is necessary to win
with positive probability in two-player stochastic gam#ésalso follows from the equiva-

lence described above and the result of [6, Corollary 4.9nkwersion] that the three-



player decision problem for reachability games is decigalnon-elementary time. We
extend the decidability result to safety objectives (sexi&e 8 in Appendix).

Theorem 3. When player 1 has perfect information, the three-playeiisiec problem is
decidable for both reachability and safety games, and fachability games memory of
size non-elementary is necessary in general for player

5 Four-Player Games

We show that the results presented for three-player gantesato games with four players
(the fourth player is universal and perfectly informed)eTdefinition of four-player games
and related notions is a straightforward extension of §a@il.

In a four-player game with playérless informed than play&; and perfect information
for both playe and player., consider théour-player decision problemvhich is to decide
if do1 € X1 Voo € X5 -3Jog € X3 -Vou, € Xy - P70 € for a parity objective
« (also see Section 9 in the appendix for further discuss®imce playei3 and playert
have perfect information, we assume without loss of geitgtakt the game is turn-based
for them, that is there is a partition of the state sp@cito two setsQ)3 and@Q4 (where
Q = Q3UQ4) such that the transition function is the uniordef: Q3 x A; x Ay x A3 — @
andd, : Q4 x A x As x Ay — Q. Strategies and outcomes are defined analogously to
three-player games. A strategy of playesf {3,4} is of the formo; : Q* - Q; — A;.

By determinacy of perfect-information turn-based gameshwiountable state
space [18], the negation of the four-player decision pnoble equivalent tovo; €
2y -dog € Xy -doy € Xy Vo3 € Vs 1 pgo727%%4 € a. Once the strategies, and
o9 are fixed, the conditiodloy, € X4 - Vo3 € X3 : Pag 7% € a can be viewed as
the membership problem for a tré¢&-°2 in the language of an alternating parity tree au-
tomaton [9] with state spad@ wheret?1:?2 is the(4; x As)-labeled tredT', V') where
T = OF andV (p) = (o1 (obs1(p)), o2(p)) forall p € T.

By the results of [12], if there exists an acceptiiddj x Q)-labeled run tre€T,., r) for
an input treg?-°2 in an alternating parity tree automaton, then there existgmoryless
accepting run tree, that is such that for all nodeg € T, such thajz| = |y| andr(z) =
r(y), the subtrees df;. rooted atr andy are isomorphic. Since the membership problem is
equivalent to a two-player parity game played on the strneatfithe alternating automaton,
a memoryless accepting run tree can be viewed as a winnaggyw, : O x Q — Ay,
or equivalentlysy : O — (Q — Ay) such that for all strategies; : 7, — As, the
resulting infinite branch in the trég. satisfies the parity objective.

It follows from this that the (negation of the) original gties Vo, € Xy - oy €
Yo-doy € Yy Vo3 € X3 : pgg,o'270'3,0'4 € alis equivalenttdfal € X -dogy € Yoy-Vog3 €
X3 1 pgl 7207 € awhereXyy = OF — (A2 x (Q — Ay)) is the set of strategies of a
player (call it player 24) with observatioi®, and action setl, = A; x (Q — A4), and
the outcomep7! 22472 is defined as expected in a three-player game (played bymplaye
player24, and playeB) with transition functiony’ : Q x A; x A, x A; — Q defined by
8'(q, a1, (a2, f),a3) = 0(q, a1, az,as, f(q)).

Hence the original question (and its negation) for fouryptagames reduces in polyno-
mial time to solving a three-player game with the first plagss informed than the second
player. Hardness follows from the special case of threggplgames.

Theorem 4. The four-player decision problem with playetess informed than playe,
and perfect information for both play&rand player4 is 2-EXPTIME-complete for parity
objectives.
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6 Applications

We now discuss applications of our results in the contexyoftesis and qualitative anal-
ysis of two-player partial-observation stochastic games.

Sequential synthesisThe sequential synthespoblem consists of an open system of par-
tially implemented modules (with possible non-determimix choices\Wy, Ms, ..., M,
that need to be refined (i.e., the choices determined byegies) such that the composite
system after refinement satisfy a specification. The systapen in the sense that after the
refinement the composite system is reactive and interalstamienvironment. Consider the
problem where first a sét/y, . . ., M}, of modules are refined, then a 9}, 4, ..., M, are
refined by an external implementor, and finally the remaisigigof modules are refined. In
other words, the modules are refined sequentially: first afs@iodules whose refinement
can be controlled, then a set of modules whose refinemenbtéencontrolled as they
are implemented externally, and finally the remaining satoflules. If the refinements
of modulesi, ..., M, do not have access to private variables of the remaining mod-
ules we obtain a partial-observation game with four playtrs first (existential) player
corresponds to the refinement of modulds, . . ., My, the second (universal) player cor-
responds to the refinement of modulks.. 1, . .., My, the third (existential) player cor-
responds to the refinement of the remaining modules, andotiméhf (adversarial) player
is the environment. If the second player has access to allahiables visible to the first
player, then player 1 is less informed.

