
Faster Algorithms for Alternating Refinement
Relations

Krishnendu Chatterjee , Siddhesh Chaubal and Pritish Kamath

IST Austria (Institute of Science and Technology Austria)

Am Campus 1

A-3400 Klosterneuburg

Technical Report No. IST-2012-0001

http://pub.ist.ac.at/Pubs/TechRpts/201 1 /IST-201 2 -000 1 .pdf

Jan 9, 2012

http://pub.ist.ac.at/Pubs/TechRpts/2009/IST-2009-002.pdf
http://pub.ist.ac.at/Pubs/TechRpts/2009/IST-2009-002.pdf
http://pub.ist.ac.at/Pubs/TechRpts/2009/IST-2009-002.pdf
http://pub.ist.ac.at/Pubs/TechRpts/2009/IST-2009-002.pdf
http://pub.ist.ac.at/Pubs/TechRpts/2009/IST-2009-002.pdf

Copyright © 2012, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission.

Faster Algorithms for Alternating Refinement Relations

Krishnendu Chatterjee1, Siddhesh Chaubal2, and Pritish Kamath2

1 IST Austria (Institute of Science and Technology, Austria)
2 IIT Bombay

Abstract. One central issue in the formal design and analysis of reactive systems is the notion ofrefinement
that asks whether all behaviors of the implementation is allowed by the specification. The local interpretation
of behavior leads to the notion ofsimulation. Alternating transition systems (ATSs) provide a general model
for composite reactive systems, and the simulation relation for ATSs is known as alternating simulation. The
simulation relation for fair transition systems is called fair simulation. In this work our main contributions are as
follows: (1) We present an improved algorithm for fair simulation with Büchi fairness constraints; our algorithm
requiresO(n3 ·m) time as compared to the previous knownO(n6)-time algorithm, wheren is the number of
states andm is the number of transitions. (2) We present a game based algorithm for alternating simulation that
requiresO(m2)-time as compared to the previous knownO((n ·m)2)-time algorithm, wheren is the number
of states andm is the size of transition relation. (3) We present an iterative algorithm for alternating simulation
that matches the time complexity of the game based algorithm, but is more space efficient than the game based
algorithm.

1 Introduction

Simulation relation and extensions.One central issue in formal design and analysis of reactive systems is the
notion of refinement relations. The refinement relation (systemA refines systemA′) intuitively means that every
behavioral option ofA (the implementation) is allowed byA′ (the specification). Thelocal interpretation of behavo-
rial option in terms of successor states leads to refinement assimulation[11]. The simulation relation enjoys many
appealing properties, such as it has a denotational characterization, it has a logical characterization and it can be
computed in polynomial time (as compared to trace containment which is PSPACE-complete). While the notion of
simulation was originally developed for transition systems [11], it has many important extensions. Two prominent
extensions are as follows: (a) extension for composite systems and (b) extension for fair transition systems.

Alternating simulation relation. Composite reactive systems can be viewed as multi-agent systems [12,6], where
each possible step of the system corresponds to a possible move in a game which may involve some or all compo-
nent moves. We model multi-agent systems asalternating transition systems(ATSs) [1]. In general a multi-agent
system consists a setI of agents, but for algorithmic purposes for simulation we always consider a subsetI ′ ⊆ I of
agents against the rest, and thus we will only consider two-agent systems (one agent is the collectionI ′ of agents,
and the other is the collection of the rest of the agents). Consider the composite systemsA||B andA′||B, in envi-
ronmentB, and the relation thatA refinesA′ without constraining the environmentB is expressed by generalizing
the simulation relation toalternating simulation relation[2]. Alternating simulation also enjoys the appealing prop-
erties of denotational and logical characterization alongwith polynomial time computability. We refer the readers
to [2] for an excellent exposition of alternating simulation and its applications in design and analysis of compos-
ite reactive systems. Thus computing alternating simulation for ATSs is a core algorithmic question in the formal
analysis of composite systems.

Fair simulation relation. Fair transition systems are extension of transition systems with fairness constraint. A
liveness(or weak fairness or Büchi fairness) constraint consists of a setB of live states, and requires that runs
of the system visit some live state infinitely often. In general the fairness constraint can be a strong fairness con-
straint instead of a liveness constraint. The notion of simulation was extended to fair transition systems asfair
simulation[8]. It was shown in [8] that fair simulation also enjoys the appealing properties of denotational and
logical characterization, and polynomial time computability (see [8] for many other important properties and dis-
cussion on fair simulation). Again the computation of fair simulation with Büchi fairness constraints is an important
algorithmic problem for design and analysis of reactive systems with liveness requirements.

Our contributions. In this work we improve the algorithmic complexities of computing fair simulation with Büchi
fairness constraints and alternating simulation. In the descriptions below we will denote byn the size of the state
space of systems, and bym the size of the transition relation. Our main contributionsare summarized below.

1. Fair simulation.First we extend the notion of fair simulation to alternatingfair simulation for ATSs with Büchi
fairness constraints. There are two natural ways of extending the definition of fair simulation to alternating fair
simulation, and we show that both the definitions coincide. We present an algorithm to compute the alternating
fair simulation relation by a reduction to a game with parityobjectives with three priorities. As a special case
of our algorithm for fair simulation, we show that the fair simulation relation can be computed inO(n3 · m)
time, as compared to the previous knownO(n6)-time algorithm of [8]. Observe thatm is at mostO(n2) and
thus the worst case running time of our algorithm isO(n5). Moreover, in many practical examples systems
have constant out-degree (for examples see [4]) (i.e.,m = O(n)), and then our algorithm requiresO(n4) time.

2. Game based alternating simulation.We present a game based algorithm for alternating simulation. Our algo-
rithm is based on a reduction to a game with reachability objectives, and requiresO(m2) time, as compared to
the previous known algorithm that requiresO((n · m)2) time [2]. One key step of the reduction is to construct
the game graph in time linear in the size of the game graph.

3. Iterative algorithm for alternating simulation.We present an iterative algorithm to compute the alternating
simulation relation. The time complexity of the iterative algorithm matches the time complexity of the game
based algorithm, however, the iterative algorithm is more space efficient. (see paragraph on space complexity of
Section 4.2 for the detailed comparision). Moreover, both the game based algorithm and the iterative algorithm
when specialized to transition systems match the best knownalgorithms to compute the simulation relation.

We remark that the game based algorithms we obtain for alternating fair simulation and alternating simulation
are reductions to standard two-player games on graphs with parity objectives (with three priorities) and reachabil-
ity objectives. Since such games are well-studied, standard algorithms developed for games can now be used for
computation of refinement relations. Our key technical contribution is establishing the correctness of the efficient
reductions, and showing that the game graphs can be constructed in linear time in the size of the game graphs. For
the iterative algorithm we establish an alternative characterization of alternating simulation, and present an itera-
tive algorithm that simultaneously prunes two relations, without explicitly constructing game graphs (thus saving
space), to compute the relation obtained by the alternativecharacterization.

2 Definitions

In this section we present all the relevant definitions, and the previous best known results. We present definitions
of labeled transition systems (Kripke structures), labeled alternating transitions systems (ATS), fair simulation,and
alternating simulation. All the simulation relations we will define are closed under union (i.e., if two relations are
simulation relations, then so is their union), and we will consider the maximum simulation relation. We also present
relevant definitions for graph games that will be later used for the improved results.

Definition 1 (Labeled transition systems (TS)).A labeledtransition system (TS)(Kripke structure) is a tuple
K = 〈Σ, W, ŵ, R, L〉, whereΣ is a finite set of observations;W is a finite set of states and̂w is the initial state;
R ⊆ W × W is the transition relation; andL : W → Σ is the labeling function that maps each state to an
observation. For technical convenience we assume that for all w ∈ W there existsw′ ∈ W such that(w, w′) ∈ R.

Runs, fairness constraint, and fair transition systems.For a TSK and a statew ∈ W , aw-run of K is an infinite
sequencew = w0, w1, w2, . . . of states such thatw0 = w andR(wi, wi+1) for all i ≥ 0. We writeInf(w) for the
set of states that occur infinitely often in the runw. A run ofK is aŵ-run for the initial statêw. In this work we will
considerBüchi fairness constraints, and a Büchi fairness constraint is specified as a setF ⊆ W of Büchi states,
and defines the fair set of runs, where a runw is fair iff Inf(w) ∩ F 6= ∅ (i.e., the run visitsF infinitely often). A
fair transition systemK = 〈K, F 〉 consists of a TSK and a Büchi fairness constraintF ⊆ W for K. We consider
two TSsK1 = 〈Σ, W1, ŵ1, R1, L1〉 andK2 = 〈Σ, W2, ŵ2, R2, L2〉 over the same alphabet, and the two fair TSs
K1 = 〈K1, F1〉 andK2 = 〈K2, F2〉. We now define the fair simulation betweenK1 andK2 [8].

Definition 2 (Fair simulation). A binary relationS ⊆ W1 × W2 is a fair simulationof K1 byK2 if the following
two conditions hold for all(w1, w2) ∈ W1 × W2:

2

1. If S(w1, w2), thenL1(w1) = L2(w2).
2. There exists a strategyτ : (W1 × W2)

+ × W1 → W2 such that ifS(w1, w2) and w = u0, u1, u2, . . .
is a fair w1-run of K1, then the following conditions hold: (a) the outcomeτ [w] = u′

0, u
′

1, u
′

2, . . . is
a fair w2-run of K2 (where the outcomeτ [w] is defined as follows: for alli ≥ 0 we haveu′

i =
τ((u0, u

′

0), (u1, u
′

1), . . . , (ui−1, u
′

i−1), ui)) ; and (b) the outcomeτ [w] S-matchesw; that is, S(ui, u
′

i) for
all i ≥ 0. We sayτ is awitnessto the fair simulationS.

We denote by�fair the maximum fair simulation relation betweenK1 andK2. We say that the fair TSK2 fairly
simulatesthe fair TSK1 iff (ŵ1, ŵ2) ∈�fair.

We have the following result for fair simulation from [8] (see item 1 of Theorem 4.2 from [8]).

Theorem 1. Given two fair TSsK1 andK2, the problem of whetherK2 fairly simulatesK1 can be decided in time
O((|W1| + |W2) · (|R1| + |R2|) + (|W1| · |W2|)3).

Definition 3 (Labeled alternating transition systems (ATS)). A labeledalternating transitions system (ATS)is a
tupleK = 〈Σ, W, ŵ, A1, A2, P1, P2, L, δ〉, where (i)Σ is a finite set of observations; (ii)W is a finite set of states
with ŵ the initial state; (iii) Ai is a finite set of actions for Agenti, for i ∈ {1, 2}; (iv) Pi : W → 2Ai \ ∅ assigns
to every statew in W the non-empty set of actions available to Agenti at w, for i ∈ {1, 2}; (v) L : W → Σ is
the labeling function that maps every state to an observation; and (vi)δ : W × A1 × A2 → W is the transition
relation that given a state and the joint actions gives the next state.

