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Abstract

We consider two-player games played on graphs with request-response and finitary Streett objectives. We show
these games are PSPACE-hard, improving the previous known NP-hardness. We also improve the lower bounds on
memory required by the winning strategies for the players.

1 Introduction

Games played on graphs are suitable models for multi-component systems: vertices represent states; edges represent
transitions; players represent components; and objectives represent specifications. The specification of a component
is typically given as anω-regular condition [7], and the resultingω-regular games have been used for solving control
and verification problems (see, e.g., [3, 9, 10]).

Everyω-regular specification (indeed, every specification) can bedecomposed into a safety part and a liveness
part [1]. The safety part ensures that the component will notdo anything “bad” (such as violate an invariant) within
any finite number of transitions. The liveness part ensures that the component will do something “good” (such as
proceed, or respond, or terminate) within some finite numberof transitions. Liveness can be violated only in the limit,
by infinite sequences of transitions, as no bound is stipulated on when the “good” thing must happen. This infinitary,
classical formulation of liveness has both strengths and weaknesses. A main strength is robustness, in particular,
independence from the chosen granularity of transitions. Another main strength is simplicity, allowing liveness to
serve as an abstraction for complicated safety conditions.For example, a component may always respond in a number
of transitions that depends, in some complicated manner, onthe exact size of the stimulus. Yet for correctness, we may
be interested only that the component will respond “eventually.” However, these strengths also point to a weakness of
the classical definition of liveness: it can be satisfied by components that in practice are quite unsatisfactory because
no bound can be put on their response time. It is for this reason that alternative, stronger formulations of liveness have
been proposed. One of these isfinitary liveness [2, 5]: finitary liveness does not insist on response within a known
boundb (i.e., every stimulus is followed by a response withinb transitions), but on response within some unknown
bound (i.e., there existsb such that every stimulus is followed by a response withinb transitions). Note that in the
finitary case, the boundb may be arbitrarily large, but the response time must not growforever from one stimulus to
the next. In this way, finitary liveness still maintains the robustness (independence of step granularity) and simplicity
(abstraction of complicated safety) of traditional liveness, while removing unsatisfactory implementations.

The classical infinitary notion of fairness is given by the Streett objective: a Streett objective consists of a set of
d pairs of requests and corresponding responses and the objective requires that every request that appears infinitely
often must be responsed infinitely often. The two finitary formulation of fairness are the request-response objective
and finitary Streett objective. The request-response objective requires that there is a boundb such that every request is
responsed with inb steps; and the finitary Streett objective requires that there is a boundb such that in the limit every
request is responsed with inb steps.

Previous results.Games with infinitary Streett objectives withd request-response pairs is coNP-complete [6]. The
memory bound for winning strategies is as follows: there is an optimal (matching lower and upper) bound ofd! for
the size of memory for the player with the Streett objective and the opposing player has memoryless winning strategy
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(a strategy that is independent of the history and depends onthe current state). Games with request-response objective
can be solved in EXPTIME [11]. The winning strategies for theplayer with request-response objective require a
memory of size at least2⌊d/3⌋ and memory of sized ·2d suffices for winning strategies; memory of size2d suffices for
the winning strategies for the opposing player. Games with finitary Streett objectives can be solved in EXPTIME and
is NP-hard [4]. The winning strategies for the player with finitary Streett objective require a memory of size at least
2⌊d/2⌋ and memory of sized · 2d suffices for winning strategies; the winning strategies forthe opposing player require
infinite memory in general.

Our results.In this work we present improved lower bounds for complexityand memory required by winning strate-
gies. We first show that games with request-response and finitary Streett objectives are PSPACE-hard (improving the
NP-hardness lower bound). We also study the complexity of one player game graphs: if there is only one player with
request-response or finitary Streett objectives, then the problem is NP-complete; and if there is only the opposing
player, then the problem can be solved in polynomial time. Weimprove the lower bound for memory required for
winning strategies in games with request-response objectives: we show that in games with request-response objectives
both players require at least2⌊d/2⌋ memory (improving the lower bound of2⌊d/3⌋ for the player with request-response
objective, and no bound was known for the opposing player).

2 Request-response and Finitary Streett Games

In this section we first present the definitions of game graphs, plays, strategies, and then define the request-response
and finitary Streett objectives.

