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Abstract

We consider the problem of inference in a
graphical model with binary variables. While
in theory it is arguably preferable to com-
pute marginal probabilities, in practice re-
searchers often use MAP inference due to
the availability of efficient discrete optimiza-
tion algorithms. We bridge the gap between
the two approaches by introducing the Dis-
crete Marginals technique in which approxi-
mate marginals are obtained by minimizing
an objective function with unary and pair-
wise terms over a discretized domain. This
allows the use of techniques originally devel-
oped for MAP-MRF inference and learning.
We explore two ways to set up the objective
function - by discretizing the Bethe free en-
ergy and by learning it from training data.
Experimental results show that for certain
types of graphs a learned function can out-
perform the Bethe approximation. We also
establish a link between the Bethe free en-
ergy and submodular functions.

1. Introduction

We consider the problem of inference in a graphical
model specified by the energy function

E(x) =
∑
i∈V

θi(xi) +
∑

(i,j)∈E

θij(xi, xj) (1)

Extended version of a paper presented at the International
Conference on Machine Learning (ICML) workshop on In-
ferning: Interactions between Inference and Learning, Ed-
inburgh, Great Britain, 2012.

with induced probability distribution

p(x) =
1

Z
exp{−E(x)}, (2)

for Z =
∑
x exp{−E(x)}. Here G = (V, E) is an undi-

rected graph with n = |V| nodes, x = (x1, . . . , xn) is a
labeling of V where each xi can take a finite number
of states, and θi(·), θij(·, ·) are unary and pairwise po-
tentials. This problem has received a lot of attention
as it has applications in many different areas, such as
computer vision and natural language processing.

The two standard inference tasks are

• MAP prediction: find a state x of maximal likelihood
p(x) (or, equivalently, of minimal energy E(x)).

• Marginalization: compute marginal probabilities of
the distribution p, e.g. p(xi) for some i ∈ V.

The last decade has seen a tremendous growth in the
popularity of the first approach. To a large extent, this
can be attributed to the existence of efficient discrete
energy minimization algorithms based on the min-
cut/max-flow equivalence, such as graph cuts (Boykov
et al., 2001).

In many situations marginalization is arguably the
better inference approach. For example, the Bayes-
optimal decision with respect to a Hamming loss con-
sists of thresholding the marginal predictions. Unfor-
tunately, it is much harder to tackle computationally,
and this has somewhat hindered its practical use. One
popular technique for approximate marginalization is
(loopy) sum-product belief propagation (BP). How-
ever, BP has the well-known problem that it does not
always converge, which makes it unsuitable for some
applications. While provably convergent double-loop
algorithms for computing fixed points of BP exist, they
are typically rather slow in practice, and have not
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found wide spread use, e.g. in the computer vision
community.

In this paper we attempt to overcome this by combin-
ing the benefits of the two approaches: we compute
(approximate) marginals using techniques developed
originally for MAP-MRF inference. We do it for the
important special case of binary variables, i.e. when
xi ∈ {0, 1} for each i ∈ V. Our goal is thus to com-
pute unary marginals α = (α1, . . . , αn) where

αi=p(xi=1) ∈ [0, 1]. (3)

For this we explore approximation schemes in which
α is obtained by minimizing a function of the form

f(α) =
∑
i∈V

fi(αi) +
∑

(i,j)∈E

fij(αi, αj). (4)

The motivation for using functions of the form (4)
comes from the belief optimization framework (Welling
& Teh, 2001); as shown in (Welling & Teh, 2001),
the popular Bethe free energy approximation can be
expressed in the form (4) where αi ∈ [0, 1]. How-
ever, in order to use discrete optimization algorithms,
we deviate from (Welling & Teh, 2001) by discretiz-
ing the allowed labelings α, i.e. we add a restriction
αi ∈ D ⊂ [0, 1] where D is a fixed finite set. While
this obviously limits the accuracy to some extent, it
also adds two advantages:

• It allows the use of efficient techniques developed
for MAP-MRF inference. One of our results shows
a connection between the Bethe free energy and the
submodularity theory; this suggests that one can use
graph cuts for approximate marginalization.

• It allows to go beyond limitations of the Bethe ap-
proximation by learning terms fi(·), fij(·, ·) from
training data. Again, the discretization is essential
here since it allows to apply standard techniques for
structured output learning, such as structured sup-
port vector machines.

In this paper we investigate both approaches for set-
ting terms fi(·), fij(·, ·) – by using the discretized
Bethe approximation, and by learning these terms
from training data. Our experiments show that when
the Bethe approximation does not work, the learning
can indeed improve the accuracy of marginalization.

The rest of the paper is organized as follows. In sec-
tion 2 we review previous work which is relevant as
background for our contribution. In section 3 we dis-
cuss in detail the two techniques for setting terms of
function f , and describe a link between the Bethe free
energy and the submodularity theory. We then present

experimental results section 4 and discuss conclusions
and future work in section 5.

