| SN N AUSTRIA

Institute of Science and Technology

Bounded Rationality in Concurrent Parity
Games

Krishnendu Chatterjee

IST Austria (Institute of Science and Technology Austria)

Am Campus 1

A-3400 Klosterneuburg

Technical Report No. IST-2011-0008

http://pub.ist.ac.at/Pubs/TechRpts/2011/I1ST-2011-0008.pdf

July 11, 2011



http://pub.ist.ac.at/Pubs/TechRpts/2009/IST-2009-002.pdf
http://pub.ist.ac.at/Pubs/TechRpts/2009/IST-2009-002.pdf
http://pub.ist.ac.at/Pubs/TechRpts/2009/IST-2009-002.pdf
http://pub.ist.ac.at/Pubs/TechRpts/2009/IST-2009-002.pdf
http://pub.ist.ac.at/Pubs/TechRpts/2009/IST-2009-002.pdf
http://pub.ist.ac.at/Pubs/TechRpts/2009/IST-2009-002.pdf

Copyright © 2011, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission.



Bounded Rationality in Concurrent Parity Games

Krishnendu Chatterjee
IST Austria (Institute of Science and Technology Austria)
Kri shnendu. Chatterjee@st. ac. at

Abstract

We consider 2-player games played on a finite state spacenfinfiaite number of rounds. The
games areoncurrent in each round, the two players (player 1 and player 2) chidueie moves inde-
pendently and simultaneously; the current state and thentaxes determine the successor state. We
study concurrent games with-regular winning conditions specified parity objectives. We consider
thequalitative analysiproblems: the computation of tldmost-surendlimit-surewinning set of states,
where player 1 can ensure to win with probability 1 and withlability arbitrarily close to 1, respec-
tively. In general the almost-sure and limit-sure winnitrgitegies require botimfinite-memoryas well
asinfinite-precisior(to describe probabilities). We study theunded-rationalityproblem for qualitative
analysis of concurrent parity games, where the stratedpsptayer 1 is restricted to bounded-resource
strategies. In terms of precision, strategies can be détistin, uniform, finite-precision or infinite-
precision; and in terms of memory, strategies can be memssylffinite-memory or infinite-memory.
We present a precise and complete characterization of thlitative winning sets for all combinations
of classes of strategies. In particular, we show that uniforemoryless strategies are as powerful as
finite-precision infinite-memory strategies, and infiniecision memoryless strategies are as power-
ful as infinite-precision finite-memory strategies. We shbat the winning sets can be computed in
O(n?d+3) time, wheren is the size of the game structure ahtlis the number of priorities (or colors),
and our algorithms are symbolic. The membership problemiatier a state belongs to a winning set
can be decided in NP coNP. While this complexity is the same as for the simplesslafturn-based
parity games, where in each state only one of the two play&ssahchoice of moves, our algorithms,
that are obtained by characterization of the winning sejs-ealculus formulas, are considerably more
involved than those for turn-based games.

1 Introduction

Concurrent games are played by two players on a finite stateedpr an infinite number of rounds. In each
round, the two players independently choose moves, andutinent state and the two chosen moves deter-
mine the successor state. deterministicconcurrent games, the successor state is uniquaplmabilistic
concurrent games, the successor state is given by a pribpalistribution. The outcome of the game (or a
play) is an infinite sequence of states. These games were ingddycShapley [Sha53], and has been one
of the most fundamental and well studied game models in astithgraph games. We consideiregular
objectives; that is, given an-regular setb of infinite state sequences, player 1 wins if the outcome ®f th
game lies inb. Otherwise, player 2 wins, i.e., the game is zero-sum. Saafeg occur in the synthesis and
verification of reactive systems [Chu62, RW87, PR89] (see pALW89, Dil89, AHK97]).

The player-1valuew; (s) of the game at a stateis the limit probability with which player 1 can ensure
that the outcome of the game lies dn that is, the valuey;(s) is the maximal probability with which
player 1 can guarante® against all strategies of player 2. Symmetrically, the ete®/value vy (s) is the



limit probability with which player 2 can ensure that the@umne of the game lies outside Thequalitative
analysis of games asks for the computation of the salnebst-surevinning states where player 1 can ensure
® with probability 1, and the set dimit-sure winning states where player 1 can ens@ravith probability
arbitrarily close to 1 (states with value 1); and tipgantitativeanalysis asks for a precise computation of
values.

Traditionally, the special case tfrn-basedgames has received most attention. In turn-based games, in
each round, only one of the two players has a choice of mowdsari-based deterministic games, all values
are 0 or 1 and can be computed using combinatorial algoriffithhe90, Sch07, JPZ06]; in turn-based
probabilistic games, values can be computed by iteratiypecpmation [CH06, Con92, GHO08]. In this
paper we focus on the more genecahcurrentsituation, where in each round, both players choose their
moves simultaneously and independently. Such concurresnogcessary for modeling the synchronous
interaction of components [dAHMO00, dAHMO1]. The concutr@nobabilistic games fall into a class of
stochastic games studied in game theory [Sha53], and-egular objectives, which arise from the safety
and liveness specifications of reactive systems, fall intovdevel (X3 N1I3) of the Borel hierarchy. From a
classical result of Martin [Mar98] that established defeamy of Blackwell games it follows that concurrent
probabilisticw-regular games are determined, i.e., for each state havev;(s) + va(s) = 1. Parity
objectives can express altregular conditions, and we consider concurrent gamespeitity objectives.

Concurrent games differ from turn-based games in that @ptetnategies require, in general, random-
ization. A pure strategy must, in each round, choose a move based on thetcata¢e and the history
(i.e., past state sequence) of the game. By contrasiidomizedstrategy in each round chooses a proba-
bility distribution over moves (rather than a single mov&he move to be played is then selected at ran-
dom, according to the chosen distribution. Randomizedeglies are not helpful for achieving a value
of 1 in turn-based probabilistic games [CJH03, Cha07], heytcan be helpful in concurrent games,
even if the game itself is deterministic [dJAHKO7]. In cordteo turn-based deterministic and proba-
bilistic games with parity objectives, where determimistiemoryless strategies exist for qualitative analy-
sis [EJ88, Zie98, DJW97, CJH03, Cha07], in concurrent gaaieag with randomization, infinite-memory
is required for limit-sure winning [dAHOO].

The strategies for qualitative analysis for concurrent gamequire two different types of infinite re-
source: (a) infinite-memory, and (b) infinite-precision iesdribing the probabilities in the randomized
strategies; (see example in [dAHO0O0] that limit-sure wimnim concurrent Biichi games require both infinite-
memory and infinite-precision). In many applications, sashsynthesis of reactive systems, infinite-
memory and infinite-precision strategies are not implemdaeptin practice. Thus though the theoretical
solution of infinite-memory and infinite-precision strategwas established in [dAHOQ], the strategies ob-
tained are not realizable in practice, and the theory toihtaplementable strategies in such games has
not been studied before. In this work we considertibended rationalityproblem for qualitative analysis
of concurrent parity games, where player 1 (that represbatsontroller) can play strategies with bounded
resource. To the best of our knowledge this is the first wosk tonsiders the bounded rationality problem
for concurrento-regular graph games. The motivation is clear as contsotibtained from infinite-memory
and infinite-precision strategies are not implementable.

In terms of precision, strategies can be classified as pwterfdinistic), uniformly random, finite-
precision, and infinite-precision (in increasing order oégision to describe probabilities of a randomized
strategy). In terms of memory, strategies can be classifiethemoryless, finite-memory and infinite-
memory. In [dAHOQ] the almost-sure and limit-sure winninacacterization under infinite-memory,
infinite-precision strategies were presented. In this wakpresent (i) a complete and precise characteriza-
tion of the qualitative winning sets for bounded resourcatsgies, (ii) symbolic algorithms to compute the



winning sets, and (iii) complexity results to determine Wige a given state belongs to a qualitative winning
set.
Our contributions for bounded rationality in concurrentifyagames are summarized below.

1. We show that pure memoryless strategies are as powerfulrasinfinite-memory strategies. This
result is obtained by a simple reduction to turn-based sistathigames.

2. We show that uniform memoryless strategies are more polwban pure infinite-memory strate-
gies, and uniform memoryless strategies are as powerfuligs-firecision infinite-memory strategies.
Thus our results show that if player 1 has only finite-precistrategies, then no memory is required
and uniform randomization is sufficient. Hence very simpiaiform memoryless) controllers can be
obtained for the entire class of finite-precision infinitemory controllers. The result is obtained by
a reduction to turn-based stochastic games, and the maini¢at contribution is the characterization
of the winning sets for uniform memoryless strategies hy@lculus formula. The:-calculus for-
mula not only gives a symbolic algorithm, but is also in tharhef other proofs of the paper. The
u-calculus formula and the correctness proof are non-trggmeralizations of the classical result of
Emerson-Jutla [EJ91] for turn-based deterministic payégnes.

3. In case of finite-precision strategies, the almost-snddiait-sure winning sets coincide. For almost-
sure winning, uniform memoryless strategies are also aggulras infinite-precision finite-memory
strategies. However, we show with an example that infiniegrmry infinite-precision strategies are
more powerful than uniform memoryless strategies for atmsase winning. For limit-sure winning,
we show that infinite-precision memoryless strategies anempowerful than finite-precision infinite-
memory strategies, and infinite-precision memorylessegias are as powerful as infinite-precision
finite-memory strategies. Our results show that if infimtemory is not available, then no memory is
required (memoryless strategies are as powerful as finlierony strategies). The result is obtained
by using theu-calculus formula for the uniform memoryless case: we shat ay-calculus formula
that combines thg-calculus formula for almost-sure winning for uniform menyless strategies and
limit-sure winning for reachability with memoryless strgies exactly characterizes the limit-sure
winning for parity objectives for memoryless strategies.

4. As a consequence of the characterization of the winnitggasg:.-calculus formulas we obtain sym-
bolic algorithms to compute the winning sets. We show thatwinning sets can be computed in
O(n?+3) time, wheren is the size of the game structure ahlis the number of priorities (or col-
ors), and our algorithms are symbolic.

5. The membership problem of whether a state belongs to angrset can be decided in NPcoNP.
While this complexity is the same as for the simpler clasduofi-basedparity games, where in
each state only one of the two players has a choice of moveslgorithms, that are obtained by
characterization of the winning sets ascalculus formulas, are considerably more involved than
those for turn-based games.

In short, our results show that if infinite-memory is not &ablie, then memory is useless, and if infinite-
precision is not available, then uniform memoryless striate are sufficient. LeP, U, FP, I[P denote
pure, uniform, finite-precision, and infinite-precisiorraseégies, respectively, andl/, FM IM denote
memoryless, finite-memory, and infinite-memory strategiespectively. Ford € {P,U, FP,IP} and
B e {M,FM,IM}, letAlmost (A, B, ®) denote the almost-sure winning set under player 1 stratélyé



are restricted to be both and B for a parity objectiveP (and similar notation fotimit; (A, B, ®)). Then
our results can be summarized by the following equalitiessrict inclusion:

Almosi (P, M, ) Almost (P, IM , ®) = Limity (P, IM, D)
Almost (U, M, ®) = Almost (FP, IM, ®)

Limity (FP, IM, ®) = Almost (IP, FM, ®) C Almosi (IP, IM , ®).
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Limit, (FP, IM, ®) C Limit, (IP, M, ®) = Limit, (IP, FM, ®) C Limit, (IP, IM, ®).

2 Definitions

In this section we define game structures, strategies, lgecwinning modes and give other preliminary
definitions.

2.1 Game structures

Probability distributions. For a finite set4, a probability distributionon A is a functiond : A — [0, 1]
suchthad ., d(a) = 1. We denote the set of probability distributions 4y D(A). Given a distribution
d € D(A), we denote by Sudp) = {x € A | §(x) > 0} thesupportof the distributions.

Concurrent game structures. A (two-player) concurrent stochastic game structuve= (S, A, I'1, 'y, §)
consists of the following components.

¢ A finite state spacé.
¢ A finite setA of moves (or actions).

e Two move assignments;, I'y: S +— 24\ (). Fori € {1,2}, assignment’; associates with each state
s € S'the nonempty sdi;(s) C Aof moves available to playérat states. For technical convenience,
we assume thdf;(s) NT';(t) = @ unlessi = j ands = ¢, for all 4,5 € {1,2} ands,t € S. If this
assumption is not met, then the moves can be trivially renlaimsatisfy the assumption.

e A probabilistic transition function: S x Ax A — D(S), which associates with every state .S and
movesa; € I'1(s) andag € T'y(s) a probability distributioni(s, a1, a2) € D(S) for the successor
state.

Plays. At every states € .S, player 1 chooses a movg € T'i(s), and simultaneously and independently
player 2 chooses a move € I'y(s). The game then proceeds to the successor staith probability
d(s,a1,a2)(t), forallt € S. For all statess € S and movesy; € I'1(s) andas € I's(s), we indicate by
Dest(s,a1,as) = SUPRI(s, a1, az)) the set of possible successorssafhen moves:, a, are selected. A
pathor aplay of G is an infinite sequence = (sy, s1, s2, . ..) of states inS such that for allk: > 0, there
are moves:¥ € I'y(s;,) andah € T'a(sy) such thats,,; € Dest(sg,a¥,a%). We denote by the set of all
paths. For a play = (sg, s1, $2, - ..) € Q, we definenf (w) = {s € S | sx = s for infinitely manyk > 0}

to be the set of states that occur infinitely ofteruin

Size of a gameThesizeof a concurrent game is the sum of the size of the state spadh@number of the
entries of the transition function. Formally the size of @@as|S| + > ¢ ser, (s) pera(s) | Dest(s, a, b)|.

S



Turn-based stochastic games and MDPsA game structuré; is turn-based stochastii€ at every state at
most one player can choose among multiple moves; that ivieny states € .S there exists at most one
i € {1,2} with |T';(s)| > 1. A game structure is a playerMarkov decision process$ for all s € S we
have|l';(s)| = 1, i.e., only player-2 has choice of actions in the game.

Equivalent game structures. Given two game structuresj; = (S,AT'1,T2,6;) and G, =
(S,A,T'1,T'9,02) on the same state and action space, with different transftiaction, we say thag,;
is equivalent toG, (denotedG, = G») if for all s € S and alla; € T'i(s) andas € T'3(s) we have

Supp(él(s, ai, ag)) = Supp(ég(s, ai, ag)).

2.2 Strategies

A strategyfor a player is a recipe that describes how to extend a playm&ity, a strategy for player
i € {1,2} is a mappingr; : ST — D(A) that associates with every nonempty finite sequence S*
of states, representing the past history of the game, a pilipalistribution 7;(z) used to select the next
move. The strategyt; can prescribe only moves that are available to playehat is, for all sequences
r € S* and states € S, we require that Sugip;(z - s)) C I';(s). We denote byl; the set of all strategies
for playeri € {1,2}.

Given a states € S and two strategies; € II; andnws € I, we defineOutcomess, 7y, m2) C 2 to
be the set of paths that can be followed by the game, when the gtarts frons and the players use the
strategiesr; andms. Formally, (s, s1, s2,...) € Outcomess, 1, m2) if sg = s and if for allk > 0 there
exist moves:t € I'1(s;,) andah € I'y(sy,) such that

m1(s0,...,s1)(a¥) >0, mo(s0,. .., s1)(ak) >0, Sk+1 € Dest(sg,ak,ab).

Once the starting stateand the strategies; andms for the two players have been chosen, the probabilities
of events are uniquely defined [Var85], whereea@nt A C ) is a measurable set of pathg=or an event

A C Q, we denote by Pi-"2(A) the probability that a path belongs tbwhen the game starts fromand

the players use the strategiesand.

Classification of strategies. We classify strategies according to their usgafdomizationandmemory
We first present the classification according to randoninati

1. (Pure). A strategyr is pure (deterministic)f for all x € S+ there exists € A such thatr(z)(a) = 1.
Thus, deterministic strategies are equivalent to funsti$ih — A.

2. (Uniform). A strategyr is uniformif for all x € ST we haver(z) is uniform over its support, i.e.,
for all a € Supgr(z)) we haver (z)(a) = m

3. (Finite-precision). A strategyr is finite-precisionif there exists a bound € N such that for all
x € ST and all actions: we haver(z)(a) = % wherei,j € Nand0 < i < j <bandj > 0, i.e.,
the probability of an action played by the strategy is a mldtof some/ € N such that < b.

We denote byl IV, TI7 andII/” the set of pure (deterministic), uniform, finite-precisiamd infinite-
precision (or general) strategies for playerespectively. Observe that we have the following strictun
sion: 11X c IV c II¥P c /7.

To be precise, we should define events as measurable setebparing the same initial stat@nd we should replace our
events with families of events, indexed by their initialtetfK SK66]. However, our (slightly) improper definition lésito more
concise notation.



1. (Finite-memory).Strategies in general alestory-dependenand can be represented as follows: let
M be a set callednemoryto remember the history of plays (the set can be infinite in general).
A strategy with memory can be described as a pair of functigasamemory updatéunction w,, :
S x M — M, that given the memory with the information about the history and the current state
updates the memory; and (bhaxt movdunctionm, : S x M — D(A) that given the memory and
the current state specifies the next move of the player. Aegyasfinite-memonyf the memory M
is finite.

2. (Memoryless) A memorylesstrategy is independent of the history of play and only ddpean the
current state. Formally, for a memoryless strategye haver(x - s) = «(s) for all s € S and all
x € S*. Thus memoryless strategies are equivalent to functiors D(A).

