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Abstract

We consider 2-player games played on a finite state space for an infinite number of rounds. The
games areconcurrent: in each round, the two players (player 1 and player 2) choosetheir moves inde-
pendently and simultaneously; the current state and the twomoves determine the successor state. We
study concurrent games withω-regular winning conditions specified asparity objectives. We consider
thequalitative analysisproblems: the computation of thealmost-sureandlimit-surewinning set of states,
where player 1 can ensure to win with probability 1 and with probability arbitrarily close to 1, respec-
tively. In general the almost-sure and limit-sure winning strategies require bothinfinite-memoryas well
asinfinite-precision(to describe probabilities). We study thebounded-rationalityproblem for qualitative
analysis of concurrent parity games, where the strategy setfor player 1 is restricted to bounded-resource
strategies. In terms of precision, strategies can be deterministic, uniform, finite-precision or infinite-
precision; and in terms of memory, strategies can be memoryless, finite-memory or infinite-memory.
We present a precise and complete characterization of the qualitative winning sets for all combinations
of classes of strategies. In particular, we show that uniform memoryless strategies are as powerful as
finite-precision infinite-memory strategies, and infinite-precision memoryless strategies are as power-
ful as infinite-precision finite-memory strategies. We showthat the winning sets can be computed in
O(n2d+3) time, wheren is the size of the game structure and2d is the number of priorities (or colors),
and our algorithms are symbolic. The membership problem of whether a state belongs to a winning set
can be decided in NP∩ coNP. While this complexity is the same as for the simpler class ofturn-based
parity games, where in each state only one of the two players has a choice of moves, our algorithms,
that are obtained by characterization of the winning sets asµ-calculus formulas, are considerably more
involved than those for turn-based games.

1 Introduction

Concurrent games are played by two players on a finite state space for an infinite number of rounds. In each
round, the two players independently choose moves, and the current state and the two chosen moves deter-
mine the successor state. Indeterministicconcurrent games, the successor state is unique; inprobabilistic
concurrent games, the successor state is given by a probability distribution. The outcome of the game (or a
play) is an infinite sequence of states. These games were introduced by Shapley [Sha53], and has been one
of the most fundamental and well studied game models in stochastic graph games. We considerω-regular
objectives; that is, given anω-regular setΦ of infinite state sequences, player 1 wins if the outcome of the
game lies inΦ. Otherwise, player 2 wins, i.e., the game is zero-sum. Such games occur in the synthesis and
verification of reactive systems [Chu62, RW87, PR89] (see also [ALW89, Dil89, AHK97]).

The player-1valuev1(s) of the game at a states is the limit probability with which player 1 can ensure
that the outcome of the game lies inΦ; that is, the valuev1(s) is the maximal probability with which
player 1 can guaranteeΦ against all strategies of player 2. Symmetrically, the player-2 valuev2(s) is the
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limit probability with which player 2 can ensure that the outcome of the game lies outsideΦ. Thequalitative
analysis of games asks for the computation of the set ofalmost-surewinning states where player 1 can ensure
Φ with probability 1, and the set oflimit-surewinning states where player 1 can ensureΦ with probability
arbitrarily close to 1 (states with value 1); and thequantitativeanalysis asks for a precise computation of
values.

Traditionally, the special case ofturn-basedgames has received most attention. In turn-based games, in
each round, only one of the two players has a choice of moves. In turn-based deterministic games, all values
are 0 or 1 and can be computed using combinatorial algorithms[Tho90, Sch07, JPZ06]; in turn-based
probabilistic games, values can be computed by iterative approximation [CH06, Con92, GH08]. In this
paper we focus on the more generalconcurrentsituation, where in each round, both players choose their
moves simultaneously and independently. Such concurrencyis necessary for modeling the synchronous
interaction of components [dAHM00, dAHM01]. The concurrent probabilistic games fall into a class of
stochastic games studied in game theory [Sha53], and theω-regular objectives, which arise from the safety
and liveness specifications of reactive systems, fall into alow level (Σ3∩Π3) of the Borel hierarchy. From a
classical result of Martin [Mar98] that established determinacy of Blackwell games it follows that concurrent
probabilisticω-regular games are determined, i.e., for each states we havev1(s) + v2(s) = 1. Parity
objectives can express allω-regular conditions, and we consider concurrent games withparity objectives.

Concurrent games differ from turn-based games in that optimal strategies require, in general, random-
ization. A pure strategy must, in each round, choose a move based on the current state and the history
(i.e., past state sequence) of the game. By contrast, arandomizedstrategy in each round chooses a proba-
bility distribution over moves (rather than a single move).The move to be played is then selected at ran-
dom, according to the chosen distribution. Randomized strategies are not helpful for achieving a value
of 1 in turn-based probabilistic games [CJH03, Cha07], but they can be helpful in concurrent games,
even if the game itself is deterministic [dAHK07]. In contrast to turn-based deterministic and proba-
bilistic games with parity objectives, where deterministic memoryless strategies exist for qualitative analy-
sis [EJ88, Zie98, DJW97, CJH03, Cha07], in concurrent games, along with randomization, infinite-memory
is required for limit-sure winning [dAH00].

The strategies for qualitative analysis for concurrent games require two different types of infinite re-
source: (a) infinite-memory, and (b) infinite-precision in describing the probabilities in the randomized
strategies; (see example in [dAH00] that limit-sure winning in concurrent Büchi games require both infinite-
memory and infinite-precision). In many applications, suchas synthesis of reactive systems, infinite-
memory and infinite-precision strategies are not implementable in practice. Thus though the theoretical
solution of infinite-memory and infinite-precision strategies was established in [dAH00], the strategies ob-
tained are not realizable in practice, and the theory to obtain implementable strategies in such games has
not been studied before. In this work we consider thebounded rationalityproblem for qualitative analysis
of concurrent parity games, where player 1 (that representsthe controller) can play strategies with bounded
resource. To the best of our knowledge this is the first work that considers the bounded rationality problem
for concurrentω-regular graph games. The motivation is clear as controllers obtained from infinite-memory
and infinite-precision strategies are not implementable.

In terms of precision, strategies can be classified as pure (deterministic), uniformly random, finite-
precision, and infinite-precision (in increasing order of precision to describe probabilities of a randomized
strategy). In terms of memory, strategies can be classified as memoryless, finite-memory and infinite-
memory. In [dAH00] the almost-sure and limit-sure winning characterization under infinite-memory,
infinite-precision strategies were presented. In this work, we present (i) a complete and precise characteriza-
tion of the qualitative winning sets for bounded resource strategies, (ii) symbolic algorithms to compute the
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winning sets, and (iii) complexity results to determine whether a given state belongs to a qualitative winning
set.

Our contributions for bounded rationality in concurrent parity games are summarized below.

1. We show that pure memoryless strategies are as powerful aspure infinite-memory strategies. This
result is obtained by a simple reduction to turn-based stochastic games.

2. We show that uniform memoryless strategies are more powerful than pure infinite-memory strate-
gies, and uniform memoryless strategies are as powerful as finite-precision infinite-memory strategies.
Thus our results show that if player 1 has only finite-precision strategies, then no memory is required
and uniform randomization is sufficient. Hence very simple (uniform memoryless) controllers can be
obtained for the entire class of finite-precision infinite-memory controllers. The result is obtained by
a reduction to turn-based stochastic games, and the main technical contribution is the characterization
of the winning sets for uniform memoryless strategies by aµ-calculus formula. Theµ-calculus for-
mula not only gives a symbolic algorithm, but is also in the heart of other proofs of the paper. The
µ-calculus formula and the correctness proof are non-trivial generalizations of the classical result of
Emerson-Jutla [EJ91] for turn-based deterministic paritygames.

3. In case of finite-precision strategies, the almost-sure and limit-sure winning sets coincide. For almost-
sure winning, uniform memoryless strategies are also as powerful as infinite-precision finite-memory
strategies. However, we show with an example that infinite-memory infinite-precision strategies are
more powerful than uniform memoryless strategies for almost-sure winning. For limit-sure winning,
we show that infinite-precision memoryless strategies are more powerful than finite-precision infinite-
memory strategies, and infinite-precision memoryless strategies are as powerful as infinite-precision
finite-memory strategies. Our results show that if infinite-memory is not available, then no memory is
required (memoryless strategies are as powerful as finite-memory strategies). The result is obtained
by using theµ-calculus formula for the uniform memoryless case: we show that aµ-calculus formula
that combines theµ-calculus formula for almost-sure winning for uniform memoryless strategies and
limit-sure winning for reachability with memoryless strategies exactly characterizes the limit-sure
winning for parity objectives for memoryless strategies.

4. As a consequence of the characterization of the winning sets asµ-calculus formulas we obtain sym-
bolic algorithms to compute the winning sets. We show that the winning sets can be computed in
O(n2d+3) time, wheren is the size of the game structure and2d is the number of priorities (or col-
ors), and our algorithms are symbolic.

5. The membership problem of whether a state belongs to a winning set can be decided in NP∩ coNP.
While this complexity is the same as for the simpler class ofturn-basedparity games, where in
each state only one of the two players has a choice of moves, our algorithms, that are obtained by
characterization of the winning sets asµ-calculus formulas, are considerably more involved than
those for turn-based games.

In short, our results show that if infinite-memory is not available, then memory is useless, and if infinite-
precision is not available, then uniform memoryless strategies are sufficient. LetP,U,FP , IP denote
pure, uniform, finite-precision, and infinite-precision strategies, respectively, andM,FM , IM denote
memoryless, finite-memory, and infinite-memory strategies, respectively. ForA ∈ {P,U,FP , IP} and
B ∈ {M,FM , IM }, let Almost1(A,B,Φ) denote the almost-sure winning set under player 1 strategies that
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are restricted to be bothA andB for a parity objectiveΦ (and similar notation forLimit1(A,B,Φ)). Then
our results can be summarized by the following equalities and strict inclusion:

Almost1(P,M,Φ) = Almost1(P, IM ,Φ) = Limit1(P, IM ,Φ)
( Almost1(U,M,Φ) = Almost1(FP , IM ,Φ)
= Limit1(FP , IM ,Φ) = Almost1(IP ,FM ,Φ) ( Almost1(IP , IM ,Φ).

Limit1(FP , IM ,Φ) ( Limit1(IP ,M,Φ) = Limit1(IP ,FM ,Φ) ( Limit1(IP , IM ,Φ).

2 Definitions

In this section we define game structures, strategies, objectives, winning modes and give other preliminary
definitions.

2.1 Game structures

Probability distributions. For a finite setA, a probability distributiononA is a functionδ : A 7→ [0, 1]
such that

∑
a∈A δ(a) = 1. We denote the set of probability distributions onA byD(A). Given a distribution

δ ∈ D(A), we denote by Supp(δ) = {x ∈ A | δ(x) > 0} thesupportof the distributionδ.

Concurrent game structures. A (two-player)concurrent stochastic game structureG = 〈S,A,Γ1,Γ2, δ〉
consists of the following components.

• A finite state spaceS.

• A finite setA of moves (or actions).

• Two move assignmentsΓ1,Γ2 : S 7→ 2A \ ∅. For i ∈ {1, 2}, assignmentΓi associates with each state
s ∈ S the nonempty setΓi(s) ⊆ A of moves available to playeri at states. For technical convenience,
we assume thatΓi(s) ∩ Γj(t) = ∅ unlessi = j ands = t, for all i, j ∈ {1, 2} ands, t ∈ S. If this
assumption is not met, then the moves can be trivially renamed to satisfy the assumption.

• A probabilistic transition functionδ : S×A×A 7→ D(S), which associates with every states ∈ S and
movesa1 ∈ Γ1(s) anda2 ∈ Γ2(s) a probability distributionδ(s, a1, a2) ∈ D(S) for the successor
state.

Plays. At every states ∈ S, player 1 chooses a movea1 ∈ Γ1(s), and simultaneously and independently
player 2 chooses a movea2 ∈ Γ2(s). The game then proceeds to the successor statet with probability
δ(s, a1, a2)(t), for all t ∈ S. For all statess ∈ S and movesa1 ∈ Γ1(s) anda2 ∈ Γ2(s), we indicate by
Dest(s, a1, a2) = Supp(δ(s, a1, a2)) the set of possible successors ofs when movesa1, a2 are selected. A
pathor aplay of G is an infinite sequenceω = 〈s0, s1, s2, . . .〉 of states inS such that for allk ≥ 0, there
are movesak

1 ∈ Γ1(sk) andak
2 ∈ Γ2(sk) such thatsk+1 ∈ Dest(sk, a

k
1 , a

k
2). We denote byΩ the set of all

paths. For a playω = 〈s0, s1, s2, . . .〉 ∈ Ω, we defineInf (ω) = {s ∈ S | sk = s for infinitely manyk ≥ 0}
to be the set of states that occur infinitely often inω.

Size of a game.Thesizeof a concurrent game is the sum of the size of the state space and the number of the
entries of the transition function. Formally the size of a game is|S| +

∑
s∈S,a∈Γ1(s),b∈Γ2(s) |Dest(s, a, b)|.
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Turn-based stochastic games and MDPs.A game structureG is turn-based stochasticif at every state at
most one player can choose among multiple moves; that is, forevery states ∈ S there exists at most one
i ∈ {1, 2} with |Γi(s)| > 1. A game structure is a player-2Markov decision processif for all s ∈ S we
have|Γ1(s)| = 1, i.e., only player-2 has choice of actions in the game.

Equivalent game structures. Given two game structuresG1 = 〈S,A,Γ1,Γ2, δ1〉 and G2 =
〈S,A,Γ1,Γ2, δ2〉 on the same state and action space, with different transition function, we say thatG1

is equivalent toG2 (denotedG1 ≡ G2) if for all s ∈ S and alla1 ∈ Γ1(s) and a2 ∈ Γ2(s) we have
Supp(δ1(s, a1, a2)) = Supp(δ2(s, a1, a2)).

2.2 Strategies

A strategyfor a player is a recipe that describes how to extend a play. Formally, a strategy for player
i ∈ {1, 2} is a mappingπi : S+ 7→ D(A) that associates with every nonempty finite sequencex ∈ S+

of states, representing the past history of the game, a probability distribution πi(x) used to select the next
move. The strategyπi can prescribe only moves that are available to playeri; that is, for all sequences
x ∈ S∗ and statess ∈ S, we require that Supp(πi(x · s)) ⊆ Γi(s). We denote byΠi the set of all strategies
for playeri ∈ {1, 2}.

Given a states ∈ S and two strategiesπ1 ∈ Π1 andπ2 ∈ Π2, we defineOutcomes(s, π1, π2) ⊆ Ω to
be the set of paths that can be followed by the game, when the game starts froms and the players use the
strategiesπ1 andπ2. Formally,〈s0, s1, s2, . . .〉 ∈ Outcomes(s, π1, π2) if s0 = s and if for all k ≥ 0 there
exist movesak

1 ∈ Γ1(sk) andak
2 ∈ Γ2(sk) such that

π1(s0, . . . , sk)(a
k
1) > 0, π2(s0, . . . , sk)(a

k
2) > 0, sk+1 ∈ Dest(sk, a

k
1 , a

k
2).

Once the starting states and the strategiesπ1 andπ2 for the two players have been chosen, the probabilities
of events are uniquely defined [Var85], where aneventA ⊆ Ω is a measurable set of paths1. For an event
A ⊆ Ω, we denote by Prπ1,π2

s (A) the probability that a path belongs toA when the game starts froms and
the players use the strategiesπ1 andπ2.

Classification of strategies. We classify strategies according to their use ofrandomizationandmemory.
We first present the classification according to randomization.

1. (Pure).A strategyπ is pure (deterministic)if for all x ∈ S+ there existsa ∈ A such thatπ(x)(a) = 1.
Thus, deterministic strategies are equivalent to functionsS+ 7→ A.

2. (Uniform). A strategyπ is uniform if for all x ∈ S+ we haveπ(x) is uniform over its support, i.e.,
for all a ∈ Supp(π(x)) we haveπ(x)(a) = 1

|Supp(π(x))|
.

3. (Finite-precision). A strategyπ is finite-precisionif there exists a boundb ∈ N such that for all
x ∈ S+ and all actionsa we haveπ(x)(a) = i

j
, wherei, j ∈ N and0 ≤ i ≤ j ≤ b andj > 0, i.e.,

the probability of an action played by the strategy is a multiple of someℓ ∈ N such thatℓ ≤ b.

We denote byΠP
i ,Π

U
i ,Π

FP

i andΠIP

i the set of pure (deterministic), uniform, finite-precision, and infinite-
precision (or general) strategies for playeri, respectively. Observe that we have the following strict inclu-
sion: ΠP

i ⊂ ΠU
i ⊂ ΠFP

i ⊂ ΠIP

i .

1To be precise, we should define events as measurable sets of paths sharing the same initial state,and we should replace our
events with families of events, indexed by their initial state [KSK66]. However, our (slightly) improper definition leads to more
concise notation.
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1. (Finite-memory).Strategies in general arehistory-dependentand can be represented as follows: let
M be a set calledmemoryto remember the history of plays (the setM can be infinite in general).
A strategy with memory can be described as a pair of functions: (a) amemory updatefunctionπu :
S ×M 7→ M, that given the memoryM with the information about the history and the current state
updates the memory; and (b) anext movefunctionπn : S ×M 7→ D(A) that given the memory and
the current state specifies the next move of the player. A strategy isfinite-memoryif the memoryM
is finite.

2. (Memoryless).A memorylessstrategy is independent of the history of play and only depends on the
current state. Formally, for a memoryless strategyπ we haveπ(x · s) = π(s) for all s ∈ S and all
x ∈ S∗. Thus memoryless strategies are equivalent to functionsS 7→ D(A).

We denote byΠM
i ,Π

FM

i andΠIM

i the set of memoryless, finite-memory, and infinite-memory (or general)
strategies for playeri, respectively. Observe that we have the following strict inclusion: ΠM

i ⊂ ΠFM

i ⊂
ΠIM

i .

2.3 Objectives

We specify objectives for the players by providing the set ofwinning playsΦ ⊆ Ω for each player. In this
paper we study only zero-sum games [RF91, FV97], where the objectives of the two players are comple-
mentary. A general class of objectives are the Borel objectives [Kec95]. ABorel objectiveΦ ⊆ Sω is a
Borel set in the Cantor topology onSω. In this paper we considerω-regular objectives[Tho90], which lie
in the first21/2 levels of the Borel hierarchy (i.e., in the intersection ofΣ3 andΠ3). We will consider the
following ω-regular objectives.

• Reachability and safety objectives.Given a setT ⊆ S of “target” states, the reachability objec-
tive requires that some state ofT be visited. The set of winning plays is thus Reach(T ) = {ω =
〈s0, s1, s2, . . .〉 ∈ Ω | ∃k ≥ 0. sk ∈ T}. Given a setF ⊆ S, the safety objective requires that only
states ofF be visited. Thus, the set of winning plays is Safe(F ) = {ω = 〈s0, s1, s2, . . .〉 ∈ Ω | ∀k ≥
0. sk ∈ F}.

• Büchi and co-B̈uchi objectives.Given a setB ⊆ S of “Büchi” states, the Büchi objective requires
that B is visited infinitely often. Formally, the set of winning plays is Büchi(B) = {ω ∈ Ω |
Inf (ω) ∩B 6= ∅}. GivenC ⊆ S, the co-Büchi objective requires that all states visited infinitely often
are inC. Formally, the set of winning plays is co-Büchi(C) = {ω ∈ Ω | Inf (ω) ⊆ C}.

• Parity objectives.For c, d ∈ N, we let [c..d] = {c, c + 1, . . . , d}. Let p : S 7→ [0..d] be a function
that assigns apriority p(s) to every states ∈ S, whered ∈ N. TheEven parity objectiverequires that
the maximum priority visited infinitely often is even. Formally, the set of winning plays is defined
as Parity(p) = {ω ∈ Ω | max

(
p(Inf (ω))

)
is even}. The dualOdd parity objectiveis defined as

coParity(p) = {ω ∈ Ω | max
(
p(Inf (ω))

)
is odd}. Note that for a priority functionp : S 7→ {1, 2},

an even parity objective Parity(p) is equivalent to the Büchi objective Büchi(p−1(2)), i.e., the Büchi
set consists of the states with priority2. Hence Büchi and co-Büchi objectives are simpler and special
cases of parity objectives.

