| NI N AUSTRIA

Institute of Science and Technology

CEGAR for Qualitative Analysis of Probabilistic Systems

Krishnendu Chatterjee and Przemyslaw Daca and Martin Chmelik

Technical Report No. 1ST-2014-153-v3+1
Deposited at UNSPECIFIED
http://repository.ist.ac.at/165/1/main.pdf

I —————————————————————————————SS————————
IST Austria (Institute of Science and Technology Austria)

Am Campus 1
A-3400 Klosterneuburg, Austria

Copyright (© 2012, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior
specific permission.

CEGAR for Qualitative Analysis of Probabilistic
Systems

Krishnendu Chatterjee, Martin Chmelik, and Przemystaw Daca

IST Austria

Abstract. We consider Markov decision processes (MDPs) which are a standard
model for probabilistic systems. We focus on qualitative properties for MDPs that
can express that desired behaviors of the system arise almost-surely (with prob-
ability 1) or with positive probability. We introduce a new simulation relation to
capture the refinement relation of MDPs with respect to qualitative properties, and
present discrete graph theoretic algorithms with quadratic complexity to compute
the simulation relation. We present an automated technique for assume-guarantee
style reasoning for compositional analysis of MDPs with qualitative properties by
giving a counter-example guided abstraction-refinement approach to compute our
new simulation relation. We have implemented our algorithms and show that the
compositional analysis leads to significant improvements.

1 Introduction

Markov decision processes. Markov decision processes (MDPs) are standard mod-
els for analysis of probabilistic systems that exhibit both probabilistic and non-
deterministic behavior [30/23]]. In verification of probabilistic systems, MDPs have been
adopted as models for concurrent probabilistic systems [[L8]], probabilistic systems oper-
ating in open environments [42]], under-specified probabilistic systems [7], and applied
in diverse domains [S435]] such as analysis of randomized communication and security
protocols, stochastic distributed systems, biological systems, etc.

Compositional analysis and CEGAR. One of the key challenges in analysis of prob-
abilistic systems (as in the case of non-probabilistic systems) is the state explosion
problem [16], as the size of concurrent systems grows exponentially in the number of
components. One key technique to combat the state explosion problem is the assume-
guarantee style composition reasoning [40], where the analysis problem is decomposed
into components and the results for components are used to reason about the whole sys-
tem, instead of verifying the whole system directly. For a system with two components,
the compositional reasoning can be captured as the following simple rule: consider a
system with two components GG; and G5, and a specification G’ to be satisfied by the
system; if A is an abstraction of G5 (i.e., G5 refines A) and GG in composition with A
satisfies G’, then the composite systems of G; and G also satisfies G'. Intuitively, A is
an assumption on (G;’s environment that can be ensured by G2. This simple, yet elegant
asymmetric rule is very effective in practice, specially with a counter-example guided
abstraction-refinement (CEGAR) loop [[17]]. There are many symmetric [38] as well
as circular compositional reasoning [19138/36] rules; however the simple asymmetric

rule is most effective in practice and extensively studied, mostly for non-probabilistic
systems [38122/10128]].

Compositional analysis for probabilistic systems. There are many works that have
studied the abstraction-refinement and compositional analysis for probabilistic sys-
tems [9129.34)21]]. Our work is most closely related to and inspired by [33] where a
CEGAR approach was presented for analysis of MDPs (or labeled probabilistic transi-
tion systems); and the refinement relation was captured by strong simulation that cap-
tures the logical relation induced by safe-pCTL [25/417]).

Qualitative analysis and its importance. In this work we consider the fragment of
pCTL* [25/4)7] that is relevant for qualitative analysis, and refer to this fragment as
QCTL™. The qualitative analysis for probabilistic systems refers to almost-sure (resp.
positive) properties that are satisfied with probability 1 (resp. positive probability). The
qualitative analysis for probabilistic systems is an important problem in verification that
is of interest independent of the quantitative analysis problem. There are many appli-
cations where we need to know whether the correct behavior arises with probability 1.
For instance, when analyzing a randomized embedded scheduler, we are interested in
whether every thread progresses with probability 1 [L3]. Even in settings where it suf-
fices to satisfy certain specifications with probability A < 1, the correct choice of A is a
challenging problem, due to the simplifications introduced during modeling. For exam-
ple, in the analysis of randomized distributed algorithms it is quite common to require
correctness with probability 1 (see, e.g., [41/44]). Furthermore, in contrast to quanti-
tative analysis, qualitative analysis is robust to numerical perturbations and modeling
errors in the transition probabilities.

