| INIY N AUSTRIA

Institute of Science and Technology

Faster Algorithms for Alternating Refinement
Relations

Krishnendu Chatterjee , Siddhesh Chaubal and Pritish Kamath

IST Austria (Institute of Science and Technology Austria)

Am Campus 1

A-3400 Klosterneuburg

Technical Report No. IST-2012-0001

http://pub.ist.ac.at/Pubs/TechRpts/2011/I1ST-2012-0001 .pdf

Jan 9, 2012

http://pub.ist.ac.at/Pubs/TechRpts/2009/IST-2009-002.pdf
http://pub.ist.ac.at/Pubs/TechRpts/2009/IST-2009-002.pdf
http://pub.ist.ac.at/Pubs/TechRpts/2009/IST-2009-002.pdf
http://pub.ist.ac.at/Pubs/TechRpts/2009/IST-2009-002.pdf
http://pub.ist.ac.at/Pubs/TechRpts/2009/IST-2009-002.pdf

Copyright © 2012, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission.

Faster Algorithms for Alternating Refinement Relations

Krishnendu Chatterjée Siddhesh Chaubjland Pritish Kamath

1 IST Austria (Institute of Science and Technology, Austria)
2 |IT Bombay

Abstract. One central issue in the formal design and analysis of reasiistems is the notion o&finement
that asks whether all behaviors of the implementation mnat by the specification. The local interpretation
of behavior leads to the notion sfmulation Alternating transition systems (ATSs) provide a generatieh
for composite reactive systems, and the simulation reldtio ATSs is known as alternating simulation. The
simulation relation for fair transition systems is callait Simulation. In this work our main contributions are as
follows: (1) We present an improved algorithm for fair simtibn with Biichi fairness constraints; our algorithm
requiresO(n® - m) time as compared to the previous kno@n®)-time algorithm, where: is the number of
states andn is the number of transitions. (2) We present a game basedthlgdor alternating simulation that
requiresO(m?)-time as compared to the previous kno@(n - m)?)-time algorithm, where: is the number
of states andn is the size of transition relation. (3) We present an iteeasilgorithm for alternating simulation
that matches the time complexity of the game based algoriblitis more space efficient than the game based
algorithm.

1 Introduction

Simulation relation and extensions.One central issue in formal design and analysis of reactyiseems is the
notion of refinement relations. The refinement relationt@ysA refines systemd’) intuitively means that every
behavioral option off (the implementation) is allowed by’ (the specification). Thiocal interpretation of behavo-
rial option in terms of successor states leads to refinenssitrailation|[T]. The simulation relation enjoys many
appealing properties, such as it has a denotational cleaization, it has a logical characterization and it can be
computed in polynomial time (as compared to trace contamnvlich is PSPACE-complete). While the notion of
simulation was originally developed for transition syssgffl], it has many important extensions. Two prominent
extensions are as follows: (a) extension for compositeesysiand (b) extension for fair transition systems.

Alternating simulation relation. Composite reactive systems can be viewed as multi-agetensg$1#.6], where
each possible step of the system corresponds to a possibikeima game which may involve some or all compo-
nent moves. We model multi-agent systemsksrnating transition system@TSs) [1]. In general a multi-agent
system consists a sEbf agents, but for algorithmic purposes for simulation vweagls consider a subsgt C I of
agents against the rest, and thus we will only consider tganasystems (one agent is the collectioiof agents,
and the other is the collection of the rest of the agents) s@ien the composite systems| B and A’|| B, in envi-
ronmentB, and the relation thad refinesA’ without constraining the environmeBtis expressed by generalizing
the simulation relation talternating simulation relatioff2]]. Alternating simulation also enjoys the appealing prop
erties of denotational and logical characterization alaity polynomial time computability. We refer the readers
to [Z] for an excellent exposition of alternating simulatiand its applications in design and analysis of compos-
ite reactive systems. Thus computing alternating simutaftor ATSs is a core algorithmic question in the formal
analysis of composite systems.

Fair simulation relation. Fair transition systems are extension of transition systesith fairness constraint. A
liveness(or weak fairness or Biichi fairness) constraint consiéta setB of live states, and requires that runs
of the system visit some live state infinitely often. In gexiéhe fairness constraint can be a strong fairness con-
straint instead of a liveness constraint. The notion of &thon was extended to fair transition systemsfais
simulation[8]. It was shown in[[B] that fair simulation also enjoys thgpaaling properties of denotational and
logical characterization, and polynomial time compuifpilsee [8] for many other important properties and dis-
cussion on fair simulation). Again the computation of fanslation with Buichi fairness constraints is an important
algorithmic problem for design and analysis of reactiveaays with liveness requirements.

Our contributions. In this work we improve the algorithmic complexities of comtipg fair simulation with Biichi
fairness constraints and alternating simulation. In thecdptions below we will denote by the size of the state
space of systems, and bythe size of the transition relation. Our main contributians summarized below.

1. Fair simulation.First we extend the notion of fair simulation to alternatfag simulation for ATSs with Biichi
fairness constraints. There are two natural ways of exteitlie definition of fair simulation to alternating fair
simulation, and we show that both the definitions coincide.pfésent an algorithm to compute the alternating
fair simulation relation by a reduction to a game with padbjectives with three priorities. As a special case
of our algorithm for fair simulation, we show that the faimsilation relation can be computed@(n? - m)
time, as compared to the previous kno@(n.%)-time algorithm of [8]. Observe that is at mostO(n?) and
thus the worst case running time of our algorithnig:®). Moreover, in many practical examples systems
have constant out-degree (for examples Bee [4]) fies O(n)), and then our algorithm requir€¥n*) time.

2. Game based alternating simulatione present a game based algorithm for alternating simula@air algo-
rithm is based on a reduction to a game with reachabilityaibjes, and require®(m?) time, as compared to
the previous known algorithm that requir@$(n - m)?) time [2]. One key step of the reduction is to construct
the game graph in time linear in the size of the game graph.

3. Iterative algorithm for alternating simulatione present an iterative algorithm to compute the altergatin
simulation relation. The time complexity of the iteratidg@ithm matches the time complexity of the game
based algorithm, however, the iterative algorithm is mpees efficient. (see paragraph on space complexity of
SectiorZ.P for the detailed comparision). Moreover, bbthgame based algorithm and the iterative algorithm
when specialized to transition systems match the best kiadgarithms to compute the simulation relation.

We remark that the game based algorithms we obtain for altiegnfair simulation and alternating simulation
are reductions to standard two-player games on graphs waittymbjectives (with three priorities) and reachabil-
ity objectives. Since such games are well-studied, stahalgorithms developed for games can now be used for
computation of refinement relations. Our key technical gbation is establishing the correctness of the efficient
reductions, and showing that the game graphs can be cotestindinear time in the size of the game graphs. For
the iterative algorithm we establish an alternative chigrémation of alternating simulation, and present an itera
tive algorithm that simultaneously prunes two relationghaut explicitly constructing game graphs (thus saving
space), to compute the relation obtained by the alternakigeacterization.

2 Definitions

In this section we present all the relevant definitions, dredprevious best known results. We present definitions
of labeled transition systems (Kripke structures), lath@lkernating transitions systems (ATS), fair simulatiamd
alternating simulation. All the simulation relations wellwdiefine are closed under union (i.e., if two relations are
simulation relations, then so is their union), and we wilhsinler the maximum simulation relation. We also present
relevant definitions for graph games that will be later usedtie improved results.

Definition 1 (Labeled transition systems (TS))A labeledtransition system (TS{Kripke structure) is a tuple
K = (X,W,w, R, L), whereX is a finite set of observation$y is a finite set of states and is the initial state;

R C W x W is the transition relation; and. : W — X' is the labeling function that maps each state to an
observation. For technical convenience we assume thatlifes & W there existsy’ € W such thatw, w') € R.

Runs, fairness constraint, and fair transition systefar.a TSK and a statev € W, aw-run of K is an infinite
sequence = wp, ws, ws, ... Of states such thaty = w and R(w;, w;4+1) for all i > 0. We writeInf(w) for the
set of states that occur infinitely often in the ranA run of K is aw-run for the initial statéo. In this work we will
considerBuchi fairness constrainfsand a Biichi fairness constraint is specified as aset W of Bichi states,
and defines the fair set of runs, where a tis fair iff Inf(w) N F # ((i.e., the run visitsF infinitely often). A
fair transition systeniC = (K, F') consists of a T3 and a Blichi fairness constraift C W for K. We consider
two TSsK; = (X, Wy, w1, Ry, L1) and Ko = (X, Ws, we, Ra, Lo) over the same alphabet, and the two fair TSs
K1 = (K1, Fy) andCy = (K>, F»). We now define the fair simulation betwekn andC, [8].

Definition 2 (Fair simulation). A binary relationS C W, x Wj is afair simulationof 1C; by K5 if the following
two conditions hold for al(wy, we) € W1 x Wa:

1. |fS(U)1, U)Q), thenLl(wl) = L2(w2).
2. There exists a strategy : (Wi x Wa)™ x Wy — Wy such that ifS(wy,ws) andw = wug, u1,us, . ..

is a fair wy-run of £y, then the following conditions hold: (a) the outcom@u] = wu(,u},ub,... is
a fair we-run of Ky (where the outcome[w] is defined as follows: for ali > 0 we haveu;, =
T((uwo,up), (ur,uh), ..., (ui—1,u}_q),u;)) ; and (b) the outcome[w] S-matchesw; that is, S(u;, u}) for

all i > 0. We sayr is awitnessto the fair simulationS.