Observe that a TS can be considered as a special case of ATS with A2 singleton (sayA2 = {⊥}), and the
transition relationR of a TS is described by the transition relationδ : W × A1 × {⊥} → W of the ATS.

Definition 4 (Alternating simulation). Given two ATS,K = 〈Σ, W, ŵ, A1, A2, P1, P2, L, δ〉 and K ′ =
〈Σ, W ′, ŵ′, A′

1, A
′

2, P
′

1, P
′

2, L
′, δ′〉 a binary relationS ⊆ W × W ′ is an alternating simulation fromK to K′ if

for all statesw andw′ with (w, w′) ∈ S, the following conditions hold :

1. L(w) = L′(w′)
2. For every actiona ∈ P1(w), there exists an actiona′ ∈ P ′

1(w
′) such that for every actionb′ ∈ P ′

2(w
′), there

exists an actionb ∈ P2(w) such that(δ(w, a, b), δ(w′, a′, b′)) ∈ S, i.e.,

∀(w, w′) ∈ S · ∀a ∈ P1(w) · ∃a′ ∈ P ′

1(w
′) · ∀b′ ∈ P ′

2(w
′) · ∃b ∈ P2(w) · (δ(w, a, b), δ′(w′, a′, b′)) ∈ S

We denote by�altsim the maximum alternating simulation relation betweenK and K ′. We say that the ATSK ′

simulatesthe ATSK iff (ŵ1, ŵ2) ∈�altsim.

The following result was shown in [2] (see proof of Theorem 3 of [2]).

Theorem 2. For two ATSsK andK ′, the alternating simulation relation�altsim can be computed in timeO(|W |2 ·
|W ′|2 · |A1| · |A′

1| · |A2| · |A′

2|).

In the following section we will present an extension of the notion of fair simulation for TSs to alternating fair
simulation for ATSs, and present improved algorithms to compute�fair and�altsim. Some of our algorithms will
be based on reduction to two-player games on graphs. We present the required definitions below.

Two-player Game graphs.A two-player game graphG = ((V, E), (V1, V2)) consists of a directed graph(V, E)
with a setV of n vertices and a setE of m edges, and a partition(V1, V2) of V into two sets. The vertices in
V1 are player 1 vertices, where player 1 chooses the outgoing edges; and the verticesin V2 are player 2 ver-
tices, where player 2 (the adversary to player 1) chooses the outgoing edges. For a vertexu ∈ V , we write
Out(u) = {v ∈ V | (u, v) ∈ E} for the set of successor vertices ofu andIn(u) = {v ∈ V | (v, u) ∈ E} for the
set of incoming edges ofu. We assume that every vertex has at least one out-going edge.i.e.,Out(u) is non-empty
for all verticesu ∈ V .
Plays.A game is played by two players: player 1 and player 2, who forman infinite path in the game graph
by moving a token along edges. They start by placing the tokenon an initial vertex, and then they take moves
indefinitely in the following way. If the token is on a vertex in V1, then player 1 moves the token along one of the

3

edges going out of the vertex. If the token is on a vertex inV2, then player 2 does likewise. The result is an infinite
path in the game graph, calledplays. We writeΩ for the set of all plays.
Strategies.A strategy for a player is a rule that specifies how to extend plays. Formally, astrategyα for player 1 is
a functionα: V ∗ · V1 → V such that for allw ∈ V ∗ and allv ∈ V1 we haveα(w · v) ∈ Out(v), and analogously
for player 2 strategies. We writeA andB for the sets of all strategies for player 1 and player 2, respectively. A
memorylessstrategy for player 1 is independent of the history and depends only on the current state, and can be
described as a functionα : V1 → V , and similarly for player 2. Given a starting vertexv ∈ V , a strategyα ∈ A for
player 1, and a strategyβ ∈ B for player 2, there is a unique play, denotedω(v, α, β) = 〈v0, v1, v2, . . .〉, which is
defined as follows:v0 = v and for allk ≥ 0, if vk ∈ V1, thenα(vk) = vk+1, and ifvk ∈ V2, thenβ(vk) = vk+1.
We say a playω is consistentwith a strategy of a player, if there is a strategy of the opponent such that given both
the strategies the unique play isω.
Objectives.An objectiveΦ for a game graph is a desired subset of plays. For a playω = 〈v0, v1, v2, . . .〉 ∈ Ω,
we defineInf(ω) = {v ∈ V | vk = v for infinitely manyk ≥ 0} to be the set of vertices that occur infinitely often
in ω. We define reachability, safety and parity objectives with three priorities.

1. Reachability and safety objectives.Given a setT ⊆ V of vertices, the reachability objectiveReach(T) requires
that some vertex inT be visited, and dually, the safety objectiveSafe(F) requires that only vertices inF be
visited. Formally, the sets of winning plays areReach(T) = {〈v0, v1, v2, . . .〉 ∈ Ω | ∃k ≥ 0. vk ∈ T } and
Safe(F) = {〈v0, v1, v2, . . .〉 ∈ Ω | ∀k ≥ 0. vk ∈ F}. The reachability and safety objectives are dual in the
sense thatReach(T) = Ω \ Safe(V \ T).

2. Parity objectives with three priorities.Consider a priority functionp : V → {0, 1, 2} that maps every
vertex to a priority either 0, 1 or 2. The parity objective requires that the minimum priority visited in-
finitely often is even. In other words, the objectives require that either vertices with priority 0 are visited
infinitely often, or vertices with priority 1 are visited finitely often. Formally the set of winning plays is
Parity(p) =

{
ω | Inf(ω) ∩ p−1(0) 6= ∅ or Inf(ω) ∩ p−1(1) = ∅

}
.

Winning strategies and sets.Given an objectiveΦ ⊆ Ω for player 1, a strategyα ∈ A is a winning strategyfor
player 1 from a vertexv if for all player 2 strategiesβ ∈ B the playω(v, α, β) is winning, i.e.,ω(v, α, β) ∈ Φ.
The winning strategies for player 2 are defined analogously by switching the role of player 1 and player 2 in the
above definition. A vertexv ∈ V is winning for player 1 with respect to the objectiveΦ if player 1 has a winning
strategy fromv. Formally, the set ofwinning vertices for player 1with respect to the objectiveΦ is W1(Φ) =
{v ∈ V | ∃α ∈ A. ∀β ∈ B. ω(v, α, β) ∈ Φ} the set of all winning vertices. Analogously, the set of all winning
vertices for player 2 with respect to an objectiveΨ ⊆ Ω is W2(Ψ) = {v ∈ V | ∃β ∈ B. ∀α ∈ A. ω(v, α, β) ∈ Ψ} .

Theorem 3 (Determinacy and complexity).The following assertions hold.

1. For all game graphsG = ((V, E), (V1, V2)), all objectivesΦ for player 1 whereΦ is reachability, safety, or
parity objectives with three priorities, and the complementary objectiveΨ = Ω \ Φ for player 2, we have
W1(Φ) = V \ W2(Ψ); and memoryless winning strategies exist for both players from their respective winning
set [5].

2. The winning setW1(Φ) can be computed in linear time (O(|V | + |E|)) for reachability and safety objectives
Φ [9,3]; and in quadratic time (O(|V | · |E|)) for parity objectives with three priorities [10].

3 Fair Alternating Simulation

In this section we will present two definitions of fair alternating simulation, show their equivalence, present algo-
rithms for solving fair alternating simulations, and our algorithms specialized to fair simulation will improve the
bound of the previous algorithm (Theorem 1). Similar to fairTSs, afair ATSK = 〈K, F 〉 consists of an ATSK
and a Büchi fairness constraintF for K.

To extend the definition of fair simulation to fair alternating simulation we consider notion of strategies for
ATSs. Consider two ATSsK = 〈Σ, W, ŵ, A1, A2, P1, P2, L, δ〉 andK ′ = 〈Σ, W ′, ŵ′, A′

1, A
′

2, P
′

1, P
′

2, L
′, δ′〉 and

the corresponding fair ATSsK = 〈K, F 〉 andK′ = 〈K ′, F ′〉. We use the following notations:

− τ : (W ×W ′)+ → A1 is a strategy employed by Agent 1 inK. The aim of the strategy is to choose transitions
in K to make it difficult for Agent 1 inK′ to match them. The strategy acts on the past run on both systems.

4

− τ ′ : (W × W ′)+ × A1 → A′

1 is a strategy employed by Agent 1 inK′. The aim of this strategy is to match
actions inK′ to those made by Agent 1 inK. The strategy acts on the past run on both the systems, as wellas
the action chosen by Agent 1 inK.

− ξ′ : (W × W ′)+ × A1 × A′

1 → A′

2 is a strategy employed by Agent 2 inK′. The aim of this strategy is to
choose actions inK′ to make it difficult for Agent 2 to match them inK. The strategy acts on the past run of
both the systems, as well as the actions chosen by Agent 1 inK andK′.

− ξ : (W × W ′)+ × A1 × A′

1 × A′

2 → A2 is a strategy employed by Agent 2 inK. Intuitively, the aim of this
strategy of Agent 2 is to choose actions inK to show that Agent 1 is not as powerful inK as inK′, i.e., in some
sense the strategy of Agent 2 will witness that the strategy of Agent 1 inK does not satisfy certain desired
property. The strategy acts on the past run of both the systems, as well as the actions chosen by Agent 1 inK
and both the agents inK′.

− ρ(w, w′, τ, τ ′, ξ, ξ′) is the run that emerges inK if the game starts withK on statew, K′ on statew′ and the
agents employ strategiesτ , τ ′, ξ andξ′ as described above, andρ′(w, w′, τ, τ ′, ξ, ξ′) is the corresponding run
that emerges inK′.

Definition 5 (Weak fair alternating simulation). A binary relationS ⊆ W × W ′ is a weak fair alternating
simulation (WFAS)ofK byK′ if the following two conditions hold for all(w, w′) ∈ W × W ′:

1. If S(w, w′), thenL(w) = L′(w′).
2. There exists a strategyτ ′ : (W × W ′)+ × A1 → A′

1 for Agent 1 inK′, such that for all strategiesτ :
(W × W ′)+ → A1 for Agent 1 inK, there exists a strategyξ : (W × W ′)+ × A1 × A′

1 × A2 → A′

2 for
Agent 2 inK, such that for all strategiesξ′ : (W ×W ′)+ ×A1 ×A′

1 → A′

2 for Agent 2 onK′, if S(w, w′) and
ρ(w, w′, τ, τ ′, ξ, ξ′) is a fair w-run ofK, then
− ρ′(w, w′, τ, τ ′, ξ, ξ′) is a fair w′-run ofK′; and
− ρ′(w, w′, τ, τ ′, ξ, ξ′) S-matchesρ(w, w′, τ, τ ′, ξ, ξ′).