We denote byTM, TIF"™ andII™™ the set of memoryless, finite-memory, and infinite-memoryggneral)
strategies for playei, respectively. Observe that we have the following strictusion: IIM ¢ TIFM ¢
M,

2.3 Objectives

We specify objectives for the players by providing the setvisfing plays® C (2 for each player. In this
paper we study only zero-sum games [RF91, FV97], where tfeciles of the two players are comple-
mentary. A general class of objectives are the Borel objest[Kec95]. ABorel objectived C S“ is a
Borel set in the Cantor topology a#”. In this paper we consides-regular objective§Tho90], which lie

in the first21/ levels of the Borel hierarchy (i.e., in the intersection’df andIl3). We will consider the
following w-regular objectives.

e Reachability and safety objective&iven a setl’ C S of “target” states, the reachability objec-
tive requires that some state Bfbe visited. The set of winning plays is thus Re@h = {w =
(50,81,82,...) € Q| Ik > 0. s, € T}. Given asetF’ C S, the safety objective requires that only
states off’ be visited. Thus, the set of winning plays is S&¢ = {w = (s, s1, $2,...) € Q| Vk >
0. s, € F}

¢ Biichi and co-Bichi objectives.Given a setB C S of “Bichi” states, the Bichi objective requires
that B is visited infinitely often. Formally, the set of winning pkis Biich(B) = {w € Q |
Inf (w) N B # (0}. GivenC C S, the co-Bliichi objective requires that all states visitghitely often
are inC. Formally, the set of winning plays is co-Bu¢hl) = {w € Q| Inf(w) C C}.

e Parity objectives.Forc,d € N, we let[c..d] = {c,c+1,...,d}. Letp : S — [0..d] be a function
that assigns priority p(s) to every state € S, whered € N. TheEven parity objectiveequires that
the maximum priority visited infinitely often is even. Forliyathe set of winning plays is defined
as Parityp) = {w € Q | max (p(Inf(w))) is even}. The dualOdd parity objectiveis defined as
coParityp) = {w € Q | max (p(Inf(w))) is odd}. Note that for a priority functiom : S — {1,2},
an even parity objective Parity) is equivalent to the Biichi objective Bu¢pi*(2)), i.e., the Biichi
set consists of the states with priorityHence Bichi and co-Bichi objectives are simpler andiapec
cases of parity objectives.

Given a setU C S we use usual LTL notationsaU,oU, 00U and ©¢OU to denote
SafgU), Reacl{U), Buchi(U') and co-BuchiU), respectively. Parity objectives are of special imporéanc
as they can express all-regular objectives, and hence all commonly used spedditatin verifica-
tion [Tho90].



2.4 Winning modes

Given an objectived, for all initial statess € S, the set of path® is measurable for all choices of the
strategies of the player [Var85]. Given an initial state S, an objective®, and a clas$l{ of strategies we
consider the followingvinning modegor player 1.

Almost. We say that player tvins almost surelyvith the clasg1¢ if the player has a strategy TS to win
with probability 1, or3r; € TI§ . ¥y € Iy . PEL™2 (D) = 1.

Limit. We say that player Wwins limit surelywith the clasd1{ if the player can ensure to win with probabil-
ity arbitrarily close to 1 witH1§, in other words, for alt > 0 there is a strategy for player 11if that
ensures to win with probability at leakt— . Formally we haV‘BUPmenf inf,em, PEY™2(P) = 1.

We abbreviate the winning modes BjmostandLimit, respectively. We call these winning modes tjual-
itative winning modes. Given a game structurefor C; € {P,U, FP,IP} andCy € {M,FM,IM} we
denote byAlmosf’ (Cy, Cy, ®) (resp. Limit{’(Cy, Cy, ®)) the set of almost-sure (resp. limit-sure) winning
states for player 1 i6r when the strategy set for player 1 is restrictedIﬁE)‘ N chQ. If the game structure
G is clear from the context we omit the supersciipt

2.5 Mu-calculus, complementation, and levels

Consider a mu-calculus expressigm= 1.X . +(X) over a finite setS, wherey : 2° — 29 is monotonic.
The least fixpointl = uX . ¢(X) is equal to the limitimy_., X, whereXy, = 0, and X1 = ¥ (Xx).
For every state € ¥, we define théevelk > 0 of s to be the integer such thatZ X ands € X;.1. The
greatest fixpoinl = v X . ¢(X) is equal to the limiimy_. ., Xz, whereXy = S, and X1 = (Xg).
For every state ¢ ¥, we define thdevel k > 0 of s to be the integer such thate X; ands ¢ Xj..
The height of a mu-calculus expressiokX . i)(X), where\ € {u,v}, is the least integeh such that
X5 = limg_ Xg. An expression of height can be computed ih + 1 iterations. Given a mu-calculus
expressionV = \X .4 (X), whereX € {u, v}, the complement¥ = S\ W of A is given byAX . 1) (—X),
where) = 1 if A = v, and\ = v if A = u. For details ofu-calculus see [Koz83, EJ91].

Distributions and one-step transitions. Given a states € S, we denote byy; = D(I'1(s)) and x5 =
D(T'y(s)) the sets of probability distributions over the moves atwailable to player 1 and 2, respectively.
Moreover, fors € S, X C §, & € xj, andé; € x5 we denote by

PEe(X)= 3 3 S aa) - &) ds,a,b)(1)
a€l'1(s) bela(s) teX
the one-step probability of a transition inf6 when players 1 and 2 play atwith distributions¢; and¢o,
respectively. Given a stateand distributiong; € x5 andés € x5 we denote byDest(s,&1,&2) = {t € S |
P§%2(t) > 0} the set of states that have positive probability of traosifrom s when the players plag,
and¢, ats. For actionse andb we haveDest(s,a,b) = {t € S| d(s,a,b)(t) > 0} as the set of possible
successors givenandb. ForA C I'y (s) andB C I'y(s) we haveDest(s, A, B) = U,c 4 pep Dest(s, a, b).
Theorem 1 The following assertions hold:
1. [CIHO3]For all turn-based stochastic game structu@swith a parity objectived we have

Almost (P, M, ®) = Almost (IP, IM , ®) = Limit; (P, M, ®) = Limit,(IP, IM , ®)

2. [dAHOO0] Let G; and G+ be two equivalent game structures with a parity objecivéhen we have
1. Almost™ (IP, IM,®) = Almos{™(IP, IM,®); 2. Limit$" (IP, IM, ®) = Limit>(IP, IM , ®)



3 Pure, Uniform and Finite-precision Strategies

In this section we present our results for pure, uniform anefiprecision strategies. We start with the
characterization for pure strategies.

3.1 Pure strategies

The following result shows that for pure strategies, menesy/ strategies are as strong as infinite-memory
strategies, and the almost-sure and limit-sure sets ct@nci

Proposition 1 Given a concurrent game structufe and a parity objectiveb we have

Almost' (P, M, ®) = Almost’ (P, FM , ®) = Almost’ (P, IM , ®) =
Limit{* (P, M, ®) = Limit{'(P, FM, ®) = Limit{'(P, IM , ®).

Proof. The result is obtained as follows: we show tAdmos{’ (P, M, ®) = Almos§{' (P, IM,®) =
Limit{' (P, IM, ®) and all the other equalities follow (by inclusion of strdésm). The main argument is
as follows: givenGG we obtain a turn-based stochastic gaﬁ‘levhere player 1 first choses an action, then
player 2 chooses an action, and then the game proceed<-asTimen it is straightforward to establish that
the almost-sure (resp. limit-sure) winning set for pure anfithite-memory strategies i@ coincides with
the almost-sure (resp. limit-sure) winning set for pure ariohite-memory strategies i6!. Sinced is a
turn-based stochastic game, by Theorem 1 (part 1), it falltvat the almost-sure and limit-sure winning
setinG coincide and they are same for memoryless and infinite-megstoategies.

We now present the formal reduction. L6t = (S,A I'1,T'5,0) and let the parity objectivé® be
described by a priority functiop. We construcl = <§, K, fl, f2, §> with priority functionp as follows:

1. S=8U{(s,a)|s €S aecTys)}

2. A=AU{L} wherel ¢ A,

3. fors e §Q S we havel'; (s) = I'y(s) andT'y(s) = {L}; and for(s,a) € S we havel's((s,a)) =
I'y(s) andIl’((s,a)) = {L}; and

4. fors € SN Sanda € I'y(s) we haveg(s, a,L)(s,a) = 1;and for(s,a) € S andb € T'y(s) we have
0((s,a), L,b) =d(s,a,b);

5. the functionp in G is as follows: fors € 5N S we havep(s) = p(s) and for(s,a) € S we have
p((s,a)) = p(s).

It is straightforward to establish by mapping of pure sgags of player 1 in andG that

(a) Almosf' (P, M,®) = Almosf (P, M,3)N S,
(b) Almosf (P, IM,®) = Almosf (P, IM,3)N S,
(¢) Limité (P, M, ®) = Limit¢(P, M, )N S,

(d) Limit¢ (P, IM,®) = Limit¢(P, IM,3) N S;

where® = Parity(p). It follows from Theorem 1 (part 1) that
Almosf (P, M, &) = Almosf (P, IM, &) = LimitC (P, M, &) = LimitC (P, IM, 3).
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Hence the desired result follows. N

Algorithm and complexity. The above proposition gives a linear reduction to turn-hasechastic games.
Thus the sefAlmost (P, M, ®) can be computed using the algorithms for turn-based sttchmsity games
(such as [CJHO03]). We have the following results.

Theorem 2 Given a concurrent game structur@, a parity objective®, and a states, whethers €
Almost (P, IM , ®) = Limity (P, IM, ®) can be decided in NP coNP.

3.2 Uniform and Finite-precision

In this subsection we will present the characterizatiorufaform and finite-precision strategies.

Example 1 It is easy to show thatlmosi (P, M, ®) C Almost (U, M, ®) by considering thenatching
pennygame. The game has two statgsands;. The states; is anabsorbingstate (a state with only self-
loop as outgoing edge; see staieof Fig 3) and the goal is to reach (equivalently infinitely often visit
s1). At s the actions available for both players dreb}. If the actions match the next statesis otherwise
so. By playinga andb uniformly at random at, the states; is reached with probability 1, whereas for any
pure strategy the counter-strategy that plays exactly piposite action in every round ensurgsis never
reached. 1

We now show that uniform memoryless strategies are as polesffinite-precision infinite-memory
strategies and the almost-sure and limit-sure sets ceairfoidfinite-precision strategies. We start with two
notations.

Uniformization of a strategy. Given a strategyr; for player 1, we define a strategy}' that is obtained
from 7, by uniformization as follows: for altv € S* and alla € Supfm;(w)) we haver(w)(a) =

1 i i i i iZationt — (ni
SUPRT )] We will use the following notation for uniformization:j* = unif ().

b-finite-precision strategies.Givenb € N, a strategy is$-finite-precision if for allz € S* and all actions:
we haver(z)(a) = % wherei, j € Nand0 <i < j <bandj > 0.

Proposition 2 Given a concurrent game structufe and a parity objectiveb we have

Almos{’ (U, M, ®) = Almos{’ (U, FM , ®) = Almost{’ (U, IM, ®) =
Limit§' (U, M, ®) = Limit{ (U, FM, ®) = Limit{' (U, IM , ®) =

Almosf (FP, M, ®) = Almos{' (FP, FM, ®) = Almos{ (FP, IM , ®) =
Limit{'(FP, M, ®) = Limit{(FP, FM, ®) = Limit{ (FP, IM , ®)

Proof. The result is obtained as follows: we show thdimost’ (U, M, ®) = Almos{'(FP, IM,®) =
Limit{'(FP, IM, ®) and all the other equalities follow (by inclusion of strae=j. The key argument is as
follows: fix a boundb, and we consider the set offinite-precision strategies 6. Given G we obtain

a turn-based stochastic gaiewhere player 1 first chooseshdinite-precision distribution, then player 2
chooses an action, and then the game proceeds &s iffthen we establish that the almost-sure (resp.
limit-sure) winning set fob-finite-precision and infinite-memory strategiedrcoincides with the almost-
sure (resp. limit-sure) winning set fékfinite-precision and infinite-memory strategies(fh SinceG is

a turn-based stochastic game, by Theorem 1, it follows ti@atmost-sure and limit-sure winning set in
G coincide and they are same for memoryless and infinite-mgmstoategies. Thus we obtainbdinite-
precision memoryless almost-sure winning strategyin G' and then we show the uniform memoryless
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7} = unif(7; ) obtained from uniformization of} is a uniform memoryless almost-sure winning strategy
in G. Thus it follows that for any finite-precision infinite-menycalmost-sure winning strategy, there is a
uniform memoryless almost-sure winning strategy.

We now present the formal reduction. L6t = (S,A I'1,T'5,0) and let the parity objectivé® be
described by a priority functiop. For a given bound, let f(s,b) = {f : T'i(s) — [0,1] | Va €
I'i(s) we havef(a) = %,i,j €N,0<i<j<bj>0andY () fla) = 1} denote the set of
b-finite-precision distributions at We constructi = (S, A I'y, Ty, ) with priority functionp as follows:

1L §=5U{(s,f)|s€5feflsh)
2. A=AU{f|seS, fe f(s,b}U{L}wherel ¢A,

3. fors € SN S we havel'; (s) = f(s,b) andTa(s) = {L}; and for(s, f) € S we havel's((s, f)) =
Iy(s) andl’y((s, f)) = {L}; and
4. fors € SN Sandf € f(s,b) we havei(s, f, L)(s, f) = 1; and for(s, f) € S, b € I'y(s) andt € S

o~

we haved (s, f), L, b)(t) = Yper, o) (@) - 3(s,a,b)(0);

5. the functionp in G is as follows: fors € S N S we havep(s) = p(s) and for (s, f) € S we have

p((s, f)) = p(s)-

Observe that giveh € N the setf(s, b) is finite and thus? is a finite-state turn-based stochastic game. It is
straightforward to establish mappingtefinite-precision strategies of player 1dhand with pure strategies
in G, i.e., we have

(a) Almosf (bFP, M,3) = Almosf (P, M,3)N S,
(b) Almost (bFP, IM,®) = Almosf (P, IM,3)N S,
(c) Limit¢ (bFP, M,®) = Limit¢(P,M,®)n S,

(d) Limit¢ (bFP, IM,®) = Limit¢(P,IM,3)N S,

whered = Parity(p) andbFP denote the set df-finite-precision strategies i¥. By Theorem 1 we have
Almost (P, M, &) = Almosf (P, IM, &) = LimitS (P, M, &) = LimitS (P, IM, &).

Consider a pure memoryless stratégyin G that is almost-sure winning frof = AImosf(P, M, ff)), and
let 7, be the correspondingfinite-precision memoryless strategyGh Consider the uniform memoryless
strategyr}’ = unif(7;) in G. The strategyr, is an almost-sure winning strategy fraghn S. The player-2
MDP G, andG,u are equivalent, i.e(;, = G+ and hence it follows from Theorem 1 thaf is an
almost-sure winning strategy for all states)m S. Hence the desired result follows. B

Computation of Almost; (U, M, ®). It follows from Proposition 2 that the computation of
Almost (U, M, ®) can be achieved by a reduction to turn-based stochastic.gM@meow present the main
technical result of this subsection which presents a syimbadgorithm to computéimost (U, M, ®). The
symbolic algorithm developed in this section is crucialdoalysis of infinite-precision finite-memory strate-
gies, where the reduction to turn-based stochastic gametée applied. The symbolic algorithm is ob-
tained viau-calculus formula characterization. We first discuss thagarison of our proof with the results
of [CdAH11] and then discuss why the recursive charactgozeof turn-based games fails in concurrent
games.

10



Comparison with [CdAH11]. Our proof structure based on induction on the structure-célculus formu-

las is similar to the proofs in [CdAH11]. In some aspects tuofs are tedious adaptation but in most cases
there are many subtle issues and we point them below. Firsyriproof the predecessor operators are dif-
ferent from the predecessor operators of [CdAH11]. Secionalir proof from theu-calculus formulas we
construct uniform memoryless strategies as compared tttenfnemory strategies in [CdAH11]. Finally,
since our predecessor operators are different the proafdmplementation of the predecessor operators
(which is a crucial component of the proof) is completelyatiént.

Failue of recursive characterization. In case of turn-based games there are recursive charadieniof
the winning set with attractors (or alternating reachabiliHowever such characterization fails in case of
concurrent games. The intuitive reason is as follows: oncataactor is taken it may rule out certain action
pairs (for example, action pair, andb; must be ruled out, whereas action pairandb, may be allowed in
the remaining game graph), and hence the complement ofrantattmaynot satisfy the required sub-game
property. For details, see examples in [dAHO00, dAHKOQ7] wing tecursive characterization fails.

Strategy constructions. Since the recursive characterization of turn-based gaués fbr concurrent
games, our results show that the generalization of:tealculus formulas for turn-based games can char-
acterize the desired winning sets. Moreover, our corrastqeoofs that establish the correctness of the
pu-calculus formulas present explicit witness strategiemfthe-calculus formulas. Morover, in all cases
the witness counter strategies for player 2 is memorylass tlaus our results answer questions related to
bounded rationality for both players.

We now introduce the predecessor operators foptealculus formula required for our symbolic algo-
rithms.