Two-player partial-observation stochastic gamesOur results for four-player games im-
ply new complexity results for two-player stochastic ganfes qualitative analysis (posi-
tive and almost-sure winning) under finite-memory straedor the players the following
reduction has been established in [9, Lemma 1] (see Lemmaf2le arxiv version):
the probabilistic transition function can be replaced bymased gadget consisting of
two perfect-observation players, one angelic (existraizd one demonic (universal). The
turn-based gadget is the same as used for perfect-obsensitichastic games [4, 10].
In [9], only the special case of perfect observation for pta® was considered, and hence
the problem reduced to three-player games where only plakias partial observation and
the other two players have perfect observation. In caseeyblayer 2 has partial observa-
tion, the reduction of [9] requires two perfect-observafptayers, and gives the problem
of four-player games (with perfect observation for playesrl player 4). Hence when
player 1 is less informed, we obtain a 2-EXPTIME upper bouminf Theorem 4, and
obtain a 2-EXPTIME lower bound from Theorem 2 (since the e¢hpayer games prob-
lem with player 1 less informed for reachability objectiveincides with positive winning
for two-player partial-observation stochastic games;3eetion 10 in appendix for lower
bound for almost-sure winning). Thus we obtain the follagviasult.

Theorem 5. The qualitative analysis problems (almost-sure and pasitiinning) for two-
player partial-observation stochastic parity games whplayer 1 is less informed than
player 2, under finite-memory strategies for both players,22aEXPTIME-complete.
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Appendix
7 Detailed Proof of Theorem 2

We present the details of the strategy constructions tdkstiethe correctness of the con-
struction for the proof of Theorem 2.

Let X; be the set of observation-based strategies of plager 1,2, 3) in G, and let
X! be the set of observation-based strategies of plagier 1, 2) in H. We claim that the
following statements are equivalent:

(1) InG,301 € X1 - Vo € Xy -Fog € X5 : P77 €

(2) InH, 307 € I} -Voh € Ty : pp2 > € .

The 2-EXPTIME result of the theorem follows from this equérezce because the game
H is at most exponentially larger than the gaigand two-player partial-observation
games with a parity objective can be solved in EXPTIME, anénvplayerl is blind they
can be solved in PSPACE [8]. Observe that when pl&ybeas perfect information, his
observations are singletons aHds no bigger thardz, and an EXPTIME bound follows in
that case.

To show tha(1) implies(2), leto; : O] — A; be a strategy for playersuch that for
all strategiesr; : O — A,, there is a strategys : O — As such thap7!-77* € a.

From oy, we construct an (infinite) DAG over state spagg x O with edges labeled
by elements ofd; x O, defined as follows. The root {{qo }, obs1(¢o)). There is an edge
labeled by(b,05) € Az x Oy from (s, p) to (s, p') if ' = post®(s,a,b,—) Noy # @
wherea = o1(p), andp’ = p - 0, whereo; € O; is the (unique) observation of player
such thai, C o;. Note that for every node = (s, p) in the DAG, for all stateg < s,
forallb € Az, c € Az, there is a successef = (s, p’) of n such that(q,a,b,c) € s
wherea = o01(p). Consider a perfect-information turn-based game played this DAG,
between playe? choosing actiong € A, and player3 choosing observations, € Oa,
resulting in an infinite patliso, po)(s1, 1) - - . in the DAG as expected, and that is defined
to be winning for playes if the sequenceys; ... satisfiesa’. We show that in this game,
for all strategies of playet (which naturally define functions, : OF — A,), there exists
a strategy of playes (a functionfs : Qu x Of x A2 — OF) to ensure that the resulting
play satisfiegy. The argumentis based ¢h) saying that given the strategy is fixed, for
all strategiesr, : O — Ay, there is a strategys : O — As such thatpg! 7273 € a.
Given a strategy for playeXin the game over the DAG, we usg to choose observations
0o € O as follows. We define a labelling function: Qg x Of — @ over the DAG
in a top-down fashion such thats, p) € s. First, letA({qo}, obs1(q0)) = g0, and given
A(s, p) = ¢ with an edge labeled bfb, 02) to (s, p’), let \(s', p') = (¢, a, b, c) where
a = o1(p) andc = o3(p). Note that indeed(q, a, b, ¢) € s’. Now we define a strategy for
player3 that, in a nodé¢s, p) of the DAG, chooses the observatielts, (5(g, a, b, ¢)) where

q = \(s,p),a = o1(p), bis the action chosen by play2it that node (remember we fixed
a strategy for playe?), andc = o5(p). Sincel(s, p) € s, it follows that the resulting play
satisfiesy’ sincepg!727* satisfiesa.