We denote by�weak
fairalt the maximum WFAS relation betweenK1 andK2. We say that the fair ATSK2 weak-fair-

alternate simulatesthe fair ATSK1 iff (ŵ1, ŵ2) ∈�weak
fairalt.

Definition 6 (Strong fair alternating simulation). A binary relationS ⊆ W × W ′ is anstrong fair alternating
simulation (SFAS)of K byK′ if the following two conditions hold for all(w, w′) ∈ W × W ′:

1. If S(w, w′), thenL(w) = L′(w′).
2. There exist strategiesτ ′ : (W ×W ′)+×A1 → A′

1 for Agent 1 inK′ andξ : (W ×W ′)+×A1×A′

1×A2 → A′

2

for Agent 2 inK, such that for all strategiesτ : (W × W ′)+ → A1 for Agent 1 inK andξ′ : (W × W ′)+ ×
A1 × A′

1 → A′

2 for Agent 2 onK′, if S(w, w′) andρ(w, w′, τ, τ ′, ξ, ξ′) is a fair w-run ofK, then
− ρ′(w, w′, τ, τ ′, ξ, ξ′) is a fair w′-run ofK′; and
− ρ′(w, w′, τ, τ ′, ξ, ξ′) S-matchesρ(w, w′, τ, τ ′, ξ, ξ′).

We denote by�strong
fairalt the maximum SFAS relation betweenK1 andK2. We say that the fair ATSK2 strong-fair-

alternate simulatesthe fair ATSK1 iff (ŵ1, ŵ2) ∈�
strong
fairalt .

The difference in the definitions of weak and strong alternating fair simulation is in the order of the quantifiers in
the strategies. In the weak version the quantifier order is exists forall exists forall, whereas in the strong version the
order is exists exists forall forall. Thus strong fair alternating simulation implies weak fair alternating simulation.
We will show that both the definitions coincide and present algorithms to compute the maximum fair simulation.
Also observe that both the weak and strong version coincide with fair simulation for TSs. We will present a reduc-
tion of weak and strong fair alternating simulation problemto games with a parity objectives with three priorities.
We now present a few notations related to the reduction.

Successor sets.Given an ATS K, for a state w and an actiona ∈ P1(w), let Succ(w, a) =
{w′ | ∃b ∈ P2(w) such thatw′ = δ(w, a, b)} denote the possible successors ofw given actiona of Agent 1 (i.e.,
successor set ofw anda). Let Succ(K) = {Succ(w, a) | w ∈ W, a ∈ P1(w)} denote the set of all possible succes-
sor sets. Note that|Succ(K)| ≤ |W | · |A1|.

Game construction.Let K = 〈Σ, W, ŵ, A1, A2, P1, P2, L, δ〉 andK ′ = 〈Σ, W ′, ŵ′, A′

1, A
′

2, P
′

1, P
′

2, L
′, δ′〉 be

two ATSs, and letK = 〈K, F 〉 andK′ = 〈K ′, F ′〉 be the two corresponding fair ATSs. We will construct a game

5

graphG = ((V, E), (V1, V2)) with a parity objective. Before the construction we assume that from every state
w ∈ K there is Agent 1 strategy to ensure fairness inK. The assumption is without loss of generality because if
there is no such strategy fromw, then trivially all statesw′ with same label asw simulatesw (as Agent 2 can falsify
the fairness fromw). The states inK from which fairness cannot be ensured can be identified with aquadratic time
pre-processing step inK (solving Büchi games), and hence we assume that in all remaining states inK fairness
can be ensured. The game construction is as follows:

− Player 1 vertices:V1 = {〈w, w′〉 | w ∈ W, w′ ∈ W ′ such thatL(w) = L′(w′)} ∪
(
Succ(K) × Succ(K ′)

)
∪

{/}
− Player 2 vertices:V2 = Succ(K) × W ′ × {#, $}
− Edges.We specify the edges as the following union:E = E1 ∪ E2 ∪ E3 ∪ E1

4 ∪ E2
4 ∪ E5

E1 = {(〈w, w′〉 , 〈Succ(w, a), w′, #〉) | 〈w, w′〉 ∈ V1, a ∈ P1(w)}

E2 = {(〈T, w′, #〉 , 〈T, Succ(w′, a′)〉) | 〈T, w′, #〉 ∈ V2, a
′ ∈ P ′

1(w
′)}

E3 = {(〈T, T ′〉 , 〈T, r′, $〉) | 〈T, T ′〉 ∈ V1, r
′ ∈ T ′}

E1
4 = {(〈T, r′, $〉 , 〈r, r′〉) | 〈T, r′, $〉 ∈ V2, r ∈ T, L(r) = L′(r′)}

E2
4 = {(〈T, r′, $〉 , /) | 〈T, r′, $〉 ∈ V2 such that∀r ∈ T · L(r) 6= L′(r′)}

E5 = {(/, /)}

The intuitive description of the game graph is as follows: (i) the player 1 vertices are either state pairs〈w, w′〉
with same label, or pairs〈T, T ′〉 of successor sets, or a state/; and (ii) the player 2 vertices are tuples〈T, w′, ⊲⊳〉
whereT is a successor set inSucc(K), w′ a state inK ′ and⊲⊳∈ {#, $}. The edges are described as follows: (i)E1

describes that in vertices〈w, w′〉 player 1 can choose an actiona ∈ P1(w), and then the next vertex is the player 2
vertex〈Succ(w, a), w′, #〉; (ii) E2 describes that in vertices〈T, w′, #〉 player 2 can choose an actiona′ ∈ P1(w

′)
and then the next vertex is〈T, Succ(w′, a′)〉; (iii) E3 describes that in states〈T, T ′〉 player 1 can choose a state
r′ ∈ T ′ (which intuitively corresponds to an actionb′ ∈ P ′

2(w
′)) and then the next vertex is〈T, r′, $〉; (iv) the edges

E1
4 ∪ E2

4 describes that in states〈T, r′, $〉 player 2 can either choose a stater ∈ T that matches the label ofr′ and
then the next vertex is the player 1 vertex〈r, r′〉 (edgesE1

4) and if there is no match, then the next vertex is/; and
(v) finally E5 specifies that the vertex/ is an absorbing (sink) vertex with only self-loop. The three-priority parity
objectiveΦ∗ for player 2 with the priority functionp is specified as follows: for verticesv ∈ (W × F ′) ∩ V1 we
havep(v) = 0; for verticesv ∈ ((F × W ′ \ W × F ′) ∩ V1) ∪ {/} we havep(v) = 1; and all other vertices have
priority 2.

Plays and runs.Every 〈w, w′〉-play on the game (plays those that start from vertex〈w, w′〉) induces runs on the
structuresK andK′ as follows :

− 〈w, w′〉, 〈T0, w
′, #〉, 〈T0, T

′

0〉, 〈T0, w
′

1, $〉, 〈w1, w
′

1〉, 〈T1, w
′

1, #〉, 〈T1, T
′

1〉, 〈T1, w
′

2, $〉, 〈w2, w
′

2〉, . . . corre-
sponds to runsw = w, w1, w2 . . . andw′ = w′, w′

1, w
′

2
− 〈w, w′〉, 〈T0, w

′, #〉, 〈T0, T
′

0〉, 〈T0, w
′

1, $〉, 〈w1, w
′

1〉, 〈T1, w
′

1, #〉, 〈T1, T
′

1〉, 〈T1, w
′

2, $〉, 〈w2, w
′

2〉, . . . ,〈
wn−1, w

′

n−1

〉
,
〈
Tn−1, w

′

n−1, #
〉
,
〈
Tn−1, T

′

n−1

〉
, 〈Tn−1, w

′

n, $〉, /, /, . . . corresponds to finite runs̄w =
w, w1, w2 . . . wn−1, wn andw̄′ = w′, w′

1, w
′

2 . . . w′

n, for somewn ∈ Tn−1.

Lemma 1. Consider a play〈w, w′〉 = 〈w, w′〉, 〈T0, w
′, #〉, 〈T0, T

′

0〉, 〈T0, w
′

1, $〉, 〈w1, w
′

1〉, . . . on the parity game.
Then the following assertions hold:

1. If the play satisfies the parity objective, then the corresponding runsw = w, w1, w2 . . . in K and w′ =
w′, w′

1, w
′

2 . . . in K′ satisfy that ifw is fair, thenw′ is fair and for all i ≥ 0 we haveL(wi) = L′(w′

i).
2. If the play does not satisfy the parity objective, then (i)if the vertex/ is not reached, then the corresponding

runsw = w, w1, w2 . . . in K andw′ = w′, w′

1, w
′

2 . . . in K′ satisfy thatw is fair andw′ is not fair; (ii) if the
vertex/ is reached, then for the corresponding finite runsw = w, w1, w2 . . . wn andw′ = w′, w′

1, w
′

2 . . . w′

n

we have thatw′

n does not matchwn (i.e.,L(wn) 6= L′(w′

n)).

Proof. We prove both the items below:

6

1. If the parity objective is satisfied, it follows that the vertex / is never reached. By construction of the game,
vertices of the form〈w, w′〉 satisfy thatL(w) = L′(w′), and it follows that for alli ≥ 0 we haveL(wi) =
L′(w′

i). Moreover, as the parity objective is satisfied, it follows that if in K, states inF are visited infinitely
often, then inK ′, states inF ′ must be visited infinitely often, (as otherwise priority 1 vertices will be visited
infinitely often and priority 0 vertices only finitely often). This completes the proof of the first item.

2. If the parity objective is not satisfied, and the vertex/ is never reached, it follows that priority 1 vertices in
(F × W ′ \ W × F ′) ∩ V1 are visited infinitely often (henceF is visited infinitely often inK) and priority 0
vertices ((W × F ′) ∩ V1) are visited finitely often (henceF ′ is visited finitely often inK ′). Thus we have
a fair run inK, but the run inK ′ is not fair. If the/ vertex is reached, then by construction it follows that
L(wn) 6= L(w′

n).

The desired result follows.

Consequence of Lemma 1.We have the following consequence of the lemma. If a play satisfies the parity objective,
then the corresponding runs satisfy that if we have a fair runin K, then the run inK ′ is both fair and matches the
run in K. If the play does not satisfy the parity objective, then we have two cases: (i) the run inK is fair, but the
run in K ′ is not fair; or (ii) the run inK ′ does not match the run inK, and since we assume that from every state
in K fairness can be ensured, it follows that once we have the finite non-matching run, we can construct a fair run
in K that is not matched inK ′. Thus if the play does not satisfy the parity objective, thenin both cases we have a
fair run inK and the run inK ′ is either not fair or does not match the run inK.

Proposition 1. Let Win2 = {(w1, w2) | 〈w1, w2〉 ∈ V1, 〈w1, w2〉 ∈ W2(Φ
∗), i.e., is a winning state for player 2}.