Our contributions. In this work we focus on the compositional reasoning of proba-
bilistic systems with respect to qualitative properties, and our main contribution is a
CEGAR approach for qualitative analysis of probabilistic systems. The details of our
contributions are as follows:

1. To establish the logical relation induced by QCTL" we consider the logic ATL*
for two-player games and the two-player game interpretation of an MDP where
the probabilistic choices are resolved by an adversary. In case of non-probabilistic
systems and games there are two classical notions for refinement, namely, sim-
ulation [37)] and alternating-simulation [1l]. We first show that the logical relation
induced by QCTL" is finer than the intersection of simulation and alternating simu-
lation. We then introduce a new notion of simulation, namely, combined simulation,
and show that it captures the logical relation induced by QCTL".

2. We show that our new notion of simulation, which captures the logic relation of
QCTL*, can be computed using discrete graph theoretic algorithms in quadratic
time. In contrast, the current best known algorithm for strong simulation is poly-
nomial of degree seven and requires numerical algorithms. The other advantage of
our approach is that it can be applied uniformly both to qualitative analysis of prob-
abilistic systems as well as analysis of two-player games (that are standard models
for open non-probabilistic systems).

3. We present a CEGAR approach for the computation of combined simulation, and
the counter-example analysis and abstraction refinement is achieved using the ideas
of [277]] proposed for abstraction-refinement for games.

4. We have implemented our approach both for qualitative analysis of MDPs as well
as games, and experimented on a number of well-known examples of MDPs and
games. Our experimental results show that our method achieves significantly better
performance as compared to the non-compositional verification as well as compo-
sitional analysis of MDPs with strong simulation.

Related works. Compositional and assume-guarantee style reasoning has been ex-
tensively studied mostly in the context of non-probabilistic systems [38122/10l28]].
Game-based abstraction refinement has been studied in the context of probabilistic sys-
tems [34]. The CEGAR approach has been adapted to probabilistic systems for reacha-
bility [29] and safe-pCTL [9]] under monolithic (non-compositional) abstraction refine-
ment. The work of [33]] considers CEGAR for compositional analysis of probabilistic
system with strong simulation. Our work focuses on CEGAR for compositional analy-
sis of probabilistic systems for qualitative analysis: we characterize the required simula-
tion relation; present a CEGAR approach for the computation of the simulation relation;
and show the effectiveness of our approach both for qualitative analysis of MDPs and
games.

Organization of the paper. In Section 2] we present the basic definitions of games and
logic for games. In Section [3] we introduce a new simulation relation for games, show
that it is finer than both simulation and alternating simulation, and present algorithms
to compute the relation. In Section[d] we present the definitions of MDPs and qualitative
logics, and in Section [5] show that the logical relation induced by the qualitative log-
ics on MDPs can be obtained through our simulation relation introduced in Section
In Section [6] we present a CEGAR approach for our simulation relation and present
experimental results in Section

2 Game Graphs and Alternating-time Temporal Logics

Notations. Let AP denote a non-empty finite set of atomic propositions. Given a finite
set S we will denote by S™* (respectively S“) the set of finite (resp. infinite) sequences
of elements from S, and let ST = S* \ {€}, where € is the empty string.

2.1 Two-player Games

Two-player games. A two-player game is a tuple G = (S, A, Av, 0, L, sg), where

- S'is a finite set of states.

— A is afinite set of actions.

Av : S — 24\ () is an action-available function that assigns to every state s € S
the set Av(s) of actions available in s.

-6 :8%x A — 29\ 0 is a non-deterministic transition function that given a state
s € S and an action a € Av(s) gives the set d(s, a) of successors of s given action
a.

L : S — 2P is a labeling function that labels the states s € S with the set £(s) of
atomic propositions true at s.

— 8¢ € Sis an initial state.

Alternating games. A two-player game G is alternating if in every state either Player 1
or Player 2 can make choices. Formally, for all s € .S we have either (i) |Av(s)| = 1
(then we refer to s as a Player-2 state); or (ii) for all a € Av(s) we have |§(s,a)| =1
(then we refer to s as a Player-1 state). For technical convenience we consider that in
the case of alternating games, there is an atomic proposition turn € AP such that for
every Player-1 state s we have turn € L(s), and for every Player 2 state s’ we have
turn & L(s').

Plays. A two-player game is played for infinitely many rounds as follows: the game
starts at the initial state, and in every round Player 1 chooses an available action from
the current state and then Player 2 chooses a successor state, and the game proceeds
to the successor state for the next round. Formally, a play in a two-player game is an
infinite sequence w = spaps1a1S2as - - - of states and actions such that for all ¢ > 0 we
have that a; € Av(s;) and s; 11 € 0(s;, a;). We denote by (2 the set of all plays.