Given a set U ⊆ S we use usual LTL notations2U,3U,23U and 32U to denote
Safe(U),Reach(U),Büchi(U) and co-Büchi(U), respectively. Parity objectives are of special importance
as they can express allω-regular objectives, and hence all commonly used specifications in verifica-
tion [Tho90].
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2.4 Winning modes

Given an objectiveΦ, for all initial statess ∈ S, the set of pathsΦ is measurable for all choices of the
strategies of the player [Var85]. Given an initial states ∈ S, an objectiveΦ, and a classΠC

1 of strategies we
consider the followingwinning modesfor player 1:

Almost. We say that player 1wins almost surelywith the classΠC
1 if the player has a strategy inΠC

1 to win
with probability 1, or∃π1 ∈ ΠC

1 . ∀π2 ∈ Π2 . Prπ1,π2
s (Φ) = 1.

Limit. We say that player 1wins limit surelywith the classΠC
1 if the player can ensure to win with probabil-

ity arbitrarily close to 1 withΠC
1 , in other words, for allε > 0 there is a strategy for player 1 inΠC

1 that
ensures to win with probability at least1 − ε. Formally we havesupπ1∈ΠC

1
infπ2∈Π2

Prπ1,π2
s (Φ) = 1.

We abbreviate the winning modes byAlmostandLimit, respectively. We call these winning modes thequal-
itative winning modes. Given a game structureG, for C1 ∈ {P,U,FP , IP} andC2 ∈ {M,FM , IM } we
denote byAlmostG1 (C1, C2,Φ) (resp.LimitG1 (C1, C2,Φ)) the set of almost-sure (resp. limit-sure) winning
states for player 1 inG when the strategy set for player 1 is restricted toΠC1

1 ∩ ΠC2

1 . If the game structure
G is clear from the context we omit the superscriptG.

2.5 Mu-calculus, complementation, and levels

Consider a mu-calculus expressionΨ = µX . ψ(X) over a finite setS, whereψ : 2S 7→ 2S is monotonic.
The least fixpointΨ = µX . ψ(X) is equal to the limitlimk→∞Xk, whereX0 = ∅, andXk+1 = ψ(Xk).
For every states ∈ Ψ, we define thelevelk ≥ 0 of s to be the integer such thats 6∈ Xk ands ∈ Xk+1. The
greatest fixpointΨ = νX . ψ(X) is equal to the limitlimk→∞Xk, whereX0 = S, andXk+1 = ψ(Xk).
For every states 6∈ Ψ, we define thelevel k ≥ 0 of s to be the integer such thats ∈ Xk ands 6∈ Xk+1.
The height of a mu-calculus expressionλX . ψ(X), whereλ ∈ {µ, ν}, is the least integerh such that
Xh = limk→∞Xk. An expression of heighth can be computed inh + 1 iterations. Given a mu-calculus
expressionΨ = λX .ψ(X), whereλ ∈ {µ, ν}, the complement¬Ψ = S \Ψ of λ is given byλX .¬ψ(¬X),
whereλ = µ if λ = ν, andλ = ν if λ = µ. For details ofµ-calculus see [Koz83, EJ91].

Distributions and one-step transitions. Given a states ∈ S, we denote byχs
1 = D(Γ1(s)) andχs

2 =
D(Γ2(s)) the sets of probability distributions over the moves ats available to player 1 and 2, respectively.
Moreover, fors ∈ S,X ⊆ S, ξ1 ∈ χs

1, andξ2 ∈ χs
2 we denote by

P ξ1,ξ2
s (X) =

∑

a∈Γ1(s)

∑

b∈Γ2(s)

∑

t∈X

ξ1(a) · ξ2(b) · δ(s, a, b)(t)

the one-step probability of a transition intoX when players 1 and 2 play ats with distributionsξ1 andξ2,
respectively. Given a states and distributionsξ1 ∈ χs

1 andξ2 ∈ χs
2 we denote byDest(s, ξ1, ξ2) = {t ∈ S |

P ξ1,ξ2
2 (t) > 0} the set of states that have positive probability of transition froms when the players playξ1

andξ2 at s. For actionsa andb we haveDest(s, a, b) = {t ∈ S | δ(s, a, b)(t) > 0} as the set of possible
successors givena andb. ForA ⊆ Γ1(s) andB ⊆ Γ2(s) we haveDest(s,A,B) =

⋃
a∈A,b∈B Dest(s, a, b).

Theorem 1 The following assertions hold:

1. [CJH03]For all turn-based stochastic game structuresG with a parity objectiveΦ we have

Almost1(P,M,Φ) = Almost1(IP , IM ,Φ) = Limit1(P,M,Φ) = Limit1(IP , IM ,Φ)

2. [dAH00] LetG1 andG2 be two equivalent game structures with a parity objectiveΦ, then we have

1. AlmostG1

1 (IP , IM ,Φ) = AlmostG2

1 (IP , IM ,Φ); 2. LimitG1

1 (IP , IM ,Φ) = LimitG2

1 (IP , IM ,Φ)
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3 Pure, Uniform and Finite-precision Strategies

In this section we present our results for pure, uniform and finite-precision strategies. We start with the
characterization for pure strategies.

3.1 Pure strategies

The following result shows that for pure strategies, memoryless strategies are as strong as infinite-memory
strategies, and the almost-sure and limit-sure sets coincide.

Proposition 1 Given a concurrent game structureG and a parity objectiveΦ we have

AlmostG1 (P,M,Φ) = AlmostG1 (P,FM ,Φ) = AlmostG1 (P, IM ,Φ) =
LimitG1 (P,M,Φ) = LimitG1 (P,FM ,Φ) = LimitG1 (P, IM ,Φ).

Proof. The result is obtained as follows: we show thatAlmostG1 (P,M,Φ) = AlmostG1 (P, IM ,Φ) =
LimitG1 (P, IM ,Φ) and all the other equalities follow (by inclusion of strategies). The main argument is
as follows: givenG we obtain a turn-based stochastic gameĜ where player 1 first choses an action, then
player 2 chooses an action, and then the game proceeds as inG. Then it is straightforward to establish that
the almost-sure (resp. limit-sure) winning set for pure andinfinite-memory strategies inG coincides with
the almost-sure (resp. limit-sure) winning set for pure andinfinite-memory strategies in̂G. SinceĜ is a
turn-based stochastic game, by Theorem 1 (part 1), it follows that the almost-sure and limit-sure winning
set inĜ coincide and they are same for memoryless and infinite-memory strategies.

We now present the formal reduction. LetG = 〈S,A,Γ1,Γ2, δ〉 and let the parity objectiveΦ be
described by a priority functionp. We construct̂G = 〈Ŝ, Â, Γ̂1, Γ̂2, δ̂〉 with priority function p̂ as follows:

1. Ŝ = S ∪ {(s, a) | s ∈ S, a ∈ Γ1(s)};

2. Â = A∪ {⊥} where⊥ 6∈ A;

3. for s ∈ Ŝ ∩ S we haveΓ̂1(s) = Γ1(s) andΓ̂2(s) = {⊥}; and for(s, a) ∈ Ŝ we haveΓ̂2((s, a)) =
Γ2(s) andΓ̂1((s, a)) = {⊥}; and

4. for s ∈ Ŝ ∩ S anda ∈ Γ1(s) we havêδ(s, a,⊥)(s, a) = 1; and for(s, a) ∈ Ŝ andb ∈ Γ2(s) we have
δ̂((s, a),⊥, b) = δ(s, a, b);

5. the functionp̂ in Ĝ is as follows: fors ∈ Ŝ ∩ S we havep̂(s) = p(s) and for(s, a) ∈ Ŝ we have
p̂((s, a)) = p(s).

It is straightforward to establish by mapping of pure strategies of player 1 inG andĜ that

(a) AlmostG1 (P,M,Φ) = Almost
bG
1 (P,M, Φ̂) ∩ S,

(b) AlmostG1 (P, IM ,Φ) = Almost
bG
1 (P, IM , Φ̂) ∩ S,

(c) LimitG1 (P,M,Φ) = Limit bG
1 (P,M, Φ̂) ∩ S,

(d) LimitG1 (P, IM ,Φ) = Limit bG
1 (P, IM , Φ̂) ∩ S;

whereΦ̂ = Parity(p̂). It follows from Theorem 1 (part 1) that

Almost
bG
1 (P,M, Φ̂) = Almost

bG
1 (P, IM , Φ̂) = Limit

bG
1 (P,M, Φ̂) = Limit

bG
1 (P, IM , Φ̂).
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Hence the desired result follows.

Algorithm and complexity. The above proposition gives a linear reduction to turn-based stochastic games.
Thus the setAlmost1(P,M,Φ) can be computed using the algorithms for turn-based stochastic parity games
(such as [CJH03]). We have the following results.

Theorem 2 Given a concurrent game structureG, a parity objectiveΦ, and a states, whethers ∈
Almost1(P, IM ,Φ) = Limit1(P, IM ,Φ) can be decided in NP∩ coNP.

3.2 Uniform and Finite-precision

In this subsection we will present the characterization foruniform and finite-precision strategies.

Example 1 It is easy to show thatAlmost1(P,M,Φ) ( Almost1(U,M,Φ) by considering thematching
pennygame. The game has two statess0 ands1. The states1 is anabsorbingstate (a state with only self-
loop as outgoing edge; see states1 of Fig 3) and the goal is to reachs1 (equivalently infinitely often visit
s1). At s0 the actions available for both players are{a, b}. If the actions match the next state iss1, otherwise
s0. By playinga andb uniformly at random ats0, the states1 is reached with probability 1, whereas for any
pure strategy the counter-strategy that plays exactly the opposite action in every round ensuress1 is never
reached.

We now show that uniform memoryless strategies are as powerful as finite-precision infinite-memory
strategies and the almost-sure and limit-sure sets coincide for finite-precision strategies. We start with two
notations.

Uniformization of a strategy. Given a strategyπ1 for player 1, we define a strategyπu
1 that is obtained

from π1 by uniformization as follows: for allw ∈ S+ and alla ∈ Supp(π1(w)) we haveπu
1 (w)(a) =

1
|Supp(π1(w))|

. We will use the following notation for uniformization:πu
1 = unif(π1).

b-finite-precision strategies.Givenb ∈ N, a strategy isb-finite-precision if for allx ∈ S+ and all actionsa
we haveπ(x)(a) = i

j
, wherei, j ∈ N and0 ≤ i ≤ j ≤ b andj > 0.

Proposition 2 Given a concurrent game structureG and a parity objectiveΦ we have

AlmostG1 (U,M,Φ) = AlmostG1 (U,FM ,Φ) = AlmostG1 (U, IM ,Φ) =
LimitG1 (U,M,Φ) = LimitG1 (U,FM ,Φ) = LimitG1 (U, IM ,Φ) =

AlmostG1 (FP ,M,Φ) = AlmostG1 (FP ,FM ,Φ) = AlmostG1 (FP , IM ,Φ) =
LimitG1 (FP ,M,Φ) = LimitG1 (FP ,FM ,Φ) = LimitG1 (FP , IM ,Φ)

Proof. The result is obtained as follows: we show thatAlmostG1 (U,M,Φ) = AlmostG1 (FP , IM ,Φ) =
LimitG1 (FP , IM ,Φ) and all the other equalities follow (by inclusion of strategies). The key argument is as
follows: fix a boundb, and we consider the set ofb-finite-precision strategies inG. GivenG we obtain
a turn-based stochastic gamẽG where player 1 first chooses ab-finite-precision distribution, then player 2
chooses an action, and then the game proceeds as inG. Then we establish that the almost-sure (resp.
limit-sure) winning set forb-finite-precision and infinite-memory strategies inG coincides with the almost-
sure (resp. limit-sure) winning set forb-finite-precision and infinite-memory strategies iñG. SinceG̃ is
a turn-based stochastic game, by Theorem 1, it follows that the almost-sure and limit-sure winning set in
G̃ coincide and they are same for memoryless and infinite-memory strategies. Thus we obtain ab-finite-
precision memoryless almost-sure winning strategyπ1 in G and then we show the uniform memoryless
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πu
1 = unif(π1) obtained from uniformization ofπu

1 is a uniform memoryless almost-sure winning strategy
in G. Thus it follows that for any finite-precision infinite-memory almost-sure winning strategy, there is a
uniform memoryless almost-sure winning strategy.

We now present the formal reduction. LetG = 〈S,A,Γ1,Γ2, δ〉 and let the parity objectiveΦ be
described by a priority functionp. For a given boundb, let f̃(s, b) = {f : Γ1(s) 7→ [0, 1] | ∀a ∈
Γ1(s) we havef(a) = i

j
, i, j ∈ N, 0 ≤ i ≤ j ≤ b, j > 0 and

∑
a∈Γ1(s) f(a) = 1} denote the set of

b-finite-precision distributions ats. We construct̃G = 〈S̃, Ã, Γ̃1, Γ̃2, δ̃〉 with priority function p̃ as follows:

1. S̃ = S ∪ {(s, f) | s ∈ S, f ∈ f̃(s, b)};

2. Ã = A∪ {f | s ∈ S, f ∈ f̃(s, b)} ∪ {⊥} where⊥ 6∈ A;

3. for s ∈ S̃ ∩ S we haveΓ̃1(s) = f̃(s, b) andΓ̃2(s) = {⊥}; and for(s, f) ∈ S̃ we haveΓ̃2((s, f)) =
Γ2(s) andΓ̃1((s, f)) = {⊥}; and

4. for s ∈ S̃ ∩ S andf ∈ f̃(s, b) we havẽδ(s, f,⊥)(s, f) = 1; and for(s, f) ∈ S̃, b ∈ Γ2(s) andt ∈ S
we havêδ((s, f),⊥, b)(t) =

∑
a∈Γ1(s) f(a) · δ(s, a, b)(t);

5. the functionp̃ in G̃ is as follows: fors ∈ S̃ ∩ S we havep̃(s) = p(s) and for(s, f) ∈ S̃ we have
p̃((s, f)) = p(s).

Observe that givenb ∈ N the setf̃(s, b) is finite and thus̃G is a finite-state turn-based stochastic game. It is
straightforward to establish mapping ofb-finite-precision strategies of player 1 inG and with pure strategies
in Ĝ, i.e., we have

(a) AlmostG1 (bFP ,M,Φ) = Almost
eG
1 (P,M, Φ̃) ∩ S,

(b) AlmostG1 (bFP , IM ,Φ) = Almost
eG
1 (P, IM , Φ̃) ∩ S,

(c) LimitG1 (bFP ,M,Φ) = Limit eG
1 (P,M, Φ̃) ∩ S,

(d) LimitG1 (bFP , IM ,Φ) = Limit eG
1 (P, IM , Φ̃) ∩ S,

whereΦ̃ = Parity(p̃) andbFP denote the set ofb-finite-precision strategies inG. By Theorem 1 we have

Almost
eG
1 (P,M, Φ̃) = Almost

eG
1 (P, IM , Φ̃) = Limit

eG
1 (P,M, Φ̃) = Limit

eG
1 (P, IM , Φ̃).

Consider a pure memoryless strategyπ̃1 in G̃ that is almost-sure winning fromQ = Almost
eG
1 (P,M, Φ̃), and

let π1 be the correspondingb-finite-precision memoryless strategy inG. Consider the uniform memoryless
strategyπu

1 = unif(π1) in G. The strategyπ1 is an almost-sure winning strategy fromQ ∩ S. The player-2
MDP Gπ1

andGπu
1

are equivalent, i.e.,Gπ1
≡ Gπu

1
and hence it follows from Theorem 1 thatπu

1 is an
almost-sure winning strategy for all states inQ ∩ S. Hence the desired result follows.

Computation of Almost1(U,M,Φ). It follows from Proposition 2 that the computation of
Almost1(U,M,Φ) can be achieved by a reduction to turn-based stochastic game. We now present the main
technical result of this subsection which presents a symbolic algorithm to computeAlmost1(U,M,Φ). The
symbolic algorithm developed in this section is crucial foranalysis of infinite-precision finite-memory strate-
gies, where the reduction to turn-based stochastic game cannot be applied. The symbolic algorithm is ob-
tained viaµ-calculus formula characterization. We first discuss the comparison of our proof with the results
of [CdAH11] and then discuss why the recursive characterization of turn-based games fails in concurrent
games.
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Comparison with [CdAH11]. Our proof structure based on induction on the structure ofµ-calculus formu-
las is similar to the proofs in [CdAH11]. In some aspects the proofs are tedious adaptation but in most cases
there are many subtle issues and we point them below. First, in our proof the predecessor operators are dif-
ferent from the predecessor operators of [CdAH11]. Second,in our proof from theµ-calculus formulas we
construct uniform memoryless strategies as compared to infinite memory strategies in [CdAH11]. Finally,
since our predecessor operators are different the proof forcomplementation of the predecessor operators
(which is a crucial component of the proof) is completely different.

Failue of recursive characterization. In case of turn-based games there are recursive characterization of
the winning set with attractors (or alternating reachability). However such characterization fails in case of
concurrent games. The intuitive reason is as follows: once an attractor is taken it may rule out certain action
pairs (for example, action paira1 andb1 must be ruled out, whereas action paira1 andb2 may be allowed in
the remaining game graph), and hence the complement of an attractor maynot satisfy the required sub-game
property. For details, see examples in [dAH00, dAHK07] why the recursive characterization fails.

Strategy constructions. Since the recursive characterization of turn-based games fails for concurrent
games, our results show that the generalization of theµ-calculus formulas for turn-based games can char-
acterize the desired winning sets. Moreover, our correctness proofs that establish the correctness of the
µ-calculus formulas present explicit witness strategies from theµ-calculus formulas. Morover, in all cases
the witness counter strategies for player 2 is memoryless, and thus our results answer questions related to
bounded rationality for both players.

We now introduce the predecessor operators for theµ-calculus formula required for our symbolic algo-
rithms.

Basic predecessor operators.We recall thepredecessoroperators Pre1 (pre) and Apre1 (almost-pre),
defined for alls ∈ S andX,Y ⊆ S by:

Pre1(X) = {s ∈ S | ∃ξ1 ∈ χs
1 . ∀ξ2 ∈ χs

2 . P
ξ1,ξ2
s (X) = 1};

Apre1(Y,X) = {s ∈ S | ∃ξ1 ∈ χs
1 . ∀ξ2 ∈ χs

1 . P
ξ1,ξ2
s (Y ) = 1 ∧ P ξ1,ξ2

s (X) > 0} .

Intuitively, the Pre1(X) is the set of states such that player 1 can ensure that the nextstate is inX with
probability 1, and Apre1(Y,X) is the set of states such that player 1 can ensure that the nextstate is inY
with probability 1 and inX with positive probability.

Principle of general predecessor operators.While the operators Apre and Pre suffice for solving Büchi
games, for solving general parity games, we require predecessor operators that are best understood as the
combination of the basic predecessor operators. We use the operators

⋃
∗ and

⋂
∗ to combine predecessor

operators; the operators
⋃
∗ and

⋂
∗ are different from the usual union∪ and intersection∩. Roughly, letα

andβ be two set of states for two predecessor operators, then the set α
⋂
∗ β requires that the distributions

of player 1 satisfy the conjunction of the conditions stipulated byα andβ; similarly,
⋃
∗ corresponds to

disjunction. We first introduce the operator Apre
⋃
∗ Pre. For alls ∈ S andX1, Y0, Y1 ⊆ S, we define

Apre1(Y1,X1)
⋃
∗ Pre1(Y0) =

{
s ∈ S | ∃ξ1 ∈ χs

1.∀ξ2 ∈ χs
2.




(P ξ1,ξ2
s (X1) > 0 ∧ P ξ1,ξ2

s (Y1) = 1)∨

P ξ1,ξ2
s (Y0) = 1




}
.

Note that the above formula corresponds to a disjunction of the predicates for Apre1 and Pre1. However, it
is important to note that the distributionsξ1 for player 1 to satisfy (ξ2 for player 2 to falsify) the predicate
must bethe same.In other words, Apre1(Y1,X1)

⋃
∗ Pre1(Y0) is not equivalent to Apre1(Y1,X1)∪Pre1(Y0).
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General predecessor operators.We first introduce two predecessor operators as follows:

APreOdd1(i, Yn,Xn, . . . , Yn−i,Xn−i)

= Apre1(Yn,Xn)
⋃
∗ Apre1(Yn−1,Xn−1)

⋃
∗ · · ·

⋃
∗ Apre1(Yn−i,Xn−i);

APreEven1(i, Yn,Xn, . . . , Yn−i,Xn−i, Yn−i−1)

= Apre1(Yn,Xn)
⋃
∗ Apre1(Yn−1,Xn−1)

⋃
∗ · · ·

⋃
∗ Apre1(Yn−i,Xn−i)

⋃
∗ Pre1(Yn−i−1).

