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Abstract

In this thesis we will discuss systems of point interacting fermions, their stability and other
spectral properties. Whereas for bosons a point interacting system is always unstable this ques-
tion is more subtle for a gas of two species of fermions. In particular the answer depends on
the mass ratio between these two species.

Most of this work will be focused on the N + M model which consists of two species
of fermions with N, M particles respectively which interact via point interactions. We will
introduce this model using a formal limit and discuss the N + 1 system in more detail. In
particular, we will show that for mass ratios above a critical one, which does not depend on the
particle number, the N + 1 system is stable. In the context of this model we will prove rigorous
versions of Tan relations which relate various quantities of the point-interacting model.

By restricting the N + 1 system to a box we define a finite density model with point in-
teractions. In the context of this system we will discuss the energy change when introducing
a point-interacting impurity into a system of non-interacting fermions. We will see that this
change in energy is bounded independently of the particle number and in particular the bound
only depends on the density and the scattering length.

As another special case of the N + M model we will show stability of the 2 + 2 model for
mass ratios in an interval around one.

Further we will investigate a different model of point interactions which was discussed
before in the literature and which is, contrary to the N + M model, not given by a limiting
procedure but is based on a Dirichlet form. We will show that this system behaves trivially
in the thermodynamic limit, i.e. the free energy per particle is the same as the one of the
non-interacting system.
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CHAPTER 1

Introduction

1.1 Motivation

Point interactions are a common choice to model systems where one or many length scales
vanish or diverge. An example are short range forces where the underlying physics is largely
independent of the detailed structure of the potential. The history of point interactions reaches
back to the 1930ties and sometimes they are also called zero-range or on-site interactions.
Originally they were introduced to model nuclear interactions [5,6,19,68,72], but they are also
used for polarons (see [40] and references there) or cold atomic gases [74].

In recent years the application for cold atomic gases is of particular interest as it is now
possible to explore strongly point-interacting fermionic systems in laboratories. For this reason
we will briefly discuss why a point interacting model is a good choice for certain experimental
setups in section 1.1.1. We note though that the results proven in later chapters are independent
on any specific setup.

In this work we will only consider three-dimensional systems but there are also interesting
results for the two-dimensional case [15, 16, 28, 35]. These two-dimensional systems behave
very differently and in section 1.2.2 we will discuss the fundamental reasons for this. There we
will also see why there are no point interactions in higher dimensions.

A popular model of point interactions, which we will denote in the following by the N + M
model and which we introduce in detail in section 1.2.3, consists of N fermions of one kind
with mass one, M fermions of another species with mass m and point interactions between the
species. We emphasize that setting the mass of one of the species to one is no restriction as an
overall factor in the Hamiltonian is unimportant for our analysis. In particular, we are interested
in specific values for N,M, i.e. the 1 + 1, the N + 1 and the 2 + 2 model. We note that because
of antisymmetry there are no point interactions between fermions of the same species. As the
species are allowed to have different masses, the N + M and M + N model describe in general
different systems, but they can be connected as the N + M model with mass m is equivalent to
the M + N problem with mass m−1 up to an overall factor in the Hamiltonian.

The first of these systems which was rigorously understood was the 1 + 1 model which
consists of two point interacting particles. For a good overview about this system see [1] and
references therein. We will use the 1 + 1 model in section 1.2.1 as a toy model to introduce the
relevant notations and concepts.
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A priori it is not clear what is even meant by point interactions as a δ(x − y) interaction po-
tential is ill-defined in dimensions larger than one. A common way to define point interactions
is by realizing that any point-interacting Hamiltonian would act on a state in which interacting
particles are separated in the same way as the corresponding non-interacting Hamiltonian. We
define the hyperplanes of interaction as the set in configuration space where two interacting
particles are on top of each other. Using above fact we define a point-interacting Hamiltonian
to be a self adjoint extension of a non-interacting Hamiltonian restricted to functions with sup-
port away from these hyperplanes. We note that this definition is very general as it also allows
for non-local point interactions. These are non-local in the sense that the strength of the point
interaction between two particles depends on the position of all the other particles and these
interactions are therefore unphysical. In case of the 1 + 1 system it is possible to classify all
self-adjoint extensions which we will do in section 1.2.1.

Beyond the 1 + 1 model it is highly non-trivial to explicitly define a physically realistic
point interacting model. A common way to introduce it is to regularize in momentum space
and then renormalize the interaction strength while taking a formal limit [20]. We will follow
this approach in section 1.2.3 to introduce the general N + M model. In two dimensions this
formal limit was made rigorous in [15, 16, 35].

