| NI N AUSTRIA

Institute of Science and Technology

Automatic Generation of Alternative Starting Positions
for Traditional Board Games

Umair Z. Ahmed and Krishnendu Chatterjee and Sumit Gulwani

Technical Report No. 1ST-2013-146-v1+1
Deposited at UNSPECIFIED
http://repository.ist.ac.at/146/1/main.pdf

I —————————————————————————————SS————————
IST Austria (Institute of Science and Technology Austria)

Am Campus 1
A-3400 Klosterneuburg, Austria

Copyright (© 2012, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior
specific permission.

Automatic Generation of Alternative Starting Positions for
Traditional Board Games

Umair Z. Ahmed

ABSTRACT

Board games, like Tic-Tac-Toe and CONNECT-4, play an impor-
tant role not only in development of mathematical and logical skills,
but also in emotional and social development. In this paper, we
address the problem of generating targeted starting positions for
such games. This can facilitate new approaches for bringing novice
players to mastery, and also leads to discovery of interesting game
variants. Our approach generates starting states of varying hard-
ness levels for player 1 in a two-player board game, given rules of
the board game, the desired number of steps required for player 1
to win, and the expertise levels of the two players. Our approach
leverages symbolic methods and iterative simulation to efficiently
search the extremely large state space. We present experimental re-
sults that include discovery of states of varying hardness levels for
several simple grid-based board games. Also, the presence of such
states for standard game variants like Tic-Tac-Toe on board size
4 x 4 opens up new games to be played that have not been played
for ages since the default start state is heavily biased.

1. INTRODUCTION

Board games involve placing pieces on a pre-marked surface or
board according to a set of rules by taking turns. Some of these
grid-based two-player games like Tic-Tac-Toe and Connect-4 have
a relatively simple set of rules, yet, they are decently challenging
for certain age groups. Such games that are easy to learn but diffi-
cult to master have been immensely popular across centuries.

Significance of board games

Studies show that board games can significantly improve a child’s
mathematical ability [16]. This is significant because studies show
that differences in mathematical ability between children in the first
year at school persist into secondary education [7]. Board games
also play a vital role in the emotional and social development of
a child. They instill a competitive urge and desire to master new
skills in order to win. Winning gives a boost to their self confidence
and enjoyment. Playing a game within a set of rules helps them to
adhere to discipline in life. They learn social etiquette; taking turns,
and being patient. Strategy is another huge component of board
games. Children should quickly grasp that decisions they make in
the beginning of the game have consequences later on. Cause and
effect is elegantly displayed in several board games.

Board games help elderly people stay mentally sharp and less likely
to develop Alzheimer [11]. Board games also hold a great impor-
tance in today’s digital society by strengthening family ties. They
bridge the gap between young and old. They bolsters the self-
esteem of children who take great pride and pleasure when an elder
spends playing time with them.

Significance of generating fresh starting states

Krishnendu Chatterjee

Sumit Gulwani

Board games are typically played with a default start state. For ex-
ample, in case of Tic-Tac-Toe and CONNECT-4, it is the empty
board. However, there are several drawbacks associated with start-
ing from the default starting state. We highlight these problems be-
low and accordingly motivate our goals.

Customizing hardness level of a start state. The default starting
state for a certain game, while being unbiased, might not be con-
ducive for a novice player to enjoy and learn the game. Traditional
board games in particular are easy to learn but difficult to mas-
ter because these games have intertwined mechanics and force the
player to consider far too many possibilities from the standard start-
ing configurations. Players can achieve mastery most effectively
if complex mechanics can be simplified and learned in isolation.
Csikszentmihalyi’s theory of flow [6] suggests that we can keep the
learner in a state of maximal engagement by continually increasing
difficulty to match the learner’s increasing skill. Hence, we need an
approach that allows generating start states of a specified hardness
level. This capability can be used to generate a progression of start-
ing states of increasing hardness. This is similar to how students
are taught educational concepts such as addition and subtraction
through a progression of increasingly hard problems [4].

Leveling the playing field. It is often the case that one player is
more skilled than the other. The starting state for commonly played
games is mostly unbiased, and hence does not offer a fair expe-
rience for players of different skills. The flexibility to start from
some other starting state that is more biased towards the weaker
player can allow for leveling the playing field and hence an enjoy-
able game among players with different expertise. Hence, we need
an approach that takes as input the expertise levels of players and
uses that information to associate a hardness level with a state.

Generating multiple fresh start states. A fixed starting state
might have a well-known conclusion. For example, both players
can enforce a draw in Tic-Tac-Toe while the first player can en-
force a win in CONNECT-4 [3], starting from the default empty
starting state. Players can memorize certain moves and strategies
from a fixed starting state and gain undue advantage. Hence, we
need an approach that generates multiple start states (of a speci-
fied hardness level). This observation has also inspired the design
of Chess960 [1] (or Fischer Random Chess), which is a variant of
chess that employs the same board and pieces as standard chess;
however, the starting position of the pieces on the players’ home
ranks is randomized. The random setup renders the prospect of ob-
taining an advantage through memorization of opening lines im-
practicable, compelling players to rely on their talent and creativity.

Customizing length of play. People sometimes might be disinter-
ested in playing a game if it takes foo much time to finish. How-
ever, selecting non-default starting positions allow the potential of
a shorter game play. Certain interesting situations manifest only in

states that are typically not easily reachable from the start state,
or might require foo many steps. The flexibility to start from such
states might lead to more opportunities for deliberate practice of
specific targeted strategies. Hence, we need an approach that can
take as input a parameter concerning the number of steps that can
lead to a win for a given player.

Experimenting with game variants. While people might be hesi-
tant to learn a game with completely different new rules, it is quite
convenient to change the rules slightly. For example, instead of
allowing for straight-line matches in each of row, column, or di-
agonal (RCD) in Tic-Tac-Toe or CONNECT-4, one may restrict
the matches to say only row or diagonal (RD). However, the de-
Sfault starting state of a new game may be heavily biased towards a
player; as a result that specific game might not have been popular.
For example, consider the game of Tic-Tac-Toe (3,4,4), where the
goal is to make a straight line of 3 pieces, but on a 4 x 4 board. In
this game, the person who plays first invariably almost always wins
even with a naive strategy. Hence, such a game has never been pop-
ular. It turns out that there are non-default unbiased states for such
games and starting from those states can make playing such games
interesting. Hence, we need an approach that is parameterized by
the rules of a game. This also has the advantage of experimenting
with new games or variants of existing games.

In summary, we need an approach to generate multiple start states
of specified hardness levels, given expertise levels of the players
and length of plays, for traditional board games and their variants.

Problem Definition and Search Strategy

We address the problem of automatically generating interesting
starting states (i.e., states of desired hardness levels) for a given
two-player board game. Our approach takes as input the rules of
a board game (for game variants) and the desired number of steps
required for player 1 to win (for controlling the length of play). It
then generates multiple starting states of varying hardness levels (in
particular, easy, medium, or hard) for player 1 for various expertise
level combinations of the two players.

In our setting of simple board games, the players fully know the
simple rules and all the legal game states (as opposed to the setting
of complicated games, where players construct, with approxima-
tion and error, rules of the game and search in their own hypothe-
sized state space). Hence, we formalize the exploration of a game
as a strategy tree and the expertise level of a player as depth of
the strategy tree. The hardness of a state is defined with respect to
the fraction of times player 1 will win, while playing a strategy of
depth k1 against an opponent who plays a strategy of depth k.