2. Background

Our contribution builds on several, seemingly unre-
lated earlier concepts. First, in section 2.1 we will
review the Bethe free energy approximation. In sec-
tion 2.2 we give some definitions related to submod-
ularity, and in section 2.3 we discuss two MAP-MRF
inferences approaches which are relevant in our setting.
Finally, in section 2.4, we introduce structure output
learning using structured support vector machines.

2.1. Belief optimization

This section describes the belief optimization ap-
proach (Welling & Teh, 2001) which inspired our work.
Its idea is to express the Bethe free energy as a function
of unary marginals only by minimizing out pairwise
marginals, and then to apply a general-purpose tech-
nique for unconstrained non-linear optimization such
as a gradient descent.

Bethe free energy. Let µ = {µi(a), µij(a, b)} be
the vector of unary and pairwise marginals:

µi(a) = p(xi=a) µij(a, b) = p(xi=a, xj=b) (5)

where i ∈ V, (i, j) ∈ E and a, b ∈ {0, 1}. It is known
that µ can be computed by minimizing the free energy:

min
µ∈M

F (µ) for F (µ) = 〈θ,µ〉 −H(µ) (6)

where M is the marginal polytope, i.e. the set of all real-
izable marginals µ, and H(µ) is the maximal entropy
of distributions with marginals µ. Unfortunately, solv-
ing (6) is in general intractable: we cannot evaluate
H(µ) efficiently, and furthermore set M is character-
ized by exponentially many inequalities. One popular
approach is to replace M with the local polytope

L=

µ ≥ 0
µij(a, 0)+µij(a, 1)=µi(a) ∀(i, j), a
µij(0, b)+µij(1, b)=µj(b) ∀(i, j), b
µi(0) + µi(1) = 1 ∀i

 (7)

and also replace the entropy term H(µ) with its Bethe
approximation

HBethe(µ) =
∑
i∈V

(1− ni)H(µi) +
∑

(i,j)∈E

H(µij) (8)

where ni is the degree of node i, i.e. the number of
incident edges in (V, E). We then arrive at the prob-
lem of minimizing the Bethe free energy over the local
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polytope:

min
µ∈L

F Bethe(µ) for F Bethe(µ) = 〈θ,µ〉 −HBethe(µ)

(9)
The problem of minimizing the Bethe free energy has
received a considerable attention. Most popular is the
(loopy) belief propagation algorithm (BP) algorithm,
but unfortunately BP does not always converge. More
exactly, it is known that there is a one-to-one corre-
spondence between fixed points of BP and stationary
points of the Bethe free energy (Yedidia et al., 2000).
Furthermore, stable fixed points of BP correspond to
local minima of the Bethe free energy, but the converse
is not necessarily true (Heskes, 2002). Provably con-
vergent double-loop algorithms (Heskes, 2002; Yuille,
2002) exist, but they are often rather slow in practice.

Belief optimization. A different approach was pro-
posed by Welling and Teh (Welling & Teh, 2001).
They observed that for given vector α ∈ [0, 1]n one
can derive a closed-form expression for a vector µ ∈ L
that minimizes F Bethe(µ), subject to additional con-
straints µi(1) = αi; this optimal solution is given by

µi(0) = 1− αi µi(1) = αi (10a)

µij(0, 0)=ξij+1−αi−αj µij(0, 1)=αj−ξij
µij(1, 0)=αi−ξij µij(1, 1)=ξij

(10b)

where

ξij =
1

2βij

(
Qij −

√
Q2
ij − 4βij(1 + βij)αiαj

)
(10c)

βij = exp{−θij(0, 0) + θij(0, 1)

+θij(1, 0)− θij(1, 1)} − 1 (10d)

Qij = 1 + βij(αi + αj) (10e)

Plugging µ into (9) leads to the problem of minimizing
a function of the form (4) over α ∈ [0, 1]n. This allows
the use of techniques for unconstrained non-linear op-
timization such as a gradient descent (Welling & Teh,
2001). However, because (4) typically has many local
minima, this approach alone is also not sufficient to
solve the marginalization problem.

2.2. {Sub,super}modular functions

Let D ⊆ [0, 1] be a totally ordered set. A function
g : Dm → R is called submodular on D if

g(x ∧ y) + g(x ∨ y) ≤ g(x) + g(y) (11)

for all x,y ∈ Dm, where ∧,∨ denote the component-
wise min and max operations, respectively. A function
g is called supermodular if its negative is submodular.
We now introduce the following class of functions.

Definition 1. A function f : Dn → R of the form (4)
is called {sub,super}modular if each term fij(·, ·) is
either submodular on D or supermodular on D.

Such functions will play an important role in this pa-
per: as we will show in Section 3, any function f ob-
tained from the Bethe free energy satisfies the condi-
tion of definition 1.

2.3. Discrete energy minimization

For MAP-MRF inference, i.e. minimizing the func-
tion (4) over a discrete domain Dn, many more meth-
ods have been developed than for marginalization. In
this section we concentrate on two techniques that
solve linear programming (LP) relaxations of the prob-
lem. Following (Kohli et al., 2008), we call them LP-1
and LP-2.