From a physical point of view it would be desirable to show that the N + M model is a
limit of Hamiltonians interacting with potentials with shrinking support and which are close
to a two-body zero-energy resonance. This is true for the two particle case [1] and for three
particles in one dimension [3] but has not been established for any other case. In section 1.2.1,
we will discuss this limit in more detail. We also note that for sufficiently enough interaction
potential this convergence is true in the norm resolvent sense. Contrary to this the rigorous
constructions using momentum cutoffs carried out in [16, 28, 35] only show strong resolvent
convergence.

The study of the three-body point interacting system is relatively old and dates back to
Thomas [68] who investigated point interacting bosons. Later there was more work done by
G.V. Skorniakov and K. A. Ter-Martirosian [65] who gave their name to the STM-Extension
(sometimes also TMS-Extension). These are the point-interacting self-adjoint extensions of the
non-interacting Hamiltonian restricted away from the hyperplanes of interactions which behave
physically, avoiding non-local point interactions. We will discuss this issue in more detail in
section 1.2.1. A first rigorous analysis of the three particle problem was given by Minlos and
Faddeev [49].

It turns out that a model of three point interacting bosons is unstable, i.e. the spectrum of the
associated Hamiltonian is not bounded from below. This is even true if one considers a system
of two different species of bosons with point-interactions only between the species [11, 13].
Because of this unbounded spectrum it is not clear whether an associated self adjoint operator
exists at all.

Contrary to this, the three-body problem of two species of fermions with point interactions
between different species is well posed under suitable conditions [11–13, 44–48, 59]. An im-
portant parameter is the mass ratio between the mass of the single particle and the mass of the
other two, which is critical to the question of stability. By setting the mass of one of the species
to one, the mass of the second species is equivalent to the mass ratio. In the following we will
therefore denote the mass ratio simply by the mass.

It was shown in [11] that there exists a critical mass m∗ = 0.0735 such that for all masses
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m ≥ m∗ the energy is bounded from below. This bound is sharp and for m < m∗ it was
shown in [59] that the system is indeed unstable. The reason that one can calculate such sharp
analytic bounds is that the question of stability can be reduced to a one body problem as point
interactions effectively only happen when two particles sit on top of each other.

Being effectively a one body problem the 2 + 1 model allows studying more detailed ques-
tions about the spectrum going beyond a lower bound [4]. Another question one can ask is if it
possible to define physically interesting point-interacting systems beside the one we will intro-
duce in section 1.2.3. It was shown in [12] that there is a critical mass m∗∗ = 0.116 such that
for the unitary system, i.e. for infinite scattering length, with masses m∗ ≤ m ≤ m∗∗ there are
additional self adjoint extensions possible which correspond to three body interactions. Also
in [47,48] it was shown that there are other extensions possible but their interpretation is not as
clear.

In [11] it was also shown that there is a critical mass m∗(N) for the N + 1 problem, i.e.
N non-interacting fermions and a point interacting impurity, such that the system is stable if
m > m∗(N). This critical mass behaves by far not optimal and in particular m∗(N) ∼ N. We
emphasize that one would expect that m∗(N) ≤ 1 uniformly in N. Only then there exists a mass
range independent on N such that the N + 1 and the 1 + N problem is stable. We recall that
the 1 + N system is, up to an overall factor, equivalent to the N + 1 system with inverted mass.
The reason that we expect this is that we suspect that the N + M model, i.e. two species of
fermions with interactions between them, is stable for certain masses, which is suggested by
experiments (see [75] and references therein). By separating particles it is clear that this can
only be the case if the N + 1 and the 1 + M system is stable for a given mass and arbitrary N
and M.

We were able to show stability for the N + 1 system for masses above an N independent
critical mass m̃1 = 0.36 [50] which we will present in Chapter 2. This result tells us that there
are no N +1 particle states with negative energy for the unitary gas. The existence of states with
negative energy for the unitary gas is, due to scale invariance, which we will define properly in
section 1.1.2, directly linked to instability.

Besides studying the N + 1 model one can also investigate few body problems in more
detail. In particular the 2 + 2 model is of interest as it is not clear whether a four body collapse
can happen for masses where the 2 + 1 and the 1 + 2 system is stable. Numerically this problem
was discussed in [42] where the authors concluded that the system is indeed stable for a mass
equal to one. Further, in [18] it was claimed that the critical mass of stability should be equal to
the one of the 2 + 1 system. In [53] we were able to prove that there is a critical mass m̃2 = 0.58
such that the system is stable for m ∈ [m̃2, m̃−1

2 ]. In Chapter 4, we present this proof.

The results for the N + 1 and the 2 + 2 model suggest that the N + M model might be stable
for certain mass regions. Still, it could be that a energy collapse happens for states with higher
number of particle in both species and causes the spectrum to be unbounded. We will introduce
in 1.2.3 the general N + M problem and point out the difficulties in showing stability.