We denote by, the maximum fair simulation relation betwegh and 2. We say that the fair T&, fairly
simulateshe fair TSK; iff (w1, W) €=tair-

We have the following result for fair simulation froi [8] eséem 1 of Theorem 4.2 fron][8]).

Theorem 1. Given two fair TS¥C; and s, the problem of whethét, fairly simulatesiC; can be decided in time
O((IW1] + [Wa) - (|Ra| + | Ra|) + ([Wi] - [W2))?).

Definition 3 (Labeled alternating transition systems (ATS). A labeledalternating transitions system (ATB)a
tuple K = (¥, W, w, A1, Aa, P1, P>, L, 0), where (i)Y is a finite set of observations; (i} is a finite set of states
with @ the initial state; (iii) A; is a finite set of actions for Ageintfor i € {1,2}; (iv) P, : W — 24¢ \ () assigns
to every statev in W the non-empty set of actions available to Ageat w, fori € {1,2}; (v) L : W — X'is
the labeling function that maps every state to an obseraatnd (vi)d : W x A; x Ay — W is the transition
relation that given a state and the joint actions gives thet seate.

Observe that a TS can be considered as a special case of AiSlwiingleton (sayd, = {L}), and the
transition relation? of a TS is described by the transition relatibn 1V x A; x {1} — W of the ATS.

Definition 4 (Alternating simulation). Given two ATS,K = (X, W,w, Ay, As, P, P>, L,6) and K/ =
(X, W', Ay AL P, Py L6 a binary relationS € W x W is an alternating simulation froniC to £ if
for all statesw andw’ with (w, w’) € S, the following conditions hold :

1. L(w) = L'(w')
2. For every actioru € P;(w), there exists an actio’ € Pj(w’) such that for every actioll € P;(w'), there
exists an actioh € P(w) such thatd(w, a, b), d(w’,a’, ")) € S, i.e.,

V(w,w') € S+ Va € Pi(w)-3a’ € P/(w') -V € Py(w')- I € Po(w) - (§(w,a,b),d (w',a’, b)) €S

We denote by, isim the maximum alternating simulation relation betwel€nand K’. We say that the AT&”
simulateghe ATSK iff (w1, W2) €=aitsim-

The following result was shown ih][2] (see proof of Theorent §24).

Theorem 2. For two ATSsK and K, the alternating simulation relatior ,i.sim can be computed in tim@(| W |2 -
[W/2 - [Aa| - [Af] - [Az] - [A5]).

In the following section we will present an extension of tletion of fair simulation for TSs to alternating fair
simulation for ATSs, and present improved algorithms to pota=<,;, and=<,;sim- Some of our algorithms will
be based on reduction to two-player games on graphs. Werptéserequired definitions below.

Two-player Game graphs.A two-player game grapty = ((V, E), (V4, V2)) consists of a directed graghv, F)
with a setV” of n vertices and a sel of m edges, and a partitiofi;;, V2) of V' into two sets. The vertices in
V; areplayer 1 verticeswhere player 1 chooses the outgoing edges; and the veiticgs are player 2 ver-
tices where player 2 (the adversary to player 1) chooses the mggmiges. For a vertex € V, we write
Out(u) = {v € V' | (u,v) € E} for the set of successor verticeswtndIn(u) = {v € V | (v,u) € E} for the
set of incoming edges af. We assume that every vertex has at least one out-goingieelg®ut(u) is non-empty
for all verticesu € V.

Plays.A game is played by two players: player 1 and player 2, who famminfinite path in the game graph
by moving a token along edges. They start by placing the takean initial vertex, and then they take moves
indefinitely in the following way. If the token is on a vertaxV¥;, then player 1 moves the token along one of the

edges going out of the vertex. If the token is on a verte¥inthen player 2 does likewise. The result is an infinite
path in the game graph, callpthys We write {2 for the set of all plays.

StrategiesA strategy for a player is a rule that specifies how to exteagilFormally, &trategya for player 1 is

a functiona: V* - V4 — V such that for alkv € V* and allv € V; we havea(w - v) € Out(v), and analogously
for player 2 strategies. We writd and 53 for the sets of all strategies for player 1 and player 2, retbpsdy. A
memorylesstrategy for player 1 is independent of the history and ddpemly on the current state, and can be
described as a functian: V; — V, and similarly for player 2. Given a starting vertex V, a strategyx € A for
player 1, and a strategy € B for player 2, there is a unique play, denote@, «, 3) = (vo, v1,va, . ..), which is
defined as followsvy = v and for allk > 0, if v, € Vi, thena(v,) = viy1, and ifvg, € Vo, thenfB(vg) = vgi1.
We say a plaw is consistentvith a strategy of a player, if there is a strategy of the oggmbisuch that given both
the strategies the unique playus

Objectives An objective® for a game graph is a desired subset of plays. For aplay (vy, v1,va,...) € (2,

we definelnf(w) = {v € V | v, = v for infinitely manyk > 0} to be the set of vertices that occur infinitely often
in w. We define reachability, safety and parity objectives whitee priorities.

1. Reachability and safety objectiv&iven a sefl’ C V of vertices, the reachability objectiReach(T) requires
that some vertex if" be visited, and dually, the safety objectivefe(F') requires that only vertices iR be
visited. Formally, the sets of winning plays aReach(T) = {(vo,v1,v2,...) € 2|3k > 0. v, € T} and
Safe(F) = {{(vo,v1,v2,...) € 2|Vk >0.v, € F}. The reachability and safety objectives are dual in the
sense thaReach(T') = 2\ Safe(V \ T).

2. Parity objectives with three prioritiesConsider a priority functiop : V. — {0,1,2} that maps every
vertex to a priority either 0, 1 or 2. The parity objective uggs that the minimum priority visited in-
finitely often is even. In other words, the objectives reguhat either vertices with priority O are visited
infinitely often, or vertices with priority 1 are visited fiely often. Formally the set of winning plays is
Parity(p) = {w | Inf(w) Np~1(0) # 0 orInf(w) Np~1(1) = 0}.

Winning strategies and setSiven an objectived C (2 for player 1, a strategy € A is awinning strategyfor
player 1 from a vertex if for all player 2 strategieg € 5 the playw(v, «,) is winning, i.e..w(v, o,) € 9.
The winning strategies for player 2 are defined analogougliswitching the role of player 1 and player 2 in the
above definition. A vertex € V is winning for player 1 with respect to the objecti®df player 1 has a winning
strategy fromv. Formally, the set ofvinning vertices for player With respect to the objectivé is W, (®) =
{veV|3aec AVGe B ww,a,pB) e P} the set of all winning vertices. Analogously, the set of alhming
vertices for player 2 with respect to an objective” 2isWy(¥) ={ve V|3 e B.Vac A w(v,a,3) € U}.

Theorem 3 (Determinacy and complexity).The following assertions hold.

1. For all game graphs? = ((V, E), (V1, V2)), all objectivesd for player 1 whered is reachability, safety, or
parity objectives with three priorities, and the complenaey objective = (2 \ & for player 2, we have
W1(@) =V \ Wa(¥); and memoryless winning strategies exist for both players their respective winning
set [H].

2. The winning selV; () can be computed in linear tim&(|V| + | E|)) for reachability and safety objectives
¢ [B13]; and in quadratic time Q(|V'| - | E|)) for parity objectives with three prioritie$ [10].

3 Fair Alternating Simulation

In this section we will present two definitions of fair altating simulation, show their equivalence, present algo-
rithms for solving fair alternating simulations, and oug@iithms specialized to fair simulation will improve the
bound of the previous algorithm (Theor&in 1). Similar to f&@s, afair ATSK = (K, F') consists of an ATSK
and a Buchi fairness constraihtfor K.

To extend the definition of fair simulation to fair altermagisimulation we consider notion of strategies for
ATSs. Consider two ATS& = (X, W, w, Ay, Ay, P1, Py, L,0) andK' = (X, W' o', A}, AL, Py, P}, L', ¢") and
the corresponding fair ATSS = (K, F) andK’ = (K’, F’). We use the following notations:

— 7: (W xW')T — A is a strategy employed by Agent 1A The aim of the strategy is to choose transitions
in K to make it difficult for Agent 1 ink’ to match them. The strategy acts on the past run on both system

— 7 (W x W')T x Ay — A} is a strategy employed by Agent 1 k. The aim of this strategy is to match
actions inK’ to those made by Agent 1 i. The strategy acts on the past run on both the systems, aasvell
the action chosen by Agent 1 i@.

— ¢ (WxWHt x Ay x A} — Al is a strategy employed by Agent 2 f&f. The aim of this strategy is to
choose actions i’ to make it difficult for Agent 2 to match them K. The strategy acts on the past run of
both the systems, as well as the actions chosen by AgentClamd’.

— & (W x WHT x A) x A} x A, — Ay is a strategy employed by Agent 2 /& Intuitively, the aim of this
strategy of Agent 2 is to choose actionsirto show that Agent 1 is not as powerfulfhas ink’, i.e., in some
sense the strategy of Agent 2 will witness that the stratdgigent 1 in C does not satisfy certain desired
property. The strategy acts on the past run of both the sgstasnwell as the actions chosen by Agent Kin
and both the agents id'.

— plw,w', 7,7, £,&) is the run that emerges i if the game starts withC on statew, £’ on statew’ and the
agents employ strategies ', ¢ and¢’ as described above, aptiw, w’, 7, 7/, £, £’) is the corresponding run
that emerges iK’.

