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Abstract. In two-player finite-state stochastic games of partial obser-
vation on graphs, in every state of the graph, the players simultaneously
choose an action, and their joint actions determine a probability distri-
bution over the successor states. The game is played for infinitely many
rounds and thus the players construct an infinite path in the graph. We
consider reachability objectives where the first player tries to ensure a
target state to be visited almost-surely (i.e., with probability 1) or pos-
itively (i.e., with positive probability), no matter the strategy of the
second player.

We classify such games according to the information and to the power of
randomization available to the players. On the basis of information, the
game can be one-sided with either (a) player 1, or (b) player 2 having
partial observation (and the other player has perfect observation), or two-
sided with (c) both players having partial observation. On the basis of
randomization, (a) the players may not be allowed to use randomization
(pure strategies), or (b) they may choose a probability distribution over
actions but the actual random choice is external and not visible to the
player (actions invisible), or (c) they may use full randomization.

Our main results for pure strategies are as follows: (1) For one-sided
games with player 2 perfect observation we show that (in contrast to full
randomized strategies) belief-based (subset-construction based) strate-
gies are not sufficient, and present an exponential upper bound on mem-
ory both for almost-sure and positive winning strategies; we show that
the problem of deciding the existence of almost-sure and positive winning
strategies for player 1 is EXPTIME-complete and present symbolic algo-
rithms that avoid the explicit exponential construction. (2) For one-sided
games with player 1 perfect observation we show that non-elementary
memory is both necessary and sufficient for both almost-sure and posi-
tive winning strategies. (3) We show that for the general (two-sided) case
finite-memory strategies are sufficient for both positive and almost-sure
winning, and at least non-elementary memory is required. We establish
the equivalence of the almost-sure winning problems for pure strategies
and for randomized strategies with actions invisible. Our equivalence re-
sult exhibit serious flaws in previous results in the literature: we show
a non-elementary memory lower bound for almost-sure winning whereas
an exponential upper bound was previously claimed.



1 Introduction

Games on graphs. Two-player games on graphs play a central role in several
important problems in computer science, such as controller synthesis [32, 34],
verification of open systems [2], realizability and compatibility checking [1, 21,
18], and many others. Most results about two-player games on graphs make
the hypothesis of perfect observation (i.e., both players have perfect or complete
observation about the state of the game). This assumption is often not realistic
in practice. For example in the context of hybrid systems, the controller acquires
information about the state of a plant using digital sensors with finite precision,
which gives imperfect information about the state of the plant [20, 26]. Similarly,
in a concurrent system where the players represent individual processes, each
process has only access to the public variables of the other processes, not to their
private variables [36, 2]. Such problems are better modeled in the more general
framework of partial-observation games [35–37, 16, 7] and have been studied in
the context of verification and synthesis [29, 22] (also see [3] for pushdown partial-
observation games).

Partial-observation stochastic games and subclasses. In two-player
partial-observation stochastic games on graphs with a finite state space, in ev-
ery round, both players independently and simultaneously choose actions which
along with the current state give a probability distribution over the successor
states in the game. In a general setting, the players may not be able to dis-
tinguish certain states which are observationally equivalent for them (e.g., if
they differ only by the value of private variables). The state space is partitioned
into observations defined as equivalence classes and the players do not see the
actual state of the game, but only an observation (which is typically different
for the two players). The model of partial-observation games we consider is the
same as the model of stochastic games with signals [7] and is a standard model
in game theory [38, 40]. It subsumes other classical game models such as con-
current games [39, 19], probabilistic automata [33, 9, 31], and partial-observation
Markov decision processes (POMDPs) [30] (see also [4–6, 10–12,42] for recent
decidability and complexity results for probabilistic automata and POMDPs).

The special case of perfect observation for a player corresponds to every ob-
servation for this player being a singleton. Depending on which player has per-
fect observation, we consider the following one-sided subclasses of the general
two-sided partial-observation stochastic games: (1) player 1 partial and player 2
perfect where player 2 has perfect observation, and player 1 has partial obser-
vation; and (2) player 1 perfect and player 2 partial where player 1 has perfect
observation, and player 2 has partial observation. The case where the two play-
ers have perfect observation corresponds to the well-known perfect-information
(perfect-observation) stochastic games [39, 17, 19].

Note that in a given game G, if player 1 wins in the setting of player 1 partial
and player 2 perfect, then player 1 wins in the game G as well. Analogously, if
player 1 cannot win in the setting of player 1 perfect and player 2 partial, then
player 1 does not win in the game G either. In this sense, the one-sided games are
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conservative over- and under-approximations of two-sided games. In the context
of applications in verification and synthesis, the conservative approximation is
that the adversary is all powerful, and hence player 1 partial and player 2 perfect
games provide the important worst-case analysis of partial-observation games.

Objectives and qualitative problems. In this work we consider partial-
observation stochastic games with reachability objectives where the goal of
player 1 is to reach a set of target states and the goal of player 2 is to pre-
vent player 1 from reaching the target states. The study of partial-observation
games is considerably more complicated than games of perfect observation. For
example, the quantitative problem of deciding whether there exists a strategy
for player 1 to ensure that the target is reached with probability at least 1

2 can
be decided in NP ∩ coNP for perfect-observation stochastic games [17], whereas
the problem is undecidable even for partial-observation stochastic games with
only one player [31]. Since the quantitative problem is undecidable we consider
the following qualitative problems: the almost-sure (resp. positive) problem asks
whether there exists a strategy for player 1 to ensure that the target set is
reached with probability 1 (resp. positive probability).

Classes of strategies. In general, randomized strategies are necessary to win
with probability 1 in a partial-observation game with reachability objective [16].
However, there exist two types of randomized strategies where either (i) actions
are visible, the player can observe the action he played [16, 7], or (ii) actions are
invisible, the player may choose a probability distribution over actions, but the
source of randomization is external and the actual choice of the action is invisible
to the player [25]. The second model is more general since the qualitative prob-
lems of randomized strategies with actions visible can be reduced in polynomial
time to randomized strategies with actions invisible, by modeling the visibility
of actions using the observations on states.

With actions visible, the almost-sure (resp. positive) problem was shown to be
EXPTIME-complete (resp. PTIME-complete) for one-sided games with player 1
partial and player 2 perfect [16], and 2EXPTIME-complete (resp. EXPTIME-
complete) in the two-sided case [7]. For the positive problem memoryless ran-
domized strategies exist, and for the almost-sure problem belief-based strategies
exist (strategies based on subset construction that consider the possible current
states of the game).

It was remarked (without any proof) in [16, p.4] that these results easily
extend to randomized strategies with actions invisible for one-sided games with
player 1 partial and player 2 perfect. It was claimed in [25] (Theorems 1 & 2)
that the almost-sure problem is 2EXPTIME-complete for randomized strategies
with actions invisible for two-sided games, and that belief-based strategies are
sufficient for player 1. Thus it is believed that the two qualitative problems with
actions visible or actions invisible are essentially equivalent.

In this paper, we consider the class of pure strategies, which do not use
randomization at all. Pure strategies arise naturally in the implementation of
controllers and processes that do not have access to any source of randomization.
Moreover we will establish deep connections between the qualitative problems
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for pure strategies and for randomized strategies with actions invisible, which
on one hand exhibit major flaws in previous results of the literature (the remark
without proof of [16] and the main results of [25]), and on the other hand show
that the solution for randomized strategies with actions invisible (which is the
most general case) can be surprisingly obtained by solving the problems for pure
strategies.

Contributions. The contributions of the paper are summarized below.

1. Player 1 partial and player 2 perfect. We show that both for almost-sure and
positive winning, belief-based pure strategies are not sufficient. This implies
that the classical approaches relying on the belief-based subset construction
cannot work for solving the qualitative problems. However, we present an
optimal exponential upper bound on the memory needed by pure strategies
(the exponential lower bound follows from the special case of non-stochastic
games [8]). By a reduction to a perfect-observation game of exponential size,
we show that both the almost-sure and positive problems are EXPTIME-
complete for one-sided games with perfect-observation for player 2. In con-
trast to the previous proofs of EXPTIME upper bound that rely either
on subset constructions or enumeration of belief-based strategies, our cor-
rectness proof relies on a novel rank-based argument that works uniformly
both for positive and almost-sure winning. The structure of this construc-
tion also provides symbolic antichain-based algorithms (see [23] for a survey
of the antichain approach) for solving the qualitative problems that avoids
the explicit exponential construction. Thus for the important special case of
player 1 partial and player 2 perfect we establish optimal memory bound,
complexity bound, and present symbolic algorithmic solutions for the qual-
itative problems.

2. Player 1 perfect and player 2 partial.

(a) We show a very surprising result that both for positive and almost-sure
winning, pure strategies for player 1 require memory of non-elementary
size (i.e., a tower of exponentials). This is in sharp contrast with (i) the
case of randomized strategies (with or without actions visible) where
memoryless strategies are sufficient for positive winning, and with (ii)
the previous case where player 1 has partial observation and player 2 has
perfect observation, where pure strategies for positive winning require
only exponential memory. Surprisingly and perhaps counter-intuitively
when player 1 has more information and player 2 has less information,
the positive winning strategies for player 1 require much more memory
(non-elementary as compared to exponential). With more information
player 1 can win from more states, but the winning strategy is much
harder to implement.

(b) We present a non-elementary upper bound for the memory needed by
pure strategies for positive winning. We then show with an example that
for almost-sure winning more memory may be required as compared
to positive winning. Finally, we show how to combine pure strategies
for positive winning in a recharging scheme to obtain a non-elementary
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upper bound for the memory required by pure strategies for almost-sure
winning. Thus we establish non-elementary complete bounds for pure
strategies both for positive and almost-sure winning.

3. General case. We show that in the general case finite memory strategies
are sufficient both for positive and almost-sure winning. The result is es-
sentially obtained by a simple generalization of König’s Lemma [28]. The
non-elementary lower bound for memory follows from the special case when
player 1 has perfect observation and player 2 has partial observation.

4. Randomized strategies with actions invisible. For randomized strategies with
actions invisible we present two reductions to establish connections with
pure strategies. First, we show that the almost-sure problem for randomized
strategies with actions invisible can be reduced in polynomial time to the
almost-sure problem for pure strategies. The reduction requires to first es-
tablish that finite-memory randomized strategies are sufficient in two-sided
games. Second, we show that the problem of almost-sure winning with pure
strategies can be reduced in polynomial time to the problem of random-
ized strategies with actions invisible. For this reduction it is crucial that the
actions are not visible.
Our reductions have deep consequences. They unexpectedly imply that the
problems of almost-sure winning with pure strategies or randomized strate-
gies with actions invisible are polynomial-time equivalent. Moreover, it fol-
lows that even in one-sided games with player 1 partial and player 2 perfect,
belief-based randomized strategies (with actions invisible) are not sufficient
for almost-sure winning. This shows that the remark (without proof) of [16]
that the results (such as existence of belief-based strategies) of randomized
strategies with actions visible carry over to actions invisible is an oversight.
However from our first reduction and our results for pure strategies it fol-
lows that there is an exponential upper bound on memory and the problem is
EXPTIME-complete for one-sided games with player 1 partial and player 2
perfect. More importantly, our results exhibit a serious flaw in the main re-
sult of [25] which showed that belief-based randomized strategies with actions
invisible are sufficient for almost-sure winning, and concluding that enumer-
ating over such strategies yields a 2EXPTIME algorithm for the problem.
Our second reduction and lower bound for pure strategies show that the re-
sult is incorrect, and that the exponential (belief-based) upper bound is far
off. Instead, the lower bound on memory for almost-sure winning with ran-
domized strategies and actions invisible is non-elementary. Thus, contrary
to the general belief, there is a sharp contrast for randomized strategies with
or without actions visible: if actions are visible, then exponential memory
is sufficient for almost-sure winning while if actions are not visible, then
memory of non-elementary size is necessary in general.

