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Abstract

We consider two-player games played on graphs with reqaespbnse and finitary Streett objectives. We show
these games are PSPACE-hard, improving the previous knd¥vhaddness. We also improve the lower bounds on
memory required by the winning strategies for the players.

1 Introduction

Games played on graphs are suitable models for multi-coeng@ystems: vertices represent states; edges represent
transitions; players represent components; and objacteresent specifications. The specification of a component
is typically given as an-regular condition [7], and the resultingregular games have been used for solving control
and verification problems (see, e.g., [3, 9, 10]).

Every w-regular specification (indeed, every specification) camléesomposed into a safety part and a liveness
part [1]. The safety part ensures that the component willdoognything “bad” (such as violate an invariant) within
any finite number of transitions. The liveness part ensurasthe component will do something “good” (such as
proceed, or respond, or terminate) within some finite nurob&ansitions. Liveness can be violated only in the limit,
by infinite sequences of transitions, as no bound is stipdlah when the “good” thing must happen. This infinitary,
classical formulation of liveness has both strengths anakwesses. A main strength is robustness, in particular,
independence from the chosen granularity of transitionsotAer main strength is simplicity, allowing liveness to
serve as an abstraction for complicated safety conditiemsexample, a component may always respond in a number
of transitions that depends, in some complicated manné¢heoaxact size of the stimulus. Yet for correctness, we may
be interested only that the component will respond “evdhti&lowever, these strengths also point to a weakness of
the classical definition of liveness: it can be satisfied byponents that in practice are quite unsatisfactory because
no bound can be put on their response time. It is for this redsat alternative, stronger formulations of liveness have
been proposed. One of thesdiistary liveness [2, 5]: finitary liveness does not insist on responihin a known
boundb (i.e., every stimulus is followed by a response withitransitions), but on response within some unknown
bound (i.e., there existis such that every stimulus is followed by a response withtransitions). Note that in the
finitary case, the boundmay be arbitrarily large, but the response time must not govever from one stimulus to
the next. In this way, finitary liveness still maintains tledustness (independence of step granularity) and sirtyplici
(abstraction of complicated safety) of traditional liveagwhile removing unsatisfactory implementations.

The classical infinitary notion of fairness is given by theeBtt objective: a Streett objective consists of a set of
d pairs of requests and corresponding responses and thdiebjexjuires that every request that appears infinitely
often must be responsed infinitely often. The two finitaryrafation of fairness are the request-response objective
and finitary Streett objective. The request-response tibgarequires that there is a bouhduch that every request is
responsed with i steps; and the finitary Streett objective requires thattieea bound such that in the limit every
request is responsed with brsteps.

Previous resultsGames with infinitary Streett objectives withrequest-response pairs is coNP-complete [6]. The
memory bound for winning strategies is as follows: thereni®ptimal (matching lower and upper) bounddffor
the size of memory for the player with the Streett objective the opposing player has memoryless winning strategy



(a strategy that is independent of the history and depenttssocurrent state). Games with request-response objective
can be solved in EXPTIME [11]. The winning strategies for fiiayer with request-response objective require a
memory of size at leagt?/3) and memory of siz€ - 2¢ suffices for winning strategies; memory of si¥esuffices for

the winning strategies for the opposing player. Games wiiltafiy Streett objectives can be solved in EXPTIME and
is NP-hard [4]. The winning strategies for the player withtéiry Streett objective require a memory of size at least
2L4/2] and memory of sizd - 2¢ suffices for winning strategies; the winning strategiegtieropposing player require
infinite memory in general.

Our results.In this work we present improved lower bounds for complegityl memory required by winning strate-
gies. We first show that games with request-response andrfirBtreett objectives are PSPACE-hard (improving the
NP-hardness lower bound). We also study the complexity effdayer game graphs: if there is only one player with
request-response or finitary Streett objectives, then tbbl@m is NP-complete; and if there is only the opposing
player, then the problem can be solved in polynomial time. iferove the lower bound for memory required for
winning strategies in games with request-response obgsctive show that in games with request-response objectives
both players require at lea®t?/2) memory (improving the lower bound @f?/3! for the player with request-response
objective, and no bound was known for the opposing player).