Strategies. Strategies are recipes that describe how to extend finite prefixes of plays.
Formally, a strategy for Player 1 is a function o : (S x A)* x S — A, that given a
finite history w - s € (S x A)* x S of the game gives an action from Av(s) to be
played next. We write X' for the set of all Player-1 strategies. A strategy for Player 2
is a function 0 : (S x A)* — S, that given a finite history w - s - a of a play selects
a successor state from the set §(s, a). We write © for the set of all Player-2 strategies.
Memoryless strategies are independent of the history, but depend only on the current
state for Player 1 (resp. the current state and action for Player 2) and hence can be
represented as functions S — A for Player 1 (resp. as functions S x A — S for
Player 2).

Outcomes. Given a strategy o for Player 1 and 6 for Player 2 the outcome is a unique
play, denoted as Plays(s, 0, 0) = spapsiay - - -, which is defined as follows: (i) so = s;
and (ii) for all ¢ > 0 we have a; = o(spag ... s;) and s;41 = 0(spag . . . s;a;). Given a
state s € S we denote by Plays(s, o) (resp. Plays(s, #)) the set of possible plays given
o (resp. 0), i.e., Uy co Plays(s, o,0") (tesp. |, 5; Plays(s, o’, 0)).

Parallel composition of two-player games. Given games G = (S, A, Av,§, L, s0)
and G' = (S',A,AV', ', L, s}) the parallel composition of the games G || G’ =
(S, A,Av, 6, L,35) is defined as follows:

The states of the composition are S = S x 5’.

The set of actions does not change with the composition.

For all (s, s") we have Av((s, s')) = Av(s) N AV'(s').

The transition function for a state (s,s’) € S and an action a € Av((s,s’)) is
defined as 6((s, s'),a) = {(t,t') |t € §(s,a) ANt € §'(s',a)}.

The labeling function £((s, ")) is defined as £(s) U £'(s").

The initial state is So = (so, S())-

Remark 1. For simplicity we assume that the set of actions in both components is iden-
tical, and for every pair of states the intersection of their available actions is non-empty.
The definition of parallel composition can be extended to cases where the sets of actions
are different [2]].

2.2 Alternating-time Temporal Logic

We consider the Alternating-time Temporal Logic (ATL*) [3] as a logic to specify
properties for two-player games.

Syntax. The syntax of the logic is given in positive normal form by defining the set of
path formulas () and state formulas (1)) according to the following grammar:

state formulas: Yu=qlog| Y VY | Y AY | PQ(p)
path formulas: pu=YloeVeleAe| Ol eUe | eWe;

where ¢ € AP is an atomic proposition and PQ is a path quantifier. The operators O
(next), U (until), and VW (weak until) are the temporal operators. We will use true as a
shorthand for ¢ V —q and false for g A —¢q for some g € AP. The path quantifiers PQ are
as follows:

ATL* path quantifiers: (1), (2)), (1,2)), and {(0)).

Semantics. Given a play w = spagsiay - - - we denote by w]i] the suffix starting at the
i-th state element of the play w, i.e., w[i] = $;a;S;y1a;+1 - . The semantics of path
formulas is defined inductively as follows:

W i w[0] |-
wkE @1V iffw = @ orw = @y

wE 1 A pa iffw = @ and w = @9

w = Op iff wll] = ¢

w = p1Ups iff3j e N:wlj] E g2 and V0 < i < j: wli] = ¢1
wE @1 Wes iff o1 U orVj € N: wlj] = 1.

Given a path formula ¢, we denote by [¢]¢ the set of plays w such that w = ¢. We
omit the G lower script when the game is clear from context. The semantics of state
formulas for ATL" is defined as follows:

sEq iff g € L(s)
s q iff g & L(s)
8)21/11\/1/)2 iffSlZ’lblOI‘S):l/)Q
5 1 Ao iff s = 4y and s |= 1o

sE (1) (e) iff 3o € X, V0 € O : Plays(s,0,0) € [¢]
s E(2) () iff 30 € ©,Vo € X : Plays(s, 0,0) € [¢]
s = (1, 2)(v) iff 3o € X,30 € O : Plays(s,0,0) € [¢]
s = (0)(e) iff Vo € X,V0 € O : Plays(s,0,0) € [¢];

where s € S and ¢ € AP. Given an ATL" state formula v and a two-player game G,
we denote by [¢)]c = {s € S| s |= 9} the set of states that satisfy the formula . We
omit the G lower script when the game is clear from context.