Basic predecessor operators.We recall thepredecessooperators Pre(pre) and Apre (almost-pre),
defined for alls € Sand X, Y C S by:

Pra(X) = {se€§|3 exi.V&exs. PP2(X) =1}
Apre, (Y, X) = {seS|3 exi. V& exs. PP (Y)=1A P2 (X) >0} .

Intuitively, the Pre(X) is the set of states such that player 1 can ensure that thestatis inX with
probability 1, and Apre(Y, X) is the set of states such that player 1 can ensure that thestaggtis inY”

with probability 1 and inX with positive probability.

Principle of general predecessor operatorsWhile the operators Apre and Pre suffice for solving Bichi
games, for solving general parity games, we require predeceperators that are best understood as the
combination of the basic predecessor operators. We usep#rators|y) and (¥ to combine predecessor
operators; the operatotg and (x| are different from the usual unian and intersectiom. Roughly, leta
and 3 be two set of states for two predecessor operators, therethef§ 5 requires that the distributions

of player 1 satisfy the conjunction of the conditions stgiatl by« and 3; similarly, ¥/ corresponds to
disjunction. We first introduce the operator Apy€re. For alls € S and X1, Yp, Y1 C S, we define

(PE%2(X) > 0 A P92 (1Y) = 1)
Apre, (Y1, X1)WPre(Yy) = {s € 5|3 € xiVE € xs. }
P§1752(Y*0) — 1

Note that the above formula corresponds to a disjunctioh@predicates for Apreand Prg. However, it
is important to note that the distributiogs for player 1 to satisfy§, for player 2 to falsify) the predicate
must bethe sameln other words, Apre(Yr, X1)yPre (Ys) is notequivalent to Apre(Yi, X1) UPre (Yy).
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General predecessor operatorsWe first introduce two predecessor operators as follows:

APreOdd (i, Yy, Xp, ..., Yo—i, Xn_i)

= Apre, (Y, X)) WApre, (Yo—1, Xn—1) - - - WApre; (Yo—i, Xn—i);

APreEven (i, Yy, Xn, ..., Yn_i, Xn—i, Yn_i_1)

= Apre, (s, X)W Apre, (Yi—1, Xn—1) ) - - - lWApre, (Yo—i, Xpn—i) WPre (Yo—i—1).
The formal expanded definitions of the above operators adi@law/s:

APreOdd (i, Y, X, ..., Vi, Xny) =

(PF2(X,) > 0 A PE2(Y,) = 1)

(PS8 (X,my) > OA PR (Y,_y) = 1)
{SES! 31 € x7-VE € X5 v }

(PS&,Sz (Xn_i) >0A P§1’52(Yn—i) =1)

API’eEVEﬁ(i, Ym Xm s aYn—ia Xn—ia Yn—i—l) =

(PE92(X,) > 0A P2 (Y,) = 1) ]

(PE*2(X, 1) > 0 A PSS (Y, 1) = 1)
V

{sesyaglexf.vggexg. : }

(P9 (X)) > 0N PR (Y, ) = 1)

I (PS2 (Y1) = 1)
Observe that the above definition can be inductively writterollows:

1. We have APreOddo0, Y,,, X,,) = Apre,(Y,, X,,) and for: > 1 we have
APreOdd (i, Yy, X, . . ., Yo_i, Xny)
= Apre, (Y, X,,) WAPreOdd (i — 1,Y,—1, Xp—1, .., Yn—i, Xn—i)
2. We have APreEven0,Y,,, X,,Y,—1) = Apre, (Y, X,,) ¥/ Pra (Y,,—1) and fori > 1 we have
APreEven (i, Y, X, ..., Yo, Xpn—i, Yo—iz1)

= Aprel (Yn> Xn) E‘JAPreEveﬂ(i - 17 Yn—17 XTL—17 s ’YTL—i7 Xn—i7 Yn—i—l)
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Dual operators. The predecessopperators Pospsgpositive-pre) and Aprg(almost-pre), defined for all
se SandX,Y C S by:

Posprg(X) = {se€ S|V €xs. 36 € xs. PP (X) > 0}
Apre,(Y,X) = {seS|V&ext. 3 exs. P2 (Y)=1A P92 (X) >0} .

Observe that player 2 is only required to play counter-thstions £, against player 1 distributiong. We
now introduce two positive predecessor operators as fetlow

PosPreOddi,Y,,, Xp, ..., Yn_i, Xpn—i)

= Pospre (V) Aprey (Xn, Y1)l - - - lJAprey(Xn i1, Yn—i) Prey (X, i)
PosPreEver(i, Y, X, ..., Yn—i, Xn—i, Yn—i—1)

= Posprg(Y,,) ¥ Apre, (X, Y1)

Lﬂ T @ApreQ(Xn—i-i-lv Yn—i)LﬂAprez (Xn—i’ Yn—i—l)
The formal expanded definitions of the above operators di@law/s:
PosPreOdg:,Y,,, Xy, ..., Yo, Xpn_i) =

(P2 (Y,) > 0)
(PE2(Y,,_1) > 0 A P52 (X)) = 1)

(PE°2 (Y, o) > 0 A P92 (X,_1) = 1)
{seswgl € x5.36 € xs. V }

(Ps&,fz(yn_i) > 0 A PSVE (Xn—iy1) = 1)

I (P52 (Xy) = 1)
PosPreEver(i, Yy, Xn, .-, Yon—i, Xn—i, Yn—i—1) =
[ (PS2(Y,) > 0)

(P (Ypo1) > 0 A PEV(X,) = 1)

{s € 5| V& € x5.38 € X3 (P§1’§2(Yn—2) >0A P§1’§2(Xn—1) =1) } )
V

| (PSS (Y1) > 0 A PV (X)) = 1)
The above definitions can be alternatively written as foow
PosPreOdg:,Y,,, Xy, ..., Y, Xpn—i) =
Posprg(Y,) ¢ APreEven(i —1,X,,Yo—1,..., Xn—it1, Yn—i, Xn—i);
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PosPreEver(i, Yy, Xp, ..., Yoo, Xn—i, Yn—iz1) =
Posprg(Y,,) ¢ APreOdd (i, X,,Yn—1,..., Xn—i, Yn—i—1).

Remark 1 Observe that if the predicate Posp(&),) is removed from the predecessor operator
PosPreOdd(i, Y, X, ..., Yn—i, Xn—i) (resp. PosPreEverti, Y, Xp, ..., Yo—i, Xn—i, Yn—i—1)),
then we obtain the operator APreEwéh — 1,X,,Y, 1,...,Xp—i+1, Yn—i, Xn—s) (resp.
APreOdd (i, Xp, Yo—1,..., Xn—i, Yn—i—1))

We first show how to characterize the set of almost-sure winstates for uniform memoryless strate-
gies and its complement for parity games using the aboveepesgor operators. We will prove the following
result by induction.

1. Case 1For a parity functiorp : S +— [0..2n — 1] the following assertions hold.
(a) For allT C S we havelV C Almost (U, M, Parity(p) U &T'), whereW is defined as follows:
_ T -
U
Bs,,_1 N APreOdd (0, Y, Xn)
U
Bo,_oN API’eEVEﬁ(O, Y., Xn, Yn—l)
U
vY, uX,vY,_1.uXn_1. - vY1.uX1.0Yp. Bon—30N API’eOdCi(l, Yo, Xn, Y1, Xn—l)
U
B2n—4 N APreEver11(1, Yru Xna Yn—la Xn—17 Yn—2)

By NAPreOdd(n — 1,Y,,, X,,,..., Y1, X})
U
BynAPreEven(n — 1,Y,, X,,..., Y1, X1, Y0)

We refer to the above expression as #imost-expressiofior case 1. If in the above formula we
replace APreOddby APreOdd and APreEven by APreEven then we obtain thelual almost-
expressionfor case 1. From the same argument as correctness of thetarpyession and the
fact that counter-strategies for player 2 are against mgess strategies for player 1 we obtain
that if the dual almost-expression &y for T = ), thenWp C {s € S | Vm € O¥3Im €
II,. Prit™2 (coParityp)) = 1}.

(b) We haveZ C -Almost (U, M, Parity(p)), whereZ is defined as follows

[ Bay,—1 N PosPreOdg0, Y,,, X,) T

U
Bs,—o N PosPreEven0,Y,,, X,, Y1)
U
By,_3N PosPreOdﬁl, Yo, Xn,Yn 1, Xn—l)
wY, v X uY, 1 vXn_1.-- uY1.0X1.4Yp. U

B2n—4 N POSPreEV@'(l, Yru Xna Yn—la Xn—17 Yn—2)

B; nPosPreOdgn — 1,Y,, X,,..., Y1, X1)
U
By nPosPreEverin — 1,Y,,, X, ..., Y1, X1,Y0)
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We refer to the above expression as plositive-expressiofor case 1.

2. Case 2.For a parity functiorp : S +— [1..2n] the following assertions hold.
(a) For allT C S we havelV C Almost (U, M, Parity(p) U &T'), whereW is defined as follows:

_ T -
U
By, N Prel(Yn_l)
U
Ba,—1 N APreOdd (0, Y, 1, Xn—l)
U
VY1 i Xp_1. - vY1.uX1.0Yo.u X0 Ba,—2 N APreEven(0,Y,—1, X,—2,Y,_2)
U
Bgn_g N APreOdd(l, Yn—h Xn—la Yn_g, Xn_g)

BonN API’eEve@(TL -2,Y, 1, X0 1,... ,Yl,Xl,}/(])
U
BN APrEOdq(TL —1,Y, 1, X0 1,... ,}/(],Xo)

We refer to the above expression as the almost-expressiotage 2. If in the above formula we
replace APreOddby APreOdd and APreEven by APreEven then we obtain the dual almost-
expression for case 2. Again, if the dual almost-expres&di’p for T = (), thenWp C {s €

S | Vry € IIM 3y € Ty, Prrv™2(coParity(p)) = 1}.

(b) We haveZ C —Almost (U, M, Parity(p)), whereZ is defined as follows

B2n N Posprg(Yn—l) i
U
Bo,_1 N PosPreOdg.{O, Yo_1, Xn—l)
U
Bop_oN POSPFGEVGJ'(O, Y, 1, Xn o, Yn_g)
wYp1 v Xy 1. uY1.0X1.0Ye.v X U
Ban—3 NPosPreOdg(1,Y,, 1, Xy, -1, Yn 2, Xy 2)

By N POSPFGEVGJ’(TL -2,Y, 1, Xn_1,..., Y1, X4, Y())
U
Bin PosPreOdﬁn - 1,Y, 1, X0 1,..., Y0, XO)

We refer to the above expression as the positive-exprefsiaase 2.

The comparison to Emerson-Jutlau-calculus formula for turn-based games. We compare oup:-
calculus formula with the:-calculus formula of Emerson-Jutla [EJ91] to give an imgiidea of the con-
struction of the formula. We first present the formula for €asand then for Case 1.

Case 2.For turn-based deterministic games with parity functianS — [1..2n], it follows from the results
of Emerson-Jutla [EJ91], that the sure-winning (that isiejent to the almost-sure winning) set for the
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objective Parityp) U ©T is given by the followingu-calculus formula:

_ T -

U
By, N Prel(Yn_l)

U

Bo,—1 NPre(X,—1)
U

VY1 i Xn_1. - vYi.u X1 0Yg.uXo | B2 Pre (Y,—2)
U

By,—3 N Pre (X, _2)

By N Pre (Yo)
U
BN Prq(XO)

The formula for the almost-expression for case 2 is simdahé above.-calculus formula and is obtained
by replacing the Preoperators with appropriate APreOdand APreEvenoperators.

Case 1.For turn-based deterministic games with parity functionS — [0..2n — 1], it follows from the
results of Emerson-Jutla [EJ91], that the sure-winningt(thequivalent to the almost-sure winning) set for
the objective Paritfp) U ©T is given by the followingu-calculus formula:

_ T i
U

Bsy,—1 NPrg (Xn)
U

By o N Pre(Y,—1)
U

1 Xn Y 1.4 Xno1. - vY1.uXq.0Yy. | Ban-3 Pre (X;,-1)
U

By s N Pre(Y,—2)

BN Prel(Xl)
U
By N Pre(Yp)

The formula for the almost-expression for case 1 is simdahé above:-calculus formula and is obtained

by (a) adding one quantifier alternatioi,,; and (b) replacing the Pr@perators with appropriate APreQdd
and APreEvenoperators.

Proof structure. The base case follows from the coBiichi and Bichi case: llivis from the results
of [dAHOQ] since for Biichi and coBiichi objectives, unifiormemoryless almost-sure winning strategies
exist and oup-calculus formula coincide with the-calculus formula to describe the almost-sure winning
set for Biichi and coBuichi objectives. The proof of indaotproceeds in four steps as follows:

1. Step 1.We assume the correctness of case 1 and case 2, and thentbeteasult to parity objective
with parity functionp : S — [0..2n], i.e., we add a max even priority. The result is obtained ks/s:
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for the correctness of the almost-expression we use theatoass of case 1 and for complementation
we use the correctness of case 2.

2. Step 2. We assume the correctness of step 1 and extend the resultity gigectives with parity
functionp : S — [1..2n + 1], i.e., we add a max odd priority. The result is obtained dsvid: for
the correctness of the almost-expression we use the aoesscbf case 2 and for complementation we
use the correctness of step 1.

3. Step 3.We assume correctness of step 2 and extend the result tp pljetctives with parity function
p: S+ [1.2n + 2]. This step adds a max even priority and the proof will be gintib step 1. The
result is obtained as follows: for the correctness of theoalrexpression we use the correctness of
step 2 and for complementation we use the correctness ol step

4. Step 4\We assume correctness of step 3 and extend the result tp plajectives with parity function
p: S +— [0..2n + 1]. This step adds a max odd priority and the proof will be simtitastep 2. The
result is obtained as follows: for the correctness of theoalrexpression we use the correctness of
step 1 and for complementation we use the correctness o8step

We first present two technical lemmas that will be used in titeectness proofs. First we define prefix-
independent events.

Prefix-independent events. We say that an event or objective psefix-independenif it is independent
of all finite prefixes. Formally, an event or objectivk is prefix-independent if, for all.,,v € S* and

w € S we haveuw € A iff vw € A. Observe that parity objectives are defined based on thesdtaat
appear infinitely often along a play, and hence independaait finite prefixes, so that, parity objectives are
prefix-independent objectives.

Lemma 1 (Basic Apre principle). Let X C Y C Z C S ands € S be such tha” = X U {s} and
s € Apre (Z, X). For all prefix-independent events C 0(Z \ Y), the following assertion holds:

Assume that there exists a uniform memorylgss H[{ N H{Vf such that for allr, € 11, and
forall z € Z\ Y we have
P (AUQY) = 1.

Then there exists a uniform memoryless= Hl{ N H{” such that for allry € II, we have

P (AUCX) = 1.

Proof. Sinces € Apre,(Z, X), player 1 can play a uniform memoryless distributirat s to ensure that
the probability of staying ir¥ is 1 and with positive probability > 0 the setX is reached. ¥\ Y player 1
fixes a uniform memoryless strategy to ensure that &Y is satisfied with probability 1. Fix a counter
strategyms, for player 2. Ifs is visited infinitely often, then since there is a probapibif at leasty > 0 to
reachX, it follows that X is reached with probability 1. I§ is visited finitely often, then from some point
on0(Z \Y) is satisfied, and thed is ensured with probability 1. Thus the desired result foo &

Lemma 2 (Basic principle of repeated reachability). LetT C S, B C SandW C S be sets ani4 be
a prefix-independent objective such that

W C Almost (U, M, T U (BN Pre (W) U A).
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Then
W C Almost (U, M, T UooB U A).

Proof. LetZ = BnPre(W). For all statess € W \ (Z UT), there is a uniform memoryless player 1
strategyr; that ensures that against all player 2 strategieae have

PI™(O(TUZ)UA) = 1.

For all states irZZ player 1 can ensure that the successor statelig {gince Pre(1V) holds inZ). Consider

a strategyr; as follows: for states € Z play a uniform memoryless strategy for P{8”) to ensure that
the next state is ilV; for statess € W \ (Z U T') play the uniform memoryless strategy. Let us denote
by ¢ Z U OT to be the set of paths that visifs at leastk-times or visitsT' at least once. Observe that
limy_oo (O1Z U OT) € 0GB U GT. Hence for alls € W and for allr, € II, we have

[oe)
PEU™(0OBUOTUA) > PEI™(0ZUOTUA) - [JPE™ (0p1ZUOCTUA| 0k ZUOT U A)
k=1
= 1.
The desired result follows. B

Correctness of step 1We now proceed with the proof of step 1 and by inductive hygsithwe will assume
that case 1 and case 2 hold.

Lemma3 For a parity functionp : S +— [0.2n], and for all T C S, we haveW C
Almost (U, M, Parity(p) U ©T'), whereW is defined as follows:

T
U
Bs, N Pre(Y,,)
U
Bay_1 N APreOdd (0, Yy, X»)
U
Bon—o N APreEven(0,Y,, X, Yi—1)

VYn-NXn-VYn—l-NXn—l- te I/Yl.,qu.VYE). U

B2n—3 N APreOdQ(L Yna Xn7 Yn—17 Xn—l)
U

B2n—4 N APreEveﬁl(17 an XTLa YTL—17 Xn—17 YTL—2)

By NAPreOdd (n — 1, Yy, Xn, ..., Y1, X1)

U
| BoNAPreEven(n — 1,Y,, Xp, ..., Y1, X1, Y0)

Proof. We first present the intuitive explanation of obtaining thealculus formula.