Definition 5 (Weak fair alternating simulation). A binary relationS C W x W' is a weak fair alternating
simulation (WFAS)of IC by K’ if the following two conditions hold for allw, w’) € W x W":

1. If S(w,w), thenL(w) = L'(w').

2. There exists a strategy : (W x W')* x A; — A} for Agent 1 inK’, such that for all strategies :
(W x W")* — A; for Agent 1 inK, there exists a strategy : (W x W')* x A} x A} x Ay — A for
Agent 2 inkC, such that for all strategie§' : (W x W')* x Ay x A} — A, for Agent 2 onK’, if S(w,w’) and
plw,w',7,7',£, &) is a fair w-run of IC, then

— p(w,w', 7,7, & &) is afairw’-run of K'; and
= p(w,w' 1,7, £,¢) S-matchep(w, w', 7,7, &,).

We denote by<yek the maximum WFAS relation betwekn and K». We say that the fair ATE, weak-fair-
alternate simulatethe fair ATSK; iff (@, wy) € =¥k

—fairalt*

Definition 6 (Strong fair alternating simulation). A binary relationS C W x W' is anstrong fair alternating
simulation (SFASYf IC by K’ if the following two conditions hold for afkw, w’) € W x W":

1. If S(w,w’), thenL(w) = L'(w").
2. There exist strategies : (W x W)™ x A} — A} for Agent 1ink’ and¢ : (W x W/)T x A; x A] x Ay — A},
for Agent 2 inkC, such that for all strategies : (W x W’)* — A; for Agent 1inK and¢’ : (W x W)t x
Ay x A} — Al for Agent 2 onl’, if S(w,w’) andp(w,w’, 7,7, &, ¢£) is a fair w-run of IC, then
— plw,w',m,7,& ¢ is afairw-run of £’; and
- p(w,w' 7,7, £,¢) S-matchep(w, w', 7,7, &,).
We denote by<'°"¢ the maximum SFAS relation betwelén and K,. We say that the fair AT&, strong-fair-

fairalt

alternate simulatethe fair ATSKC; iff (wy, ws) g=strong

fairalt *

The difference in the definitions of weak and strong alténggfair simulation is in the order of the quantifiersin
the strategies. In the weak version the quantifier orderigsforall exists forall, whereas in the strong version the
order is exists exists forall forall. Thus strong fair aftating simulation implies weak fair alternating simulatio
We will show that both the definitions coincide and presegbathms to compute the maximum fair simulation.
Also observe that both the weak and strong version coincittefair simulation for TSs. We will present a reduc-
tion of weak and strong fair alternating simulation problengames with a parity objectives with three priorities.
We now present a few notations related to the reduction.

Successor sets.Given an ATS K, for a statew and an actiona € Pi(w), let Succ(w,a) =

{w’ | b € Py(w) such thatv’ = 6(w, a,b)} denote the possible successorswofiven actiona of Agent 1 (i.e.,
successor set af anda). Let Succ(K) = {Succ(w,a) | w € W,a € P1(w)} denote the set of all possible succes-
sor sets. Note thaSucc(K)| < [W] - |A44].

Game construction.Let K = (¥, W, w, Ay, Aa, Py, P>, L,6) and K’ = (X W' o', A}, AL, P, P;, L', &) be
two ATSs, and leC = (K, F') andK’ = (K’, F’) be the two corresponding fair ATSs. We will construct a game

graphG = ((V, E), (V1,V2)) with a parity objective. Before the construction we assuhs from every state

w € K there is Agent 1 strategy to ensure fairnes&inThe assumption is without loss of generality because if
there is no such strategy from then trivially all statesy’ with same label as simulatesw (as Agent 2 can falsify
the fairness fromw). The states if from which fairness cannot be ensured can be identified wdtiealratic time
pre-processing step iR’ (solving Biichi games), and hence we assume that in all réngpstates ink fairness
can be ensured. The game construction is as follows:

— Player 1 vertices¥; = {(w,w’) | w € W,w’ € W’ such thatl.(w) = L'(w’)} U (Succ(K) x Succ(K’)) U
{®}

— Player 2 verticesVs, = Succ(K) x W' x {#,$}

— EdgesWe specify the edges as the following unidh= E; U E; U E3 U E} U E2 U E;

By = {({w,w') , (Succ(w, a), w’, #)) | (w,w') € V1,a € Pi(w)}

By ={({T, 0, #) , (T, Suce(w’,a'))) [(T, w', #) € V3,a" € Pi(w')}
B3 = {((T,T) (T, $)) | (T,T') € V1,v' € T'}

Ey ={(T\7",8), (r,0")) | {T,7",8) € Vo, r € T, L(r) = L'(+")}

Ef ={((T.r".$),®) | (T.7",$) € Vo suchthat/r € T - L(r) # L'(r')}
Es={(@,0)}

The intuitive description of the game graph is as followyiifie player 1 vertices are either state pdiisw’)
with same label, or pair&l’, T") of successor sets, or a staeand (ii) the player 2 vertices are tupl€B, w’,)
whereT is a successor set Bucc(K), w’ a state inK”’ andie {#, $}. The edges are described as followsHj)
describes that in verticés, w') player 1 can choose an actiare P;(w), and then the next vertex is the player 2
vertex(Succ(w, a), w’, #); (i) E2 describes that in verticdd", w’, #) player 2 can choose an actiahe P; (w’)
and then the next vertex (g, Succ(w’, a’)); (iii) E5 describes that in statéd”, 7”) player 1 can choose a state
r’ € T’ (which intuitively corresponds to an actibhe P,(w’)) and then the next vertex{§", 7, $); (iv) the edges
E} U E? describes that in staté®, 7/, $) player 2 can either choose a state T that matches the label of and
then the next vertex is the player 1 vertexr’) (edgest}) and if there is no match, then the next verte®isand
(v) finally E5 specifies that the vertex is an absorbing (sink) vertex with only self-loop. The thp@rity parity
objectived* for player 2 with the priority functiomn is specified as follows: for verticase (W x F’) N V; we
havep(v) = 0; for verticesv € ((F x W'\ W x F')nV;) U {®} we havep(v) = 1; and all other vertices have
priority 2.

Plays and runsEvery (w, w’)-play on the game (plays those that start from veftexw’)) induces runs on the
structuresC andK’ as follows :

— (w,w’), (To,w', #), (To, Tg), (To,wy,$), (w1, w), (Tr,wy, #), (T1,T7), (T, w5, $), (wa,ws), ... corre-
sponds to run® = w, wy, ws ... andw’ = w’, wi,wh

- <w7w/>' <T05w/v#>' <T07T0> <T05w15$>’ <w1’wi>' <T15wia#>' <T17T1/>! <T1,w’2,$>, <w23w/2>1 ’
(wn—1, w1), (Tne1,w},_1,#), < e 1,T,’l 1> <Tn,1,w;,$>, ®, @, ... corresponds to finite rung =
W, W1, W .. Wy—1, W, @AW" = w', wi,wh ... w!, for somew,, € T,,_1.

Lemma 1. Consider a playw, w’) = (w, w"), (To, w’, #), {Tv, T3), (To, w}, $), (w1, w}), ... onthe parity game.
Then the following assertions hold:

1. If the play satisfies the parity objective, then the cqroesling runsw = w,w;,w» ... in K andw’ =
w',wh,wh ... in K’ satisfy that ifw is fair, thenw’ is fair and for alli > 0 we haveL (w;) = L' (w}).

2. If the play does not satisfy the parity objective, therif iie vertex® is not reached, then the corresponding
ruNsSw = w, wy,we ... iN K andw’ = w',wi,w) ... in K’ satisfy thatw is fair andw’ is not fair; (ii) if the
vertex® is reached, then for the corresponding finite rans= w, wy,ws . .. w, andw’ = w', w},w} ... w),
we have thatv/, does not match,, (i.e., L(w,) # L' (w),)).

Proof. We prove both the items below:

1. If the parity objective is satisfied, it follows that thertex ® is never reached. By construction of the game,
vertices of the formw, w’) satisfy thatL(w) = L’(w’), and it follows that for ali > 0 we haveL(w;) =
L' (w}). Moreover, as the parity objective is satisfied, it followattif in K, states inF are visited infinitely
often, then inK’, states inf” must be visited infinitely often, (as otherwise priority Irtiges will be visited
infinitely often and priority O vertices only finitely often)his completes the proof of the first item.