Then we have
Win2 =�weak

fairalt=�strong
fairalt .

Proof. We first note that by definition we have�strong
fairalt⊆�weak

fairalt. Hence to prove the result it suffices to show the
following inclusions: (i)Win2 ⊆�strong

fairalt and (ii)�weak
fairalt⊆ Win2. We prove the inclusions below:

1. (First inclusion: Win2 ⊆�strong
fairalt). We need to show thatWin2 is a strong fair alternating simulation. Let

(w, w′) ∈ Win2, then〈w, w′〉 ∈ V1 and by construction of the game we haveL(w) = L(w′). Hence we need to
show that there exist strategiesτ ′ andξ, such that for all strategiesτ andξ′, we have that ifρ(w, w′, τ, τ ′, ξ, ξ′)
is a fairw-run in K, thenρ′(w, w′, τ, τ ′, ξ, ξ′) is a fairw′-run in K′ andρ′(w, w′, τ, τ ′, ξ, ξ′) Win2-matches
ρ(w, w′, τ, τ ′, ξ, ξ′).
Since〈w, w′〉 is a winning vertex for player 2, there exists a memoryless winning strategyβm for player 2,
which will ensure that all plays starting from〈w, w′〉 and consistent withβm will satisfy the parity objective.
Note that the strategyβm specifies the next vertices for vertices inSucc(K)×W ′ ×{#, $}. Usingβm we can
construct the required witness strategiesτ ′ andξ for strong fair alternating simulation as follows:

τ ′[〈w, w′〉 , 〈w1, w
′

1〉 , . . . ,
〈
wn−1, w

′

n−1

〉
, a] = a′ ∈ P ′

1(w
′

n−1)

such thatSucc(w′

n−1, a
′) = Π(2)(β

m[
〈
Tn−1, w

′

n−1, #
〉
]), whereTn−1 = Succ(wn−1, a); and

ξ[〈w, w′〉 , 〈w1, w
′

1〉 , . . . ,
〈
wn−1, w

′

n−1

〉
, a, a′, b′] = b ∈ P2(wn−1)

such that δ′(wn−1, a, b) = Π(1)(β
m[〈Tn−1, w

′

n, $〉]), where Tn−1 = Succ(wn−1, a) and w′

n =
δ′(w′

n−1, a
′, b′); (Π is the projection operator, that is,Π(k)(x1, x2, . . . , xn) = xk). Note that if the game

reaches the vertex/, then the objectiveΦ∗ for player 2 is violated and player 1 would win. Hence, sinceβm is
a winning strategy for player 2, it ensures that the play never reaches/. Hence, the outcome ofβm on which
the projection operator acts always lies inV1 \ {/}, and hence is a2-tuple. Consider a〈w, w′〉-play consistent
with the strategyβm, where〈w, w′〉 is in Win2. As described earlier, the〈w, w′〉-play of the parity game de-
fines two runs: aw-run,w = w, w1, w2, . . . in K and aw′-run w′ = w′, w′

1, w
′

2 . . . in K ′. Since〈w, w′〉 is
a winning state for player 2, all successor states〈wk, w′

k, #〉 states must also be winning states for player 2.
Hence(wk, w′

k) ∈ Win2 for all k ∈ N, and it follows that the runw′ in K ′ Win2-matchesw in K. Sinceβm

ensures the parity objectiveΦ∗ (all plays consistent withβm satisfiesΦ∗), it follows from Lemma 1 that for all
strategiesτ andξ if ρ(w, w′, τ, τ ′, ξ, ξ′) is a fair run onK (visitsF infinitely often), thenρ′(w, w′, τ, τ ′, ξ, ξ′)
is a fair run onK′ (visitsF ′ infinitely often). Hence we have the desired first inclusion:Win2 ⊆�strong

fairalt .

7

2. (Second inclusion:�weak
fairalt⊆ Win2). We need to show that if(w, w′) ∈�weak

fairalt, then〈w, w′〉 is a winning vertex
for player 2 in the game, that is, there exists a strategy forβ for player 2 such that against all strategies of
player 1 the parity objectiveΦ∗ is satisfied. By determinacy of parity games on graphs, instead of a winning
strategy for player 2 it suffices to show that against every strategyα of player 1 there is a strategyβ (depen-
dent onα) for player 2 to ensure winning againstα. Since(w, w′) ∈�weak

fairalt we have (i)L(w) = L(w′) and
(ii) there exist a strategyτ ′, such that for all strategiesτ , there exists a strategyξ, such that for all strate-
giesξ′, if ρ(w, w′, τ, τ ′, ξ, ξ′) is a fairw-run w in K, thenρ′(w, w′, τ, τ ′, ξ, ξ′) is a fairw′-run w′ in K′ and
ρ′(w, w′, τ, τ ′, ξ, ξ′) �weak

fairalt-matchesρ(w, w′, τ, τ ′, ξ, ξ′). Consider a strategyα for player 1, and letτ andξ′

be the corresponding strategies obtained fromα. We construct the desired strategyβ from τ ′ andξ as follows:

β[〈w, w′〉 , . . . ,
〈
wn−1, w

′

n−1

〉
,
〈
Tn−1, w

′

n−1, #
〉
] =

〈
Tn−1, Succ(w′

n−1, τ
′[〈w, w′〉 , 〈w1, w

′

1〉 , . . . ,
〈
wn−1, w

′

n−1

〉
, a])

〉
;

wherea is such thatTn−1 = Succ(wn−1, a), and

β[〈w, w′〉 , . . . ,
〈
Tn−1, T

′

n−1

〉
, 〈Tn−1, w

′

n, $〉] =
〈
δ(wn−1, a, ξ[〈w, w′〉 , 〈w1, w

′

1〉 , . . . ,
〈
wn−1, w

′

n−1

〉
, a, a′, b′]), w′

n

〉

wherea is such thatTn−1 = Succ(wn−1, a), anda′ such thatT ′

n−1 = Succ(w′

n−1, a
′) and b′ such that

δ′(w′

n−1, a
′, b′) = w′

n. We haveρ′(w, w′, τ, τ ′, ξ, ξ′) �weak
fairalt-matchesρ(w, w′, τ, τ ′, ξ, ξ′), we haveL(wk) =

L(w′

k) for all k ∈ N. It follows that given the strategyα andβ the vertex/ is not reached. Since strategies
τ ′ andξ form a witnessto weak fair alternating simulation, it follows that if the run ρ(w, w′, τ, τ ′, ξ, ξ′) is
fair, thenρ′(w, w′, τ, τ ′, ξ, ξ′) is fair, and then by Lemma 1 it follows that the play givenα andβ satisfies the
parity objective. It follows that against the strategyα of player 1, the strategyβ is winning for player 2. Thus
it follows that we have�weak

fairalt⊆ Win2.

The desired result follows.

Lemma 2. For the game graph constructed for fair alternating simulation we have|V1| + |V2| ≤ O(|W | · |W ′| ·
|A1| · |A′

1|); and |E| ≤ O(|W | · |W ′| · |A1| · (|A′

1| · |A
′

2| + |A2|)).

Proof. We have|Succ(K)| ≤ |W | · |A1| and|Succ(K ′)| ≤ |W ′| · |A′

1|. Hence we have

|V1| ≤ |W×W ′|+|Succ(K)×Succ(K ′)|+1 ≤ |W |·|W ′|+(|W |·|A1|)·(|W
′|·|A′

1|)+1 ≤ O(|W |·|W ′|·|A1|·|A
′

1|);

and
|V2| = 2 · |Succ(K) × W ′| ≤ 2 · (|W | · |A1|) · |W

′|

Thus we have the result for the vertex size. We now obtain the bound on edges. We have|E| = |E1|+ |E2|+ |E3|+
|E1

4 | + |E2
4 | + |E5|, and we obtain bound for them below:

|E1| ≤
∑

w′∈W ′

∑

w∈W

|P1(w)| ≤ |W ′| · |W | · |A1|

|E2| =
∑

T∈Succ(K)

∑

w′∈W ′

|P1(w
′)| ≤ |Succ(K)| · |W ′| · |A′

1| = |W | · |W ′| · |A1| · |A
′

1|

|E3| =
∑

T∈Succ(K)

∑

T ′∈Succ(K′)

|T ′| ≤ |Succ(K)| · |Succ(K ′)| · |A′

2| ≤ |W | · |W ′| · |A1| · |A
′

1| · |A
′

2|

where for the first inequality above we used the fact that|T ′| ≤ |A′

2|;

|E1
4 | =

∑

r′∈W ′

∑

T∈Succ(K)

|T | ≤ |W ′| · |Succ(K)| · |A2| ≤ |W ′| · |W | · |A1| · |A2|

where for the first inequality above we used that|T | ≤ |A2|;

|E2
4 | ≤

∑

r′∈W ′

∑

T∈Succ(K)

1 ≤ |W ′| · |Succ(K)| ≤ |W ′| · |W | · |A1|;

and finally|E5| = 1. Hence we have|E| = O(|W | · |W ′| · |A1| · (|A′

1| · |A
′

2| + |A2|)).

8

Algorithm 1 Basic Algorithm

Input: K = (Σ, W, bw, A1, A2, P1, P2, L, δ), K′ = (Σ, W ′, bw′, A′

1, A
′

2, P
′

1, P
′

2, L
′, δ′).

Output: �altsim.
0.�prev←W ×W ′; �← {(w, w′) | w ∈ W,w′ ∈ W ′, L(w) = L′(w′)};
1. while (�prev 6=�)

1.1 �prev←�
1.2 for all w ∈W , w′ ∈W ′

if (w �prev w′ and∃a ∈ P1(w) · ∀a′ ∈ P ′

1(w
′) · ∃b′ ∈ P ′

2(w
′) · ∀b ∈ P2(w) · δ(w, a, b) �prev δ(w′, a′, b′)), then

�←� \{(w, w′)}
2. return �.

The above lemma bounds the size of the game, and it is straightforward to show that the game graph can be
constructed in time quadratic in the size of the game graph (in fact in the following section we will present a more
efficient construction). Proposition 1, along with the complexity to solve parity games with three priorities gives us
the following theorem. The result for fair simulation follows as a special case and the details are presented in the
technical details appendix.

Theorem 4. We have�weak
fairalt=�strong

fairalt , the relation�strong
fairalt can be computed in timeO(|W |2 · |W ′|2 · |A1|2 · |A′

1| ·
(|A′

1| · |A
′

2| + |A2|)) for two fair ATSsK and K′. The fair simulation relation�fair can be computed in time
O(|W | · |W ′| · (|W | · |R′| + |W ′| · |R|)) for two fair TSsK andK′.

Remark 1.We consider the complexity of fair simulation, and letn = |W | = |W ′| andm = |R| = |R′|. The
previous algorithm of [8] requires timeO(n6) and our algorithm requires timeO(n3 · m). Sincem is at mostn2,
our algorithm takes in worst case timeO(n5) and in most practical cases we havem = O(n) and then our algorithm
requiresO(n4) time as compared to the previous knownO(n6) algorithm.