The memory requirements are summarized in Table 1 and the results of this
paper are shown in bold font. We explain how the other results of the table
follow from results of the literature. For randomized strategies (with or without
actions visible), if a positive winning strategy exists, then a memoryless strat-
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egy that plays all actions uniformly at random is also positive winning. Thus
the memoryless result for positive winning strategies follows for all cases of ran-
domized strategies. The belief-based bound for memory of almost-sure winning
randomized strategies with actions visible follows from [16, 7]. The memoryless
strategies results for almost-sure winning for one-sided games with player 1 per-
fect and player 2 partial are obtained as follows: when actions are visible, then
belief-based strategies coincide with memoryless strategies as player 1 has perfect
observation. If player 1 has perfect observation, then for memoryless strategies
whether actions are visible or not is irrelevant and thus the memoryless result
also follows for randomized strategies with actions invisible. Thus along with our
results we obtain Table 1.

one-sided one-sided
two-sided

player 2 perfect player 1 perfect

Positive Almost-sure Positive Almost-sure Positive Almost-sure

Randomized Memoryless Exponential Memoryless Memoryless Memoryless Exponential

(actions visible) (belief-based) (belief-based)

Randomized Memoryless Exponential Memoryless Memoryless Memoryless Non-elem.

(actions invisible) (more than low. bound

belief) Finite
upp. bound

Pure Exponential Exponential Non-elem. Non-elem. Non-elem. Non-elem.

(more than (more than complete complete low. bound low. bound
belief) belief) Finite Finite

upp. bound upp. bound

Table 1. Memory requirement for player 1 and reachability objective.

2 Definitions

A probability distribution on a finite set S is a function κ : S → [0, 1] such that
∑

s∈S κ(s) = 1. The support of κ is the set Supp(κ) = {s ∈ S | κ(s) > 0}. We
denote by D(S) the set of probability distributions on S. Given s ∈ S, the Dirac
distribution on s assigns probability 1 to s.

Games. Given finite alphabets Ai of actions for player i (i = 1, 2), a stochastic
game on A1, A2 is a tuple G = 〈Q, q0, δ〉 where Q is a finite set of states, q0 ∈ Q is
the initial state, and δ : Q×A1×A2 → D(Q) is a probabilistic transition function
that, given a current state q and actions a, b for the players gives the transition
probability δ(q, a, b)(q′) to the next state q′. The game is called deterministic
if δ(q, a, b) is a Dirac distribution for all (q, a, b) ∈ Q × A1 × A2. A state q is
absorbing if δ(q, a, b) is the Dirac distribution on q for all (a, b) ∈ A1 × A2. In
some examples, we allow an initial distribution of states. This can be encoded
in our game model by a probabilistic transition from the initial state.

A player-1 state is a state q where δ(q, a, b) = δ(q, a, b′) for all a ∈ A1 and all
b, b′ ∈ A2. We use the notation δ(q, a,−). Player-2 states are defined analogously.
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In figures, we use boxes to emphasize that a state is a player-2 state, and we
represent probabilistic branches using diamonds (which are not real ‘states’, e.g.,
as in Fig. 1).

In a (two-sided) partial-observation game, the players have a partial or incom-
plete view of the states visited and of the actions played in the game. This view
may be different for the two players and it is defined by equivalence relations ≈i

on the states and on the actions. For player i, equivalent states (or actions) are
indistinguishable. We denote by Oi ⊆ 2Q (i = 1, 2) the equivalence classes of ≈i

which define two partitions of the state space Q, and we call them observations
(for player i). These partitions uniquely define functions obsi : Q → Oi (i = 1, 2)
such that q ∈ obsi(q) for all q ∈ Q, that map each state q to its observation for
player i.

In the case where all states and actions are equivalent (i.e., the relation ≈i

is the set (Q × Q) ∪ (A1 × A1) ∪ (A2 × A2)), we say that player i is blind and
the actions are invisible. In this case, we have Oi = {Q} because all states
have the same observation. Note that the case of perfect observation for player i

corresponds to the case Oi = {{q0}, {q1}, . . . , {qn}} (given Q = {q0, q1, . . . , qn}),
and a ≈i b iff a = b, for all actions a, b.

For s ⊆ Q, a ∈ A1, and b ∈ A2, let Posta,b(s) =
⋃

q∈s Supp(δ(q, a, b)) denote
the set of possible successors of q given action a and b, and let Posta,−(s) =
⋃

q∈s,b∈A2
Supp(δ(q, a, b)).

Plays and observations. Initially, the game starts in the initial state q0. In each
round, player 1 chooses an action a ∈ A1, player 2 (simultaneously and inde-
pendently) chooses an action b ∈ A2, and the successor of the current state q

is chosen according to the probabilistic transition function δ(q, a, b). A play in
G is an infinite sequence ρ = q0a0b0q1a1b1q2 . . . such that q0 is the initial state
and δ(qj , aj , bj)(qj+1) > 0 for all j ≥ 0 (the actions aj ’s and bj ’s are the ac-
tions associated to the play). Its length is |ρ| = ∞. The length of a play prefix
ρ = q0a0b0q1 . . . qk is |ρ| = k, and its last element is Last(ρ) = qk. A state q ∈ Q

is reachable if it occurs in some play. We denote by Plays(G) the set of plays in
G, and by Prefs(G) the set of corresponding finite prefixes. The observation se-
quence for player i (i = 1, 2) of a play (prefix) ρ is the unique (in)finite sequence
obsi(ρ) = γ0γ1 . . . such that qj ∈ γj ∈ Oi for all 0 ≤ j ≤ |ρ|.

The games with one-sided partial-observation are the special case where ei-
ther ≈1 is equality and hence O1 = {{q} | q ∈ Q} (player 1 has complete
observation) or ≈2 is equality and hence O2 = {{q} | q ∈ Q} (player 2 has
complete observation). The games with perfect observation are the special cases
where ≈1 and ≈2 are equality, i.e., every state and action is visible to both
players.

Strategies. A pure strategy in G for player 1 is a function σ : Prefs(G) → A1.
A randomized strategy in G for player 1 is a function σ : Prefs(G) → D(A1).
A (pure or randomized) strategy σ for player 1 is observation-based if for all
prefixes ρ = q0a0b0q1 . . . and ρ′ = q′0a

′
0b

′
0q

′
1 . . ., if aj ≈1 a′

j and bj ≈1 b′j for all
j ≥ 0, and obs1(ρ) = obs1(ρ

′), then σ(ρ) = σ(ρ′). It is assumed that strategies
are observation-based in partial-observation games. If for all actions a and b we

7



have a ≈1 b and a ≈2 b iff a = b (all actions are distinguishable), then the
strategy is action visible, and if for all actions a and b we have a ≈1 b and a ≈2 b

(all actions are indistinguishable), then the strategy is action invisible. We say
that a play (prefix) ρ = q0a0b0q1 . . . is compatible with a pure (resp., randomized)
strategy σ if the associated action of player 1 in step j is aj = σ(q0a0b0 . . . qj−1)
(resp., aj ∈ Supp(σ(q0a0b0 . . . qj−1))) for all 0 ≤ j ≤ |ρ|.

We omit analogous definitions of strategies for player 2. We denote by ΣG,
ΣO

G , ΣP
G , ΠG, ΠO

G , and ΠP
G the set of all player-1 strategies, the set of all

observation-based player-1 strategies, the set of all pure player-1 strategies, the
set of all player-2 strategies in G, the set of all observation-based player-2 strate-
gies, and the set of all pure player-2 strategies, respectively.

Remarks.

1. The model of games with partial observation on both actions and states can
be encoded in a model of games with actions invisible and observations on
states only: when actions are invisible, we can use the state space to keep
track of the last action played, and reveal information about the last action
played using observations on the states. Therefore, in the sequel we assume
that the actions are invisible to the players with partial observation. A play
is then viewed as a sequence of states only, and the definition of strategies is
updated accordingly. Note that a player with perfect observation has actions
and states visible (and the equivalence relation ≈i is equality).

2. The important special case of partial-observation Markov decision processes
(POMDP) corresponds to the case where either all states in the game are
player-1 states (player-1 POMDP) or all states are player-2 states (player-2
POMDP). For POMDP it is known that randomization is not necessary, and
pure strategies are as powerful as randomized strategies [14].

Finite-memory strategies. A player-1 strategy uses finite-memory if it can be
encoded by a deterministic transducer 〈Mem, m0, αu, αn〉 where Mem is a finite
set (the memory of the strategy), m0 ∈ Mem is the initial memory value, αu :
Mem×O1 → Mem is an update function, and αn : Mem×O1 → D(A1) is a next-
move function. The size of the strategy is the number |Mem| of memory values. If
the current observation is o, and the current memory value is m, then the strategy
chooses the next action according to the probability distribution αn(m, o), and
the memory is updated to αu(m, o). Formally, 〈Mem, m0, αu, αn〉 defines the
strategy σ such that σ(ρ · q) = αn(α̂u(m0, obs1(ρ)), obs1(q)) for all ρ ∈ Q∗

and q ∈ Q, where α̂u extends αu to sequences of observations as expected. This
definition extends to infinite-memory strategies by dropping the assumption that
the set Mem is finite. A strategy is memoryless if |Mem| = 1. For a strategy σ,
we denote by Gσ the player-2 POMDP obtained as the synchronous product
of G with the transducer defining σ.

Objectives and winning modes. An objective (for player 1) in G is a set φ ⊆
Plays(G) of plays. A play ρ ∈ Plays(G) satisfies the objective φ, denoted ρ |= φ,
if ρ ∈ φ. Objectives are generally Borel measurable: a Borel objective is a Borel
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set in the Cantor topology [27]. Given strategies σ and π for the two players,
the probabilities of a measurable objective φ is uniquely defined [43]. We denote
by Prσ,π

q0
(φ) the probability that φ is satisfied by the play obtained from the

starting state q0 when the strategies σ and π are used.

We specifically consider the following objectives. Given a set T ⊆ Q of
target states, the reachability objective requires that the play visit the set T :
Reach(T ) = {q0a0b0q1 . . . ∈ Plays(G) | ∃i ≥ 0 : qi ∈ T }. The safety objective is
dual and requires that the play stay within the set T : Safe(T ) = {q0a0b0q1 . . . ∈
Plays(G) | ∀i ≥ 0 : qi ∈ T }. The Büchi objective requires that the play visit the
set T infinitely often, Büchi(T ) = {q0a0b0q1 . . . ∈ Plays(G) | ∀i ≥ 0 · ∃j ≥ i : qj ∈
T }, and dually the coBüchi objective requires that the play eventually stay within
the set T , coBüchi(T ) = {q0a0b0q1 . . . ∈ Plays(G) | ∃i ≥ 0 · ∀j ≥ i : qj ∈ T }. In
figures, the target states in T are double-lined and labeled by ,.

Given a game structure G and a state q, an observation-based strategy σ

for player 1 is almost-sure winning (resp. positive winning) for the objective φ

from q if for all observation-based randomized strategies π for player 2, we have
Prσ,π

q (φ) = 1 (resp. Prσ,π
q (φ) > 0). The strategy σ is sure winning if all plays

compatible with σ satisfy φ. We also say that the state q is almost-sure (or
positive, or sure) winning for player 1.

Positive and almost-sure winning problems. We are interested in the problems of
deciding, given a game structure G, a state q, and an objective φ, whether there
exists a {pure, randomized} strategy which is {almost-sure, positive} winning
from q for the objective φ. For safety objectives almost-sure winning coincides
with sure winning, however for reachability objectives they are different. The
sure winning problem for the objectives we consider has been studied in [35, 16,
13]. In this paper we focus on reachability objectives. Moreover, once a strategy
for a player is fixed we obtain a POMDP for the other player, and since in
POMDPs pure strategies are as powerful as randomized strategies, the analysis
of counter strategies can be restricted to pure strategies.

3 One-sided Games: Player 1 Partial and Player 2 Perfect

In Sections 3 and 4, we consider one-sided games with partial observation: one
player has perfect observation, and the other player has partial observation. The
player with perfect observation sees the states visited and the actions played
in the game. We present the results for positive and almost-sure winning for
reachability objectives along with examples that illustrate key elements of the
problem such as the memory required for winning strategies.