Intuitive explanation of the-calculus formula.The p-calculus formula of the lemma is obtained from the
almost-expression for case 1 by just adding the expreg3igm Pre (Y,,).
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To prove the result we first rewriid” as follows:

i T U (Ba, NPra(W)) ]
Bay,_1 N APreédd(O, Yo, Xn)
Bo,_oN APreEveLé\(O, Yo, Xn, Yn-1)
U
VYt Xy VY 11X g1 - VY. 1 X1 LY. Bon—3 N APreOdd (1, Yy, Xy, Yn—1, X51)
Bay,—4 N APreEven(1, }ﬁ:, Xn, Yo—1,Xn-1,Yn—2)

By NAPreOdd(n — 1,Y,, X,,,..., Y1, X1)
U
BynAPrekven(n —1,Y,, X,,..., Y1, X1,Y0)

The rewriting is obtained as follows: siné€ is the fixpointY;,, we replacey,, in the By, N Pre (Y;,) by
W. TreatingT' U (B2, N Pre (W)), as the sef’ for the almost-expression for case 1, we obtain from the
inductive hypothesis that

W C Almosi (U, M, Parity(p) U &(T' U (Bay, N Pre (W)))).
By Lemma 2, withB = Bsy,, and.A = Parity(p) we obtain that
W C Almos§ (U, M, Parity(p) U ©T U OO Bay,).

Since By, is the maximal priority and it is even we hawe<o By, C Parityp). HenceW C
Almost (U, M, Parity(p) U ©T') and the result follows. R

Lemma 4 For a parity functionp : S — [0..2n], we haveZ C —Almost (U, M, Parity(p)), whereZ is
defined as follows

By, N Pospreg(Y;,) T
By,_1N PosPrteJOdg(O, Yo, Xn)
Bo,_o N PosPreE\tJef(O, Yo, X0, Y1)
U
WY, v Xn.uY, 1 vXy 1. uYr1.0X1. 1Yy, Bay,—3 N PosPreOdd(1, Yy, Xy, Vi1, Xn-1)
Bo,—4 N PosPreEves(1, }Lin, Xy Yo-1,Xn-1,Y,2)

By N PosPreOdd(n — 1,Y,,, X,, ..., Y1, X1)
U
By N PosPreEvep(n — 1,Y,, X,, ..., Y1, X1, Y))
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Proof. Fork > 0, let Z;, be the set of states of levklin the aboveu-calculus expression. We will show
that in Z,;, for every memoryless strategy for player 1, player 2 canmenthat eitherZ;,_, is reached with
positive probability or else coParity) is satisfied with probability 1. Sincg&, = 0, it would follow by
induction thatZ;, N Almost (U, M, Parity(p)) = () and the desired result will follow.

We simplify the computation ot given Z;._; and allow thatZ;, is obtained fromZ;_ in the following
two ways.

1. Add a set states satisfying,,, N Posprg(Z;_1), and if such a non-emptyset is added, then clearly
against any memoryless stratgy for player 1, player 2 caarerfsom Z;, that Z;,_ is reached with
positive probability. Thus the inductive case follows.

2. Add a set of states satisfying the following condition:

[ Bo,_1 N PosPreOdg.{O, i1, Xn)

@]
Bay,—o N PosPreEven0, Zx_1, X, Yn—1)
U
Ban—3 N PosPreOdg 1, Zy,_1, Xy, Y1, Xp1)
v Xy Yy 1 v X1 uY1.0X1.uYo. U

By, —4 N PosPreEven(1, Z;,_1, Xpn, Yn—1, Xn-1, Yn—2)

By nPosPreOdgdn — 1, Z; 1, Xy, ..., Y1, X1)
U
By nPosPreEver(n — 1, Zx_1, Xp, ..., Y1, X1, Y0)

If the probability of reaching t&;_; is not positive, then the following conditions hold:

e If the probability to react?;_; is not positive, then the predicate Posgtg; ) vanishes from
the predecessor operator PosPre@dd,_1, X,,, Y1, .., Yn—i, Xn—i), and thus the opera-
tor simplifies to the simpler predecessor operator APrelvenl, X,,, Y, —1,...,Y,—;, Xp—i).

e If the probability to react¥;_, is not positive, then the Posp(eZ;.— ) vanishes from the prede-
cessor operator PosPreEvénZ,_1, X, Y—1,..., Yn—i, Xs—i, Yn—i—1), and thus the opera-
tor simplifies to the predecessor operator APreQ@ddX,,,Y,,—1, ..., Yn—i, Xn—i, Yn—i—1).

Hence either the probability to readh,_, is positive, or if the probability to reacl;,_, is not
positive, then the above-calculus expression simplifies to

i Bop_1 N Prez(Xn)
U
By, N APreOdg (O, X, Yn—l)
U
B, —3 N APreEven(1, X,,, Y—1, Xpn—1)

7" =vXpuYm 1vXym_1-- uY1.0X1.4Yy. U
B2n—4 N Apl’eOdQ(l, Xna Yn—la Xn—17 Yn—2)

By N APreEven(n — 2, X,,,..., Y1, X1)
U
By NAPreOdd(n — 1, X,,..., Y1, X1,Yy)
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We now consider the parity functignt-1 : S — [1..2n], and observe that the above formula is same as
the dual almost-expression for case 2. By inductive hymighen the dual almost-expression we have
Z* C{s €S |V¥m € 1M Iry € Iy PrT™2(coParityp)) = 1} (since Parityp+ 1) = coParity(p)).
Hence the desired claim follows.

The result follows from the above case analysidl

Correctness of step 2We now prove correctness of step 2 and we will rely on the ctmess of step 1 and
the inductive hypothesis. Since correctness of step 1vislivom the inductive hypothesis, we obtain the
correctness of step 2 from the inductive hypothesis.

Lemma5 For a parity functionp : S +— [1.2n 4+ 1], and for all T C S we haveWW C
Almost (U, M, Parity(p) U ©T'), whereW is defined as follows:

T
U
Bopt1 N APreOdd(O, Ya, Xn)
U
Bs, N APreEven(0,Y,, X, Y1)
U
Bon,—1 N APreOdd (1, Yn, Xn, Yn—h Xn—l)
vY,.uXpvYy 1.uXn—1.- - vYy.uXg U
B2TL—2 N APreEverl](la YTM Xna Yn—h XTL—27 Yn—2)
U
Bgn_g N API’EOdq(2, Yn, Xn, Yn—b Xn—la Yn_g, Xn_g)
BonN API’EEVEEI(’I’L - 1,Y,, X, Yo 1, X0 1,..., Y1, X4, }/0)
U
Bl N APreOdd (’I’L, Yn» Xna Yn—h Xn—b cee }/07 XO)

Proof. We first present an intuitive explanation about the howttealculus formula is obtained.

Intuitive explanation of the:-calculus formula. The u-calculus expression is obtained from the almost-
expression for case 2: we add'&,.;. X,, (adding a quantifier alternation of thecalculus formula), and
every APreOdd and APreEven predecessor operators are ebbifiadding Apre(Y;,, X,,) ¥ with the
respective predecessor operators, and wefagd, N APreOdd (0,Y,,, X,,).
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We first reformulate the algorithm for computif in an equivalent form.

- T -

U

Bon+1 N APreOdd (0, W, Xn)
U
By, N APreEven(0, W, X,,,Y,,—1)
U
B2n—1 N APreOdd(L I/Va Xna Yn—la Xn—l)
W = uX,vYy_1.uXp_1.- - vYy.uXo U
B2n—2 N APreEverj(l, W7 Xn7 Yn—la Xn—27 Yn—2)
U
B2n—3 N APreOdQ(Z I/Va Xna Yn—17 Xn—la Yn—27 Xn—Z)
By N APreEvem(n -1, W, X, Y, 1, Xn1,..., Y1, X4, Yo)
U
B N APreOdd (n, W, X, Yn_1,Xn_1,..., Y0, XO)

The reformulation is obtained as follows: sinidé is the fixpoint ofY,, we replacey,, by W everywhere
in the p-calculus formula. The above mu-calculus formula is a Idiagbint and thus computed’ as
the limit of a sequence of sel®, = 7', Wy, Wy, .... At each iteration, both states iy, ; and states
satisfying B<2,, can be added. The fact that both types of states can be addgdlicates the analysis of
the algorithm. To simplify the correctness proof, we foratalan alternative algorithm for the computation
of W, an iteration will add either a singlB,,,;; state, or a set aB<,,, states.

To obtain the simpler algorithm, notice that the set of \asa Y, 1, X,,_1,...,Yp, Xg does not
appear as an argument of the APre@@dW, X,,) = Apre, (W, X,,) operator. Hence, eacBy, -
state can be added without regards Ba.,-states that are not already Y. Moreover, since the
vYn 1.uXp_1....vYy.uXo operator applies only tB,,-states By, , 1 -states can be added one at a time.
From these considerations, we can reformulate the algofitn the computation oft” as follows.

The algorithm computeB” as an increasing sequerite=Tp, C Ty C 15 C --- C T,,, = W of states,
wherem > 0. Let L, = T;\ T;—1 and the sequence is computed by compufings follows, for0 < i < m:

1. either the sef; = {s} is a singleton such thate Apre; (W, T;_1) N Bay1.

2. or the sefl; consists of states iB<9,, such thatZ; is a subset of the following expression

By, N APreEven(0, W, T;_1,Y,—1) 1

U
Ban—1 N APreOdd (1, W, T; 1, Y, -1, Xp—1)
U
Bayn_o NAPreEven (1, W, T;_1, Y1, Xpn_2, Yy _2)
VYn—l-,UXn—l- cee VYO./,LXO U

Byn—3 N APreOdd (2, W, T;_1,Yn 1, Xn_1,Yn—2, Xp_2)

B2 N APreEVerﬂ(n - 17 I/I/J,'Z—;;—17Yn—l7Xn—17 cee 7Y17X17}/0)
U
B N APreOdd (n, W, T;_1,Y, 1, Xpn—1, ..., Y0, Xo)
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The proof thatV C Almost (U, M, Parity(p) U ©T') is based on an induction on the sequefice- Ty C
ThCTyC-- CTy=W.Forl <i<m,letV; =W\ T,,_;, so thatl; consists of the last block of
states that has been addéd,to the two last blocks, and so on unt}, = W. We prove by induction on
i€{1,...,m}, fromi = 1toi = m, that for alls € V;, there exists a uniform memoryless strategyfor
player 1 such that for alty € 11, we have

P02 (OT,—; U Parity(p)) = 1.

Since the base case is a simplified version of the inductigm, ste focus on the latter. There are two
cases, depending on whetHér\ V;_; is composed 0By, or of B<g,-states. Also it will follow from
Lemma 11 that there always exists uniform distribution tthess that a state satisfy the required predecessor
operator.

o If V;\ Vi_1 C Bapy1, thenV; \ V;_; = {s} for somes € S ands € Apre,(W,T,,—_;). The result
then follows from the application of the basic Apre prineiglLemma 1) withz = W, X = T,,,_,,
Z\Y =V;_; and A = Parity(p).

o If V;\Vi_1 C B<a,, then we analyze the predecessor operatorstleai; \ V;_; satisfies. The prede-
cessor operator are essentially the predecessor opefdlm amost-expression for case 2 modified
by the addition of the operator ApréV, T,,,—;)«. If player 2 plays such the ApréW, T,,,_;) part of
the predecessor operator gets satisfied, then the anaysisas to the previous case, and player 1 can
ensure thaf},,_; is reached with probability 1. Once we rule out the possibdf Apre, (W, T,,,—;),
then theu-calculus expression simplifies to the almost-expressfarase 2, i.e.,

i Bo, N Pl’el(Yn_l) )
U
Bo,_1 N API’EOdd(O, Y, 1, Xn—l)
U
B2n—2 N APreEVeﬁ](Q Yn—h Xn—2a Yn—2)

vYn 1.4 Xp_1.- - vYp.uXo U
BQn_g N API’eOdd (1, Yn—la Xn—1> Yn_g, Xn_g)

BonN API'EEVE@(TL -2,Y, 1, X0n_1,..., Y1, Xq, Yb)
U
BN API’eOdd(TL - 1,Y, 1, Xn1,..., Y0, Xo)

This ensures that if we rule out Apr@V,T,,—;) form the predecessor operators, then by induc-
tive hypothesis (almost-expression for case 2) we hhyeC Almost (U, M, Parity(p)), and if
Apre, (W, T,,_;) is satisfied ther¥,,,_; is ensured to reach with probability 1. Hence player 1 can
ensure that for aly € V;, there is a uniform memoryless strategyfor player 1 such that for alt-
for player 2 we have

PIIU72 (ST, U Parity(p)) = 1.

This completes the inductive proof. With= m we obtain that there exists a uniform memoryless strategy
71 such that for all states € V,,, = W and for allry we have PF™2 (T, U Parity(p)) = 1. Sincely = T,
the desired result follows. B
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Lemma 6 For a parity functionp : S +— [1..2n + 1] we haveZ C —Almost (U, M, Parity(p)), whereZ is

defined as follows:

pY, v X uYy 1.0 X0 1. nYo.vXo

Bay+1 N PosPre0dd(0, Yy, X,,)
By, N PosPreEvéJ@(O, Yo, X0, Y1)
Bay,_1N PosPreOdgl(Llj, Yo, Xn, Y1, Xn-1)
Bon_s N PosPreEves(1, ;n X0, Vo1, Xpn_2,Yn_2)
Bs,—3 N PosPre0dd(2,Y,,, ;J(n, Y1, Xn-1,Yn—2,X,—2)

By N PosPreEvef(n - 1.,Y,, X, Yo 1, X0 1,..., Y1, X4, }/0)
U
Bin POSPI’eOdd(TL, Yo, X0, Yn1,Xn_1,..., Yo, X(])

Proof. Fork > 0, let Z;, be the set of states of leviein the above:-calculus expression. We will show that
in Z; player 2 can ensure that eith&f_ is reached with positive probability or else coPdjjtyis satisfied
with probability 1. SinceZ, = ), it would follow by induction thatZ, N Almost (U, M, Parity(p)) = () and

the desired result will follow.

We obtain ofZ;, from Z;._; as follows:

v Xy uYp_1 v X1 uYp.vXg

Bon—3 N PosPreOdg2, Z,_1, Xy, Yo—1, Xn—1, Yn—2, Xn—2)

By N PosPreEve{(n — 1,21, X, Y0 1, Xn_1,..., Y1, Xq, Yb)

Bop+1 N POSPI’EOdg{O, i1, Xn)

U
By, N POSPI’GEV@(O, 21, Xn, Yn—l)
U
Bsn—1 NPosPreOdd1, Zy_1, X, Y1, Xn—1)
U
Ban—2 NPosPreEves(l, Zy_1, Xy, Y51, Xn—2, Y5 2)
U

U
By NnPosPreOddn, Zk_1, X, V-1, Xn-1, .-

. 7YE)7XO)

If player 1 risks into moving tdZ;,_; with positive probability, then the inductive case is prbasZ;._ is
reached with positive probability. If the probability ofaghing toZ;_; is not positive, then the following

conditions hold:

e If the probability to react;,_, is not positive, then the predicate Postg, ;) vanishes from the

predecessor operator PosPre@ddZ;. 1, X,,, Y5—1, ..
fies to the simpler predecessor operator APrekfien 1, X,,,Y,,—1, ..

.y Y,—i, X;,—i), and thus the operator simpli-
< Yn—i> Xn—z)

e If the probability to react¥;,_ is not positive, then the PospieZ;,_, ) vanishes from the predecessor
operator PosPreEvefi, Zx_1, X, Y1, ..., Yn—i, X, Yn—i—1), and thus the operator simplifies

to the predecessor operator APre@ddX,,, Y,,—1, ..

Yoo, Xn—is Yn—i—1).
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Hence either the probability to reaéh,_; is positive, or the probability to reachi,_; is not positive, then

the aboveu-calculus expression simplifies to

7" =vXy Yy 1.vXn 1. uYorXo

We now consider the parity functiopn — 1

BQn_g N APreEve@(l, Xn, Yn—la Xn—la Yn_g, Xn_g)

BonN API'EOdCi(’I’L —1,X,, Y 1, Xpn1,..., Y1, X, Yb)

Bin API'EEVEQ(’I’L - 1,X,, Y 1, Xn1,..., Y0, Xo)

B2n+1 N PrQ(Xn) T

U
By, N APreOdQ(O, Xn, Yn—l)
U
Bo,_1 N APreEve@(O, Xn, Y 1, Xn—l)

U

B2TL—2 N APreOdQ(lv XTL7 Yn—17 XTL—27 YTL—2)
U

U

: S — [0..2n] and by the correctness of the dual almost-

expression for step 1 (Lemma 3) (with the roles of player 1 plagler 2 exchanged and player 2 plays

against memoryless strategies for player 1,

as in Lemma faveZ* C {s € S | ¥m € IM 3my €

II,. Prit™(coParity(p)) = 1} (since coParityp) = Parity(p — 1)). Hence the result follows. B

Correctness of step 3.The correctness of step 3 is similar to correctness of stdelow we present the
proof sketches (since they are similar to step 1).