LP-1 This is the most frequently used relaxation for
MAP inference; it is also known as Schlesinger’s LP:

min
τ

∑
i∈V
a∈D

fi(a)τ i(a) +
∑

(i, j)∈E
a,b∈D

fij(a, b)τ ij(a, b) (12a)

s.t.
∑

a∈D
τ ij(a, b) = τ j(b) ∀(i, j), b (12b)∑

b∈D
τ ij(a, b) = τ i(a) ∀(i, j), a (12c)∑

a∈D
τ i(a) = 1 ∀i (12d)

It can be solved with general-purpose LP solvers,
e.g. interior point methods, or solved approximately
with specialized algorithms that exploit the special
structure of the problem, see e.g. (Werner, 2007).
Note that for submodular functions this relaxation is
tight (Werner, 2007), so all solutions are integral. In
general, however, the optimal solution may have frac-
tional entries.

LP-2 This relaxation proposed in (Kohli et al., 2008)
is used less frequently in the literature, but as we will
see later it is quite appropriate in our context. It
assumes that set D is ordered: D = {d1, . . . , dK},
d1 < . . . < dK . LP-2 can be described algorithmi-
cally as follows:
1. For each variable αi ∈ D introduce K − 1 binary
variables zi = (zi2, . . . , ziK) with the following corre-
spondence:

αi = d1 ⇔ zi = (0, 0, . . . , 0)

αi = d2 ⇔ zi = (1, 0, . . . , 0)

. . .

αi = dK ⇔ zi = (1, 1, . . . , 1)
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This is known as the Ishikawa representa-
tion (Ishikawa, 2003).
2. Construct function g(z) with unary and pairwise
terms such that g(z) = f(α) if z corresponds to
α, and g(z) = ∞ if z is not a “valid” labeling, i.e.
zik < zik+1 for some i, k. We refer to (Schlesinger
& Flach, 2006; Kohli et al., 2008) for details of this
construction.
3. Apply the roof duality relaxation (Kolmogorov &
Rother, 2007) to function g(z).

In general, LP-2 is less tight than LP-1, i.e. the lower
bound on minα f(α) given by LP-2 is not greater than
that of LP-1. However, there are several reasons to use
LP-2 in our context due to the following properties:

Theorem 2 ((Kohli et al., 2008)). (a) If f is a
{sub,super}modular function then LP-1 and LP-2 co-
incide.
(b) LP-2 can be solved in polynomial time by comput-
ing a maximum flow in an appropriately constructed
graph.
(c) The LP-2 relaxation possesses the persistency, or
partial optimality property. Namely, solving LP-2
gives labelings αmin, αmax such that αmin ≤ α∗ ≤
αmax for some optimal solution α∗ ∈ arg minα f(α).
If all terms fij are submodular then αmin = αmax.

Remark 1 Since the number of edges in the graph
of (b) grows quadratically with the number of la-
bels, it is best suited for the case of few discretiza-
tion steps. We conjecture, however, that –at least for
{sub,super}modular functions– techniques for solving
LP-2 that scale better in practice exist. One pos-
sibility could be to use the TRW-S algorithm (Kol-
mogorov, 2006), as it can be shown using arguments
from (Kolmogorov & Wainwright, 2005; Kohli et al.,
2008), for {sub,super}modular functions TRW-S con-
verges to the solution of the LP (we omit a proof).
Furthermore, the “distance transform” operations in
TRW-S for submodular and supermodular edges can
be implemented in time linear in the number of la-
bels (Aggarwal et al., 1987).

2.4. Structured Support Vector Machines

Recently developed structured support vector machines
(SSVMs) (Tsochantaridis et al., 2006), allow the learn-
ing of prediction functions g : X → Y between nearly
arbitrary input and outputs structures, as long as we
are able to efficiently optimize over the output set Y.

SSVMs are based on the principle of structural risk
minimization (Vapnik, 1998): given a loss function
∆ : Y × Y → R between outputs they aim for
a prediction function g that results in mimimal ex-

pected ∆-loss between correct and predicted outputs.
The prediction function is parameterized as g(x) =
argmaxy∈Y F (x, y) for F (x, y) = 〈w, φ(x, y)〉, where

φ : X ×Y → RD is a fixed joint feature map. Training
the SSVM consists of determining the weight vector
w ∈ RD from a training set {(x1, y1), . . . , (xN , yN )}
by minimizing the regularized risk functional

1

2
‖w‖2 + C

N∑
ν=1

max
y∈Y

{
∆(yν , y)− F (xν , y) + F (xν , yν)

}
.

(13)

The constant C ∈ R is a regularization parameter,
which typically needs to be determined by a model-
selection step. The objective (13) is non-differentiable
but convex, and efficient working-set techniques are
available for finding its minimum (Joachims et al.,
2009; Teo et al., 2010).