Note that the case of player 1 partial and player 2 perfect is important in the
context of controller synthesis as it is a conservative approximation of two-sided
games for player 1 (if player 1 wins in the one-sided game, then he also wins in the
two-sided game). In the following example we show the for pure strategies belief-
based strategies are not sufficient for positive as well as almost-sure winning. A
strategy is belief-based if its memory relies only on the subset construction, i.e.,
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q0

q1

q2

,

−, a

−, b

b,−

a,−

a,−

b,−

1/2

1/2

1/2

1/2

Fig. 1. Belief-only is not enough for positive (as well as almost-sure) reach-
ability. A one-sided reachability game with reachability objective in which player 1 is
blind and player 2 has perfect observation. If we consider pure strategies, then player 1
has a positive (as well as almost-sure) winning strategy, but there is no belief-based
memoryless positive winning strategy.

the strategy plays only depending on the set of possible current states of the
game which is called belief.

Example 1. Belief-only is not enough for positive (as well as almost-
sure) reachability. Consider the game in Fig. 1 where player 1 is blind (all
states have the same observation except the target state, and actions are invisi-
ble) and player 2 has perfect observation. Initially, player 2 chooses the state q1

or q2 (which player 1 does not see). The belief of player 1 is thus the set {q1, q2}
(see Fig. 2). We claim that the belief is not a sufficient information to win with a
pure strategy for player 1 because the belief-based subset construction in Fig. 2
suggests that playing always the same action (say a) when the belief is {q1, q2} is
an almost-sure winning strategy. However, in the original game this is not even
a positive winning strategy (the counter strategy of player 2 is to choose q2). A
winning strategy for player 1 is to alternate between a and b when the belief is
{q1, q2}, which requires to remember more than the belief set. �

We present reductions of the almost-sure and positive winning problem for
reachability objective to the problem of sure-winning in a game of perfect ob-
servation with Büchi objective, and reachability objective respectively. The two
reductions are based on the same construction of a game where the state space
L = {(s, o) | o ⊆ s ⊆ Q} contains the subset construction s enriched with obliga-
tion sets o ⊆ s which ensure that from all states in s, the target set T is reached
with positive probability.

Lemma 1. Given an one-sided partial-observation stochastic game G with
player 1 partial and player 2 perfect with a reachability objective for player 1,
we can construct in time exponential in the size of the game and polynomial in
the size of action sets a perfect-information deterministic game H with a Büchi

10



q0 q1, q2 ,
−, a

−, b

a,−

b,−

1/2
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Fig. 2. The belief-based subset construction for the reachability game of Fig. 1. Player 1
has a pure strategy for positive (as well as almost-sure) winning in the subset construc-
tion. However, belief-based memoryless pure strategies are not sufficient in the original
game.

objective (resp. reachability objective) such that player 1 has a pure almost-sure
(resp. positive) winning strategy in G iff player 1 has a sure winning strategy in
H.

Proof. We present the construction and the proof in details for almost-sure reach-
ability. The construction is the same for positive reachability, and the argument
is described succinctly afterwards.

Construction. Given G = 〈Q, q0, δ〉 over alphabets A1, A2 and observation set
O1 for player 1, with reachability objective Reach(T ), we construct the follow-
ing (deterministic) game of perfect observation H = 〈L, ℓ0, δH〉 over alphabets
A′

1, A
′
2 with Büchi objective Büchi(α) defined by α ⊆ L where:

– L = {(s, o) | o ⊆ s ⊆ Q}. Intuitively, s is the belief of player 1 and o is a set
of obligation states that “owe” a visit to T with positive probability;

– ℓ0 = ({q0}, {q0}) if q0 6∈ T , and ℓ0 = (∅, ∅) if q0 ∈ T ;
– A′

1 = A1 × 2Q. In a pair (a, u) ∈ A′
1, we call a the action, and u the witness

set;
– A′

2 = O1. In the game H , player 2 simulate player 2’s choice in game G, as
well as resolves the probabilistic choices. This amounts to choosing a possible
successor state, and revealing its observation;

– α = {(s, ∅) ∈ L};
– δH is defined as follows. First, the state (∅, ∅) is absorbing. Second, in every

other state (s, o) ∈ L the function δH ensures that (i) player 1 chooses a
pair (a, u) such that Supp(δ(q, a, b)) ∩ u 6= ∅ for all q ∈ o and b ∈ A2, and
(ii) player 2 chooses an observation γ ∈ O1 such that Posta,−(s) ∩ γ 6=
∅. If a player violates this, then a losing absorbing state is reached with
probability 1. Assuming the above condition on (a, u) and γ is satisfied,
define δH((s, o), (a, u), γ) as the Dirac distribution on the state (s′, o′) such
that:

• s′ = (Posta,−(s) ∩ γ) \ T ;
• o′ = s′ if o = ∅; and o′ = (Posta,−(o) ∩ γ ∩ u) \ T if o 6= ∅.

Note that for every reachable state (s, o) in H , there exists a unique obser-
vation γ ∈ O1 such that s ⊆ γ (which we denote by obs1(s)).
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We show the following property of this construction. Player 1 has a pure
observation-based almost-sure winning strategy in G for the objective Reach(T )
if and only if player 1 has a sure winning strategy in H for the objective Büchi(α).

Mapping of plays. Given a play prefix ρH = (s0, o0)(s1, o1) . . . (sk, ok) in H with
associated actions for player 1 of the form (ai, ·) in step i (0 ≤ i < k), and a play
prefix ρG = q0q1 . . . qk in G with associated actions a′

i (0 ≤ i < k) for player 1,
we say that ρG is matching ρH if ai = a′

i for all 0 ≤ i < k, and qi ∈ obs1(si) for
all 0 ≤ i ≤ k.

By induction on the length of ρH , we show that (i) for each qk ∈ sk there
exists a matching play ρG (which visits no T -state) such that Last(ρG) = qk,
and (ii) for all play prefixes ρG matching ρH , if ρG does not visit any T -state,
then Last(ρG) ∈ sk.

For |ρH | = 0 (i.e., ρH = (s0, o0) where (s0, o0) = ℓ0) it is easy to see
that ρG = q0 is a matching play with q0 6∈ T if and only if s0 = o0 = {q0}.
For the induction step, assume that we have constructed matching plays for
all play prefixes of length k − 1, and let ρH = (s0, o0)(s1, o1) . . . (sk, ok) be
a play prefix of length k in H with associated actions of the form (ai, ·) in
step i (0 ≤ i < k). To prove (i), pick qk ∈ sk. By definition of δH , we have
qk ∈ Postak−1,−(sk−1), hence there exists b ∈ A2 and qk−1 ∈ sk−1 such that
qk ∈ Supp(δ(qk−1, ak−1, b)). By induction hypothesis, there exists a play prefix
ρG in G matching (s0, o0) . . . (sk−1, ok−1) and with Last(ρG) = qk−1, which we
can extend to ρG.qk to obtain a play prefix matching ρH . To prove (ii), it is
easy to see that every play prefix matching ρH is an extension of play prefix
matching (s0, o0) . . . (sk−1, ok−1) with a non T -state qk in γk = obs1(sk) and in
Postak−1,−(sk−1), therefore qk ∈ (Postak−1,−(sk−1) ∩ γk) \ T = sk.

Mapping of strategies, from G to H (ranking argument). First, assume that
player 1 has a pure observation-based almost-sure winning strategy σ in G for
the objective Reach(T ). We construct an infinite-state MDP Gσ = 〈Q+, ρ0, δσ〉
where:

– Q+ is the set of nonempty finite sequences of states;
– ρ0 = q0 ∈ Q;
– δσ : Q+ × A2 → D(Q+) is defined as follows: for each ρ ∈ Q+ and b ∈ A2,

if Last(ρ) 6∈ T then δσ(ρ, b) assigns probability δ(Last(ρ), σ(ρ), b)(q′) to each
ρ′ = ρq′ ∈ Q+, and probability 0 to all other ρ′ ∈ Q+; if Last(ρ) ∈ T , then
ρ is an absorbing state;

We define a ranking of the reachable states of Gσ. Assign rank 0 to all ρ ∈ Q+

such that Last(ρ) ∈ T . For i = 1, 2, . . . assign rank i to all non-ranked ρ such
that for all player 2 actions b ∈ A2, there exists ρ′ ∈ Supp(δσ(ρ, b)) with a rank
(and thus with a rank smaller than i). We claim that all reachable states of Gσ

get a rank. By contradiction, assume that a reachable state ρ̂ = q0q1 . . . qk is
not ranked (note that qi 6∈ T for each 0 ≤ i ≤ k). Fix a strategy π for player 2
as follows. Since ρ̂ is reachable in Gσ, there exist actions b0, . . . , bk−1 such that
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qi+1 ∈ Supp(δσ(q0 . . . qi, bi)) for all 0 ≤ i < k. Then, define π(q0 . . . qi) = bi. This
ensures that Last(ρ̂) is reached with positive probability in G under strategies σ

and π. From ρ̂, the strategy π continues playing as follows. If the current state
ρ is not ranked (which is the case of ρ̂), then choose an action b such that all
states in Supp(δσ(ρ, b)) are not ranked. The fact that ρ is not ranked ensures
that such an action b exists. Now, under σ and π all paths from Last(ρ̂) in G

avoid T -sates. Hence the set T is not reached almost-surely, in contradiction
with the fact that σ is almost-sure winning. Hence all states in Gσ get a rank.
We denote by Rank(ρ) the rank of a reachable state ρ in Gσ.

From the strategy σ and the ranking in Gσ, we construct a strategy σ′ in the
game H as follows. Given a play ρH = (s0, o0)(s1, o1) . . . (sk, ok) in H (with sk 6=
∅), define σ′(ρH) = (a, u) where a = σ(ρG) for a play prefix ρG matching ρH and
u = {q ∈ Supp(δ(Last(ρG), a, b)) | b ∈ A2, ρG is matching ρH with Last(ρG) ∈
ok and Rank(ρG.q) < Rank(ρG)} is a witness set which selects successor states
of ok with decreased rank along each branch of the MDP Gσ.

Note that all matching play prefixes ρG have the same observation sequence.
Therefore, the action a = σ(ρG) is unique and well-defined since σ is an
observation-based strategy. Note also that the pair (a, u) is an allowed choice
for player 1 by definition of the ranking, and that for each q ∈ ok, all match-
ing play prefixes ρG with Last(ρG) = q have the same rank in Gσ. Therefore
we abuse notation and write Rank(q) for Rank(ρG), assuming that the set ok to
which q belongs is clear from the context. Let MaxRank(ok) = maxq∈ok

Rank(q).
If ok 6= ∅, then MaxRank(ok+1) < MaxRank(ok) since ok+1 ⊆ u (by definition of
δH).

Correctness of the mapping. We show that σ′ is sure winning for Büchi(α) in H .
Fix an arbitrary strategy π′ for player 2 in H and consider an arbitrary play
ρH = (s0, o0)(s1, o1) . . . compatible with σ′ and π′. By the properties of the
witness set played by σ′, for each pair (si, oi) with oi 6= ∅, an α-pair (·, ∅) is
reached within at most MaxRank(oi) steps. And by the properties of the mapping
of plays and strategies, if oi = ∅ then oi+1 = si+1 contains only states from which
σ is almost-sure winning for Reach(T ) in G and therefore have a finite rank,
showing that MaxRank(oi+1) is defined and finite. This shows that an α-pair is
visited infinitely often in ρH and σ′ is sure winning for Büchi(α).

Mapping of strategies, from H to G. Given a strategy σ′ in H , we construct a
pure observation-based strategy σ in G.

We define σ(ρG) by induction on the length of ρG. In fact, we need to define
σ(ρG) only for play prefixes ρG which are compatible with the choices of σ for
play prefixes of length smaller than |ρG| (the choice of σ for other play prefixes
can be fixed arbitrarily). For all such ρG, our construction is such that there
exists a play prefix ρH = θ(ρG) compatible with σ′ such that ρG is matching
ρH , and if σ(ρG) = a and σ′(ρH) = (a′, ·), then a = a′ (⋆).