Logic fragments. We define several fragments of the logic ATL™:

— Restricted temporal operator use. An important fragment of ATL* is ATL where
every temporal operator is immediately preceded by a path quantifier.

— Restricting path quantifiers. We also consider fragments of ATL* (resp. ATL)
where the path quantifiers are restricted. We consider (i) 1-fragment (denoted
1-ATL™) where only (1)) path quantifier is used; (ii) the (1, 2)-fragment (denoted
(1,2)-ATL") where only ({1, 2)) path quantifier is used; and (iii) the combined frag-
ment (denoted C-ATL*) where both (1)) and {1, 2)) path quantifiers are used. We
use a similar notation for the respective fragments of ATL formulas.

Logical characterization of states. Given two games G and G’, and a logic fragment
F of ATL*, we consider the following relations on the state space induced by the logic
fragment F:

<r (G,G)={(s,8)eSx S |V eF: ifs Etthens |}

and when the games are clear from context we simply write < for <r (G,G’). We
will use the following notations for the relation induced by the logic fragments we con-
sider: (i) <3 (resp. <1) for the relation induced by the 1-ATL* (resp. 1-ATL) fragment;
(i) <7 o (resp. <1,2) for the relation induced by the (1,2)-ATL" (resp. (1,2)-ATL)
fragment; and (iii) <. (resp. <¢) for the relation induced by the C-ATL* (resp.
C-ATL) fragment. Given G and G’ we can also consider G” which is the disjoint union
of the two games, and consider the relations on G”’; and hence we will often consider a
single game as input for the relations.

3 Combined Simulation Relation Computation

In this section we first recall the notion of simulation [37]] and alternating simulation [[1];
and then present a new notion of combined simulation.

Simulation. Given two-player games G = (S5,A4,Av,0,L,s0) and G' =
(S", A AV &' L', sh), arelation S C S x S’ is a simulation from G to G’ if for
all (s, s") € S the following conditions hold:

1. Proposition match: The atomic propositions match, i.e., £(s) = L/(s).
2. Step-wise simulation condition: For all actions a € Av(s) and states ¢ € (s, a)
there exists an action a’ € Av'(s’) and a state ¢’ € §(s’, a’) such that (¢,#') € S.

We denote by SG.C" the largest simulation relation between the two games (we write

Siax instead of S&,G" when G and G’ are clear from the context). We write G ~s G’
when (s, Si) € Smax- The largest simulation relation characterizes the logic relation of
(1,2)-ATL and (1,2)-ATL": the (1, 2)-ATL-fragment interprets a game as a transition
system and the formulas coincide with existential CTL, and hence the logic character-
ization follows from the classical results on simulation and CTL [3712].

Proposition 1. For all games G and G’ we have Sy« =<x12=<12

Alternating simulation. Given two games G = (S, A,Av,6,L,s9) and G' =
(S, A" AV 6, L' s}), arelation A C S x S’ is an alternating simulation from G
to G’ if for all (s, ') € A the following conditions hold:

1. Proposition match: The atomic propositions match, i.e., £(s) = L'(s').

2. Step-wise alternating-simulation condition: For all actions a € Av(s) there exists
an action a’ € AV'(s") such that for all states ¢’ € '(s’,a’) there exists a state
t € §(s,a) such that (¢,t') € A.

We denote by Ag;g' the largest alternating-simulation relation between the two games
(we write Apay instead of AS:G when G and G’ are clear from the context). We
write G ~4 G’ when (sg,s() € Amax- The largest alternating-simulation relation

characterizes the logic relation of 1-ATL and 1-ATL™ [1].

Proposition 2. For all games G and G’ we have Ap.x =<7=<1.

Combined simulation. We present a new notion of combined simulation that extends
both simulation and alternating simulation, and we show how the combined simulation
characterizes the logic relation induced by C-ATL* and C-ATL. Intuitively, the re-
quirements on the combined-simulation relation combine the requirements imposed by
alternating simulation and simulation in a step-wise fashion. Given two-player games
G = (S,A,Av,0,L,s0) and G' = (S", A", AV, 8, L', s}), arelation C C S x Sisa
combined simulation from G to G’ if for all (s, s’) € C the following conditions hold:

1. Proposition match: The atomic propositions match, i.e., £(s) = L/(s).
2. Step-wise simulation condition: For all actions a € Av(s) and states ¢ € (s, a)
there exists an action a’ € Av/(s’) and a state t' € §(s’, a’) such that (,#') € C.
3. Step-wise alternating-simulation condition: For all actions a € Av(s) there exists
an action a’ € AV'(s") such that for all states ¢’ € ¢'(s’,a’) there exists a state
t € §(s,a) such that (¢,t") € C.
We denote by ngg the largest combined-simulation relation between the two games
(and write Cinax When G and G’ are clear from the context). We also write G ~¢ G’
when (89, $)) € Cmax. We first illustrate with an example that the logic relation <¢ in-
duced by C-ATL is finer than the intersection of simulation and alternating-simulation
relation; then present a game theoretic characterization of Cy,,; and finally show that
Cmax gives the relations < and <¢.