Another question we investigated in [52] and which we will discuss in Chapter 3 is to
investigate the energy contribution of introducing an impurity into the system. For this it is
not suitable to work with a zero-density model, i.e. a fixed number of particles on R3, as
we will see that the particles will separate in an approximate ground state even though the
interaction is attractive. Instead, we will restrict to wavefunctions which have support in a fixed
box and obtain a system with a fixed mean density. Because of this restriction, the energy will
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be to leading order the non-interacting kinetic energy. We will prove that the corrections for
introducing an impurity can be bounded uniformly in N in terms of the mean density and the
scattering length. As this bound depends only on local quantities, we view the impurity as a
local perturbation.

In 2008 Tan discussed in a series of papers [62–64] a collection of relations, named Tan
relations, connecting basic quantities of a point-interacting model. These Tan relations are of
high interest also for the experimental implementation as they allow getting crucial information
about the point-interacting part of the wavefunction out of its abnormally large momentum tail.
In Chapter 2, we will put these relations for the N + 1 system on a solid mathematical basis.

The N + M model is a specific system of point interactions and in general one can raise the
question if there are other interesting models describing a point-interacting gas. In [25] a model
based on a Dirichlet form was investigated and a Lieb-Thirring type inequality was proved. This
system models point interactions and is well-defined for any number of particles but it contains
many-body point interactions, i.e. the strength of the point interactions between two particles
depends on the position of all the others. In [51] we showed that the model becomes trivial in
the thermodynamic limit for fixed temperature, in the sense that the free energy per particle is
the one of non-interacting particles in the thermodynamic limit. We will present this proof in
Chapter 5.

1.1.1 Cold atomic gases

As mentioned above an experimentally accessible way of investigating point interactions is by
using cold gases. We consider a gas of atoms in a three-dimensional box with mean density ρ.
In the following we will discuss the appearing length scales and argue why a point interacting
model can be a suitable description and what the advantages of this system are. For a more
thorough introduction see [8, 75].

We start by defining relevant length scales appearing in this trapped gas. The first one is
the mean particle distance which is comparable to ρ−1/3 as long as there are no bound states.
Further the thermal wavelength λT measures how much each particle wavefunction is spread
out. The interaction range of the atomic potentials we denote by r0 and the S-wave scattering
length by a. See [33] for a rigorous definition of the scattering length and [8] for a different
approach. At low energies the interaction range r0 is, in most setups, basically the van der
Waals length [75].

The interaction for a two-body system is determined by the scattering length for low ener-
gies, i.e. low temperatures and therefore large λT in comparison with r0. In a many particle
system this also holds under the condition that ρ−1/3 � r0 which ensures that scattering is dom-
inated by two particle collisions. In this case the particles are effectively separated such that
only two-body collisions can occur. Hence, we want to ensure the relation [75]

r0 � ρ−1/3 . λT . (1.1.1)

We cannot expect to choose these scales freely within a real life experiment, and we discuss
next which ones are accessible in an experiment. The density can be chosen freely within
certain limits and particularly it is easy to create low densities. By adjusting the temperature
we can control λT . Here it becomes clear why we need cold atomic gases as λT grows with
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decreasing temperature. The range of the interaction r0 is hard to change, and we have to
consider it to be fixed. Crucial to fulfill (1.1.1) is to choose ρ and the temperature small.

One of the reasons why cold gases are an ideal way of investigating point interactions
experimentally is that it is also possible to tune the scattering length to arbitrary values, even
infinity, using Feshbach resonances [8]. These resonances happen if the energy of bound states
in a closed scattering channel is close to the energy of an open channel. Usually the energy of
the bound state is tuned magnetically but in cases where this is not possible there exists also an
optical version.

The ability of tuning the scattering length allows one to investigate the gas with infinite
scattering length which is called the unitary limit (sometimes we say unitary system for a
system in the unitary limit). This is a special case and in particular interesting as it develops
additional symmetries.

A crucial ingredient for the above arguments was that the mean particle distance is of order
ρ−1/3. For an unstable model, like for bosons, bound states will exist and particles would be
much closer to each other. We cannot assume that a point-interacting model will accurately
describe thermal states of these systems.

1.1.2 Efimov effect, Thomas effect and Stability

Already in 1935 Thomas [68] realized that a system of three bosons interacting with point
interactions is inherently unstable. With unstable we mean that the Hamiltonian is not bounded
from below which is, in this setting, also called the Thomas effect.

The Thomas effect is inherently linked to the existence of states with negative energy for
the unitary gas. Let in the following F denote the quadratic form associated to the unitary gas
on R3 which we will introduce properly in Section 1.2.3. As this system has no associated
length scales it is easy to see that the quadratic form F is scale invariant, i.e.