Our solution is a novel combination of symbolic methods and it-
erative simulation to efficiently search for desired states. Symbolic
methods are used to compute the winning set for player 1. These
methods work particularly well for navigating a state space where
the transition relation forms a sparse directed acyclic graph (DAG).
Such is the case for those board games in which a piece once placed
on the board does not move, as in Tic-Tac-Toe and CONNECT-4.
Minimax simulation is used to identify the hardness of a given win-
ning state. Instead of randomly sampling the winning set to iden-
tify a state of a certain hardness level, we identify states of varying
hardness levels in order of increasing values of k1 and k2. The key
observation is that hard states are much smaller in number than easy
states, and given a value of k2, interesting states for higher values
of k, are a subset of the hard states for smaller values of k1.

Results

Though our general search methodology applies for any graph
game, we focus on generating interesting starting states in tra-
ditional simple board games and their variants—these are games
whose transition relation forms a sparse DAG (as opposed to an ar-
bitrary graph). Generating starting states in simple and traditional
games, as compared to games with complicated rules, is both more
challenging and more relevant. First, in sophisticated games with
complicated rules interesting states are likely to be abundant and
hence easier to find, whereas finding interesting states in simple
games is more challenging. Second, games with complicated rules
are hard to learn, whereas simple variants of traditional games
(such as larger or smaller board size, or changing winning con-
ditions from RCD to RD) are easier to adopt. Hence finding inter-
esting start states in traditional games and its variants is the more
relevant and challenging question that we address in this work. We
thus present a framework to easily describe new board games like
Tic-Tac-Toe or CONNECT-4 or their variants. Our implementation
works for games that can be described using this framework.

We experimented with Tic-Tac-Toe, CONNECT, Bottom-2 (a new
game that is a hybrid of Tic-Tac-Toe and CONNECT) games and
several of their variants like RD or RC as winning rules instead
of RCD. We were able to generate several (tens of) starting states
of various hardness levels for various expertise levels and num-
ber of winning steps. Two important findings of the experiments
are: (i) discovery of starting states of various hardness levels in
these traditional board games, and furthermore discovering them in
games such as Tic-Tac-Toe on 4 X 4 board size where the default
start state is heavily biased; and (ii) these states are rare and thus
require a non-trivial search strategy like ours to find them.

Contributions
This paper makes the following contributions.

e We motivate and formalize the problem of generating starting
states for board games, and in general, graph games. In partic-
ular, we formalize the problem of generating starting states of
varying hardness levels parameterized by the expertise levels of
players, the graph game description, and the number of steps
required for winning (§2).

e We present a novel search methodology for generating desired
initial states. It involves combination of symbolic methods and
iterative simulation to efficiently search a huge state space (§3).

e We present experimental results that illustrate the effectiveness
of our search methodology (§5). We produced a collection of
initial states of varying hardness levels for standard games as
well as their variants (thereby discovering some interesting vari-
ants of the standard games in the first place).

2. PROBLEM DEFINITION

In this section, we first present some necessary background related
to mathematical model of graph games and recall some basic re-
sults (§2.1). We then describe the notion of hardness and finally the
description of the problem we consider for graph games (§2.2).

2.1 Background on Graph Games

Graph games. An alternating graph game (for short, graph game)
G = ((V, E), (V1, V2)) consists of a finite graph G with vertex set
V, a partition of the vertex set into player-1 vertices V; and player-
2 vertices Va2, and edge set E C ((V1 x V2)U (V2 x V1)). The game
is alternating in the sense that the edges of player-1 vertices go to
player-2 vertices and vice-versa. The game is played as follows: the
game starts at a starting vertex vo; if the current vertex is a player-1
vertex, then player 1 chooses an outgoing edge to move to a new
vertex; if the current vertex is a player-2 vertex, then player 2 does

likewise. The winning condition is given by a target set 77 C V'
for player 1; and similarly a target set 75 C V for player 2. If the
target set 11 is reached, then player 1 wins; if I% is reached, then
player 2 wins; else we have a draw.

Examples. The class of graph games provides the mathematical
framework to study many board games like Chess or Tic-Tac-Toe.
For example, in Tic-Tac-Toe the vertices of the graph represent the
board configurations and whether it is player 1 (x) or player 2 (o)
to play next. The set 77 (resp. T%) is the set of board configurations
with three consecutive X (resp. o) in a row, column, or diagonal.

Classical game theory result. A classic result in the theory of
graph games [8] shows that for every graph game, from every start-
ing vertex one of the following three conditions hold: (1) player 1
can enforce a win no matter how player 2 plays (i.e., there is a way
for player 1 to play to ensure winning against all possible strate-
gies of the opponent); (2) player 2 can enforce a win no matter how
player 1 plays; or (3) both players can enforce a draw (player 1 can
enforce a draw no matter how player 2 plays, and player 2 can en-
force a draw no matter how player 1 plays). The classic result (also
known as determinacy) rules out the following possibility: against
every player 1 strategy (way to play), player 2 can win; and against
every player 2 strategy, player 1 can win. In the mathematical study
of game theory, the theoretical question (which ignores the notion
of hardness) is as follows: given a designated starting vertex vg de-
termine whether case (1), case (2), or case (3) holds. In other words,
the mathematical game theoretic question concerns the best possi-
ble way for a player to play to ensure the best possible result. The
set W is defined as the set of vertices such that player 1 can en-
sure to win within j-moves; and the winning set W' of vertices of
player 1 is the set | J ;>0 W; where player 1 can win in any number

of moves. Analogously, we define TW?; and then the classical game
theory question is formally stated as follows: given a designated
starting vertex vo decide whether vo belongs to W* (player-1 win-
ning set) or to W? (player-2 winning set) or to V' \ (W' U W?)
(both players draw ensuring set).

2.2 Formalization of Problem Definition
We state some useful terminology and then our problem definition.

Notion of hardness. The mathematical game theoretic question ig-
nores two aspects. (1) The notion of hardness: It is always con-
cerned with optimal strategies irrespective of its hardness, and it is
not concerned with when can sub-optimal strategies perform well,
and when do sub-optimal strategies fail; and (2) the problem of
generating different starting vertices. In this work we are interested
in generating starting vertices of different hardness level. The no-
tion of hardness we consider is the depth of the tree a player can
explore, which is standard in artificial intelligence. We first explain
the notion of tree exploration.

Tree exploration in graph games. Consider a player-1 vertex uo.
The search tree of depth 1 is as follows: we consider a tree rooted at
uo such that children of wg are the vertices w1 of player 2 such that
(uo,u1) € E (there is an edge from ug to u1); and for every vertex
w1 (that is a children of ug) the children of u; are the vertices uso
such that (ul, UQ) € E, and they are the leaves of the tree. This
gives us the search tree of depth 1, which intuitively corresponds
to exploring one round of the play. The search tree of depth k& + 1
is defined inductively from the search tree of depth k, where we
first consider the search tree of depth 1 and replace every leaf by
a search tree of depth k. The depth of the search tree denotes the
depth of reasoning (analysis depth) of a player and corresponds to
the optimality (or competence or maturity) of the player to play the
game. The search tree for player 2 is defined analogously.