Lemma?7 For a parity functonp : S — [1.2n + 2|, and for all T C S, we haveW C
Almost (U, M, Parity(p) U &T'), whereW is defined as follows:

vY,.uXpvYy 1.uXn—1.- - vYy.uXg

B2n—2 N APreEverﬂ(l, Yru Xna Yn—la Xn—27 Yn—2)

Bgn_g N API’EOdq(2, Yn, Xn, Yn—b Xn—la Yn_g, Xn_g)

BN APreEVEﬁ](n -1.,Y,,.X,, Y, 1, Xn_1,..., Y7, X1, Yb)

Bl N APreOdd (’I’L, Yn» Xna Yn—17 XTL—17 s 7}/07 XO)

T
U
B2n+2 N I:)rel (Yn)
U
Bony1 N APre0dd (0, Y, X,,)
U
By, N APreEven(0, Y, X, Yn-1)
U
B2n—1 N APreOdd (17 Yna Xna Yn—17 Xn—l)
U

U

U
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Proof. The proof is almost identical to the proof of Lemma 3. Similarstep 1 (Lemma 3), we add a
max even priority. The proof of the result is essentiallyniigal to the proof of Lemma 3 (almost copy-
paste of the proof), the only maodification is instead of theexiness of the almost-expression of case 1
we need to consider the correctness of the almost-exprefsictep 2 (i.e., Lemma 5 for parity function
p:S—[l.2n+1]). =&

Lemma 8 For a parity functionp : S +— [1..2n + 2] we haveZ C —Almost (U, M, Parity(p)), whereZ is
defined as follows:

Bay 2 N Pospre(Yy,)
U
Bay+1 N PosPreOdd(0, Yy, X,,)
U
By, N PosPreEve(0, Y, X,,, Y1)
U
By,—1 N PosPreOdg(l, Yo, Xn,Yn_1, Xn—l)
pY, v X uYn 1.0 X0 1. uYo.vXo U
Bay,—o N PosPreEven(1,Y,,, X,,, V-1, X5—2,Y,—2)
U
B2n—3 N POSPreOdd(27 an XTL7 Yn—b Xn—17 YTL—27 Xn—Z)

By nPosPreEvesn — 1,Y,, Xy, Y1, X5, ..., Y1, X1, Y0)
U
Bin POSPI’eOdd(TL, Yo, X0, Y1, Xn_1,..., Yo, X(])

Proof. The proof of the result is identical to the proof of Lemma 4r(est copy-paste of the proof), the
only modification is instead of the correctness of the alreagiression of case 2 we need to consider the
correctness of the almost-expression for step 1 (i.e., Le®)ynThis is because in the proof, after we rule out
states inBy, 12 and analyze the sub-formula as in Lemma 3, we consider garittionp—1 : .S +— [0..2n]

and then invoke the correctness of Lemma A&

Correctness of step 4.The correctness of step 4 is similar to correctness of stdgekw we present the
proof sketches (since they are similar to step 2).

Lemma9 For a parity functionp : S — [0.2n 4+ 1], and for all T C S, we haveWW C
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Almost (U, M, Parity(p) U ©T'), whereW is defined as follows:

T
@]
Baop+1 N APreOdd (O, Yot1, Xn+1)
@]
By, N APreEven(0, Y41, Xnt1, Yn)
@]
B2n—1 N APreOdd(l, Yn+17 Xn-i—la Yna Xn)
@]
VY1 uXpi1. o vY.uX,.0Yy. Bon—2 N APreEven(1, Yy, 11, Xpt1, Yo, Xp, Yn—1)
U
Ba,,_3 N APreOdd (2, Yo+1, Xn+1, Yo, Xn, Y1, Xn—l)
U
Boy_4N API’EEVEHI(2, Yot1, Xnt1, Yo, Xn, Y1, Xn—1, Yn_g)

Bl N APreOdd (’I’L, Yn+17 Xn+17 YTLv XTH s 7}/17 Xl)
U
BO N APreEveﬁl(TL, Yn+17 Xn+17 YTLv XTH s 7}/17 X17 YE))

Proof. Similar to step 2 (Lemma 5), we add a max odd priority. The paidhe result is essentially
identical to the proof of Lemma 5 (almost copy-paste of theof); the only modification is instead of the
correctness of the almost-expression of case 2 we need stdeoithe correctness of the almost-expression
for step 1 (i.e., Lemma 3 for parity functign: S — [0..2n]). &

Lemma 10 For a parity functionp : S +— [0..2n + 1] we haveZ C —Almost (U, M, Parity(p)), whereZ
is defined as follows:

Bop1 N PosPreOdgl(O, Yoi1, Xn—i—l)
U
Bs,, N PosPreEven(0, Y, +1, Xpnt1, Yn)
U
By,—1 N PosPreOdg(l, Yot1, Xnt1, Y, Xn)
U
Bay,—2 NPosPreEves(1, Y, 11, Xyt1, Yo, Xn, Y1)
uYn+1.VXn+1. cee /J,Yl.VXl.,uY(). U
B2n—3 N POSPrGOdQ(Z Yn+17 Xn-i—la Yna Xna Yn—17 Xn—l)
U
Bop_4 N PosPreEvei(Q, Yo+1, Xn+1, Yo, Xn, Yn—1, Xn—1, Yn_g)

BN PosPreOdg(n, Yos1, Xont1, Yo, Xn, - oo, Y1, Xl)
U
By nPosPreEves(n, Y, 11, Xyt1, Yo, Xn, ..., Y1, X1, Y0)

Proof. The proof of the result is identical to the proof of Lemma 6r(@st copy-paste of the proof), the
only modification is instead of the correctness of the alreagiression of step 1 (Lemma 3) we need to
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consider the correctness of the almost-expression for&{ep., Lemma 7). This is because in the proof,
while we analyze the sub-formula as in Lemma 7, we considétydanctionp + 1 : S +— [1..2n + 2] and
then invoke the correctness of Lemma 71

Observe that above we presented the correctness for thestadxygressions for case 1 and case 2, and
the correctness proofs for the dual almost-expressionsdardgical. We now present the duality of the
predecessor operators. We first present some notationsa@dor the proof.

Destination or possible successors of moves and distribotis. Given a states and distributionst; €
X5 and&; € x5 we denote byDest(s,&1,&) = {t € S | P§1’52(t) > 0} the set of states that have
positive probability of transition frome when the players plag; and&s ats. For actionsa andb we have
Dest(s,a,b) = {t € S| §(s,a,b)(t) > 0} as the set of possible successors giwemdb. For A C I'(s)
andB C T's(s) we haveDest(s, A, B) = U, pe g Dest(s, a,b).

Lemma 11 (Duality of predecessor operators).The following assertions hold.
1 Givean c Xn—l c.--C Xn—i - Yn—i - Yn—i+1 c.--C Yn’ we have

PosPreOdd(i, =Yy, =X, ..., ~Yp_i, " Xn_;) = -APre0dd (i, Yy, X, . . ., Vi—i, Xn_i)-

2. Givean c Xn—l c.--C Xn—i - Yn—i—l - Yn—i - Yn—i+1 c.--C Yn’ we have

PosPreEven (i,—Y,, " Xn,..., Y, 2 Xy, 2 Yn_i1)
= ﬂAPreEvem(z’,Yn,Xn,. .. >Yn—iaXn—i>Yn—i—1)'

3. For al s € S if s € APreOdd(i,Y,, Xn,...,Yo—i, Xn—i) (resp. s €
APreEven(i, Yy, Xn, -« Yon—i, Xn—is Yn—i—1)), then there exists uniform  distribu-
tion & to witness thats €  APreOdd (i, Y., Xn,..., Yn—i, Xn—i) (resp. s €
APreEvem(i, Yo, Xn, oo Yoo, X0, Yn—i—l))-

Proof. We present the proof for part 1, and the proof for second paahalogous. To present the proof
of the part 1, we first present the proof for the case when 2 andi = 2. This proof already has all the
ingredients of the general proof. After presenting the prempresent the general case.

Claim. We show that forX; C Xy C Yy C Y; we have
Pospre(—Y1) i Aprey (— X1, =Yo) i Prex(—Xo) = —(Apre, (Y1, X1)JApre, (Yo, Xo)).
We now present the following two case analysis for the proof.
1. AsubselU C T'(s) is goodif both the following conditions hold:

(a) Condition 1. For all b € T'y(s) and for alla € U we have Dest(s,a,b) C Y; (i.e.,
Dest(s,U,b) C Y7); and
(b) Condition 2.For allb € T'5(s) one of the following conditions hold:
i. either there exista € U such thatDest(s,a,b) N Xy # 0 (i.e., Dest(s,U,b) N X, # (); or

ii. forall a € U we haveDest(s,a,b) C Y (i.e., Dest(s,U,b) C Yy) and for somer € U we
haveDest(s,a,b) N Xy # 0 (i.e., Dest(a, U,b) N Xy # 0).
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We show that if there is a good s&t thens € Apre, (Y1, X1) |« Apre, (Yo, Xo). Given a good set
U, consider thauniformdistribution&; that plays all actions iV uniformly at random. Consider an
actionb € I';(s) and the following assertions hold:

(a) By condition 1 we havé®est(s,£1,b) C Y.

(b) By condition 2 we have either (iPest(s,&1,0) N X7 # (0 (if condition 2.a holds); or
(i) Dest(s,&1,b) C Yy, andDest(s,&1,b) N Xg # ( (if condition 2.b holds).

It follows that in all cases we have (i) eithérest(s,&1,0) C Yy and Dest(s,&1,b) N X7 # 0, or
(i) Dest(s,&1,b) C Yy and Dest(s,&1,0) N Xg # . It follows that¢&; is a uniform distribution
witness to show that € Apre, (Y7, X1 )l Apre; (Yo, Xo).

. We now show that if there is no good $&tthens € Posprg(—Y1)xApre,(—X1, ~Yp)WPre(—Xo).
Given a setUU, if U is not good, then (by simple complementation argument) drtheofollowing
conditions must hold:

(a) Complementary Condition T-here exist$ € I'y(s) anda € U such thatDest(s, a,b) N =Y, #
0; or
(b) Complementary Condition 2There exist$ € I's(s) such that both the following conditions
hold:
i. forall a € U we haveDest(s,a,b) C -X;; and

ii. there existsa € U such thatDest(s,a,b) N =Yy # 0 or for all « € U we have
Dest(s,a,b) C = X.

Since there is no good set, for every 8etC I';(s), there is a counter action = c(U) € I'y(s),
such that one of the complementary conditions hold. Consddistributioné; for player 1, and
let U = Supf&;). SinceU is not a good set, consider a counter actior ¢(U) satisfying the
complementary conditions. We now consider the followingesa

(a) If complementary condition 1 holds, thérest(s,&1,b) N Y7 # 0 (i.e., Posprg(—Y;) is satis-
fied).
(b) Otherwise complementary condition 2 holds, and by 2.&&we Dest(s,&1,b) C —X.

i. if there existsa € U such thatDest(s,a,b) N =Yy # (), then Dest(s,&1,b) N =Yy #
(hence Aprg(—X;, —Yp) holds);

ii. otherwise for alla € U we haveDest(s,a,b) C - Xy, henceDest (s, &1,b) € =X, (hence
Pre,(— X)) holds).

The claim follows.

General case We now present the result for the general case which is a gieradion of the previous case.
We present the details here, and will omit it in later proefbere the argument is similar. Recall that we
have the following inclusionX,, C X,, 1 C...C X, ;CY, ;C...Y, 1 CY,.

1. AsubselU C T';(s) is goodif both the following conditions hold: for alh € I'y(s)

(a) Condition 1.For alla € U we haveDest(s,a,b) C Y, (i.e., Dest(s,U,b) C Y,,); and
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(b) Condition 2. There exist®) < j < i, such that for al € U we haveDest(s,a,b) C Y,_;
(i.e., Dest(s,U,b) C Y,_;), and for somex € U we haveDest(s,a,b) N X,_; # 0 (i.e.,
Dest(s,U,b) N Xp,—; # 0).

We show that if there is a good g€t thens € Apre, (i, Yy, Xy, ..., Yn—i, Xn—i). Given a good set
U, consider thauniformdistribution&; that plays all actions iV uniformly at random. Consider an
actionb € I'y(s) and the following assertions hold:

(a) By condition 1 we hav®est(s,&1,b) CY,.

(b) By condition 2 we have for sonte< j < i, we haveDest(s,&;,b) C Y,_;, andDest(s, &, b)N
Xn—j # 0 (i.e., Aprg (Y,—j, X,,—;) holds).

It follows that&; is a uniform distribution witness to show that Apre, (Y, X, ..., Yo—i, Xn—i).

. We now show that if there is no good $&tthens € PosPreOdgi, —Y,,, = X,,, ..., Y, i, 7 X ).
Given a seU, if U is not good, then we show that one of the following conditiomsst hold: there
existsb € I'y(s) such that

(a) Complementary Condition 1 (CC1Rest(s, U, b) N =Y, # 0; or

(b) Complementary Condition 2 (CC2here exist®) < j < i such thatDest(s,U,b) € = X,,_;
andDest(s,U,b) N —=Y,_;j_1 # 0; or

(c) Complementary Condition 3 (CC3est(s,U,b) C = X,,_;.

Consider a sdl/ that is not good, and létbe an action that witness thitis not good. We show that
b satisfies one of the complementary conditions.

o If Dest(s,U,b) N Y, # 0, then we are done as CC1 is satisfied. Otherwise, we have

Dest(s, U, b) C Y, then we must hav®est(s,U,b) C —X,, (otherwise the actioh would sat-

isfy the conditionDest (s, U,b) C Y,, and Dest (s, U, b) N X,, # 0, and cannot be a witness that

U is not good). Now we continue: Dest(s, U, b) N ~Y,,_1 # (), then we are done, as we have

a witness thaDest(s, U, b) C =X, andDest(s,U,b) N —=Y,_1 # 0. If Dest(s,U,b) C Y,_1,

then again sincé is witness to show thdt is not good, we must havBest(s,U,b) C = X,,_1.

We again continue, and if we haveest (s, U, b) N —Y,,_2 # (), we are done, or else we continue
and so on. Thus we either find a witnéss< j < i to satisfy CC2, or else in the end we have
that Dest(s, U, b) C —X,,_; (satisfies CC3).

Since there is no good set, for every 8etC I';(s), there is a counter action = c(U) € I'y(s),
such that one of the complementary conditions hold. Considdistributioné; for player 1, and
let U = Supfé&;). SinceU is not a good set, consider a counter actior- ¢(U) satisfying the
complementary conditions. We now consider the followingesa

(@) If CC1 1 holds, themDest(s,U,b) N ~Y,, # 0 (hence alsaDest(s,&1,b) N Y, # 0) (i.e.,
Posprg(—Y,,) is satisfied).

(b) Else if CC2 holds, then for som@é < j < ¢ and we haveDest(s,U,b) C -X,_; and
Dest(s,U,b) C Y,_j—1 (hence alsaDest(s,&1,b) € —X,,—; and Dest(s,&1,b) C Y1)
(i.e., Aprey(— Xy, =Y, 1) W Apre, (=X, 1, Y 2) ¥ . .. WApPre, (=X, —it1, ~Y,—;) holds).

(c) Otherwise CC3 holds and we haveest(s,U,b) C —X,_;, (hence alsoDest(s,&1,b) C
-X,—;) (i.e., Pre(—X,—;) holds).
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The claim follows.

The result for part 3 follows as in the above proofs we havagéiconstructed uniform witness distri-

bution. 1

Characterization of Almost; (U, M, ®) set. From Lemmas 3—10, and the duality of predecessor oper-
ators (Lemma 11) we obtain the following result characbegzhe almost-sure winning set for uniform

memoryless strategies for parity objectives.

Theorem 3 For all concurrent game structurgs over state spac#, for all parity objectives Parityp) for

player 1, the following assertions hold.

1. Ifp: S — [0.2n — 1], then Almost(U, M, Parity(p)) = W, wherelV is defined as follows

vY, uX,vY,_1.uXn_1. - vY1.uX1.0Yp.

Ban_1 N APre0dd (0, Yy, X,,) T

U
Ba,—2 N APreEven(0, Y, X, Y1)
U
B2n—3 N APreOdd(l, Yru Xna Yn—la Xn—l)
U

B2n—4 N APreEveﬁl(l, Yna Xn7 Yn—17 Xn—la Yn—2)

B NAPreOdd (n — 1, Yy, Xn, ..., Y1, X1)
U
By N APreEven(n — 1,Y,, X, .

LY, X0,Y0)
(1)

and B; = p~'(i) is the set of states with priorit for i € [0..2n — 1].

2. Ifp: S — [1..2n], then Almost(U, M, Parity(p)) = W, wherelV is defined as follows

vY,1.uXp—1.- - vY1.uX1.vYe.uXo

B2n N Prel(Yn—l) ]
U
Bo,_1 N APreOdd(O, Y, 1, Xn—l)
U
B2n—2 N APVeEVE'ﬂ(O, Yn—h Xn—2a Yn—2)
U
B2n—3 N APreOdd (17 Yn—la Xn—h Yn—2> Xn—2)

BonN API’EEVEEI(TL —-2,Y, 1, X0 1,... 7}/17X1>}/(])
U
Bin APreOdd(n —1,Y, 1, Xn1,.

"aYVOvXO) |
2)

and B; = p~1(i) is the set of states with priority for i € [1..2n].