2 Request-response and Finitary Streett Games

In this section we first present the definitions of game graplays, strategies, and then define the request-response
and finitary Streett objectives.

2.1 Gamegraphs

Game graphs. A game graphG = ((S, E), (S1,S2)) consists of a directed gragl§, E) with a finite state spacé
and a sef of edges, and a partitiaib;, S2) of the state spacg into two sets. The states # are player 1 states, and
the states irf, are player 2 states. For a state S, we write E(s) = {t € S| (s,t) € E} for the set of successor
states of. We assume that every state has at least one out-going eglgE|( k) is non-empty for all states € S. A
game graph is a player-1 graph9f = @, and is a player-2 graph §; = 0.

Plays. A game is played by two players: player 1 and player 2, who faninfinite path in the game graph by moving
a token along edges. They start by placing the token on aalistate, and then they take moves indefinitely in the
following way. If the token is on a state i}, then player 1 moves the token along one of the edges goinof dlg¢
state. If the token is on a state {3, then player 2 does likewise. The result is an infinite patthengame graph;
we refer to such infinite paths as plays. Formallylay is an infinite sequencés, s1, so, .. .) of states such that
(sk, sk+1) € E forall k > 0. We writeII for the set of all plays.

Strategies. A strategy for a player is a recipe that specifies how to expags. Formally, sstrategyo for player 1
is a functiono: S* - S; — S that, given a finite sequence of states (representing therisf the play so far) which
ends in a player 1 state, chooses the next state. The strategfychoose only available successors, i.e., fapadl S*
ands € Sy, if o(w - s) = ¢, thent € E(s). The strategies for player 2 are defined analogously. WeWrandI" for
the sets of all strategies for player 1 and player 2, respsdgti

An equivalent definition of strategies is as follows. Mdtbe a set calledhemory A strategy with memory can
be described as a pair of functions: (anamory-updatéunctions,: S x M — M that, given the memory and the
current state, updates the memory; and (Inpat-statefunctiono,,: S x M — S that, given the memory and the
current state, specifies the successor state. The stratéigita-memonyjf the memory) is finite and for a finite-
memory strategy we write |o| to denote the size of its memory, i.€}/|. The strategy isnemoryless the memory
M is a singleton set. The memoryless strategies do not depetitedistory of a play, but only on the current state.
Each memoryless strategy for player 1 can be specified actdon: S; — S suchthat(s) € E(s) forall s € Sy,
and analogously for memoryless player 2 strategies. Givataring state € S, a strategy € 3. for player 1, and a
strategyr € I for player 2, there is a unique play, denote@, o, 7) = (so, s1, s2, . . .), which is defined as follows:
so = sandforallk > 0, if s, € Sy, theno(sg, s1,...,5k) = sk+1, and ifsy € So, thent(sg, s1,...,Sk) = Sk+1-



2.2 Request-response and Finitary Streett objectives

An objectivew C II for player 1 in a game graph is a subset of plays. We will carsitjuest-responsandfinitary
Streettobjectives, and to define the objectives we need to definedti@mof distance sequence.

Distance sequences for Streett objectives. Let P = {(Rq;,Rp;), (Ras, Rps), - .., (Ray, Rp,)} be a set ofl requests
and the corresponding responses; forladl i < d we haveRqg;, € S andRp; C S. Given a playr = (so, 51,52, . .)
andP, thed sequences of distancést, (w, P), forall k > 0 and1 < j < d, are defined as follows:

j 0 if Rq;;
dist] (m, P) =« . Ok 7 Raj;
inf{k’ —k |k > Fk,si €Rp;} if s € Rq;.