2.1 Game graphs

Game graphs. A game graphG = ((S, E), (S1, S2)) consists of a directed graph(S, E) with a finite state spaceS
and a setE of edges, and a partition(S1, S2) of the state spaceS into two sets. The states inS1 are player 1 states, and
the states inS2 are player 2 states. For a states ∈ S, we writeE(s) = {t ∈ S | (s, t) ∈ E} for the set of successor
states ofs. We assume that every state has at least one out-going edge, i.e.,E(s) is non-empty for all statess ∈ S. A
game graph is a player-1 graph ifS2 = ∅, and is a player-2 graph ifS1 = ∅.

Plays. A game is played by two players: player 1 and player 2, who forman infinite path in the game graph by moving
a token along edges. They start by placing the token on an initial state, and then they take moves indefinitely in the
following way. If the token is on a state inS1, then player 1 moves the token along one of the edges going outof the
state. If the token is on a state inS2, then player 2 does likewise. The result is an infinite path inthe game graph;
we refer to such infinite paths as plays. Formally, aplay is an infinite sequence〈s0, s1, s2, . . .〉 of states such that
(sk, sk+1) ∈ E for all k ≥ 0. We writeΠ for the set of all plays.

Strategies. A strategy for a player is a recipe that specifies how to extendplays. Formally, astrategyσ for player 1
is a functionσ: S∗ · S1 → S that, given a finite sequence of states (representing the history of the play so far) which
ends in a player 1 state, chooses the next state. The strategymust choose only available successors, i.e., for allw ∈ S∗

ands ∈ S1, if σ(w · s) = t, thent ∈ E(s). The strategies for player 2 are defined analogously. We writeΣ andΓ for
the sets of all strategies for player 1 and player 2, respectively.

An equivalent definition of strategies is as follows. LetM be a set calledmemory. A strategy with memory can
be described as a pair of functions: (a) amemory-updatefunctionσu: S × M → M that, given the memory and the
current state, updates the memory; and (b) anext-statefunctionσn: S × M → S that, given the memory and the
current state, specifies the successor state. The strategy is finite-memoryif the memoryM is finite and for a finite-
memory strategyσ we write |σ| to denote the size of its memory, i.e.,|M |. The strategy ismemorylessif the memory
M is a singleton set. The memoryless strategies do not depend on the history of a play, but only on the current state.
Each memoryless strategy for player 1 can be specified as a functionσ: S1 → S such thatσ(s) ∈ E(s) for all s ∈ S1,
and analogously for memoryless player 2 strategies. Given astarting states ∈ S, a strategyσ ∈ Σ for player 1, and a
strategyτ ∈ Γ for player 2, there is a unique play, denotedπ(s, σ, τ) = 〈s0, s1, s2, . . .〉, which is defined as follows:
s0 = s and for allk ≥ 0, if sk ∈ S1, thenσ(s0, s1, . . . , sk) = sk+1, and ifsk ∈ S2, thenτ(s0, s1, . . . , sk) = sk+1.
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2.2 Request-response and Finitary Streett objectives

An objectiveΨ ⊆ Π for player 1 in a game graph is a subset of plays. We will consider request-responseandfinitary
Streettobjectives, and to define the objectives we need to define the notion of distance sequence.

Distance sequences for Streett objectives. Let P = {(Rq1, Rp1), (Rq2, Rp2), . . . , (Rqd, Rpd)} be a set ofd requests
and the corresponding responses; for all1 ≤ i ≤ d we haveRqi ⊆ S andRpi ⊆ S. Given a playπ = 〈s0, s1, s2, . . .〉
andP , thed sequences of distancesdist

j
k(π, P ), for all k ≥ 0 and1 ≤ j ≤ d, are defined as follows:

dist
j
k(π, P ) =

{
0 if sk 6∈ Rqj ;

inf{k′ − k | k′ ≥ k, sk′ ∈ Rpj} if sk ∈ Rqj .

Let distk(π, P ) = max{dist j
k(π, P ) | 1 ≤ j ≤ d} for all k ≥ 0.

Request-response objective. The request-response objective requires the distance sequence to be bounded. Formally,
givenP = {(Rq1, Rp1), . . . , (Rqd, Rpd)}, the request-response objective is defined as follows:

ReqRep(P ) = {π ∈ Π | ∃j ∈ N. ∀k ≥ 0. distk(π, P ) ≤ j}
= {π ∈ Π | sup{distk(π, P ) | k ≥ 0} < ∞}
= {〈s0, s1, s2, . . .〉 ∈ Π | ∃j ∈ N.∀i ≥ 0. if si ∈ Rqℓ, for 1 ≤ ℓ ≤ d,

then existsi ≤ k ≤ i + j such thatsk ∈ Rpℓ}

In other words the request-response objective requires that every request is responsed with in a bounded number (i.e.,
within the numberj) of steps. We use the following notations for the complementary objective:coReqRep(P ) =
Π \ ReqRep(P ).