G/

a /l\
O

Fig. 1. Games G, G’ such that G ~s G’ and G ~4 G',but G #c G'.

Example 1. Consider the games G and G’ shown in Figure I} White nodes are la-
beled by an atomic proposition p and gray nodes by an atomic proposition g. The
largest simulation and alternating-simulation relations between G and G’ are: Syay =

{(s0,t0), ($1,t1)}, Amax = {(S0,%0), (S0,t2), (s1,t1)}. However, consider the for-
mula) = (I)(O(pA (1,2)(Oq))). We have that so = 1, but £y [~ 1. It follows that
(s0,t0) €<c- 0

Combined-simulation games. The simulation and the alternating-simulation rela-
tion can be obtained by solving two-player safety games [26/1/11]]. We now define a
two-player game for the combined-simulation relation characterization. The game is
played on the synchronized product of the two input games. Given a state (s, s), first
Player 2 decides whether to check for the step-wise simulation condition or the step-
wise alternating-simulation condition. The step-wise simulation condition is checked
by playing a two-step game, and the step-wise alternating-simulation condition is
checked by playing a four-step game. Consider two games G = (S, A, Av, §, L, s¢)
and G’ = (5", A", AV, &', L', s},). We construct the combined-simulation game G¢ =
(SC, AC AVE,5€, L€, s€) as follows:

— The set of states. The set of states SC is:

SC = (SxS)U(S xS x{Sim} x{1,2})U(S x 5" x {Alt} x {2})
U (S xS x{Alt} x Ax {1} U(S xS x {Alt} x Ax A" x {1,2})

Intuitively, in states in .S x S’ and in states where the last component is 2 it is
Player 2’s turn to make the choice of successors, and in all other states Player 1
makes the choice of actions.

— The set of actions. The set of actions is as follows: A = {L}USUS UA'".

— The transition function and the action-available function.

1. Choice of simulation or alternating-simulation. For a state (s,s’) we have
only one action L available for Player 1 and we have 6°((s,s), L) =
{(s,¢,Alt,2), (s, s’,Sim, 2)}, i.e., Player 2 decides whether to check for step-
wise simulation or step-wise alternating-simulation conditions.

2. Checking step-wise simulation conditions. We describe the transitions for
checking the simulation conditions:

(a) For a state (s, s’, Sim, 2) we have only one action | available for Player 1
and we have 0€((s, s’,Sim,2), 1) = {(t,s',Sim,1) | 3a € Av(s) : t €
0(s,a)}.

(b) Forastate 5 = (¢, s",Sim, 1) we have Av°(3) = {t' | 3a/ € Av(s') : t' €
§'(s',a’)} and 6€(5,t') = {(t,)}.

Intuitively, first Player 2 chooses an action ¢ € Av(s) and a successor t €

0(s,a) and challenges Player 1 to match, and Player 1 responds with an action

a' € AV'(s') and astate t' € &'(s,d’).

3. Checking step-wise alternating-simulation conditions. We describe the transi-
tions for checking the alternating-simulation conditions:

(a) For a state (s, s’, Alt,2) we have only one action L available for Player 1
and we have 5¢((s, s', Alt,2), 1) = {(s, s, Alt,a,1) | a € Av(s)}.

(b) Forastate 5 = (s, s, Alt, a,1) we have Av°(3) = AV/(s') and 6 (5, /) =
{(s,s',Alt,a,a’,2)}.

(c) For a state (s,s’,Alt,a,a’,2) we have only one action L available for
Player 1 and we have §¢((s,s’, Alt,a,a’,2), L) = {(s,t',Alt,a,a’,1) |
t'ed(s,a)}.

(d) For a state 3 = (s,t/,Alt,a,a’,1) we have AVE (3) = 4(s,a) and
0€(5,t) = {(t,¥)}.

Intuitively, first Player 2 chooses an action a from Av(s) and Player 1 responds

with an action a’ € AV'(s’) (in the first two-steps); then Player 2 chooses a

successor ¢’ from §’(s’, a’) and Player 1 responds by choosing a successor ¢ in

o(s,a).