3. Discrete Marginals

We now return to the problem of computing dis-
crete marginals for a fixed discretization D =
{d1, . . . , dK} ⊂ [0, 1]. As stated in the introduction,
we would like to compute the marginals by minimiz-
ing function f(α) =

∑
i fi(αi)+

∑
(i,j) fij(αi, αj) over

α ∈ Dn. In general, this problem is NP-hard, so we
have to resort to an approximation. In this paper we
employ the LP-1 relaxation of the energy. Solving
it gives a fractional vector τ ; we then compute the
marginals via

αi =
∑
d∈D

τ i(d)d (14)

We emphasize, however, that other techniques for
MAP-MRF inference can be used as well, e.g. the LP-2
relaxation.

Below we discuss two ways to set terms fi(·), fij(·, ·):
• restrict the Bethe free energy from [0, 1]n to Dn;
• learn fi(·), fij(·, ·) from training data.
We will assume without loss of generality that func-
tion (1) has been converted to the form

E(x) =
∑
i∈V

ηixi +
∑

(i,j)∈E

ηijxixj + const (15)

This will be useful for the learning part. Note, coeffi-
cients ηi, ηij are uniquely determined from θ.

3.1. Bethe Discrete Marginals

For this case we use terms derived in section 2.1:

fi(αi) = ηiαi + h1(αi)− dih1(αi) (16a)

fij(αi, αj) = ηijµij(1, 1) +
∑

a,b∈{0,1}

h(µij(a, b)) (16b)
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where h(z) = z log z, h1(z) = h(z) + h(1 − z) and
µij(·, ·) are given by (10); in eq. (10d) we have βij =
exp{−ηij} − 1. Note, values µij(·, ·) depend on αi, αj
and ηij . As a result, term fi(·) depends on ηi while
fij(·, ·) depends on ηij ; for brevity, we omitted this
dependence. We now observe the following.

Theorem 3. If a term θij(·, ·) is submodular (super-
modular) on {0, 1} then the term fij(·, ·) defined by
(16b) is submodular (supermodular) on [0, 1].

A proof is given in Appendix A. This theorem has
several implications. First, it means that for sub-
modular functions E(x) we can efficiently compute
the global minimum of the Bethe free energy up to
a given discretization. This adds to the understand-
ing of the complexity of minimizing the Bethe free en-
ergy. Results known so far include various sufficient
conditions for the uniqueness of the BP fixed point,
e.g. (Mooij & Kappen, 2007; Watanabe & Fukumizu,
2009). However, existing conditions usually break for
a sufficiently low temperature, i.e. when the energy
is multiplied by some large constant. Furthermore,
it is known (Watanabe, 2011) that for most types of
graphs (with the exception of trees, single cycles, and
several others) there always exist a submodular func-
tion E(x) with multiple BP fixed points. Also note
that for binary submodular functions, the Bethe free
energy evaluated at any feasible point always bounds
the log partition function, see (Ruozzi, 2012). Theo-
rem 3 implies that the tightest Bethe bound can be up
to a given discretization efficiently computed.

For non-submodular functions E(x) it is not clear
whether the global minimum of the Bethe free en-
ergy can be computed efficiently (with or without dis-
cretization). However, theorem 3 combined with the-
orem 2 imply two interesting facts: (i) the standard
LP-1 relaxation of the (discretized) Bethe free energy
can be computed efficiently via graph cuts, and (ii) the
solution of this LP gives intervals [αmin

i , αmax
i ] which

are guaranteed to contain a global minimum.

Convergence Using continuity of f , we can show
some convergence results when the quantization step
goes to zero. In the theorem below we denote X =
[0, 1]n, f∗ = minα∈X f(α) and X ∗ = {α ∈ X | f(α) =
f∗}. For a point α ∈ X and a subset X ′ ⊆ X we also
define dist(α,X ′) = infα′∈X ′ ||α−α′|| where || · || is
the Euclidean norm. (A proof is the suppl. material.)

Theorem 4. Let X1,X2, . . . be a sequence of subsets
of X s.t. lim

k→∞
εk = 0 where εk

.
= max

α∈X
dist(α,Xk).

Let αk be a minimizer of f(α) over α ∈ Xk.
(a) If function f : X → R is continuous then
limk→∞ f(αk) = f∗ and limk→∞ dist(αk,X ∗) = 0.

(b) If in addition f is twice continuously differentiable
on (0, 1)n and X ∗∩(0, 1)n 6= ∅ then f(αk)−f∗ ≤ c·ε2k
for some constant c > 0.

A proof is given in Appendix B.

We refer to the method of computing Bethe Discrete
Marginals as to BDM.

3.2. Learned Discrete Marginals

The structure of f in Equation (4) and the fact that
prediction is performed by minimization suggest a sec-
ond possibility for obtaining discrete marginals: By
learning a suitable f from training data using a struc-
tured support vector machine (SSVM) framework (see
Section 2.4).