Finitary Streett objectives. The finitary Streett objectivefinStreett(P ) for a setP of request-response pairs re-
quires that the distance sequence be bounded in the limit, i.e., the winning plays arefinStreett(P ) = {π ∈ Π |
lim supk→∞ distk(π, P ) < ∞}. We use the following notations for the complementary objective: cofinStreett(P ) =
Π \ finStreett(P ).

Winning. Given an objectiveΨ ⊆ Π for player 1, a strategyσ ∈ Σ is awinning strategyfor player 1 from a setU ⊆ S

of states if for all player 2 strategiesτ ∈ Γ and all statess ∈ U , the playπ(s, σ, τ) is winning, i.e.,π(s, σ, τ) ∈ Ψ.
The winning strategies for player 2 are defined analogously.A states ∈ S is winning for player 1 with respect to the
objectiveΨ if player 1 has a winning strategy from{s}. Formally, the set ofwinning statesfor player 1 with respect
to the objectiveΨ is W1(Ψ) = {s ∈ S | ∃σ ∈ Σ. ∀τ ∈ Γ. π(s, σ, τ) ∈ Ψ}. Analogously, the set of winning states for
player 2 with respect to an objectiveΨ ⊆ Π is W2(Ψ) = {s ∈ S | ∃τ ∈ Γ. ∀σ ∈ Σ. π(s, σ, τ) ∈ Ψ}. We say that
there exists a (memoryless; finite-memory) winning strategy for player 1 with respect to the objectiveΨ if there exists
such a strategy from the setW1(Ψ); and similarly for player 2.

Remark 2.1 The request-response objectives were introduced in [11], and the following alternative definition was
used:

R̂eqRep(P ) = {〈s0, s1, s2, . . .〉 ∈ Π | ∃j ∈ N.∀i ≥ 0. if si ∈ Rqℓ, for 1 ≤ ℓ ≤ d,

then existsk ≥ i. such thatsk ∈ Rpℓ}.

From the result of existence of finite-memory winning strategies for R̂eqRep(P ) [11], it follows that for all game

graphs we haveW1(ReqRep(P )) = W1(R̂eqRep(P )).

3 Improved Complexity Bounds

In this section we first present improved complexity lower bound for request-response and finitary Streett games, and
then present the complexity results for game graphs with only one player.
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Figure 1: Request-response games arePSPACE-hard. The game for the QBF∃x1∀x2∃x3.(x1∨x2∨x3)∧(x1∨x2∨x3).

3.1 Improved complexity lower bound for games

It was shown in [11] that request-response games can be solved in EXPTIME, and it was shown in [4] that finitary
Streett games can be solved in EXPTIME. It was also shown in [4] that finitary Streett games are NP-hard. Below we
improve the lower bound showing that the problems are PSPACE-hard.

Theorem 3.1 Let G be a game graph with a request-response or a finitary Streett objectiveΨ. Given a states, the
decision problem of whethers ∈ W1(Ψ) is PSPACE-hard.

Proof. We present a reduction from the QBF (quantified boolean formula). Consider a QBF

Φ = ∃x1.∀x2.∃x3 . . . ∀xn. c1 ∧ c2 ∧ . . . ∧ ck;

over the setX = {x1, x2, . . . , xn} of variables and the setC = {c1, c2, . . . , ck} of clauses where each clauseci

consists of exactly three literalsci1, ci2, andci3; (a literal is a variablexi or its complementxi). Given a QBFΦ, the
problem of deciding the truth ofΦ is PSPACE-complete [8]. We present a reduction of deciding the truth of QBFs to
determining winner in a game graph with request-response objective. Given a QBFΦ we construct a game graphGΦ

as follows:

1. (State space).The set of statesS is as follows

X ∪ {xiq, xiq | i ∈ {1, 2, . . . , n}} ∪ C ∪ {cij | i ∈ {1, 2, . . . , k}, j ∈ {1, 2, 3}} ∪ {xn+1} ∪ {ck+1}.