Let dist, (7, P) = max{dist],(m, P) | 1 < j < d} forall k > 0.

Request-response obj ective. The request-response objective requires the distancesegto be bounded. Formally,
givenP = {(Rq,Rp;), ..., (Ray, Rp,)}, the request-response objective is defined as follows:

ReqRep(P) = {mell|3j € N.Vk > 0. disty(m, P) < j}
= {m eIl | sup{disty(m,P) | k > 0} < oo}
= {(so,51,82,...) €Il |37 € NVi > 0.if s; € Rq,, for1 < ¢ <d,
then exists < k <1 + j such thatsy, € Rp,}

In other words the request-response objective requiréeteay request is responsed with in a bounded number (i.e.,
within the numberj) of steps. We use the following notations for the complemgnbbjective:coReqRep(P) =
IT\ ReqRep(P).

Finitary Streett objectives. The finitary Streett objectivénStreett(P) for a setP of request-response pairs re-
quires that the distance sequence be bounded in the limit,the winning plays arénStreett(P) = {7 € II |
lim sup,,_, o, disti(m, P) < oo}. We use the following notations for the complementary aibjeccofinStreett(P) =

IT \ finStreett(P).

Winning. Given an objectival C II for player 1, a strategy € X is awinning strategyor player 1 fromasetV C S

of states if for all player 2 strategiese I" and all states € U, the playn (s, o, 7) is winning, i.e.,w(s,0,7) € V.
The winning strategies for player 2 are defined analogodsstates € S is winning for player 1 with respect to the
objectiveV if player 1 has a winning strategy frofs}. Formally, the set oWinning statedor player 1 with respect
to the objectivel is W, (V) = {s € S| Jo € . Vr € . n(s,0,7) € ¥}. Analogously, the set of winning states for
player 2 with respect to an objectile C I1is W5(¥) = {s € S| I7 € I. Vo € X. n(s,0,7) € ¥}. We say that
there exists a (memoryless; finite-memory) winning striafegplayer 1 with respect to the objectiveif there exists
such a strategy from the sBf; (¥); and similarly for player 2.

Remark 2.1 The request-response objectives were introduced in [14d, the following alternative definition was
used:
ReqRep(P) = {(so,81,52,...) €I |35 € NVi > 0.if s; € Rq,, forl < ¢ <d,
then exists: > . such thats;, € Rp,}.

From the result of existence of finite-memory winning sgkeﬂeforRe/qﬂp(P) [11], it follows that for all game
graphs we havé; (ReqRep(P)) = Wi (ReqRep(P)).
3 Improved Complexity Bounds

In this section we first present improved complexity lowenihd for request-response and finitary Streett games, and
then present the complexity results for game graphs with oné player.
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Figure 1: Request-response game$8RACE-hard. The game for the QB Vo 3xs. (21 VE2VZ3)A(T1 VX2 VT3).

3.1 Improved complexity lower bound for games

It was shown in [11] that request-response games can bedsineXPTIME, and it was shown in [4] that finitary
Streett games can be solved in EXPTIME. It was also shown]ithpt finitary Streett games are NP-hard. Below we
improve the lower bound showing that the problems are PSPA&H.

Theorem 3.1 Let G be a game graph with a request-response or a finitary StrégétctiveWw. Given a states, the
decision problem of whethere W, (¥) is PSPACE-hard.
Proof. We present a reduction from the QBF (quantified boolean ftajnConsider a QBF

¢ =dxy Veo.dxs .. . Vr,.co Ao Ao A

over the setX = {1, z2,...,z,} Of variables and the s&t = {c1,cq,...,cr} Of clauses where each clause
consists of exactly three literals, ¢;2, andc;s; (a literal is a variable:; or its complemeng;). Given a QBF®, the
problem of deciding the truth @b is PSPACE-complete [8]. We present a reduction of decidiegiuth of QBFs to
determining winner in a game graph with request-respongetiie. Given a QB> we construct a game graghy
as follows:

1. (State space)The set of stateS§ is as follows
XU {l‘iq,fiq | 1€ {1,2,...,%}} ucu {Cz‘j | 1€ {1,2,...,]€},j € {1,2,3}}U {$7L+1} @] {Ck+1}-

There is a state for every variahle € X and there is a state for every clausee C, and there are two
additional states;,,; andc41. For the literalr; we have the state;, and for the literair; we have the state
T,q. FOr a clause; we have states for the literadg, c;2, andc;s that appear in;.