Our goal is to learn a prediction function from binary-
valued pairwise MRFs to their marginals, so we set
P to be the set of binary pairwise MRFs as defined in
Section 1. For L, we choose a construction that is over-
generating in the sense of Finley and Joachims (Finley
& Joachims, 2008), namely the set of all possible out-
put of the discrete marginalization step, i.e. the set of
vectors τ = (τ i)i∈V ⊕ (τ ij)(i,j)∈E , where τ i ∈ [0, 1]|D|

and τ ij ∈ [0, 1]|D|×|D| fulfill the constraints of LP-1,
and ⊕ indicates the concatenation of vectors. In par-
ticular, this set contains any discrete value a ∈ D for
any i ∈ V through their corresponding integer-valued
indicator vectors. For any τ = (τ i)i ⊕ (τ ij)ij and
τ ′ = (τ ′i)i ⊕ (τ ′ij)ij we set as loss function

∆(τ , τ ′) =
∑

i∈V
|
∑

d∈D
(τ i(d)d− τ ′i(d)d)|, (17)

i.e. we penalize mistakes in the unary predictions τ i
proportionally to their strength. Note that for non-
fractional τ i, the inner sum is the L1-distance between
the corresponding marginals, making ∆ compatible
with earlier work that had to analyze the quality of
predicted marginals (Mooij, 2010; Welling, 2004).

For any input MRF, p, with node degrees ni, unary
weights ηi and pairwise weights ηij , and for any out-
put τ = (τ i)i∈V ⊕ (τ ij)(i,j)∈E , let φ1 =

∑
i∈V τ iψ

>
i

for ψi = (ηi, ni, 1)> ∈ R3, and φ2 =
∑

(i,j)∈E τ ijψ
>
ij ,

where ψij ∈ {0, 1}K
′

denotes the indicator vector of
discretizing ηij into a set of predefined values, D′ =
{d′1, . . . , d′K′} ⊂ R. We form the SSVM’s joint fea-
ture function as, φ(p, τ ) = vec(φ1) ⊕ vec(φ2), where
vec(·) denotes row-major order vectorization of a ma-
trix. The joint feature map φ(p, τ ), and thereby also
the SSVM quality function F (p, τ ) = 〈w, φ(p, τ )〉,
are linear in τ . Therefore the SSVM prediction,
argmaxτ F (p, τ ), as well as the loss-augmented predic-
tion steps needed during training,argmaxτ ∆(τ , τ ′) +
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F (p, τ ) can be performed using LP-1. Note that our
construction generalizes the BDM situation: for a suit-
ably chosen weight vector, F (p, τ ) becomes the Bethe
discrete marginal function f (or rather its negative),
up to quantization of ηij .

For any regularization parameter C, we can now train
an SSVM to obtain a weight vector w such that al-
lows prediction of discrete marginals by maximizing
F (p, τ ) for fixed p, or equivalently, minimizing f(τ ) =
−〈w, φ(p, τ )〉. Note that the learned f is only designed
to yield good marginal predictions when minimized
over. It is not necessarily a good approximation of the
free energy (6), and it might also differ significantly
from the Bethe free energy (9). From this additional
flexibility one can expect better predicted marginals
compared to the Bethe case, especially when the true
free energy and the Bethe free energy differ signifi-
cantly. Further insight comes from the fact that in
the objective (13), any prediction τ that contains frac-
tional values is penalized by the loss term ∆(τ , τ ′), be-
cause the τ come from the ground truth of the training
data and are therefore non-fractional. Consequently,
the SSVM will try to learn a weight vector that re-
sults in few fractional solutions if minimized, and this
can also be expected to lead to overall better discrete
marginal predictions. We refer to the method of com-
puting Learned Discrete Marginals as to LDM.

4. Empirical Comparison

We compare BDM, LDM and BP as a baseline.

4.1. Datasets

For the comparison we generated datasets with six dis-
tribution prototypes. We recall that a distribution in
equation (2) is specified by a graph G = (V, E), where
the number of graph nodes is denoted by the scalar
n, n = |V|, and by the energy function E(x) in equa-
tion (1).

We chose two graph prototypes and three energy pro-
totypes. Their combinations yield our six prototypes
of distributions. We chose complete graphs Kn and
n × n lattice graphs Ln with 4-neighborhood as pro-
totypes of the graph G. We chose three prototypes of
the energy function E(x) that we call the Ising energy
EIsing(x), the easy energy Eeasy(x) and the hard en-
ergy Ehard(x). The unary potentials of the energies
were parameterized as [−θi(0),−θi(1)] = c1[0, 1] and
the pairwise potentials of the energies were parameter-
ized as [−θij(0, 0),−θij(1, 0),−θij(0, 1),−θij(1, 1)] =
c2[0,−0.5,−0.5, 0]. For each prototype we chose dif-
ferent values of the scalar parameters c1 and c2. For

the Ising energy we sample the parameter c1 uniformly
from the closed interval [−2, 2] and we set the parame-
ter c2 to the value 1. For the easy energy we sample the
parameter c1 uniformly from the closed interval [−2, 2]
and the parameter c2 uniformly from the set {−1, 1}.
For the hard energy we sample the parameter c1 uni-
formly from the closed interval [−1, 1] and the param-
eter c2 uniformly from the set {−4, 4}. We obtain
six distribution prototypes (Kn,EIsing), (Ln,EIsing),
(Kn,Eeasy), (Ln,Eeasy), (Kn,Ehard), (Ln,Ehard).