4 Alternating Simulation

In this section we will present two algorithms to compute themaximum alternating simulation relation for two
ATS K andK ′. The first algorithm for the problem was presented in [2] and we refer to the algorithm as the basic
algorithm. The basic algorithm iteratively considered pairs of states and examined if they are already witnessed to
be not in the alternating simulation relation, remove them and continues until a fix-point is reached. The algorithm
is described as Algorithm 1 (see Theorem 3 of [2]). The correctness of the basic algorithm was shown in [2], and
the time complexity of the algorithm isO(|W |2 · |W ′|2 · |A1| · |A

′

1| · |A2| · |A
′

2|): (i) time take byIf condition is
O(|A1| · |A′

1| · |A2| · |A′

2|); (ii) time taken by the nestedFor loops isO(|W | · |W ′|); and (iii) the maximum number
of iterations of theWhile loop isO(|W | · |W ′|).

4.1 Improved Algorithm Through Games

In this section we present an improved algorithm for alternating simulation by reduction to reachability-safety
games.

Game construction. Given two ATS K = (Σ, W, ŵ, A1, A2, P1, P2, L, δ) and K ′ =
(Σ, W ′, ŵ′, A′

1, A
′

2, P
′

1, P
′

2, L
′, δ′), we construct a game graphG = ((V, E), (V1, V2)) as follows:

– Player 1 vertices:V1 = (W × W ′) ∪
(
Succ(K) × Succ(K ′)

)
;

– Player 2 vertices:V2 = Succ(K) × W ′ × {#, $};
– Edges:The edge setE is specified as the following union:E = E1 ∪ E2 ∪ E3 ∪ E4

E1 = {(〈w, w′〉 , 〈Succ(w, a), w′, #〉) | w ∈ W, w′ ∈ W ′, a ∈ P1(w)}

E2 = {(〈T, w′, #〉 , 〈T, Succ(w′, a′)〉) | T ∈ Succ(K), w′ ∈ W ′, a′ ∈ P ′

1(w
′)}

E3 = {(〈T, T ′〉 , 〈T, r′, $〉) | T ∈ Succ(K), T ′ ∈ Succ(K ′), r′ ∈ T ′}

E4 = {(〈T, r′, $〉 , 〈r, r′〉) | T ∈ Succ(K), r′ ∈ W ′, r ∈ T }

9

Let T = {〈w, w′〉 | L(w) 6= L′(w′)} be the state pairs that does not match by the labeling function, and letF =
V \T . The objective for player 1 is to reachT (i.e.,Reach(T)) and the objective for player 2 is the safety objective
Safe(F). In the following proposition we establish the connection of the winning set for player 2 and�altsim.

Proposition 2. LetWin2 = {(w, w′) | w ∈ W, w′ ∈ W ′, 〈w, w′〉 ∈ W2(Safe(F)) i.e., is a winning vertex for player 2}.
Then we haveWin2 =�altsim.

Proof. We prove the result by proving two inclusions: (i)Win2 ⊆�altsim and (ii)�altsim⊆ Win2.

1. (First inclusion: Win2 ⊆�altsim). We show thatWin2 is an alternating simulation relation. Let〈w, w′〉
be a winning vertex inWin2 for player 2. Since the set of winning vertices is disjoint from T =
{〈w, w′〉 | L(w) 6= L′(w′)}, we can conclude thatL(w) = L′(w′). Thus, we only need to show that for all
(w, w′) ∈ Win2 we have

∀a ∈ P1(w) · ∃a′ ∈ P ′

1(w
′) · ∀b′ ∈ P ′

2(w
′) · ∃b ∈ P2(w) · (δ(w, a, b), δ′(w′, a′, b′)) ∈ Win2

We have the following analysis:
• Since〈w, w′〉 is a player-1 vertex, all transitions of player 1 to〈Succ(w, a), w′, #〉 must be a winning

vertex for player 2 for alla ∈ P1(q).
• Since〈Succ(w, a), w′, #〉 is a player-2 vertex and is a winning vertex for player 2, there exists a transition,

that is, there existsa′ ∈ P ′

1(w
′), such that〈Succ(w, a), Succ(w′, a′)〉 is a winning vertex for player 2.

• Since〈Succ(w, a), Succ(w′, a′)〉 is a player-1 vertex and is a winning vertex for player 2, for all transitions,
that is, for allb′ ∈ P ′

2(w
′), 〈Succ(w, a), δ′(w′, a′, b′), $〉 is a winning vertex for player 2.

• Since〈Succ(w, a), δ′(q′, a′, b′), $〉 is a player-2 vertex and is a winning vertex for player 2, there exists a
transition, that is, there existsb ∈ P2(w) such that〈δ(w, a, b), δ′(w′, a′, b′)〉 is a winning vertex for player
2.

It follows thatWin2 is an alternating simulation relation and henceWin2 ⊆�altsim.
2. (Second inclusion:�altsim⊆ Win2). We need to show that〈w, w′〉 is a winning vertex for player 2, for all

(w, w′) ∈�altsim. Since(w, w′) ∈�altsim, it follows thatL(w) = L′(w′). Hence�altsim is disjoint fromT =
{〈w, w′〉 | L(w) 6= L′(w′)}. Thus, it suffices to show that starting from〈w, w′〉 the player 2 can force that the
game never reachesT . We know that for all(w, w′) ∈�altsim we have

∀a ∈ P1(w) · ∃a′ ∈ P ′

1(w
′) · ∀b′ ∈ P ′

2(w
′) · ∃b ∈ P2(w) · (δ(w, a, b), δ′(w′, a′, b′)) ∈�altsim

Thus, starting from all vertices〈w, w′〉 such that(w, w′) ∈�altsim the player 2 can force that the game reaches
some〈r, r′〉 such that(r, r′) ∈�altsim, that is, player 2 can force that the game always stays in states inF =
V \ T (as�altsim ∩T = ∅). Hence�altsim⊆ Win2.

The desired result follows.

The algorithmic analysis will be completed in two steps: (1)estimating the size of the game graph; and (2) an-
alyzing the complexity to construct the game graph from the ATSs.

Lemma 3. For the game graph constructed for alternating simulation,we have|V1|+ |V2| ≤ O(|W | · |W ′| · |A1| ·
|A′

1|) and|E| ≤ O(|W | · |W ′| · |A1| · (|A′

1| · |A
′

2| + |A2|)).

Proof. We have

|V1| = |W ×W ′|+ |Succ(K)×Succ(K ′)| ≤ |W | · |W ′|+(|W | · |A1|) · (|W
′| · |A′

1|) = O(|W | · |W |′ · |A1| · |A
′

1|);

|V2| = 2 · |Succ(K) × W ′| ≤ 2 · (|W | · |A1|) · |W
′| = 2 · |W | · |W ′| · |A1|

The bound for|V1| + |V2| follows. We now consider the bound for the size ofE. We have|E| = |E1| + |E2| +
|E3| + |E4|, and we obtain bounds for them below:

|E1| =
∑

w′∈W ′

∑

w∈W

|P1(w)| ≤ |W ′| · |W | · |A1|

10

|E2| =
∑

T∈Succ(K)

∑

w′∈W ′

|P1(w
′)| ≤ |Succ(K)| · |W ′| · |A′

1| ≤ |W | · |W ′| · |A1| · |A
′

1|

|E3| =
∑

T∈Succ(K)

∑

T ′∈Succ(K′)

|T ′| ≤ |Succ(K)| · |Succ(K ′)| · |A′

2| ≤ |W | · |W ′| · |A1| · |A
′

1| · |A
′

2|

|E4| =
∑

r′∈W ′

∑

T∈Succ(K)

|T | ≤ |W ′| · |Succ(K)| · |A2| ≤ |W ′| · |W | · |A1| · |A2|

where in the bound forE3 we used|T ′| ≤ |A2| and in the bound forE4 we used|T | ≤ |A2|. It follows that
|E| = O(|W | · |W ′| · |A1| · (|A′

1| · |A
′

2| + |A2|)), and the desired result follows.

Game graph construction complexity.We now show that the game graph can be constructed in time linear in
the size of the game graph. The data strucutre for the game graph is as follows: we map every vertex inV1 ∪ V2

to a unique integer, and construct the list of edges. Given this data structure for the game graph, the winning
sets for reachability and safety objectives can be computedin linear time [3,9]. We now present the details of the
construction of the game graph data structure.

Basic requirements.We start with some basic facts. For two setsA and B, if we have two bijective func-
tions fA : A ↔ {0, . . . , |A| − 1} and fB : B ↔ {0, . . . , |B| − 1}, then we can assign a unique integer
to elements ofA × B in time O(|A| · |B|). Since it is easy to construct bijective functions forW and W ′,
we need to construct such bijective functions forSucc(K) and Succ(K ′) to ensure that every vertex has a
unique integer. We will present data structure that would achieve the following: (i) construct bijective function
fK : Succ(K) ↔ {0, . . . , |Succ(K)| − 1}; (ii) construct functionhK : W × A1 → {0, . . . , |Succ(K)| − 1} such
that for allw ∈ W anda ∈ P1(w) we havehK((w, a)) = fK(Succ(w, a)), i.e., it gives the unique number for
the successor set ofw and actiona; (iii) construct functiongK : {0, 1, . . . , |Succ(K)| − 1} → 2W such that for
all T ∈ Succ(K) we havegK(fK(T)) is the list of states inT . We will construct the same forK ′, and also ensure
that for allT we computegK(fK(T)) in time proportional to the size ofT . We first argue how the above functions
are sufficient to construct every edge in constant time: (i) edges inE1 can be constructed by considering state pairs
〈w, w′〉, actionsa ∈ P1(w), and with the functionhK((w, a)) we add the required edge, and the result for edges
E2 is similar with the functionhK′ ; (ii) edges inE3 andE4 are generated using the functiongK that gives the list
of states forgK(fK(T)) in time proportional to the size ofT . Hence every edge can be generated in constant time,
given the functions, and it follows that with the above functions the game construction is achieved in linear time.
We now present the data structure to support the above functions.

Binary tree data structure.Observe thatSucc(K) is a set such that each element is a successor set (i.e., elements are
set of states). Without efficient data structure the requirements for the functionsfK , hK , andgK cannot be achieved.
The data structure we use is abinary tree data structure. We assume that states inW are uniquely numbered from
1 to |W | Consider a binary tree, such that every leaf has depth|W |, i.e., the length of the path from root to a leaf is
|W |. Each path from the root to a leaf represents a set — every pathconsists of a|W | length sequence ofleft and
right choices. Consider a pathπ in the binary tree, and the pathπ represent a subsetWπ of W as follows: if thei-th
step ofπ is left, thenwi /∈ Wπ , if the i-th step isright, thenwi ∈ Wπ. Thus,Succ(K) is the collection of all sets
represented by paths (from root to leaves) in this tree. We have several steps and we describe them below.