There is a state for every variablexi ∈ X and there is a state for every clauseci ∈ C, and there are two
additional statesxn+1 andck+1. For the literalxi we have the statexiq and for the literalxi we have the state
xiq. For a clauseci we have states for the literalsci1, ci2, andci3 that appear inci.

2. (State space partition).For a variablexi, if it is universally quantified inΦ, then the statexi belongs to player 2.
The statexn+1 belongs to player 2. All other states belong to player 1.

3. (Edges).The set of edgesE is as follows

{(xi, xiq), (xi, xiq) | i ∈ {1, 2, . . . , n}} ∪ {(xiq , xi+1), (xiq, xi+1) | i ∈ {1, 2, . . . , n}}
∪{(ci, cij) | i ∈ {1, 2, . . . , k}, j ∈ {1, 2, 3}} ∪ {(cij , ck+1) | i ∈ {1, 2, . . . , k}, j ∈ {1, 2, 3}}
∪{(xn+1, ci) | i ∈ {1, 2, . . . , k}} ∪ {(ck+1, ck+1)}.
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For an existentially quantified variablexi, player 1 can choose between two successorsxiq andxiq that cor-
responds to choosing eitherxi as true orxi as false. For universally quantified variable, player 2 has similar
choices. The next state ofxiq andxiq is the statexi+1. From the statexn+1, player 2 can choose any clauseci;
and in a clauseci, player 1 has the choice of the literalscij that appear inci. From a statecij the next state is
ck+1 and the stateck+1 is anabsorbing state(a state with only self-loop as the outgoing transition).

4. (Request-response labeling).The request-response labeling is as follows: (a) there is a request-response pair
for every literal; (b) a statexiq is labeled with the requestxi and a statexiq is labeled with the requestxi; and
(c) for a statecij , if cij is the literalxℓ, thencij is labeled with all responses other than the response for the
complement ofxℓ (formally, letX be the set of all complementary variables ofX and letΣ = X ∪ X , thencij

is labeled by all responsesΣ \ {xℓ}); and if cij is the literalxℓ, then it is labeled by all responsesΣ \ {xℓ}.

Figure 1 presents a pictorial description of the reduction on an example. We now present the two directions of the
correctness argument.

1. Truth implies winning.We first show that ifΦ is true, then player 1 has a winning strategy from the state
x1. If Φ is true, then there is a witness assignment functionA that satisfies the following condition: given
an existentially quantified variablexi and a truth assignment to all variablesxj beforexi (i.e., j < i), the
assignment function assigns a truth valuexi, and the assignment function ensures that against all truthvalue
assignments to the universally quantified variables, all the clausesci ∈ C are satisfied. A witness strategyσ

for player 1 to ensure winning for the request-response objective is as follows: for an existentially quantified
variablexi and a historyw that leads toxi, if the assignment functionA assigns true toxi given the truth value
assignment that corresponds tow, then the strategyσ choosesxiq , otherwise choosesxiq. Consider a strategy
τ for player 2: letw be the path that lead toxn+1 givenσ andτ , and then let the choice of player 2 at state
xn+1 be a clauseci. SinceA is a witness truth assignment, it follows that if we considerthe truth assignment to
universally quantified variables that corresponds to the choices inw, then clauseci must be satisfied. Sinceσ is
constructed fromA it follows that there must be a literalcij in ci such that the complement variable ofcij was
not chosen in the path givenσ andτ , and hence by choosing the successor statecij from ci player 1 ensures that
the request-response objective is satisfied.

2. Winning implies truth.We now show that if there is a winning strategy for player 1 from x1, thenΦ is true.
Consider a witness winning strategyσ for player 1. A witness truth assignment functionA to showΦ is true is
constructed as follows. Consider an existentially quantified variablexi, and a truth assignment to all variables
xj beforexi (i.e.,j < i). Let w be the history in the game graph that corresponds to the giventruth assignment
values that lead toxi; if σ choosesxiq , thenxi is set to true, otherwise to false. Consider a truth assignment
to the universally quantified variables, and a clauseci, and let us consider the path in the game graph that
corresponds to all the truth assignments and chooses the clauseci. Sinceσ is winning it follows that there is a
literal cij in ci that is a response to all the requests of the path (i.e., the complement of the variable ofcij was
not chosen in the path), and hence it follows that the assignment function ensures that clauseci is satisfied since
cij is set to true.