— The labeling function. The set of atomic proposition AP contains a single proposi-
tion p € AP. The labeling function L€ given a state 5 € S€ is defined as follows:
LE(3) = piff 5= (s,s') and L(s) # L£'(s"). Intuitively, Player 2’s goal is to reach
a state (s,) where the propositional labeling of the original games do not match,
i.e., to reach a state labeled p by LE.

— The initial state. The state s§ is (o, 5)-

In the combined simulation game we refer to Player 1 as the proponent (trying to es-
tablish the combined simulation) and Player 2 as the adversary (trying to violate the
combined simulation).

(s0, to, Sim, 2)

(s0, to, Alt, 2) (50, to)
/<f)\ NGV
(s0,t0, Alt, a1, 1) (s0,to, Alt, a2, 1)
1
I y/ \
v

(s0,to,Alt, a2, a2,2) (s0,to,Alt,az,a1,2) (s1,t0,Sim, 1) (so, to, Sim, 1)
| |
1 1
ll 1 1
V¥ Vv
(s0,t2,Alt, a2, az,1) e
Sol
(SOEtQ) (Shto) (Slltl (S1It2)
1 | 1 1
1 1 1 1
¥ ¥ v v

Fig. 2. Part of the combined-simulation game of G and G’ from Figure

Example 2. A part of the combined-simulation game of G and G’ from Figure (1] is
shown in Figure[2] Dashed arrows indicate that the successors of a given state are omit-
ted in the figure. Gray states are labeled by an atomic proposition p, hence are the goal
states for the adversary. a

Shorthand for safety objectives. We will use the following shorthand for safety objec-
tives: O ¢ = ¢ W false; i.e., the formula (o is satisfied by paths where ¢ is always
true.

Theorem 1. For all games G and G’ we have Ciax = [{1)(O-p)]ge N (S x S').

Proof. The statement follows directly from the definition of combined simulation, and
the fact that the game construction mimics the definition of combined simulation (as in
the case of simulation and alternating simulation [26/1011]]). a

Winning strategies. Given a combined-simulation game G€ we say that a strategy o
for the proponent is winning from a state s if for all strategies 6 of the adversary we
have Plays(s, o, 0) = O(—p). A strategy 6 for the adversary is winning from state s if
for all strategies o of the proponent we have Plays(s, o,6) = trueldp. Whenever the
proponent (resp. adversary) has a winning strategy, the proponent (resp. adversary) also
has memoryless winning strategy [24].

Combined simulation logical characterization. Our next goal is to establish that com-
bined simulation gives the logical characterization of C-ATL* and C-ATL. To prove
the result we first introduce the notion of equivalence between plays: Given two plays
w = Spaps1a152 - -+ and w’' = spagsialsh - we write w ~¢ ' if forall ¢ > 0 we
have (s;, 8;) € Cax-

Lemma 1. Given two games G and G’, let Cpay be the combined simulation. For all
(s,8") € Ciax the following assertions hold:

— For all Player 1 strategies o in G, there exists a Player 1 strategy o’ in G such
that for every play w' € Plays(s’, o’) there exists a play w € Plays(s, o) such that
w~e W

— For all pair of strategies o and 0 in G, there exists a pair of strategies o' and ' in
G’ such that Plays(s, 0,0) ~c Plays(s',0’,6"),

Proof. We present the details of the first item.

— Consider a winning strategy o€ for the proponent in G such that for all (s, s’) €
Cmax and against all strategies ¢ we have Plays(s, o, 6¢) € [O(—p)]. Given the
Player 1 strategy o in G' we construct ¢’ in G’ using the strategy 0. Consider a
history w - s in G and w’ - 8’ € G’ such that (s,s') € Cpax. Let o(w - s) = a.
We define o’ (w’ - s') as follows. Let h be an arbitrary history in G€ that only visits
state in Cpay and ends in (s,s'). Let a’ = o€(h - (s,s',Alt,2) - (s, 8, Alt, a,2));
(i.e., the action played by the strategy o in response to the choice of checking
alternating simulation and the action a by Player 2 in G€). Then the strategy o’
plays accordingly, i.e., o'(w’ - s') = d’. In the next step for every choice t' of
the adversary there exists a choice ¢ of the proponent such that £(¢) = £/(¢') and
(t,t') € Ciax and the matching can proceed.

— The proof is similar to the first item, and instead of using the step-wise alternating-
simulation gadget for strategy construction (of the first item) we use the step-wise
simulation gadget from G to construct the strategy pairs.

The desired result follows. a
In the following theorem we establish the relation between combined simulation

and the C-ATL* fragment of ATL*.