2. (State space partition}-or a variabler;, if it is universally quantified inb, then the state; belongs to player 2.
The stater,, 1 belongs to player 2. All other states belong to player 1.

3. (Edges).The set of edge#’ is as follows

{(Ziaxiq)v (xivfiq) | IS {172a e an}} U {(xiqaxﬂrl)a (fiqvxi+1) | S {1a27 . ,TL}}
U{(ci,cij) | 1€ {1,2, . .,k},j S {1,2,3}}U {(Cij,ck+1) | i€ {1,2, .. .,k},j S {1,2,3}}
W(znt1,6) [ 1€ {12, ..k} U{(chsr, cry1) )

4



For an existentially quantified variable, player 1 can choose between two successgreindz;, that cor-
responds to choosing eithef as true orz; as false. For universally quantified variable, player 2 liaslar
choices. The next state of, andz;, is the stater; ;. From the state,, 1, player 2 can choose any clause
and in a clause;, player 1 has the choice of the literalg that appear ir;. From a state;; the next state is
cr+1 and the statey ; is anabsorbing stat€a state with only self-loop as the outgoing transition).

4. (Request-response labelingfhe request-response labeling is as follows: (a) there exjaast-response pair
for every literal; (b) a state;, is labeled with the reques{ and a stat&;, is labeled with the requess; and
(c) for a stater;;, if ¢;; is the literalz,, thenc;; is labeled with all responses other than the response for the
complement oft, (formally, let X be the set of all complementary variables¥ofand let® = X U X, thenc;;
is labeled by all responsés\ {Z,}); and if ¢;; is the literalz,, then it is labeled by all responsEs\ {xz}.

Figure 1 presents a pictorial description of the reductinran example. We now present the two directions of the
correctness argument.

1. Truth implies winning. We first show that if® is true, then player 1 has a winning strategy from the state
x1. If @ is true, then there is a withess assignment functiothat satisfies the following condition: given
an existentially quantified variable; and a truth assignment to all variables beforez; (i.e., j < i), the
assignment function assigns a truth vaiye and the assignment function ensures that against all waltre
assignments to the universally quantified variables, a&ldlauses; € C are satisfied. A witness strategy
for player 1 to ensure winning for the request-responsectiigeis as follows: for an existentially quantified
variablex; and a historyw that leads ta;, if the assignment functioA assigns true te; given the truth value
assignment that correspondsuothen the strategy chooses;,, otherwise chooses;,. Consider a strategy
7 for player 2: letw be the path that lead to,,, giveno andr, and then let the choice of player 2 at state
rn+1 be a clause;. SinceA is a witness truth assignment, it follows that if we consithertruth assignment to
universally quantified variables that corresponds to thaets inw, then clause; must be satisfied. Sineeis
constructed from! it follows that there must be a litera); in ¢; such that the complement variablef was
not chosen in the path givenandr, and hence by choosing the successor statieom c; player 1 ensures that
the request-response objective is satisfied.