The result follows for request-response objective. The result for finitary Streett objective follows from a similar
construction. The above construction is modified as follows: the stateck+1 is made a player 2 state, and along with
the self-loop, an edge is added to the starting statex1. If Φ is true, then a strategyσ constructed from the witness
assignment functionA ensures that every request is responsed with in2n + 2-steps. IfΦ is not true, then there is a
strategyτ for player 2 such that against all player 1 strategies in the path fromx1 to ck+1 there is a request that is
not responsed: the strategy for player 2 to ensure that the finitary Streett objective is violated playsτ in rounds and in
roundi it stays in the self-loop atck+1 for i-steps, then goes to roundi + 1 choosing the edge to statex1 and repeats
the strategyτ . This shows that player 1 has a winning strategy fromx1 iff Φ is true. Hence the hardness result follows
for finitary Streett objectives, and we have the desired result.

3.2 Complexity bound for player-1 and player-2 graphs

We now present the complexity bounds for player-1 and player-2 graphs with request-response and finitary Streett
objectives.
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x3
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x1

x2

x3
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x1

x2

x2

x3

x3

︸ ︷︷ ︸
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︸ ︷︷ ︸

Responses

Figure 2: Player-1 graphs with request-response objectiveis NP-hard: the graph for the 3SAT formula(x1 ∨ x2 ∨
x3) ∧ (x1 ∨ x2 ∨ x3)

Theorem 3.2 LetG be a player-1 graph with a request-response or a finitary Streett objectiveΨ. Given a states, the
decision problem of whethers ∈ W1(Ψ) is NP-complete.

Proof. The NP-hardness for finitary Streett objective was shown in [4]. The correctness argument for inclusion in NP
is simple and as follows: if the graph hasn states, and the request-response or the finitary Streett objective consists
of d-pairs, then there is a path of length at mostn · d followed by visiting infinitely often every state of a subsetC

of states that is strongly connected (and every state inC is visited within|C|2 steps). The guess of the path of length
n · d and the subsetC of states is polynomial and can be verified in polynomial time. To complete the proof we show
the NP-hardness for request-response objective. We present a reduction from the 3-SAT problem. Consider a 3-SAT
formula

Φ = c1 ∧ c2 . . . ∧ ck;

over the setX of variables with the such that every clauseci has exactly three literalscij , j ∈ {1, 2, 3}. We denote by
C the set{c1, c2, . . . , ck} of clauses. Given a 3-SAT formulaΦ we construct a player-1 graphGΦ as follows:

1. (State space).The set of statesS is as follows

X ∪ {xiq, xiq | i ∈ {1, 2, . . . , n}} ∪ C ∪ {cij | i ∈ {1, 2, . . . , k}, j ∈ {1, 2, 3}} ∪ {xn+1} ∪ {ck+1}.

There is a state for every variablexi ∈ X and there is a state for every clauseci ∈ C, and there are two
additional statesxn+1 andck+1. For the literalxi we have the statexiq and for the literalxi we have the state
xiq. For a clauseci we have states for the literalsci1, ci2, andci3 that appear inci.

2. (Edges).The set of edgesE is as follows

{(ci, cij) | i ∈ {1, 2, . . . , k}, j ∈ {1, 2, 3}} ∪ {(cij , ci+1) | i ∈ {1, 2, . . . , k}, j ∈ {1, 2, 3}}
∪{(xi, xiq), (xi, xiq) | i ∈ {1, 2, . . . , n}} ∪ {(xiq, xi+1), (xiq, xi+1) | i ∈ {1, 2, . . . , n}}
∪{(ck+1, x1) | i ∈ {1, 2, . . . , k}} ∪ {(xn+1, xn+1)}.

For a clauseci, player 1 has the choice of the literalscij that appear inci, and the next state of a statecij is ci+1.
For a statexi, player 1 can choose between two successorsxiq andxiq that corresponds to choosing eitherxi as
true orxi as false. The next state ofxiq andxiq is the statexi+1. The next state ofck+1 is the statex1 and the
statexn+1 is absorbing.