We define σ and θ(·) as follows. For |ρG| = 0 (i.e., ρG = q0), let ρH = θ(ρG) =
(s0, o0) where s0 = o0 = {q0} if q0 6∈ T , and s0 = o0 = ∅ if q0 ∈ T , and let
σ(ρG) = a if σ′(ρH) = (a, ·). Note that property (⋆) holds. For the induction step,
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let k ≥ 1 and assume that from every play prefix ρG of length smaller than k, we
have defined σ(ρG) and θ(ρG) satisfying (⋆). Let ρG = q0q1 . . . qk be a play prefix
in G of length k. Let ρH = θ(q0q1 . . . qk−1) and γk = obs1(qk), and let (sk, ok) be
the (unique) successor state in the Dirac distribution δH(Last(ρH), σ′(ρH), γk).
Note that qk ∈ sk. Define θ(ρG) = ρH .(sk, ok) and σ(ρG) = a if σ′(ρH .(sk, ok)) =
(a, ·). Therefore, the property (⋆) holds.

Note that the strategy σ is observation-based because if obs1(ρG) = obs1(ρ
′
G),

then θ(ρG) = θ(ρ′G).

Correctness of the mapping. If player 1 has a sure winning strategy σ′ in H

for the objective Büchi(α), then we can assume that σ′ is memoryless (since
in perfect-observation deterministic games with Büchi objectives memoryless
strategies are sufficient for sure winning [24, 41]), and we show that the strategy
σ defined above is almost-sure winning in G for the objective Reach(T ).

Since σ′ is memoryless and sure winning for Büchi(α), in every play compati-
ble with σ′ there are at most n = |L| ≤ 3|Q| steps between two consecutive visits
to an α-state.

The properties of matching plays entail that if a play prefix ρG compatible
with σ has no visit to T -states, and (s, o) = Last(θ(ρG)), then Last(ρG) ∈ s.
Moreover if s = o, then under strategy σ for player 1 and arbitrary strategy π

for player 2, there is a way to fix the probabilistic choices such that all plays
extension of ρG visit a T -state. To see this, consider the probabilistic choices
given at each step by the witness component u of the action (·, u) played by σ′.
By the definition of the mapping of plays and of the transition function in H ,
it can be shown that if (si, oi)(si+1, oi+1) . . . (sk, ok) is a play fragment of θ(ρG)
(hence compatible with σ′) where si = oi and oj 6= ∅ for all i ≤ j < k, then the
“owe” set ok is the set of all states that can be reached in G from states si along a
path which is compatible with both the action played by the strategy σ′ (and σ)
and the probabilistic choices fixed by σ′, and visits no T -states. Since the “owe”
set gets empty within at most n steps regardless of the strategy of player 2,
all paths compatible with the probabilistic choices must visit an T -state. This
shows that under any player 2 strategy, within n steps, a T -state is visited with
probability at least rn where r > 0 is the smallest non-zero probability occurring
in G. Therefore, the probability of not having visited a T -state after z · n steps
is at most (1 − rn)z which vanishes for z → ∞ since rn > 0. Hence, against
arbitrary strategy of player 2, the strategy σ ensures the objective Reach(T )
with probability 1.

Argument for positive reachability. The proof for positive reachability follows
the same line as for almost-sure reachability, with the following differences. The
construction of the game of perfect information H is now interpreted as a reacha-
bility game with objective Reach(α). The mapping of plays is the same as above.
In the mapping of strategies from G to H , we use the same ranking construction,
but we only claim that the initial state gets a rank. The argument is that if the
initial state would get no rank, then player 2 would have a strategy to ensure
that all paths avoid the target states, in contradiction with the fact that player 1
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has fixed a positive winning strategy. The rest of the proof is analogous to the
case of almost-sure reachability. ⊓⊔

It follows from the construction in the proof of Lemma 1 that strategies with
exponential memory are sufficient for positive (as well as almost-sure winning)
with pure strategies, and the exponential lower bound follows from the special
case of non-stochastic games [8]. Lemma 1 also gives EXPTIME upper bound
for the problem since perfect-observation Büchi games can be solved in polyno-
mial time [41], and the EXPTIME lower bound follows from [36]. We have the
following theorem summarizing the results.

Theorem 1. Given one-sided partial-observation stochastic games with player 1
partial and player 2 perfect, the following assertions hold for reachability objec-
tives for player 1:

1. (Memory complexity). Belief-based pure strategies are not sufficient both for
positive and almost-sure winning; exponential memory is necessary and suf-
ficient both for positive and almost-sure winning for pure strategies.

2. (Algorithm). The problems of deciding the existence of a pure almost-sure
and a pure positive winning strategy can be solved in time exponential in the
state space of the game and polynomial in the size of the action sets.

3. (Complexity). The problems of deciding the existence of a pure almost-sure
and a pure positive winning strategy are EXPTIME-complete.

Symbolic algorithms. The exponential Büchi (or reachability) game constructed
in the proof of Theorem 1 can be solved by computing classical fixpoint formu-
las [24]. However, it is not necessary to construct the exponential game struc-
ture explicitly. Instead, we can exploit the structure induced by the pre-order �
defined by (s, o) � (s′, o′) if (i) s ⊆ s′, (ii) o ⊆ o′, and (iii) o = ∅ iff o′ = ∅. Intu-
itively, if a state (s′, o′) is winning for player 1, then all states (s, o) � (s′, o′) are
also winning because they correspond to a better belief and a looser obligation.
Hence all sets computed by the fixpoint algorithm are downward-closed and thus
they can be represented symbolically by the antichain of their maximal elements
(see [16] for details related to antichain algorithms). This technique provides a
symbolic algorithm without explicitly constructing the exponential game.

4 One-sided Games: Player 1 Perfect and Player 2 Partial

Recall that we are interested in finding a pure winning strategy for player 1.
Therefore, when we construct counter-strategies for player 2, we always assume
that player 1 has already fixed a pure strategy. This is important for the way the
belief of player 2 is updated. Although player 2 does not have perfect information
about the actions played by player 1, the belief of player 2 can be updated
according to the precise actions of player 1 because the response and the counter-
strategy of player 2 is designed after player 1 has fixed a strategy.
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Fig. 3. Remembering the belief of player 2 is necessary. A one-sided reachability
game where player 1 (round states) has perfect observation, player 2 (square states) is
blind. Player 1 has a pure almost-sure winning strategy that depends on the belief of
player 2 (in q2), but no pure memoryless strategy is almost-sure winning.

4.1 Lower bound on Memory

We present the following examples to illustrate two properties of the problem.

Example 2. Remembering the belief of player 2 is necessary. We present
an example of a game where player 1 has perfect observation but needs to re-
member the belief of player 2 to ensure positive or almost-sure reachability. The
game is shown in Fig. 3. The target is T = {q,}. Player 2 is blind. If player 2
chooses a in the initial state q0, then his belief will be {q1, q2}, and if he plays b,
then his belief will be {q2, q3}. In q2, the choice of player 1 depends on the belief
of player 2. If the belief is {q1, q2}, then playing a in q2 is not a good choice
because the belief of player 2 would be {q4} and player 2 could surely avoid q,
by further playing b. For symmetrical reasons, if the belief of player 2 is {q2, q3}
in q2, then playing b is not a good choice for player 1. Therefore, there is no pos-
itively winning memoryless strategy for player 1. However, we show that there
exists an almost-sure winning belief-based strategy for player 1 as follows: in q2,
play b if the belief of player 2 is {q1, q2}, and play a if the belief of player 2 is
{q2, q3}. Note that player 1 has perfect observation and thus can observe the
actions of player 2. This ensures the next belief of player 2 to be {q3, q4} and
therefore no matter the next action of player 2, the state q, is reached with
probability 1

2 . Repeating this strategy ensures to reach q, with probability 1. �

Example 3. Memory of non-elementary size may be necessary for posi-
tive and almost-sure reachability. We show that player 1 may need memory
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Fig. 4. A one-sided reachability game Ln with reachability objective in which player 1
is has perfect observation and player 2 is blind. Player 1 needs exponential memory to
win positive reachability.

of non-elementary size to win positively (as well as almost-surely) in a reachabil-
ity game. We present a family of one-sided games Gn where player 1 has perfect
observation, and player 2 has partial observation both about the state of the
game, and the actions played by player 1. We explain the example step by step.
The key idea of the example is that the winning strategy of player 1 in game Gn

will need to simulate a counter systems (with n integer-valued counters) where
the operations on counters are increment and division by 2 (with round down),
and to reach strictly positive counter values.

Counters. First, we use a simple example to show that counters appear naturally
in the analysis of the game under pure strategies.

Consider the family of games (Ln)n∈N shown in Fig. 4, where the reachability
objective is Reach({q0}). In the first part, the states L and R are indistinguish-
able for player 2. Consider the strategy of player 1 that plays b in L and R. Then,
the state qn is reached by two play prefixes ρup = qILqn and ρdw = qIRqn that
player 2 cannot distinguish. Therefore, player 2 has to play the same action in
both play prefixes, while perfectly-informed player 1 can play different actions.
In particular, if player 1 plays a in ρup and b in ρdw, then no matter the action
chosen by player 2 the state qn−1 is reached with positive probability. However,
because only one play prefix reaches qn−1, this strategy of player 1 cannot ensure
to reach qn−2 with positive probability.

Player 1 can ensure to reach qn−2 (and q0) with positive probability with
the following exponential-memory strategy. For the first n− 1 visits to either L

or R, play b, and on the nth visit, play a. This strategy produces 2n different
play prefixes from qI to qn, each with probability 1

2n . Considering the mapping
L 7→ a, R 7→ b, each such play prefix ρ is mapped to a sequence wρ of length n

over {a, b} (for example, the play prefix qILqIRqILqn is mapped to aba). The
strategy of player 1 is to play the sequence wρ in the next n steps after ρ. This
strategy ensures that for all 0 ≤ i ≤ n, there are 2i play prefixes which reach qi

with positive probability, all being indistinguishable for player 2. The argument
is an induction on i. The claim is true for i = n, and if it holds for i = k, then no

17



q4 q3 q2 q1 q0

[0, 0, 0, 22059] [0, 0, 211, 211] [0, 23, 23, 23] [2, 2, 2, 2] [1, 1, 1, 1]
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211 · 2211

(·, ·, ·, +1)
23 · 223

(·, ·, +1,÷2)
2 · 22

(·, +1,÷2,÷2)
2

(+1,÷2,÷2,÷2)

Fig. 5. A family (Cn)n∈N of counter systems with n counters and n + 1 states where
the shortest execution to reach (q0, k1, . . . , kn) with positive counters (i.e., ki > 0 for
all 1 ≤ i ≤ n) from (qn, 0, . . . , 0) is of non-elementary length. The numbers above the
self-loops show the number of times each self-loop is taken along the shortest execution.

matter the action chosen by player 2 in qk, the state qk−1 is reached with positive
probability by half of the 2k play prefixes, i.e. 2k−1 play prefixes. This establishes
the claim. As a consequence, one play prefix reaches q0 with positive probability.
This strategy requires exponential memory, and an inductive argument shows
that this memory is necessary because player 1 needs to have at least 2 play
prefixes that are indistinguishable for player 2 in state q1, and at least 2i play
prefixes in qi for all 0 ≤ i ≤ n.