10

Theorem 2. For all games G and G’ we have Cyax =<E=<C-

Proof. First implication. We first prove the implication Cr,ax C=<¢. We will show the
following assertions:

— For all states s and s’ such that (s,s’) € Cpax, We have that every C-ATL" state
formula satisfied in s is also satisfied in s’.

— For all plays w and ' such that w ~¢ w’, we have that every C-ATL* path formula
satisfied in w is also satisfied in w’.

We will prove the theorem by induction on the structure of the formulas. The interesting
cases for the induction step are formulas ((1))(¢) and (1,2)) (), where ¢ is a path
formula.

- Assume s = (1)(p) and (s,5") € Cumax. It follows that there exists a strategy
o € X that ensures the path formula ¢ from state s against any strategy 6 € ©.
We want to show that s’ |= ((1))(). By Lemma|[I{item 1) we have that there exists
a strategy ¢’ for Player 1 from s’ such that for every play w’ € Plays(s’, o’) there
exists a play w € Plays(s, o) such that w ~¢ w’. By inductive hypothesis we have

that s" = (1) ()

- Assume s = ((1,2)(¢) and C(s,s’). It follows that there exist strategies o €
X, 6 € O that ensure the path formula ¢ from state s. By Lemma([I]item 2) we have
that there exist strategies ¢’ and 8’ such that the two plays w’ = Plays(s’,o’,6")
and w = Plays(s,,0) satisfy w ~¢ «’. By inductive hypothesis we have that
s' = (1, 2)(p).

— Consider a path formula . If w ~¢ w’, then by inductive hypothesis for every sub-
formula ¢’ of ¢ we have thatif w |= ¢’ then w’ |= ¢'. It follows that if w = ¢ then
w' = .

Second implication. It remains to prove the second implication X5-C<cC Cpax. As-
sume that given states s and s’ we have that (s,s’) & Cpax, then there exists a win-
ning strategy in the corresponding combined-simulation game for the adversary from
state (s, s'), i.e., there exists a strategy 6€ such that against all strategies o© we have
Plays((s, s"), 0, 6€) reaches a state labeled p. As memoryless strategies are sufficient
for both players in G [24], there also exists abound i € N, such that the proponent fails
to match the choice of the adversary in at most ¢ turns. We sketch the inductive proof
that there exists a formula with ¢ nested operators (1))O or {1, 2)O that is satisfied in
s but not in s’. For 4 equal to 0 the states can be distinguished by atomic propositions.
For the inductive step one can express the simulation turns by a {1,2) (O ...) formula
and alternating simulation turns by a {1)(O...) formula. It follows that (s, s’) ¢<c.
The result follows. g

Remark 2. Lemmal[l]and Theorem[2]also hold for alternating games. Note that in most
cases the action set is constant and the state space of the games are huge. Then the
combined simulation game construction is quadratic, and solving safety games on them
can be achieved in linear time (on the size of the game) using discrete graph theoretic
algorithms [3146].

Theorem 3. Given two-player games G and G', the Cuax, <S¢, and <¢ relations can
be computed in quadratic time using discrete graph theoretic algorithms.

11

4 MDPs and Qualitative Logics

In this section we consider Markov decisions processes (MDPs) and logics to reason
qualitatively about them. We consider MDPs which can be viewed as a variant of two-
player games defined in Section[2] First, we fix some notation: a probability distribution
J on a finite set X is a function f : X — [0,1] such that 3 _ f(z) = 1, and we
denote by D(X) the set of all probability distributions on X . For f € D(X) we denote

by Supp(f) = {z € X | f(z) > 0} the support of f.

4.1 MDPs

A Markov decision process (MDP) is a tuple G = (S, (S1,Sp), A,Av,01,dp, L, s0);
where (i) S is a finite set of states with a partition of .S into Player-1 states .S; and
probabilistic states Sp; (ii) A is a finite set of actions; (iii) Av : S; — 24\ 0 is an
action-available function that assigns to every Player-1 state the non-empty set Av(s)
of actions available in s; (iv) 61 : S1 x A — S is a deterministic transition function
that given a Player-1 state and an action gives the next state; (v) ép : Sp — D(S)
is a probabilistic transition function that given a probabilistic state gives a probability
distribution over the successor states (i.e., dp(s)(s’) is the transition probability from s
to s’); (vi) the function L is the proposition labeling function as for two-player games;
and (vii) sg is the initial state. Strategies for Player 1 are defined as for games.