For each distribution prototype we generated a dataset
of 200 pairs of distributions (G, E) and of the corre-
sponding true singleton marginals α computed by the
junction tree algorithm. We used the junction tree im-
plemented in the libDAI software. We split each data
set randomly into two disjoint sets, namely the train-
ing set of 150 instances and the test set of 50 instances.
To be able to repeat a particular experiment multiple
times, we for each dataset specify five such random
splits.

4.2. Experiments

For each dataset and test set we evaluated marginals
of distributions with BDM, LDM and BP as baseline.
We evaluated both types of discrete marginals by solv-
ing the LP-1 with interior-point methods implemented
in the Mosek software. We learned parameters of the
discrete energy specified in section 3.2 from the train-
ing set using the cutting plane algorithm for SSVMs
implemented in the SVMstruct software. For the dis-
cretization D′ of the parameter ηij we used two dis-
crete levels, namely one level for the parameter being
positive and one level for the parameter being neg-
ative. During learning we solve the loss augmented
LP-1 with interior-point methods implemented in the
Mosek software. To evaluate the BP marginals we used
the implementation in the libDAI software.

For each method and test set we compute the empiri-
cal mean l1-distance of a predicted singleton marginal
from the true singleton marginal. We refer to this
quantity as to the l1-error or simply as to the error. For
BDM and LDM we used 1, 2, 4 and 8 equidistant dis-
crete marginal values. This means that for 4 discrete
levels we used the discretization D = {d1, d2, d3, d4} =
{0.2, 0.4, 0.6, 0.8} ⊂ [0, 1]. We repeat each experiment
five times with random dataset splits into the train-
ing set and the test set. We report the mean and the
standard deviation computed from the five repetitions.

4.3. Results

In figures 1, 2, 3, 4 we report our results for six distri-
bution prototypes, for BDM, LDM, BP, and for four
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Figure 1. Complete graph, Ising energy. Top row: Mean error. Bottom row: Portion of fractional singleton marginals.
Columns from left to right: Distributions with two, four, six and eight variables.
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Figure 2. Complete graph, easy energy. Top row: Mean error. Bottom row: Portion of fractional singleton marginals.
Columns from left to right: Distributions with two, four, six and eight variables.

discretizations of BDM and LDM. Top rows in fig-
ures 1, 2, 3, 4 report the mean errors. Bottom rows
in figures 1, 2, 3, 4 report the portion of singleton
marginal variables, labelings of which have been iden-
tified as fractional in our experiments. We say that a
value is fractional if its distance from 0 or 1 is greater
than 10−5.

In figures 1, 2, 3 we report results on datasets with
distributions specified by the complete graphs. In fig-
ure 1 we report results on a dataset with distributions
specified by the Ising energies. Columns from left to
right report datasets of distributions with two, four,
six and eight variables. In figure 2 we report results
on a dataset with distributions specified by the easy
energies. Columns from left to right report datasets

of distributions with two, four, six and eight variables.
In figure 3 we report results on a dataset with distri-
butions specified by the hard energies. Columns from
left to right report datasets of distributions with three,
four, five and six variables.

In figure 4 we report results on datasets with distribu-
tions specified by the lattice graphs. Columns from left
to right report datasets of distributions with the Ising,
the easy, the hard and the hard energies. Columns
from left to right report datasets of distributions with
64, 64, four and nine variables.

4.4. Discussion of the Results

Let us recall that for the Ising (submodular) energy the
LP-1 in the BDM is tight and hence solutions are ex-
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Figure 3. Complete graph, hard energy. Top row: Mean error. Bottom row: Portion of fractional singleton marginals.
Columns from left to right: Distributions with three, four, five and six variables.
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Figure 4. Lattice graph, Ising/easy/hard energy. Top row: Mean error. Bottom row: Portion of fractional singleton
marginals. Columns from left to right: Distributions specified by the Ising, the easy, the hard and the hard energies.
Columns from left to right: Distributions with 64, 64, four and nine variables.

pected to be non-fractional. The portion of fractional
singleton marginals in the bottom row in figure 1 is
not zero due to the fact that the employed interior-
point method has not always converged to sufficient
precision before it has reached its predefined maximum
number of iterations. This resulted in small portion
of the returned values exceeding slightly the thresh-
old distance of 10−5 from 0 or 1. The bottom row of
figure 1 shows that the LDM has learned an objec-
tive that avoids fractional solutions. In summary the
bottom row shows that both BDM and LDM are in
this case based on an objective function that practi-
cally avoids fractional solutions. This means that we
for both objectives find global minimizers. In the top
row of figure 1 we observe that LDM significantly re-

duces the error of BDM as we increase the number of
discretization levels and the number of variables in the
distribution. We argue that this is an indication of the
ability of LDM to overcome some of the limitations of
the Bethe approximation.