2. Winning implies truth.We now show that if there is a winning strategy for player Infre,, then® is true.
Consider a witness winning strategyfor player 1. A witness truth assignment functidrto show® is true is
constructed as follows. Consider an existentially quattifiariabler;, and a truth assignment to all variables
x; beforez; (i.e.,j < 1). Letw be the history in the game graph that corresponds to the givdnassignment
values that lead te;; if o choosese;,, thenz; is set to true, otherwise to false. Consider a truth assighme
to the universally quantified variables, and a clauseand let us consider the path in the game graph that
corresponds to all the truth assignments and chooses tigeela Sinceo is winning it follows that there is a
literal ¢;; in ¢; that is a response to all the requests of the path (i.e., implemnent of the variable af;; was
not chosen in the path), and hence it follows that the assggmfaunction ensures that clausds satisfied since
ci; is set to true.

The result follows for request-response objective. Thelltder finitary Streett objective follows from a similar
construction. The above construction is modified as follotue stater;; is made a player 2 state, and along with
the self-loop, an edge is added to the starting statelf & is true, then a strategy constructed from the witness
assignment functiom ensures that every request is responsed withnir- 2-steps. If® is not true, then there is a
strategyr for player 2 such that against all player 1 strategies in #ité fromzx; to c;41 there is a request that is
not responsed: the strategy for player 2 to ensure that tharfirStreett objective is violated playsin rounds and in
rounds it stays in the self-loop at;1, for i-steps, then goes to round- 1 choosing the edge to statge and repeats
the strategy-. This shows that player 1 has a winning strategy franiff ® is true. Hence the hardness result follows
for finitary Streett objectives, and we have the desireditebu

3.2 Complexity bound for player-1 and player-2 graphs

We now present the complexity bounds for player-1 and playgraphs with request-response and finitary Streett
objectives.
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Figure 2: Player-1 graphs with request-response objeiidéP-hard: the graph for the 3SAT formula; V Z» V
f3) A\ (51 V X9 \/53)

Theorem 3.2 LetG be a player-1 graph with a request-response or a finitary&trebjectivel. Given a stats, the
decision problem of whethere T, () is NP-complete.

Proof. The NP-hardness for finitary Streett objective was showd]inThe correctness argument for inclusion in NP
is simple and as follows: if the graph hasstates, and the request-response or the finitary Streetttokg consists
of d-pairs, then there is a path of length at mostd followed by visiting infinitely often every state of a subget
of states that is strongly connected (and every sta€g imvisited within|C|? steps). The guess of the path of length
n - d and the subsef' of states is polynomial and can be verified in polynomial tifie complete the proof we show
the NP-hardness for request-response objective. We graseduction from the 3-SAT problem. Consider a 3-SAT
formula

P=ciANcy... Ny,

over the sef( of variables with the such that every clausdas exactly three literals;, j € {1, 2, 3}. We denote by
C'the set{cy, ca, ..., ci } Of clauses. Given a 3-SAT formufawe construct a player-1 grajghy as follows:

1. (State space)The set of stateS§ is as follows
X U{2iq,Tig |1€{1,2,...,n}}UCU{c; | i€ {1,2,...,k},j € {1,2,3}} U{zpnt1} U {crs1}

There is a state for every variahle € X and there is a state for every clausee C, and there are two
additional states,,; andcy41. For the literalr; we have the state;, and for the literair; we have the state
T,q. FoOr a clause; we have states for the literadg, c;2, andc;s that appear in;.

2. (Edges).The set of edge# is as follows

{(ciﬂcij) | i € {172a .. 'ak}vj € {1,2,3}}U {(cijvciJrl) | i€ {172a .. 'ak}vj € {172a3}}
U{(xi,xiq), (Ziafiq) | i€ {1,2, . ,TL}} U {(l‘iq,l'i+1), (fiq,IiJrl) | i€ {1,2, .. ,TL}}
U{(Ck+1,$1) | 1€ {1,2, . ,k}}} @] {(l‘n-i-l,l‘n-i-l)}-

For a clause;, player 1 has the choice of the literals that appear im;, and the next state of a staig is ¢;1.

For a stater;, player 1 can choose between two successgrandz;, that corresponds to choosing eithgras
true orx; as false. The next state of, andz;, is the stater; ;. The next state of; is the stater; and the
stater,,; is absorbing.