2. If the parity objective is not satisfied, and the veréxs never reached, it follows that priority 1 vertices in
(F x W'\ W x F’) NV are visited infinitely often (hencg is visited infinitely often inK’) and priority 0
vertices (W x F') n 1) are visited finitely often (hencé&” is visited finitely often inK”). Thus we have
a fair run in K, but the run inK” is not fair. If the® vertex is reached, then by construction it follows that

L(wn) # L(wy,).
The desired result follows. |

Consequence of LemiilaWe have the following consequence of the lemma. If a plagfesi the parity objective,
then the corresponding runs satisfy that if we have a faiimuli, then the run inK”’ is both fair and matches the
run in K. If the play does not satisfy the parity objective, then weehtavo cases: (i) the run iK is fair, but the
run in K’ is not fair; or (ii) the run inK’ does not match the run i, and since we assume that from every state
in K fairness can be ensured, it follows that once we have the firwih-matching run, we can construct a fair run
in K that is not matched if’. Thus if the play does not satisfy the parity objective, thehoth cases we have a
fair run in K and the run inK” is either not fair or does not match the runfin

Proposition 1. Let Winy = {(w1, w2) | (w1, w2) € Vi, (w1, we) € Wo(P*),i.e., is a winning state for player}2
Then we have

- ___weak ____strong
W|n2 _jfairalt_jfairalt :

Proof. We first note that by definition we have’">"¢C<»ek Hence to prove the result it suffices to show the

—fairalt = —fairalt"

following inclusions: (i)Winy C=<2"""8 and (i) <¥¢2k C Win,. We prove the inclusions below:

—fairalt fairalt=

1. (First inclusion: Winy C<:°"8). We need to show thatVin, is a strong fair alternating simulation. Let
(w,w") € Wing, then{w, w’) € V; and by construction of the game we ha\ev) = L(w’). Hence we need to
show that there exist strategig'sand¢, such that for all strategiesand¢’, we have that ip(w, w’, 7,7/, £, &)
is a fairw-run in K, thenp/ (w,w’, 7,7/, £,¢’) is a fairw’-run in K" and p’ (w, w’, 7,7, £, ") Wing-matches
p(’w, wlv T, T/a 57 51)

Since(w, w') is a winning vertex for player 2, there exists a memoryleswing strategys™ for player 2,
which will ensure that all plays starting frofw, w’) and consistent witl3™ will satisfy the parity objective.
Note that the strateg§™ specifies the next vertices for verticesSimcc(K) x W' x {#, $}. Using3™ we can

construct the required witness strategieand¢ for strong fair alternating simulation as follows:
TI[<w7w/>) <w17w/1> PR <wn*15 w;171> aa] = al € Pll(wilfl)

such thaSucc(w),_y,a’) = (o) (B"[(T-1,w},_1,#)]), whereT,,_1 = Succ(w,_1,a); and

Ellw, W'y, (wi,wl) . (wp—1, w1) a,d’ V] = b € Py(wn—1)
such thatd'(wn—1,a,b) = I)(B"[(Th-1,wy,8)]), where T,y = Succ(w,1,a) and w;,, =
6'(wy,_4,a’,b"); (I is the projection operator, that i$(;)(z1,22,...,2,) = x3). Note that if the game

reaches the verte®, then the objectivé* for player 2 is violated and player 1 would win. Hence, sif¢eis

a winning strategy for player 2, it ensures that the play nexaches>. Hence, the outcome @i on which
the projection operator acts always liesdin\ {®}, and hence is a-tuple Consider gw, w’)-play consistent
with the strategy3™, where(w, w’) is in Win,. As described earlier, th@v, w’)-play of the parity game de-
fines two runs: av-run,w = w,wy, we,... in K and aw’-runw’ = w’,wj,wh ... in K'. Since(w,w’) is

a winning state for player 2, all successor stdtes, w},, #) states must also be winning states for player 2.
Hence(wy, w),) € Wing for all & € N, and it follows that the rum’ in K’ Win,-matcheso in K. Sinces™
ensures the parity objectii (all plays consistent witl3" satisfiesp*), it follows from LemmdL that for alll
strategies and¢ if p(w,w’,7,7,&, &) is a fair run onkC (visits F' infinitely often), therny’ (w, w’, 7,7/, &£, £')

is a fair run onk’ (visits F” infinitely often). Hence we have the desired first inclusidfin, C<3on8

— —fairalt "

2. (Second |nclu5|on<g?fa"|tc Winz). We need to show that {fw, w’) exgex,, then(w,w’) is a winning vertex
for player 2 in the game, that is, there exists a strategysféor player 2 such that against all strategies of
player 1 the parity objectivé™* is satisfied. By determinacy of parity games on graphs, aastd a winning
strategy for player 2 it suffices to show that against evaategy« of player 1 there is a strategy (depen-
dent ona) for player 2 to ensure winning against Since(w, w’) €<k we have (i)L(w) = L(w’) and
(ii) there exist a strategy’, such that for all strategies, there exists a strategy such that for all strate-
gies¢’, if p(w,w’,7,7',&,&') is a fairw-runw in K, thenp/(w,w’, 7,7/, &,¢) is a fairw’-run@’ in £ and
p(w,w',m, 76,8 <Weak -matches(w, w’, 7,7, £,£’). Consider a strategy for player 1, and let and¢’

—fairalt

be the corresponding strategies obtained frarilVe construct the desired strategyrom 7’ and¢ as follows:

Bllw,w') ;. (wny,w)y) (T wyy g, #)) = (T, Succ(w, g, 7' [{w, w') , (wi, wh) - (w1, wr,q) s al)) s
whereq is such thafl}, _; = Succ(w,,—1,a), and

Bllw,w') . (T, T oy) s (Ta1, w3, 8)] = (8(wn-1, @, E[{w, w') , (wr, wh) ., (wnr,wy,_y) 0,0, 0]), w)

wherea is such thatT},,_y = Succ(w,—1,a), anda’ such thatT! _; = Succ(w!,_,,a’) andd’ such that
§'(wl,_q,a',b') = wl,. We havep' (w,w', 7,7, £, &) <peak - matcheso(w,w 7,7 €,€"), we haveL(wy) =
L(w},) for all £ € N. It follows that given the strategy and 3 the vertex® is not reached. Since strategies
7/ and¢ form awitnessto weak fair alternating simulation, it follows that if tharr p(w, w’, 7,7/,£,¢’) is
fair, theny’ (w, w’, 7,7, £, ¢') is fair, and then by Lemnid 1 it follows that the play giverand 3 satisfies the
parity objective. It follows that against the strategyf player 1, the strategy is winning for player 2. Thus

it follows that we have<¥¢2k C Win,.

“——fairalt=

The desired result follows. |

Lemma 2. For the game graph constructed for fair alternating simidatwe haveV;| + |Va| < O(|W] - |[W'| -
[Auf - [A]);and [E] < O(IW| - W] - [Ax] - (JAY] - [A5] + [Az])).

Proof. We havelSucc(K)| < |W|-|A;| and|Succ(K’)| < [W'| - |A}|. Hence we have
Vi| < [WxW|+[Succ(K) x Suce(K')[+1 < [WIW' [+ (W[Ar)-(W]-| AL)+1 < O(W |- [W'|-| A || A3]);

and
[Va| =2+ [Succ(K) x W[<2 ([W]-|A4]) - W]

Thus we have the result for the vertex size. We now obtaintv@t on edges. We haVE| = |Ey |+ |Ez| + |Es| +
|E}| + |E2| + |E5|, and we obtain bound for them below:

Bl < D0 Y [Piw) < W] (WA

w' eW’ weW
Baf = D D [P < [Succ(K)| - (W[|AY] = [W]- W] |Aa] - 4]
TESucc(K) w' eW’
Bsl =) Y T < [Suce(K)| - [Succ(K")| - |A5] < W+ [W'| - [Ax] - |47 - |45

TeSucc(K) T" €Succ(K')

where for the first inequality above we used the fact tiat < |A});

Bil= > > ITI< W' |Succ(K)| - [Ao] < [W'] - [W]-[As] - Ao

€W’ T€Succ(K)

where for the first inequality above we used t}7at < | As|;

EFI< D> Y LW [Suce(K)| < (W' W] - |Ad;
€W’ T'€Succ(K)

and finally| E5| = 1. Hence we haveZ| = O(|W| - [W’| - |Ay] - (JAL] - |AS] + |Az))). |

Algorithm 1 Basic Algorithm
Input: K = (3, W, @, Ay, A, Py, P», L,6), K' = (2, W', @, A}, Ab, P|, P, L, &).
Output: <aitsim-
0. XM~ W x W' 2 {(w,w') | w e W,w € W L(w) =L (w)};
1. while (=77 £<)
11 =re=
1.2 forall we W,w' € W'
if (w <P w’ and3a € Pi(w) - Va' € Pi(w') -3 € Py(w') - Vb € Po(w) - §(w, a,b) AP™ §(w’,d’,b")), then
=2\ {(w,w')}

2.return <.

The above lemma bounds the size of the game, and it is straighdard to show that the game graph can be
constructed in time quadratic in the size of the game grapfa(t in the following section we will present a more
efficient construction). Propositi@h 1, along with the cdexjty to solve parity games with three priorities gives us
the following theorem. The result for fair simulation folls as a special case and the details are presented in the
technical details appendix.

Theorem 4. We havexe2k ==<:"""€ the relation=<g.o¢ can be computed in tim@(|W |2 - [W'[2 - |4, % - |A]] -

(JA7] - |A4] + |Az2])) for two fair ATSsSK and K'. The fair simulation relation=s,;, can be computed in time
o(w|-|W'|-(|W|-|R'| + |W'| - |R]|)) for two fair TSSK and K.

Remark 1.We consider the complexity of fair simulation, and tet= |WW| = |W’| andm = |R| = |R/|. The
previous algorithm of[[8] requires tim@(n%) and our algorithm requires tim@(n> - m). Sincem is at mostn?,
our algorithm takes in worst case tirGgn°) and in most practical cases we have= O(n) and then our algorithm
requiresO(n*) time as compared to the previous kno@t.%) algorithm.

4 Alternating Simulation

In this section we will present two algorithms to compute thaximum alternating simulation relation for two
ATS K andK’. The first algorithm for the problem was presentedn [2] ardr@fer to the algorithm as the basic
algorithm. The basic algorithm iteratively consideredpaif states and examined if they are already witnessed to
be not in the alternating simulation relation, remove thew eontinues until a fix-point is reached. The algorithm
is described as Algorithid 1 (see Theorem 3[of [2]). The coness of the basic algorithm was shownl[ih [2], and
the time complexity of the algorithm ©(|W |2 - [W'|? - |Ay| - |A}| - |As| - |A5]): (i) time take bylf condition is
O(JA1| - |A]] - | A2 - |AL)); (ii) ime taken by the nestebr loops isO(|W| - |W|); and (iii) the maximum number

of iterations of theWhileloop isO(|W| - |[W”]).