3. (Request-response labeling).The request-response labeling is as follows: (a) there is a request-response pair for
every literal; (b) a statecij is labeled by the request of the literal that it represents; and (c) a statexiq is labeled
by the response literal, i.e.,xiq is labeled with the response for literalxi, and a statexiq is labeled with the
response for literalxi.
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Figure 2 gives a pictorial description on an example. IfΦ is true, then there is a truth assignmentA to the variables
such that every clause is satisfied (i.e., for every clauseci there is a choice of literalcij in ci such thatcij is set as
true byA). The strategy to choose thecij and the successor atxi as given by the truth assignmentA ensures that the
request-response objective is satisfied. If player 1 can satisfy the request-response objective, then consider the choice
of literal cij at statesci, and the choice of successor at statesxi; the corresponding truth assignment and the choice of
literal is a witness thatΦ can be satisfied. This completes the proof and the result follows.

Theorem 3.3 LetG be a player-2 graph with a request-response or a finitary Streett objectiveΨ. Given a states, the
decision problem of whethers ∈ W1(Ψ) can be solved in PTIME.

Proof. We present a polynomial time algorithm to solve player-2 graphs with request-response objectives. An al-
gorithm was proposed in [4] to solve finitary Streett games that requiredO(n) iterations of an algorithm that solves
request-response objectives. Hence the result would follow. To present the result we need two notations: for a set
U ⊆ S we denote bySafe(U) = {〈s0, s1, s2, . . .〉 | ∀i ≥ 0. si ∈ U} the set of paths that avoids visiting states outside
U ; and byReach(U) = {〈s0, s1, s2, . . .〉 | ∃i ≥ 0. si ∈ U} the set of paths that visits a state inU . The polynomial
time algorithm to solve request-response objectives in player-2 graphs is as follows:

1. for 1 ≤ i ≤ d, let Xi = Rqi ∩ W2(Safe(S \ Rpi)) be the set of states that correspond to a requestRqi and
player 2 can ensure to stay safe avoiding any state of the corresponding responseRpi. Hence any state inXi is
loosing for the request-response objective.

2. LetX =
⋃

Xi, and letZ = W2(Reach(X)). FromZ player 2 can play a strategy to reachX , and if a state in
Xi is reached, then player 2 can play the strategy to avoidRpi, and ensure that the request-response objective is
violated.

Hence we haveZ ⊆ W2(Π \Ψ). Let Z = S \Z. From every states ∈ Z, for all statest, if (s, t) ∈ E, thent ∈ Z; as
otherwises could reachZ, and fromZ the setX can be reached. Moreover, from every state inZ for a states ∈ Rqi,
for any strategy for player 2 a state inRpi is reached and within|S|-steps (as otherwise player 2 could have ensured
Safe(S \ Rqi)). Hence it follows thatZ ⊆ W1(Ψ), and thus we haveZ = W1(Ψ). Since the safety and reachability
objectives can be solved in polynomial time in graphs, the desired result follows.

4 Improved Lower Bound for Memory

In this section we present improved lower bound for memory required by winning strategies for both players. Given
a request-response objective withd-pairs, a lower bound of2⌊d/3⌋ memory requirement for player 1 strategies was
shown in [11], and no lower bound was presented for player 2. We now improve the bounds showing that in general
winning strategies may require at least2⌊d/2⌋ memory for both players.

x1

x1

x2

x2

x3

x3

x1

x1

x2

x2

x3

x3

︸ ︷︷ ︸

Requests

︸ ︷︷ ︸

Responses

Figure 3: Player 1 needs2⌊
k

2
⌋ memory in games with request-response objectives

Theorem 4.1 Given a game graph with a request-response objective withd-pairs, in general winning strategies for
player 1 and player 2 require at least2⌊d/2⌋ memory
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Figure 4: Player 2 needs2⌊
k

2
⌋ memory in games with request-response objectives

Proof. We first present the family of examples for player 1, and then present the result for player 2. LetX =
{x1, x2, . . . , xd}, X = {x1, x2, . . . , xd}, X̂ = {x̂1, x̂2, . . . , x̂d+1}, Y = {y1, y2, . . . , yd}, Y = {y1, y2, . . . , yd}, and
Ŷ = {ŷ1, ŷ2, . . . , ŷd+1}.

1. Lower-bound for player 1.Consider a game graphG as follows:

(a) State space and partition.The state space isX ∪ X ∪ X̂ ∪ Y ∪ Y ∪ Ŷ . The state space partition is as
follows: S1 = Y ∪ Y ∪ Ŷ andS2 = X ∪ X ∪ X̂. We will considerx1 as the starting state.

(b) Request-response labeling.Every statexi is labeled by the requestxi, every statexi is labeled by the
requestxi; every stateyi is labeled by the response forxi and every stateyi is labeled by the response for
xi.