3. The set AlmostU, M, Parity(p)) can be computed symbolically using the expressions (1) 2 (

time O(|S|2+1 . 3 g2/l UR()l),

4. Given a state € S whethers € Almost (U, M, Parity(p)) can be decided in NP coNP.
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Figure 1: Three priority concurrent game

Ranking function for p-calculus formula. Given au-calculus formula of alternation-depth (the nesting
depth ofv-u-operators), theankingfunction maps every state to a tupledsintegers, such that each integer
is at most the size of the state space. For a state that satiséie-calculus formula the tuple of integers
denote iterations of thg-calculus formula such that the state got included for tre fime in the nested
evaluation of the:-calculus formula (for details see [EJ91, Koz83]).

The NPN coNP bound follows directly from thg-calculus expressions as the players can guess the
ranking functionof the y-calculus formula and the support of the uniform distribatiat every state to
witness that the predecessor operator is satisfied, andidss gan be verified in polynomial time. Observe
that the computation througlrcalculus formulas is symbolic and more efficient than ematien over the
set of all uniform memoryless strategies of sizf [, |T'1(s) UT'2(s)|) (for example, with constant action
size and constant, they-calculus formula is polynomial, whereas enumerationrategies is exponential).
Thep-calculus formulas of [EJ91] can be obtained as a special afthey-calculus formula of Theorem 3
by replacing all predecessor operators with the Predecessor operator.

Proposition 3 Almost (IP, FM,®) = Almost (U, FM, ®) = Almost (U, M, ®).

Proof. Consider a finite-memory strategy that is almost-sure wigingince it is finite-memory, it must be
finite-precision. The result follows from Proposition 21

It follows from above that uniform memoryless strategies as powerful as finite-precision infinite-
memory strategies for almost-sure winning. We now showitifatite-precision infinite-memory strategies
are more powerful than uniform memoryless strategies.

Example 2 Almost; (U, M, ®) C Almosty (IP, IM,®)). We show with an example that for a concurrent
parity game with three priorities we havdmost (U, M, ®) C Almost (IP, IM,®). Consider the game
shown in Fig 1. The moves available for player 1 and player £ & {a, b} and{c, d}, respectively. The
priorities are as followsp(sg) = 1,p(s2) = 3 andp(s1) = 2. In other words, player 1 wins i; is
visited infinitely often ands, is visited finitely often. We show that for all uniform memdteys strategy
for player 1 there is counter strategy for player 2 to ensheg the co-parity condition is satisfied with
probability 1. Consider a memoryless strategyfor player 1, and the counter strategy is defined as
follows: (i) if b € Supfm1(s0)), then playd, (ii) otherwise, playc. It follows that (i) if b € Supfm(so)),
then the closed recurrent s€tof the Markov chain obtained by fixing; andm, containss,, and hence
s is visited infinitely often with probability 1; (ii) othenge, player 1 plays the deterministic memoryless
strategy that playa at sg, and the counter moweensures that onlyj is visited infinitely often. It follows
from our results that for all finite-memory strategies foay@r 1, player 2 can ensure that player 1 cannot
win with probability 1.

We now show that in the game there is an infinite-memory irfipitecision strategy for player 1 to win
with probability 1 against all player 2 strategies. Consaletrategyr; for player 1 that is played in rounds,
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Figure 2: Blichi games

and a round is incremented upon visit{ta, s, }, and in roundk the strategy plays actionwith probability
1 — 5 andb with probability 7. Fork > 0, let £, denote the event that the game gets stuck at round
k. In roundk, against any strategy for player 2 in every step there isast lgrobabilityn, = Qk—lﬂ > 0to
visit the set{s;, s }. Thus the probability to be in rounkdfor ¢ steps is at mostl — 7;,)¢, and this is 0 ag
goes tooo. Thus we have B ™ (&) = 0. Hence the probability that the game is stuck in some rauisd

P (| &) <) PEIT(E) =
k>0 k>0

where the last equality follows as the countable sum of gritibazero event is zero. It follows that
Prl™(00{s1,s2}) = 1, i.e.,{s1,s2} is visited infinitely often with probability 1. To completbé proof
we need to show thdts, } is visited infinitely often with probability 0. Consider anbérary strategy for
player 2. We first obtain the probability, ; thatss is visitedk + 1 times, given it has been visitédtimes.

Observe that to visit; player 2 must play the actiafy and thus

1 1 1
uk—i—léﬁ(l—i__—'__—’_”-);

2 4

where in the infinite sum is obtained by considering the nunabeonsecutive visits t@; beforess is
visited. The explanation of the infinite sum is as followse firobability to reach, for k£ + 1-th time after
the k-th visit (i) with only one visit tos; is 216% (ii) with two visits to s is ﬁ (as the probability to play
actionb is halved), (iii) with three visits t@; is 5z and so on. Hence we haug,; < 5. The probability
that s, is visited infinitely often is[[72 , ux+1 < [[req 216% = 0. It follows that for all strategies, we
have Pf1'™(0¢{s2}) = 0, and hence Bp™ (00 {s1} N ©O{s1,50}) = 1. Thus we have shown that
player 1 has an infinite-memory infinite-precision almasgeswinning strategy. 1

Example 3 LCimity ([P, FM,®) <  Limit,(IP,IM,®)). We show with an example that
Limity (IP, FM,®) C Limity(IP, IM,®). The example is from [dAHOO] and we present the details for
the sake of completeness.

Consider the game shown in Fig. 2. The statés an absorbing state, and from the statdhe next
state is always,. The objective of player 1 is to visy; infinitely often, i.e.,0¢{s1}. Fore > 0, we will
construct a strategy; for player 1 that ensures is visited infinitely often with probability at leagt— «.
First, givens > 0, we construct a sequencesf for i > 0, such that; > 0, and[[,(1 —¢;) > (1 —¢). Let
77" be a memoryless strategy for player 1 that enssgés reached frons; with probability at least — ¢;;
such a strategy can be constructed as in the solution of abdity games (see [dAHKOQ7]). The strategy
7] is as follows: for a historyv € S* (finite sequence of states), if the number of timefias appeared in
w is 4, then for the historyw - s¢ the strategyr§ plays liker(’, i.e., 75 (w - s9) = 7} (s0). The strategyr.
constructed in this fashion ensures that against any gyratg the states; is visited infinitely often with
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probability at leas{[,(1 — ¢;) > 1 — . However, the strategy; counts the number of visits te, and
therefore uses infinite memory.

We now show that the infinite memory requirement cannot bédado We show now that all finite-
memory strategies visi, infinitely often with probability 0. Letr be an arbitrary finite-memory strategy
for player 1, and let\/ be the (finite) memory set used by the strategy. Considerribiupt game graph
defined on the state spafe, s1, s2} x M as follows: fors € {sg, s1, s2} andm € M, letm,(s,m) = my
(wherer,, is the memory update function @), then fora; € T';(s) andb; € T's(s) we have

0(s,a1,b1)(s’) m'=my
0 otherwise

o((s,m),a1,b1)(s',m') = {

where § is the transition function of the product game graph. Thategy = will be interpreted as
a memorylessrt in the product game graph as follows: fere {sg,si,s2} andm € M we have
7((s,m)) = m,((s,m)), wherem, is the next move function af. Consider now a strategy for player 2
constructed as follows. From a stétg, m) € {so, s1, s2} x M, if the strategyr playsa with probability 1,
then player 2 playg with probability 1, ensuring that the successofdg, m’) for somem’ € M. If 7
playsb with positive probability, then player 2 playsandd uniformly at random, ensuring thét,, m') is
reached with positive probability, for som& € M. Underr, 72 the game is reduced to a Markov chain,
and since the sdtso} x M is absorbing, and since all states{isy} x M either stay safe isg} x M or
reach{s2} x M in one step with positive probability, and all states{in} x M reach{sp} x M in one
step, the closed recurrent classes must be either entortgioed in{so} x M, orin{s2} x M. This shows
that, underry, 7o, player 1 achieves the Buchi gaak>{s; } with probability 0. &

4 Infinite-precision Strategies

The results of the previous section already characterizasfor almost-sure winning infinite-precision
finite-memory strategies are no more powerful than uniforemmoryless strategies. In this section we
characterize the limit-sure winning for infinite-precisitinite-memory strategies. We define two new oper-
ators, Lpre (limit-pre) and Fpre (fractional-pre). oe S and X, Y C S, these two-argument predecessor
operators are defined as follows:

Lpre, (Y, X) ={s € S |Va>0.3& € x] . V& € x5 . [PE2(X) > a- PS4 (-Y)] 1 (3)
Fpre,(X,Y) ={s€ S[3B>0.V& € xj . 3L € x5 . [PE22(Y) > 8- PE%2(=X)]} . (4)

The operator LprgY, X) is the set of states such that player 1 can choose distnitsutensure that the
probability to progress t& can be made arbitrarily large as compared to the probabiligscape front".

In other words, the probability to progressXodivided by the sum of the probability to progressXoand

to escap@” can be made arbitrarily close to 1 (in the limit 1). The opar&ipre, (X, Y) is the set of states
such that against all player 1 distributions, player 2 cawosk a distribution to ensure that the probability
to progress td” can be made greater than a positive constant times the pligbabescape fromX, (i.e.,
progress td” is a positive fraction of the probability to escape fron.

Limit-sure winning for memoryless strategies. The results of [dAAHKOQ7] shows that for reachability
objectives, memoryless strategies suffices for limit-surening. We now show with an example that limit-
sure winning for Bichi objectives with memoryless stréegs not simply limit-sure reachability to the
set of almost-sure winning states. Consider the game showigi3 with actions{a, b} for player 1 and
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{c,d, e} for player 2 ats;. Statessy, sy are absorbing, and fromy the successor isy deterministically.
The Biichi objective is to visi{s, s3} infinitely often. The only almost-sure winning state{is }. The
statesg is not almost-sure winning becausesatif player 1 playsb with positive probability the counter
move isd, otherwise the counter move és Hence eithesr; is reached with positive probability ey is
never left. Moreover, player 1 cannot limit-sure reach tia¢es; from sg, as the move ensures that; is
never reached. Thus in this game the limit-sure reach tolthest-sure winning set is only state. We
now show that for alk, there is a memoryless strategy to ensure the Biichi obgeatith probability at
leastl — ¢ from sg. At so the memoryless strategy playswith probability 1 — ¢ andb with probability
. Fixing the strategy for player 1 we obtain an MDP for playea2d in the MDP player 2 has an optimal
pure memoryless strategy. If player 2 plays the pure merassydtrategy, thenss is visited infinitely often
with probability 1; if player 2 plays the pure memorylessatgyc, thens; is reached with probability 1;
and if player 2 playgl, thens; is reached with probability — €. Thus for alle > 0, player 1 can win from
sp andss with probability at leasi — ¢ with a memaoryless strategy.

Limit-winning set for B Uichi objectives. We first present the characterization of the set of limiesum-
ning states for concurrent Biichi games from [dAHOO] forriitB-memory and infinite-precision strategies.
The limit-sure winning set is characterized by the follogviormula

vYo.uXo.[(B N Pre(Yp)) U (=B NLpre (Yo, Xo))]

Our characterization of the limit-sure winning set for meyhess infinite-precision strategies would be
obtained as follows: we will obtain sequence of chunk ofestaf; C X; C ... C X} such that from each
X; for all e > 0 there is a memoryless strategy to ensure ¢hat_; U (0OCB N O(X; \ X;—-1)) is satisfied
with probability at least — . We consider the following.-calculus formula:

vY1.p4X1.vYy.uXo.[(B N Pre(Yo)Lpre (Y1, X1)) U (=B N Apre, (Yo, Xo) Lpre, (Y1, X1))]
Let Y* be the fixpoint, and since it is a fixpoint we have

(BN Pre(Yo)lLpre (Y*, X1))U

Y* = ,UJXII/}/O/JXO (_\B ﬂApl’el(Yo,Xo)LﬂLpl’el(Y*,Xl))

HenceY ™ is computed as least fixpoint as sequence of 8gts- X; ... C X}, and X, is obtained from
X; as

vYo.1Xo.[(B 1 Prey (Yo) lLpre, (Y, X)) U (~B 1 Apre, (Yo, Xo) bLpre; (Y7, X,))]

The Lpre(Y™, X;) is similar to limit-sure reachability toY;, and once we rule out LpréY*, X;), the
formula simplifies to the almost-sure winning under memesglstrategies. In other words, from each ¢
player 1 can ensure with a memoryless strategy that eitheX;(is reached with limit probability 1 or
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(i) the game stays inX;;; \ X; and the Buchi objective is satisfied with probability 1. dlléws that

Y* C Limity (IP, M,0¢B). We will show that in the complement set there exists consfar 0 such
that for all finite-memory infinite-precision strategies fdayer 1 there is a counter strategy to ensure the
complementary objective with probability at least> 0.

The general principle. The general principle to obtain the-calculus formula for limit-sure winning
for memoryless infinite-precision strategies is as followge consider theu-calculus formula for the
almost-sure winning for uniform memoryless strategieentadd avY,, .14 X,,11 quantifier and add the
Lpre, (Ya+1, Xn+1) %) to every predecessor operator. Intuitively, when we replgg ; by the fixpointY™,
then we obtain sequencé; of chunks of states for the least fixpoint computationXof, ;, such that from
Xi+1 eitherX; is reached with limit probability 1 (by the LpyéY*, X,,.1) operator), or the game stays in
Xi+1 \ X; and then the parity objective is satisfied with probabilithyla memoryless strategy. Formally,
we will show Lemma 13, and we first present a technical lemrgaired for the correctness proof.

Lemma 12 (Basic Lpre principle). Let X C Y C Z C S and such that alls € Y \ X we haves ¢
Lpre, (Z, X). For all prefix-independent even$ C 0O(Z \ Y), the following assertion holds:

Assume that for all > 0 there exists a memoryless stratedyc 1 such that for allry € Tl
andforallz € Z\ Y we have

PE™(AUOY)>1—n, (e, limy PE™(AUGY) = 1).
’]7—)

Then, for alls € Y for all e > 0 there exists a memoryless strategye 11}/ such that for all
w9 € Il we have

PL(AUGX)>1—¢, (e, liy PLI™(AUGX) = 1).

Proof. The situation is depicted in Figure 4.(a). Since forsa#t Y \ X we haves € Lpre,(Z, X), given
e > 0, player 1 can play the distributiog}""°[¢](Z, X) to ensure that the probability of going toZ is at
moste times the probability of going td. Fix a counter strategy- for player 2. Lety and+’ denote the
probability of going toX and—Z, respectively. Then’ < ¢ - v. Observe that > <!, wherel = |T',|. Let
« denote the probability of the event. We first present an informal argument and then presentaigor
calculations. Sincel C AU X, the worst-case analysis for the result correspond to the waeny = 0,
and the simplified situation is shown as Fig 4.(b). Once we let 0, then we only have an edge fraih\ Y
to Y and the situation is shown in Fig 4.(c). dfis the probability to reactk, then the probability to reach
—Zisq-cand we havg +gc =1, i.e.,q = 1—_1% and givere’ > 0 we can chose to ensure thag > 1 —¢’.
We now present detailed calculations. Givén> 0 we construct a strategy; as follows: lets =

2(18—_'8,) andn = ¢+ > 0; and fix the strategyt] for states inZ \ Y and the distributior{;ﬂre[s](Z,X) at

s. Observe that by choice we haye< - ¢. Letq = Pf;' "™ (AU &X). Then we have > v + 3 - (a+
(I-n—a)- q); since the sef \ Y is reached with probability at mostand then agai” is reached with
probability at least — n — o and event4 happens with probability at least Hence we have

gzy+B-(a+(l-n-a)-q) 27+ -(a-g+(1-n—a)q)=7+8-(1-n) g
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Figure 4: Basic Lpre principle; in the figurégs=1—~v — v - ¢

the first inequality follows ag < 1. Thus we have

2 7+l =r=-¢)-0=n)g
- gl
T oytvetn-—ny—n-ye
> gl
T+v-e+n
vy .
> — sincen < «y-¢
Ry (sincen < v-¢)
1
2 mm2l-c

The desired result follows. &

Lemma 13 For a parity functionp : S +— [1..2n] andT C S, we havelW’ C Limit; (1P, M, Parity(p) U
oT), whereW is defined as follows:

vY, uX,vYy_1.uXn_1.- - vY1.uX1.0Yy. uXp.

By, N Prel(Yn_lj;@ Lpre, (Y, X,)
By,—1 N APreOdd(O,Yni,Xn_l)@Lprel(Yn,Xn)
Bsy,—2 N APreEven(0, Yn_l,%(n_l, Y,—o)Lpre, (Y, X,)
Bg,—3 N APreOdd(1,Y,,—1, XnL_Jl, Y-, Xn—2) ¥ Lpre; (Y, X,)
U
Bs N APreEven(n — 2,Y,,_1, Xn_:l, Y1, X0, Yo) W Lpre, (Ya, X5)
By NnAPreOdd (n — 1,1, X:_l, ., Yy, Xo) ¥ Lpre, (Ya, X,)
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Proof. We first reformulate the algorithm for computif in an equivalent form.

pXnpvY, 10Xy 1. vY.u X1 .0vYe. uXo.
[ T
By, NPre (Y,—1)¥Lpre, (W, X,,)

Bs,—1 N APreOdd (0,Y,,—1, Xp—1)WLpre (W, X,,)
Bon—o N APreEven(0, Y, —1, Xy —1, Yo—2) ¥ Lpre, (W, X,,)

B2n—3 N APreOdd(l, Yn—17 Xn—la Yn—27 Xn—Z) M Lprel(I/Va Xn)

BonN API’eEve@(TL —-2,Y, 1, X 1,..., Y1, X4, %)@Lprel(m Xn)

BN APFEOdq(TL —1,Y, 1, X0 1,..., Y0, XO)@Lprel(I/V, Xn)

U

U

U

U

U

The reformulation is obtained as follows: siridéis the fixpoint ofY;, 1 we replace’;, ., by W everywhere
in the p-calculus formula, and get rid of the outermost fixpoint. Hib®ve mu-calculus formula is a least
fixpoint and thus computed” as an increasing sequente= T, Cc Ty C 1T, C --- C T,,, = W of states,
wherem > 0. Let L, = T;\ T;_, and the sequence is computed by compufings follows, for0 < i < m:

VYn—l-NXn—l- s VYl./LXl.I/Y().MXQ.