4.1 Improved Algorithm Through Games

In this section we present an improved algorithm for alténgasimulation by reduction to reachability-safety
games.

Game construction. Given two ATS K = (X, W, w, Ay, Ay, Py, Po, L,5) and K’ =
(2, W' ', Ay, AL Py, Py L), we construct a game gragh= ((V, E), (V4, V2)) as follows:

— Player 1 vertices¥;, = (W x W') U (Succ(K) x Succ(K'));
— Player 2 vertices¥s = Succ(K) x W' x {#,$};
— Edges:The edge sek is specified as the following unioz = 4, U E; U B3 U Ey

E; = {({w,w"), (Succ(w,a),w’, #)) | w € W,w' € W', a € Pi(w)}

Ey = {({T,w',#) ,(T,Succ(w’,a"))) | T € Succ(K),w" € W ,a' € P{(w')}
Es ={((T,T") ,(T,r",$)) | T € Succ(K),T" € Succ(K'),r" € T'}
Ey={{T,7",$),(r,7")) | T € Succ(K),r" e W,r € T}

LetT = {{w,w') | L(w) # L'(w’)} be the state pairs that does not match by the labeling fumciiod letF" =
V'\ T. The objective for player 1 is to readh(i.e., Reach(T")) and the objective for player 2 is the safety objective
Safe(F). In the following proposition we establish the connectidéthe winning set for player 2 anfl,jsim-

Proposition 2. LetWiny = {(w,w’) | w € W,w' € W', (w,w’) € Wa(Safe(F)) i.e., is a winning vertex for player}2
Then we hav&Ving ==, tsim-

Proof. We prove the result by proving two inclusions: \Jino C=,jtsim and (i) <aitsim < Wino.

1. (First inclusion: Wina C=,isim). We show thatWin, is an alternating simulation relation. Létv, w’)
be a winning vertex inWiny for player 2. Since the set of winning vertices is disjoinbrir ' =
{{w,w") | L(w) # L'(w")}, we can conclude that(w) = L'(w’). Thus, we only need to show that for all
(w,w’) € Wing we have

Va € Pi(w)-3a’ € P{(w') -V € Py(w') - 3b € Pa(w) - (6(w,a,b),d (w',a’,b")) € Wing

We have the following analysis:
e Since(w,w’) is a player-1 vertex, all transitions of player 1 {®ucc(w, a),w’, #) must be a winning
vertex for player 2 for alb € P;(q).
e Since(Succ(w, a),w’, #) is a player-2 vertex and is a winning vertex for player 2, éexists a transition,
that is, there exists’ € P;(w’), such tha{Succ(w, a), Succ(w’, a’)) is a winning vertex for player 2.
e Since(Succ(w, a), Succ(w’, a’)) is a player-1 vertex and is a winning vertex for player 2, fbiransitions,
thatis, for allt’ € Py(w'), (Succ(w, a), ' (w',a’, '), $) is a winning vertex for player 2.
e Since(Succ(w,a),d’'(¢',a’,b'),$) is a player-2 vertex and is a winning vertex for player 2, ¢hexists a
transition, that is, there existse P,(w) such thatd(w, a,b),d’(w’,a’,b")) is a winning vertex for player
2.
It follows thatWin, is an alternating simulation relation and heNgas C =, sim.

2. (Second inclusion=,isimC Winsg). We need to show thatw, w') is a winning vertex for player 2, for all
(w,w") E=Xansim- Since(w, w’) E=ausim, it follows that L(w) = L'(w'). Hence=,usim is disjoint fromT =
{{w,w") | L(w) # L'(w")}. Thus, it suffices to show that starting frap, w’) the player 2 can force that the
game never reach&s We know that for al(w, w') €<.sim We have

Va € Pi(w)-3a’ € P{(w') -V € Py(w') - 3b € Py(w) - (6(w, a,b),d (w',a’,b")) €E<aitsim

Thus, starting from all vertice8ov, w’) such thafw, w’) €=.isim the player 2 can force that the game reaches
some(r,r’) such that(r, ") €=<.isim, that is, player 2 can force that the game always stays iastat’ =
Vv \ T (asjaltsim NI = @) Hencejaltsimg Win2-

The desired result follows. |

The algorithmic analysis will be completed in two steps:€&limating the size of the game graph; and (2) an-
alyzing the complexity to construct the game graph from thi&#

Lemma 3. For the game graph constructed for alternating simulatime,haveV; | + |Va| < O(JW| - |[W'| - |A1] -
|A1]) and[E| < O(IW] - [W'] - [As] - (JA7] - [A5] + [As])).

Proof. We have
Vi = [W x W'|+[Succ(K) x Succ(K")| < [W|-[W'[+(|W|-|Ax])- (W] -[AL]) = O(|W |- W[- | Aq|- | AT]);

[Va| = 2+ [Succ(K) x W/ <2 ([W]- [Ay]) - [W'[=2 [W]- [W] - | Ay

The bound forV;| + | V| follows. We now consider the bound for the sizefofWe havelE| = |E;| + |F2| +
|E5| 4 | E4|, and we obtain bounds for them below:

Bl =) D Pw) < W] WA

w'eW’ weW

10

Bl = D Y [Piw)| < [Suce(K)| - (W[- [AY] < [W]- (W] - [Ay] - 4]

T ESucc(K) w' eW’

Bsl=) Y T < [Succ(K)| - [Succ(K)]| - |Ay| < (W] - [W'| - |Au] - |47 - | 4]
T'eSucc(K) T’ €Succ(K')

Bal= D D> ITI< W[+ [Succ(K)| - [As| < [W'| - [W] - |AL] - | Ao
€W’ T'e€Succ(K)

where in the bound foFs we usedT’| < |Az| and in the bound fo, we used/T| < |As|. It follows that
|E| =O0(W|-|W'|-|A1| - (JA}] - |A4] + |A2|)), and the desired result follows. |

Game graph construction complexity.We now show that the game graph can be constructed in timarline
the size of the game graph. The data strucutre for the ganpd gsas follows: we map every vertexin U V»

to a unique integer, and construct the list of edges. Givendhta structure for the game graph, the winning
sets for reachability and safety objectives can be compuntédear time [.9]. We now present the details of the
construction of the game graph data structure.

Basic requirementsWe start with some basic facts. For two setsand B, if we have two bijective func-
tions f4 : A < {0,...,]4|—1} andfp : B < {0,...,|B| —1}, then we can assign a unique integer
to elements ofA x B in time O(]A4| - |B]). Since it is easy to construct bijective functions #éf and W',

we need to construct such bijective functions farcc(K) and Succ(K') to ensure that every vertex has a
unique integer. We will present data structure that wouklie® the following: (i) construct bijective function
fx : Succ(K) < {0,...,|Succ(K)| — 1}; (ii) construct functiomx : W x A1 — {0,...,|Succ(K)|— 1} such
that for allw € W anda € P;(w) we havehk ((w,a)) = fx(Succ(w,a)), i.e., it gives the unique number for
the successor set af and action; (iii) construct functiong : {0, 1,...,|Succ(K)| — 1} — 2% such that for

all T € Succ(K') we haveyk (fx (T)) is the list of states if". We will construct the same fdk’, and also ensure
that for allT" we computeyx (fx (7)) in time proportional to the size &f. We first argue how the above functions
are sufficient to construct every edge in constant time:d@es inf; can be constructed by considering state pairs
(w,w’), actionsa € P;(w), and with the functiorhx ((w, a)) we add the required edge, and the result for edges
E5 is similar with the functiom k-; (ii) edges inE5 andE, are generated using the functigr that gives the list

of states fowx (fx (7)) in time proportional to the size @. Hence every edge can be generated in constant time,
given the functions, and it follows that with the above fuoies the game construction is achieved in linear time.
We now present the data structure to support the above éunscti

Binary tree data structureDbserve thabucc(K) is a set such that each element is a successor set (i.e. rétesme
set of states). Without efficient data structure the requénets for the functiongx, h i, andgx cannot be achieved.
The data structure we use idanary tree data structureNe assume that stateslivi are uniquely numbered from
1to [W| Consider a binary tree, such that every leaf has d@pthi.e., the length of the path from root to a leaf is
|W|. Each path from the root to a leaf represents a set — everygpaiists of 41| length sequence déft and
right choices. Consider a pathin the binary tree, and the pattrepresent a subs8t,. of I as follows: if thei-th
step ofr is left, thenw; ¢ W, if the i-th step isright, thenw; € W,.. Thus,Succ(K) is the collection of all sets
represented by paths (from root to leaves) in this tree. We baveral steps and we describe them below.

1. Creation of binary treeThe binary treBT is created as follows. Initially the tré&T is empty. For alkw € W
and alla € P;(w) we generate the séucc((w, a)) as a Boolean arrafr of length|[WW| such thatAr[;] = 1
if w; € Succ(w,a) and 0 otherwise. We use the arrAy to add the seSucc((w,a)) to BT as follows: we
proceed from the root, ikr[0] = 0 we add left edge, else the right edge, and proceedAvith and so on. For
everyw € W anda € Py (w), the arrayAr is generated by going over actionsi(w), and the addition of the
setSucc(w, a) to the tree is achieved i (|W]) time. The initialization of arrayAr also requires timé& (|1 |).
Hence the total time required@(|W| - |Ay| - (|W]+ | Az])). The tree has at mog#/| - | A, | leaves and hence
the size of the tree IO(|W]2 - |A4]).