F(ψη) = η2F(ψ) (1.1.2)

for ψη(x) = η3N/2ψ(ηx) where N is the total particle number and x ∈ R3N the set of coordinates.
This scale invariance immediately shows that as soon as we find a state with negative energy
we can rescale it to smaller length scales to find a state with arbitrary negative energy. Hence,
the unitary gas can only be stable if the ground state energy is positive.

The above argumentation also works for finite scattering length. In this case, when rescaling
lengths as in (1.1.2) by η, we have to additionally rescale the scattering length by a → ηa. As
we want to take the limit η → ∞ we see that also ηa → ∞ and the problem reduces to the
unitary case. In other words, the reason the argument works is that even a finite scattering
length is large in comparison with the length scale associated with a small collapsed state.

Another widely discussed concept is the Efimov effect first described by Efimov in 1970
[17]. For a review see [8]. It applies to a system of particles with two-body interactions where
only two-body resonances exist. Contrary to point interactions the microscopic structure of the
potential is not neglected and in particular the effective range r0 is finite. The Efimov effect says
that there is an infinite sequence of three-body bound states with energies (En)n accumulating
at zero. For large n, i.e. En close to zero, the states are spatially extended in comparison with
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r0 and because of that the microscopic structure of the interaction is unimportant. In particular
one finds the universal behavior

En+1

En
→

1
515.03

. (1.1.3)

In contrast to the spatially extended wavefunctions associated with En for n large, the wave-
functions for small n have a spatial size of the same order as r0. On this scale the behavior is
dominated by the microscopic structure of the potential and one cannot expect any universal
behavior.

The two effects described above are linked as we obtain the Thomas effect by taking a
scaling limit of a system where the Efimov effect applies. The scaling effectively decreases r0

and in the limit there will be states for arbitrary negative energies.

The above argumentation shows that investigating the ground state in a model of point
interactions for bosons is a bad idea as its physical ground state will depend strongly on r0

which is neglected in a point interacting model.

In an experimental setup it can still be useful to describe the unitary Bose gas by a point
interacting model (see [22, 23] and references therein). Such a system has no thermal states
as the spectrum is unbounded from below. Hence, such a model cannot predict the energy of
a cold gas of bosons in an experiment at thermal equilibrium. Nevertheless, it is possible that
such a point interacting model gives a good approximation for the energies of states where
particles have a mean particle distance larger than the effective range of the interaction. It is
not clear if the physical system can be accurately described by a self-adjoint Hamiltonian.

Due to the rapid formation of three-body bound states the lifetime of a bosonic point-
interacting gas is much shorter than the, at least for certain masses, stable fermionic coun-
terpart. In fact, the experimental setup is ill described by a particle number conserving model
as the three-body bound states usually escape the trap and are effectively removed from the
system. Still, it is possible to measure the energy and the particle decay of artificially prepared
states during the short lifetime of the gas. Such experiments were for example done in [22,23],
and they give interesting insight into how three-body losses affect the system.

1.2 Models

A priori it is not clear what is even meant with a model of point interactions. Roughly speaking
we want to give a meaning to the formal Hamiltonian

“H = −
1
2

N∑
i=1

∆xi −
1

2m

M∑
j=1

∆y j + γ

N∑
i=1

M∑
j=1

δ(xi − y j)” (1.2.1)

for N,M ≥ 1 and yi, x j ∈ R
3 for 1 ≤ i ≤ N, 1 ≤ j ≤ M. The Hamiltonian H is ill-defined

as functions in H1(R3), which is the form domain of the Laplacian, are non-continuous and
therefore the δ interaction term has no a priori meaning.

In section 1.2.1, we will show how to solve this problem for the two particle case. In this
toy model case everything can be solved explicitly as it is effectively a one body problem. We



7

discussed that a good notion for defining point interactions is looking for extensions of the non-
interacting operator defined on functions supported away from the hyperplanes of interactions.
Constructing all self-adjoint extensions will be easy in this toy model case, and we follow this
approach in section 1.2.1.

In the main part of this section we will derive a model for N + M particles interacting with
point interactions following [20]. The model is obtained by a formal limit using a cutoff in
momentum space. We will not make this limit rigorous but it should be viewed as a motivation
to define the corresponding quadratic form.

In the last section 1.2.4 we will discuss how the N + M model simplifies for M = 1.
In particular it is then convenient to separate the center of mass motion and work in relative
coordinates.

We note that this limit was carried out rigorously in two dimensions [15, 16, 35].