The formal expanded definitions of the above operators are asfollows:

APreOdd1(i, Yn,Xn, . . . , Yn−i,Xn−i) =

{
s ∈ S | ∃ξ1 ∈ χs

1.∀ξ2 ∈ χs
2.




(P ξ1,ξ2
s (Xn) > 0 ∧ P ξ1,ξ2

s (Yn) = 1)∨

(P ξ1,ξ2
s (Xn−1) > 0 ∧ P ξ1,ξ2

s (Yn−1) = 1)∨
...∨

(P ξ1,ξ2
s (Xn−i) > 0 ∧ P ξ1,ξ2

s (Yn−i) = 1)




}
.

APreEven1(i, Yn,Xn, . . . , Yn−i,Xn−i, Yn−i−1) =

{
s ∈ S | ∃ξ1 ∈ χs

1.∀ξ2 ∈ χs
2.




(P ξ1,ξ2
s (Xn) > 0 ∧ P ξ1,ξ2

s (Yn) = 1)∨

(P ξ1,ξ2
s (Xn−1) > 0 ∧ P ξ1,ξ2

s (Yn−1) = 1)∨
...∨

(P ξ1,ξ2
s (Xn−i) > 0 ∧ P ξ1,ξ2

s (Yn−i) = 1)∨

(P ξ1,ξ2
s (Yn−i−1) = 1)




}
.

Observe that the above definition can be inductively writtenas follows:

1. We have APreOdd1(0, Yn,Xn) = Apre1(Yn,Xn) and fori ≥ 1 we have

APreOdd1(i, Yn,Xn, . . . , Yn−i,Xn−i)

= Apre1(Yn,Xn)
⋃
∗ APreOdd1(i− 1, Yn−1,Xn−1, . . . , Yn−i,Xn−i)

2. We have APreEven1(0, Yn,Xn, Yn−1) = Apre1(Yn,Xn)
⋃
∗ Pre1(Yn−1) and fori ≥ 1 we have

APreEven1(i, Yn,Xn, . . . , Yn−i,Xn−i, Yn−i−1)

= Apre1(Yn,Xn)
⋃
∗ APreEven1(i− 1, Yn−1,Xn−1, . . . , Yn−i,Xn−i, Yn−i−1)
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Dual operators. Thepredecessoroperators Pospre2 (positive-pre) and Apre2 (almost-pre), defined for all
s ∈ S andX,Y ⊆ S by:

Pospre2(X) = {s ∈ S | ∀ξ1 ∈ χs
1 . ∃ξ2 ∈ χs

2 . P
ξ1,ξ2
s (X) > 0};

Apre2(Y,X) = {s ∈ S | ∀ξ1 ∈ χs
1 . ∃ξ2 ∈ χs

1 . P
ξ1,ξ2
s (Y ) = 1 ∧ P ξ1,ξ2

s (X) > 0} .

Observe that player 2 is only required to play counter-distributionsξ2 against player 1 distributionsξ1. We
now introduce two positive predecessor operators as follows:

PosPreOdd2(i, Yn,Xn, . . . , Yn−i,Xn−i)

= Pospre2(Yn)
⋃
∗ Apre2(Xn, Yn−1)

⋃
∗ · · ·

⋃
∗ Apre2(Xn−i+1, Yn−i)

⋃
∗ Pre2(Xn−i)

PosPreEven2(i, Yn,Xn, . . . , Yn−i,Xn−i, Yn−i−1)

= Pospre2(Yn)
⋃
∗ Apre2(Xn, Yn−1)

⋃
∗ · · ·

⋃
∗ Apre2(Xn−i+1, Yn−i)

⋃
∗ Apre2(Xn−i, Yn−i−1)

The formal expanded definitions of the above operators are asfollows:

PosPreOdd2(i, Yn,Xn, . . . , Yn−i,Xn−i) =

{
s ∈ S | ∀ξ1 ∈ χs

1.∃ξ2 ∈ χs
2.




(P ξ1,ξ2
s (Yn) > 0)∨

(P ξ1,ξ2
s (Yn−1) > 0 ∧ P ξ1,ξ2

s (Xn) = 1)∨

(P ξ1,ξ2
s (Yn−2) > 0 ∧ P ξ1,ξ2

s (Xn−1) = 1)∨
...∨

(P ξ1,ξ2
s (Yn−i) > 0 ∧ P ξ1,ξ2

s (Xn−i+1) = 1)∨

(P ξ1,ξ2
s (Xn−i) = 1)




}
.

PosPreEven2(i, Yn,Xn, . . . , Yn−i,Xn−i, Yn−i−1) =

{
s ∈ S | ∀ξ1 ∈ χs

1.∃ξ2 ∈ χs
2.




(P ξ1,ξ2
s (Yn) > 0)∨

(P ξ1,ξ2
s (Yn−1) > 0 ∧ P ξ1,ξ2

s (Xn) = 1)∨

(P ξ1,ξ2
s (Yn−2) > 0 ∧ P ξ1,ξ2

s (Xn−1) = 1)∨
...∨

(P ξ1,ξ2
s (Yn−i−1) > 0 ∧ P ξ1,ξ2

s (Xn−i) = 1)




}
.

The above definitions can be alternatively written as follows

PosPreOdd2(i, Yn,Xn, . . . , Yn−i,Xn−i) =

Pospre2(Yn)
⋃
∗ APreEven2(i− 1,Xn, Yn−1, . . . ,Xn−i+1, Yn−i,Xn−i);
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PosPreEven2(i, Yn,Xn, . . . , Yn−i,Xn−i, Yn−i−1) =

Pospre2(Yn)
⋃
∗ APreOdd2(i,Xn, Yn−1, . . . ,Xn−i, Yn−i−1).

Remark 1 Observe that if the predicate Pospre2(Yn) is removed from the predecessor operator
PosPreOdd2(i, Yn,Xn, . . . , Yn−i,Xn−i) (resp. PosPreEven2(i, Yn,Xn, . . . , Yn−i,Xn−i, Yn−i−1)),
then we obtain the operator APreEven2(i − 1,Xn, Yn−1, . . . ,Xn−i+1, Yn−i,Xn−i) (resp.
APreOdd2(i,Xn, Yn−1, . . . ,Xn−i, Yn−i−1)).

We first show how to characterize the set of almost-sure winning states for uniform memoryless strate-
gies and its complement for parity games using the above predecessor operators. We will prove the following
result by induction.

1. Case 1.For a parity functionp : S 7→ [0..2n − 1] the following assertions hold.

(a) For allT ⊆ S we haveW ⊆ Almost1(U,M,Parity(p) ∪ 3T ), whereW is defined as follows:

νYn.µXn.νYn−1.µXn−1. · · · νY1.µX1.νY0.




T
∪

B2n−1 ∩ APreOdd1(0, Yn,Xn)
∪

B2n−2 ∩ APreEven1(0, Yn,Xn, Yn−1)
∪

B2n−3 ∩ APreOdd1(1, Yn,Xn, Yn−1,Xn−1)
∪

B2n−4 ∩ APreEven1(1, Yn,Xn, Yn−1,Xn−1, Yn−2)
...

B1 ∩ APreOdd1(n− 1, Yn,Xn, . . . , Y1,X1)
∪

B0 ∩ APreEven1(n− 1, Yn,Xn, . . . , Y1,X1, Y0)




We refer to the above expression as thealmost-expressionfor case 1. If in the above formula we
replace APreOdd1 by APreOdd2 and APreEven1 by APreEven2 then we obtain thedual almost-
expressionfor case 1. From the same argument as correctness of the almost-expression and the
fact that counter-strategies for player 2 are against memoryless strategies for player 1 we obtain
that if the dual almost-expression isWD for T = ∅, thenWD ⊆ {s ∈ S | ∀π1 ∈ ΠM

1 .∃π2 ∈
Π2. Prπ1,π2

s (coParity(p)) = 1}.

(b) We haveZ ⊆ ¬Almost1(U,M,Parity(p)), whereZ is defined as follows

µYn.νXn.µYn−1.νXn−1. · · · µY1.νX1.µY0.




B2n−1 ∩ PosPreOdd2(0, Yn,Xn)
∪

B2n−2 ∩ PosPreEven2(0, Yn,Xn, Yn−1)
∪

B2n−3 ∩ PosPreOdd2(1, Yn,Xn, Yn−1,Xn−1)
∪

B2n−4 ∩ PosPreEven2(1, Yn,Xn, Yn−1,Xn−1, Yn−2)
...

B1 ∩ PosPreOdd2(n− 1, Yn,Xn, . . . , Y1,X1)
∪

B0 ∩ PosPreEven2(n− 1, Yn,Xn, . . . , Y1,X1, Y0)



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We refer to the above expression as thepositive-expressionfor case 1.

2. Case 2.For a parity functionp : S 7→ [1..2n] the following assertions hold.

(a) For allT ⊆ S we haveW ⊆ Almost1(U,M,Parity(p) ∪ 3T ), whereW is defined as follows:

νYn−1.µXn−1. · · · νY1.µX1.νY0.µX0




T
∪

B2n ∩ Pre1(Yn−1)
∪

B2n−1 ∩ APreOdd1(0, Yn−1,Xn−1)
∪

B2n−2 ∩ APreEven1(0, Yn−1,Xn−2, Yn−2)
∪

B2n−3 ∩ APreOdd1(1, Yn−1,Xn−1, Yn−2,Xn−2)
...

B2 ∩ APreEven1(n− 2, Yn−1,Xn−1, . . . , Y1,X1, Y0)
∪

B1 ∩ APreOdd1(n− 1, Yn−1,Xn−1, . . . , Y0,X0)




We refer to the above expression as the almost-expression for case 2. If in the above formula we
replace APreOdd1 by APreOdd2 and APreEven1 by APreEven2 then we obtain the dual almost-
expression for case 2. Again, if the dual almost-expressionis WD for T = ∅, thenWD ⊆ {s ∈
S | ∀π1 ∈ ΠM

1 .∃π2 ∈ Π2. Prπ1,π2
s (coParity(p)) = 1}.

(b) We haveZ ⊆ ¬Almost1(U,M,Parity(p)), whereZ is defined as follows

µYn−1.νXn−1. · · · µY1.νX1.µY0.νX0




B2n ∩ Pospre2(Yn−1)
∪

B2n−1 ∩ PosPreOdd2(0, Yn−1,Xn−1)
∪

B2n−2 ∩ PosPreEven2(0, Yn−1,Xn−2, Yn−2)
∪

B2n−3 ∩ PosPreOdd2(1, Yn−1,Xn−1, Yn−2,Xn−2)
...

B2 ∩ PosPreEven2(n− 2, Yn−1,Xn−1, . . . , Y1,X1, Y0)
∪

B1 ∩ PosPreOdd2(n− 1, Yn−1,Xn−1, . . . , Y0,X0)




We refer to the above expression as the positive-expressionfor case 2.

The comparison to Emerson-Jutlaµ-calculus formula for turn-based games. We compare ourµ-
calculus formula with theµ-calculus formula of Emerson-Jutla [EJ91] to give an intuitive idea of the con-
struction of the formula. We first present the formula for Case 2 and then for Case 1.

Case 2.For turn-based deterministic games with parity functionp : S → [1..2n], it follows from the results
of Emerson-Jutla [EJ91], that the sure-winning (that is equivalent to the almost-sure winning) set for the
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objective Parity(p) ∪ 3T is given by the followingµ-calculus formula:

νYn−1.µXn−1. · · · νY1.µX1.νY0.µX0




T
∪

B2n ∩ Pre1(Yn−1)
∪

B2n−1 ∩ Pre1(Xn−1)
∪

B2n−2 ∩ Pre1(Yn−2)
∪

B2n−3 ∩ Pre1(Xn−2)
...

B2 ∩ Pre1(Y0)
∪

B1 ∩ Pre1(X0)




The formula for the almost-expression for case 2 is similar to the aboveµ-calculus formula and is obtained
by replacing the Pre1 operators with appropriate APreOdd1 and APreEven1 operators.

Case 1.For turn-based deterministic games with parity functionp : S → [0..2n − 1], it follows from the
results of Emerson-Jutla [EJ91], that the sure-winning (that is equivalent to the almost-sure winning) set for
the objective Parity(p) ∪ 3T is given by the followingµ-calculus formula:

µXn.νYn−1.µXn−1. · · · νY1.µX1.νY0.




T
∪

B2n−1 ∩ Pre1(Xn)
∪

B2n−2 ∩ Pre1(Yn−1)
∪

B2n−3 ∩ Pre1(Xn−1)
∪

B2n−4 ∩ Pre1(Yn−2)
...

B1 ∩ Pre1(X1)
∪

B0 ∩ Pre1(Y0)




The formula for the almost-expression for case 1 is similar to the aboveµ-calculus formula and is obtained
by (a) adding one quantifier alternationνYn; and (b) replacing the Pre1 operators with appropriate APreOdd1

and APreEven1 operators.

Proof structure. The base case follows from the coBüchi and Büchi case: it follows from the results
of [dAH00] since for Büchi and coBüchi objectives, uniform memoryless almost-sure winning strategies
exist and ourµ-calculus formula coincide with theµ-calculus formula to describe the almost-sure winning
set for Büchi and coBüchi objectives. The proof of induction proceeds in four steps as follows:

1. Step 1.We assume the correctness of case 1 and case 2, and then extendthe result to parity objective
with parity functionp : S 7→ [0..2n], i.e., we add a max even priority. The result is obtained as follows:

16



for the correctness of the almost-expression we use the correctness of case 1 and for complementation
we use the correctness of case 2.

2. Step 2. We assume the correctness of step 1 and extend the result to parity objectives with parity
functionp : S 7→ [1..2n + 1], i.e., we add a max odd priority. The result is obtained as follows: for
the correctness of the almost-expression we use the correctness of case 2 and for complementation we
use the correctness of step 1.

3. Step 3.We assume correctness of step 2 and extend the result to parity objectives with parity function
p : S 7→ [1..2n + 2]. This step adds a max even priority and the proof will be similar to step 1. The
result is obtained as follows: for the correctness of the almost-expression we use the correctness of
step 2 and for complementation we use the correctness of step1.

4. Step 4.We assume correctness of step 3 and extend the result to parity objectives with parity function
p : S 7→ [0..2n + 1]. This step adds a max odd priority and the proof will be similar to step 2. The
result is obtained as follows: for the correctness of the almost-expression we use the correctness of
step 1 and for complementation we use the correctness of step3.

We first present two technical lemmas that will be used in the correctness proofs. First we define prefix-
independent events.

Prefix-independent events.We say that an event or objective isprefix-independentif it is independent
of all finite prefixes. Formally, an event or objectiveA is prefix-independent if, for allu, v ∈ S∗ and
ω ∈ Sω, we haveuω ∈ A iff vω ∈ A. Observe that parity objectives are defined based on the states that
appear infinitely often along a play, and hence independent of all finite prefixes, so that, parity objectives are
prefix-independent objectives.

Lemma 1 (Basic Apre principle). LetX ⊆ Y ⊆ Z ⊆ S and s ∈ S be such thatY = X ∪ {s} and
s ∈ Apre1(Z,X). For all prefix-independent eventsA ⊆ 2(Z \ Y ), the following assertion holds:

Assume that there exists a uniform memorylessπ1 ∈ ΠU
1 ∩ ΠM

1 such that for allπ2 ∈ Π2 and
for all z ∈ Z \ Y we have

Prπ1,π2

z (A ∪ 3Y ) = 1.

Then there exists a uniform memorylessπ1 ∈ ΠU
1 ∩ ΠM

1 such that for allπ2 ∈ Π2 we have

Prπ1,π2

s (A ∪ 3X) = 1.

Proof. Sinces ∈ Apre1(Z,X), player 1 can play a uniform memoryless distributionξ1 at s to ensure that
the probability of staying inZ is 1 and with positive probabilityη > 0 the setX is reached. InZ\Y player 1
fixes a uniform memoryless strategy to ensure thatA ∪ 3Y is satisfied with probability 1. Fix a counter
strategyπ2 for player 2. Ifs is visited infinitely often, then since there is a probability of at leastη > 0 to
reachX, it follows thatX is reached with probability 1. Ifs is visited finitely often, then from some point
on2(Z \ Y ) is satisfied, and thenA is ensured with probability 1. Thus the desired result follows.

Lemma 2 (Basic principle of repeated reachability). LetT ⊆ S, B ⊆ S andW ⊆ S be sets andA be
a prefix-independent objective such that

W ⊆ Almost1(U,M,3T ∪ 3(B ∩ Pre1(W )) ∪ A).
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Then
W ⊆ Almost1(U,M,3T ∪ 23B ∪A).

Proof. Let Z = B ∩ Pre1(W ). For all statess ∈ W \ (Z ∪ T ), there is a uniform memoryless player 1
strategyπ1 that ensures that against all player 2 strategiesπ2 we have

Prπ1,π2

s

(
3(T ∪ Z) ∪ A

)
= 1.

For all states inZ player 1 can ensure that the successor state is inW (since Pre1(W ) holds inZ). Consider
a strategyπ∗1 as follows: for statess ∈ Z play a uniform memoryless strategy for Pre1(W ) to ensure that
the next state is inW ; for statess ∈ W \ (Z ∪ T ) play the uniform memoryless strategyπ1. Let us denote
by 3kZ ∪ 3T to be the set of paths that visitsZ at leastk-times or visitsT at least once. Observe that
limk→∞

(
3kZ ∪ 3T

)
⊆ 23B ∪ 3T . Hence for alls ∈W and for allπ2 ∈ Π2 we have

Pr
π∗
1 ,π2

s (23B ∪ 3T ∪ A) ≥ Pr
π∗
1 ,π2

s

(
3Z ∪ 3T ∪ A

)
·

∞∏

k=1

Pr
π∗
1 ,π2

s

(
3k+1Z ∪ 3T ∪ A | 3kZ ∪ 3T ∪ A

)

= 1.

The desired result follows.

Correctness of step 1.We now proceed with the proof of step 1 and by inductive hypothesis we will assume
that case 1 and case 2 hold.

Lemma 3 For a parity function p : S 7→ [0..2n], and for all T ⊆ S, we haveW ⊆
Almost1(U,M,Parity(p) ∪ 3T ), whereW is defined as follows:

νYn.µXn.νYn−1.µXn−1. · · · νY1.µX1.νY0.




T
∪

B2n ∩ Pre1(Yn)
∪

B2n−1 ∩ APreOdd1(0, Yn,Xn)
∪

B2n−2 ∩ APreEven1(0, Yn,Xn, Yn−1)
∪

B2n−3 ∩ APreOdd1(1, Yn,Xn, Yn−1,Xn−1)
∪

B2n−4 ∩ APreEven1(1, Yn,Xn, Yn−1,Xn−1, Yn−2)
...

B1 ∩ APreOdd1(n− 1, Yn,Xn, . . . , Y1,X1)
∪

B0 ∩ APreEven1(n− 1, Yn,Xn, . . . , Y1,X1, Y0)




Proof. We first present the intuitive explanation of obtaining theµ-calculus formula.

Intuitive explanation of theµ-calculus formula.Theµ-calculus formula of the lemma is obtained from the
almost-expression for case 1 by just adding the expressionB2n ∩ Pre1(Yn).
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To prove the result we first rewriteW as follows:

νYn.µXn.νYn−1µXn−1 · · · νY1.µX1.νY0.




T ∪ (B2n ∩ Pre1(W ))
∪

B2n−1 ∩ APreOdd1(0, Yn,Xn)
∪

B2n−2 ∩ APreEven1(0, Yn,Xn, Yn−1)
∪

B2n−3 ∩ APreOdd1(1, Yn,Xn, Yn−1,Xn−1)
∪

B2n−4 ∩ APreEven1(1, Yn,Xn, Yn−1,Xn−1, Yn−2)
...

B1 ∩ APreOdd1(n− 1, Yn,Xn, . . . , Y1,X1)
∪

B0 ∩ APreEven1(n − 1, Yn,Xn, . . . , Y1,X1, Y0)




The rewriting is obtained as follows: sinceW is the fixpointYn, we replaceYn in theB2n ∩ Pre1(Yn) by
W . TreatingT ∪ (B2n ∩ Pre1(W )), as the setT for the almost-expression for case 1, we obtain from the
inductive hypothesis that

W ⊆ Almost1(U,M,Parity(p) ∪ 3(T ∪ (B2n ∩ Pre1(W )))).