1. Creation of binary tree.The binary treeBT is created as follows. Initially the treeBT is empty. For allw ∈ W
and alla ∈ P1(w) we generate the setSucc((w, a)) as a Boolean arrayAr of length|W | such thatAr[i] = 1
if wi ∈ Succ(w, a) and 0 otherwise. We use the arrayAr to add the setSucc((w, a)) to BT as follows: we
proceed from the root, ifAr[0] = 0 we add left edge, else the right edge, and proceed withAr[1] and so on. For
everyw ∈ W anda ∈ P1(w), the arrayAr is generated by going over actions inP2(w), and the addition of the
setSucc(w, a) to the tree is achieved inO(|W |) time. The initialization of arrayAr also requires timeO(|W |).
Hence the total time required isO(|W | · |A1| · (|W |+ |A2|)). The tree has at most|W | · |A1| leaves and hence
the size of the tree isO(|W |2 · |A1|).

2. The functionfK , gK andhK . Let Lf denote the leaves of the treeBT, and note that every leaf represents an
element ofSucc(K). We do a DFT (depth-first traversal) of the treeBT and assign every leaf the number
according to the order of leaves in which it appears in the DFT. Hence the functionfK is constructed in time
O(|W |2 · |A1|). Moreover, when we construct the functionfK , we create an arrayGAr of lists for the function

11

gK . If a leaf is assigned numberi by fK , we go from the leaf to the root and find the setT ∈ Succ(K)
that the leaf represents andGAr[i] is the list of states inT . Hence the construction ofgK takes time at most
O(|W | · |A1| · |W |). The functionhK is stored as a two-dimensional array of integers with rows indexed
by numbers from0 to |W | − 1, and columns by numbers0 to |A1| − 1. For a statew and actiona, we
generate the Boolean arrayAr, and use the arrayAr to traverseBT, obtain the leaf forSucc((w, a)), and assign
hK((w, a)) = fK(Succ(w, a)). It follows thathK is generated in timeO(|W | · |A1| · (|W | + |A2|)).

From the above graph construction, Proposition 2, Lemma 3, and the linear time algorithms to solve games with
reachability and safety objectives we have the following result for computing alternating simulation.

Theorem 5. The relation�altsim can be computed in timeO(|W | · |W ′| · |A1| · (|A′

1| · |A
′

2|+ |A2|)+ |W |2 · |A1|+
|W ′|2 · |A′

1|) for two ATSsK andK ′. The relation�altsim can be computed in timeO(|W | · |R′| + |W ′| · |R|) for
two TSsK andK ′.

The result for the special case of TSs is obtained by noticingthat for TSs we have both|V | and|E| at most
|W | · |R′|+ |W ′| · |R| (see technical details appendix for details), and our algorithm matches the complexity of the
best known algorithm of [7] for simulation for transition systems. Let us denote byn = |W | andn′ = |W ′| the size
of the state spaces, and bym = |W | · |A1| · |A2| andm′ = |W ′| · |A′

1| · |A
′

2| the size of the transition relations. Then
the basic algorithm requiresO(n·n′ ·m·m′) time, whereas our algorithm requires at mostO(m·m′+n·m+n′ ·m′)
time, and whenn = n′ andm = m′, then the basic algorithm requiresO((n · m)2) time and our algorithm takes
O(m2) time.

4.2 Iterative Algorithm

In this section we will present an iterative algorithm for alternating simulation. For our algorithm will first present
a new and alternative characterization of alternating simulation through successor set simulation.

Definition 7 (Successor set simulation).Given two ATSsK = (Σ, W, ŵ, A1, A2, P1, P2, L, δ) and K ′ =
(Σ, W ′, ŵ′, A′

1, A
′

2, P
′

1, P
′

2, L
′, δ′), a relation≅⊆ W × W ′ is a successor set simulationfrom K to K ′, if there

exists a companion relation≅S⊆ Succ(K ′) × Succ(K), such that the following conditions hold:

– for all (w, w′) ∈≅ we haveL(w) = L′(w′);
– if (w, w′) ∈≅, then for all actionsa ∈ P1(w), there exists an actiona′ ∈ P ′

1(w
′) such that

(Succ(w′, a′), Succ(w, a)) ∈≅S ; and
– if (T ′, T) ∈≅S , then for allr′ ∈ T ′, there existsr ∈ T such that(r, r′) ∈≅.

We denote by≅∗ the maximum successor set simulation.

We now show that successor set simulation and alternating simulation coincide, and then present the iterative
algorithm to compute the maximum successor set simulation≅∗.

Lemma 4. The following assertions hold: (1) Every successor set simulation is an alternating simulation, and
every alternating simulation is a successor set simulation. (2) We have≅∗=�altsim.

Proof. The second assertion is an easy consequence of the first one, and we prove inclusion in both directions to
prove the first assertion.

– (Alternating simulation impiles successor set simulation). Suppose� is an alternating simulation. We need
to prove that� is also a successor set simulation. For this we will construct the witness companion relation
≅S⊆ Succ(K ′) × Succ(K) to satisfy Definition 7.
We define

≅S=

{
(Succ(w′, a′), Succ(w, a)) |

(w, w′) ∈� ∧a ∈ P1(w) ∧ a′ ∈ P ′

1(w
′).

∀b′ ∈ P ′

2(w
′) · ∃b ∈ P2(w) · (δ(w, a, b), δ′(w′, a′, b′)) ∈�

}

Clearly, if (T ′, T) ∈≅S , thenT ′ = Succ(w′, a′) andT = Succ(w, a) for some(w, w′) ∈� anda ∈ P1(w) and
a′ ∈ P ′

1(w
′) such that for allb′ ∈ P ′

2(w
′) there existsb ∈ P2(w), such that(δ(w, a, b), δ′(w′, a′, b′)) ∈�. Since

everyr′ in T ′ is such thatr′ = δ′(w′, a′, b′) for someb′ ∈ P ′

2(w
′), we have that for everyr′ ∈ T ′, there exists

b ∈ P2(w), such that(δ(w, a, b), r′) ∈�. Hence for everyr′ ∈ T ′, there existsr ∈ T such that(r, r′) ∈�. The
other requirements of Definition 7 are trivially satisfied. Hence� is also a successor set simulation.

12

– (Successor set simulation implies alternating simulation). Suppose≅ is a successor set simulation. Hence there
exists a companion relation≅S⊆ Succ(K ′) × Succ(K) satisfying the requirements of Definition 7. We need
to prove that≅ is also an alternating simulation. From Definition 7, for all(w, w′) ∈≅, for all a ∈ P1(w),
there existsa′ ∈ P ′

1(w
′) such that(Succ(w′, a′), Succ(w, a)) ∈≅S . Now, for anyb′ ∈ P ′

2(w
′), there exists

r′ ∈ Succ(w′, a′), such thatr′ = δ′(w′, a′, b′). Since,(Succ(w′, a′), Succ(w, a)) ∈≅S , andr′ ∈ Succ(w′, a′),
there exists ar ∈ Succ(w, a) and hence there existsb ∈ P2(w) satisfyingr = δ(w, a, b), such that(r, r′) ∈≅,
which is same as(δ(w, a, b), δ′(w′, a′, b′)) ∈≅. Hence≅ is also an alternating simulation.

This completes the proof.

We will now present our iterative algorithm to compute≅∗, and we will denote by≅S the witness companion
relation of≅∗. Our algorithm will use the following graph construction: Given an ATSK, we will construct the
graphGK = (VK , EK) as follows: (1)VK = W ∪ Succ(K), whereW is the set of states; and (2)EK =
{(w, Succ(w, a)) | w ∈ W ∧ a ∈ P1(w)} ∪ {(T, r) | T ∈ Succ(K) ∧ r ∈ T }. The graphGK can be constructed
in time O(|W |2 · |A1|) using the binary tree data structure described earlier. Ouralgorithm will use the standard
notation ofPre andPost: given a graphG = (V, E), for a setU of states,Post(U) = {v | ∃u ∈ U, (u, v) ∈ E} is
the set of successor states ofU , and similarly,Pre(U) = {v | ∃u ∈ U, (v, u) ∈ E} is the set of predecessor states.
If U = {q} is singleton, we will writePost(q) instead ofPost({q}). Note that in the graphGK for the stateT ∈
Succ(K) we havePost(T) = {q | q ∈ T } = T . Given ATSsK andK ′ our algorithm will work simultaneously
on the graphsGK andGK′ using three data structures, namely,sim, count andremove for the relation≅∗ (resp.
simS , countS andremoveS for the companion relation≅S). The data structures are as follows: (1) Intuitivelysim

will be an overapproximation of≅∗, and will be maintained as a two-dimensional Boolean array so that whenever
the i, j-th entry is false, then we have a witness that thej-th statew′

j of K ′ does not simulate thei-th statewi of

K (similary we havesimS overSucc(K) andSucc(K ′) for the relation≅S). (2) The data structurecount is two-
dimensional array, such that for a statew′ ∈ W ′ andT ∈ Succ(K) we havecount(w′, T) is the number of elements
in the intersection of the successor states ofw′ and the set of all states thatT simulates according tosimS ; and we
also have similar arraycountS for T, w′ elements. (3) Finally, the data structureremove is a list of sets, where for
everyw′ ∈ W ′ we haveremove(w′) is a set where every element of the set belongs toSucc(K). Similarly for every
T ∈ Succ(K) we haveremoveS(T) is a set of states. Intuitively the interpretation of removedata structure will
be as follows: ifT ∈ Succ(K) belongs toremove(w′), then no elementw of T is simulated byw′. Our algorithm
will always maintainsim (resp.simS) as overapproximation of≅∗ (resp.≅S), and will iteratively prune them. Our
algorithm is iterative and we denote byprevsim (resp.prevsimS) thesim (resp.simS) of the previous iteration. To
give an intuitive idea of the invariants maintained by the algorithm (Algorithm 2) let us denote bysim(w) the set of
w′ such thatsim(w, w′) is true, and let us denote byinvsim(w′) the inverse ofsim(w′), i.e., the set of statesw such
that(w, w′)-th element ofsim is true (similar notation forinvprevsim(w′), invsimS(T) andinvprevsimS(T)). The
algorithm will ensure the following invariants at different steps:

1. Forw ∈ W, w′ ∈ W ′ andT ∈ Succ(K), T ′ ∈ Succ(K ′),
(a) if sim(w, w′) is false, then(w, w′) /∈≅∗;
(b) similarly, if simS(T ′, T) is false, then(T ′, T) /∈≅S.