Strategy from tree exploration. A depth-k strategy of a player
that does a tree exploration of depth k is obtained by the classi-
cal min-max reasoning (or backward induction) on the search tree.
First, for every vertex v of the game we associate a number (or re-
ward) r(v) that denotes how favorable is the vertex for a player to
win. Given the current vertex u, a depth-k strategy is defined as
follows: first construct the search tree of depth k and evaluate the
tree bottom-up with min-max reasoning. In other words, a leaf ver-
tex v is assigned reward r(v), where the reward function r is game
specific, and intuitively, r(v) denotes how “close" the vertex v is to
a winning vertex (see the following paragraph for an example). For
a vertex in the tree if it is a player-1 (resp. player-2) vertex we con-
sider its reward as the maximum (resp. minimum) of its children,
and finally, for vertex u (the root) the strategy chooses uniformly
at random among its children with the highest reward. Note that
the rewards are assigned to vertices only based on the vertex itself
and without any look-ahead, and the exploration (or look-ahead) is
captured by the classical min-max tree exploration.

Example description of tree exploration. Consider the example
of the Tic-Tac-Toe game. We first describe how to assign reward
r to board positions. Recall that in the game of Tic-Tac-Toe the
goal is to form a line of three consecutive positions in a row, col-
umn, or diagonal. Given a board position, (i) if it is winning for
player 1, then it is assigned reward +oo; (ii) else if it is winning
for player 2, then it is assigned reward —oo; (iii) otherwise it is as-
signed the score as follows: let n1 (resp. n2) be the number of two
consecutive positions of marks for player 1 (resp. player 2) that can
be extended to satisfy the winning condition. Then the reward is
the difference n1 — no. Intuitively, the number n, represents the
number of possibilities for player 1 to win, and ns represents the
number of possibilities for player 2, and their difference represents
how favorable the board position is for player 1. If we consider the
depth-1 strategy, then the strategy chooses all board positions uni-
formly at random; a depth-2 strategy chooses the center and con-
siders all other positions to be equal; a depth-3 strategy chooses the
center and also recognizes that the next best choice is one of the
four corners. An illustration is given in the appendix. This example
illustrates that as the depth increases, the strategies become more
intelligent for the game.

Outcomes and probabilities given strategies. Given a starting
vertex v, a depth-k; strategy o1 for player 1, and depth-ko strat-
egy o for player 2, let O be the set of possible outcomes, i.e., the
set of possible plays given o; and o2 from v, where a play is a
sequence of vertices. The strategies and the starting vertex define
a probability distribution over the set of outcomes which we de-
note as Pry*’?2, i.e., for a play p in the set of outcomes O we have
PrJt92(p) is the probability of p given the strategies. Note that
strategies are randomized (because strategies choose distributions
over the children in the search tree exploration), and hence define
a probability distribution over the set of outcomes. The notion of
probability distribution will be used to formally define the notion
of hardness we consider.

Problem definition. In this work we will consider several board
games (such as Tic-Tac-Toe, CONNECT-4, and variants), and the
goal is to obtain starting positions that are of different hardness
level, where our hardness is characterized by strategies of different
depths. In other words, our goal is to obtain starting positions that
are of different hardness levels: i.e., hard for depth-1 strategies, but
easy for depth-2 strategies; and hard for depth-2 strategies, but easy
for depth-3 strategies, and so on. More precisely, consider a depth-
k1 strategy for player 1, and depth-k2 strategy for player 2, and a
starting vertex v € W that is winning for player 1 within j-moves
and a winning move (i.e., j + 1 moves for player 1 and 5 moves of

player 2). We classify the starting vertex into three types as follows:
if player 1 wins (i) at least % times, then we call it easy (E); (ii) at
most % times, then we call it hard (H); (iii) otherwise medium (M).

DEFINITION 1. ((4, k1, k2)-Hardness). Consider a vertex v €
W; that is winning for player I within j-moves. Let o1 and o2 be
a depth-kn strategy for player 1 and depth-ko strategy for player 2,
respectively. Let O1 C O be the set of plays that belong to the
set of outcomes and is winning for player 1. Let Pr]"°2(01) =
Zpeol PrJv72(p) be the probability of the winning plays. The
(k1, k2)-classification of v is as follows: (i) if Prg>72(01) > %
then v is easy (E); (i) if Pryt?2(01) < then v is hard (H);
(iii) otherwise it is medium (M).

1
3

Remark. In the definition above we chose the probabilities % and 2,
however, the probabilities in the definition could be easily changed
and experimented. We chose 1 and 2 to divide the interval [0, 1]
symmetrically in regions of E, M, and H. In this work, we present

result based on the above definition.

Our goal is to consider various games and identify states of differ-
ent categories (e.g., hard for depth-k; against depth-k2, but easy
for depth-(k1+1) against depth-k2, for small values of k1 and k2).

3. SEARCH STRATEGY

We now describe the search strategy that we use for the problem of
generating starting positions of different hardness levels.

3.1 Overall methodology

We start with a description of the overall methodology.

Generation of j-steps win set. Given a game graph G =
((V, E), (V1, Vz)) along with target sets T and T for player 1 and
player 2, respectively, our first goal is to compute the set of vertices
W) such that player 1 can win within j-moves. For this we define
two kinds of predecessor operators: one predecessor operator for
player 1, which uses existential quantification over successors, and
one for player 2, which uses universal quantification over succes-
sors. Given a set of vertices X, let EPre(X) (called existential pre-
decessor) denote the set of player 1 vertices that has an edge to X;
ie., EPre(X) = {u € V1 | there exists v € X such that (u,v) €
E} (i.e., player 1 can ensure to reach X from EPre(X) in one
step); and APre(X) (called universal predecessor) denote the set
of player 2 vertices that has all its outgoing edges to X; i.e.,
APre(X) = {u € V2 | forall (u,v) € Ewehavev € X} (ie.,
irrespective of the choice of player 2 the set X is reached from
APre(X) in one step). The computation of the set W is defined
inductively as follows: Wy = EPre(711) (i.e., player 1 wins with
the next move to reach 71); and W11 = EPre(APre(W;)). In
other words, from W; player 1 can win within ¢-moves, and from
APre(W;) irrespective of the choice of player 2 the next vertex is
in W;; and hence EPre(APre(WV;)) is the set of vertices such that
player 1 can win within (¢ + 1)-moves.

Exploring vertices from W;. The second step is to explore vertices
from W}, for increasing values of j starting with small values of
7, for strategies of different depth for player 1 against strategies
of different depth for player 2, and then obtain starting vertices of
different hardness levels. That is, we consider a vertex v from W,
consider a depth-k; strategy for player 1 and a depth-k> strategy for
player 2, and play the game multiple times with starting vertex v to
find out the hardness level with respect to (k1, k2)-strategies, i.e.,
the (k1, k2)-classification of the vertex v € W;. Note that from W
player 1 can win within j-moves. Thus the approach has the benefit
that player 1 has a winning strategy with a small number of moves
and the game need not be played for long.