By Lemma 2, withB = B2n andA = Parity(p) we obtain that

W ⊆ Almost1(U,M,Parity(p) ∪ 3T ∪ 23B2n).

Since B2n is the maximal priority and it is even we have23B2n ⊆ Parity(p). HenceW ⊆
Almost1(U,M,Parity(p) ∪ 3T ) and the result follows.

Lemma 4 For a parity functionp : S 7→ [0..2n], we haveZ ⊆ ¬Almost1(U,M,Parity(p)), whereZ is
defined as follows

µYn.νXn.µYn−1.νXn−1. · · · µY1.νX1.µY0.




B2n ∩ Pospre2(Yn)
∪

B2n−1 ∩ PosPreOdd2(0, Yn,Xn)
∪

B2n−2 ∩ PosPreEven2(0, Yn,Xn, Yn−1)
∪

B2n−3 ∩ PosPreOdd2(1, Yn,Xn, Yn−1,Xn−1)
∪

B2n−4 ∩ PosPreEven2(1, Yn,Xn, Yn−1,Xn−1, Yn−2)
...

B1 ∩ PosPreOdd2(n− 1, Yn,Xn, . . . , Y1,X1)
∪

B0 ∩ PosPreEven2(n− 1, Yn,Xn, . . . , Y1,X1, Y0)



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Proof. For k ≥ 0, let Zk be the set of states of levelk in the aboveµ-calculus expression. We will show
that inZk for every memoryless strategy for player 1, player 2 can ensure that eitherZk−1 is reached with
positive probability or else coParity(p) is satisfied with probability 1. SinceZ0 = ∅, it would follow by
induction thatZk ∩ Almost1(U,M,Parity(p)) = ∅ and the desired result will follow.

We simplify the computation ofZk givenZk−1 and allow thatZk is obtained fromZk−1 in the following
two ways.

1. Add a set states satisfyingB2n ∩ Pospre2(Zk−1), and if such a non-emptyset is added, then clearly
against any memoryless stratgy for player 1, player 2 can ensure fromZk thatZk−1 is reached with
positive probability. Thus the inductive case follows.

2. Add a set of states satisfying the following condition:

νXn.µYn−1.νXn−1. · · ·µY1.νX1.µY0.




B2n−1 ∩ PosPreOdd2(0, Zk−1,Xn)
∪

B2n−2 ∩ PosPreEven2(0, Zk−1,Xn, Yn−1)
∪

B2n−3 ∩ PosPreOdd2(1, Zk−1,Xn, Yn−1,Xn−1)
∪

B2n−4 ∩ PosPreEven2(1, Zk−1,Xn, Yn−1,Xn−1, Yn−2)
...

B1 ∩ PosPreOdd2(n− 1, Zk−1,Xn, . . . , Y1,X1)
∪

B0 ∩ PosPreEven2(n− 1, Zk−1,Xn, . . . , Y1,X1, Y0)




If the probability of reaching toZk−1 is not positive, then the following conditions hold:

• If the probability to reachZk−1 is not positive, then the predicate Pospre2(Zk−1) vanishes from
the predecessor operator PosPreOdd2(i, Zk−1,Xn, Yn−1, . . . , Yn−i,Xn−i), and thus the opera-
tor simplifies to the simpler predecessor operator APreEven2(i−1,Xn, Yn−1, . . . , Yn−i,Xn−i).

• If the probability to reachZk−1 is not positive, then the Pospre2(Zk−1) vanishes from the prede-
cessor operator PosPreEven2(i, Zk−1,Xn, Yn−1, . . . , Yn−i,Xn−i, Yn−i−1), and thus the opera-
tor simplifies to the predecessor operator APreOdd2(i,Xn, Yn−1, . . . , Yn−i,Xn−i, Yn−i−1).

Hence either the probability to reachZk−1 is positive, or if the probability to reachZk−1 is not
positive, then the aboveµ-calculus expression simplifies to

Z∗ = νXn.µYm−1νXm−1 · · ·µY1.νX1.µY0.




B2n−1 ∩ Pre2(Xn)
∪

B2n−2 ∩ APreOdd2(0,Xn, Yn−1)
∪

B2n−3 ∩ APreEven2(1,Xn, Yn−1,Xn−1)
∪

B2n−4 ∩ APreOdd2(1,Xn, Yn−1,Xn−1, Yn−2)
...

B1 ∩ APreEven2(n− 2,Xn, . . . , Y1,X1)
∪

B0 ∩ APreOdd2(n− 1,Xn, . . . , Y1,X1, Y0)




.
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We now consider the parity functionp+1 : S 7→ [1..2n], and observe that the above formula is same as
the dual almost-expression for case 2. By inductive hypothesis on the dual almost-expression we have
Z∗ ⊆ {s ∈ S | ∀π1 ∈ ΠM

1 .∃π2 ∈ Π2.Prπ1,π2
s (coParity(p)) = 1} (since Parity(p+1) = coParity(p)).

Hence the desired claim follows.

The result follows from the above case analysis.

Correctness of step 2.We now prove correctness of step 2 and we will rely on the correctness of step 1 and
the inductive hypothesis. Since correctness of step 1 follows from the inductive hypothesis, we obtain the
correctness of step 2 from the inductive hypothesis.

Lemma 5 For a parity function p : S 7→ [1..2n + 1], and for all T ⊆ S we haveW ⊆
Almost1(U,M,Parity(p) ∪ 3T ), whereW is defined as follows:

νYn.µXn.νYn−1.µXn−1. · · · νY0.µX0




T
∪

B2n+1 ∩ APreOdd1(0, Yn,Xn)
∪

B2n ∩ APreEven1(0, Yn,Xn, Yn−1)
∪

B2n−1 ∩ APreOdd1(1, Yn,Xn, Yn−1,Xn−1)
∪

B2n−2 ∩ APreEven1(1, Yn,Xn, Yn−1,Xn−2, Yn−2)
∪

B2n−3 ∩ APreOdd1(2, Yn,Xn, Yn−1,Xn−1, Yn−2,Xn−2)
...

B2 ∩ APreEven1(n− 1, Yn,Xn, Yn−1,Xn−1, . . . , Y1,X1, Y0)
∪

B1 ∩ APreOdd1(n, Yn,Xn, Yn−1,Xn−1, . . . , Y0,X0)




Proof. We first present an intuitive explanation about the how theµ-calculus formula is obtained.

Intuitive explanation of theµ-calculus formula. Theµ-calculus expression is obtained from the almost-
expression for case 2: we add aνYn.µXn (adding a quantifier alternation of theµ-calculus formula), and
every APreOdd and APreEven predecessor operators are modified by adding Apre1(Yn,Xn)

⋃
∗ with the

respective predecessor operators, and we addB2n+1 ∩ APreOdd1(0, Yn,Xn).
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We first reformulate the algorithm for computingW in an equivalent form.

W = µXn.νYn−1.µXn−1. · · · νY0.µX0




T
∪

B2n+1 ∩ APreOdd1(0,W,Xn)
∪

B2n ∩ APreEven1(0,W,Xn, Yn−1)
∪

B2n−1 ∩ APreOdd1(1,W,Xn, Yn−1,Xn−1)
∪

B2n−2 ∩ APreEven1(1,W,Xn, Yn−1,Xn−2, Yn−2)
∪

B2n−3 ∩ APreOdd1(2,W,Xn, Yn−1,Xn−1, Yn−2,Xn−2)
...

B2 ∩ APreEven1(n− 1,W,Xn, Yn−1,Xn−1, . . . , Y1,X1, Y0)
∪

B1 ∩ APreOdd1(n,W,Xn, Yn−1,Xn−1, . . . , Y0,X0)




.

The reformulation is obtained as follows: sinceW is the fixpoint ofYn we replaceYn by W everywhere
in the µ-calculus formula. The above mu-calculus formula is a leastfixpoint and thus computesW as
the limit of a sequence of setsW0 = T , W1, W2, . . . . At each iteration, both states inB2n+1 and states
satisfyingB≤2n can be added. The fact that both types of states can be added complicates the analysis of
the algorithm. To simplify the correctness proof, we formulate an alternative algorithm for the computation
of W ; an iteration will add either a singleB2n+1 state, or a set ofB≤2n states.

To obtain the simpler algorithm, notice that the set of variables Yn−1,Xn−1, . . . , Y0,X0 does not
appear as an argument of the APreOdd1(0,W,Xn) = Apre1(W,Xn) operator. Hence, eachB2n+1-
state can be added without regards toB≤2n-states that are not already inW . Moreover, since the
νYn−1.µXn−1. . . . νY0.µX0 operator applies only toB≤2n-states,B2n+1-states can be added one at a time.
From these considerations, we can reformulate the algorithm for the computation ofW as follows.

The algorithm computesW as an increasing sequenceT = T0 ⊂ T1 ⊂ T2 ⊂ · · · ⊂ Tm = W of states,
wherem ≥ 0. LetLi = Ti \Ti−1 and the sequence is computed by computingTi as follows, for0 < i ≤ m:

1. either the setLi = {s} is a singleton such thats ∈ Apre1(W,Ti−1) ∩B2n+1.

2. or the setLi consists of states inB≤2n such thatLi is a subset of the following expression

νYn−1.µXn−1. · · · νY0.µX0




B2n ∩ APreEven1(0,W, Ti−1, Yn−1)
∪

B2n−1 ∩ APreOdd1(1,W, Ti−1, Yn−1,Xn−1)
∪

B2n−2 ∩ APreEven1(1,W, Ti−1, Yn−1,Xn−2, Yn−2)
∪

B2n−3 ∩ APreOdd1(2,W, Ti−1, Yn−1,Xn−1, Yn−2,Xn−2)
...

B2 ∩ APreEven1(n− 1,W, Ti−1, Yn−1,Xn−1, . . . , Y1,X1, Y0)
∪

B1 ∩ APreOdd1(n,W, Ti−1, Yn−1,Xn−1, . . . , Y0,X0)



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The proof thatW ⊆ Almost1(U,M,Parity(p) ∪ 3T ) is based on an induction on the sequenceT = T0 ⊂
T1 ⊂ T2 ⊂ · · · ⊂ Tm = W . For1 ≤ i ≤ m, let Vi = W \ Tm−i, so thatV1 consists of the last block of
states that has been added,V2 to the two last blocks, and so on untilVm = W . We prove by induction on
i ∈ {1, . . . ,m}, from i = 1 to i = m, that for alls ∈ Vi, there exists a uniform memoryless strategyπ1 for
player 1 such that for allπ2 ∈ Π2 we have

Prπ1,π2

s

(
3Tm−i ∪ Parity(p)

)
= 1.

Since the base case is a simplified version of the induction step, we focus on the latter. There are two
cases, depending on whetherVi \ Vi−1 is composed ofB2n+1 or of B≤2n-states. Also it will follow from
Lemma 11 that there always exists uniform distribution to witness that a state satisfy the required predecessor
operator.

• If Vi \ Vi−1 ⊆ B2n+1, thenVi \ Vi−1 = {s} for somes ∈ S ands ∈ Apre1(W,Tm−i). The result
then follows from the application of the basic Apre principle (Lemma 1) withZ = W , X = Tm−i,
Z \ Y = Vi−1 andA = Parity(p).

• If Vi \Vi−1 ⊆ B≤2n, then we analyze the predecessor operator thats ∈ Vi \Vi−1 satisfies. The prede-
cessor operator are essentially the predecessor operator of the almost-expression for case 2 modified
by the addition of the operator Apre1(W,Tm−i)

⋃
∗ . If player 2 plays such the Apre1(W,Tm−i) part of

the predecessor operator gets satisfied, then the analysis reduces to the previous case, and player 1 can
ensure thatTm−i is reached with probability 1. Once we rule out the possibility of Apre1(W,Tm−i),
then theµ-calculus expression simplifies to the almost-expression of case 2, i.e.,

νYn−1.µXn−1. · · · νY0.µX0




B2n ∩ Pre1(Yn−1)
∪

B2n−1 ∩ APreOdd1(0, Yn−1,Xn−1)
∪

B2n−2 ∩ APreEven1(0, Yn−1,Xn−2, Yn−2)
∪

B2n−3 ∩ APreOdd1(1, Yn−1,Xn−1, Yn−2,Xn−2)
...

B2 ∩ APreEven1(n − 2, Yn−1,Xn−1, . . . , Y1,X1, Y0)
∪

B1 ∩ APreOdd1(n− 1, Yn−1,Xn−1, . . . , Y0,X0)




This ensures that if we rule out Apre1(W,Tm−i) form the predecessor operators, then by induc-
tive hypothesis (almost-expression for case 2) we haveLi ⊆ Almost1(U,M,Parity(p)), and if
Apre1(W,Tm−i) is satisfied thenTm−i is ensured to reach with probability 1. Hence player 1 can
ensure that for alls ∈ Vi, there is a uniform memoryless strategyπ1 for player 1 such that for allπ2

for player 2 we have
Prπ1,π2

s

(
3Tm−i ∪ Parity(p)

)
= 1.

This completes the inductive proof. Withi = m we obtain that there exists a uniform memoryless strategy
π1 such that for all statess ∈ Vm = W and for allπ2 we have Prπ1,π2

s (3T0∪Parity(p)) = 1. SinceT0 = T ,
the desired result follows.
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Lemma 6 For a parity functionp : S 7→ [1..2n+ 1] we haveZ ⊆ ¬Almost1(U,M,Parity(p)), whereZ is
defined as follows:

µYn.νXn.µYn−1.νXn−1. · · · µY0.νX0




B2n+1 ∩ PosPreOdd2(0, Yn,Xn)
∪

B2n ∩ PosPreEven2(0, Yn,Xn, Yn−1)
∪

B2n−1 ∩ PosPreOdd2(1, Yn,Xn, Yn−1,Xn−1)
∪

B2n−2 ∩ PosPreEven2(1, Yn,Xn, Yn−1,Xn−2, Yn−2)
∪

B2n−3 ∩ PosPreOdd2(2, Yn,Xn, Yn−1,Xn−1, Yn−2,Xn−2)
...

B2 ∩ PosPreEven2(n− 1, Yn,Xn, Yn−1,Xn−1, . . . , Y1,X1, Y0)
∪

B1 ∩ PosPreOdd2(n, Yn,Xn, Yn−1,Xn−1, . . . , Y0,X0)




Proof. Fork ≥ 0, letZk be the set of states of levelk in the aboveµ-calculus expression. We will show that
in Zk player 2 can ensure that eitherZk−1 is reached with positive probability or else coParity(p) is satisfied
with probability 1. SinceZ0 = ∅, it would follow by induction thatZk ∩Almost1(U,M,Parity(p)) = ∅ and
the desired result will follow.

We obtain ofZk fromZk−1 as follows:

νXn.µYn−1.νXn−1. · · · µY0.νX0




B2n+1 ∩ PosPreOdd2(0, Zk−1,Xn)
∪

B2n ∩ PosPreEven2(0, Zk−1,Xn, Yn−1)
∪

B2n−1 ∩ PosPreOdd2(1, Zk−1,Xn, Yn−1,Xn−1)
∪

B2n−2 ∩ PosPreEven2(1, Zk−1,Xn, Yn−1,Xn−2, Yn−2)
∪

B2n−3 ∩ PosPreOdd2(2, Zk−1,Xn, Yn−1,Xn−1, Yn−2,Xn−2)
...

B2 ∩ PosPreEven2(n− 1, Zk−1,Xn, Yn−1,Xn−1, . . . , Y1,X1, Y0)
∪

B1 ∩ PosPreOdd2(n,Zk−1,Xn, Yn−1,Xn−1, . . . , Y0,X0)




If player 1 risks into moving toZk−1 with positive probability, then the inductive case is proved asZk−1 is
reached with positive probability. If the probability of reaching toZk−1 is not positive, then the following
conditions hold:

• If the probability to reachZk−1 is not positive, then the predicate Pospre2(Zk−1) vanishes from the
predecessor operator PosPreOdd2(i, Zk−1,Xn, Yn−1, . . . , Yn−i,Xn−i), and thus the operator simpli-
fies to the simpler predecessor operator APreEven2(i− 1,Xn, Yn−1, . . . , Yn−i,Xn−i).

• If the probability to reachZk−1 is not positive, then the Pospre2(Zk−1) vanishes from the predecessor
operator PosPreEven2(i, Zk−1,Xn, Yn−1, . . . , Yn−i,Xn−i, Yn−i−1), and thus the operator simplifies
to the predecessor operator APreOdd2(i,Xn, Yn−1, . . . , Yn−i,Xn−i, Yn−i−1).
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Hence either the probability to reachZk−1 is positive, or the probability to reachZk−1 is not positive, then
the aboveµ-calculus expression simplifies to

Z∗ = νXn.µYn−1.νXn−1. · · ·µY0.νX0




B2n+1 ∩ Pre2(Xn)
∪

B2n ∩ APreOdd2(0,Xn, Yn−1)
∪

B2n−1 ∩ APreEven2(0,Xn, Yn−1,Xn−1)
∪

B2n−2 ∩ APreOdd2(1,Xn, Yn−1,Xn−2, Yn−2)
∪

B2n−3 ∩ APreEven2(1,Xn, Yn−1,Xn−1, Yn−2,Xn−2)
...

B2 ∩ APreOdd2(n− 1,Xn, Yn−1,Xn−1, . . . , Y1,X1, Y0)
∪

B1 ∩ APreEven2(n− 1,Xn, Yn−1,Xn−1, . . . , Y0,X0)




.

We now consider the parity functionp − 1 : S 7→ [0..2n] and by the correctness of the dual almost-
expression for step 1 (Lemma 3) (with the roles of player 1 andplayer 2 exchanged and player 2 plays
against memoryless strategies for player 1, as in Lemma 4) wehaveZ∗ ⊆ {s ∈ S | ∀π1 ∈ ΠM

1 .∃π2 ∈
Π2. Prπ1,π2

s (coParity(p)) = 1} (since coParity(p) = Parity(p− 1)). Hence the result follows.

Correctness of step 3.The correctness of step 3 is similar to correctness of step 1.Below we present the
proof sketches (since they are similar to step 1).

Lemma 7 For a parity function p : S 7→ [1..2n + 2], and for all T ⊆ S, we haveW ⊆
Almost1(U,M,Parity(p) ∪ 3T ), whereW is defined as follows:

νYn.µXn.νYn−1.µXn−1. · · · νY0.µX0




T
∪

B2n+2 ∩ Pre1(Yn)
∪

B2n+1 ∩ APreOdd1(0, Yn,Xn)
∪

B2n ∩ APreEven1(0, Yn,Xn, Yn−1)
∪

B2n−1 ∩ APreOdd1(1, Yn,Xn, Yn−1,Xn−1)
∪

B2n−2 ∩ APreEven1(1, Yn,Xn, Yn−1,Xn−2, Yn−2)
∪

B2n−3 ∩ APreOdd1(2, Yn,Xn, Yn−1,Xn−1, Yn−2,Xn−2)
...

B2 ∩ APreEven1(n− 1, Yn,Xn, Yn−1,Xn−1, . . . , Y1,X1, Y0)
∪

B1 ∩ APreOdd1(n, Yn,Xn, Yn−1,Xn−1, . . . , Y0,X0)



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Proof. The proof is almost identical to the proof of Lemma 3. Similarto step 1 (Lemma 3), we add a
max even priority. The proof of the result is essentially identical to the proof of Lemma 3 (almost copy-
paste of the proof), the only modification is instead of the correctness of the almost-expression of case 1
we need to consider the correctness of the almost-expression for step 2 (i.e., Lemma 5 for parity function
p : S 7→ [1..2n + 1]).

Lemma 8 For a parity functionp : S 7→ [1..2n+ 2] we haveZ ⊆ ¬Almost1(U,M,Parity(p)), whereZ is
defined as follows:

µYn.νXn.µYn−1.νXn−1. · · · µY0.νX0




B2n+2 ∩ Pospre2(Yn)
∪

B2n+1 ∩ PosPreOdd2(0, Yn,Xn)
∪

B2n ∩ PosPreEven2(0, Yn,Xn, Yn−1)
∪

B2n−1 ∩ PosPreOdd2(1, Yn,Xn, Yn−1,Xn−1)
∪

B2n−2 ∩ PosPreEven2(1, Yn,Xn, Yn−1,Xn−2, Yn−2)
∪

B2n−3 ∩ PosPreOdd2(2, Yn,Xn, Yn−1,Xn−1, Yn−2,Xn−2)
...