2. Forw′ ∈ W ′ andT ∈ Succ(K),
(a) count(w′, T) = |Post(w′) ∩ invsimS(T)|; and
(b) count(T, w′) = |Post(T) ∩ invsim(w′)| = |T ∩ invsim(w′)|

3. Forw′ ∈ W ′ andT ∈ Succ(K),
(a) remove(w′) = Pre(invprevsim(w′)) \ Pre(invsim(w′))
(b) remove(T) = Pre(invprevsimS(T)) \ Pre(invsimS(T)).

The algorithm has two phases: the initialization phase, where the data structures are initialized; and then a while
loop. The while loop consists of two parts: one is pruning ofsim and the other is the pruning ofsimS and both the
pruning steps are similar. The initialization phase initializes the data structure and described in Steps 1, 2, and 3
of Algorithm 2. Then the algorithm calls the two pruning steps in a while loop. The condition of the while loop
checks whetherprevsim andsim are the same, and it is done in constant time by simply checking whetherremove

is empty. We now describe one of the pruning procedures and the other is similar. The pruning step is similar to
the pruning step of the algorithm of [7] for simulation on transition systems. We describe the pruning procedure

13

Algorithm 2 Iterative Algorithm

Input: K = (Σ, W, bw, A1, A2, P1, P2, L, δ), K′ = (Σ, W ′, bw′, A′

1, A
′

2, P
′

1, P
′

2, L
′, δ′).

Output: ≅∗.
1. Initialize sim and simS :

1.1. for all w ∈W, w′ ∈W ′

prevsim(w, w′)← true;
if L(w) = L′(w′), thensim(w, w′)← true;
else sim(w, w′)← false;

1.2. for all T ∈ Succ(K) andT ′ ∈ Succ(K′)
prevsimS(T ′, T) = simS(T ′, T)← true;

2. Initialize count and countS :
2.1. for all w′ ∈ W ′ andT ∈ Succ(K)

count(w′, T)← |Post(w′) ∩ invsimS(T)| = |Post(w′)|;
countS(T, w′)← |Post(T) ∩ invsim(w′)|;

3. Initialize remove and removeS :
3.1. for all w′ ∈ W ′

remove(w′)← Succ(K) \ Pre(invsim(w′));
3.2. for all T ∈ Succ(K)

removeS(T)← ∅;
Pruning while loop:
4. while prevsim 6= sim

4.1prevsim← sim;
4.2prevsimS ← simS ;
4.3ProcedurePRUNESIM STRSUCC;
4.4ProcedurePRUNESIM STR;

5. return {(w, w′) ∈ W ×W ′ | sim(w, w′) is true};

PRUNESIM STRSUCC. For every statew′ ∈ W ′ such that the setremove(w′) is non-empty, we run a for loop.
In the for loop we first obtain the predecessorsT ′ of w′ in GK′ (each predecessor belongs toSucc(K ′)) and an
elementT from remove(w′). If simS(T ′, T) is true, then we do the following steps: (i) We setsimS(T ′, T) to false,
because we know that there does not exist any elementw ∈ T such thatw′ simulatesw. (ii) Then for alls′ that are
predecessors ofT ′ in GK′ we decrementcount(s′, T), and if the count is zero, then we adds′ to the remove set of
T . Finally we set the remove set ofw′ to ∅. The description of PRUNESIM STR to prunesim is similar.

Correctness.Our correctness proof will be in two steps. First we will showthat invariant 1 (both aboutsim and
simS) and invariant 2 (both aboutcount andcountS) are true at the beginning of step 4.1. The invariant 3.(a) (on
remove) is true after the procedure call PRUNESIM STR (step 4.4) and invariant 3.(b) (onremoveS) is true after the
procedure call PRUNESIM STRSUCC (step 4.3). We will then argue that these invariants ensure correctness of the
algorithm.

Maintaining invariants.We first consider invaraint 1, and focus on invariant 1.(b) (as the other case is symmet-
ric). In procedure PRUNESIM STRSUCC when we setsimS(T ′, T) to false, we need to show that(T ′, T) 6∈≅S .
The argument is as follows: when we setsimS(T ′, T) to false, we know that sinceT ∈ remove(w′) we have
countS(T, w′) = 0 (i.e.,Post(T) ∩ invsim(w′) = ∅). This implies that for everyw ∈ T we have thatw′ does not
simulatew. Also note that sincecountS is never incremented, if it reaches zero, it remains zero. This proves the
correctness of invariant 1.(b) (and similar argument holdsfor invariant 1.(a)). The correctness for invariant 2.(a) and
2.(b) is as follows: whenever we decrementcount(s′, T) we have setsimS(T ′, T) to false, andT ′ was earlier both in
Post(s′) as well as ininvsimS(T), and is now removed frominvsimS(T). Hence from the setPost(s′)∩invsimS(T)
we remove the elementT ′ and its cardinality decreases by 1. This establishes correctness of invariant 2.(a) (and
invariant 2.(b) is similar). Finally we consider invariant3.(a): when we adds′ to removeS(T), then we know that
count(s′, T) was decremented to zero, which meansT ′ belongs toinvprevsimS(T), but not toinvsimS(T). Thuss′

belongs toPre(invprevsimS(T)) (sinces′ belongs toPre(T ′)), and but not toPre(invsimS(T)). This shows thats′

belongs toremoveS(T), and establishes correctness of the desired invariant (argument for invariant 3.(b) is similar).

14

Algorithm 3 Procedure PruneSimStrSucc

1. forall w′ ∈ W ′ such thatremove(w′) 6= ∅
1.1. forall T ′ ∈ Pre(w′) andT ∈ remove(w′)

1.1.1if (simS(T ′, T))
simS(T ′, T)← false;
1.1.1.A.forall (s′ ∈ Pre(T ′))

count(s′, T)← count(s′, T)− 1;
if (count(s′, T) = 0)

removeS(T)← removeS(T) ∪ {s′};
1.2.remove(w′)← ∅;

Algorithm 4 Procedure PruneSimStr

1. forall T ∈ Succ(K) such thatremoveS(T) 6= ∅
1.1. forall w ∈ Pre(T) andw′ ∈ removeS(T)

1.1.1if (sim(w, w′))
sim(w, w′)← false;
1.1.1.A.forall (D ∈ Pre(w))

countS(D, w′)← countS(D, w′)− 1;
if (countS(D, w′) = 0)

remove(w′)← remove(w′) ∪ {D};
1.2.removeS(T)← ∅;

Invariants to correctness.The initialization part ensures thatsim is an overapproximation of≅∗ and it follows
from invariant 1 that the output is an overapproximation of≅∗. Similarly we also have thatsimS in the end is
an overapproximation of≅S . To complete the correctness proof, letsim andsimS be the result when the while
loop iterations end. We will now show thatsim andsimS are witness to satisfy successor set simulation. We know
that when the algorithm terminates,remove(w′) = ∅ for everyw′ ∈ W ′, andremoveS(T) = ∅ for everyT ∈
Succ(K) (this follows sincesim = prevsim). To show thatsim and simS are witness to satisfy successor set
simulation, we need to show the following two properties: (i) If sim(w, w′) is true, then for everya ∈ P1(w),
there existsa′ ∈ P ′

1(w
′) such thatsimS(Succ(w′, a′), Succ(w, a)) is true. (ii) If simS(T ′, T) is true, then for every

s′ ∈ T ′, there existss ∈ T such thatsim(s, s′) is true. The property (i) holds because for everya ∈ P1(w),
we have thatcount(w′, T) > 0, whereT = Succ(w, a), (because otherwise,w′ would have been inserted in
remove(T), but sinceremove(T) is empty, consequentlysim(w, w′) must have been made false). Hence we have
that Post(w′) ∩ invsimS(T) is non-empty and hence there existsT ′ ∈ Post(w′) such thatsimS(T ′, T) is true.
Similar argument works for (ii). Thus we have established that sim is both an overapproximation of≅∗ and also a
witness successor set relation. Since≅∗ is the maximum successor set relation, it follows that Algorithm 2 correctly
computes≅∗=�altsim (≅∗=�altsim by Lemma 4).

Space complexity.We now argue that the space complexity of the iterative algorithm is superior as compared to
the game based algorithm. We first show that the space taken byAlgorithm 2 isO(|W |2 · |A1| + |W ′|2 · |A′

1| +
|W | · |W ′| · |A1| · |A′

1|). For the iterative algorithm, the space requirements are, (i) sim andsimS require at most
O(|W | · |W ′|) andO(|W | · |W ′| · |A1| · |A′

1|) space, respectively, respectively; (ii)count andcountS require at
mostO(|W | · |W ′| · |A1|) space each; (iii)remove andremoveS maintained as an array of sets require at most
O(|W | · |W ′| · |A1|), space each. Also, for the construction of graphsGK andGK′ using the binary tree data
structure as described earlier, the space required is at most O(|W |2 · |A1|) andO(|W ′|2 · |A′

1|), respectively. As
compared to the space requirement of the iterative algorithm, the game based algorithm requires to store the entire
game graph and requires at leastO(|W | · |W ′| · |A1| · |A′

1| · |A
′

2|) space (to store edges inE3) as well space
O(|W |2 · |A1|+ |W ′|2 · |A′

1|) for the binary tree data structure. The iterative algorithmcan be viewed as an efficient
simultaneous pruning algorithm that does not explicitly construct the game graph (and thus save at least factor of
|A′

2| in terms of space). We now show that the iterative algorithm along with being space efficient matches the time
complexity of the game based algorithm.