Interpretations. We interpret an MDP in two distinct ways: (i) as a 1%-player game
and (ii) as an alternating two-player game. In the 1%-player setting in a state s € Sy,
Player 1 chooses an action a € Av(s) and the MDP moves to a unique successor s". In
probabilistic states s, € Sp the successor is chosen according to the probability distri-
bution Jp(s,). In the alternating two-player interpretation, we regard the probabilistic
states as Player-2 states, i.e., in a state s, € Sp, Player 2 chooses a successor state s’
from the support of the probability distribution §p(s). The 1%-player interpretation is
the classical definition of MDPs. We will use the two-player interpretation to relate log-
ical characterizations of MDPs and logical characterization of two-player games with
fragments of ATL".

1%-Player Interpretation. Once a strategy o € X for Player 1 is fixed, the outcome of
the MDP is a random walk for which the probabilities of events are uniquely defined,
where an event @ C (2 is a measurable set of plays [24]. For a state s € .S and an event
& C (2, we write Pr? (P) for the probability that a play belongs to @ if the game starts

from the state s and Player 1 follows the strategy o.

Two-player Interpretation. The two-player interpretation corresponds to alter-
nating two-player games introduced in Section where the probabilistic aspect
of the MDP is replaced by a second player. Formally, given an MDP G =
(S,(S1,5p), A, Av,01,dp, L, s0) we define an alternating two-player game G =
(§, Z, AT/, 3, E, S0) as follows: (i) the states are S = S1 U Sp; (ii) the set of actions
contains a new action L not present in A, i.e., A=AU {L}; (iii) the action-available
function for states s € S is defined as :‘\T/(s) = Av(s) and for states s, € Sp as

K\\/(sp) = {Ll}; (v) for s € Sy and a in m(s) we have 3(5, a) = {1(s,a)}, and for

12

sp € Sp we have g(sp7 1) = Supp(d,(sp)); (v) the labeling function for a Player-
1 state s is L£(s) = £(s) U {turn} and for a Player-2 state s’ coincides with £(s');
and (vi) the initial state is the same Sy = sg. Given an MDP G we denote by G the
two-player interpretation of the MDP. Note that for all Player-1 states s € S; we have
|0(s)| = 1 and for all Player-2 states sp € Sp we have |Av(s,)| = 1. Therefore for any
MDP the corresponding two-player interpretation is an alternating game.

Parallel composition of MDPs. An MDP is said to be strictly alternating if
the initial state is a Player-1 state and all the successors of Player-1 states are
probabilistic states, and vice versa. Given two strictly alternating MDPs G =
(S,(S1,5p), A, Av,81,0p, L, 50) and G’ = (S, (S}, Sp), A, AV, 8} 8, £, s7). the
parallel composition is an MDP G || G’ = (S, (S1,S5p), A4, Av,d1,0p, L,3¢) defined
as follows: (i) the states are S = S; U Sp, where S; = S1 x Sf and Sp = Sp x S);
(ii) for a state (s,s’) € S; we have Av((s,s’)) = Av(s) N AV/(s'); (iii) for a state
(s,s') € S1 and an action a € Av((s,s")) we have 61((s, s'),a) = (§1(s,a),0,(s',a));
(iv) for a state (s, s7,) € Sp we have 0((sp, 53))(t, ') = 8p(sp)(£)-6p(s})(t); (v) for
a state (s,s’) € S we have L((s,s")) = L(s) U L(s), and (vi) the initial state is
(50, 89)-

Example 3. In Figure[3| we present three MDPs G, G2, and G’ that we use as running
examples. We thoroughly describe only MDP G’ = (S, (S1, Sp), 4, Av,01,6p, L, So).
Player-1 states, depicted as circles, are S1 = {s{, $5, s5} and probabilistic states, de-
picted as rectangles, are Sp = {s/, s} }. The set of actions is A = {a, b}. Action a is
available in states s(), s, and action b is available only in states s, s5. The determin-
istic transition function is &1 (s{,, a) = s7,01(sy,b) = s, 01(sh,a) = s}, 61(sh,b) =
sy, 01(ss,b) = sj. The probabilistic transition function ép gives the following prob-

ability distributions over possible successor states: dp(sy)(sh) = %,0p(s})(sh) =
1.6p(s))(ss) = 1. There is a single atomic proposition p € AP and the states la-
beled by p are depicted in gray. The initial state is s{,. a

Fig. 3. Examples of MDPs.

13

4.2 Qualitative Logics for MDPs

We consider the qualitative fragment of pCTL* [25/4)7] and refer to the logic as quali-
tative pCTL* (denoted as QCTL™) as it can express qualitative properties of MDPs.

Syntax and semantics. The syntax of the logic is given in positive normal form and is
similar to the syntax of ATL*. It has the same state and path formulas as ATL* with

the exception of path quantifiers. The logic QCTL* comes with two path quan