(c) Edges.The set of edges is as follows:

{(x̂i, xi), (x̂i, xi) | 1 ≤ i ≤ d} ∪ {(xi, x̂i+1), (xi, x̂i+1) | 1 ≤ i ≤ d}
∪{(ŷi, yi), (ŷi, yi) | 1 ≤ i ≤ d} ∪ {(yi, ŷi+1), (yi, ŷi+1) | 1 ≤ i ≤ d}
∪{(x̂d+1, ŷ1), (x̂d+1, x̂d+1)}

At every statêxi player 2 chooses betweenxi andxi and then proceeds tôxi+1. At every statêyi player 1
chooses betweenyi andyi and then proceeds tôyi+1. The next state of̂xd+1 is ŷ1, andŷd+1 is an absorbing
state.

See Figure 3 for a pictorial description. In other words, player 2 initially chooses a sequence of requests of
lengthd such that thei-th request is eitherxi or xi. A winning strategy for player 1 matches the sequence by the
corresponding responses. Consider a strategy for player 1 that uses less than2d memory. Then there must exist
two sequences of requests for which player 1 plays in the sameway, and hence for one of the sequence there is
a request that is not answered. Hence any strategy with less than2d memory cannot be winning. Hence we have
a game graph with2d request-response pairs such that every winning strategy for player 1 requires2d memory.

2. Lower-bound for player 2.Consider a game graphG as follows:

(a) State space and partition.Let X̃ = {x̃1, x̃2, . . . , x̃2d}. The state space isX ∪ X ∪ X̂ ∪ Y ∪ Y ∪ Ŷ ∪ X̃.
The state space partition is as follows:S2 = X ∪X ∪ (X̂ \ {x̂d+1})∪ X̃ andS1 = Y ∪Y ∪ Ŷ ∪ {x̂d+1}.
We will considery1 as the starting state.

8



(b) Request-response labeling.The initial statey1 is labeled with all requests; every stateyi is labeled by the
response forxi and every stateyi is labeled by the response forxi; every statexi is labeled by the request
xi, every statexi is labeled by the requestxi; and for1 ≤ i ≤ d, a statẽx2i−1 is labeled with every
response other thanxi, and a statẽx2i is labeled with every response other thanxi.

(c) Edges.The set of edges is as follows:

{(ŷi, yi), (ŷi, yi) | 1 ≤ i ≤ d} ∪ {(yi, ŷi+1), (yi, ŷi+1) | 1 ≤ i ≤ d}
∪{(x̂i, xi), (x̂i, xi) | 1 ≤ i ≤ d} ∪ {(xi, x̂i+1), (xi, x̂i+1) | 1 ≤ i ≤ d}
∪{(ŷd+1, x̂1)} ∪ {(x̂d+1, x̃i) | 1 ≤ i ≤ 2d} ∪ {(x̃i, x̃i) | 1 ≤ i ≤ 2d}

At every statêxi player 2 chooses betweenxi andxi and then proceeds tôxi+1. At every statêyi player 1
chooses betweenyi andyi and then proceeds tôyi+1. The next state of̂yd+1 is x̂1, from the statêxd+1

player 1 can choose any state iñX, and every state iñX is absorbing.

See Figure 4 for a pictorial description. In other words, thegame starts by generating all requests aty1, and then
player 1 answers by a sequence ofd responses. Then player 2 can again generate a sequence ofd requests, and
then player 1 can choose to answer all but one request. A winning strategy for player 2 exactly generates the
sequence of requests that have been previously answered by player 1. Thus in the end player 1 must answer all
requests, but can answer all but one requests, and hence player 2 wins. If player 2 plays a strategy that uses less
than2d memory, then there exist two sequences of responses for player 1 for which player 2 plays in a similar
fashion. In one of the sequences there is one response that player 1 has previously answered and player 2 have
not generated the corresponding request. Hence player 1 canchoose to answer all but one request and satisfy
the request-response objective. Hence it follows any winning strategy for player 2 requires2d memory.

The desired result follows.
Concluding remarks. In this work we improve the lower bound for complexity for games with request-response and
finitary Streett objectives from NP-hardness to PSPACE-hardness. The upper bound is EXPTIME, and whether these
games can be solved in PSPACE or whether they are EXPTIME-hard remain open. We also improve the lower bound
on memory required for the winning strategies for both players. However an optimal bound (matching upper and lower
bound) for memory for the winning strategies is still open.
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