2. The functionf, gk and hi. Let Lf denote the leaves of the tr&3, and note that every leaf represents an
element ofSucc(K). We do a DFT (depth-first traversal) of the trB& and assign every leaf the number
according to the order of leaves in which it appears in the .lHénce the functiorfx is constructed in time
O(|W|? - |A1]). Moreover, when we construct the functigr, we create an arra@Ar of lists for the function

11

gk . If a leaf is assigned numbérby fx, we go from the leaf to the root and find the §éte Succ(K)
that the leaf represents adr[i] is the list of states if". Hence the construction @fx takes time at most
O(|W| - |A1| - [W]). The functionh is stored as a two-dimensional array of integers with rovaexed
by numbers fromD to |WW| — 1, and columns by numbefsto |A;| — 1. For a statew and actiona, we
generate the Boolean array, and use the arradr to traverseBT, obtain the leaf foBucc((w, a)), and assign
hi((w,a)) = fx(Succ(w, a)). It follows thathk is generated in im@(|W| - |Az| - (JW] + |Az])).

From the above graph construction, Proposifibn 2, Lefdma@ tlae linear time algorithms to solve games with
reachability and safety objectives we have the followirgntefor computing alternating simulation.

Theorem 5. The relation=,sim can be computed in im@(|W |- [W'| - |A1| - (A} |- |AL] + |A2|) + W2 - | AL +
|[W'|2 . |A}|) for two ATSSK and K'. The relation=,sim can be computed in tim@(|W| - |R’| + [W'| - |R]) for
two TSsK and K.

The result for the special case of TSs is obtained by notithag for TSs we have bothV| and|E| at most
|W|-|R'| + |W’'| - |R| (see technical details appendix for details), and our &lyormatches the complexity of the
best known algorithm of]7] for simulation for transitionstgms. Let us denote by= |W| andn’ = |IW’| the size
of the state spaces, andby= |W|-|A4;|-|Az| andm’ = |W’'|-|A]]| - | A}] the size of the transition relations. Then
the basic algorithm requirés(n-n’-m-m') time, whereas our algorithm requires at mosétn-m’ +n-m+n’-m’)
time, and whem = n’ andm = m’, then the basic algorithm requir€X (n - m)?) time and our algorithm takes
O(m?) time.

4.2 lterative Algorithm

In this section we will present an iterative algorithm faleahating simulation. For our algorithm will first present
a new and alternative characterization of alternating Eitan through successor set simulation.

Definition 7 (Successor set simulation)Given two ATSSK = (X, W,w, Ay, A2, P, P>, L,§) and K/ =
(X, W' w', AL AL Py Py L), arelation=C W x W is asuccessor set simulatidrom K to K, if there
exists a companion relatios® C Succ(K’) x Succ(K), such that the following conditions hold:

— forall (w,w’) €= we havel(w) = L'(w');

—if (w,w’) €=, then for all actionsa € P;(w), there exists an action’ € P/(w') such that
(Succ(w’, a’), Succ(w, a)) €=°; and

— if (T",T) ex=%, then for ally’ € T", there exists € T such that(r, ') =.

We denote bg* the maximum successor set simulation.

We now show that successor set simulation and alternatmglation coincide, and then present the iterative
algorithm to compute the maximum successor set simulatian

Lemma 4. The following assertions hold: (1) Every successor set lsitian is an alternating simulation, and
every alternating simulation is a successor set simulati@phWe haver* ==, isim-

Proof. The second assertion is an easy consequence of the firstrahe/eaprove inclusion in both directions to
prove the first assertion.

— (Alternating simulation impiles successor set simulgti@uppose= is an alternating simulation. We need
to prove that< is also a successor set simulation. For this we will consthe witness companion relation
~9C Succ(K') x Succ(K) to satisfy Definitior¥.

We define

== {(Succ(w', a’), Succ(w, a)) (w,w') €X Aa € Pr(w) Na' € Pl(w). }

| Vo' € Pj(w') - 3b € Py(w) - (6(w,a,b),d(w',a', b)) €=

Clearly, if (1", T) ex=*, thenT’ = Succ(w’, a’) andT = Succ(w, a) for some(w, w’) €< anda € P; (w) and
a’ € P/(w") suchthatforalt’ € P;(w') there exist$ € P»(w), such thaté(w, a,b),d’ (w',a’,b")) €=. Since
everyr’ in T is such that’ = ¢'(w', o', b") for someb’ € P;(w’), we have that for every € T”, there exists
b € Po(w), such thaté(w, a,b),r’) €=<. Hence for every’ € T”, there exists € T such tha(r, ') €<. The
other requirements of Definitidd 7 are trivially satisfiedert¢e< is also a successor set simulation.

12

— (Successor set simulation implies alternating simulgtiSupposex is a successor set simulation. Hence there
exists a companion relaticls® C Succ(K’) x Succ(K) satisfying the requirements of Definitifh 7. We need
to prove that is also an alternating simulation. From Definitidn 7, for @ll, w’) €=, for all a € P;(w),
there existsy’ € P{(w’) such that(Succ(w’, a’), Succ(w, a)) €=°. Now, for anyb’ € Pj(w'), there exists
" € Succ(w’,a’), such that’ = §'(w’, a’,V'). Since,(Succ(w’, a’), Succ(w, a)) €=, andr’ € Succ(w’, a’),
there exists & € Succ(w, a) and hence there exisiss P> (w) satisfyingr = §(w, a, b), such tha(r, ") €=,
which is same a&(w, a,b), §' (v, a’,b’)) €x. Hencex is also an alternating simulation.

This completes the proof.]

We will now present our iterative algorithm to compat&, and we will denote bye® the witness companion
relation of~*. Our algorithm will use the following graph constructionivén an ATSK, we will construct the
graphGx = (Vk, Ek) as follows: (1)Vx = W U Succ(K), whereW is the set of states; and (Bx =
{(w,Succ(w,a)) |we W Aa € P (w)} U{(T,r) | T € Succ(K) Ar € T}. The graphGx can be constructed
in time O(JW|? - |A;|) using the binary tree data structure described earlier.a@arithm will use the standard
notation ofPre andPost: given a graplG = (V, E), for a setl of statesPost(U) = {v | Ju € U, (u,v) € E}is
the set of successor stateslofand similarly,Pre(U) = {v | Ju € U, (v,u) € E} is the set of predecessor states.
If U = {q} is singleton, we will writePost(q) instead ofPost({¢}). Note that in the grapti'y for the statel’ ¢
Succ(K') we havePost(T') = {q| ¢ € T} = T. Given ATSsK and K’ our algorithm will work simultaneously
on the graph&x andG - using three data structures, namaly, count andremove for the relation=* (resp.
sim®, count® andremove® for the companion relatioge®). The data structures are as follows: (1) Intuitiveity
will be an overapproximation ak*, and will be maintained as a two-dimensional Boolean arocathat whenever
thei, j-th entry is false, then we have a witness that tth statew’; of K’ does not simulate theth statew; of

K (similary we havesim® overSucc(K) andSucc(K’) for the relatione=®). (2) The data structureount is two-
dimensional array, such that for a statec W’ and7’ € Succ(K) we havecount(w’, T') is the number of elements
in the intersection of the successor states/ofind the set of all states th&tsimulates according tém®; and we
also have similar arragount® for 7', w’ elements. (3) Finally, the data structueenove is a list of sets, where for
everyw’ € W' we haveremove(w’) is a set where every element of the set belongsite(K'). Similarly for every
T € Succ(K) we haveremove®(T) is a set of states. Intuitively the interpretation of remadega structure will
be as follows: ifT" € Succ(K') belongs toremove(w’), then no element of T' is simulated byw’. Our algorithm
will always maintairsim (resp.sim®) as overapproximation at* (resp.~5), and will iteratively prune them. Our
algorithm is iterative and we denote pyevsim (resp.prevsim®) thesim (resp.sim”) of the previous iteration. To
give an intuitive idea of the invariants maintained by thgoaithm (Algorithm{2) let us denote kyym(w) the set of
w’ such thasim(w, w’) is true, and let us denote lywsim(w’) the inverse ofim(w’), i.e., the set of states such
that (w, w’)-th element okim is true (similar notation fomvprevsim(w'), invsim®(7') andinvprevsim®(T')). The
algorithm will ensure the following invariants at differtesteps:

1. Forw € W,w' € W’ andT &€ Succ(K),T’ € Succ(K'),
(@) ifsim(w,w’) is false, ther{w, w’) ¢=*;
(b) similarly, if sim® (77, T) is false, theT", T') ¢=5.
2. Forw’ € W’ andT &€ Succ(K),
(@) count(w’, T) = |Post(w’) N invsim®(T')|; and
(b) count(7T',w") = |Post(T") Ninvsim(w’)| = |T N invsim(w")
3. Forw’ € W’ andT € Succ(K),
(a) remove(w’) = Pre(invprevsim(w’)) \ Pre(invsim(w’))
(b) remove(T") = Pre(invprevsim®(T")) \ Pre(invsim®(T')).