The BP error in the top row of figure 1 is not 0 possibly
due to the in general wrong objective. And since we
proved the convergence of the BDM objective to the
Bethe free energy, we do not expect the BDM error to
converge in that case to 0 either. The BDM error will
not necessarily even converge to the BP error due to
possibly local fixed point of the BP (Watanabe, 2011)
and due to possibly BP not having converged at all.

The easy energy and the hard energy are cases where
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the LP-1 in BDM is no longer tight. The bottom row
in figure 2 confirms our expectation of observing some
portion of fractional solutions. However the propor-
tion suggests that in this case we can still solve the
problem with some success. On the other hand the
bottom row in figure 3 shows a significant portion of
fractional solutions. Small BP error in the top row in
figure 2 suggests that the Bethe free energy is in this
case an appropriate objective that can also by mini-
mized by BP. The top row confirms our expectation of
BDM also converging to a small error as the number of
discretizations is increased. On the contrary portions
of fractional solutions and errors in figure 3 suggest
that the hard energy poses a difficult problem both
for BDM and BP. Finally we observe that even in the
hard energy cases LDM consistently learned an objec-
tive that relative to BDM yields considerably smaller
portion of fractional solutions and that increasing the
number of discrete levels leads to lower marginal error.

4.5. Conclusion of the Empirical Comparison

In our experiments the LDM seems to have succeeded
in achieving two goals. First in our experiments we
observe that LDM consistently learns an objective the
minimization of which yields significantly less frac-
tional solutions than BDM. Our observation adheres
to the observation made also by authors in (Fin-
ley & Joachims, 2008). Second in our experiments
we observe that for the adopted discretizations LDM
learns an objective the minimization of which yields
marginals that approach true marginals as the num-
ber of discretizations is increased.

5. Conclusions and future work

We introduced the Discrete Marginals approach, in
which the approximate marginals are obtained by min-
imizing an objective function of discrete variables with
unary and pairwise terms. This allows the use of tech-
niques developed for MAP-MRF inference and learn-
ing. Experiments suggest that if BP does not perform
well, learning the suitable function from training data
may have significant benefits.

Graphical models with energy E(x) =
∑
i ηixi +∑

(i,j) ηijxixj of binary variables appear frequently in
various applications, e.g. for binary image segmenta-
tion. In many cases researchers restrict themselves
to the MAP estimation due to the availability of ef-
ficient discrete optimization algorithms (graph cuts).
Our work opens the possibility of going beyond MAP
in such cases: DM can produce approximate marginals
while still using discrete optimization algorithms. It is
generally accepted that marginals can be very useful:

they provide a measure of the uncertainty of the solu-
tion and can lead to better predictions for the Ham-
ming loss function. Marginals are also needed for CRF
training.

The future work includes several directions. One
of them is to replace LP-1 relaxation with LP-2
to allow the use of graph cuts; we conjecture that
this would bias the learned function towards be-
ing {sub,super}modular. An important question is
whether it is possible to learn a function that works
for different graph topologies; potentially, this could
be achieving by adding features that depend on the
graph structure. We also plan to look at how we can
learn functions fi, fij for finer discretizations; poten-
tial techniques include interpolation from a coarser dis-
cretization and penalizing non-smooth functions.

Appendix A: Proof of theorem 3

The theorem will follow from

Lemma 5. Denote ∆ = θij(0, 0) − θij(0, 1) −
θij(1, 0)+θij(1, 1). For each αi, αj ∈ (0, 1) there holds

sign
∂2fij(αi,αj)
∂αi∂αj

= sign∆.

Proof. We will use the following notation. First, we
assume that i = 1 and j = 2. We also introduce
the third “dummy” variable x3 whose value is always
1. Symbol x will denote a labeling (x1, x2, x3) where
x1, x2 ∈ {0, 1} and x3 = 1. For such labeling x we
denote θ(x) = θ(x1, x2, 1) = θij(x1, x2). It is easy to
see that fij(αi, αj) = g(αi, αj , 1) where function g is
defined by

g(α) = min
µ

∑
x

[θ(x)µ(x) + h(µ(x))] (18a)

s.t.
∑
x:xi=1

µ(x) = αi ∀i ∈ {1, 2, 3} (18b)

The Lagrangian of this constrained optimization prob-
lem is

Lα(µ,λ)=
∑
x

[(θ(x)− 〈x,λ〉)µ(x) + h(µ(x))]+〈α,λ〉

Denote G(α,λ) = minµ Lα(µ,λ). It is easy to check
that

G(α,λ) = −
∑
x

µλ(x) + 〈α,λ〉 (19a)