By determinacy of perfect-information turn-based game3,[ih the game over the
DAG there exists a strategfy for player3 such that for all playe-strategies, the outcome
play satisfiesy'. Using f3, we construct a strategy, for playerl in H as follows. First,
by a slight abuse of notation, we identify the observatighs O} with the observation
01 € O; such thatu C oy forall u € o). Forallp € OF, leto}(p) = (a, f) where
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a = o1(p) andf is defined byf (s, a2) = f3(s, p, az). By construction of the DAG and of
the strategy}, for all strategies of playez in H the outcome playgs; ... satisfies the
parity objectiven’, and thuss/ is a winning observation-based strategyHn

To show that(2) implies (1), let o} be a winning observation-based strategy for the
objectivea’ in H. Consider the DAG over state spage; x OF with edges labeled by
elements o4, defined as follows. The root {§¢o}, obsi (go)). For all nodegs, p), for all
b € A,, there is an edge labeled byirom (s, p) to (s, p') if s’ = post%(s,a,b, —) N 0y
andp’ = p- o1 whereo, = f(s,b) and(a, f) = o1(p), ando; € O is the (unique)
observation of playet such thabs C o;. We say tha{s’, p’) is theb-successor ofs, p).
Note that for ally’ € s/, there existg € s andc € Az such thay’ = 6(q, a, b, ¢).

This DAG mimics the unraveling off unders, and sincer] is a winning strategy, for
all infinite paths(sg, po)(s1, p1) . . . of the DAG, the sequencgs; ... satisfiesy’.

Define the strategy, such that;(p) = a if o (p) = (a, f) (again identifying the ob-
servations irQ} and©,). To show thaf1) holds, fix an arbitrary observation-based strategy
o9 for player2. The outcome play of; andos in H is the sequencésy, po)(s1,p1) - - -
where(sg, po) is the root, and such that for all> 1, the node(s;, p;) is theb-successor
of (si—1, pi—1) whereb = o5(obsa(sps1 ... s;—1)) (Whereobsy(s;) is naturally defined as
the unique observationm, € O, such thats; C o0,). From this path in the DAG, we con-
struct an infinite patipop; ... in G using Konig’s Lemma [16] as follows. First, it is easy
to show by induction (ork) that for every finite prefixgs; . .. sx and for everyp, € si
there exists a pathgp: ... px in G such thaip; € s; forall 0 < i < k. Note thatpg = qo
sincesy = {qo} and that by definition of the DAG, for each; (: =0, ...,k — 1), there
exista € Ay, b € Ay, andoy € O, such that; 1 = post®(s;, a, b, —) N oz. Hence, given
Dpi+1 € Sit1, there exist; € As andp; € s; such thab(p;, a,b, ¢;) = piy1.

Arranging all these finite paths in a tree, we obtain an irdifiititely-branching tree
which by Konig's Lemma [16] contains an infinite brangy, ... that is a path inG
and such thay; € s; for all ¢ > 0. Now we can construct the strategy such that
o3(po - .. pi) = c;. Sincesgs; ... satisfies’, it follows thatpf!»72:73 = pgp; ... satisfies
«, which completes the proof.

8 Three-player Games with Player 1 Perfect: Safety Objectigs

We now discuss the main ideas for the decidability of thriegrgr games with perfect
observation for player 1 and safety objectives.

Safety objectivesWe show that the three-player decision problem can be sébraghmes
with a safety objective when play&has perfect information. The proof is using twunt-
ing abstractionof [6, Section 4.2 Journal version] and shows that the antovere three-
player decision problem for safety objectiSefe(7) is YES if and only if there exists a
winning strategy in the two-player counting-abstractiamg with the safety objective to
visit only counting functions (i.e., essentially tuplesnattural numbers) with support con-
tained in the target statés. Intuitively, the counting abstraction is as follows: witkiery
knowledge of player 2 we store a tuple of counters, one fdn etate in the knowledge. The
counters denote the number of possible distinct paths tstdtes of the knowledge, and
the abstraction treats large enough values as infinite évaJuThe counting-abstraction
game is monotone with regards to the natural partial order owunting functions, and
therefore it is well-structured and can be solved by conmgué self-covering unravel-
ing tree, i.e. a tree in which the successors of a node arerootesd only if this node
has no greater ancestor. The properties of well-strucsysiéms (well-quasi-ordering and
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Konig’'s Lemma) ensure that this tree is finite, and thatdteatists a strategy to ensure only
supports contained in the target stafesre visited if and only if there exists a winning
strategy in the counting-abstraction game (in a leaf of the,tone can copy the strategy
played in a greater ancestor). It follows that the thregrgai@ecision problem for safety

games is equivalent the problem of solving a safety gametbigfinite tree.