Non-elementary counters. Now, we present a family Cn of counter systems where
the shortest execution is of non-elementary length (specifically, the shortest

length is greater than a tower 22··
2

of exponentials of height n). The counter
system C4 (for n = 4) is shown in Fig. 5. The operations on counters can be
increment (+1), division by 2 (÷2), and idle (·). In general, Cn has n counters
c1, . . . , cn and n + 1 states q0, . . . , qn. In state qi of Cn (0 ≤ i ≤ n), the counter
ci can be incremented and at the same time all the counters cj for j > i are di-
vided by 2. From qn, to reach q0 with strictly positive counters (i.e., all counters
have value at least 1), we show that it is necessary to execute the self-loop on
state qn a non-elementary number of times. In Fig. 5, the numbers above the
self-loops show the number of times they need to be executed. When leaving q1,
the counters need to have value at least 2 in order to survive the transition to q0

which divides all counters by 2. Since the first counter can be incremented only
in state q1, the self-loop in q1 has to be executed 2 times. Hence, when leaving
q2, the other counters need to have value at least 2 · 22 = 23 in order to survive
the self-loops in q1. Therefore, the self-loop in q2 is executed 23 times. And so
on. In general, if the self-loop on state qi is executed k times (in order to get
ci = k), then the counters ci+1, . . . , cn need to have value k · 2k when entering
qi (in order to guarantee a value at least k of these counters). In qn, the last
counter cn needs to have value fn(1) where fn is the nth iterate of the function
f : N → N : x 7→ x · 2x. This value is greater than a tower of exponentials of
height n.
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Fig. 6. Gadgets to simulate idle, increment, and division by 2.

Gadgets for increment and division. In Fig. 6, we show the gadgets that are
used to simulate operations on counters. The gadgets are game graphs where the
player-1 actions a, b are indistinguishable for player 2 (but player 2 can observe
and distinguish the action #). The actions a, b are used by player 1 to simulate
the operations on the counters. The # is used to simulate the transitions from
state qi to qi−1 of the counter system of Fig. 5. All states of the gadgets have
the same observation for player 2. Recall that player 1 has perfect observation.

The idle gadget is straightforward. The actions a, b have no effect. In the
other gadgets, the value of the counters is represented by the number of paths
that are indistinguishable for player 2, and that end up in the entry state of the
gadget (for the value of the counter before the operation) or in the exit state
(for the value of the counter after the operation).

Consider the division gadget div2. If player 2 plays an action that matches the
choice of player 1, then the game leaves the gadget and the transition will go to
the initial state of the game we construct (which is shown on Fig. 8). Otherwise,
the action of player 2 does not match the action of player 1 and the play reaches
the exit state of the gadget. Let k be the number of indistinguishable3 paths in
the entry state of the gadget. By playing a after k1 such paths and b after k2

paths (where k1 + k2 = k), player 1 ensures that min{k1, k2} indistinguishable

3 In the rest of this section, the word indistinguishable means indistinguishable for
player 2.
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Fig. 7. Abstract view of the game in Fig. 8 as a 3-counter system.

paths reach the exit state of the gadget (because in the worst case, player 2
can choose his action to match the action of player 1 over max{k1, k2} paths).
Hence, player 1 can ensure that ⌊k

2 ⌋ indistinguishable paths get to the exit state.
In the game of Fig. 8, the entry and exit state of division gadgets are merged.
The argument still holds.

Consider the increment gadget inc on Fig. 6. We use this gadget with the
assumption that the entry state is not reached by more than one indistinguish-
able path. This will be the case in the game of Fig. 8. Player 1 can achieve k

indistinguishable paths in the exit state as follows. In state qab, play action a if
the last visited state is qL, and play action b if the last visited state is qR. No
matter the choice of player 1, one path will reach the exit state, and the other
path will get to the entry state. Repeating this scenario k times gives k paths in
the exit state. We show that there is essentially no faster way to obtain k paths
in the exit state. Indeed, if player 1 chooses the same action (say a) after the two
paths ending up in qab, then against the action b from player 2, two paths reach
the exit state, and no state get to the entry state. Then, player 1 can no longer
increment the number of paths. Therefore, to get k paths in the exit state, the
fastest way is to increment one by one up to k−2, and then get 2 more paths as
a last step. Note that it is not of the interest of player 2 to match the action of
player 1 if player 1 plays the same action, because this would double the number
of paths.

Structure of the game. The game Gn which requires memory of non-elementary
size is sketched in Fig. 8 for n = 3. Its abstract structure is shown in Fig. 7,
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corresponding to the structure of the counter system in Fig. 5. The alphabet of
player 1 is {a, b, #}. For the sake of clarity, some transitions are not depicted
in Fig. 8. It is assumed that for player 1, playing an action from a state where
this action has no transition depicted leads to the initial state of the game. For
example, playing # in state q4 goes to the initial state, and from the target state
q,, all transitions go to the initial state.

Fig. 8 shows the initial state qI of the game from which a uniform proba-
bilistic transition branches to the three states q7, r7, s7. The idea of this game is
that player 1 needs to ensure that the states q1, r1, s1 are reached with positive
probability, so as to ensure that no matter the action (a, b, or c) chosen by
player 2, the state q, is reached with positive probability. From q1, r1, s1, the
other actions of player 2 (i.e., b and c from q1, a and c from r1, etc.) lead to
the initial state. Player 2 can observe the initial state. All the other states are
indistinguishable.

Intuitively, each “line” of states (q’s, r’s, and s’s) simulate one counter. Syn-
chronization of the operations on the three counters is ensured by the special
(and visible to player 2) symbol #. Intuitively, since # is visible to player 2,
player 1 must play # at the same “time” in the three lines of states (i.e., af-
ter the same number of steps in each line). Otherwise, player 2 may eliminate
one line of states from his belief. For example, if player 1 plays # in the first
step in lines q and r, but not in line s, then player 2 observing # can safely
update his belief to {q·, r·}, and thus avoid to play c when one of the states q1,
r1 is reached. In Fig. 8, the dotted lines and the subscripts on # emphasize the
layered structure of the game, corresponding to the structure of Fig. 7.

From all the above, it follows that player 1 needs memory of size non-
elementary in order to ensure indistinguishable paths ending up in each of the
states q1, r1, s1, and win with positive probability. Since all other paths are going
back to the initial state, this strategy can be repeated over and over again to
achieve almost-sure reachability as well. �

Theorem 2. In one-sided partial-observation stochastic games with player 1
perfect and player 2 partial, both pure almost-sure and pure positive win-
ning strategies for reachability objectives for player 1 require memory of non-
elementary size in general.

4.2 Upper bound for positive reachability with almost-sure safety

We present the solution of one-sided games with a conjunction of positive reacha-
bility and almost-sure safety objectives, in which player 1 has perfect observation
and player 2 has partial observation. This will be useful in Section 4.3 to solve
almost-sure reachability, and using a trivial safety objective (safety for the whole
state space) it also gives the solution for positive reachability.

Let G = 〈Q, q0, δG〉 be a game over alphabets A1, A2 and observation set O2

for player 2, with reachability objective Reach(T ) (where T ⊆ Q) and safety
objective Safe(QG) (where QG ⊆ Q represents a set of good states) for player 1.
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Fig. 8. Memory of non-elementary size may be necessary for positive and
almost-sure reachability. A family of one-sided reachability games in which player 1
is has perfect observation. Player 1 needs memory of non-elementary size to win positive
reachability (as well as almost-sure reachability).
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We assume that the states in T are absorbing and that T ⊆ QG. This assumption
is satisfied by the games we consider in Section 4.3, as well as by the case of
a trivial safety objective (QG = Q). The goal of player 1 is to ensure positive
probability to reach T and almost-sure safety for the set QG.

Before presenting the algorithm for solving these games in pure strategies,
we consider the case of randomized strategies. After, we use the results of ran-
domized strategies to solve the case of pure strategies.

Step 1 - Winning with randomized strategies. First, we show that with
randomized strategies, memoryless strategies are sufficient. It suffices to play
uniformly at random the set of safe actions. In a state q, an action a ∈ A1 is
safe if PostG(q, a, b) ⊆ Winsafe for all b ∈ A2, where Winsafe is the set of states
that are sure winning4 for player 1 in G for the safety objective Safe(QG). This
strategy ensures that the set Q \ QG of bad states is never reached, and from
the positive winning region of player 1 for Reach(T ) it ensures that the set T
is reached with positive probability. Therefore, computing the set Z of states
that are winning for player 1 in randomized strategies can be done by fixing
the uniformly randomized safe strategy for player 1, and checking that player 2
does not almost-surely win the safety objective Safe(Q \ T ), which requires the
analysis of a POMDP for almost-sure safety and can be done in exponential time
using a simple subset construction [15, Theorem 2].

Note that T ⊆ Z and that from all states in Z, player 1 can ensure that T is
reached with positive probability within at most 2|Q| steps, while from any state
q 6∈ Z, player 1 cannot win positively with a randomized strategy, and therefore
also not with a pure strategy.

Step 2 - Pure strategies to simulate randomized strategies. Second, we
show that pure strategies can in some cases simulate the behavior of randomized
strategies. As we have seen in the gadget inc of Fig. 6, if there are two play
prefixes ending up in the same state and that are indistinguishable for player 2
(e.g., q0Lqab and q0Rqab in the example), then player 1 can simulate a random
choice of action over support {a, b} by playing a after q0Lqab, and playing b after
q0Rqab. No matter the choice of player 2, one of the plays will reach q0 and the
other will reach the exit state of the gadget. Intuitively, this corresponds to a
uniform probabilistic choice of the actions a and b: the state q0 and the exit state
are reached with probability 1

2 .
In general, if there are |A1| indistinguishable play prefixes ending up in the

same state q, then player 1 can simulate a random choice of actions over A1 from
q. However, the number of indistinguishable play prefixes in a successor state q′

may have decreased by a factor |A1| (there may be just one play reaching q’).
Hence, in order to simulate a randomized strategy during k steps, player 1 needs
to have |A1|k indistinguishable play prefixes. Since 2|Q| steps are sufficient for
a randomized strategy to achieve the reachability objective, an upper bound on

4 Note that for safety objectives, the notion of sure winning and almost-sure winning
coincide, and pure strategies are sufficient.
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the number of play prefixes that are needed to simulate a randomized strategy

using a pure strategy is Num = |A1|2
|Q|

. More precisely, if the belief of player 2
is B ⊆ Z and in each state q ∈ B there are at least Num indistinguishable play
prefixes, then player 1 wins with a pure strategy that essentially simulates a
winning randomized strategy (which exists since q ∈ Z) for 2n steps.

Step 3 - Counting abstraction for pure strategies. We present a construc-
tion of a game of perfect observation H such that player 1 wins in H if and only
if player 1 wins in G. The objective in H is a conjunction of positive reachability
and almost-sure safety objectives, for which pure memoryless winning strategies
exist: for every state we restrict the set of actions to safe actions, and then we
solve positive reachability on a perfect-observation game. The result follows since
for perfect-observation games pure memoryless positive winning strategies exist
for reachability objectives [17].

State space. The idea of this construction is to keep track of the belief set B ⊆ Q

of player 2, and for each state q ∈ B, of the number of indistinguishable play
prefixes that end up in q. For k ∈ N, we denote by [k] the set {0, 1, . . . , k}. A
state of H is a counting function f : Q → [K∗] ∪ {ω} where K∗ ∈ N is of order

|A1||A1|
··
|A1|2

O(n)

where the number of nested exponentials is in O(n) (where
n = |Q|).

As we have seen in the example of Fig. 8, it may be necessary to keep track
of a non-elementary number of play prefixes. We show that the bound K∗ is
sufficient, and that we can substitute larger numbers by the special symbol ω

to obtain a finite counting abstraction. The belief associated with a counting
function f is the set Supp(f) = {q ∈ Q | f(q) 6= 0}, and the states q such that
f(q) = ω are called ω-states.

Action alphabet. In H , an action of player 1 is a function â : Q× [K∗] → A1 that
assigns to each copy of a state in the current belief (of player 2), the action played
by player 1 after the corresponding play prefix in G. We denote by Supp(â(q, ·)) =
{â(q, i) | i ∈ [K∗]} the set of actions played by â in q ∈ Q.

The action set of player 2 in the game H is the same as in G.

Transitions. Let 1(a, A) be 1 if a ∈ A, and 0 if a 6∈ A. We denote this function
by 1(a ∈ A). Given f and â as above, given an action b ∈ A2 and an observation
γ ∈ O2, let f ′ = Succ(f, â, b, γ) be the function such that f ′(q′) = 0 for all q′ 6∈ γ,
and such that for all q′ ∈ γ:

f ′(q′) =

{

ω if ∃a ∈ Supp(â(q, ·)) · ∃q ∈ Q : f(q) = ω ∧ q′ ∈ PostG(q, a, b)
x otherwise

where x =
∑

q∈Supp(f)

∑f(q)−1
i=0 1(q′ ∈ PostG(q, â(q, i), b)).