µλ(x) = exp{−θ(x) + 〈x,λ〉 − 1} (19b)

Since the objective (18a) is strictly convex and con-
straints (18b) are linear, we have strong duality:

g(α)=max
λ

min
µ
Lα(µλ,λ)=max

λ
G(α,λ)
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We define Di(α,λ) = ∂G(α,λ)
∂λi

. Let λ(α) be the
value of λ that maximizes G(α,λ), then Di(α,λ) =
∂G(α,λ)
∂λk

= 0 at λ = λ(α). Using this fact, we get

∂g

∂αi
=
∂G(α,λ(α))

∂αi
=
∂G

∂αi
+
∑
k

∂G

∂λk

∂λk
∂αi

=
∂G

∂αi
= λi

Thus, ∂2g
∂αi∂αj

= ∂λi

∂αj
. Differentiating equation

Di(α,λ(α)) = 0 gives

∂Di(α,λ(α))

∂αk
=
∂Di

∂αk
+
∑
j

∂Di

∂λj

∂λj
∂αk

= 0 (20)

We have ∂Di

∂αk
= δ{i=k} and ∂Di

∂λj
= Cij

.
= ∂2G

∂λi∂λj
. Thus,

equation (20) for k = 1, 2, 3 leads to

I + C
∂λ

∂α
= 0 ⇒ ∂λi

∂αj
= −Bij , B = C−1

We showed that ∂2g
∂α1∂α2

= ∂λ1

∂α2
= −B12. By the

Cramer’s rule

∂2g

∂α1∂α2
= −B12 =

1

detC
det

(
C21 C23

C31 C33

)
From now on we fix α with α1, α2 ∈ (0, 1), α3 = 1 and
denote λ = λ(α), µ = µλ. We have

Cij =
∂2G(α,λ)

∂αi∂αj
= −

∑
x:xi=xj=1

µ(x)

Note that
∑
x µ(x) = α3 = 1. Thus, Cij = −Eµ[xixj ]

implying that C is a negative definite matrix; this
means that detC < 0. Denote pab = µ(a, b, 1), then

det

(
C21 C23

C31 C33

)
= det

(
Eµ[x1x2] Eµ[x2]
Eµ[x1] 1

)
=det

(
p11 p01 + p11

p10 + p11 p00 + p01 + p10 + p11

)
=p11p00 − p01p10

We showed that

sign
∂2g

∂α1∂α2
= −sign

(
p11p00

p01p10
− 1

)
From (19b) we get p11p00

p01p10
= e−∆, and therefore the

above expression equals −sign
(
e−∆ − 1

)
= sign∆.

Appendix B: Proof of theorem 4

Proof. (a) Consider point α∗ ∈ X ∗. From theorem’s
conditions, there exists a sequence ᾱ1, ᾱ2, . . . such
that ᾱk ∈ Xk and limk→∞ ᾱ

k = α∗. We can write

f(α∗) ≤ lim
k→∞

f(αk) ≤ lim
k→∞

f(ᾱk) = f(α∗)

where the last equality holds since f is continuous on
X . This proves the first claim of (a).

Let us prove that limk→∞ dist(αk,X ∗) = 0. Con-
sider δ > 0; we need to show that the set Iδ

.
=

{k | dist(αk,X ∗) ≥ δ} is finite. Suppose not, there
exists a converging subsequence αk(1),αk(2), . . . with
k(`) ∈ Iδ for ` ≥ 1 (since X is bounded). Let ᾱ be its
limit. The continuity of function dist(·,X ∗) implies
that dist(ᾱ,X ∗) ≥ δ, while continuity of f and the
first claim of the theorem imply that f(ᾱ) = f∗ and
so ᾱ ∈ X ∗. We get a contradiction.

(b) Let α∗ be a point in X ∗ ∩ (0, 1)n. Let us pick
ε̄ > 0 such that the set X̄ = {α ∈ Rn | ||α−α∗|| ≤ ε̄}
satisfies X̄ ⊆ (0, 1)n. For a unit vector u ∈ S1 we
denote fuu(α) to be the second derivative at α in the
direction u, and c = maxα∈X̄ ,u∈Sn fuu(α) <∞.

Since limk→∞ εk = 0, there exists k̄ such that εk ≤
ε̄ for all k > k̄. Consider fixed k ≥ k̄. From the
definition of εk, there exists α ∈ Xk such that r =
||α−α∗|| ≤ εk, and so α ∈ X̄ . Let u be the direction
from α∗ to α. Using the Taylor expansion formula
with an explicit residual (along direction u), we get

f(αk) ≤ f(α) = f(α∗) + rfu(α∗) +
1

2
r2fuu(α′)

for some α′ = λα∗ + (1 − λ)α, λ ∈ [0, 1]. Since α∗

is a minimizer of f , we get fu(α∗) = 0. Therefore,
f(αk) = f∗ + 1

2r
2fuu(α′) ≤ f∗ + 1

2ε
2
kc. This implies

part (b).
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