B2 ∩ PosPreEven2(n− 1, Yn,Xn, Yn−1,Xn−1, . . . , Y1,X1, Y0)
∪

B1 ∩ PosPreOdd2(n, Yn,Xn, Yn−1,Xn−1, . . . , Y0,X0)




Proof. The proof of the result is identical to the proof of Lemma 4 (almost copy-paste of the proof), the
only modification is instead of the correctness of the almost-expression of case 2 we need to consider the
correctness of the almost-expression for step 1 (i.e., Lemma 3). This is because in the proof, after we rule out
states inB2n+2 and analyze the sub-formula as in Lemma 3, we consider parityfunctionp−1 : S 7→ [0..2n]
and then invoke the correctness of Lemma 3.

Correctness of step 4.The correctness of step 4 is similar to correctness of step 2.Below we present the
proof sketches (since they are similar to step 2).

Lemma 9 For a parity function p : S 7→ [0..2n + 1], and for all T ⊆ S, we haveW ⊆
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Almost1(U,M,Parity(p) ∪ 3T ), whereW is defined as follows:

νYn+1.µXn+1. · · · νY1.µX1.νY0.




T
∪

B2n+1 ∩ APreOdd1(0, Yn+1,Xn+1)
∪

B2n ∩ APreEven1(0, Yn+1,Xn+1, Yn)
∪

B2n−1 ∩ APreOdd1(1, Yn+1,Xn+1, Yn,Xn)
∪

B2n−2 ∩ APreEven1(1, Yn+1,Xn+1, Yn,Xn, Yn−1)
∪

B2n−3 ∩ APreOdd1(2, Yn+1,Xn+1, Yn,Xn, Yn−1,Xn−1)
∪

B2n−4 ∩ APreEven1(2, Yn+1,Xn+1, Yn,Xn, Yn−1,Xn−1, Yn−2)
...

B1 ∩ APreOdd1(n, Yn+1,Xn+1, Yn,Xn, . . . , Y1,X1)
∪

B0 ∩ APreEven1(n, Yn+1,Xn+1, Yn,Xn, . . . , Y1,X1, Y0)




Proof. Similar to step 2 (Lemma 5), we add a max odd priority. The proof of the result is essentially
identical to the proof of Lemma 5 (almost copy-paste of the proof), the only modification is instead of the
correctness of the almost-expression of case 2 we need to consider the correctness of the almost-expression
for step 1 (i.e., Lemma 3 for parity functionp : S 7→ [0..2n]).

Lemma 10 For a parity functionp : S 7→ [0..2n + 1] we haveZ ⊆ ¬Almost1(U,M,Parity(p)), whereZ
is defined as follows:

µYn+1.νXn+1. · · · µY1.νX1.µY0.




B2n+1 ∩ PosPreOdd2(0, Yn+1,Xn+1)
∪

B2n ∩ PosPreEven2(0, Yn+1,Xn+1, Yn)
∪

B2n−1 ∩ PosPreOdd2(1, Yn+1,Xn+1, Yn,Xn)
∪

B2n−2 ∩ PosPreEven2(1, Yn+1,Xn+1, Yn,Xn, Yn−1)
∪

B2n−3 ∩ PosPreOdd2(2, Yn+1,Xn+1, Yn,Xn, Yn−1,Xn−1)
∪

B2n−4 ∩ PosPreEven2(2, Yn+1,Xn+1, Yn,Xn, Yn−1,Xn−1, Yn−2)
...

B1 ∩ PosPreOdd2(n, Yn+1,Xn+1, Yn,Xn, . . . , Y1,X1)
∪

B0 ∩ PosPreEven2(n, Yn+1,Xn+1, Yn,Xn, . . . , Y1,X1, Y0)




Proof. The proof of the result is identical to the proof of Lemma 6 (almost copy-paste of the proof), the
only modification is instead of the correctness of the almost-expression of step 1 (Lemma 3) we need to
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consider the correctness of the almost-expression for step3 (i.e., Lemma 7). This is because in the proof,
while we analyze the sub-formula as in Lemma 7, we consider parity function p+ 1 : S 7→ [1..2n + 2] and
then invoke the correctness of Lemma 7.

Observe that above we presented the correctness for the almost-expressions for case 1 and case 2, and
the correctness proofs for the dual almost-expressions areidentical. We now present the duality of the
predecessor operators. We first present some notations required for the proof.

Destination or possible successors of moves and distributions. Given a states and distributionsξ1 ∈
χs

1 and ξ2 ∈ χs
2 we denote byDest(s, ξ1, ξ2) = {t ∈ S | P ξ1,ξ2

2 (t) > 0} the set of states that have
positive probability of transition froms when the players playξ1 andξ2 at s. For actionsa andb we have
Dest(s, a, b) = {t ∈ S | δ(s, a, b)(t) > 0} as the set of possible successors givena andb. ForA ⊆ Γ1(s)
andB ⊆ Γ2(s) we haveDest(s,A,B) =

⋃
a∈A,b∈B Dest(s, a, b).

Lemma 11 (Duality of predecessor operators).The following assertions hold.

1. GivenXn ⊆ Xn−1 ⊆ · · · ⊆ Xn−i ⊆ Yn−i ⊆ Yn−i+1 ⊆ · · · ⊆ Yn, we have

PosPreOdd2(i,¬Yn,¬Xn, . . . ,¬Yn−i,¬Xn−i) = ¬APreOdd1(i, Yn,Xn, . . . , Yn−i,Xn−i).

2. GivenXn ⊆ Xn−1 ⊆ · · · ⊆ Xn−i ⊆ Yn−i−1 ⊆ Yn−i ⊆ Yn−i+1 ⊆ · · · ⊆ Yn, we have

PosPreEven2 (i,¬Yn,¬Xn, . . . ,¬Yn−i,¬Xn−i,¬Yn−i−1)
= ¬APreEven1(i, Yn,Xn, . . . , Yn−i,Xn−i, Yn−i−1).

3. For all s ∈ S, if s ∈ APreOdd1(i, Yn,Xn, . . . , Yn−i,Xn−i) (resp. s ∈
APreEven1(i, Yn,Xn, . . . , Yn−i,Xn−i, Yn−i−1)), then there exists uniform distribu-
tion ξ1 to witness that s ∈ APreOdd1(i, Yn,Xn, . . . , Yn−i,Xn−i) (resp. s ∈
APreEven1(i, Yn,Xn, . . . , Yn−i,Xn−i, Yn−i−1)).

Proof. We present the proof for part 1, and the proof for second part is analogous. To present the proof
of the part 1, we first present the proof for the case whenn = 2 andi = 2. This proof already has all the
ingredients of the general proof. After presenting the proof we present the general case.

Claim. We show that forX1 ⊆ X0 ⊆ Y0 ⊆ Y1 we have

Pospre2(¬Y1)
⋃
∗ Apre2(¬X1,¬Y0)

⋃
∗ Pre2(¬X0) = ¬(Apre1(Y1,X1)

⋃
∗ Apre1(Y0,X0)).

We now present the following two case analysis for the proof.

1. A subsetU ⊆ Γ1(s) is good if both the following conditions hold:

(a) Condition 1. For all b ∈ Γ2(s) and for all a ∈ U we haveDest(s, a, b) ⊆ Y1 (i.e.,
Dest(s, U, b) ⊆ Y1); and

(b) Condition 2.For all b ∈ Γ2(s) one of the following conditions hold:

i. either there existsa ∈ U such thatDest(s, a, b)∩X1 6= ∅ (i.e.,Dest(s, U, b)∩X1 6= ∅); or

ii. for all a ∈ U we haveDest(s, a, b) ⊆ Y0 (i.e.,Dest(s, U, b) ⊆ Y0) and for somea ∈ U we
haveDest(s, a, b) ∩X0 6= ∅ (i.e.,Dest(a,U, b) ∩X0 6= ∅).
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We show that if there is a good setU , thens ∈ Apre1(Y1,X1)
⋃
∗ Apre1(Y0,X0). Given a good set

U , consider theuniformdistributionξ1 that plays all actions inU uniformly at random. Consider an
actionb ∈ Γ2(s) and the following assertions hold:

(a) By condition 1 we haveDest(s, ξ1, b) ⊆ Y1.

(b) By condition 2 we have either (i)Dest(s, ξ1, b) ∩ X1 6= ∅ (if condition 2.a holds); or
(ii) Dest(s, ξ1, b) ⊆ Y0, andDest(s, ξ1, b) ∩X0 6= ∅ (if condition 2.b holds).

It follows that in all cases we have (i) eitherDest(s, ξ1, b) ⊆ Y1 andDest(s, ξ1, b) ∩ X1 6= ∅, or
(ii) Dest(s, ξ1, b) ⊆ Y0 andDest(s, ξ1, b) ∩ X0 6= ∅. It follows that ξ1 is a uniform distribution
witness to show thats ∈ Apre1(Y1,X1)

⋃
∗ Apre1(Y0,X0).

2. We now show that if there is no good setU , thens ∈ Pospre2(¬Y1)
⋃
∗Apre2(¬X1,¬Y0)

⋃
∗Pre2(¬X0).

Given a setU , if U is not good, then (by simple complementation argument) one of the following
conditions must hold:

(a) Complementary Condition 1.There existsb ∈ Γ2(s) anda ∈ U such thatDest(s, a, b)∩¬Y1 6=
∅; or

(b) Complementary Condition 2.There existsb ∈ Γ2(s) such that both the following conditions
hold:

i. for all a ∈ U we haveDest(s, a, b) ⊆ ¬X1; and

ii. there existsa ∈ U such thatDest(s, a, b) ∩ ¬Y0 6= ∅ or for all a ∈ U we have
Dest(s, a, b) ⊆ ¬X0.

Since there is no good set, for every setU ⊆ Γ1(s), there is a counter actionb = c(U) ∈ Γ2(s),
such that one of the complementary conditions hold. Consider a distributionξ1 for player 1, and
let U = Supp(ξ1). SinceU is not a good set, consider a counter actionb = c(U) satisfying the
complementary conditions. We now consider the following cases:

(a) If complementary condition 1 holds, thenDest(s, ξ1, b) ∩ ¬Y1 6= ∅ (i.e., Pospre2(¬Y1) is satis-
fied).

(b) Otherwise complementary condition 2 holds, and by 2.a wehaveDest(s, ξ1, b) ⊆ ¬X1.

i. if there existsa ∈ U such thatDest(s, a, b) ∩ ¬Y0 6= ∅, thenDest(s, ξ1, b) ∩ ¬Y0 6= ∅
(hence Apre2(¬X1,¬Y0) holds);

ii. otherwise for alla ∈ U we haveDest(s, a, b) ⊆ ¬X0, henceDest(s, ξ1, b) ⊆ ¬X0 (hence
Pre2(¬X0) holds).

The claim follows.

General case.We now present the result for the general case which is a generalization of the previous case.
We present the details here, and will omit it in later proofs,where the argument is similar. Recall that we
have the following inclusion:Xn ⊆ Xn−1 ⊆ . . . ⊆ Xn−i ⊆ Yn−i ⊆ . . . Yn−1 ⊆ Yn.

1. A subsetU ⊆ Γ1(s) is good if both the following conditions hold: for allb ∈ Γ2(s)

(a) Condition 1.For alla ∈ U we haveDest(s, a, b) ⊆ Yn (i.e.,Dest(s, U, b) ⊆ Yn); and
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(b) Condition 2. There exists0 ≤ j ≤ i, such that for alla ∈ U we haveDest(s, a, b) ⊆ Yn−j

(i.e., Dest(s, U, b) ⊆ Yn−j), and for somea ∈ U we haveDest(s, a, b) ∩ Xn−j 6= ∅ (i.e.,
Dest(s, U, b) ∩Xn−j 6= ∅).

We show that if there is a good setU , thens ∈ Apre1(i, Yn,Xn, . . . , Yn−i,Xn−i). Given a good set
U , consider theuniformdistributionξ1 that plays all actions inU uniformly at random. Consider an
actionb ∈ Γ2(s) and the following assertions hold:

(a) By condition 1 we haveDest(s, ξ1, b) ⊆ Yn.

(b) By condition 2 we have for some0 ≤ j ≤ i, we haveDest(s, ξ1, b) ⊆ Yn−j, andDest(s, ξ1, b)∩
Xn−j 6= ∅ (i.e., Apre1(Yn−j ,Xn−j) holds).

It follows thatξ1 is a uniform distribution witness to show thats ∈ Apre1(Yn,Xn, . . . , Yn−i,Xn−i).

2. We now show that if there is no good setU , thens ∈ PosPreOdd2(i,¬Yn,¬Xn, . . . ,¬Yn−i,¬Xn−i).
Given a setU , if U is not good, then we show that one of the following conditionsmust hold: there
existsb ∈ Γ2(s) such that

(a) Complementary Condition 1 (CC1).Dest(s, U, b) ∩ ¬Yn 6= ∅; or

(b) Complementary Condition 2 (CC2).there exists0 ≤ j < i such thatDest(s, U, b) ⊆ ¬Xn−j

andDest(s, U, b) ∩ ¬Yn−j−1 6= ∅; or

(c) Complementary Condition 3 (CC3).Dest(s, U, b) ⊆ ¬Xn−i.

Consider a setU that is not good, and letb be an action that witness thatU is not good. We show that
b satisfies one of the complementary conditions.

• If Dest(s, U, b) ∩ ¬Yn 6= ∅, then we are done as CC1 is satisfied. Otherwise, we have
Dest(s, U, b) ⊆ Yn, then we must haveDest(s, U, b) ⊆ ¬Xn (otherwise the actionb would sat-
isfy the conditionDest(s, U, b) ⊆ Yn andDest(s, U, b) ∩Xn 6= ∅, and cannot be a witness that
U is not good). Now we continue: ifDest(s, U, b) ∩ ¬Yn−1 6= ∅, then we are done, as we have
a witness thatDest(s, U, b) ⊆ ¬Xn andDest(s, U, b) ∩ ¬Yn−1 6= ∅. If Dest(s, U, b) ⊆ Yn−1,
then again sinceb is witness to show thatU is not good, we must haveDest(s, U, b) ⊆ ¬Xn−1.
We again continue, and if we haveDest(s, U, b)∩¬Yn−2 6= ∅, we are done, or else we continue
and so on. Thus we either find a witness0 ≤ j < i to satisfy CC2, or else in the end we have
thatDest(s, U, b) ⊆ ¬Xn−i (satisfies CC3).

Since there is no good set, for every setU ⊆ Γ1(s), there is a counter actionb = c(U) ∈ Γ2(s),
such that one of the complementary conditions hold. Consider a distributionξ1 for player 1, and
let U = Supp(ξ1). SinceU is not a good set, consider a counter actionb = c(U) satisfying the
complementary conditions. We now consider the following cases:

(a) If CC1 1 holds, thenDest(s, U, b) ∩ ¬Yn 6= ∅ (hence alsoDest(s, ξ1, b) ∩ ¬Yn 6= ∅) (i.e.,
Pospre2(¬Yn) is satisfied).

(b) Else if CC2 holds, then for some0 ≤ j < i and we haveDest(s, U, b) ⊆ ¬Xn−j and
Dest(s, U, b) ⊆ Yn−j−1 (hence alsoDest(s, ξ1, b) ⊆ ¬Xn−j andDest(s, ξ1, b) ⊆ Yn−j−1)
(i.e., Apre2(¬Xn,¬Yn−1)

⋃
∗ Apre2(¬Xn−1,¬Yn−2)

⋃
∗ . . .

⋃
∗ Apre2(¬Xn−i+1,¬Yn−i) holds).

(c) Otherwise CC3 holds and we haveDest(s, U, b) ⊆ ¬Xn−i, (hence alsoDest(s, ξ1, b) ⊆
¬Xn−i) (i.e., Pre2(¬Xn−i) holds).
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The claim follows.

The result for part 3 follows as in the above proofs we have always constructed uniform witness distri-
bution.

Characterization of Almost1(U,M,Φ) set. From Lemmas 3—10, and the duality of predecessor oper-
ators (Lemma 11) we obtain the following result characterizing the almost-sure winning set for uniform
memoryless strategies for parity objectives.

Theorem 3 For all concurrent game structuresG over state spaceS, for all parity objectives Parity(p) for
player 1, the following assertions hold.

1. If p : S 7→ [0..2n − 1], then Almost1(U,M,Parity(p)) = W , whereW is defined as follows

νYn.µXn.νYn−1.µXn−1. · · · νY1.µX1.νY0.




B2n−1 ∩ APreOdd1(0, Yn,Xn)
∪

B2n−2 ∩ APreEven1(0, Yn,Xn, Yn−1)
∪

B2n−3 ∩ APreOdd1(1, Yn,Xn, Yn−1,Xn−1)
∪

B2n−4 ∩ APreEven1(1, Yn,Xn, Yn−1,Xn−1, Yn−2)
...

B1 ∩ APreOdd1(n− 1, Yn,Xn, . . . , Y1,X1)
∪

B0 ∩ APreEven1(n− 1, Yn,Xn, . . . , Y1,X1, Y0)




(1)
andBi = p−1(i) is the set of states with priorityi, for i ∈ [0..2n − 1].

2. If p : S 7→ [1..2n], then Almost1(U,M,Parity(p)) = W , whereW is defined as follows

νYn−1.µXn−1. · · · νY1.µX1.νY0.µX0




B2n ∩ Pre1(Yn−1)
∪

B2n−1 ∩ APreOdd1(0, Yn−1,Xn−1)
∪

B2n−2 ∩ APreEven1(0, Yn−1,Xn−2, Yn−2)
∪

B2n−3 ∩ APreOdd1(1, Yn−1,Xn−1, Yn−2,Xn−2)
...

B2 ∩ APreEven1(n − 2, Yn−1,Xn−1, . . . , Y1,X1, Y0)
∪

B1 ∩ APreOdd1(n− 1, Yn−1,Xn−1, . . . , Y0,X0)




(2)
andBi = p−1(i) is the set of states with priorityi, for i ∈ [1..2n].

3. The set Almost1(U,M,Parity(p)) can be computed symbolically using the expressions (1) and (2) in
timeO(|S|2n+1 ·

∑
s∈S 2|Γ1(s)∪Γ2(s)|).

4. Given a states ∈ S whethers ∈ Almost1(U,M,Parity(p)) can be decided in NP∩ coNP.
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Figure 1: Three priority concurrent game

Ranking function for µ-calculus formula. Given aµ-calculus formula of alternation-depth (the nesting
depth ofν-µ-operators), therankingfunction maps every state to a tuple ofd-integers, such that each integer
is at most the size of the state space. For a state that satisfies theµ-calculus formula the tuple of integers
denote iterations of theµ-calculus formula such that the state got included for the first time in the nested
evaluation of theµ-calculus formula (for details see [EJ91, Koz83]).

The NP∩ coNP bound follows directly from theµ-calculus expressions as the players can guess the
ranking functionof the µ-calculus formula and the support of the uniform distribution at every state to
witness that the predecessor operator is satisfied, and the guess can be verified in polynomial time. Observe
that the computation throughµ-calculus formulas is symbolic and more efficient than enumeration over the
set of all uniform memoryless strategies of sizeO(

∏
s∈S |Γ1(s)∪Γ2(s)|) (for example, with constant action

size and constantd, theµ-calculus formula is polynomial, whereas enumeration of strategies is exponential).
Theµ-calculus formulas of [EJ91] can be obtained as a special case of theµ-calculus formula of Theorem 3
by replacing all predecessor operators with the Pre1 predecessor operator.

Proposition 3 Almost1(IP ,FM ,Φ) = Almost1(U,FM ,Φ) = Almost1(U,M,Φ).

Proof. Consider a finite-memory strategy that is almost-sure winning. Since it is finite-memory, it must be
finite-precision. The result follows from Proposition 2.

It follows from above that uniform memoryless strategies are as powerful as finite-precision infinite-
memory strategies for almost-sure winning. We now show thatinfinite-precision infinite-memory strategies
are more powerful than uniform memoryless strategies.