Note that if the current state q is an ω-state, then only the support Supp(â(q, ·))
of the function â matters.
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Now f ′ = Succ(f, â, b, γ) may not be a counting function because it may
assign values greater than K∗ to some states. We show that beyond certain
bounds, it is not necessary to remember the exact value of the counters and we
can replace such large values by ω. Intuitively, the ω value can be interpreted
as “very large and definitely positive value”. This abstraction needs to be done
carefully in order to obtain the desired upper bound (namely, K∗). When a
counter f(q) has value ω, the successors of q have value ω according to Succ(·),
which is faithful if the exact value of the counter f(q) is large enough. In fact,
large enough means that the counter has value at least |A1| as this allows player 1
to play each action at least once. Hence the abstraction remains faithful during
K steps if the counters with value greater than |A1|

K are set to ω. We know
that if all counters have value greater than K1 = |A1|2

n

, then player 1 wins by
simulating a randomized strategy. Therefore, when all counters but one have
already value ω, we set the last counter to ω if it has value greater than K1.
Since this can take at most K1 steps, the other counters with value ω need to
have value at least K2 = K1 · |A1|K1 .

Therefore, when all counters but two have already value ω, whenever a
counter gets value greater than K2 we set it to ω. This can take at most
(K2)

2 steps and the other counters with value ω need to have value at least

K3 = K2 · |A1|
(K2)

2

. In general, when all counters but k have value ω, we set a

counter to ω if it has value at least Kk+1 = Kk · |A1|(Kk)k

. It can be shown by

induction that Kk is of order |A1||A1|
··
|A1|2

O(n)

where the tower of exponential is
of height k, and thus we do not need to store counter values greater than K∗.
We define the abstraction mapping f ′ = Abs(f) for f : Q → N as follows:

Let k = |{q | f(q) = ω}| be the number of counters with value ω

in f . If there is a state q̂ with finite value f(q̂) greater than Kn−k,
then f ′(q̂) = ω and f ′ agrees with f on all states except q̂ (i.e.,
f ′(q) = f(q) for all q 6= q̂). Otherwise, f ′ = f .

Actually, we define Abs(f) as the nth iterate of the above procedure. Given
f , â, and b, let δH(f, â, b) be the uniform distribution over the set of count-
ing functions f ′ such that there exists an observation γ ∈ O2 such that
f ′ = Abs(Succ(f, â, b, γ)) and Supp(f ′) 6= ∅.

Note that the operators Succ(·) and Abs(·) are monotone, that is f ≤ f ′

implies Abs(f) ≤ Abs(f ′) as well as Succ(f, â, b, γ) ≤ Succ(f ′, â, b, γ) for all
â, b, γ (where ≤ is the componentwise order).

Objective. Given T ⊆ Q and QG ⊆ Q defining the reachability and safety
objectives in G, the objective in the game H is a conjunction of positive
reachability and almost-sure safety objectives, defined by Reach(TH) where5

TH = {f | Supp(f) ⊆ Z ∧ ∀q ∈ Supp(f) : f(q) = ω} ∪ {f | Supp(f) ∩ T 6= ∅} and
by Safe(GoodH) where GoodH = {f | Supp(f) ⊆ QG}.

5 Recall that Z is the set of states that are winning in G for player 1 in randomized
strategies.
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Step 4 - Correctness argument. First, assume that there exists a pure win-
ning strategy σ for player 1 in G, and we show how to construct a winning
strategy σH in H . As we play the game in G using σ, we keep track of the exact
number of indistinguishable play prefixes ending up in each state. This allows
to define the action â to play in H by collecting the actions played by σ in
all the indistinguishable play prefixes. Note that by monotonicity, the counting
abstractions in the corresponding play prefix of H are at least as big (assuming
ω > k for all k ∈ N), and thus the action â is well-defined. Since σ is winning, T
is reached with positive probability in G, and the set Q \ QG is never hit, and
therefore a counting function f ∈ TH (such that Supp(f) ∩ T 6= ∅) is reached
with positive probability in H , and all plays remain safe in the set GoodH .

Second, assume that there exists a winning strategy σH for player 1 in H ,
and we show how to construct a pure winning strategy σ in G. We can assume
that σH is pure memoryless. Fix an arbitrary strategy π for player 2 and consider
the unfolding tree of the game H when σH and π are fixed (we get a tree and
not just a path because the game is stochastic). In this tree, there is a shortest
path to reach TH and this path has no loop since strategy σH is memoryless.
we show that the length of this path can be bounded, and that the bounds used
in the counting abstraction with ω’s are faithful, showing that the strategy σH

can be simulated in G (in particular, we need to show that there are sufficiently
many indistinguishable play prefixes in G to simulate the action ‘functions’ â

played by σH). More precisely, the bounds K1, K2, . . . have been chosen in such
a way that counters with value ω keep a positive value until all counters get
value ω. For example, when all counters but k have value ω, it takes at most
(Kk)k steps to get one more counter with value ω by the argument given in
Step 3. Therefore, along the shortest path to TH , either we reach a counting
function f with f(q) = ω for all q ∈ Supp(f), or a counting function f with
Supp(f) ∩ T 6= ∅. In the first case, we can simulate σH in G to this point, and
then win by simulating a winning randomized strategy, and in the second case
the reachability objective Reach(T ) is achieved in G with positive probability.
Since the strategy σH ensures that the support of the counting functions never
hit the set Q\QG, player 1 wins in G for the positive reachability and almost-sure
safety objectives.

Theorem 3. In one-sided partial-observation stochastic games with player 1
perfect and player 2 partial, non-elementary size memory is sufficient for pure
strategies to ensure positive probability reachability along with almost-sure safety
for player 1; and hence for pure positive winning strategies for reachability ob-
jectives for player 1 non-elementary memory bound is optimal.

4.3 Upper bound for almost-sure reachability

In this section we present the algorithm to solve the almost-sure reachability
problem. We start with an example to illustrate that in general strategies for
almost-sure winning may be more complicated than positive winning for reach-
ability objectives.
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Fig. 9. Almost-sure winning strategy may require more memory than posi-
tive winning strategies. A one-sided reachability game where player 1 (round states)
has perfect observation, player 2 (square states) is blind. Player 1 has a pure almost-sure
winning strategy, but no pure belief-based memoryless strategy is almost-sure winning.
However, player 1 has a pure belief-based memoryless strategy that is positive winning.

Example 4. Almost-sure winning strategy may require more memory
than positive winning strategies. The example of Fig. 9 illustrates a key in-
sight in the algorithmic solution of almost-sure reachability games where player 1
has perfect observation and player 2 has partial observation (he is blind in this
case). For player 1, playing a in q1 and in q2 is a positive winning strategy to
reach q,. This is because from {q1, q2}, the belief of player 2 becomes {q3, q4}
and no matter the action chosen by player 2, the state q, is reached with positive
probability from either q3 or q4.

However, always playing a when the belief of player 2 is {q1, q2} is not almost-
sure winning because if player 2 chooses always the same action (say a) in
{q3, q4}, then with probability 1

2 the state q, is not reached. Intuitively, this
happens because player 2 can guess that the initial state is, say q1, and be right
with positive probability (here 1

2 ). To be almost-surely winning, player 1 needs to
alternate actions a and b when the belief is {q1, q2}. The action b corresponds to
the restart phase of the strategy, i.e. even assuming that player 2’s belief would
be, say {q1}, the action b ensures that q, is reached with positive probability
by make the belief to be {q1, q2}. �

Notation. We will consider T as the set of target states and without loss of
generality assume that all target states are absorbing. In this section the belief
of player 2 represents the set of states that can be with positive probability.
Given strategies σ and π for player 1 and player 2, respectively, a state q and
a set K ⊆ Q we denote by Prσ,π

q,K(·) the probability measure over sets of paths
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when the players play the strategies, the initial state is q and the initial belief
for player 2 is K.

In rest of this section we omit the subscript G (such as we write ΠO instead
of ΠO

G ) as the game is clear from the context.

Bad states. Let T = Q \ T . Let

QB = { q ∈ Q | ∀σ ∈ ΣP · ∃π ∈ ΠO : Prσ,π

q,{q}(Safe(T )) > 0 }

be the set of states q such that given the initial belief of player 2 is the singleton
{q}, for all pure strategies for player 1 there is a counter observation-based
strategy for player 2 to ensure that Safe(T ) is satisfied with positive probability.
We will consider QB as the set of bad states.

Property of an almost-sure winning strategy. Consider a pure almost-sure win-
ning strategy for player 1 that ensures against all observation-based strategies
of player 2 that T is reached with probability 1. Then we claim that the belief of
player 2 must never intersect with QB: otherwise if the belief intersects with QB,
let q be the state in QB that is reached with positive probability. Then player 2
simply assumes that the current state is q, updates the belief to {q}, and the
guess is correct with positive probability. Given the belief is {q}, since q ∈ QB,
it follows that against all player 1 pure strategies there is an observation-based
strategy for player 2 to ensure with positive probability that T is not reached.
This contradicts that the strategy for player 1 is almost-sure winning.

Transformation. We transform the game by changing all states in QB as absorb-
ing. Let QG = Q \ QB. By definition we have

QG = { q ∈ Q | ∃σ ∈ ΣP · ∀π ∈ ΠO : Prσ,π

q,{q}(Reach(T )) = 1 }.

By the argument above that for a pure almost-sure winning strategy the belief
must never intersect with QB we have

QG = { q ∈ Q | ∃σ ∈ ΣP · ∀π ∈ ΠO : Prσ,π

q,{q}(Reach(T )) = 1

and Prσ,π

q,{q}(Safe(Q \ QB)) = 1 }.

Let
Q

p
G = { q ∈ Q | ∃σ ∈ ΣP · ∀π ∈ ΠO : Prσ,π

q,{q}(Reach(T )) > 0

and Prσ,π

q,{q}(Safe(Q \ QB)) = 1 }.

We now show that Q
p
G = QG. The inclusion QG ⊆ Q

p
G is trivial, and we now

show the other inclusion Q
p
G ⊆ QG. Observe that in Q

p
G we have the property of

positive reachability and almost-sure safety and we will use strategies for positive
reachability and almost-sure safety to construct an almost-sure winning strategy.
We consider QB as the set of unsafe states (i.e., QG is the safe set), and T as
the target and invoke the results of the Section 4.2: for all q ∈ Q

p
G there is a pure

finite-memory strategy σq of memory at most B (where B is non-elementary)
to ensure that from q, within N = 2O(B) steps, T is reached with probability at
least some positive constant ηq > 0, even when the initial belief for player 2 is
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{q}. Let η = minq∈Q
p
G

ηq. A pure finite-memory almost-sure winning strategy is
described below. The strategy plays in two-phases: (1) the Restart phase; and
(1) the Play phase. We define them as follows:

1. Restart phase. Let the current state be q, assume that the belief for player 2
is {q} and goto the Play phase with strategy σq that ensures that QG is
never left and T is reached within N steps with probability at least η > 0.

2. Play phase. Let σ be the strategy defined in the Restart phase, then play σ

for N steps and go back to the Restart phase.

The strategy is almost-sure winning as for all states in Q
p
G and for all histories,

in every N steps the probability to reach T is at least η > 0, and QG (and hence
Q

p
G) is never left. Thus probability to reach T in N · ℓ steps, for ℓ ∈ N, is at

least 1− (1− η)ℓ and this is 1 as ℓ → ∞. Thus the desired result follows and we
obtain the almost-sure winning strategy.