The above formula is obtained by simply replacing the véeiak,, by 7T;_ ;.

Bon N Prel(Yn_f@J Lpre, (W, T;—1)

Bsy,—1 N APreOdd (0, Yn_Ul, Xp—1)Lpre, (W, T;—1)
Bsy,—2 N APreEven (0, Yn_l,L)J(n_l, Y, —2) ¥ Lpre, (W, T;_1)
Ban_3 N APreOdd (1,Y,_1, Xni, Yy_2, Xn_2) e Lpre, (W, Tj_;)
U

By N APreEven(n —2,Y,_1, X1, ..
U
By NAPreOdd(n — 1,Y,,—1, Xp—1, - -

. 7Y17X17 YO)MLprel(m ,_Z—;;_l)

. 7Y07 XO)MLprel(VV; E—l)

The proof thatiW C

Limit, (IP, M, Parity(p) U &T') is based on an induction on the sequefitce- 7, ¢ 77 € 7o C -+ C

T = W.Forl <i<m,letV; =W\ T,,—;, so thatV; consists of the last block of states that has been
added,V; to the two last blocks, and so on uriti}, = . We prove by induction on € {1,...,m}, from

i = 1toi = m, that for alls € V;, for all n > 0, there exists a memoryless strategﬁ/for player 1 such

that for allmy € II; we have

P (0T, U Parity(p)) > 1 — 1.

Since the base case is a simplified version of the inductem ste focus on the latter.
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ForV;\ V;_; we analyze the predecessor operator thatV; \ V;_, satisfies. The predecessor operators
are essentially the predecessor operators of the almpstssion for case 1 modified by the addition of
the operator LprgW, T,,,—;) ¢ . Note that since we fix memoryless strategies for player 4 atmalysis
of counter-strategies for player 2 can be restricted to memoryless (as we have player-2 MDP). We fix
the memoryless strategy for player 1 according to the wstigéstribution of the predecessor operators, and
consider a pure memoryless counter-strategy for playere2(JLbe the set of states where player 2 plays
such the Lpre(W, T,,,_;) part of the predecessor operator gets satisfied. Once weutithe possibility of
Lpre, (W, T,,,—;), then theu-calculus expression simplifies to the almost-expressi@ase 2 with)) UT" as
the set of target, i.e.,

’ (TUQ) -
B2n N Prel(Yn—l)
U
Bs,_1 N APreOdd (0, Y. _1, Xn—l)
U
Ban—2 NAPreEven(0,Y,_1, Xp—1,Y,—2)
vY,_1.uXp—1.- - vY1.uX1.0Ye. uXp. U
Ban—3 NAPreOdd (1, Y, -1, Xp—1, Yn—2, Xy —2)
U
Bs N APreEven(n —2,Y,-1, X1, ..., Y1, X1, YD)

U

By ﬁAPI’eOdd(’I’L— 1,Yn_1,Xn_1,...,§/E),X0) i

This ensures that if we rule out Lp@V, T,,—;) from the predecessor operators and treat the)sas
target, then by correctness of the almost-expression & 2ave have that the Parip) U ©(Q U T) is
satisfied with probability 1. By applying the Basic Lpre Riple (Lemma 12) withy = W, X = T,,,_,,

A = Parity(p) andY = X U @, we obtain that for all) > 0 player 1 can ensure with a memoryless
strategy that Parify) U ©7,,—; is satisfied with probability at least— n. This completes the inductive
proof. Withi = m we obtain that for all) > 0, there exists a memoryless stratedysuch that for all states

s € V,, = W and for allm, we have PP ™ (0T, U Parity(p)) > 1 — 7. SinceTy = T, the desired result
follows. 1

We now define the dual predecessor operators (the dualitheviihown in Lemma 15). We will first use
the dual operators to characterize the complement of thef $@bit-sure winning states for finite-memory
infinite-precision strategies. We now introduce two fratil predecessor operators as follows:

FrPreOdd (i, Y, Xn, - - -, Yo—is Xp—i)

= Fpre,(Xn, Yn) W Apre, (Xn, Yu-1)l - - - APrey(Xon i1, Yo—i) WPrex: (X, i)
FrPreEven(i, Yy, Xn, ..., Yn—i, Xn—i, Yn—i—1)

= Fprey,(Xn, Yn) W Aprey (Xn, Y1)

@ e @Apre2 (Xn—i+1> Yn—z) @Aprez(Xn—u Yn—i—l)

The fractional operators are same as the PosPreOdd andeBesRroperators, the difference is the
Posprg(Y,,) is replaced by Fpig X,,,Y,,).
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Remark 2 Observe that if we rule out the predicate Fpi&,,Y,) the predecessor operator
FrPreOda, (i, Yo, Xp, Yo, - - -, Y—i, Xn—i) (resp. FrPreEven(s, Y, X, Yn—1,..., Vi, Xn—i, Yn—i—1)),
then we obtain the simpler predecessor operator APrelveN,.Y,_1,...,Y,—i, X,—;) (resp.

APreOdQ(Zy Xn» Yn—b ) Yn—i7 Xn—i7 Yn—i—l))-
The formal expanded definitions of the above operators di@las/s:

APreOdd (i, Yy, Xn, - - -, Yo—i, Xn—i) W Lpre; (Yot1, Xn+1) =
(PS2(Xpg1) > @+ PEY2(2Yp40))

(PF(X,) > 0N PE(Y,) = 1)

{s €S |Va>0.3¢ € V& € x5 | (PF(Xpo1) > 0A PSR (Vyoy) = 1) } ,
V

I (P§17§2(Xn—i) >0 /\PS&,& (Y_i)=1) |

APreEvem(iy an XTL7 e Yn—i7 Xn—i7 Yn—i—l) E‘J Lprel (Yn+17 Xn+1) =
(PS&,& (Xpi1) > a- P§1’£2(_‘Yn+l))

(PF2(X,) > 0 A PV (Y,) = 1)

(PE%2(X,_1) > 0 A P92 (Y, 1) = 1)
{seS|va>o.agleX§.vggexg. V }

(P§17§2(Xn—i) > 0 A P§1’52 (Yn—z) = 1)

(P§17§2(Yn—i—1) =1) i
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The formal expanded definitions of the above operators di@las/s:

FrPreOdd(i, Yy, Xn, ..., Yo_s, Xps) =

(P8€1,€2 (Yn) > 3. P§1’§2 (_‘Xn))
(PE*2(Y,_1) > 0 A P92 (X,) = 1)

(PE%2(Y_o) > 0 A PEV92(X, 1) = 1)
{s €S 138> 0¥ € x5.36 € X3 V }

(PS&,Ez (Vi) >0A P§1’§2 (Xpn—iv1)=1)

(PSS (X = 1)

FrPreEveQ(z’, Yo, Xn, o Yoo, X0, Yn—i—l) =
(P8£1,£2(Yn) > 3. P§1’§2(—|Xn))

{s €S3>0v8 €xi I exs | (PER(Yaoo) > 0N PR (X, ) = 1) } .

| (PE (Y1) > 0N PSR (=X, ) = 1) |

We now show the dual of Lemma 13.

Lemma 14 For a parity functionp : S +— [1..2n] we haveZ C —Limit, (1P, FM, Parity(p)), whereZ is
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defined as follows:

/L_Yn.I/Xn.,uYn_l.I/Xn_l. e nY1.v X, . uYe. v Xg.
By, NFrPreEven(0,Y,, X,,, Y, 1
Bop_1N FrPreOddz(iYn, Xn, Y1, X01)
Bs,—2 NFrPreEven(1, ;i, Xn, Y1, X01,Y2)
Bay,—3 N FrPreOdd: (2, Y, )L(Jn, Y1, Xn-1,Yn—2,X—2)
Ba,—4 N FrPreEven(2,Y,, Xn,UYn_l, Xn-1,Yn—2,Xn2,Y,3)

B3N FI’PFEOddz(’I’L - 1LY, X0, Yo 1, X0 1,... ,Yl,Xl)
U
BonN FrPreEver}(n —1L,Y,, X, Yo 1, X0 1,..., Y1, X4, }/0)
U
By N FrPreOdak(n, Yy, Xy, Vi1, Xp—1,..., Y1, X1, Y0, Xo)

Proof. Fork > 0, let Z; be the set of states of levélin the aboveu-calculus expression. We will
show that inZ;, there exists constart, > 0, such that for every finite-memory strategy for player 1,
player 2 can ensure that eith&f_; is reached with probability at leagy, or else coParitfp) is satisfied
with probability 1 by staying in(Z; \ Zx_1). SinceZ, = §, it would follow by induction thatZ; N
Limity (1P, FM , Parity(p)) = 0 and the desired result will follow.

We obtainZ;, from Z;,_, by adding a set of states satisfying the following condition

By, N FrPreEven(0, Zx—1, Xy, Yo—1

U
Boyp 1 N FrPreOdd(1, Zy—1, Xon, Vo1, Xn—1)
U
Bo,—2N FI’PI'EEVEQ(L Zk—1> Xn, Yn—la Xn—1> Yn_g)
U
B2n—3 N FrPreOdd(27 Zk’—17 XTL7 Yn—17 Xn—17 YTL—27 XTL—2)
U

v Xy Yy 1vXp_1.- - uY1.0X1.10Ye.v Xp.
Boyn_4 N FI’PI'EEVEQ(2, Zk—1> Xn, Yn—h Xn_g, Yn_g, Xn_g, Yn_g)

BsnN FrPreOdd(n — 1,7 1, Xn, Y0 1, Xn1,... ,Yl,Xl)
U
By N Frpl’eEVEQ(TL — 1,7 1, X, Y0 1, Xp_1,..., Y1, Xq, }/0)
U
Bl N FI’PreOdd(n, Zk’—17 Xna Yn—17 XTL—17 s 7Y17 X17 Yr(]) XO)

The formula is obtained by removing the outeoperator, and replacing, .1 by Z,_ (i.e., we iteratively
obtain the outer fixpoint o¥,, ). If the probability of reaching tdZ;_; is not positive, then the following

conditions hold:
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e If the probability to reacl¥;,_, is not positive, then the predicate Fp(&’,,, Z,_,) vanishes from the
predecessor operator FrPreQtdZ;_1, X, V-1, ..., Yn—i, X—i), and thus the operator simpli-
fies to the simpler predecessor operator APreklieX,,, Y,,—1,..., Y, Xp—i).

e If the probability to reacl¥;,_, is not positive, then the predicate Fp(&,,, Z,_,) vanishes from the
predecessor operator FrPreEv@nzy._1, X,,, Y1, .., Yo—i, Xn—i, Yn—i—1), and thus the operator
simplifies to the simpler predecessor operator APreQdd& ,,, Yy, —1, ..., Yn—i, Xpn—i, Yn—i—1)-

Hence either the probability to reach,_; is positive, and if the probability to reacti,_; is not positive,
then the above-calculus expression simplifies to

r Bay, N APreOdd (0, X, Yo_1) 1
U
Ba,—1 N APreEven(1, X,,, Y5—1, Xpn—1)
U
B2n—2 N APreOdQ(L Xna Yn—17 Xn—17 Yn—?)
7% = v Xy WY 1vXm—1 - pY1.0 X1 uY0.
Bs N APreEven(n — 2, X,,,..., Y1, X1)
U
By ﬂAPreOdQ(n -1,X,,...., Y1, X4, Yo)
U
| By NAPreEven(n — 1, X,,,..., Y1, X1, Yy, Xo) |

We now consider the parity functign—1 : S — [0..2n — 1], and observe that the above formula is same as
the dual almost-expression for case 1. By correctness afithkalmost-expression we we haié C {s €

S | Vm € I 3my € Ty, PrT™2 (coParityp)) = 1} (since Parityp + 1) = coParity(p)). It follows that if
probability to reachZ;,_; is not positive, then against every memoryless strategpléyrer 1, player 2 can
fix a pure memoryless strategy to ensure that player 2 widsprdabability 1. In other words, against every
distribution of player 1, there is a counter-distributiam player 2 (to satisfy the respective APreEyamnd
APreOdd operators) to ensure to win with probability 1. It followsattor every memoryless strategy for
player 1, player 2 has a pure memoryless strategy to ensardathevery closed recurrerit C Z* we
havemin(p(C)) is odd. It follows that for any finite-memory strategy for yda 1 with M, player 2 has a
finite-memory strategy to ensure that for every closed recusetC’ x M’ C Z* x M, the closed recurrent
setC” is a union of closed recurrent sefsof Z*, and hencenin(p(C")) is odd (also see Example 3 as an
illustration). It follows that against all finite-memoryrategies, player 2 can ensure if the game stays‘in
then coParityp) is satisfied with probability 1. The Fpyeperator ensures that #* is left andZ;_; is
reached, then the probability to reagh_, is at least a positive fractiofi, of the probability to leaveZ;,.

In all cases it follows thaf;, C {s € S | 3 > 0.¥m; € IIM 3y € [p.PrrL™2(coParityp) U O Zg 1) >

B }. Thus the desired result follows. B

Lemma 15 (Duality of limit predecessor operators). The following assertions hold.
1. GivenX,,,1 C X, CX,, 1C--CX,, ;CY, ;CYyp y1C---CY, CY,y1,Wehave
FrPreOdCb (Z + 17 _'YTL+17 T Andl, _'Yn7 _'Xn7 R _'Yn—i7 _'Xn—i)
= —(APreOdd (7, Yy, Xn, ..., Yn—i, Xpn—i) WLpre, (Yo+1, Xnt1))-
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2. Givean+1 CX,CXp 1S CXp i CY 1 CY,y C Yn—i+1 c---CY,C Yn+1 and
s € S, we have

FrPreEveQ (’L + 17 _'Yn+17 T An+41, _'YTL7 _‘Xn> sy _'Yn—i7 _'Xn—i7 - n—i—l)
= —(APreEven(i, Yy, Xn, .-, Yo—i, Xn—i, Yn—i—1) ¥ Lpre; (Yai1, Xnt1)).

Proof. We present the proof for part 1, and the proof for second pahalogous. To present the proof of
the part 1, we present the proof for the case when 1 andi = 1. This proof already has all the ingredients
of the general proof, and the generalization is straighi#od as in Lemma 11.

Claim. We show that for X; - X0 - Yy - Y: we have
Fpre,(—X1,—Y1) b Apre,(—X;,—Yo) b Prey(=Xo) = —(Lpre (Y1, X1) b Apre (Yo, Xo)). We

start with a few notations. L&t C I'y(s) andWk C T's(s) be set ofstronglyandweaklycovered actions
for player 2. Giverbt C Wk C I'y(s), we say that a séf C I'y (s) satisfyconsistencyondition if

Vb € St. Dest(s,U,b)N X1 # 0
Vb € Wk. (Dest(s,U,b) N X1 # 0) V (Dest(s,U,b) C Yy A Dest(s,U,b) N Xy # 0)

A triple (U, St, Wk) is consistent i/ satisfies the consistency condition. We define a funcfithat takes
as argument a tripl€U, St, Wk) that is consistent, and returns three sgt&, St, Wk) = (U’,St’, WK')
satisfying the following conditions:

(1) Dest(s,U’,To(s) \ Wk) C Y7;
(2) St' = {b e Ty(s) | Dest(s,U’',b) N X1 # 0}
(3) WK = {b € T'y(s) | (Dest(s,U’",b) N X1 # 0) V (Dest(s,U’,b) C Yy A Dest(s,U’,b) N Xy # 0)}

We require thatU, St, Wk) C (U’,St’,Wk’) and also requiref to return a larger set than the input argu-
ments, if possible. We now consider a sequence of actioesugét a fixpoint is reachedst_; = Wk_; =
U_, = (0 and fori > 0 we have(U;, St;, Wk;) = f(U;—1,St;—1, Wk,—1). Let (U, St., Wk,) be the set
fixpoints (that isf cannot return any larger set). Observe that every tiheinvoked it is ensured that the
argument form a consistent triple. Observe that we tsaye- Wk; and hencét, € Wk,. We now show
the following two claims.

1. We first show that ifVk, = I'y(s), thens € Lpre, (Y1, X1 ) Apre, (Yo, Xo). We first define the rank
of actions: for an actioa € U, the rank((a) of the action isnin; a € U;. For an actiorb € I'y(s),
if b € St,, then the strong rank,(b) is defined asnin; b € St;; and for an actiorb € Wk, the
weak rank?,, (b) is defined asnin; b € Wk;. Fore > 0, consider a distribution that plays actions in
U; with probability proportional ta‘. Consider an actioh for player 2. We consider the following
cases: (a) Ib € St,, then letj = /,(b). Then for all actions: € U; we haveDest(s,a,b) C Y;
and for some action € U; we haveDest(s,a,b) N X; # (), in other words, the probability to leave
Y, is at most proportional te’*! and the probability to gotd(; is at least proportional te’, and
the ratio ise. Sincee > 0 is arbitrary, the Lprg(Y;, X;) part can be ensured. (b)df¢ St,, then
let j = £,,(b). Then for alla € U, we haveDest(s,a,b) C Y, and there exista € U, such that
Dest(s,a,b) N Xy # 0. It follows that in first case the condition for Lprg, X ) is satisfied, and in
the second case the condition for ApiE, X) is satisfied. The desired result follows.