Two key issues. There are two main computational issues associ-
ated with the above approach in practice. The first issue is related to
the size of the state space (number of vertices) of the game which
makes enumerative approach to analyze the game graph explicitly
computationally infeasible. For example, the size of the state space
of a Tic-Tac-Toe 3 x 3 game is 5,478; Tic-Tac-Toe 4 X 4 game is
6,036,001; and a CONNECT-4 5 x 5 game is 69,763,700 (more
than 69 million). Hence any enumerative method would not work
for such large game graphs. The second issue is related to explor-
ing the vertices from W. If W; has a lot of witness vertices, then
playing the game multiple times from all of them will be compu-
tationally expensive. In other words, we need an initial metric to
guide the search of vertices from W; such that the metric computa-
tion is not computationally expensive. We solve the first issue with
symbolic methods, and the second one by iterative simulation.

3.2 Symbolic methods

In this section we discuss the symbolic methods that allow to an-
alyze games with large state spaces. The key idea is to represent
the games symbolically (not with explicit state space) using vari-
ables, and operate on the symbolic representation. The key object
used in symbolic representation are called BDDs (boolean deci-
sion diagrams) [5] that can efficiently represent a set of states using
a dag representation of a boolean formula representing the set of
states. The tool CUDD supports many symbolic representation of
state space using BDDs and supports many operations on symbolic
representation on graphs using BDDs [20].

Symbolic representation of vertices. In symbolic methods, a
game graph is represented by a set of variables x1, z2, ..., x, such
that each of them takes values from a finite set (e.g., X, o, and blank
symbol); and each vertex of the game represents a valuation as-
signed to the variables. For example, the symbolic representation
of the game of Tic-Tac-Toe of board size 3 x 3 consists of ten vari-
ables z1,1,1,2,%1,3,%2,1 - .., 23,3, L10, Where the first nine vari-
ables z; ¢ denote the symbols in the board position (%, £) and the
symbol is either x, o, or blank; and the last variable x19 denote
whether it is player 1 or player 2’s turn to play. Note that the ver-
tices of the game graph does not only consists of the information
about the board configuration, but also additional information such
as the turn of the players. To illustrate how a symbolic representa-
tion is efficient, consider the set of all valuations to boolean vari-
ables y1, Y2, . . ., yn Where the first variable is true, and the second
variable is false: an explicit enumeration requires to list 2™~ 2 valu-
ations, where as a boolean formula representation is very succinct.
Symbolic representation with BDDs exploit such succinct repre-
sentation for sets of states, and widely used in many applications
such as hardware verification [5].

Symbolic encoding of transition function. The transition func-
tion (or the edges) are also encoded in a symbolic fashion: instead
of specifying every edge, the symbolic encoding allows to write a
simple program over the variables to specify the transitions. The
tool CUDD takes such a symbolic description written as a program
over the variables and constructs a BDD representation of the tran-
sition function. For example, for the game of Tic-Tac-Toe, a simple
program to describe the symbolic transition is as follows: the pro-
gram maintains a set U of positions of the board that are already
marked; and at every point receives an input (¢,¢) from the set
{(a,b) | 1 < a,b < 3} \ U of remaining board positions from
the player of the current turn; then adds (¢, £) to the set U and sets
the variable x; , as X or o (depending on whether it was player 1 or
player 2). This represents the symbolic description of the transition
function. The CUDD tool accepts such a symbolic description and
outputs a BDD representation of the game.

Symbolic encoding of target states. The set of target states is en-
coded as a boolean formula that represents a set of states. For ex-
ample, in Tic-Tac-Toe the set of target vertices for player 1 is given
by the following boolean formula:

Ji, 0.1 <i,0<3. (:CZ',g =XATig10=XNZTijy2e = ><)
\/(Iiyg = XAZTipr1 = X NZjpr2 = ><)

\/($272 = X /\((1‘1,1 =X ANx33= ><) \/(333,1 =XANzx13= X)))

A Negation of above with o to specify player 2 not winning

The above formula states that either there is some column
(4,0, Tit1,e and x;42) that is winning for player 1; or a row
(4,0, Tie+1 and x; ¢42) that is winning for player 1; or there is
a diagonal (z1,1, 22,2 and x3 3; or x3,1, T2,2 and x1,3) that is win-
ning for player 1; and player 2 has not won already. To be precise,
we also need to consider the BDD that represents all valid board
configurations (reachable vertices from the empty board) and inter-
sect the BDD of the above formula with valid board configurations
to obtain the target set 7.

Symbolic computation of ;. The symbolic computation of W;
is as follows: given the boolean formula for the target set 77 we
obtain the BDD for 7%; and the CUDD tool supports both EPre
and APre as basic operations using symbolic functions; i.e., the
tool takes as input a BDD representing a set X and supports the
operation to return the BDD for EPre(X') and APre(X). Thus we
obtain the symbolic computation of the set W;.

3.3 Iterative simulation

We now describe a computationally inexpensive way to aid sam-
pling of vertices as candidates for starting positions of a given
hardness level. Given a starting vertex v, a depth-k, strategy for
player 1, and a depth-k2 strategy for player 2, we need to consider
the tree exploration of depth max{k1, k2} to obtain the hardness of
v. Hence if either of the strategy is of high depth, then it is compu-
tationally expensive. Thus we need a preliminary metric that can be
computed relatively easily for small values of k1 and k2 as a guide
for vertices to be explored in depth. We use a very simple metric
for this purpose. The hard states are quite rare in comparison to the
easy states, and thus we need to rule out easy states quickly. We
adopt the following two approaches.

o [fky is large. Given a strategy of depth k2, the set of hard states
for higher values of k; are a subset of the hard states for smaller
values of k;. Thus we iteratively start with smaller values of k;
and proceed to higher values of k1 only for states that are hard
already for smaller values of k;.

o [f ko is large. Here we exploit the following intuition. Given a
strategy of depth k1, a state which is hard for high value of k2
is likely to show indication of hardness already in small values
of k2. Hence we consider the following approach. For the ver-
tices in W, we fix a depth-k; strategy, and fix a small depth
strategy for the opponent and assign the vertex a number (called
score) based on the performance of the depth-k; strategy and
the small depth strategy of the opponent. The score indicates
the fraction of games won by the depth-k; strategy against the
opponent strategy of small depth. The vertices that have low
score are then iteratively simulated against depth-k2 strategies
of the opponent to obtain vertices of different hardness level.
This heuristic serves as a simple metric to explore vertices for
large value of k- starting with small values of k.

4. FRAMEWORK FOR BOARD GAMES

We now consider the specific problem of board games. We describe
a framework to specify several variants of two-player grid based
board games such as Tic-Tac-Toe, CONNECT-4, and several new

variants. Note that though our implementation of symbolic methods
works for the class of traditional board games and their variants, our
methodology is applicable to the general class of graph games.

Parameters to generate different games. Our framework allows
three different parameters to generate variants of board games.

1. The first parameter is the board size; e.g., the board size could
be 3 x 3;0r4 x 4;0r4 x 5 and so on.

2. The second parameter is the way to specify the winning con-
dition; and we consider the cases where a player wins if a se-
quence of the moves of the player are in a line but the line could
be in a row (R), in a column (C), or along the diagonal (D). The
user can specify any combination, i.e., the winning condition
could be (i) RCD (denoting the player wins if the moves are
in a line along a row, column or diagonal); (ii) RC (line must
be along a row or column, but diagonal lines are not winning);
(iii) RD (row or diagonal, but not column); or (iv) CD (column
or diagonal, but not row).