Example 2 (Almost1(U,M,Φ) ( Almost1(IP , IM ,Φ)). We show with an example that for a concurrent
parity game with three priorities we haveAlmost1(U,M,Φ) ( Almost1(IP , IM ,Φ). Consider the game
shown in Fig 1. The moves available for player 1 and player 2 ats0 is {a, b} and{c, d}, respectively. The
priorities are as follows:p(s0) = 1, p(s2) = 3 andp(s1) = 2. In other words, player 1 wins ifs1 is
visited infinitely often ands2 is visited finitely often. We show that for all uniform memoryless strategy
for player 1 there is counter strategy for player 2 to ensure that the co-parity condition is satisfied with
probability 1. Consider a memoryless strategyπ1 for player 1, and the counter strategyπ2 is defined as
follows: (i) if b ∈ Supp(π1(s0)), then playd, (ii) otherwise, playc. It follows that (i) if b ∈ Supp(π1(s0)),
then the closed recurrent setC of the Markov chain obtained by fixingπ1 andπ2 containss2, and hence
s2 is visited infinitely often with probability 1; (ii) otherwise, player 1 plays the deterministic memoryless
strategy that playsa at s0, and the counter movec ensures that onlys0 is visited infinitely often. It follows
from our results that for all finite-memory strategies for player 1, player 2 can ensure that player 1 cannot
win with probability 1.

We now show that in the game there is an infinite-memory infinite-precision strategy for player 1 to win
with probability 1 against all player 2 strategies. Consider a strategyπ1 for player 1 that is played in rounds,
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Figure 2: Büchi games

and a round is incremented upon visit to{s1, s2}, and in roundk the strategy plays actiona with probability
1 − 1

2k+1 andb with probability 1
2k+1 . Fork ≥ 0, let Ek denote the event that the game gets stuck at round

k. In roundk, against any strategy for player 2 in every step there is at least probabilityηk = 1
2k+1 > 0 to

visit the set{s1, s2}. Thus the probability to be in roundk for ℓ steps is at most(1 − ηk)
ℓ, and this is 0 asℓ

goes to∞. Thus we have Prπ1,π2
s0

(Ek) = 0. Hence the probability that the game is stuck in some roundk is

Prπ1,π2

s0
(
⋃

k≥0

Ek) ≤
∑

k≥0

Prπ1,π2

s0
(Ek) = 0,

where the last equality follows as the countable sum of probability zero event is zero. It follows that
Prπ1,π2

s0
(23{s1, s2}) = 1, i.e.,{s1, s2} is visited infinitely often with probability 1. To complete the proof

we need to show that{s2} is visited infinitely often with probability 0. Consider an arbitrary strategy for
player 2. We first obtain the probabilityuk+1 thats2 is visitedk+ 1 times, given it has been visitedk times.
Observe that to visits2 player 2 must play the actiond, and thus

uk+1 ≤
1

2k+1
(1 +

1

2
+

1

4
+ . . .),

where in the infinite sum is obtained by considering the number of consecutive visits tos1 befores2 is
visited. The explanation of the infinite sum is as follows: the probability to reachs2 for k + 1-th time after
thek-th visit (i) with only one visit tos1 is 1

2k+1 , (ii) with two visits tos1 is 1
2k+2 (as the probability to play

actionb is halved), (iii) with three visits tos1 is 1
2k+3 and so on. Hence we haveuk+1 ≤ 1

2k . The probability
that s2 is visited infinitely often is

∏∞
k=0 uk+1 ≤

∏∞
k=0

1
2k+1 = 0. It follows that for all strategiesπ2 we

have Prπ1,π2
s0

(23{s2}) = 0, and hence Prπ1,π2
s0

(23{s1} ∩ 32{s1, s0}) = 1. Thus we have shown that
player 1 has an infinite-memory infinite-precision almost-sure winning strategy.

Example 3 (Limit1(IP ,FM ,Φ) ( Limit1(IP , IM ,Φ)). We show with an example that
Limit1(IP ,FM ,Φ) ( Limit1(IP , IM ,Φ). The example is from [dAH00] and we present the details for
the sake of completeness.

Consider the game shown in Fig. 2. The states2 is an absorbing state, and from the states1 the next
state is alwayss0. The objective of player 1 is to visits1 infinitely often, i.e.,23{s1}. Forε > 0, we will
construct a strategyπε

1 for player 1 that ensuress1 is visited infinitely often with probability at least1 − ε.
First, givenε > 0, we construct a sequence ofεi, for i ≥ 0, such thatεi > 0, and

∏
i(1− εi) ≥ (1− ε). Let

πεi

1 be a memoryless strategy for player 1 that ensuress0 is reached froms1 with probability at least1− εi;
such a strategy can be constructed as in the solution of reachability games (see [dAHK07]). The strategy
πε

1 is as follows: for a historyw ∈ S∗ (finite sequence of states), if the number of timess1 has appeared in
w is i, then for the historyw · s0 the strategyπε

1 plays likeπεi

1 , i.e.,πε
1(w · s0) = πεi

1 (s0). The strategyπε

constructed in this fashion ensures that against any strategy π2, the states1 is visited infinitely often with
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probability at least
∏

i(1 − εi) ≥ 1 − ε. However, the strategyπε
1 counts the number of visits tos1, and

therefore uses infinite memory.
We now show that the infinite memory requirement cannot be avoided. We show now that all finite-

memory strategies visits2 infinitely often with probability 0. Letπ be an arbitrary finite-memory strategy
for player 1, and letM be the (finite) memory set used by the strategy. Consider the product game graph
defined on the state space{s0, s1, s2}×M as follows: fors ∈ {s0, s1, s2} andm ∈M , letπu(s,m) = m1

(whereπu is the memory update function ofπ), then fora1 ∈ Γ1(s) andb1 ∈ Γ2(s) we have

δ((s,m), a1, b1)(s
′,m′) =

{
δ(s, a1, b1)(s

′) m′ = m1

0 otherwise

where δ is the transition function of the product game graph. The strategy π will be interpreted as
a memorylessπ in the product game graph as follows: fors ∈ {s0, s1, s2} and m ∈ M we have
π((s,m)) = πn((s,m)), whereπn is the next move function ofπ. Consider now a strategyπ2 for player 2
constructed as follows. From a state(s0,m) ∈ {s0, s1, s2}×M , if the strategyπ playsa with probability 1,
then player 2 playsc with probability 1, ensuring that the successor is(s0,m

′) for somem′ ∈ M . If π
playsb with positive probability, then player 2 playsc andd uniformly at random, ensuring that(s2,m

′) is
reached with positive probability, for somem′ ∈ M . Underπ1, π2 the game is reduced to a Markov chain,
and since the set{s2} ×M is absorbing, and since all states in{s0} ×M either stay safe in{s0} ×M or
reach{s2} ×M in one step with positive probability, and all states in{s1} ×M reach{s0} ×M in one
step, the closed recurrent classes must be either entirely contained in{s0}×M , or in{s2}×M . This shows
that, underπ1, π2, player 1 achieves the Büchi goal23{s1} with probability 0.

4 Infinite-precision Strategies

The results of the previous section already characterizes that for almost-sure winning infinite-precision
finite-memory strategies are no more powerful than uniform memoryless strategies. In this section we
characterize the limit-sure winning for infinite-precision finite-memory strategies. We define two new oper-
ators, Lpre (limit-pre) and Fpre (fractional-pre). Fors ∈ S andX,Y ⊆ S, these two-argument predecessor
operators are defined as follows:

Lpre1(Y,X) = {s ∈ S | ∀α > 0 . ∃ξ1 ∈ χs
1 . ∀ξ2 ∈ χs

2 .
[
P ξ1,ξ2

s (X) > α · P ξ1,ξ2
s (¬Y )

]
}; (3)

Fpre2(X,Y ) = {s ∈ S | ∃β > 0 . ∀ξ1 ∈ χs
1 . ∃ξ2 ∈ χs

2 .
[
P ξ1,ξ2

s (Y ) ≥ β · P ξ1,ξ2
s (¬X)

]
} . (4)

The operator Lpre1(Y,X) is the set of states such that player 1 can choose distributions to ensure that the
probability to progress toX can be made arbitrarily large as compared to the probabilityof escape fromY .
In other words, the probability to progress toX divided by the sum of the probability to progress toX and
to escapeY can be made arbitrarily close to 1 (in the limit 1). The operator Fpre2(X,Y ) is the set of states
such that against all player 1 distributions, player 2 can choose a distribution to ensure that the probability
to progress toY can be made greater than a positive constant times the probability of escape fromX, (i.e.,
progress toY is a positive fraction of the probability to escape fromX).

Limit-sure winning for memoryless strategies. The results of [dAHK07] shows that for reachability
objectives, memoryless strategies suffices for limit-surewinning. We now show with an example that limit-
sure winning for Büchi objectives with memoryless strategies is not simply limit-sure reachability to the
set of almost-sure winning states. Consider the game shown in Fig 3 with actions{a, b} for player 1 and
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Figure 3: A Büchi game

{c, d, e} for player 2 ats0. Statess1, s2 are absorbing, and froms3 the successor iss0 deterministically.
The Büchi objective is to visit{s1, s3} infinitely often. The only almost-sure winning state is{s1}. The
states0 is not almost-sure winning because ats0 if player 1 playsb with positive probability the counter
move isd, otherwise the counter move isc. Hence eithers2 is reached with positive probability ors0 is
never left. Moreover, player 1 cannot limit-sure reach the states1 from s0, as the movee ensures thats1 is
never reached. Thus in this game the limit-sure reach to the almost-sure winning set is only states1. We
now show that for allε, there is a memoryless strategy to ensure the Büchi objective with probability at
least1 − ε from s0. At s0 the memoryless strategy playsa with probability 1 − ε andb with probability
ε. Fixing the strategy for player 1 we obtain an MDP for player 2, and in the MDP player 2 has an optimal
pure memoryless strategy. If player 2 plays the pure memoryless strategye, thens3 is visited infinitely often
with probability 1; if player 2 plays the pure memoryless strategyc, thens1 is reached with probability 1;
and if player 2 playsd, thens1 is reached with probability1 − ε. Thus for allε > 0, player 1 can win from
s0 ands2 with probability at least1 − ε with a memoryless strategy.

Limit-winning set for B üchi objectives. We first present the characterization of the set of limit-sure win-
ning states for concurrent Büchi games from [dAH00] for infinite-memory and infinite-precision strategies.
The limit-sure winning set is characterized by the following formula

νY0.µX0.[(B ∩ Pre1(Y0)) ∪ (¬B ∩ Lpre1(Y0,X0))]

Our characterization of the limit-sure winning set for memoryless infinite-precision strategies would be
obtained as follows: we will obtain sequence of chunk of statesX0 ⊆ X1 ⊆ . . . ⊆ Xk such that from each
Xi for all ε > 0 there is a memoryless strategy to ensure that3Xi−1 ∪ (23B ∩2(Xi \Xi−1)) is satisfied
with probability at least1 − ε. We consider the followingµ-calculus formula:

νY1.µX1.νY0.µX0.[(B ∩ Pre1(Y0)
⋃
∗ Lpre1(Y1,X1)) ∪ (¬B ∩ Apre1(Y0,X0)

⋃
∗ Lpre1(Y1,X1))]

Let Y ∗ be the fixpoint, and since it is a fixpoint we have

Y ∗ = µX1.νY0.µX0.

[ (
B ∩ Pre1(Y0)

⋃
∗ Lpre1(Y

∗,X1)
)
∪(

¬B ∩ Apre1(Y0,X0)
⋃
∗ Lpre1(Y

∗,X1)
)

]

HenceY ∗ is computed as least fixpoint as sequence of setsX0 ⊆ X1 . . . ⊆ Xk, andXi+1 is obtained from
Xi as

νY0.µX0.[(B ∩ Pre1(Y0)
⋃
∗ Lpre1(Y

∗,Xi)) ∪ (¬B ∩ Apre1(Y0,X0)
⋃
∗ Lpre1(Y

∗,Xi))]

The Lprei(Y
∗,Xi) is similar to limit-sure reachability toXi, and once we rule out Lpre1(Y

∗,Xi), the
formula simplifies to the almost-sure winning under memoryless strategies. In other words, from eachXi+1

player 1 can ensure with a memoryless strategy that either (i) Xi is reached with limit probability 1 or
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(ii) the game stays inXi+1 \ Xi and the Büchi objective is satisfied with probability 1. It follows that
Y ∗ ⊆ Limit1(IP ,M,23B). We will show that in the complement set there exists constant η > 0 such
that for all finite-memory infinite-precision strategies for player 1 there is a counter strategy to ensure the
complementary objective with probability at leastη > 0.

The general principle. The general principle to obtain theµ-calculus formula for limit-sure winning
for memoryless infinite-precision strategies is as follows: we consider theµ-calculus formula for the
almost-sure winning for uniform memoryless strategies, then add aνYn+1µXn+1 quantifier and add the
Lpre1(Yn+1,Xn+1)

⋃
∗ to every predecessor operator. Intuitively, when we replaceYn+1 by the fixpointY ∗,

then we obtain sequenceXi of chunks of states for the least fixpoint computation ofXn+1, such that from
Xi+1 eitherXi is reached with limit probability 1 (by the Lpre1(Y

∗,Xn+1) operator), or the game stays in
Xi+1 \Xi and then the parity objective is satisfied with probability 1by a memoryless strategy. Formally,
we will show Lemma 13, and we first present a technical lemma required for the correctness proof.

Lemma 12 (Basic Lpre principle). LetX ⊆ Y ⊆ Z ⊆ S and such that alls ∈ Y \ X we haves ∈
Lpre1(Z,X). For all prefix-independent eventsA ⊆ 2(Z \ Y ), the following assertion holds:

Assume that for allη > 0 there exists a memoryless strategyπη
1 ∈ ΠM

1 such that for allπ2 ∈ Π2

and for all z ∈ Z \ Y we have

Pr
π

η
1
,π2

z (A ∪ 3Y ) ≥ 1 − η, (i.e., lim
η→0

Pr
π

η
1
,π2

z (A ∪ 3Y ) = 1).

Then, for alls ∈ Y for all ε > 0 there exists a memoryless strategyπε
1 ∈ ΠM

1 such that for all
π2 ∈ Π2 we have

Pr
πε
1
,π2

s (A ∪ 3X) ≥ 1 − ε, (i.e., lim
ε→0

Pr
πε
1
,π2

s (A ∪ 3X) = 1).

Proof. The situation is depicted in Figure 4.(a). Since for alls ∈ Y \X we haves ∈ Lpre1(Z,X), given
ε > 0, player 1 can play the distributionξLpre

s,1 [ε](Z,X) to ensure that the probability of going to¬Z is at
mostε times the probability of going toX. Fix a counter strategyπ2 for player 2. Letγ andγ′ denote the
probability of going toX and¬Z, respectively. Thenγ′ ≤ ε · γ. Observe thatγ > εl, wherel = |Γs|. Let
α denote the probability of the eventA. We first present an informal argument and then present rigorous
calculations. SinceA ⊆ A∪3X, the worst-case analysis for the result correspond to the case whenα = 0,
and the simplified situation is shown as Fig 4.(b). Once we letη → 0, then we only have an edge fromZ \Y
to Y and the situation is shown in Fig 4.(c). Ifq is the probability to reachX, then the probability to reach
¬Z is q · ε and we haveq+ qε = 1, i.e.,q = 1

1+ε
, and givenε′ > 0 we can choseε to ensure thatq ≥ 1− ε′.

We now present detailed calculations. Givenε′ > 0 we construct a strategyπε′

1 as follows: letε =
ε′

2(1−ε′) andη = εl+1 > 0; and fix the strategyπη
1 for states inZ \ Y and the distributionξLpre

s,1 [ε](Z,X) at

s. Observe that by choice we haveη ≤ γ · ε. Let q = Pr
πε′

1 ,π2

s (A ∪ 3X). Then we haveq ≥ γ + β ·
(
α+

(1− η− α) · q
)
; since the setZ \ Y is reached with probability at mostβ and then againY is reached with

probability at least1 − η − α and eventA happens with probability at leastα. Hence we have

q ≥ γ + β ·
(
α+ (1 − η − α) · q

)
≥ γ + β ·

(
α · q + (1 − η − α) · q

)
= γ + β · (1 − η) · q;
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Figure 4: Basic Lpre principle; in the figuresβ = 1 − γ − γ · ε

the first inequality follows asq ≤ 1. Thus we have

q ≥ γ + (1 − γ − γ · ε) · (1 − η) · q;

q ≥
γ

γ + γ · ε+ η − η · γ − η · γ · ε

≥
γ

γ + γ · ε+ η

≥
γ

γ + γ · ε+ γ · ε
(sinceη ≤ γ · ε)

≥ 1
1+2ε

≥ 1 − ε′.

The desired result follows.

Lemma 13 For a parity functionp : S 7→ [1..2n] andT ⊆ S, we haveW ⊆ Limit1(IP ,M,Parity(p) ∪
3T ), whereW is defined as follows:

νYn.µXn.νYn−1.µXn−1. · · · νY1.µX1.νY0.µX0.


T
B2n ∩ Pre1(Yn−1)

⋃
∗ Lpre1(Yn,Xn)

∪
B2n−1 ∩ APreOdd1(0, Yn−1,Xn−1)

⋃
∗ Lpre1(Yn,Xn)

∪
B2n−2 ∩ APreEven1(0, Yn−1,Xn−1, Yn−2)

⋃
∗ Lpre1(Yn,Xn)

∪
B2n−3 ∩ APreOdd1(1, Yn−1,Xn−1, Yn−2,Xn−2)

⋃
∗ Lpre1(Yn,Xn)

∪
...

B2 ∩ APreEven1(n− 2, Yn−1,Xn−1, . . . , Y1,X1, Y0)
⋃
∗ Lpre1(Yn,Xn)

∪
B1 ∩ APreOdd1(n− 1, Yn−1,Xn−1, . . . , Y0,X0)

⋃
∗ Lpre1(Yn,Xn)



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Proof. We first reformulate the algorithm for computingW in an equivalent form.

µXn.νYn−1.µXn−1. · · · νY1.µX1.νY0.µX0.


T
B2n ∩ Pre1(Yn−1)

⋃
∗ Lpre1(W,Xn)

∪
B2n−1 ∩ APreOdd1(0, Yn−1,Xn−1)

⋃
∗ Lpre1(W,Xn)

∪
B2n−2 ∩ APreEven1(0, Yn−1,Xn−1, Yn−2)

⋃
∗ Lpre1(W,Xn)

∪
B2n−3 ∩ APreOdd1(1, Yn−1,Xn−1, Yn−2,Xn−2)

⋃
∗ Lpre1(W,Xn)

∪
...

B2 ∩ APreEven1(n− 2, Yn−1,Xn−1, . . . , Y1,X1, Y0)
⋃
∗ Lpre1(W,Xn)

∪
B1 ∩ APreOdd1(n− 1, Yn−1,Xn−1, . . . , Y0,X0)

⋃
∗ Lpre1(W,Xn)




The reformulation is obtained as follows: sinceW is the fixpoint ofYn+1 we replaceYn+1 byW everywhere
in theµ-calculus formula, and get rid of the outermost fixpoint. Theabove mu-calculus formula is a least
fixpoint and thus computesW as an increasing sequenceT = T0 ⊂ T1 ⊂ T2 ⊂ · · · ⊂ Tm = W of states,
wherem ≥ 0. LetLi = Ti \Ti−1 and the sequence is computed by computingTi as follows, for0 < i ≤ m:

νYn−1.µXn−1. · · · νY1.µX1.νY0.µX0.




T
B2n ∩ Pre1(Yn−1)

⋃
∗ Lpre1(W,Ti−1)

∪
B2n−1 ∩ APreOdd1(0, Yn−1,Xn−1)

⋃
∗ Lpre1(W,Ti−1)

∪
B2n−2 ∩ APreEven1(0, Yn−1,Xn−1, Yn−2)

⋃
∗ Lpre1(W,Ti−1)

∪
B2n−3 ∩ APreOdd1(1, Yn−1,Xn−1, Yn−2,Xn−2)

⋃
∗ Lpre1(W,Ti−1)

∪
...

B2 ∩ APreEven1(n− 2, Yn−1,Xn−1, . . . , Y1,X1, Y0)
⋃
∗ Lpre1(W,Ti−1)

∪
B1 ∩ APreOdd1(n− 1, Yn−1,Xn−1, . . . , Y0,X0)

⋃
∗ Lpre1(W,Ti−1)




The above formula is obtained by simply replacing the variable Xn by Ti−1. The proof thatW ⊆
Limit1(IP ,M,Parity(p) ∪ 3T ) is based on an induction on the sequenceT = T0 ⊂ T1 ⊂ T2 ⊂ · · · ⊂
Tm = W . For1 ≤ i ≤ m, let Vi = W \ Tm−i, so thatV1 consists of the last block of states that has been
added,V2 to the two last blocks, and so on untilVm = W . We prove by induction oni ∈ {1, . . . ,m}, from
i = 1 to i = m, that for alls ∈ Vi, for all η > 0, there exists a memoryless strategyπη

1 for player 1 such
that for allπ2 ∈ Π2 we have

Pr
π

η
1
,π2

s

(
3Tm−i ∪ Parity(p)

)
≥ 1 − η.