Memory bound and algorithm. The memory upper bound for the almost-
sure winning strategy constructed is as follows: |Q| · B + log N , we require |Q|
strategies of Section 4.2 of memory size B and a counter to count up to N =
2O(B) steps. We now present an algorithm for almost-sure reachability that works
in time 2|Q| × O(PosReachSureSafe), where PosReachSureSafe denote
the complexity to solve the positive reachability along with almost-sure safety
problem. The algorithm enumerates all subset Q′ ⊆ Q and then verify that forall
q ∈ Q′ player 1 can ensure to reach T with positive probability staying safe in Q′

with probability 1. In other words the algorithm enumerates all subsets Q′ ⊆ Q to
obtain the set QG. The enumeration is exponential and the verification requires
solving the positive reachability with almost-sure safety problem.

Theorem 4. In one-sided partial-observation stochastic games with player 1
perfect and player 2 partial, non-elementary size memory is sufficient for
pure strategies to ensure almost-sure reachability for player 1; and hence for
pure almost-sure winning strategies for reachability objectives for player 1 non-
elementary memory bound is optimal.

Corollary 1. In one-sided partial-observation stochastic games with player 1
perfect and player 2 partial, the problem of deciding existence of pure almost-
sure and positive winning strategies for reachability objectives for player 1 can
be solved in non-elementary time complexity.

5 Finite-memory Strategies for Two-sided Games

In this section we show the existence of finite-memory pure strategies for positive
and almost-sure winning in two-sided games.

5.1 Positive reachability with almost-sure safety

Let T be the set of target states for reachability (such that all the target states
are absorbing) and QG be the set of good states for safety with T ⊆ QG. Our
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goal is to show that for pure strategies to ensure positive probability reachability
to T and almost-sure safety for QG, finite-memory strategies suffice. Note that
with QG as the whole state space we obtain the result for positive reachability
as a special case.

Lemma 2. For all games G, for all q ∈ Q, if there exists a pure strategy σ ∈
ΣO ∩ ΣP such that for all strategies π ∈ ΠO of player 2 we have

Prσ,π
q (Reach(T )) > 0 and Prσ,π

q (Safe(QG)) = 1;

then there exists a finite-memory pure strategy σf ∈ ΣO ∩ ΣP such that for all
strategies π ∈ ΠO of player 2 we have

Prσf ,π
q (Reach(T )) > 0 and Prσf ,π

q (Safe(QG)) = 1.

We prove the result with the following two claims. We fix a (possibly infinite
memory) strategy σ ∈ ΣO ∩ ΣP such that for all strategies π ∈ ΠO of player 2
we have

Prσ,π
q (Reach(T )) > 0 and Prσ,π

q (Safe(QG)) = 1.

Claim 1. If there exists N ∈ N such that for all strategies π ∈ ΠO of player 2
we have

Prσ,π
q (Reach≤N (T )) > 0 and Prσ,π

q (Safe(QG)) = 1

where Reach≤N denotes reachability within first N -steps; then there exists a
finite-memory pure strategy σf ∈ ΣO ∩ ΣP such that for all strategies π ∈ ΠO

of player 2 we have

Prσf ,π
q (Reach(T )) > 0 and Prσf ,π

q (Safe(QG)) = 1.

Proof. The finite-memory strategy σf is as follows: play like the strategy σ

for the first N -steps, and then switch to a strategy to ensure Safe(QG) with
probability 1. The strategy ensure positive probability reachability to T as for
the first N -steps it plays like σ and σ already ensures positive reachability within
N -steps. Moreover, since σ ensures Safe(QG) with probability 1, it must also
ensure Safe(QG) for the first N -steps, and since σf after the first N -steps only
plays a strategy for almost-sure safety, it follows that σf guarantees Safe(QG)
with probability 1. The strategy σf is a finite-memory strategy since it needs
to play like σ for the first N -steps (which requires finite-memory) and then it
switches to an almost-sure safety strategy for which exponential size memory is
sufficient (for safety objective almost-sure winning coincides with sure winning
and then belief-based strategies are sufficient; see [13] for details). ⊓⊔

Claim 2. There exists N ∈ N such that for all strategies π ∈ ΠO of player 2 we
have

Prσ,π
q (Reach≤N (T )) > 0 and Prσ,π

q (Safe(QG)) = 1

where Reach≤N denotes reachability within first N -steps.
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Proof. The proof is by contradiction. Towards contradiction, assume that for all
n ∈ N, there exists a strategy πn ∈ ΠO such that either Prσ,πn

q (Reach≤n(T )) = 0
or Prσ,πn

q (Safe(QG)) < 1.
If for some n ≥ 0 we have Prσ,πn

q (Safe(QG)) < 1, then we get a con-

tradiction with the fact that Prσ,π
q (Safe(QG)) = 1 for all π ∈ ΠO. Hence

Prσ,πn

q (Safe(QG)) = 1 for all n ∈ N, and therefore Prσ,πn

q (Reach≤n(T )) = 0
for all n ∈ N. Equivalently, all play prefixes of length at most n and compati-
ble with σ and πn avoid to hit T , and thus Prσ,πn

q (Safe≤n(Q \ T )) = 1 for all
n ∈ N. Note that we can assume that each strategy πn is pure because once the
strategy σ of player 1 is fixed we get a POMDP for player 2, and for POMDPs
pure strategies are as powerful as randomized strategies [14] (in [14] the result
was shown for finite POMDPs with finite action set, but the proof is based on
induction on the action set and also works for countably infinite POMDPs).

Using a simple extension of König’s Lemma [28], we construct a strategy

π′ ∈ ΠO such that Prσ,π′

q (Safe(Q \ T )) = 1. The construction is as follows. In
the initial state q, there is an action b0 ∈ A2 which is played by infinitely many
strategies πn. We define π′(q) = b0 and let P0 be the set {πn | πn(q) = b0}.
Note that P0 is an infinite set. We complete the construction as follows. Having
defined π′(ρ) for all play prefixes ρ of length at most k, and given the infinite
set Pk, we define π′(ρ′) for all play prefixes ρ′ of length k +1 and the infinite set
Pk+1 as follows. Consider the tuple bπn

∈ Am
2 of actions played by the strategy

πn ∈ Pk after the m prefixes ρ′ of length k + 1. Clearly, there exists an infinite
subset Pk+1 of Pk in which all strategies play the same tuple bk+1. We define
π(ρ′) using the tuple bk+1. This construction ensures that no play prefix of
length k + 1 compatible with σ and π′ hit the set T , since π′ agrees with some
strategy πn for arbitrarily large n. Repeating this inductive argument yields a

strategy π′ such that Prσ,π′

q (Safe(Q\T )) = 1, in contradiction with the fact that

Prσ,π
q (Reach(T )) > 0 for all π ∈ ΠO. Hence, the desired result follows. ⊓⊔

The above two claims establish Lemma 2 and gives the following result.

Theorem 5. In two-sided partial-observation stochastic games finite memory is
sufficient for pure strategies to ensure positive probability reachability along with
almost-sure safety for player 1; and hence for pure positive winning strategies for
reachability objectives finite memory is sufficient and non-elementary memory
is required in general for player 1.

5.2 Almost-sure reachability

We now show that for pure strategies for almost-sure reachability, finite-memory
strategies suffice. The proof is a straight forward extension of the results of Sec-
tion 4.3, and for finite-memory strategies for positive reachability with almost-
sure safety we use the result of the previous subsection.

Notation. We will consider T as the set of target states and without loss of
generality assume that all target states are absorbing. In this section the belief
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of player 2 represents the set of states that can be with positive probability.
Given strategies σ and π for player 1 and player 2, respectively, a state q and a
set K ⊆ Q we denote by Prσ,π

q,K(·) the probability distribution when the players
play the strategies, the initial state is q and the initial belief for player 2 is K.

In rest of this section we omit subscript G (such as we write ΠO instead of
ΠO

G ) as the game is clear from the context.

Bad beliefs. Let T = Q \ T . Let

QB = { B ∈ 2Q | ∀σ ∈ ΣO ∩ ΣP · ∃π ∈ ΠO · ∃q ∈ B : Prσ,π

q,{q}(Safe(T )) > 0 }

be the set of beliefs B such that for all pure strategies for player 1 there is
a counter strategy for player 2 with a state q ∈ B to ensure that given the
initial belief of player 2 is the singleton {q}, Safe(T ) is satisfied with positive
probability. We will consider QB as the set of bad beliefs.

Property of an almost-sure winning strategy. Consider a pure almost-sure win-
ning strategy for player 1 that ensures against all strategies of player 2 that T is
reached with probability 1. Then we claim that the belief of player 2 must never
intersect with QB: otherwise if the belief intersects with QB, let B be the belief
in QB that is reached with positive probability. Then there exists q ∈ B such
that player 2 can simply assume that the current state is q, update the belief
to {q}, and the guess is correct with positive probability, and then player 2 can
ensure that against all player 1 pure strategies there is a strategy for player 2 to
ensure with positive probability that T is not reached. This contradicts that the
strategy for player 1 is almost-sure winning. Let QG = 2Q \ QB. By definition
we have

QG = { B ∈ 2Q | ∃σ ∈ ΣO ∩ ΣP · ∀π ∈ ΠO · ∀q ∈ B : Prσ,π

q,{q}(Reach(T )) = 1 }.

By the argument above that for a pure almost-sure winning strategy the belief
must never intersect with QB we have

QG = { B ∈ 2Q | ∃σ ∈ ΣO ∩ ΣP · ∀π ∈ ΠO · ∀q ∈ B : Prσ,π

q,{q}(Reach(T )) = 1

and Prσ,π

q,{q}(Safe(2Q \ QB)) = 1 }.

Let

Q
p
G = { B ∈ 2Q | ∃σ ∈ ΣO ∩ ΣP · ∀π ∈ ΠO · ∀q ∈ B : Prσ,π

q,{q}(Reach(T )) > 0

and Prσ,π

q,{q}(Safe(2Q \ QB)) = 1 }.

We now show that Q
p
G = QG. The inclusion QG ⊆ Q

p
G is trivial, and we now

show the other inclusion Q
p
G ⊆ QG. Observe that in Q

p
G we have the property of

positive reachability and almost-sure safety and we will use strategies for positive
reachability and almost-sure safety to construct a witness finite-memory almost-
sure winning strategy. Note that here we have safety for a set of beliefs (instead of
set of states, and it is straight forward to verify that the argument of the previous
subsection holds when the safe set is a set of beliefs). We consider QB as the set
of unsafe beliefs (i.e., QG is the safe set), and T as the target and invoke the
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results of the previous subsection: for all B ∈ Q
p
G there is a pure finite-memory

strategy σB of to ensure that from all states q ∈ B, within N steps (for some finite
N ∈ N), T is reached with probability at least some positive constant ηB > 0,
even when the initial belief for player 2 is {q}. Let η = minB∈Q

p

G
ηB. A pure

finite-memory almost-sure winning strategy is described below. The strategy
plays in two-phases: (1) the Restart phase; and (1) the Play phase. We define
them as follows:

1. Restart phase. Let the current belief be B, the belief for player 2 is any perfect
belief {q}, for q ∈ B; and goto the Play phase with strategy σB that ensures
that QG is never left and T is reached within N steps with probability at
least η > 0.

2. Play phase. Let σ be the strategy defined in the Restart phase, then play σ

for N steps and go back to the Restart phase.

The strategy is almost-sure winning as for all states in Q
p
G and for all histories,

in every N steps the probability to reach T is at least η > 0, and QG (and hence
Q

p
G) is never left. Thus probability to reach T in N · ℓ steps, for ℓ ∈ N, is at

least 1− (1− η)ℓ and this is 1 as ℓ → ∞. Thus the desired result follows and we
obtain the required finite-memory almost-sure winning strategy.

Memory bound and algorithm. The memory upper bound for the almost-
sure winning strategy constructed is as follows: |2Q| ·B + log N , we require |2Q|
strategies of the previous subsection of memory size B and a counter to count
up to N steps; where B is the memory required for strategies to ensure positive
reachability with almost-sure safety objectives.

Theorem 6. In two-sided partial-observation stochastic games finite memory is
sufficient (and non-elementary memory is required in general) for pure strategies
for almost-sure winning for reachability objectives for player 1.