1.2.1 The two particle problem

In this section we will discuss the 1 + 1 model and how it can be defined. We will use it to
introduce an electrostatic point of view and associated surface charges. We will see that this
two particle model will agree with the N + 1 system in relative coordinates, which we will
introduce in section 1.2.4, if N = 1.

We denote the non-interacting two-particle Hamiltonian for one particle with mass 1 and
one with mass m in three dimensions by

H0 = −
1
2

∆x1 −
1

2m
∆x2 (1.2.2)

where x1, x2 ∈ R
3. We define the hyperplane of interactions as

S = {(x1, x2) | x1, x2 ∈ R
3, x1 = x2}. (1.2.3)

The idea is that H0 is identical to the operator of point interactions if we restrict to functions in
C∞0 (R6 \ S). The full Hamiltonian can be recovered using self adjoint extensions.

For further analysis it is convenient to work in the relative frame using the variable trans-
formation

y = x2 − x1, Y =
1

m + 1
x1 +

m
m + 1

x2. (1.2.4)

Applying this transformation to H0 we get

H0 = −
1

2(m + 1)
∆Y −

m + 1
2m

∆y (1.2.5)

and the hyperplane of interactions can be written in the new variables as S = {(Y, y) | y = 0} =

R3 × {0}. To find self adjoint extensions of H0 it suffices to find them for ∆Y and ∆y separately.
As S does not restrict Y and because ∆Y is essentially self adjoint on C∞0 (R3), the problem
reduces to finding extensions of

H̃0 = − ∆y

∣∣∣
C∞0 (R3\{0})

. (1.2.6)
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To apply von Neumann extensions theory (see [56] as a reference) to H̃0 we need to find in
particular non-trivial L2 solutions to the equation

H̃∗0ψ = Eψ (1.2.7)

for E = ±i. More generally the function

ψE =

√
π

2
ei
√

E|x|

|x|
with Im(

√
E) > 0 (1.2.8)

solves the equation for E ∈ C fixed and it is the only non-trivial solution in L2(R3). In the sense
of distributions we get (−∆ − E)ψE = (2π)3/2δ and we will call ψE therefore the fundamental
solution of (−∆ − E). For short, we will denote ψ+ = ψi and ψ− = ψ−i. Using von Neumann
extension theory we find a one parameter family of self adjoint extensions Hκ for κ ∈ (−π, π]:

D(Hκ) = {φ + η(ψ+ + eiκψ−) | φ ∈ H2(R3), φ(0) = 0, η ∈ C}

Hκ(φ + η(ψ+ + eiκψ−)) = H0φ + iη(ψ+ − eiκψ−) (1.2.9)

The conditions on φ are the ones needed such that φ is in the domain of the closure of H̃0. The
case κ = π corresponds to the non-interacting system as ψ+ − ψ− ∈ H2(R3).

It will be convenient to reformulate this definition. We note that

ψ+ + eiκψ− − (1 + eiκ)ψ−µ ∈ H2(R3) (1.2.10)

where µ > 0 is an arbitrary smoothing parameter. We define η = ξ/(1 + eiκ),

α = 2π2 i
√

i + i
√
−ieiκ

(1 + eiκ)
=
√

2π2 (tan(κ/2) − 1) ∈ R ∪ {∞} (1.2.11)

and

φµ = φ + ξ
(ψ+ + eiκψ−)

(1 + eiκ)
− ξψ−µ. (1.2.12)

With these notations we can reformulate the operator as H̃α = Hκ(α) and get

D(H̃α) = {φµ + ξψ−µ | φµ(0) = (2π)−3/2ξ(α + 2π2√µ)}
(H̃α + µ)(φµ + ξψ−µ) = (H0 + µ)φµ. (1.2.13)

It is easy to check that α can take indeed all values in R∪ {∞}. We emphasize that even though
µ appears explicitly in above formula the Hamiltonian and its domain are independent of it.
The choice of α might seem arbitrary but it is directly linked to the scattering length. For ψ
with ψ ∈ Hα we get for small |x| that

ψ(x) ∝
2π2

α|x|
+ 1 + o(1). (1.2.14)

Hence, α is connected to the scattering length a by α = −2π2a−1.
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We can derive the quadratic form in a straight-forward way from the Hamiltonian. Denoting
ϕ = φµ + ξψ−µ we get

〈ϕ|(H̃α + µ)ϕ〉 = 〈ϕ|(H0 + µ)φµ〉
= 〈φµ|(H0 + µ)φµ〉 + ξ∗〈ψ−µ|(H0 + µ)φµ〉

= 〈φµ|(H0 + µ)φµ〉 + (2π)3/2ξ∗φµ(0)

= 〈φµ|(H0 + µ)φµ〉 + |ξ|2(α + 2π2√µ)

This allows us to define the quadratic form Fα by

D(Fα) = {φ = φ + ξψ−µ | φ ∈ H1(R3), ξ ∈ C}

Fα(ψ) = 〈φ|(H0 + µ)φ〉 − µ ‖ψ‖2 + |ξ|2(α + 2π2√µ) (1.2.15)

The term 〈φ|(H0 +µ)φ〉 should be interpreted as the quadratic form associated with H0 +µwhich
has the form domain H1(R3).