3. The third parameter is related to the allowed moves of the player.
At any point the players can choose a column (if it is available,
i.e., there is at least one empty position in the column) but can be
restricted according to the following parameters: (i) Full gravity
(once a player chooses a column, the move is fixed to be the low-
est available position in that column); (ii) partial gravity-¢ (once
a player chooses a column, the move can be one of the bottom-¢
available positions in the column); or (iii) no gravity (the player
can choose any of the available positions in the column).

Observe that Tic-Tac-Toe is given as board size (i) board size
3 x 3; (ii) winning condition RCD; and (iii) no-gravity; whereas
in CONNECT-4 the winning condition is still RCD but moves are
with full gravity. But in our framework there are many new variants
of the previous classical games, e.g., Tic-Tac-Toe in a board of size
4 x4 but diagonal lines are not winning (RC). Tic-Tac-Toe, Bottom-
2 and CONNECT-3 require 3 consecutive positions to be marked
for a player to win, while CONNECT-4 requires 4 consecutive po-
sitions. Note that the Bottom-2 (partial gravity-2) is between Tic-
Tac-Toe and CONNECT games in terms of moves allowed: in Tic-
Tac-Toe all available positions are allowed, whereas in CONNECT
games a player can choose among the available columns, and in
Bottom-2 a player can choose an available column and among the
two bottom positions available in the column.

Features of our implementation. We have implemented our sym-
bolic approach for generating starting vertices (or board positions)
of different hardness levels (if they exist) for the class of board
games described above. The main features that our implementation
supports are: (1) Generation of starting vertices of different hard-
ness level if they exist. (2) Playing against opponents of different
levels. We have implemented the depth-k» strategy of the opponent
for ko = 1,2 and 3 (typically in all the above games depth-3 strate-
gies are quite intelligent, and hence we do not explore larger values
of k2). Thus, a learner (beginner) can consider starting with board
positions of various hardness levels and play with opponents of dif-
ferent skill level and thus hone her ability to play the game and be
exposed to new combinatorial challenges of the game.

S. EXPERIMENTAL RESULTS

‘We now present our experimental results, which reveal useful dis-
coveries. The main aim is to investigate the existence of interesting
starting states and their abundance (if they exist) in CONNECT,
Tic-Tac-Toe, and Bottom-2 games, for various combinations of ex-
pertise levels and for various winning rules (RCD, RC, RD, and
CD), for small lengths of plays. Moreover, the experimental re-
sults should be accomplished in reasonable time. Our key findings

o o o o
(0] X X X
X X X X X | X
X 0 |X X X X (0]
X (0] X (0] 0| X
X|O (0] (0] X
X[X|O0|X|O (0] 0| X
(0] X|O oO(X]|O0 (0] 0|0 | X
0|0|O[X|O O(X|O0|X|X
(a) Tic-Tac-Toe (b) Tic-Tac-Toe (c) Bottom-2 (d) Bottom-2 RC
RC Hard for k1 = CD Hard for k1 = RCD Hard for k Hard for ki =2 (e) CONNECT-4 (f) CONNECT-4 RD
1 ! 1 ! =5 ! ! RCD Hard for k1 =2 Hard for ky = 3

Figure 1: Some “Hard” starting board positions generated by our tool for a variety of games and a variety of expertise level k; of the first
player. The opponent expertise level k2 is set to 3. The first player (player X) can win in 2 steps for games (a)-(e) and in 3 steps for game (f).

Table 1: CONNECT-3 & -4 against depth-3 strategy of opponent; (C-3
(resp. C-4) stands for CONNECT-3 (resp. CONNECT-4)). The third col-
umn () denotes whether we explore from Wo or W3. The sixth column
denotes sampling to select starting vertices if |W;| is large: “All” denotes
that we explore all states in W/, and Rand denotes first sampling 5000
states randomly from W; and exploring them. The E, M, and H columns
give the number of easy, medium, or hard states among the sampled states.
For each &k = 1,2, and 3 the sum of E, M, and H columns is equal to the
number of sampled states, and * denotes the number of remaining states.
Observe that |W;| is small fraction of |V| (this illustrates the significance
of our use of symbolic methods as opposed to the prohibitive explicit enu-
merative search!). Also, observe that states labeled medium and hard are a
small fraction of the sampled states (this illustrates the significance of our
efficient iterative sampling strategy).

Game State j Win No.of Sampling k1= k1 =2 k1=3
Space Cond States EM HI[EM HI|[E M H
V] [W;]
C3 41x10% 2 RCD 110 Al [#* 24 5 [*= 3 0]* 0 0
4x4 65%x10* RC 200 Al [* 39 9 [% 23 5 |* 0 0
7.6x10% RD 418 All 36 17 |* 25 4 |* 0 0
6.5x10% CD 277 Al |* 41 24 |* 27 21|* 0 0
C3 3 RCD, RC, CD 0 B
4x4 RD 18 Al _|* 0 0 |* 0 0[* 0 0
C4 69x107 2 RCD 12x10° Rand [* 184 215 [* 141 129[* 0 0
5x5 8.7x107 RC 1.6x10° Rand |* 81 239 |* 70 18|* 0 0O
1.0x10% RD 1.1x10° Rand |* 106 285 |* 151 8 |* 0 0O
9.5x107 CcD 53x10° Rand [* 364 173 [* 209 96 |* 0 0
C-4 3 RCD 28x10° Rand |* 405 942 [* 397 506|* 208 211
5x5 RC 7.7x10° Rand |* 414 1016|* 340 508 |* 111 208
RD 8.0x10° Rand |* 379 1329|* 464 538 |* 179 111
CD 1.5x10° Rand |* 156 128 |* 171 110|* 120 72

show that such states exist (but in most cases are rare, and thus
their discovery is an important finding and illustrates the signifi-
cance of our non-trivial search strategy) for Tic-Tac-Toe for depth-
1 strategies, for Bottom-2 for depth-1 and depth-2 strategies, and in
CONNECT-4 for depth-1, depth-2 and depth-3 strategies, against
a depth-3 strategy of the opponent. We also obtain similar results
against depth-2 strategy of the opponent. Furthermore, we observe
the existence of interesting states in Tic-Tac-Toe games and its vari-
ants over 4 x 4 board size, where the default start state is uninterest-
ing. We next briefly detail our experimental results and important
findings and finally we show some example board positions.

Table 2: CONNECT-3 & -4 against depth-2 strategy of opponent.

Game State j Win No.of Sampling k=1 k1 =2 k1=3
Space Cond States EM HI[EM H|[E M H
W]
C-3 41x10% 2 RCD 110 All * 24 5 * 3 o|* 0 0
4x4 65%x10% RC 200 All 39 9 |* 23 5 |* 0 0
7.6x10% RD 418 All * 38 14 |* 24 4 |* 0 0
6.5x10% CD 277 All 44 * 27 17(* 0 0
C-3 3 RCD,RC, CD 0 -
4x4 RD 18 All * 0 0O [* 0 O0f[* 0 O
C-4 69x10° 2 RCD 1.2x 10‘? Rand * 183 202 |* 148 115|* 0 O
5x5 8.7x107 RC 1.6x10° Rand * 70 237 |* 75 181|* O O
1.0x108 RD 11x10° Rand |* 116 268 |* 144 77 [* 0 0
9.5x107 CD 53x10° Rand * 357 133 |* 200 95 |* O O
C-4 3 RCD 28%10° Rand * 445 832 | * 384 497|* 227 166
5x5 RC 7.7x10° Rand * 328 969 | * 328 506|* 93 196
RD 8.0x10° Rand * 398 1206|* 477 501 |* 177 79
CD 1.5%10° Rand * 146 73 | * 168 44 |* 87 19

Table 3: Bottom-2 against depth-3 strategy of opponent.