The algorithm has two phases: the initialization phase revttee data structures are initialized; and then a while
loop. The while loop consists of two parts: one is pruningiof and the other is the pruning siim® and both the
pruning steps are similar. The initialization phase ifits the data structure and described in Steps 1, 2, and 3
of Algorithm[2. Then the algorithm calls the two pruning stép a while loop. The condition of the while loop
checks whetheprevsim andsim are the same, and it is done in constant time by simply chgakhretherremove
is empty. We now describe one of the pruning procedures andttier is similar. The pruning step is similar to
the pruning step of the algorithm dfl[7] for simulation onrsition systems. We describe the pruning procedure

13

Algorithm 2 Iterative Algorithm
Input: K = (X, W, @, A, Ag, Py, P, L,8), K' = (X, W', @', A}, A, P, P3, L', 8).
Output: =*.
1. Initialize sim and sim*:
1.1.forall we W,w € W’
prevsim(w, w') « true;
if L(w)= L'(w"), thensim(w,w") « true;
else sim(w, w') « false;

1.2.forall T € Succ(K) andT” € Succ(K")
prevsim® (1", T) = sim®(T", T) « true;

2. Initialize count and count®:
2.1.forall w" € W’ andT € Succ(K)

count(w’, T) « |Post(w’) N invsim®(T")| = |Post(w’)];
count® (T, w’) « |Post(T") N invsim(w’)|;

3. Initialize remove and remove”:
3.1.forall w' e W’

remove(w’) « Succ(K) \ Pre(invsim(w’));
3.2.forall T € Succ(K)
remove® (T) — 0;

Pruning while loop:

4. while prevsim # sim
4.1 prevsim «— sim;
4.2 prevsim® «— sim
4.3 Procedure PRUNESIM STRSUCC;
4.4Procedure PRUNESIM STR;

5.return {(w,w’) € W x W' | sim(w,w") is true};

S.
)

PRUNESIM STRSUCC. For every statev’ € W’ such that the setemove(w’) is non-empty, we run a for loop.
In the for loop we first obtain the predecess®fsof w’ in G (each predecessor belongsSiocc(K”)) and an
element” from remove(w’). If sim® (7", T') is true, then we do the following steps: (i) We set® (17, T) to false,
because we know that there does not exist any elemenfl” such thaty’ simulatesw. (ii) Then for all s’ that are
predecessors af’ in G- we decrementount(s’, T'), and if the count is zero, then we agdo the remove set of
T. Finally we set the remove set of to (). The description of RUNESIM STR to prunesim is similar.

Correctness.Our correctness proof will be in two steps. First we will shihat invariant 1 (both abousim and
sim®) and invariant 2 (both aboubunt andcount®) are true at the beginning of step 4.1. The invariant 3.(a) (0
remove) is true after the procedure calRBNESIM STR (step 4.4) and invariant 3.(b) (eamove®) is true after the
procedure call RUNESIM STRSuUCC (step 4.3). We will then argue that these invariants ensoinectness of the
algorithm.

Maintaining invariants.We first consider invaraint 1, and focus on invariant 1.(I3) tffze other case is symmet-
ric). In procedure RUNESIM STRSUCC when we sesim® (7", T)) to false, we need to show théf”’, T) ¢~5.
The argument is as follows: when we s&n® (7", T) to false, we know that sinc& € remove(w’) we have
count”(T,w') = 0 (i.e.,Post(T") N invsim(w’) = (). This implies that for everyy € T we have thatv’ does not
simulatew. Also note that sinceount® is never incremented, if it reaches zero, it remains zerds fitoves the
correctness of invariant 1.(b) (and similar argument hfddsmvariant 1.(a)). The correctness for invariant 2. a
2.(b) s as follows: whenever we decrememint(s’, T') we have setim® (7", T') to false, and™ was earlier both in
Post(s") as well as irinvsim® (T"), and is now removed froimvsim® (T"). Hence from the sdost(s') Ninvsim® (T)
we remove the elemeft’ and its cardinality decreases by 1. This establishes doess of invariant 2.(a) (and
invariant 2.(b) is similar). Finally we consider invarigdi{a): when we add’ to remove® (T'), then we know that
count(s’, T') was decremented to zero, which med@idelongs tanvprevsim®(T'), but not toinvsim® (7"). Thuss’
belongs taPre(invprevsim® (T')) (sinces’ belongs taPre(77)), and but not tdPre(invsim® (T')). This shows that’
belongs taemove® (T'), and establishes correctness of the desired invariantrfagt for invariant 3.(b) is similar).

14

Algorithm 3 Procedure PruneSimStrSucc

1.forall w' € W' such thatemove(w’) # ()
1.1.forall T" € Pre(w’) andT € remove(w’)
1.1.1if (sim® (7", 7))
sim®(T",T) « false;
1.1.1.Aforall (s’ € Pre(T"))
count(s’,T) « count(s’, T) — 1;
if (count(s’,T) =0)
remove® (T') — remove’® (T') U {s'};

1.2.remove(w’) « 0;

Algorithm 4 Procedure PruneSimStr

1.forall T € Succ(K) such thatemove® (T) #
1.1.forall w € Pre(T) andw’ € remove® (T)
1.1.1if (sim(w,w"))
sim(w, w’) « false;
1.1.1.Aforall (D € Pre(w))
count® (D, w') «— count®(D,w’) — 1;
if (count®(D,w’) =0)
remove(w’) < remove(w') U {D};
1.2.remove” (T') « 0;

Invariants to correctnessThe initialization part ensures thsim is an overapproximation a£* and it follows
from invariant 1 that the output is an overapproximatiorest Similarly we also have thatm® in the end is

an overapproximation of®. To complete the correctness proof, $eh andsim® be the result when the while
loop iterations end. We will now show thsim andsim® are witness to satisfy successor set simulation. We know
that when the algorithm terminategmove(w’) = () for everyw’ € W', andremove®(T) = () for everyT <
Succ(K) (this follows sincesim = prevsim). To show thatsim andsim® are witness to satisfy successor set
simulation, we need to show the following two propertie}:Ifisim(w, w’) is true, then for every, € P (w),
there exists’ € P} (w') such thasim® (Succ(w’, a’), Succ(w, a)) is true. (ii) If sim® (7", T') is true, then for every

s’ € T’, there existss € T such thatsim(s, s’) is true. The property (i) holds because for everg P;(w),

we have thatount(w’,T") > 0, whereT = Succ(w,a), (because otherwisey’ would have been inserted in
remove(T'), but sinceremove(T) is empty, consequentlim(w, w’) must have been made false). Hence we have
that Post(w’) N invsim®(T') is non-empty and hence there exigts € Post(w’) such thatsim® (7", T) is true.
Similar argument works for (ii). Thus we have establishead ¢hm is both an overapproximation ef* and also a
witness successor set relation. Siaceis the maximum successor set relation, it follows that Aldpon[correctly
Compu':e@*:jaltsim (g*:jaltsim by Lemmﬂ)

Space complexitye now argue that the space complexity of the iterative @lgyoris superior as compared to
the game based algorithm. We first show that the space takétgoyithm2 isO(|W|* - |Ay| + [W'|2 - | A} | +

|[W| - |W'| - |A1| - |A]]). For the iterative algorithm, the space requirements 8reinf andsim” require at most
O(|W| - |W'|) andO(|W| - [W'| - |Ay| - |A}|) space, respectively, respectively; @unt andcount® require at
mostO(|W| - [W'| - |A1]) space each; (iiifemove andremove® maintained as an array of sets require at most
O(|W| - [W'| - |A1|), space each. Also, for the construction of graghs and Gk using the binary tree data
structure as described earlier, the space required is at@(@8’|* - |A;|) andO(|W’|? - |A}]), respectively. As
compared to the space requirement of the iterative algorithe game based algorithm requires to store the entire
game graph and requires at lea&f{\WW| - [W'| - |A1| - |A]] - |A,]) space (to store edges if;) as well space
O(|W|?-| A1 |+ |[W'|?-|A}]) for the binary tree data structure. The iterative algoritan be viewed as an efficient
simultaneous pruning algorithm that does not explicitipstouct the game graph (and thus save at least factor of
| AL | in terms of space). We now show that the iterative algoritlan@with being space efficient matches the time
complexity of the game based algorithm.

15

Time complexityThe data structures faim (alsosim®) andcount (alsocount®) are as described earlier. We store
remove andremove® as a list of lists (i.e., it is a list of sets, and sets are st@lists). It is easy to verify that all
the non-loop operations take unit cost, and thus for the tiomeplexity, we need to estimate the number of times
the different loops could run. Also the analysis of the aliiation steps are straight forward, and we present the
analysis of the loops below: (1) Thehile loop (Step 4) of Algorithnil2 can run for at mgst’| - |W’| iterations
because in every iteration (except the last iteration)asdtlene entry o§im changes from true to false (otherwise
the iteration stops), ardim has|W| - |W’|-entries. (2) Théorall loop (Step 1) in Algorithnll3 can overall run for at
most|W’| - |W] - |A,| iterations. This is because elementsefiove(w’) are fromSucc(K) and element§” from
Succ(K) are included inremove(w’) at most once (wheoount® (T, w') is set to zero, and oneunt® (T, w') is

set to zero, it remains zero). Thusnove(w’) can be non-empty at moSucc(K)| times, and hence the loop runs
atmostiW|-|A;| times for states’ € W’. (3) Theforall loop (Step 1.1) in Algorithrll3 can overall run for at most
|[W'|-1A%|-|AL)-|W -] Ay | iterations. The reasoning is as follows: for every efew’) € Gx+ andT' € Succ(K)

the loop runs at most once (since ev@rys included inremove(w’) at most once). Hence the number of times the
loop runs is at most the number of edge&in. (at mostW’|-| A} |-| A5 |) times the number of elements3acc(K)
(atmosiW|-| A1). Thus overall the number of iterations of Step 1.1 of Algamild is at mosfW’|-| A} |- [W|-| A1].