The quantities ξ and ψ−µ can be interpreted in an electrostatic picture. Here ξ is a charge
sitting at the origin and (H0 + µ)−1ξδ = ξψ−µ is the field it creates. The overall wavefunction
consists of a regular part φµ which does not see the interaction at all and a singular part ξψ−µ
which originates from the interaction. We call ξ the surface charge because it lives on the
hyperplanes of interactions which consist only of the origin in this toy model. In the following
we will call the ξ dependent terms of the quadratic form its singular part and 〈φµ|(H0 + µ)φµ〉
the regular part.

At first glance it seems that the quadratic form is more involved than the operator given by
(1.2.13) but the complexity is hidden in the condition for φµ(0). For more particles the connec-
tion between φµ and ξ on the operator level will be given by a complicated integral equation.
For the quadratic form on the other hand φµ and ξ can be chosen completely independent of
each other but its action is more involved than for the Hamiltonian.

For this 1 + 1 model there is no problem with stability as we see from the definition of F(ψ)
that

F(ψ)
‖ψ‖2

≥ −µ + |ξ|2(α + 2π2√µ) ≥ −
α2
−

4π4 (1.2.16)

choosing µ = (4π4)−1α2
− with α− being the negative part of α, i.e. α− = 1

2 (|α| − α). In particular
the whole family of extensions is stable independent of the masses of both particles.

Because every function in ψ ∈ H1(R3) is a valid trial function for F(ψ) we see that

inf
ψ∈D(H̃α)

〈ψ|H̃αψ〉 ≤ inf
ψ∈D(H0)

〈ψ|H0ψ〉. (1.2.17)

In this sense all the interactions are attractive which will also be true in the general case.

In this simple model we can also see the large momentum tail of the wavefunction which
was first discovered by Tan [62–64]. Consider ϕ = φµ + ξψ−µ ∈ D(H̃α). Even though ϕ is not in
H1(R3) we get that

ϕ̂(p) −
ξ

p2 + µ
∈ L2(R3, (1 + p2)) (1.2.18)
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and in this sense the wavefunction falls off slowly in momentum space. We emphasize that
if we would choose any other constant than ξ in (1.2.18), the resulting function would fail
to be in L2(R3, (1 + p2)). This connection allows one to determine ξ from investigating the
large momentum tail which is commonly done in experiments. We emphasize that (1.2.18) is
a simple version applying only to the 1 + 1 model. We will discuss a more general case in
Chapter 2 where we will formulate rigorous versions of the Tan relations for the N + 1 model.

There are various ways of how to construct H̃α. One physically intuitive approach is to take
a Hamiltonian of two particles interacting with a potential V having a zero-energy resonance
and take a scaling limit. Hence, we ask if there is a limiting object for

−
1
2

∆1 −
1

2m
∆2 + ε−2V

( x − y
ε

)
. (1.2.19)

For nice potentials this limit exists in the norm resolvent sense and equals the unitary two-body
point interacting Hamiltonian H̃0 [1]. This result can be extended to arbitrary scattering lengths
if one considers an additional ε−1V

(
x−y
ε

)
term with a suitable prefactor [1].

We consider this approach to be most realistic as this scaling limit is approximately im-
plemented in experiments. Nevertheless, this limit in the norm resolvent sense, is rigorously
only established in the case of two particles [1] and for three particles in one dimension [3].
As mentioned before, we note that the rigorous constructions using momentum cutoffs in two
dimensions are only valid in the weaker strong resolvent sense.

The simplicity of this 1 + 1 system hides one major complication in constructing an exten-
sion. Because the hyperplane of interactions is, after removing the center off mass motion, just
zero dimensional we get a one parameter family of extensions. As soon as the hyperplane has a
higher dimension, there are a lot more extensions possible, and they need to be parameterized
using functions [44]. Most of these are physically uninteresting because they violate locality
in the sense that the strength of the point-interaction between two particles can depend on the
coordinates of all the others.

To avoid these issues one usually considers a subset of all possible extensions called the
STM-Extensions. For our construction of the N + M model in section 1.2.3 we will use a
different approach where we regularize using a cutoff in momentum space. With this approach
the interactions between two particles are naturally independent of all other particles and if the
limiting form gives rise to an operator it should be an STM-Extension.