Board State j Win [W;[Sampling ki =1 ki1=2 k1=3
Size Space Cond E M H[EM H[EMH
3x3 4.1x10° 2 RCD 20 All * of* 1 0 [* 0 O

43x10° RC 0 -
43%10° RD 9 All * 2 1 (* 3 0 00
43%x10% CD 1 All *# 0 0 [* 0 O 0 0

3x3 3 Any 0 -
4x4 1.8x10° 2 RCD 193 All 12 261 0 2 |* 0 O
24x10° RC 2709 All * 586 297|* 98 249(* 0 O
23%10° RD 2132 All * 111 50 [* 18 16 |* 0 O
24x10° CD 1469 All #0123 53 |* 25 8 [* O O

4x4 3 RCD 0 -
RC 90 All * 37 31 |* 0 0 [* 0 O
RD 24 All * o1 2 (* 0 0 [* 0 O
CD 16 All * 6 4 1* 1 0 [* 0 0

Table 4: Bottom-2 against depth-2 strategy of opponent.

Board State 5 Win [W;[Sampling ki=1 ki1=2 ki1=3
Size Space Cond E M H[EM H[EMH
3x3 41x10° 2 RCD 20 Al |[* 5 01 0]* 00

43x%10% RC 0 -
43x10% RD 9 Al [* 2 1 |* 3 0 00
43%x10% CD 1 All 0 0 [* 0 O 0 0

3x3 3 Any 0 -
4x4 18x10° 2 RCD 193 Al |* 14 25| 0 2 |* 0 0
24%10° RC 2709 Al |* 572 288|* 89 245|* 0 0
23%10°8 RD 2132 All * 104 48 |[* 13 6 [* 0 O
24x10°8 CD 1469 All #0127 49 |* 18 5 [* 0 O

4x4 3 RCD 0 -
RC 90 All * 38 27(* 0 O [* 0 O
RD 24 All *# 0 2 (* 0 0f[* 0O
CD 16 All * 6 3 (1 0 [* 0 0

Description of tables. The caption of Table 1 describes the various
column headings used in Tables 1-6, which describe the experi-
mental results. In our experiments, we explore vertices from W
and W3 only as the set Wy is almost always empty (i.e., if there is
a winning starting position it belongs to either Wy, W5 and W3s).
The third column j = 2, 3 denotes whether we explore from W5 or
Ws. For the classification of a given board position as E, M, H, we
run the game between the depth-k; vs the depth-k. strategy for 30
times. If player 1 (i) wins more than % times (20 times), then the
position is identified as easy (E); (ii) wins less than % times (10
times), then it is identified as hard (H); (iii) else as medium (M).

Experimental results for CONNECT games. In Table 1 (resp.
Table 2) we present the experimental results for CONNECT-3 and
CONNECT-4 games, against depth-3 (resp. depth-2) strategies of
the opponent. One of the interesting findings is that in CONNECT-
4 games with board size 5x5, for all winning conditions (RCD,
RD, CD, RC), there are easy, medium, and hard states, for k1=1,2,
and 3, when j=3. In other words, even in much smaller board size
(5x5 as compared to the traditional 7x7) we discover interesting
starting positions for CONNECT-4 games and its simple variants.

Table 5: Tic-Tac-Toe against depth-3 strategy of opponent. The sampling
B100 denotes exploring states with the least scored hundred states accord-
ing to iterative simulation score.

Board State j Win [W;] Sampling [ky =1 k1=2 | k1=3
Size Space Cond EM H[EMH[EMH
3x3 54x10° 2 RCD 36 All *14 20* 0 0* 0 0
5.6x10° RC 0 -
5.6x10% RD 1 Al [* 0 0|* 0 0[* 0 O
5.6x10° CD 1 All *0 O0[* 0 0|* 0 0O
3x3 3 Any 0 -
4x4 6.0x10° 2 RCD 128 All ¥ 6 2% 0 0* 0 0
7.2%10° RC 3272 BIOO |* 47 22(* 0 O|* 0 O
7.2x108 RD 4627 B100 [* 3 2[* 0 O|* O O
7.2%10° CD 4627 B100 [* 3 2[* 0 O|* 0O O
4x4 3 RCD,RC 0 -
RD 4 All 0 0* 0 O0* 0 O
CD 4 All 0 0 0 0 0

Table 6: Tic-Tac-Toe against depth-2 strategy of opponent.

Board State j Win [W;] Sampling | k=1 k1=2] k1=3
Size Space Cond EM H[EMH[EMH
3x3 54x10° 2 RCD 36 All # 14 0* 0 0* 0 0

5.6x10° RC 0 -
5.6x10° RD 1 All 0 O0|* 0 O* 0 O
5.6x10° CD 1 All *0 0[* 0 0|* 0 O

3x3 3 Any 0 -
4x4 6.0 10? 2 RCD 128 All *#8 0* 0 0O* 0 O
7.2x10° RC 3272 BIOO |* 48 21|* O O|* O O
7.2x10° RD 4627 B100 [* 3 2[* 0 O|* O O
7.2x108 CD 4627 B100 [* 3 2[* 0 O|* O O

4x4 3 RCD,RC 0 -
RD 4 All 0 O0* 0 O* 0 O
CD 4 All *0 O0]* 0 0|* 0 O

Experimental results for Bottom-2 games. The results for
Bottom-2 (partial gravity-2) against depth-3 (resp. depth-2) strate-
gies of the opponent are shown in Table 3 (resp. Table 4). In con-
trast to CONNECT games, we observe that medium or hard states
do not exist for depth-3 strategies of the player.

Experimental results for Tic-Tac-Toe games. The results for Tic-
Tac-Toe games are shown in Table 5 and Table 6. For Tic-Tac-Toe
games the strategy exploration is expensive (a tree of depth-3 re-
quires exploration of 10° nodes), and thus exploring many states
is time consuming. Hence using the iterative simulation techniques
we first assign a score to all states and use exploration for bottom
hundred states (B100), i.e., hundred states with the least score ac-
cording to our iterative simulation metric. In contrast to CONNECT
games, we observe that interesting states exist only for depth-1
strategies, but not for depth-2 and depth-3 strategies.

Summary. We summarize our results in Table 7. We call a state
category-t state if it is not easy for depth-(¢—1) strategy, but it is
easy for depth-¢ strategy. In Table 7 we summarize the different
games and the existence of category ¢ states in such games. The
generation of W; for j = 2 and j = 3 took between two to four
hours per game (note that this is a one-time computation for each
game). The evaluation time to classify a state as E, M, or H is as fol-
lows: for depth-3 strategies of both players, playing 30 times from
a board position on average takes (i) 12 seconds for CONNECT-4
games with board size 5 x 5; (ii) 47 seconds for Bottom-2 games
with board size 4 x 4; and (iii) 25 minutes for Tic-tac-toe games
with board size 4 x 4. Note that the size of the state space is around
10® for CONNECT-4 games with board size 5 x 5, and testing the
winning nature of a state takes at least few seconds. Hence an ex-
plicit enumeration of the state space cannot be used to obtain W
in reasonable time; in contrast, our symbolic methods succeed to
compute W efficiently.