(4) Theforall loop (Step 1.1.1.A) in Algorithrfl3 can overall run for at mggt’| - | A} | - | 44| - W] - |A4] iterations
because every edde’, 7") in G- would be iterated at most once for evéfyc Succ(K) (as for everyl', T’ we
SetsimS(T, T’) false at most once, and the loop gets executed when suchyai®sét to false). The analysis of
the following items (5), (6), and (7), are similar to (2), (and (4), respectively. (5) Thierall loop (Step 1) in
Algorithm[can overall run for at mostV’| - | A; | - [W’| iterations, becausemove®(T") can be non-empty at most
|W'| times (i.e., and the number of differefitis at mosiSucc(K)| = |W| - |A1|). (6) Theforall loop (Step 1.1) in
Algorithm can overall run for at mo$tV| - |A1| - |Az| - |W'] iterations because every edge, T') in Gk can be
iterated over at most once for every (the number of edges i is |WW| - |A1| - |A2| and number ofv’ is at most
[W’)). (7) Theforall loop (Step 1.1.1.A) in Algorithrl4 can overall run for at mgst| - |A; |- |As| - |W| iterations
because every eddev, D) in G would be iterated over at most once for every € W’. Adding the above
terms, we get that the total time complexityQg|W | - [W'| - [A1| - (|A1] - |A5] + |Az])), i.e., the time complexity
matches the time complexity of the game reduction baseditiign We also tabulate our analysis in Table 1. We
also remark that for transition systems (TSs), the proee&88UNESIM STRSUCC coincides with RUNESIM STR
and our algorithm simplifies to the algorithm 6f [7], and thmatches the complexity of computing simulation for
TSs.

Theorem 6. Algorithm[2 correctly computes,sim in time O (|W| - [W'| - |Ay] - (|AL| - |45 + |As]) + [W* -
Al + W72 - A7),

References

=

R. Alur, T.A. Henzinger, and O. Kupferman. Alternating¢ temporal logicJournal of the ACM49:672—713, 2002.
R. Alur, T.A. Henzinger, O. Kupferman, and M.Y. Vardi. Athating refinement relations. ®ONCUR’98 LNCS 1466,
pages 163-178. Springer, 1998.
3. C. Beeri. On the membership problem for functional andtivalled dependencies in relational databag€iM Trans. on
Database Systems:241-259, 1980.
4. E.M. Clarke, O. Grumberg, and D. Pelédodel CheckingMIT Press, 1999.
5. E.A. Emerson and C. Jutla. Tree automata, mu-calculusleteiminacy. IFFOCS’'9], pages 368-377. IEEE, 1991.
6. J. Y. Halpern and R. Fagin. Modeling knowledge and actiodistributed systemsDistributed Computing3:159-179,
1989.
7. M.R. Henzinger, T.A. Henzinger, and P.W. Kopke. Compusimulations on finite and infinite graphs. Pnoceedings of
the 36rd Annual Symposium on Foundations of Computer Sgipages 453-462. IEEE Computer Society Press, 1995.
8. T.A. Henzinger, O. Kupferman, and S. Rajamani. Fair satioih. Information and Computatiqri73:64—81, 2002.
9. N. Immerman. Number of quantifiers is better than numbeiapé cells. Journal of Computer and System Sciences
22:384-406, 1981.
10. M. Jurdzinski. Small progress measures for solvingtypgames. I'STACS’00Qpages 290-301. LNCS 1770, Springer,
2000.
11. R. Milner. An algebraic definition of simulation betwegtograms. IrSecond International Joint Conference on Artificial
Intelligence pages 481-489. The British Computer Society, 1971.

n

16

| Step

Complexity

Justification |

while loop (Step 4 of AlgorithniP)

o(wl-w')

all (except the last) iteration changes at least on
the |[W| - |[W'|-entries ofsim from true to false

forall loop (Step 1 of Algorithni3)

O(W'[- [W]-]Ai])

remove(w”) can be non-empty only
|Suce(K)| times, for eachv’ € W’

e of

forall loop (Step 1.1 of Algorithriil3)

O(|Succ(K)[- [W']- [Af] - JA%))

every edge G can be iterated at most once
for eachT” in Succ(K'), and number of edges
in Ger is W] - |Af| - |45

forall loop (Step 1.1.1.A of Algorithral3

O(|Succ(K)[- [W'] - [A7] - [A5])

every edge i can be iterated at most once
for eachT” in Succ(K'), and number of edges
in Gy is |W'| - |AL] - |AS]

forall loop (Step 1 of Algorithni4)

O(W'[- [W]-[Ai])

remove” (T') can be non-empty only
|W'| times, for eacl” € Succ(K)

forall loop (Step 1.1 of Algorithri4)

O(W']- [WT-[Ax] - |Az])

every edge irG ¢ can be iterated at most once|
for eachw’ in W', and number of edges
inGg is|W|-|A1] - |Az|

forall loop (Step 1.1.1.A of Algorithril4|

O(W'[- W]+ A - |Az])

every edge irGx can be iterated at most once
for eachw’ in W', and number of edges

in G is [W] - | Ay - |As|

Table 1.Loop-wise complexity

12. L.S. Shapley. Stochastic gam&soc. Nat. Acad. Sci. USA89:1095-1100, 1953.
13. A. Silberschatz, P.B. Galvin, and G. Gag@perating System Concepts (Seventh Editidojin Wiley and Sons, 2004.

17

Techincal Details Appendix

5 Fair Alternating Simulation

We now present the reduction to parity games with three itigsrfor the special case of fair simulation. Given the
fair TSsK = (K, F') andK’ = (K', F'), we construct the game graph= ((V, E), (V1, V2)) is as follows:

— Player 1 vertices¥; = {{w,w') |w € W,w' € W', L(w) = L'(v')} U {®}.
— Player 2 vertices¥, = (W x W' x {$})
— Edges:The edge sek is as follows:

E = {((w1,w2) , (wy,w2,$)) | (w1, w2) € Vi, (w1, w}) € R}
U{(<w/1’w25$>) <w/1’wl2>) | <w/17w2’$> € Va, (w2’wl2) € R/a <wllawl2> € Vl}
U{((w],w2,8),®) | (wy,wa,$) € Va,Vwh if (wa,wh) € R, then (w,wh) & V1 }
u{(®,e)}

The three-priority parity objectivé™* for player 2 with the priority functiom is specified as follows: for vertices
v e (W x F')ynV; we havep(v) = 0; for verticesv € (F x W\ W x F')NV;) U {®} we havep(v) = 1;
and all other vertices have priority 2. Also without loss ehgrality we assume that for evarye W there exists
a fair run fromw. The specialization of Propositifth 1 gives us the followimgposition.

Proposition 3. LetWiny = {(w1,w2) | (w1, ws) € V1, (w1, we) € Wa(P*),i.€., is a winning state for player}2
Then we hav&Ving ==¢;,.

Lemma 5. For the game graph constructed for fair simulation we hég + |Va| < O(|]W| - [W']); and |E| <
O(W1-|R[+ [W’[- |R]).

Proof. We havelVy| < |Va|+ 1= |W|-|[W’/|+1=O(|W]-|W’|). We have

Bl <142:WW 4+ >0 Y deg(w)+ Y Y deg(w) < 142:[W[-[W'|+|[W'|-|R|+|W|-|R/,

w'eWw’ weW weW weW’
L(w)=L"(w")

wheredeg(w) (resp.deg(w’)) denotes the number of outedges (or out-degree) @esp.w’). The result follows.
[|

The reduction and the results to solve parity games wittetpreorities establish thaty,;, can be computed in

timeO(|W| - |[W'| - (IW]-|R'| +|W'| - |R]|)). This completes the last item of TheorEm 4.

6 Alternating Simulation

6.1 Improved Algorithm Through Games

In this section we consider the specialization of the aing simulation algorithm for TS. Since we have already
established in Sectidn4.1 that the game graph constructiomplexity is linear in the size of the game graph, we
only need to estimate the size of the vertex set and the edfer ¢5.

Lemma 6. For the game graph constructed for alternating simulation¥S, we havél; | +|Va| < O(|W|-|W'|-
|Au] - [AL]) and |E[< O(IW] - [W'] - (JAr| + | A2)))-

Proof. Note that the size of the vertex set is bounded by the samdityuas for the general case for ATS, and thus

the vertex size bound is trivial. We now consider the casediges. First observe that sirjek,| = 1, it follows that
Succ(K) < |W|as evenbucc((w, a)) is singleton (i.e., a state), and herseec(K') has at mostiV| elements and

18

each element is a singleton state. Similarly we Hawe(K') < |W’'|. We have E| = |E1| + |Ez| + | E3| + |E4l,
and we obtain bounds for them below:

Eil= > Y [Piw)| < W] [W]- | A

w' eW' weW

Bof = D Y |Pw)] < [Suce(K)| - (W[- A} < [W]- (W] |4

TeSuce(K) w eW’

Bsl=) Y 1T < [Succ(K)| - [Succ(K)| < [W] - [W]

TeSucc(K) T'€Succ(K')

Bl =Y > [TI< W [Succ(K)| < (W[- [W]

€W’ T'€Succ(K)

where in the bound foEs we usedT”| < |Az| = 1 and in the bound foF, we usedT| < |As| = 1. It follows
that|E| < O(|W| - |W’'| - (JA1]| + |A%])). and the desired result follows. |

Since|R| = |W|- |Ai| and|R'| = |[W’| - | A} |, we obtain the last result of Theoréin 5.

19