15

Time complexity.The data structures forsim (alsosimS) andcount (alsocountS) are as described earlier. We store
remove andremoveS as a list of lists (i.e., it is a list of sets, and sets are stored as lists). It is easy to verify that all
the non-loop operations take unit cost, and thus for the timecomplexity, we need to estimate the number of times
the different loops could run. Also the analysis of the initialization steps are straight forward, and we present the
analysis of the loops below: (1) Thewhile loop (Step 4) of Algorithm 2 can run for at most|W | · |W ′| iterations
because in every iteration (except the last iteration) at least one entry ofsim changes from true to false (otherwise
the iteration stops), andsim has|W | · |W ′|-entries. (2) Theforall loop (Step 1) in Algorithm 3 can overall run for at
most|W ′| · |W | · |A1| iterations. This is because elements ofremove(w′) are fromSucc(K) and elementsT from
Succ(K) are included inremove(w′) at most once (whencountS(T, w′) is set to zero, and oncecountS(T, w′) is
set to zero, it remains zero). Thusremove(w′) can be non-empty at most|Succ(K)| times, and hence the loop runs
at most|W | · |A1| times for statesw′ ∈ W ′. (3) Theforall loop (Step 1.1) in Algorithm 3 can overall run for at most
|W ′|·|A′

1|·|A
′

2|·|W |·|A1| iterations. The reasoning is as follows: for every edge(T ′, w′) ∈ GK′ andT ∈ Succ(K)
the loop runs at most once (since everyT is included inremove(w′) at most once). Hence the number of times the
loop runs is at most the number of edges inGK′ (at most|W ′|·|A′

1|·|A
′

2|) times the number of elements inSucc(K)
(at most|W |·|A1|). Thus overall the number of iterations of Step 1.1 of Algorithm 3 is at most|W ′|·|A′

1|·|W |·|A1 |.
(4) Theforall loop (Step 1.1.1.A) in Algorithm 3 can overall run for at most|W ′| · |A′

1| · |A
′

2| · |W | · |A1| iterations
because every edge(s′, T ′) in GK′ would be iterated at most once for everyT ∈ Succ(K) (as for everyT, T ′ we
setsimS(T, T ′) false at most once, and the loop gets executed when such a entry is set to false). The analysis of
the following items (5), (6), and (7), are similar to (2), (3), and (4), respectively. (5) Theforall loop (Step 1) in
Algorithm 4 can overall run for at most|W | · |A1| · |W

′| iterations, becauseremoveS(T) can be non-empty at most
|W ′| times (i.e., and the number of differentT is at most|Succ(K)| = |W | · |A1|). (6) Theforall loop (Step 1.1) in
Algorithm 4 can overall run for at most|W | · |A1| · |A2| · |W ′| iterations because every edge(w, T) in GK can be
iterated over at most once for everyw′ (the number of edges inGK is |W | · |A1| · |A2| and number ofw′ is at most
|W ′|). (7) Theforall loop (Step 1.1.1.A) in Algorithm 4 can overall run for at most|W | · |A1| · |A2| · |W ′| iterations
because every edge(w, D) in GK would be iterated over at most once for everyw′ ∈ W ′. Adding the above
terms, we get that the total time complexity isO

(
|W | · |W ′| · |A1| · (|A′

1| · |A
′

2| + |A2|)
)
, i.e., the time complexity

matches the time complexity of the game reduction based algorithm. We also tabulate our analysis in Table 1. We
also remark that for transition systems (TSs), the procedure PRUNESIM STRSUCC coincides with PRUNESIM STR

and our algorithm simplifies to the algorithm of [7], and thusmatches the complexity of computing simulation for
TSs.

Theorem 6. Algorithm 2 correctly computes�altsim in timeO
(
|W | · |W ′| · |A1| · (|A′

1| · |A
′

2| + |A2|) + |W |2 ·

|A1| + |W ′|2 · |A′

1|
)
.

References

1. R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal logic.Journal of the ACM, 49:672–713, 2002.
2. R. Alur, T.A. Henzinger, O. Kupferman, and M.Y. Vardi. Alternating refinement relations. InCONCUR’98, LNCS 1466,

pages 163–178. Springer, 1998.
3. C. Beeri. On the membership problem for functional and multivalued dependencies in relational databases.ACM Trans. on

Database Systems, 5:241–259, 1980.
4. E.M. Clarke, O. Grumberg, and D. Peled.Model Checking. MIT Press, 1999.
5. E.A. Emerson and C. Jutla. Tree automata, mu-calculus anddeterminacy. InFOCS’91, pages 368–377. IEEE, 1991.
6. J. Y. Halpern and R. Fagin. Modeling knowledge and action in distributed systems.Distributed Computing, 3:159–179,

1989.
7. M.R. Henzinger, T.A. Henzinger, and P.W. Kopke. Computing simulations on finite and infinite graphs. InProceedings of

the 36rd Annual Symposium on Foundations of Computer Science, pages 453–462. IEEE Computer Society Press, 1995.
8. T.A. Henzinger, O. Kupferman, and S. Rajamani. Fair simulation. Information and Computation, 173:64–81, 2002.
9. N. Immerman. Number of quantifiers is better than number oftape cells. Journal of Computer and System Sciences,

22:384–406, 1981.
10. M. Jurdzinski. Small progress measures for solving parity games. InSTACS’00, pages 290–301. LNCS 1770, Springer,

2000.
11. R. Milner. An algebraic definition of simulation betweenprograms. InSecond International Joint Conference on Artificial

Intelligence, pages 481–489. The British Computer Society, 1971.

16

Step Complexity Justification

while loop (Step 4 of Algorithm 2) O(|W | · |W ′|) all (except the last) iteration changes at least one of
the|W | · |W ′|-entries ofsim from true to false

forall loop (Step 1 of Algorithm 3) O(|W ′| · |W | · |A1|) remove(w′) can be non-empty only
|Succ(K)| times, for eachw′ ∈W ′

forall loop (Step 1.1 of Algorithm 3) O(|Succ(K)| · |W ′| · |A′

1| · |A
′

2|) every edge inGK′ can be iterated at most once
for eachT in Succ(K), and number of edges

in GK′ is |W ′| · |A′

1| · |A
′

2|
forall loop (Step 1.1.1.A of Algorithm 3)O(|Succ(K)| · |W ′| · |A′

1| · |A
′

2|) every edge inGK′ can be iterated at most once
for eachT in Succ(K), and number of edges

in GK′ is |W ′| · |A′

1| · |A
′

2|

forall loop (Step 1 of Algorithm 4) O(|W ′| · |W | · |A1|) removeS(T) can be non-empty only
|W ′| times, for eachT ∈ Succ(K)

forall loop (Step 1.1 of Algorithm 4) O(|W ′| · |W | · |A1| · |A2|) every edge inGK can be iterated at most once
for eachw′ in W ′, and number of edges

in GK is |W | · |A1| · |A2|
forall loop (Step 1.1.1.A of Algorithm 4) O(|W ′| · |W | · |A1| · |A2|) every edge inGK can be iterated at most once

for eachw′ in W ′, and number of edges
in GK is |W | · |A1| · |A2|

Table 1.Loop-wise complexity

12. L.S. Shapley. Stochastic games.Proc. Nat. Acad. Sci. USA, 39:1095–1100, 1953.
13. A. Silberschatz, P.B. Galvin, and G. Gagne.Operating System Concepts (Seventh Edition). John Wiley and Sons, 2004.

17

Techincal Details Appendix

5 Fair Alternating Simulation

We now present the reduction to parity games with three priorities for the special case of fair simulation. Given the
fair TSsK = (K, F) andK′ = (K ′, F ′), we construct the game graphG = ((V, E), (V1, V2)) is as follows:

− Player 1 vertices:V1 = {〈w, w′〉 | w ∈ W, w′ ∈ W ′, L(w) = L′(w′)} ∪ {/}.
− Player 2 vertices:V2 = (W × W ′ × {$})
− Edges:The edge setE is as follows:

E = {(〈w1, w2〉 , 〈w′

1, w2, $〉) | 〈w1, w2〉 ∈ V1, (w1, w
′

1) ∈ R}

∪ {(〈w′

1, w2, $〉 , 〈w′

1, w
′

2〉) | 〈w
′

1, w2, $〉 ∈ V2, (w2, w
′

2) ∈ R′, 〈w′

1, w
′

2〉 ∈ V1}

∪ {(〈w′

1, w2, $〉 , /) | 〈w′

1, w2, $〉 ∈ V2, ∀w′

2 if (w2, w
′

2) ∈ R′, then 〈w′

1, w
′

2〉 6∈ V1}

∪ {(/, /)}

The three-priority parity objectiveΦ∗ for player 2 with the priority functionp is specified as follows: for vertices
v ∈ (W × F ′) ∩ V1 we havep(v) = 0; for verticesv ∈ ((F × W ′ \ W × F ′) ∩ V1) ∪ {/} we havep(v) = 1;
and all other vertices have priority 2. Also without loss of generality we assume that for everyw ∈ W there exists
a fair run fromw. The specialization of Proposition 1 gives us the followingproposition.

Proposition 3. LetWin2 = {(w1, w2) | 〈w1, w2〉 ∈ V1, 〈w1, w2〉 ∈ W2(Φ
∗), i.e., is a winning state for player 2}.

Then we haveWin2 =�fair.

Lemma 5. For the game graph constructed for fair simulation we have|V1| + |V2| ≤ O(|W | · |W ′|); and |E| ≤
O(|W | · |R′| + |W ′| · |R|).

Proof. We have|V1| ≤ |V2| + 1 = |W | · |W ′| + 1 = O(|W | · |W ′|). We have

|E| ≤ 1+2·|W |·|W ′|+
∑

w′∈W ′

∑

w∈W
L(w)=L′(w′)

deg(w)+
∑

w∈W

∑

w∈W ′

deg(w′) ≤ 1+2·|W |·|W ′|+|W ′|·|R|+|W |·|R′|,

wheredeg(w) (resp.deg(w′)) denotes the number of outedges (or out-degree) ofw (resp.w′). The result follows.

The reduction and the results to solve parity games with three priorities establish that�fair can be computed in
timeO(|W | · |W ′| · (|W | · |R′| + |W ′| · |R|)). This completes the last item of Theorem 4.

6 Alternating Simulation

6.1 Improved Algorithm Through Games

In this section we consider the specialization of the alternating simulation algorithm for TS. Since we have already
established in Section 4.1 that the game graph constructioncomplexity is linear in the size of the game graph, we
only need to estimate the size of the vertex set and the edge set for TS.

Lemma 6. For the game graph constructed for alternating simulation for TS, we have|V1|+ |V2| ≤ O(|W | · |W ′| ·
|A1| · |A′

1|) and|E| ≤ O(|W | · |W ′| · (|A1| + |A′

1|)).

Proof. Note that the size of the vertex set is bounded by the same quantity as for the general case for ATS, and thus
the vertex size bound is trivial. We now consider the case foredges. First observe that since|A2| = 1, it follows that
Succ(K) ≤ |W | as everySucc((w, a)) is singleton (i.e., a state), and henceSucc(K) has at most|W | elements and

18

each element is a singleton state. Similarly we haveSucc(K ′) ≤ |W ′|. We have|E| = |E1| + |E2| + |E3| + |E4|,
and we obtain bounds for them below:

|E1| =
∑

w′∈W ′

∑

w∈W

|P1(w)| ≤ |W ′| · |W | · |A1|

|E2| =
∑

T∈Succ(K)

∑

w′∈W ′

|P1(w
′)| ≤ |Succ(K)| · |W ′| · |A′

1| ≤ |W | · |W ′| · |A′

1|

|E3| =
∑

T∈Succ(K)

∑

T ′∈Succ(K′)

|T ′| ≤ |Succ(K)| · |Succ(K ′)| ≤ |W | · |W ′|

|E4| =
∑

r′∈W ′

∑

T∈Succ(K)

|T | ≤ |W ′| · |Succ(K)| ≤ |W ′| · |W |

where in the bound forE3 we used|T ′| ≤ |A2| = 1 and in the bound forE4 we used|T | ≤ |A2| = 1. It follows
that|E| ≤ O(|W | · |W ′| · (|A1| + |A′

1|)). and the desired result follows.

Since|R| = |W | · |A1| and|R′| = |W ′| · |A′

1|, we obtain the last result of Theorem 5.

19