9 Remark about Strategy Quantifiers

We discuss the various possibilities of strategy quansifeerd information of the players
in multi-player games. First, if there are two existentialsp., universal) players with in-
comparable information, then the decision question is ciddble [22, 23]; and if there is
a sequence of existential (resp., universal) quantifinadicer strategies players such that
the information of the players form a chain (i.e., in the sawe of quantification over
the players, let the players bg io, . .., i, such that; is more informed tham,, i, more
informed thani; and so on), then with repeated subset construction, theeeegican be
reduced to one quantification [23,17,19]. Note however ifhidiere is a quantifier alter-
nation between existential and universal, then even if tifi@rmation may form a chain,
subset construction might not be sufficient; for examplplafyer 1 is perfect and player 2
has partial-information, non-elementary memory might keassary (as shown in Sec-
tion 4). We now discuss the various possibilities of stratqgantification in four-player
games. Without loss of generality we consider that the firategy quantifier is existential.
The above argument for sequence of quantifiers (either unhalgitity with incomparable
information or the sequence reduces to one) shows that weneeld to consider the fol-
lowing strategy quantificationd; vV,33V,, where the subscripts denote the quantification
over strategies for the respective player. First, notedhae the strategies of the first three
players are fixed we obtain a graph, and similar to Remark howitloss of generality
we consider that player 4 has perfect observation. We nowidenthe possible cases for
player 3.

1. Perfect observationThe case when player 3 has perfect observation has beem solve
in the main paper (results of Section 5).

2. Partial observationWe now consider the case when player 3 has partial obsenvéitio
player 2 is less informed than player 1, then the problemlisagst as hard as the prob-
lem considered in Section 4. If player 3 is less informed thlager 2, then even in the
absence of player 1, the problem is as hard as the negatitwe giuiestion considered
in Section 4 (where first a more informed player plays, fokowby a less informed
player, just the strategy quantifiers afgd;V, as compared td,V.33 considered in
Section 4). Finally, if player 1 is less informed than plageand player 2 is less in-
formed than player 3, then we apply our construction of $acs twice and obtain a
double exponential size two-player partial-observatiamg which can be solved in
3-EXPTIME.

10 Remark about Theorem 5

We showed in Section 6 that the 2-EXPTIME lower boundgositivewinning in two-
player partial-observation stochastic games directlpéat from Theorem 2.

The 2-EXPTIME lower bound foalmost-surewinning is obtained by an adaptation
of the proof of Theorem 2. We use the same reduction from expitad-space alternat-
ing Turing machines, with the following changés; the third player is replaced by a uni-
form probability distribution over playes's moves, thus the reduction is now to two-player
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partial-observation stochastic gamg@s) instead of reaching a sink state when playde-
tects a mistake in the sequence of configurations announcelhyer1, the game restarts
in the initial state; thus the target state of the reachgbdbjective is not reached, but
playerl gets another chance to faithfully simulate the Turing maehi

It follows that if the Turing machine accepts, then playéras an almost-sure winning
strategy by faithfully simulating the execution. Indeeither (a) player2 never checks,
or checks and counts correctly, and then playetins since no mistake is detected,(bf
player2 checks and cheats counting, and then pl&yisrcaught with positive probability
(player1 wins), and with probability smaller thanthe counting cheat is not detected and
thus possibly a (fake) mismatch in the symbol announced ayepll is detected. Then
the game restarts. Hence in all cases after finitely manysstdther played wins with
(fixed) positive probability, or the game restarts. It falkothat playei wins the game with
probability1.

If the Turing machine rejects, then playkecannot win by a faithful simulation of the
execution, and thus he should cheat. The strategy of ptaigethen to check and to count
correctly, ensuring that the target state of the reachglubjective is not reached, and the
game restarts. Hence for all strategies of playeahere is a strategy of playerto always
avoid the target state (with probability, and thus playet cannot win almost-surely (he
wins with probability0). This completes the proof of the reduction for almost-suireing.
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