3. (Request-response labelindhe request-response labeling is as follows: (a) theredgaast-response pair for
every literal; (b) a state;; is labeled by the request of the literal that it represemtd;(a) a state:;, is labeled
by the response literal, i.ex;, is labeled with the response for literal, and a stater;, is labeled with the
response for literat;.



Figure 2 gives a pictorial description on an example® lis true, then there is a truth assignmehto the variables
such that every clause is satisfied (i.e., for every claysbere is a choice of literal;; in ¢; such that;; is set as
true by A). The strategy to choose tlag and the successor af as given by the truth assignmestensures that the
request-response objective is satisfied. If player 1 casfgdihe request-response objective, then consider thieeho
of literal ¢;; at states:;, and the choice of successor at statgshe corresponding truth assignment and the choice of
literal is a withess thab can be satisfied. This completes the proof and the resuttisin

Theorem 3.3 LetG be a player-2 graph with a request-response or a finitarye&trebjectivel. Given a state, the
decision problem of whetherc W, (¥) can be solved in PTIME.

Proof. We present a polynomial time algorithm to solve player-2ogsawith request-response objectives. An al-
gorithm was proposed in [4] to solve finitary Streett games tequiredO(n) iterations of an algorithm that solves
request-response objectives. Hence the result wouldwollo present the result we need two notations: for a set
U C S we denote byafe(U) = {(so, 51, s2,...) | Vi > 0. s; € U} the set of paths that avoids visiting states outside
U; and byReach(U) = {(so, s1,s2,...) | 3i > 0. s; € U} the set of paths that visits a statelin The polynomial
time algorithm to solve request-response objectives ipgut@ graphs is as follows:

1. forl < i < d, letX; = Rq, N Wa(Safe(S \ Rp;)) be the set of states that correspond to a reqresand
player 2 can ensure to stay safe avoiding any state of thesmwnding respond®p,. Hence any state i is
loosing for the request-response objective.

2. LetX = |J X;, and letZ = Ws(Reach(X)). FromZ player 2 can play a strategy to rea&h and if a state in
X, is reached, then player 2 can play the strategy to akpjdand ensure that the request-response objective is
violated.

Hence we have C W,(IT\ ¥). LetZ = S\ Z. From every state € Z, for all stateg, if (s,t) € F, thent € Z; as
otherwises could reach?, and fromZ the setX can be reached. Moreover, from every stat ifor a states € Rq;,

for any strategy for player 2 a stateRp, is reached and withihS|-steps (as otherwise player 2 could have ensured
Safe(S \ Rgq;)). Hence it follows thatZ C W, (), and thus we hav& = W, (¥). Since the safety and reachability
objectives can be solved in polynomial time in graphs, therdd result followsi

4 Improved Lower Bound for Memory

In this section we present improved lower bound for memogyired by winning strategies for both players. Given
a request-response objective witkpairs, a lower bound afl/3) memory requirement for player 1 strategies was
shown in [11], and no lower bound was presented for player .nd¢v improve the bounds showing that in general
winning strategies may require at least/2) memory for both players.

Requests Responses

Figure 3: Player 1 needs ! memory in games with request-response objectives

Theorem 4.1 Given a game graph with a request-response objective avjghirs, in general winning strategies for
player 1 and player 2 require at leagt?/2/ memory
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Figure 4: Player 2 needs ! memory in games with request-response objectives

Proof. We first present the family of examples for player 1, and thessent the result for player 2. Lef =
{1,202, 20}, X = {71, T2, ..., Tah, X = {20, %2, ., T}, Y = {y1, 92, -, va}, Y = {§1,%2, .-, Fa}, and
Y = {glag% R 7§d+1}'

1. Lower-bound for player 1Consider a game graph as follows:

(a) State space and partitiorThe state space i& U XUXuYUuYuY. The state space patrtition is as
follows: S1 =Y UY UY andS; = X U X U X. We will considerz; as the starting state.