Since the base case is a simplified version of the induction step, we focus on the latter.
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ForVi \Vi−1 we analyze the predecessor operator thats ∈ Vi \Vi−1 satisfies. The predecessor operators
are essentially the predecessor operators of the almost-expression for case 1 modified by the addition of
the operator Lpre1(W,Tm−i)

⋃
∗ . Note that since we fix memoryless strategies for player 1, the analysis

of counter-strategies for player 2 can be restricted to purememoryless (as we have player-2 MDP). We fix
the memoryless strategy for player 1 according to the witness distribution of the predecessor operators, and
consider a pure memoryless counter-strategy for player 2. LetQ be the set of states where player 2 plays
such the Lpre1(W,Tm−i) part of the predecessor operator gets satisfied. Once we ruleout the possibility of
Lpre1(W,Tm−i), then theµ-calculus expression simplifies to the almost-expression of case 2 withQ∪T as
the set of target, i.e.,

νYn−1.µXn−1. · · · νY1.µX1.νY0.µX0.




(T ∪Q)
B2n ∩ Pre1(Yn−1)

∪
B2n−1 ∩ APreOdd1(0, Yn−1,Xn−1)

∪
B2n−2 ∩ APreEven1(0, Yn−1,Xn−1, Yn−2)

∪
B2n−3 ∩ APreOdd1(1, Yn−1,Xn−1, Yn−2,Xn−2)

∪
...

B2 ∩ APreEven1(n− 2, Yn−1,Xn−1, . . . , Y1,X1, Y0)
∪

B1 ∩ APreOdd1(n− 1, Yn−1,Xn−1, . . . , Y0,X0)




This ensures that if we rule out Lpre1(W,Tm−i) from the predecessor operators and treat the setQ as
target, then by correctness of the almost-expression for case 2 we have that the Parity(p) ∪ 3(Q ∪ T ) is
satisfied with probability 1. By applying the Basic Lpre Principle (Lemma 12) withZ = W , X = Tm−i,
A = Parity(p) andY = X ∪ Q, we obtain that for allη > 0 player 1 can ensure with a memoryless
strategy that Parity(p) ∪ 3Tm−i is satisfied with probability at least1 − η. This completes the inductive
proof. With i = m we obtain that for allη > 0, there exists a memoryless strategyπη

1 such that for all states

s ∈ Vm = W and for allπ2 we have Pr
π

η
1
,π2

s (3T0 ∪ Parity(p)) ≥ 1 − η. SinceT0 = T , the desired result
follows.

We now define the dual predecessor operators (the duality will be shown in Lemma 15). We will first use
the dual operators to characterize the complement of the setof limit-sure winning states for finite-memory
infinite-precision strategies. We now introduce two fractional predecessor operators as follows:

FrPreOdd2(i, Yn,Xn, . . . , Yn−i,Xn−i)

= Fpre2(Xn, Yn)
⋃
∗ Apre2(Xn, Yn−1)

⋃
∗ · · ·

⋃
∗ Apre2(Xn−i+1, Yn−i)

⋃
∗ Pre2(Xn−i)

FrPreEven2(i, Yn,Xn, . . . , Yn−i,Xn−i, Yn−i−1)

= Fpre2(Xn, Yn)
⋃
∗ Apre2(Xn, Yn−1)

⋃
∗ · · ·

⋃
∗ Apre2(Xn−i+1, Yn−i)

⋃
∗ Apre2(Xn−i, Yn−i−1)

The fractional operators are same as the PosPreOdd and PosPreEven operators, the difference is the
Pospre2(Yn) is replaced by Fpre2(Xn, Yn).
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Remark 2 Observe that if we rule out the predicate Fpre2(Xn, Yn) the predecessor operator
FrPreOdd2(i, Yn,Xn, Yn, . . . , Yn−i,Xn−i) (resp. FrPreEven2(i, Yn,Xn, Yn−1, . . . , Yn−i,Xn−i, Yn−i−1)),
then we obtain the simpler predecessor operator APreEven2(i,Xn, Yn−1, . . . , Yn−i,Xn−i) (resp.
APreOdd2(i,Xn, Yn−1, . . . , Yn−i,Xn−i, Yn−i−1)).

The formal expanded definitions of the above operators are asfollows:

APreOdd1(i, Yn,Xn, . . . , Yn−i,Xn−i)
⋃
∗ Lpre1(Yn+1,Xn+1) =

{
s ∈ S | ∀α > 0 . ∃ξ1 ∈ χs

1.∀ξ2 ∈ χs
2.




(P ξ1,ξ2
s (Xn+1) > α · P ξ1,ξ2

s (¬Yn+1))∨

(P ξ1,ξ2
s (Xn) > 0 ∧ P ξ1,ξ2

s (Yn) = 1)∨

(P ξ1,ξ2
s (Xn−1) > 0 ∧ P ξ1,ξ2

s (Yn−1) = 1)∨
...∨

(P ξ1,ξ2
s (Xn−i) > 0 ∧ P ξ1,ξ2

s (Yn−i) = 1)




}
.

APreEven1(i, Yn,Xn, . . . , Yn−i,Xn−i, Yn−i−1)
⋃
∗ Lpre1(Yn+1,Xn+1) =

{
s ∈ S | ∀α > 0 . ∃ξ1 ∈ χs

1.∀ξ2 ∈ χs
2.




(P ξ1,ξ2
s (Xn+1) > α · P ξ1,ξ2

s (¬Yn+1))∨

(P ξ1,ξ2
s (Xn) > 0 ∧ P ξ1,ξ2

s (Yn) = 1)∨

(P ξ1,ξ2
s (Xn−1) > 0 ∧ P ξ1,ξ2

s (Yn−1) = 1)∨
...∨

(P ξ1,ξ2
s (Xn−i) > 0 ∧ P ξ1,ξ2

s (Yn−i) = 1)∨

(P ξ1,ξ2
s (Yn−i−1) = 1)




}
.
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The formal expanded definitions of the above operators are asfollows:

FrPreOdd2(i, Yn,Xn, . . . , Yn−i,Xn−i) =

{
s ∈ S | ∃β > 0.∀ξ1 ∈ χs

1.∃ξ2 ∈ χs
2.




(P ξ1,ξ2
s (Yn) ≥ β · P ξ1,ξ2

s (¬Xn))∨

(P ξ1,ξ2
s (Yn−1) > 0 ∧ P ξ1,ξ2

s (Xn) = 1)∨

(P ξ1,ξ2
s (Yn−2) > 0 ∧ P ξ1,ξ2

s (Xn−1) = 1)∨
...∨

(P ξ1,ξ2
s (Yn−i) > 0 ∧ P ξ1,ξ2

s (Xn−i+1) = 1)∨

(P ξ1,ξ2
s (Xn−i) = 1)




}
.

FrPreEven2(i, Yn,Xn, . . . , Yn−i,Xn−i, Yn−i−1) =

{
s ∈ S | ∃β > 0.∀ξ1 ∈ χs

1.∃ξ2 ∈ χs
2.




(P ξ1,ξ2
s (Yn) ≥ β · P ξ1,ξ2

s (¬Xn))∨

(P ξ1,ξ2
s (Yn−1) > 0 ∧ P ξ1,ξ2

s (Xn) = 1)∨

(P ξ1,ξ2
s (Yn−2) > 0 ∧ P ξ1,ξ2

s (Xn−1) = 1)∨
...∨

(P ξ1,ξ2
s (Yn−i−1) > 0 ∧ P ξ1,ξ2

s (¬Xn−i) = 1)




}
.

We now show the dual of Lemma 13.

Lemma 14 For a parity functionp : S 7→ [1..2n] we haveZ ⊆ ¬Limit1(IP ,FM ,Parity(p)), whereZ is
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defined as follows:

µYn.νXn.µYn−1.νXn−1. · · · µY1.νX1.µY0.νX0.


B2n ∩ FrPreEven2(0, Yn,Xn, Yn−1

∪
B2n−1 ∩ FrPreOdd2(1, Yn,Xn, Yn−1,Xn−1)

∪
B2n−2 ∩ FrPreEven2(1, Yn,Xn, Yn−1,Xn−1, Yn−2)

∪
B2n−3 ∩ FrPreOdd2(2, Yn,Xn, Yn−1,Xn−1, Yn−2,Xn−2)

∪
B2n−4 ∩ FrPreEven2(2, Yn,Xn, Yn−1,Xn−1, Yn−2,Xn−2, Yn−3)

...
B3 ∩ FrPreOdd2(n− 1, Yn,Xn, Yn−1,Xn−1, . . . , Y1,X1)

∪
B2 ∩ FrPreEven2(n− 1, Yn,Xn, Yn−1,Xn−1, . . . , Y1,X1, Y0)

∪
B1 ∩ FrPreOdd2(n, Yn,Xn, Yn−1,Xn−1, . . . , Y1,X1, Y0,X0)




Proof. For k ≥ 0, let Zk be the set of states of levelk in the aboveµ-calculus expression. We will
show that inZk, there exists constantβk > 0, such that for every finite-memory strategy for player 1,
player 2 can ensure that eitherZk−1 is reached with probability at leastβk or else coParity(p) is satisfied
with probability 1 by staying in(Zk \ Zk−1). SinceZ0 = ∅, it would follow by induction thatZk ∩
Limit1(IP ,FM ,Parity(p)) = ∅ and the desired result will follow.

We obtainZk from Zk−1 by adding a set of states satisfying the following condition:

νXn.µYn−1.νXn−1. · · · µY1.νX1.µY0.νX0.




B2n ∩ FrPreEven2(0, Zk−1,Xn, Yn−1

∪
B2n−1 ∩ FrPreOdd2(1, Zk−1,Xn, Yn−1,Xn−1)

∪
B2n−2 ∩ FrPreEven2(1, Zk−1,Xn, Yn−1,Xn−1, Yn−2)

∪
B2n−3 ∩ FrPreOdd2(2, Zk−1,Xn, Yn−1,Xn−1, Yn−2,Xn−2)

∪
B2n−4 ∩ FrPreEven2(2, Zk−1,Xn, Yn−1,Xn−2, Yn−2,Xn−2, Yn−3)

...
B3 ∩ FrPreOdd2(n− 1, Zk−1,Xn, Yn−1,Xn−1, . . . , Y1,X1)

∪
B2 ∩ FrPreEven2(n− 1, Zk−1,Xn, Yn−1,Xn−1, . . . , Y1,X1, Y0)

∪
B1 ∩ FrPreOdd2(n,Zk−1,Xn, Yn−1,Xn−1, . . . , Y1,X1, Y0,X0)




The formula is obtained by removing the outerµ operator, and replacingYn+1 by Zk−1 (i.e., we iteratively
obtain the outer fixpoint ofYn+1). If the probability of reaching toZk−1 is not positive, then the following
conditions hold:
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• If the probability to reachZk−1 is not positive, then the predicate Fpre2(Xn, Zk−1) vanishes from the
predecessor operator FrPreOdd2(i, Zk−1,Xn, Yn−1, . . . , Yn−i,Xn−i), and thus the operator simpli-
fies to the simpler predecessor operator APreEven2(i,Xn, Yn−1, . . . , Yn−i,Xn−i).

• If the probability to reachZk−1 is not positive, then the predicate Fpre2(Xn, Zk−1) vanishes from the
predecessor operator FrPreEven2(i, Zk−1,Xn, Yn−1, . . . , Yn−i,Xn−i, Yn−i−1), and thus the operator
simplifies to the simpler predecessor operator APreOdd2(i,Xn, Yn−1, . . . , Yn−i,Xn−i, Yn−i−1).

Hence either the probability to reachZk−1 is positive, and if the probability to reachZk−1 is not positive,
then the aboveµ-calculus expression simplifies to

Z∗ = νXn.µYm−1νXm−1 · · · µY1.νX1.µY0.




B2n ∩ APreOdd2(0,Xn, Yn−1)
∪

B2n−1 ∩ APreEven2(1,Xn, Yn−1,Xn−1)
∪

B2n−2 ∩ APreOdd2(1,Xn, Yn−1,Xn−1, Yn−2)
...

B3 ∩ APreEven2(n− 2,Xn, . . . , Y1,X1)
∪

B2 ∩ APreOdd2(n− 1,Xn, . . . , Y1,X1, Y0)
∪

B1 ∩ APreEven2(n− 1,Xn, . . . , Y1,X1, Y0,X0)




.

We now consider the parity functionp− 1 : S 7→ [0..2n− 1], and observe that the above formula is same as
the dual almost-expression for case 1. By correctness of thedual almost-expression we we haveZ∗ ⊆ {s ∈
S | ∀π1 ∈ ΠM

1 .∃π2 ∈ Π2.Prπ1,π2
s (coParity(p)) = 1} (since Parity(p+ 1) = coParity(p)). It follows that if

probability to reachZk−1 is not positive, then against every memoryless strategy forplayer 1, player 2 can
fix a pure memoryless strategy to ensure that player 2 wins with probability 1. In other words, against every
distribution of player 1, there is a counter-distribution for player 2 (to satisfy the respective APreEven2 and
APreOdd2 operators) to ensure to win with probability 1. It follows that for every memoryless strategy for
player 1, player 2 has a pure memoryless strategy to ensure that for every closed recurrentC ⊆ Z∗ we
havemin(p(C)) is odd. It follows that for any finite-memory strategy for player 1 withM, player 2 has a
finite-memory strategy to ensure that for every closed recurrent setC ′×M′ ⊆ Z∗×M, the closed recurrent
setC ′ is a union of closed recurrent setsC of Z∗, and hencemin(p(C ′)) is odd (also see Example 3 as an
illustration). It follows that against all finite-memory strategies, player 2 can ensure if the game stays inZ∗,
then coParity(p) is satisfied with probability 1. The Fpre2 operator ensures that ifZ∗ is left andZk−1 is
reached, then the probability to reachZk−1 is at least a positive fractionβk of the probability to leaveZk.
In all cases it follows thatZk ⊆ {s ∈ S | ∃βk > 0.∀π1 ∈ ΠFM

1 .∃π2 ∈ Π2.Prπ1,π2
s (coParity(p)∪3Zk−1) ≥

βk}. Thus the desired result follows.

Lemma 15 (Duality of limit predecessor operators).The following assertions hold.

1. GivenXn+1 ⊆ Xn ⊆ Xn−1 ⊆ · · · ⊆ Xn−i ⊆ Yn−i ⊆ Yn−i+1 ⊆ · · · ⊆ Yn ⊆ Yn+1, we have

FrPreOdd2 (i+ 1,¬Yn+1,¬Xn+1,¬Yn,¬Xn, . . . ,¬Yn−i,¬Xn−i)
= ¬(APreOdd1(i, Yn,Xn, . . . , Yn−i,Xn−i)

⋃
∗ Lpre1(Yn+1,Xn+1)).
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2. GivenXn+1 ⊆ Xn ⊆ Xn−1 ⊆ · · · ⊆ Xn−i ⊆ Yn−i−1 ⊆ Yn−i ⊆ Yn−i+1 ⊆ · · · ⊆ Yn ⊆ Yn+1 and
s ∈ S, we have

FrPreEven2 (i+ 1,¬Yn+1,¬Xn+1,¬Yn,¬Xn, . . . ,¬Yn−i,¬Xn−i,¬Yn−i−1)
= ¬(APreEven1(i, Yn,Xn, . . . , Yn−i,Xn−i, Yn−i−1)

⋃
∗ Lpre1(Yn+1,Xn+1)).

Proof. We present the proof for part 1, and the proof for second part is analogous. To present the proof of
the part 1, we present the proof for the case whenn = 1 andi = 1. This proof already has all the ingredients
of the general proof, and the generalization is straightforward as in Lemma 11.

Claim. We show that for X1 ⊆ X0 ⊆ Y0 ⊆ Y1 we have
Fpre2(¬X1,¬Y1)

⋃
∗ Apre2(¬X1,¬Y0)

⋃
∗ Pre2(¬X0) = ¬(Lpre1(Y1,X1)

⋃
∗ Apre1(Y0,X0)). We

start with a few notations. LetSt ⊆ Γ2(s) andWk ⊆ Γ2(s) be set ofstronglyandweaklycovered actions
for player 2. GivenSt ⊆ Wk ⊆ Γ2(s), we say that a setU ⊆ Γ1(s) satisfyconsistencycondition if

∀b ∈ St. Dest(s, U, b) ∩X1 6= ∅
∀b ∈ Wk. (Dest(s, U, b) ∩X1 6= ∅) ∨ (Dest(s, U, b) ⊆ Y0 ∧ Dest(s, U, b) ∩X0 6= ∅)

A triple (U,St,Wk) is consistent ifU satisfies the consistency condition. We define a functionf that takes
as argument a triple(U,St,Wk) that is consistent, and returns three setsf(U,St,Wk) = (U ′,St

′,Wk
′)

satisfying the following conditions:

(1) Dest(s, U ′,Γ2(s) \ Wk) ⊆ Y1;
(2) St

′ = {b ∈ Γ2(s) | Dest(s, U ′, b) ∩X1 6= ∅}
(3) Wk

′ = {b ∈ Γ2(s) | (Dest(s, U ′, b) ∩X1 6= ∅) ∨ (Dest(s, U ′, b) ⊆ Y0 ∧ Dest(s, U ′, b) ∩X0 6= ∅)}

We require that(U,St,Wk) ⊆ (U ′,St
′,Wk

′) and also requiref to return a larger set than the input argu-
ments, if possible. We now consider a sequence of actions sets until a fixpoint is reached:St−1 = Wk−1 =
U−1 = ∅ and for i ≥ 0 we have(Ui,Sti,Wki) = f(Ui−1,Sti−1,Wki−1). Let (U∗,St∗,Wk∗) be the set
fixpoints (that isf cannot return any larger set). Observe that every timef is invoked it is ensured that the
argument form a consistent triple. Observe that we haveSti ⊆ Wki and henceSt∗ ⊆ Wk∗. We now show
the following two claims.

1. We first show that ifWk∗ = Γ2(s), thens ∈ Lpre1(Y1,X1)
⋃
∗ Apre1(Y0,X0). We first define the rank

of actions: for an actiona ∈ U∗ the rankℓ(a) of the action ismini a ∈ Ui. For an actionb ∈ Γ2(s),
if b ∈ St∗, then the strong rankℓs(b) is defined asmini b ∈ Sti; and for an actionb ∈ Wk∗, the
weak rankℓw(b) is defined asmini b ∈ Wki. Forε > 0, consider a distribution that plays actions in
Ui with probability proportional toεi. Consider an actionb for player 2. We consider the following
cases: (a) Ifb ∈ St∗, then letj = ℓs(b). Then for all actionsa ∈ Uj we haveDest(s, a, b) ⊆ Y1

and for some actiona ∈ Uj we haveDest(s, a, b) ∩X1 6= ∅, in other words, the probability to leave
Y1 is at most proportional toεj+1 and the probability to gotoX1 is at least proportional toεj , and
the ratio isε. Sinceε > 0 is arbitrary, the Lpre1(Y1,X1) part can be ensured. (b) Ifb 6∈ St∗, then
let j = ℓw(b). Then for alla ∈ U∗ we haveDest(s, a, b) ⊆ Y0 and there existsa ∈ U∗ such that
Dest(s, a, b)∩X0 6= ∅. It follows that in first case the condition for Lpre1(Y1,X1) is satisfied, and in
the second case the condition for Apre1(Y0,X0) is satisfied. The desired result follows.

2. We now show thatΓ2(s) \ Wk∗ 6= ∅, thens ∈ Fpre2(¬X1,¬Y1)
⋃
∗ Apre2(¬X1,¬Y0)

⋃
∗ Pre2(¬X0).

LetU = Γ1(s) \ U∗, and letBk = Γ2(s) \ Wk∗ andBs = Γ2(s) \ St∗. We first present the required
properties about the actions that follows from the fixpoint characterization.
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(a) Property 1.For all b ∈ Bk, for all a ∈ U∗ we have

Dest(s, a, b) ⊆ ¬X1 ∧ (Dest(s, a, b) ⊆ ¬X0 ∨ Dest(s, a, b) ∩ ¬Y0 6= ∅).

Otherwise the actionb would have been included inWk∗ andWk∗ could be enlarged.