6 Equivalence of Randomized Action-invisible and Pure

Strategies

In this section, we show that for two-sided partial-observation games, the prob-
lem of almost-sure winning with randomized action-invisible strategies is inter-
reducible with the problem of almost-sure winning with pure strategies. The
reductions are polynomial in the number of states in the game (the reduction
from randomized to pure strategies is exponential in the number of actions).

It follows from the reduction of pure to randomized action-invisible strate-
gies that the memory lower bounds for pure strategies transfer to randomized
strategies, and in particular belief-based memoryless strategies are not sufficient,
showing that a remark (without proof) of [16, p.4] and the result and construc-
tion of [25, Theorem 1] are wrong.
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6.1 Reduction of Randomized Action-invisible Strategies to Pure
Strategies

We give a reduction for almost-sure winning for randomized action-invisible
strategies to pure strategies. Given a stochastic game G we will construct another
stochastic game H such that there is a randomized action-invisible almost-sure
winning strategy in G iff there is a pure almost-sure winning strategy in H . We
first show in Lemma 3 the correctness of the reduction for finite-memory random-
ized action-invisible strategies, and then show in Lemma 4 that finite memory is
sufficient in two-sided partial-observation games for randomized action-invisible
strategies.

Construction. Given a stochastic game G = 〈Q, q0, δ〉 over action sets A1

and A2, and observations O1 and O2 (along with the corresponding observation
mappings obs1 and obs2), we construct a game H = 〈Q, q0, δH〉 over action sets
2A1 \ {∅} and A2 and observations O1 and O2. The transition function δH is
defined as follows:

– for all q ∈ Q and A ∈ 2A1 \ {∅} and b ∈ A2 we have δH(q, A, b)(q′) =
1
|A| ·

∑

a∈A δ(q, a, b)(q′), i.e., in a state in Q player 1 selects a non-empty subset

A ⊆ A1 of actions and the transition function δH simulates the transition
function δ along with the uniform distribution over the set A of actions.

The observation mappings obsHi in H , for i ∈ { 1, 2 } are as follows: obsHi (q) =
obsi(q), where obsi is the observation mapping in G.

Lemma 3. The following assertions hold for reachability objectives:

1. If there is a pure almost-sure winning strategy in H, then there is a random-
ized action-invisible almost-sure winning strategy in G.

2. If there is a finite-memory randomized action-invisible almost-sure winning
strategy in G, then there is a pure almost-sure winning strategy in H.

Proof. We present both parts of the proof below.

1. Let σH be a pure almost-sure winning strategy in H . We construct a random-
ized action-invisible almost-sure winning strategy σG in G. The strategy σG

is as constructed as follows. Let ρG = q0q1 . . . qk be a play prefix in G, and we
consider the same play prefix ρH = q0q1 . . . qk in H , and let Ak = σH(ρH).
The strategy σG(ρG) plays all actions in Ak uniformly at random. Since σH

is an almost-sure winning strategy it follows σG is also almost-sure winning.
Also observe that if σH is observation-based, then so is σG.

2. Let σG be a finite-memory randomized action-invisible almost-sure winning
strategy in G. If the strategy σG is fixed in G we obtain a finite POMDP,
and by the results of [15] it follows that in an POMDP the precise transition
probabilities do not affect almost-sure winning. Hence if σG is almost-sure
winning, then the uniform version σu

G of the strategy σG that always plays
the same support of the probability distribution as σG but plays all actions
in the support uniformly at random is also almost-sure winning. Given σu

G we
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construct a pure almost-sure winning strategy σH in H . Given a play prefix
ρH = q0q1 . . . qk in H , consider the same play prefix ρG = q0q1 . . . qk in G.
Let Ak = Supp(σu

G(ρG)), then σH(ρH) plays the action Ak ∈ (2A1 \ {∅}).
Since σu

G is almost-sure winning it follows that σH is almost-sure winning.
Observe that if σG is observation-based, then so is σu

G, and then so is σH .

The desired result follows. ⊓⊔

Lemma 4. For reachability objectives, if there exists a randomized action-
invisible almost-sure winning strategy in G, then there exists also a finite-memory
randomized action-invisible almost-sure winning strategy in G.

Proof. Let W = { B | B ∈ 2Q is the belief of player 1 such that ∃σ ∈ ΣO · ∀π ∈
ΠO · ∀q ∈ B : Prσ,π

q (Reach(T )) = 1 } denote the set of belief sets B for player 1
such that player 1 has a (possibly infinite-memory) randomized action-invisible
almost-sure winning strategy from all starting states in B. It follows that the
almost-sure winning strategy must ensure that the set W is never left: this is
because from the complement set of W against all randomized action-invisible
for player 1 there is a counter strategy for player 2 to ensure that with positive
probability the target is not reached. Moreover for all B ∈ W the almost-sure
winning strategy also ensures that T is reached with positive probability. Hence
we have again the problem of positive reachability with almost-sure safety. We
simply repeat the proof for the pure strategy case, treating sets of actions (that
is the support of the randomized strategy) as actions (for pure strategy) and
played uniformly at random (as in the reduction from G to H), and thus obtain
a witness finite-memory strategy σG to ensure positive reachability and almost-
sure safety. Repeating the strategy σG with play phase and repeat phase (as
in the case of pure strategies) we obtain the desired finite-memory almost-sure
winning strategy. ⊓⊔

The following theorem follows from the previous two lemmas.

Theorem 7. Given a two-sided (resp. one-sided) partial-observation stochastic
game G with a reachability objective we can construct in time polynomial in
the size of the game and exponential in the size of the action sets a two-sided
(resp. one-sided) partial-observation stochastic game H such that there exists a
randomized action-invisible almost-sure winning strategy in G iff there exists a
pure almost-sure winning strategy in H.

For positive winning, randomized memoryless strategies are sufficient (both
for action-visible and action-invisible) and the problem is PTIME-complete for
one-sided and EXPTIME-complete for two-sided [7]. The above theorem along
with Theorem 1 gives us the following corollary for almost-sure winning for
randomized action-invisible strategies.

Corollary 2. Given one-sided partial-observation stochastic games with
player 1 partial and player 2 perfect, the following assertions hold for reach-
ability objectives for player 1:
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1. (Memory complexity). Exponential memory is sufficient for randomized
action-invisible strategies for almost-sure winning.

2. (Algorithm). The existence of a randomized action-invisible almost-sure win-
ning strategy can be decided in time exponential in the state space of the game
and exponential in the size of the action sets.

3. (Complexity). The problem of deciding the existence of a randomized action-
invisible almost-sure winning strategy is EXPTIME-complete.

6.2 Reduction of Pure Strategies to Randomized Action-invisible
Strategies

We present a reduction for almost-sure winning for pure strategies to random-
ized action-invisible strategies. Given a stochastic game G we construct another
stochastic game H such that there exists a pure almost-sure winning strategy in
G iff there exists a randomized almost-sure winning strategy in H .

The idea of the reduction is to force player 1 to play a pure strategy in H .
The game H simulates G and requires player 1 to repeat each actions played
(i.e. to play each action two times). Then, if player 1 uses randomization, he has
to repeat the actions chosen randomly in the previous step. Since the actions are
invisible, this can be achieved only if the support of the randomized actions is
a singleton, i.e. the strategy is pure. Note that the reduction is for randomized
strategies with actions invisible, and not when the actions are visible.

Construction. Given a stochastic game G = 〈Q, q0, δG〉 over action sets A1

and A2, and observations O1 and O2 (along with the corresponding observation
mappings obs1 and obs2), we construct a game H = 〈Q∪(Q×A1)∪{sink}, q0, δH〉
over the same action sets A1 and A2 and observations O1 and O2. The transition
function δH is defined as follows:

– for all q ∈ Q and a ∈ A1 and b ∈ A2 we have δH(q, a, b)((q, a)) = 1, i.e., in
a state q for action a of player 1, irrespective of the choice of player 2, the
game stores player 1’s action with probability 1;

– for all (q, a) ∈ Q×A1, for all b ∈ A2 we have δH((q, a), a, b) = δG(q, a, b), i.e. if
player 1 repeats the action played in the previous step, then the probabilistic
transition function is the same as in G; and for all a′ ∈ A1 \ {a}, we have
δH((q, a), a, b)(sink) = 1, i.e. if player 1 does not repeat the same action, then
the sink state is reached.

– for all a ∈ A1 and b ∈ A2, we have δH(sink, a, b)(sink) = 1.

The observation mappings obsHi in H (i ∈ {1, 2}) are as follows: obsHi (q) =
obsHi ((q, a)) = obsi(q), where obsi is the observation mapping in G. Note that
H is of size polynomial in the size of G.

Lemma 5. Let T ⊆ Q be a set of target states. There exists a pure almost-
sure winning strategy in G for Reach(T ) if and only if there exists a randomized
action-invisible almost-sure winning strategy in H for objective Reach(T ).

Proof. We present both directions of the proof below.
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Fig. 10. Belief-based strategies are not sufficient. The game graph obtained by
the reduction of pure to randomized strategies on the game of Fig. 1 (for almost-sure
reachability objective). Player 1 is blind and player 2 has perfect observation. There
exists an almost-sure winning randomized strategy (with invisible actions), but there
is no belief-based memoryless almost-sure winning randomized strategy.

1. Let σH be a randomized action-invisible almost-sure winning strategy in
H . We show that we can assume wlog that σH is actually a pure strat-
egy. To see this, assume that under strategy σH there is a prefix ρH =
q0(q0, a0)q1(q1, a1) . . . qk in H compatible with σH from which σH plays a
randomized action with support A ⊆ A1 and |A| > 1. Then, with positive
probability the states (qk, ak) and (qk, a′

k) are reached where ak, a′
k ∈ A and

ak 6= a′
k. No matter the action(s) played by σH in the next step, the state

sink is reached with positive probability in the next step, either from (qk, ak)
or from (qk, a′

k). This contradicts that σH is almost-sure winning. Therefore,
we can assume that σH is a pure strategy that repeats each action two times.
We construct a pure almost-sure winning strategy in G by removing these
repetitions.

2. Let σG be a pure almost-sure winning strategy in G. Consider the strategy
σH in H that always repeats two times the actions played by σG. The strat-
egy σH is observation-based and almost-sure winning since H simulates G

when actions are repeated twice.

The desired result follows. ⊓⊔

Theorem 8. Given a two-sided partial-observation stochastic game G with a
reachability objective we can construct in time polynomial in the size of the game
and size of the action sets a two-sided partial-observation stochastic game H such
there exists a pure almost-sure winning strategy in G iff there exists a randomized
action-invisible almost-sure winning strategy in H.
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Belief-based strategies are not sufficient. We illustrate our reduction with
the following example that shows belief-based randomized action-invisible (or
belief-only) strategies are not sufficient for almost-sure reachability in one-sided
partial-observation games (player 1 partial and player 2 perfect), showing that
a remark (without proof) of [16, p.4] and the result and construction of [25,
Theorem 1] are wrong.

Example 5. We illustrate the reduction of Section 6.2 on the example of Fig. 1.
The result of the reduction is given in Fig. 10. Remember that Example 1 showed
that belief-based pure strategies are not sufficient for almost-sure winning. It
follows that belief-based randomized strategies are not sufficient for almost-sure
winning in the game of Fig. 10.

First, in {q1, q2} player 1 has to play pure since he has to be able to repeat the
same action to avoid reaching a sink state / with positive probability. Now, the
argument is the same as in Example 1. Playing always the same action (either
a or b) in {q1, q2} is not even positive winning as player 2 can choose the state
in this set (either q2 or q1). �

Note that our reduction preserves the structure (memory) of almost-sure
winning strategies, hence the non-elementary lower bound given in Theorem 2
for pure strategies also transfers to randomized action-invisible strategies by the
same reduction.

Corollary 3. For one-sided partial-observation stochastic games, with player 1
partial and player 2 perfect, belief-based randomized action-invisible strategies are
not sufficient for almost-sure winning for reachability objectives. For two-sided
partial-observation stochastic games, memory of non-elementary size is neces-
sary in general for almost-sure winning for randomized action-invisible strategies
for reachability objectives.
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