Important findings. We now highlight two important findings of

Table 7: Summary

Game Category-1 Category-2 Category-3 Category-4
Tic-Tac-Toe | All variants 3x3 - only RCD - -
4x4 - All j=2 variants
Bottom-2 | All variants 3x3 - only RD 4x4 - All 5=2 variants

4x4 - All variants
CONNECT-3 | All variants All j=2 variants All 5=2 variants except RCD
CONNECT-4 | All variants

All variants All variants All j=3 variants |

our experimental results.

e Our first key finding is the existence of states of different hard-
ness levels in various games. Let us consider the case where the
depth of the opponent strategy is k2 = 3. We observe that in Tic-
Tac-Toe games only board positions that are hard for k1 = 1 ex-
ist; in particular, and very interestingly, they also exist in board
of size 4 x 4. Since the default start state in Tic-Tac-Toe games
in board size 4 x 4 is heavily biased towards the player who
starts first, they have been believed to be uninteresting for ages,
whereas our experiments discover interesting starting states for
them. With the slight variation of allowable moves (Bottom-2),
we obtain board positions that are hard for k1 = 2. In Connect-4
we obtain states that are hard for k1 = 3 even with small board
size of 5 X 5.

e The second key finding of our results is the fact that the num-
ber of interesting states is a negligible fraction of the huge state
space. For example, in Bottom-2 RCD games with board size
4 x 4 the size of the state space is over 1.8 million, but has only
two positions that are hard for k1 = 2; and in CONNECT-4
RCD games with board size 5 x 5 the state space size is around
sixty nine million, but has around two hundred hard states for
k1 = 3 and k2 = 3, when j = 3, among the five thousand states
sampled from W). Since the size of W; in this case is around
2.8 x 10°, the total number of hard states is around twelve thou-
sand (among sixty nine million state space size). Since the in-
teresting positions are quite rare, a naive approach of randomly
generating positions and measuring its hardness will be search-
ing for a needle in a haystack and be ineffective to generate in-
teresting positions. Thus there is need for a non-trivial search
strategy (§3), which our tool implements.

Example board positions. In Figure 1(a)-Figure 1(f) we present
examples of several board positions that are of different hardness
level for strategies of certain depth. Also see appendix for an il-
lustration. In all the figures, player-X is the current player against
opponent of depth-3 strategy. All these board positions were dis-
covered through our experiments.

6. RELATED WORK

Tic-Tac-Toe and Connect-4. Tic-Tac-Toe has been generalized
to different board sizes, match length [15], and even polyomino
matches [12] to find variants that are interesting from the default
start state. Existing research has focussed on establishing which
of these games have a winning strategy [9, 10, 21]. In contrast,
we show that even simpler variants can be interesting if we start
from certain specific states. Existing research on Connect-4 also
focussed on establishing that there is a winning strategy from the
default starting state for the first player [3]. In contrast, we study
how easy or difficult is to win from winning states given the exper-
tise levels.

Level generation. Our proposed technique, which generates start-
ing states given certain parameters (namely, expertise levels of
players, and hardness level), can be used to generate different game
levels by simply varying the choice of the parameters along some

partial/total order. Hence, we discuss some related work from the
area of level generation.

The problem of level generation has been studied for specific
games. Goldspinner [22] is an automatic level generation system
for KGoldrunner, which is a puzzle-oriented platform game with
dynamic elements. It uses a genetic algorithm to generate candidate
levels and simulation to evaluate dynamic aspects of the game. We
also use simulation to evaluate the dynamic aspect, but use sym-
bolic methods to generate candidate states; also, our system is pa-
rameterized by game rules.

Most other work has been restricted to games without opponent and
dynamic content such as Sudoku [13, 23]. Smith et al. used answer-
set programming to generate levels for the educational puzzle game
Refraction that adhered to prespecified constraints written in first-
order logic [18]. Similar approaches have also been used to gener-
ate levels for platform games [19]. In all these approaches, design-
ers must explicitly specify constraints that the generated content
must reflect, for example, the tree needs to be near the rock and the
river needs to be near the tree. In contrast, our system takes as input
rules of the game and does not require any further help from the de-
signer. [4] also uses a similar model and applies symbolic methods
(namely, test input generation techniques) to generate various lev-
els for DragoxBox, an algebra-learning video game that became the
most purchased game in Norway on the Apple App Store [14]. In
contrast, we use symbolic methods for generating valid start states,
and use simulation for estimating their hardness level.

Problem generation. Recently, there has been interesting work on
generating fresh set of practice problems for various subject do-
mains (in the context of intelligent adaptive tutoring) including
procedural problems for middle-school mathematics [4], and proof
problems for high-school algebra [17] and natural deduction [2].
The work on problem generation for algebraic proof problems [17]
uses probabilistic testing to guarantee the validity of a generated
problem candidate (from abstraction of the original problem) on
random inputs, but there is no guarantee of the hardness level. Our
simulation can be likened to this probabilistic testing approach, but
it is used to guarantee hardness level; whereas validity is guaranteed
by symbolic methods. The work on problem generation for natural
deduction [2] involves a backward existential search over the state
space of all possible proofs for all possible facts to dish out prob-
lems with a specific hardness level. In contrast, we employ a two-
phased strategy of backward and forward search; backward search
is necessary to identify interesting goals, while forward search en-
sures hardness levels. Furthermore, our state transitions alternate
between different players, thereby necessitating alternate universal
vs. existential search over transitions.

Interesting starting states that require few steps to play and win
are often published in newspapers and magazines for sophisticated
games like Chess and Bridge. These are usually obtained from
database of past games. In contrast, we show how to automatically
generate such states, albeit for simpler games.

7. CONCLUSION AND FUTURE WORK

We revisit the classic domain of simple board games that have been
popular since ancient times. We define a novel problem of generat-
ing starting states of a given difficulty level, given rules of the game
and expertise levels of the players. This offers two key advantages
of personalization and freshness. (a) The notion of difficulty is per-
sonalized to the players unlike computerized (board) games. There
are two parameters that help control the difficulty level: the density
of winning game plays and the expertise level of the two players. In

contrast, computerized (board) games, do not take into account any
notion of expertise level of the player; their notion of difficulty of
any level is independent of who is playing the game. (b) It prevents
memorization of game plays by introducing freshness in two ways:
by presenting multiple start states and by allowing modification of
game rules.

We present a novel search technique that combines use of sym-
bolic methods and iterative simulation. For experimental results we
focused on traditional board games and their variants. A possible
direction of future work would be to investigate methods that can
enable our approach to scale to games with more complicated rules.
However, as mentioned in §1, finding interesting starting positions
in simple and traditional games is both relevant and more challeng-
ing. Our experiments identified states of varying difficulty level for
various games, opening up new games to be played that were be-
lieved to be useless for ages. Moreover as these interesting posi-
tions (for traditional games and their variants) are quite rare, their
finding is a very useful and important discovery.