We note that the results we present in Chapter 5 will not consider an STM-Extension as the
model discussed contains non-local point interactions.

1.2.2 Dimensionality

In the context of this three-dimensional 1 + 1 model we will discuss the differences in other
dimensions. The dimension entered in solving (1.2.7). In momentum space we can write the
equation H̃∗0ψ = ±iψ + (2π)3/2δ as

p2ψ̂ = ±iψ̂ + 1 (1.2.20)

with the solutions

ψ̂±(p) =
1

p2 ± i
. (1.2.21)

Its derivative is given by ∇̂ψ± = i(2π)−3/2 p(p2 ± i)−1 and falls off like p−1.
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d = 1: In one dimension both (p2 ± i)−1 and p(p2 ± i)−1 are functions in L2(R) which allows
us to implement the point interactions as a potential. This is equivalent to noticing that H1(R)
functions are continuous which makes a delta interaction well-defined. For two particles, the
Hamiltonian can be constructed as a norm resolvent limit of

−
1
2
∂2

1 −
1

2m
∂2

2 + ε−1V
( x − y

ε

)
(1.2.22)

for ε→ 0 and a sufficiently regular potential V [1].

d = 2, 3: In these cases the function (p2 + µ)−1 is in L2(R2) and L2(R3) respectively but the
derivative p(p2 + µ)−1 is not. Still, the behavior in these cases is very different.

In three dimensions we have argued that there is a unitary limit which is scale invariant. This
scale invariance is responsible for the unboundedness of the spectrum if a state with negative
energy exists. The invariance naturally shows when writing the unitary two-body system as a
limit of the operators with regular potentials V as above:

−
1
2

∆1 −
1

2m
∆2 + ε−2V

( x − y
ε

)
(1.2.23)

This limit was establish in the norm resolvent sense for ε→ 0 in [1].
In two dimensions there is no unitary case and in particular the singular part of the func-

tional scales differently than the regular part. As a consequence, the functional is always
bounded from below. In [1] it was shown that the Hamiltonian can be obtained by a norm
resolvent limit of the operators

−
1
2

∆1 −
1

2m
∆2 + λ

(
(log(ε))−1

)
ε−2V

( x − y
ε

)
(1.2.24)

with λ(η) = λ1η+λ2η
2 + o(η2) for certain values of λ1, λ2 and ε→ 0 with V sufficiently regular.

d ≥ 4: In high dimensions with d ≥ 4 the fundamental solutions (p2 + µ)−1 are not in L2(Rd)
and therefore there are no non-trivial solutions to (1.2.7) which makes point interactions im-
possible.

1.2.3 The N + M model

In this section we will introduce a model for N particles of one kind and M particles of another
kind interacting with point interactions in three dimensions. The model will be presented for
general particles but in section 1.2.3.1 we will simplify it in the case of fermions which will
be our primary focus. We will give a rigorous meaning to (1.2.1) which is ill-defined in three
dimensions. There are various ways how to achieve this, but we will restrict to a regularization
in momentum space similar to [20]. We will not prove any rigorous statement about the con-
vergence, but we see this as a motivation for defining the quadratic form. For a rigorous version
in two dimensions see [15, 16, 35].

In momentum space the Hamiltonian is formally given by

Ĥψ(p, q) = h0(p, q)ψ̂(p, q) − γ
∑
(i, j)

〈idi, j|ψ̂〉 (1.2.25)
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with p = (p1, . . . , pN), q = (q1, . . . , qM),
∑

(i, j) =
∑N

i=1
∑M

j=1,

h0(p, q) =

N∑
i=1

p2
i

2
+

M∑
j=1

q2
j

2m
(1.2.26)

and

〈idi, j|ψ̂〉(pi + q j, p̂i, q̂ j)

=

∫
ψ̂(p1, . . . ,

i-th
↑

pi + z, . . . , pN , q1, . . . ,

j-th
↑

q j − z, . . . , qM) dz

=

∫
ψ̂(p1, . . . ,

1
m + 1

(pi + q j) + z, . . . ,

pN , q1, . . . ,
m

m + 1
(pi + q j) − z, . . . , qN) dz. (1.2.27)

The last equality we obtain using the substitution z→ z − ( m
m+1 pi −

1
m+1q j) and

p̂i = (p1, . . . , pi−1, pi+1, . . . , pN), q̂ j = (q1, . . . , q j−1, q j+1, . . . , qM). The non-interacting Hamilto-
nian, which we obtain by a Fourier transform of h0, we denote by H0.