(b) Property 2.For all b ∈ Bs and for alla ∈ U∗ we haveDest(s, a, b) ⊆ ¬X1. Otherwiseb would
have been included inSt∗ andSt∗ could be enlarged.

(c) Property 3.For alla ∈ U , either

i. Dest(s, a,Bk) ∩ ¬Y1 6= ∅; or

ii. for all b ∈ Bs, Dest(s, a, b) ⊆ ¬X1 and for allb ∈ Bk,

Dest(s, a, b) ⊆ ¬X1 ∧ (Dest(s, a, b) ⊆ ¬X0 ∨ Dest(s, a, b) ∩ ¬Y0 6= ∅)

The property is proved as follows: ifDest(s, a,Bk) ⊆ Y1 and for someb ∈ Bs we have
Dest(s, a, b) ∩ X1 6= ∅, then a can be included inU∗ and b can be included inSt∗; if
Dest(s, a,Bk) ⊆ Y1 and for someb ∈ Bk we have

(Dest(s, a, b) ∩X1 6= ∅) ∨ (Dest(s, a, b) ∩X0 6= ∅ ∧ Dest(s, a, b) ⊆ Y0)

then a can be included inU∗ and b can be included inWk∗. This would contradict that
(U∗,St∗,Wk∗) is a fixpoint.

Let ξ1 be a distribution for player 1. LetZ = Supp(ξ1). We consider the following cases to establish
the result.

(a) We first consider the case whenZ ⊆ U∗. We consider the counter distributionξ2 that plays all
actions inBk uniformly. Then by property 1 we have (i)Dest(s, ξ1, ξ2) ⊆ ¬X1; and (ii) for all
a ∈ Z we haveDest(s, a, ξ2) ⊆ ¬X0 or Dest(s, a, ξ2) ∩ ¬Y0 6= ∅. If for all a ∈ Z we have
Dest(s, a, ξ2) ⊆ ¬X0, thenDest(s, ξ1, ξ2) ⊆ ¬X0 and Pre2(¬X0) is satisfied. Otherwise we
haveDest(s, ξ1, ξ2) ⊆ ¬X1 andDest(s, ξ1, ξ2) ∩ ¬Y0 6= ∅, i.e., Apre2(¬X1,¬Y0) is satisfied.

(b) We now consider the case whenZ ∩ U 6= ∅. Let U0 = U∗, and we will iteratively compute
setsU0 ⊆ Ui ⊆ Z such that (i)Dest(s, Ui, Bs) ⊆ ¬X1 and (ii) for all a ∈ Ui we have
Dest(s, a,Bk) ⊆ ¬X0 orDest(s, a,Bk) ⊆ ¬Y0 (unless we have already witnessed that player 2
can satisfy the predecessor operator). In base case the result holds by property 2. The argument
of an iteration is as follows, and we useU i = Z \ Ui. Among the actions ofZ ∩ U i, let a∗ be
the action played with maximum probability. We have the following two cases.

i. If there existsb ∈ Bs such thatDest(s, a∗, b) ∩ ¬Y1 6= ∅, consider the counter actionb.
Sinceb ∈ Bs, by hypothesis we haveDest(s, Ui, b) ⊆ ¬X1. Hence the probability to go
out of¬X1 is at most the total probability of the actions inZ ∩ U i and for the maximum
probability actiona∗ ∈ Z ∩ U i the set¬Y1 is reached. Letη > 0 be the minimum positive
transition probability, then fraction of probability to goto ¬Y1 as compared to go out of
¬X1 is at leastβ = η · 1

|Γ1(s)|
> 0. Thus Fpre2(¬X1,¬Y1) can be ensured by playingb.

ii. Otherwise, by property 3, (i) eitherDest(s, a∗, Bk) ∩ ¬Y1 6= ∅, or (ii) for all b ∈ Bs we
haveDest(s, a∗, b) ⊆ ¬X1 and for allb ∈ Bk

Dest(s, a∗, b) ⊆ ¬X1 ∧ (Dest(s, a∗, b) ⊆ ¬X0 ∨ Dest(s, a∗, b) ∩ ¬Y0 6= ∅)
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If Dest(s, a∗, Bk) ∩ ¬Y1 6= ∅, then chose the actionb ∈ Bk such thatDest(s, a∗, b) ∩
¬Y1 6= ∅. Sinceb ∈ Bk ⊆ Bs, and by hypothesisDest(s, Ui, Bs) ⊆ ¬X1, we have
Dest(s, Ui, b) ⊆ ¬X1. Thus we have a witness actionb exactly as in the previous case,
and like the proof above Fpre2(¬X1,¬Y1) can be ensured. IfDest(s, a∗, Bk) ⊆ Y1,
then we claim thatDest(s, a∗, Bs) ⊆ ¬X1. The proof of the claim is as follows: if
Dest(s, a∗, Bk) ⊆ Y1 andDest(s, a∗, Bs) ∩ X1 6= ∅, then chose the actionb∗ from Bs

such thatDest(s, a∗, b∗)∩X1 6= ∅, and then we can includea∗ toU∗ andb∗ to St∗ (contra-
dicting that they are the fixpoints). It follows that we can includea∗ ∈ Ui+1 and continue.

Hence we have either already proved that player 2 can ensure the predecessor operator orUi = Z
in the end. IfUi is Z in the end, thenZ satisfies the property used in the previous cases ofU∗

(the proof of part a), and then as in the previous proof (of part a), the uniform distribution over
Bk is a witness that player 2 can ensure Pre2(X0)

⋃
∗ Apre2(¬X1,¬Y0).

General case.The proof for the general case is a tedious extension of the result presented forn = 1 and
i = 1. We present the details for the sake of completeness. We showthat forXn+1 ⊆ Xn ⊆ Xn−1 ⊆ · · · ⊆
Xn−i ⊆ Yn−i ⊆ Yn−i+1 ⊆ · · · ⊆ Yn ⊆ Yn+1, we have

FrPreOdd2 (i+ 1,¬Yn+1,¬Xn+1,¬Yn,¬Xn, . . . ,¬Yn−i,¬Xn−i)
= ¬(APreOdd1(i, Yn,Xn, . . . , Yn−i,Xn−i)

⋃
∗ Lpre1(Yn+1,Xn+1)).

We use notations similar to the special case. LetSt ⊆ Γ2(s) andWk ⊆ Γ2(s) be set ofstronglyandweakly
covered actions for player 2. GivenSt ⊆ Wk ⊆ Γ2(s), we say that a setU ⊆ Γ1(s) satisfyconsistency
condition if

∀b ∈ St. Dest(s, U, b) ∩Xn+1 6= ∅
∀b ∈ Wk. (Dest(s, U, b) ∩Xn+1 6= ∅) ∨ ∃0 ≤ j ≤ i.(Dest(s, U, b) ⊆ Yn−j ∧Dest(s, U, b) ∩Xn−j 6= ∅)

A triple (U,St,Wk) is consistent ifU satisfies the consistency condition. We define a functionf that takes
as argument a triple(U,St,Wk) that is consistent, and returns three setsf(U,St,Wk) = (U ′,St

′,Wk
′)

satisfying the following conditions:

(1) Dest(s, U ′,Γ2(s) \ Wk) ⊆ Yn+1;
(2) St

′ = {b ∈ Γ2(s) | Dest(s, U ′, b) ∩Xn+1 6= ∅}
(3) Wk

′ = {b ∈ Γ2(s) | (Dest(s, U ′, b) ∩Xn+1 6= ∅)∨
∃0 ≤ j ≤ i.(Dest(s, U ′, b) ⊆ Yn−j ∧ Dest(s, U ′, b) ∩Xn−j 6= ∅)}

We require that(U,St,Wk) ⊆ (U ′,St
′,Wk

′) and also requiref to return a larger set than the input argu-
ments, if possible. We now consider a sequence of actions sets until a fixpoint is reached:St−1 = Wk−1 =
U−1 = ∅ and for i ≥ 0 we have(Ui,Sti,Wki) = f(Ui−1,Sti−1,Wki−1). Let (U∗,St∗,Wk∗) be the set
fixpoints (that isf cannot return any larger set). Observe that every timef is invoked it is ensured that the
argument form a consistent triple. Observe that we haveSti ⊆ Wki and henceSt∗ ⊆ Wk∗. We now show
the following two claims.

1. We first show that ifWk∗ = Γ2(s), thens ∈ Lpre1(Yn+1,Xn+1)
⋃
∗APreOdd1(i, Yn,Xn, . . . , Yn−i,Xn−i).

We first define the rank of actions: for an actiona ∈ U∗ the rankℓ(a) of the action ismini a ∈ Ui.
For an actionb ∈ Γ2(s), if b ∈ St∗, then the strong rankℓs(b) is defined asmini b ∈ Sti; and for an
actionb ∈ Wk∗, the weak rankℓw(b) is defined asmini b ∈ Wki. Forε > 0, consider a distribution
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that plays actions inUi with probability proportional toεi. Consider an actionb for player 2. We
consider the following cases: (a) Ifb ∈ St∗, then letj = ℓs(b). Then for all actionsa ∈ Uj we have
Dest(s, a, b) ⊆ Yn+1 and for some actiona ∈ Uj we haveDest(s, a, b) ∩Xn+1 6= ∅, in other words,
the probability to leaveYn+1 is at most proportional toεj+1 and the probability to gotoXn+1 is at
least proportional toεj , and the ratio isε. Sinceε > 0 is arbitrary, the Lpre1(Yn+1,Xn+1) part can
be ensured. (b) Ifb 6∈ St∗, then letj = ℓw(b). Then for alla ∈ U∗ there exists0 ≤ j ≤ i such
that we haveDest(s, a, b) ⊆ Yn−j and there existsa ∈ U∗ such thatDest(s, a, b) ∩ Xn−j 6= ∅. It
follows that in first case the condition for Lpre1(Yn+1,Xn+1) is satisfied, and in the second case the
condition for APreOdd1(i, Yn,Xn, . . . , Yn−i,Xn−i) is satisfied. The desired result follows.

2. We now show thatΓ2(s) \ Wk∗ 6= ∅, then

s ∈ FrPreOdd2(i+ 1,¬Yn+1,¬Xn+1,¬Yn,¬Xn, . . . ,¬Yn−i,¬Xn−i).

LetU = Γ1(s) \ U∗, and letBk = Γ2(s) \ Wk∗ andBs = Γ2(s) \ St∗. We first present the required
properties about the actions that follows from the fixpoint characterization.

(a) Property 1.For all b ∈ Bk, for all a ∈ U∗ we have

Dest(s, a, b) ⊆ ¬Xn+1 ∧ ∃0 ≤ j ≤ i.(Dest(s, a, b) ⊆ ¬Xn−j ∨ Dest(s, a, b) ∩ ¬Yn−j 6= ∅).

Otherwise the actionb would have been included inWk∗ andWk∗ could be enlarged.

(b) Property 2. For all b ∈ Bs and for alla ∈ U∗ we haveDest(s, a, b) ⊆ ¬Xn+1. Otherwiseb
would have been included inSt∗ andSt∗ could be enlarged.

(c) Property 3.For alla ∈ U , either

i. Dest(s, a,Bk) ∩ ¬Yn+1 6= ∅; or

ii. for all b ∈ Bs, Dest(s, a, b) ⊆ ¬Xn+1 and for allb ∈ Bk,

Dest(s, a, b) ⊆ ¬Xn+1∧∃0 ≤ j ≤ i.(Dest(s, a, b) ⊆ ¬Xn−j∨Dest(s, a, b)∩¬Yn−j 6= ∅)

The property is proved as follows: ifDest(s, a,Bk) ⊆ Yn+1 and for someb ∈ Bs we have
Dest(s, a, b) ∩ Xn+1 6= ∅, then a can be included inU∗ and b can be included inSt∗; if
Dest(s, a,Bk) ⊆ Yn+1 and for someb ∈ Bk we have

(Dest(s, a, b) ∩Xn+1 6= ∅) ∨ ∃0 ≤ j ≤ i.(Dest(s, a, b) ∩Xn−j 6= ∅ ∧ Dest(s, a, b) ⊆ Yn−j)

then a can be included inU∗ and b can be included inWk∗. This would contradict that
(U∗,St∗,Wk∗) is a fixpoint.

Let ξ1 be a distribution for player 1. LetZ = Supp(ξ1). We consider the following cases to establish
the result.

(a) We first consider the case whenZ ⊆ U∗. We consider the counter distributionξ2 that plays all
actions inBk uniformly. Then by property 1 we have (i)Dest(s, ξ1, ξ2) ⊆ ¬Xn+1; and (ii) for
all a ∈ Z there existsj ≤ i such thatDest(s, a, ξ2) ⊆ ¬Xn−j or Dest(s, a, ξ2)∩¬Yn−j 6= ∅. If
for all a ∈ Z we haveDest(s, a, ξ2) ⊆ ¬Xn−i, thenDest(s, ξ1, ξ2) ⊆ ¬Xn−i and Pre2(¬Xn−i)
is satisfied. Otherwise, there must existsj ≤ i such thatDest(s, ξ1, ξ2) ⊆ ¬Xn+1−j and
Dest(s, ξ1, ξ2)∩¬Yn−j 6= ∅, i.e., APreOdd2(i,¬Xn+1,¬Yn . . . ,¬Xn−i+1,¬Yn−i) is satisfied.
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(b) We now consider the case whenZ ∩ U 6= ∅. Let U0 = U∗, and we will iteratively compute
setsU0 ⊆ Uℓ ⊆ Z such that (i)Dest(s, Uℓ, Bs) ⊆ ¬Xn+1 and (ii) for all a ∈ Uℓ there exists
j ≤ i such thatDest(s, a,Bk) ⊆ ¬Xn−j or Dest(s, a,Bk) ⊆ ¬Yn−j (unless we have already
witnessed that player 2 can satisfy the predecessor operator). In base case the result holds by
property 2. The argument of an iteration is as follows, and weuseU ℓ = Z \ Uℓ. Among the
actions ofZ ∩U ℓ, leta∗ be the action played with maximum probability. We have the following
two cases.

i. If there existsb ∈ Bs such thatDest(s, a∗, b) ∩ ¬Yn+1 6= ∅, consider the counter actionb.
Sinceb ∈ Bs, by hypothesis we haveDest(s, Uℓ, b) ⊆ ¬Xn+1. Hence the probability to go
out of¬Xn+1 is at most the total probability of the actions inZ ∩U ℓ and for the maximum
probability actiona∗ ∈ Z ∩ U ℓ the set¬Yn+1 is reached. Letη > 0 be the minimum
positive transition probability, then fraction of probability to go to¬Yn+1 as compared to
go out of¬Xn+1 is at leastβ = η · 1

|Γ1(s)|
> 0. Thus Fpre2(¬Xn+1,¬Yn+1) can be ensured

by playingb.

ii. Otherwise, by property 3, (i) eitherDest(s, a∗, Bk) ∩ ¬Yn+1 6= ∅, or (ii) for all b ∈ Bs we
haveDest(s, a∗, b) ⊆ ¬Xn+1 and for allb ∈ Bk

Dest(s, a∗, b) ⊆ ¬Xn+1∧∃0 ≤ j ≤ i.(Dest(s, a∗, b) ⊆ ¬Xn−j∨Dest(s, a∗, b)∩¬Yn−j 6= ∅)

If Dest(s, a∗, Bk) ∩ ¬Yn+1 6= ∅, then chose the actionb ∈ Bk such thatDest(s, a∗, b) ∩
¬Yn+1 6= ∅. Sinceb ∈ Bk ⊆ Bs, and by hypothesisDest(s, Uℓ, Bs) ⊆ ¬X1, we have
Dest(s, Uℓ, b) ⊆ ¬Xn+1. Thus we have a witness actionb exactly as in the previous
case, and like the proof above Fpre2(¬Xn+1,¬Yn+1) can be ensured. IfDest(s, a∗, Bk) ⊆
Yn+1, then we claim thatDest(s, a∗, Bs) ⊆ ¬Xn+1. The proof of the claim is as follows:
if Dest(s, a∗, Bk) ⊆ Yn+1 andDest(s, a∗, Bs) ∩Xn+1 6= ∅, then chose the actionb∗ from
Bs such thatDest(s, a∗, b∗) ∩Xn+1 6= ∅, and then we can includea∗ to U∗ andb∗ to St∗

(contradicting that they are the fixpoints). It follows thatwe can includea∗ ∈ Uℓ+1 and
continue.

Hence we have either already proved that player 2 can ensure the predecessor opera-
tor or Uℓ = Z in the end. If Uℓ is Z in the end, thenZ satisfies the property
used in the previous cases ofU∗ (the proof of part a), and then as in the previous
proof (of part a), the uniform distribution overBk is a witness that player 2 can ensure
Pre2(¬Xn−i)

⋃
∗ APreOdd2(i,¬Xn+1,¬Yn . . . ,¬Xn−i+1,¬Yn−i).

The desired result follows.

Characterization of Limit1(IP ,M,Φ) set.From Lemma 13, Lemma 14, and the duality of predecessor op-
erators (Lemma 15) we obtain the following result characterizing the limit-sure winning set for memoryless
infinite-precision strategies for parity objectives.

Theorem 4 For all concurrent game structuresG over state spaceS, for all parity objectivesΦ = Parity(p)
for player 1, withp : S 7→ [1..2n], the following assertions hold.

1. We have Limit1(IP ,M,Φ) = Limit1(IP ,FM ,Φ), and Limit1(IP ,FM ,Φ) = W , whereW is defined
as theµ-calculus formula in Fig 5, andBi = p−1(i) is the set of states with priorityi, for i ∈ [1..2n].
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νYn.µXn.νYn−1.µXn−1. · · · νY1.µX1.νY0.µX0.


B2n ∩ Pre1(Yn−1)
⋃
∗ Lpre1(Yn,Xn)

∪
B2n−1 ∩ APreOdd1(0, Yn−1,Xn−1)

⋃
∗ Lpre1(Yn,Xn)

∪
B2n−2 ∩ APreEven1(0, Yn−1,Xn−1, Yn−2)

⋃
∗ Lpre1(Yn,Xn)

∪
B2n−3 ∩ APreOdd1(1, Yn−1,Xn−1, Yn−2,Xn−2)

⋃
∗ Lpre1(Yn,Xn)

∪
...

B2 ∩ APreEven1(n − 2, Yn−1,Xn−1, . . . , Y1,X1, Y0)
⋃
∗ Lpre1(Yn,Xn)

∪
B1 ∩ APreOdd1(n− 1, Yn−1,Xn−1, . . . , Y0,X0)

⋃
∗ Lpre1(Yn,Xn)




Figure 5:µ-calculus formula for limit

2. The set Limit1(IP ,FM ,Φ) can be computed symbolically using theµ-calculus expression of Fig 5 in
timeO(|S|2n+2 ·

∑
s∈S 2|Γ1(s)∪Γ2(s)|).

3. For s ∈ S whethers ∈ Limit1(IP ,FM ,Φ) can be decided in NP∩ coNP.

The NP∩ coNP bound follows directly from theµ-calculus expressions: the players can guess the
ranking function of theµ-calculus formula and for each state the players guess the sequence of(Ai,Sti,Wki)
to witness that the predecessor operators are satisfied. Thewitnesses are polynomial and can be verified in
polynomial time.

Independence from precise probabilities.Observe that the computation of all the predecessor operators
only depends on the supports of the transition function, anddoes not depend on the precise transition proba-
bilities. Hence the computation of the almost-sure and limit-sure winning sets is independent of the precise
transition probabilities, and depends only on the supports. We formalize this in the following result.

Theorem 5 LetG1 = (S,A,Γ1,Γ2, δ1) andG2 = (S,A,Γ1,Γ2, δ2) be two concurrent game structures that
are equivalent, i.e.,G1 ≡ G2. Then for all parity objectivesΦ, for all C1 ∈ {P,U,FP , IP} andC2 ∈
{M,FM , IM } we have (a) AlmostG1

1 (C1, C2,Φ) = AlmostG2

1 (C1, C2,Φ); and (b) LimitG1

1 (C1, C2,Φ) =
LimitG2

1 (C1, C2,Φ).

All cases of the above theorem, other than whenC1 = IP andC2 = IM follows from our results, and
the result forC1 = IP andC2 = IM follows from the results of [dAH00].

5 Conclusion

In this work we studied the bounded rationality problem for qualitative analysis in concurrent parity games,
and presented a precise characterization. The theory of bounded rationality for quantitative analysis is future
work, and we believe the results of this paper will be helpfulin developing the theory.
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