(b) Request-response labelingvery stater; is labeled by the request, every stater; is labeled by the
request;; every statey; is labeled by the response for and every statg, is labeled by the response for
;.

(c) Edges.The set of edges is as follows:

{(@i, @), (T5,73) | 1 <@ < d} U{(xi, Zig1), (Ti, Tig1) | 1 <@ < d}
U{(Zar1,¥1)s (Tar1, Tar1)}

At every stater; player 2 chooses betweepnandz; and then proceeds 1), 1. At every statgy; player 1
chooses betweey andy; and then proceeds {3, ;. The next state of 41 iS¥1, andyy, 1 is an absorbing
state.

See Figure 3 for a pictorial description. In other wordsypta2 initially chooses a sequence of requests of
lengthd such that thé-th request is either; or ;. A winning strategy for player 1 matches the sequence by the
corresponding responses. Consider a strategy for playet Lises less that¥ memory. Then there must exist
two sequences of requests for which player 1 plays in the seameand hence for one of the sequence there is
arequest that is not answered. Hence any strategy withHae&t memory cannot be winning. Hence we have
a game graph witBd request-response pairs such that every winning strategtdger 1 require&? memory.

2. Lower-bound for player 2Consider a game graph as follows:

(a) State space and partitiotLet X = {&y, %5, ..., 72q}. The state space EUX UX UYUYUY UX.
The state space partition is as follow#s: = X UX U (X \ {Zgr1}) UX andS; = YUY UY U{Zy41}.
We will considery; as the starting state.



(b) Request-response labelinghe initial statey; is labeled with all requests; every stateis labeled by the
response fox; and every statg, is labeled by the response foy; every stater; is labeled by the request
x;, every stater; is labeled by the requedt; and forl < i < d, a staters;_; is labeled with every
response other thaf), and a statés; is labeled with every response other than

(c) Edges.The set of edges is as follows:

{@iyi), Wi, 9:) |11 <0 <dyU{(Yi, Yir1), @i, Yigr) | 1 < i < d}
(@4, i), (@0, Ti) | 1 < < df U{(24, Tigr), (Ti, Ti1) | 1 < i < df
W (@a+1,71)} U{(Zar1,7:) | 1 <d < 2df U{(T3,7) | 1 <4 < 2d}

At every stater; player 2 chooses betweepnandz; and then proceeds .. At every statgy; player 1
chooses betweeg andy; and then proceeds . 1. The next state 0f441 is 71, from the stater,
player 1 can choose any stateXn and every state iiX is absorbing.

See Figure 4 for a pictorial description. In other words,ghme starts by generating all requestg,aaind then
player 1 answers by a sequencelgEsponses. Then player 2 can again generate a sequeicecmqfests, and
then player 1 can choose to answer all but one request. A mgrsirategy for player 2 exactly generates the
sequence of requests that have been previously answerdaygy fb. Thus in the end player 1 must answer all
requests, but can answer all but one requests, and heneg Blayns. If player 2 plays a strategy that uses less
than2¢ memory, then there exist two sequences of responses fagrlaipr which player 2 plays in a similar
fashion. In one of the sequences there is one response #yar [l has previously answered and player 2 have
not generated the corresponding request. Hence player ¢hcanse to answer all but one request and satisfy
the request-response objective. Hence it follows any wigstrategy for player 2 requireé memory.

The desired result followd

Concluding remarks. In this work we improve the lower bound for complexity for gasrwith request-response and
finitary Streett objectives from NP-hardness to PSPACEHmess. The upper bound is EXPTIME, and whether these
games can be solved in PSPACE or whether they are EXPTIM&+karain open. We also improve the lower bound
on memory required for the winning strategies for both ptayelowever an optimal bound (matching upper and lower
bound) for memory for the winning strategies is still open.
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