8. REFERENCES

[1] Chess960. http://en.wikipedia.org/wiki/Chess960.

[2] U.Z. Ahmed, S. Gulwani, and A. Karkare. Automatically generating

problems and solutions for natural deduction. In IJCAI, 2013.

[3] V. Allis. A knowledge-based approach of connect-four. Vrije

Universiteit, Subfaculteit Wiskunde en Informatica, 1988.

[4] E. Andersen, S. Gulwani, and Z. Popovic. A trace-based framework
for analyzing and synthesizing educational progressions. In CHI,
2013.

R. Bryant. Graph-based algorithms for boolean function

manipulation. IEEE Transactions on Computers, C-35(8), 1986.

[6] M. Csikszentmihalyi. Flow: The Psychology of Optimal Experience.

Harper & Row Publishers Inc., New York, USA, 1991.

[7]1 G. Duncan, C. Dowsett, A. Claessens, K. Magnuson, A. Huston,

P. Klebanov, L. Pagani, L. Feinstein, M. Engel, J. Brooks-Gunn, et al.

School readiness and later achievement. Developmental psychology,

43(6):1428, 2007.

D. Gale and F. M. Stewart. Infinite games with perfect information.

Annals of Math., Studies No. 28, 1953.

[9] M. Gardner. Mathematical games in which players of ticktacktoe are

taught to hunt bigger game. Scientific American, Apr 1979.

[10] M. Gardner. Tic-tac-toe games. In Wheels, life, and other
mathematical amusements, chapter 9. WH Freeman, 1983.

[11] S. Gottlieb. Mental activity may help prevent dementia. BMJ,
326(7404):1418, 2003.

[12] F. Harary. Generalized tic-tac-toe, 1977.

[13] M. Hunt, C. Pong, and G. Tucker. Difficulty-driven sudoku puzzle
generation. UMAPJournal, page 343, 2007.

[14] J. Liu. Dragonbox: Algebra beats angry birds. Wired, June 2012.

[15] W.J. Ma. Generalized tic-tac-toe.

[16] G. Ramani and R. Siegler. Promoting broad and stable improvements
in low-income children’s numerical knowledge through playing
number board games. Child development, 79(2):375-394, 2008.

[17] R. Singh, S. Gulwani, and S. Rajamani. Automatically generating
algebra problems. In AAAI 2012.

[18] A.M. Smith, E. Andersen, M. Mateas, and Z. Popovic¢. A case study
of expressively constrainable level design automation tools for a
puzzle game. In FDG, 2012.

[19] G. Smith, M. Treanor, J. Whitehead, and M. Mateas. Rhythm-based
level generation for 2D platformers. In FDG, 2009.

[20] F. Somenzi. Colorado university decision diagram package. 1998.

[211 E. W. Weisstein. Tic-tac-toe. From MathWorld—A Wolfram Web
Resource.

[22] D. Williams-King, J. Denzinger, J. Aycock, and B. Stephenson. The
gold standard: Automatically generating puzzle game levels. In
AIIDE, 2012.

[23] Y. XUE, B. JIANG, Y. LI, G. YAN, and H. SUN. Sudoku puzzles
generating: From easy to evil. Mathematics in Practice and Theory,
21:000, 2009.

[5

—_

[8

[l

APPENDIX

Score = +0 Score = +0 Score = +0

0] (0] O|X X X X
X X (0]
(0] 0
Score =+0 Score =+0 Score =+0 Score = +0 Score =+0 Score =+0 Score =+0

[- . ! } .

X X X X X X
0 0 o]
(0] 0] (0]
Score = +0 Score =+0 Score =+0 Score =+0 Score =+0 Score =+0

Figure 2: Illustration of depth k; = 1 tree exploration for Tic-Tac-Toe. Since all possible moves for k1 = 1 have equal score of 40, all board
positions are chosen at random.

6] X X
X (0] 0
Score = +0 Score =-2 Score =-2

0 ¢X 0) ¢ X 0] L 0] ¢) 0] é

X X O X |X X X

0] 0 X X
Score = +0 Score =-2 Score =-2 Score =-2 Score =-2

X|X|O X110 X X110 X 0] X
(0] O] X (0] 0|0
X X
Score =-2 Score =-2 Score =-2 Score =-2 Score =-2

X|X |0 O(X X
X110 (0] 0|0
X X

Score =-2 Score =-2 Score =-2 Score =-2

Figure 3: Illustration of depth k; = 2 tree exploration for Tic-tac-toe. In the figure, every choice of player 1 is followed by the optimal choice
of opponent and they are collapsed to a single state. Since the center position has a higher score of 40, the k1 = 2 strategy always chooses
this move and considers all other positions to be equal with score of —2.

O O 0] (0]
X X X Best Possible Move X X X
X (0] X > X X O X
Column-2

X X O X O X X 0] X (0]
(0] (0] (0] X 0] 0] O 0] X O
(0] (0] (0] X (0] 0 (6]
X 0] X X X X X X X (o) X
X X O X X 0 0] X X 8] X X
X X [¢] X (0] X X 0] X 0] X X 8] X (0]
(0] (0] (0] X (0] 0 0 o] X 0 o] o] (0] X [¢]

(a) k1 = 1, column-2 fetches Player-X a
reward of +5

(b) k1 = 1, column-3 fetches Player-X a
reward of +6

(¢) k1 = 1, column-4 fetches Player-X a
reward of +2

o X o 0] X 0] 0] 0] X 0]
X 0] X X X X X X X X 8] X
X X 0] 0] X X o o X X Q o X X
X X o X o X X o X 0] X X o X 6]
o o o X o o 0] o X 0] 8] 6] o X 6]

(d) k1 = 2, column-2 fetches Player-X a
reward of +3

(e) k1 = 2, column-3 fetches Player-X a
reward of +6

(f) k1 = 2, column-4 fetches Player-X a
reward of +0

O || [H| O
Q|| |O
Q0|0 |~
WA O R
QO |[H|0

O ¥ || O
QMO || O
QOO ||
QO[O

W O

O |[H =0
O A |C |~
O|C|C|H|O
A (RO A
OlC|H |~ |0

(g) k1 = 3, column-2 fetches Player-X a
reward of +00

(h) k1 = 3, column-3 fetches Player-X a
reward of +0

(1) k1 = 3, column-4 fetches Player-X a
reward of +0

Figure 4: Illustration of depth-k; strategy exploration on a CONNECT-4 RCD category-3 state. The figure shows how different depth-k
strategies choose the best available position to mark on a Connect-4 RCD category-3 state. The example board position of the figure is the
same as for Figure 1 (e). The three depth-k; strategies (k1 = 1, 2, 3) play as player-X and assign a score to each of the three available positions
(column-2, 3, 4) by looking k1 -turns ahead. In each sub-figure, the position with yellow-background is the one chosen for exploration and the
positions with grey-background are the predicted moves of how the game might turn out after k;-turns. As observed, only k1 = 3 strategy is
able to foresee that marking column-2 would lead player-X to a winning state and also conclude that the other column choices will lead to a
draw. Where as, k1 = 1, 2 incorrectly choose column-3 as the best position to mark hence making this starting position a category-3 state.