2. We now show thaFs(s) \ Wk, # 0, thens € Fpre,(-X1, Y1) W Apre,(— X1, —Y0) ¥ Prey(—Xo).
LetU = I'1(s) \ Uy, and letBy, = I's(s) \ Wk, and By = T'5(s) \ St.. We first present the required
properties about the actions that follows from the fixpoimracterization.
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(a) Property 1.For allb € By, for all a € U, we have
Dest(s,a,b) € =X A (Dest(s,a,b) C —XgV Dest(s,a,b) N =Yy # 0).

Otherwise the actioh would have been included Wk, andWk, could be enlarged.

(b) Property 2.For allb € B, and for alla € U, we haveDest(s,a,b) C —X;. Otherwiseb would
have been included ift, andSt, could be enlarged.

(c) Property 3.For alla € U, either
i. Dest(s,a, Bx) N =Yy # 0; or
ii. forall b€ Bs, Dest(s,a,b) C -X; and for allb € By,

Dest(s,a,b) € =X A (Dest(s,a,b) C =Xy V Dest(s,a,b) N =Yy # ()

The property is proved as follows: Pest(s,a, By) C Y; and for someb € B, we have
Dest(s,a,b) N X1 # 0, thena can be included inJ, and b can be included irSt,; if
Dest(s,a, Bx) C Y7 and for somé € By, we have

(Dest(s,a,b) N X1 # 0) V (Dest(s,a,b) N Xo # O A Dest(s,a,b) C Yp)

then ¢ can be included i/, andb can be included inWk,.. This would contradict that
(U, Sty, Wk,) is a fixpoint.

Let & be a distribution for player 1. Lef = Supg&;). We consider the following cases to establish
the result.

(a) We first consider the case wh&nC U,. We consider the counter distributign that plays all
actions inBy, uniformly. Then by property 1 we have (Dest(s, &1, &2) € =X7; and (ii) for all
a € Z we haveDest(s,a,&) C =X or Dest(s,a,&) N =Yy # 0. If for all a« € Z we have
Dest(s,a, &) C =Xy, thenDest(s, &1,£2) € X and Preg(—X)) is satisfied. Otherwise we
haveDest(s, &1, &2) € =X andDest (s, £1,&2) N Yy # 0, i.e., Apre(—X7, ~Yp) is satisfied.

(b) We now consider the case whehn U # (. Let Uy = U,, and we will iteratively compute
setsUy C U; C Z such that (i)Dest(s,U;, Bs) € —X; and (ii) for alla € U; we have
Dest(s,a, By) C =Xy or Dest(s,a, Bx) C =Yy (unless we have already witnessed that player 2
can satisfy the predecessor operator). In base case thehalsis by property 2. The argument
of an iteration is as follows, and we ugg = Z \ U;. Among the actions of N U;, leta* be
the action played with maximum probability. We have thedwiing two cases.

i. If there existsb € B, such thatDest(s,a*,b) N —Y; # 0, consider the counter actidn
Sinceb € By, by hypothesis we hav®est(s, U;,b) C —X;. Hence the probability to go
out of =X is at most the total probability of the actions Zhn U; and for the maximum
probability actiona* € Z N U, the set-Y; is reached. Let > 0 be the minimum positive
transition probability, then fraction of probability to go —Y; as compared to go out of
-X;isatleasts =7 - TG (S)‘ > 0. Thus Fprg(—X1, Y1) can be ensured by playirtg

ii. Otherwise, by property 3, (i) eitheDest(s,a*, By) N =Yy # (), or (ii) for all b € B, we
haveDest(s, a.,b) C =X, and for allb € By,

Dest(s,a*,b) C =X A (Dest(s,a*,b) C =Xg V Dest(s,a*,b) N =Yy # ()
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If Dest(s,a*, Bx) N Y1 # 0, then chose the actiol € By, such thatDest(s,a*,b) N
-Y; # 0. Sinceb € B, C B, and by hypothesidest (s, U;, Bs) C =X, we have
Dest(s,U;,b) € =X;. Thus we have a witness actidrexactly as in the previous case,
and like the proof above Fpye-X;,—Y;) can be ensured. [Dest(s,a*, By) C Y7,
then we claim thatDest(s,a*, Bs) € —X;. The proof of the claim is as follows: if
Dest(s,a*, B;) C Y7 and Dest(s,a*, Bs) N X1 # (), then chose the actiost from By
such thatDest (s, a*,b*) N X1 # 0, and then we can includ€ to U, andb* to St,. (contra-
dicting that they are the fixpoints). It follows that we canlidea* € U; 1 and continue.

Hence we have either already proved that player 2 can erspdédecessor operatorldr= Z
in the end. IfU; is Z in the end, ther¥ satisfies the property used in the previous casés,of
(the proof of part a), and then as in the previous proof (of @arthe uniform distribution over
By, is a witness that player 2 can ensuresP?)) lx) Apre, (X1, =Yp).
General case.The proof for the general case is a tedious extension of thdtrpresented fon = 1 and
1 = 1. We present the details for the sake of completeness. We ttatvior X,,.1 C X,, C X,,—1
Xni €Y i CYyjp1 C€--- CY, CY,pq, we have

N 1l
N

FrPreOd@ (Z + 17 _‘Yn+l7 _‘Xn+17 _'YN7 _'XN7 ey _‘Yn—’ia _‘Xn—z)
= ﬁ(APfEOdq (i, Yn, Xn, ey Yn—ia Xn—z) @Lprel (Yn+1, Xn+1)).

We use notations similar to the special case.dtet I'y(s) andWk C I'y(s) be set ofstronglyandweakly
covered actions for player 2. Givén C Wk C T'y(s), we say that a sdf C I';(s) satisfy consistency
condition if

Vb € St. Dest(s,U,b) N X1 # 0
Vb € Wk. (Dest(s,U,b) N Xyp1 # 0) V30 < j < i.(Dest(s,U,b) C Y,—j A Dest(s,U,b) N X,—;j # ()

A triple (U, St, Wk) is consistent iU satisfies the consistency condition. We define a funcfitihat takes
as argument a tripl€U, St, Wk) that is consistent, and returns three sgt&, St, Wk) = (U’,St’, WK')
satisfying the following conditions:

(1) Dest(s,U’,T'y(s) \ Wk) C Y, 41;
(2) St' = {b € T'y(s) | Dest(s,U’,b) N X1 # 0}
(3) WK = {b € T'a(s) | (Dest(s,U",b) N X41 # D)V
30 < j <i.(Dest(s,U’,b) CY,—; A Dest(s,U',b) N X,,_; # 0)}

We require thatU, St, Wk) C (U’,St’,Wk’) and also requiref to return a larger set than the input argu-
ments, if possible. We now consider a sequence of actioesigét a fixpoint is reachedSt_; = Wk_; =
U1 = ¢ and fori > 0 we have(UZ-,StZ-,WkZ-) = f(Uz'—lasti—hWki—l)- Let (U*,St*,Wk*) be the set
fixpoints (that isf cannot return any larger set). Observe that every tinginvoked it is ensured that the
argument form a consistent triple. Observe that we tsaye& Wk; and hencét, € Wk,. We now show
the following two claims.

1. Wefirstshow that Wk, = I'y(s), thens € Lpre, (Y41, Xpn+1)WAPreOdd (i, Yy, Xp, ..., Yo, Xo—i).
We first define the rank of actions: for an actiere U, the rank¢(a) of the action ismin; a € U;.
For an actiorb € I's(s), if b € St,, then the strong rank;(b) is defined asnin; b € St;; and for an
actionb € Wk, the weak rank,,(b) is defined asnin; b € Wk;. Fore > 0, consider a distribution
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that plays actions ii/; with probability proportional ta=!. Consider an action for player 2. We
consider the following cases: (a)ife St,, then letj = ¢,(b). Then for all actions: € U; we have
Dest(s,a,b) C Y, and for some action € U; we haveDest (s, a,b) N X,+1 # 0, in other words,
the probability to leave’;,.; is at most proportional te’+! and the probability to gotd\,, . is at
least proportional te’, and the ratio i. Sinces > 0 is arbitrary, the Lpre(Y;, 1, X,,11) part can

be ensured. (b) Ib ¢ St., then letj = ¢,,(b). Then for alla € U, there exist®) < j < i such
that we haveDest(s,a,b) C Y,_; and there exista € U, such thatDest(s,a,b) N X,—; # 0. It
follows that in first case the condition for Lpré’,+1, X,,+1) is satisfied, and in the second case the
condition for APreOdd(i, Y,,, X, ..., Yn—i, X,,—;) is satisfied. The desired result follows.

. We now show thal's(s) \ Wk, # 0, then
S € FI’PFEOdd(Z + 1, =Y, " Xnt1, Y, 7 Xn, oo, Y0y, _‘Xn—i)'

LetU = I'1(s) \ Uy, and letBy, = I's(s) \ Wk, and B = T'5(s) \ St.. We first present the required
properties about the actions that follows from the fixpoimracterization.

(a) Property 1.For allb € By, for all a € U, we have
Dest(s,a,b) C = X,41 A0 < j <i.(Dest(s,a,b) C =X,_; V Dest(s,a,b) N=Y,_; # 0).

Otherwise the actioh would have been included Wk, andWk, could be enlarged.

(b) Property 2. For allb € B; and for alla € U, we haveDest(s,a,b) C =X,,+1. Otherwiseb
would have been included Bt, andSt, could be enlarged.

(c) Property 3.For alla € U, either
i. Dest(s,a,By) N =Y,1 # 0; or
ii. forall b€ Bs, Dest(s,a,b) C —X,; and for allb € By,

Dest(s,a,b) C =X, 11A30 < j < i.(Dest(s,a,b) C ~X,,—;VDest(s,a,b)N-Y,_; # 0)

The property is proved as follows: Mest(s,a, By) C Y,+1 and for someé € B, we have
Dest(s,a,b) N X,+1 # 0, thena can be included i/, andb can be included irbt,; if
Dest(s,a, B) C Y,,1 and for somé € B, we have

(Dest(s,a,b) N X1 # 0) V30 < j <i.(Dest(s,a,b) N X,—; # DA Dest(s,a,b) C Y,_;)

then a can be included i/, and b can be included inVk,.. This would contradict that
(U, St, Wk,) is a fixpoint.

Let ¢ be a distribution for player 1. Lef = Supg&;). We consider the following cases to establish
the result.

(&) We first consider the case wh&nC U,. We consider the counter distributign that plays all
actions inBy, uniformly. Then by property 1 we have (Dest(s, &1,&2) € = X,,+1; and (ii) for
alla € Z there existg < i such thatDest(s, a,&2) C =X,,_; or Dest(s, a,&)N—Y,—; # 0. If
foralla € Z we haveDest(s, a,&) C = X,,—;, thenDest(s, &1,&2) € = X,—; and Prg(—=X,,—;)
is satisfied. Otherwise, there must exigts< ¢ such thatDest(s,&1,£2) € —X,41—; and
Dest(s,&1,&)N=Y,—; # 0, i.e., APreOdd(i, =Xy 41, 7 Yn ..., 7 Xp_it1, 7Y,—;) is satisfied.
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(b) We now consider the case whehn U # (. Let Uy = U,, and we will iteratively compute
setsUy C U, C Z such that (i)Dest(s, Uy, Bs) € —X,,+1 and (ii) for alla € U, there exists
J < i such thatDest(s,a, By) € ~X,,_; or Dest(s,a, By) C =Y,_; (unless we have already
witnessed that player 2 can satisfy the predecessor oper&tobase case the result holds by
property 2. The argument of an iteration is as follows, anduselU, = Z \ U,. Among the
actions ofZ N U/, leta* be the action played with maximum probability. We have tH¥ang

two cases.

i. If there existsh € B, such thatDest (s, a*,b) N =Y, 1 # ), consider the counter actidn
Sinceb € By, by hypothesis we havBest (s, Uy, b) C = X,,+1. Hence the probability to go
out of X, is at most the total probability of the actionsm U, and for the maximum
probability actiona* € Z N U, the set—Y,,; is reached. Let) > 0 be the minimum
positive transition probability, then fraction of problitlyi to go to —Y,,, 1 as compared to
go out of =X, isatleast? = - m > 0. Thus Fprg(—X,+1,Y,+1) can be ensured
by playingb.

ii. Otherwise, by property 3, (i) eithePest (s, a*, Br) N —Y,4+1 # 0, or (ii) for all b € Bs we
haveDest (s, a.,b) C =X, 1 and for allb € By,

Dest(s,a*,b) C =X, +1A30 < j < i.(Dest(s,a*,b) C =X,_;VDest(s,a*,b)N-Y,_; #0)

If Dest(s,a*, By) N —Y,4+1 # (), then chose the actione By, such thatDest (s, a*,b) N
-Y,+1 # (. Sinceb € By, C By, and by hypothesiDest(s, Uy, B;) € —X;, we have
Dest(s,Us,b) € —X,4+1. Thus we have a witness actidnexactly as in the previous
case, and like the proof above Fpfe X, 1, Y, +1) can be ensured. West(s,a*, By) C
Y41, then we claim thaDest (s, a*, Bs) C —X,,.1. The proof of the claim is as follows:
if Dest(s,a*, Bx) C Y41 andDest(s,a*, Bs) N X,,+1 # 0, then chose the actidrf from
B; such thatDest(s, a*,b*) N X,,+1 # 0, and then we can include* to U, andb* to St
(contradicting that they are the fixpoints). It follows tlve¢ can includex* € Uy, and
continue.

Hence we have either already proved that player 2 can en$grepitedecessor opera-
tor or Uy = Z in the end. IfU, is Z in the end, thenZ satisfies the property

used in the previous cases of. (the proof of part a), and then as in the previous
proof (of part a), the uniform distribution oveB, is a witness that player 2 can ensure
Pre(—X,—i) WAPreOdd (i, ~ X, 11, Yy ..., 7 Xp—ir1, 7Y 0—i).

The desired result follows. 1

Characterization of Limit; (1P, M, ®) set. From Lemma 13, Lemma 14, and the duality of predecessor op-
erators (Lemma 15) we obtain the following result charazitgg the limit-sure winning set for memoryless
infinite-precision strategies for parity objectives.

Theorem 4 For all concurrent game structurggover state spac8, for all parity objectivesb = Parity(p)
for player 1, withp : S — [1..2n], the following assertions hold.

1. We have Limij{ /P, M, ®) = Limit, (IP, FM, ®), and Limit (IP, FM,®) = W, whereW is defined
as they-calculus formula in Fig 5, and3; = p~!() is the set of states with priority for i € [1..2n].
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v, uX, vY, 1. uXpn_1.- - vY1.uX1.0Yy.uXp.
i B, N Pra (Y,—1)Lpre, (Y, X,) T

U
Bo,—1 N APreOdq(O, Yn—la Xn—l) Lﬂ Lprel (Yn, Xn)
U
Bay,—2 N APreEven(0,Y,,—1, X;,—1, Yo—2) ¥ Lpre, (Y, X,)
U
Bgn_g N APreOdq(l, Yn—h Xn—la Yn_g, Xn_g) Lﬂ Lprel (Yn, Xn)

U

By N APreEven(n —2,Y,-1, Xpn—1,..., Y1, X1, Yy) WLpre, (Y, X,)
U
By NAPreOdd(n — 1,Y,—1, Xp—1, - - ., Yo, Xo) WLpre, (Ya, X,)

Figure 5:u-calculus formula for limit

2. The set Limit(/P, FM, ®) can be computed symbolically using flx€alculus expression of Fig 5 in
time O(|S2+2 . 3 g 2T U0,

3. Fors € S whethers € Limit; (/P, FM , ®) can be decided in NP coNP.

The NPN coNP bound follows directly from tha-calculus expressions: the players can guess the
ranking function of thgi-calculus formula and for each state the players guess ¢fuesee of A;, St;, Wk;)
to witness that the predecessor operators are satisfiedwiliesses are polynomial and can be verified in
polynomial time.

Independence from precise probabilities.Observe that the computation of all the predecessor opsrato
only depends on the supports of the transition function,dires not depend on the precise transition proba-
bilities. Hence the computation of the almost-sure andtisure winning sets is independent of the precise
transition probabilities, and depends only on the supp®sformalize this in the following result.

Theorem 5 LetG, = (S,A,T'1,T2,601) andGs = (S,A, T'1, T2, d2) be two concurrent game structures that
are equivalent, i.e.g; = Go. Then for all parity objective®, for all ¢, € {P,U, FP,IP} andC, €
{M, FM,IM} we have (a) Almo§t(Cy, Cy, ®) = Almost?(Cy, Cy, ®); and (b) Limit™ (Cy, Co, ®) =
Limitg2 (Cl, Cs, Q))

All cases of the above theorem, other than whgn= IP andCy = IM follows from our results, and
the result forCy, = IP andCy = IM follows from the results of [dAHOQ].

5 Conclusion

In this work we studied the bounded rationality problem foalifative analysis in concurrent parity games,
and presented a precise characterization. The theory ofdeolrationality for quantitative analysis is future
work, and we believe the results of this paper will be helpiudeveloping the theory.
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