For some R > 0 we introduce the cutoff function χi, j
R which is given by

χ
i, j
R (p, q) = χBR

(
m

m + 1
pi −

1
m + 1

q j

)
(1.2.28)

where BR denotes the ball with radius R and χBR its indicator function. For a fixed R we define
the operator:

ĤRψ = h0(p, q)ψ̂(p, q) − γR

∑
(i, j)

〈χ
i, j
R |ψ̂〉(pi + q j, p̂i, q̂ j)χBR

(
m

m + 1
pi −

1
m + 1

q j

)
(1.2.29)

with

〈χ
i, j
R |ψ̂〉 =

∫
χBR(z)ψ̂

(
p1, . . . ,

m
m + 1

(pi + q j) + z, . . . , pN , q1, . . . ,
m

m + 1
(pi + q j) − z, . . . , qN

)
(1.2.30)

The operator HRψ is, differently than (1.2.25), well-defined and in the following we will estab-
lish a limiting quadratic form for R→ ∞ by choosing γR in the right way.

For short, we define the following quantities

ξ̂R
i, j(pi + q j, p̂i, q̂ j) B γR〈χ

i, j
R |ψ̂〉(pi + q j, p̂i, q̂ j)

ρ̂R
i, j(p, q) B ξ̂R

i, j(pi + q j, p̂i, q̂ j)χBR

(
m

m + 1
pi −

1
m + 1

q j

)
ρ̂R(p, q) B

∑
(i, j)

ρ̂R
i, j(p, q)

and we fix φR
µ by

ψ̂ = φ̂R
µ + ĜµρR, ĜµρR B

ρ̂R

h0 + µ
(1.2.31)
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where µ > 0 is a smoothing parameter. We will also use Gµ(p, q) = (h0(p, q) + µ)−1. For the
quadratic form we get

〈ψ|HRψ〉 = 〈ψ|H0ψ〉 − 〈ψ̂|ρ̂
R〉

= 〈φ̂R
µ + ĜµρR|(h0 + µ)(φ̂R

µ + ĜµρR)〉 − µ ‖ψ‖2 − 〈ψ̂|ρ̂R〉

= 〈φ̂R
µ |(h0 + µ)φ̂R

µ〉 + 〈ρ̂
R|φ̂R

µ〉 + 〈φ̂
R
µ |ρ̂

R〉 + 〈ĜµρR|ρ̂R〉 − µ ‖ψ‖2 − 〈ψ̂|ρ̂R〉

= 〈φ̂R
µ |(h0 + µ)φ̂R

µ〉 − µ ‖ψ‖
2
− 〈ĜµρR|ρ̂R〉 + 〈ψ̂|ρ̂R〉 (1.2.32)

With the aid of ξR
i, j we can rewrite 〈ψ̂|ρ̂R〉 in a more convenient form:

〈ψ̂|ρ̂R〉 =
∑
(i, j)

〈ψ̂|〈χ
i, j
R |ψ̂〉 ⊗ |χ

i, j
R 〉〉 = γ−1

R

∑
(i, j)

∥∥∥γ〈χi, j
R |ψ̂〉

∥∥∥2
= γ−1

R

∑
(i, j)

∥∥∥ξR
i, j

∥∥∥2
. (1.2.33)

The second to last term in (1.2.32) contains a double sum which we use to split (1.2.32) into
four different parts and get

〈ĜµρR|ρ̂R〉 C −
3∑

i=0

Φ̃R
i (~ρR)

=
∑
(i, j)

∫
|ξR

i, j(pi + q j, p̂i, q̂ j)|2〈χ
i, j
R |Gµ|χ

i, j
R 〉 dp dq

+
∑
(i, j)

N∑
n=1
n, j

∫
〈χ

i, j
R |ξ̂

R
i, j(pi + q j, p̂i, q̂ j)ξ̂R

n, j(pn + q j, p̂n, q̂ j)Gµ(p, q)|χn, j
R 〉 dp dq

+
∑
(i, j)

M∑
m=1
n, j

∫
〈χ

i, j
R |ξ̂

R
i, j(pi + q j, p̂i, q̂ j)ξ̂R

i,m(pi + qm, p̂i, q̂m)Gµ(p, q)|χi,m
R 〉 dp dq

+
∑
(i, j)

∑
(m,n)
m,i
n, j

∫
〈χ

i, j
R |ξ̂

R
i, j(pi + q j, p̂i, q̂ j)ξ̂R

n,m(pn + qm, p̂n, q̂m)Gµ(p, q)|χn,m
R 〉 dp dq

(1.2.34)

using ~ρR = (ρR
i, j)(i, j). We note that Φ̃R

2 , Φ̃
R
3 vanish if we fix M = 1 and similarly Φ̃R

1 , Φ̃
R
3 vanish if

we set N = 1. In this sense we view Φ̃1 as the N + 1, Φ̃R
2 as the 1 + M and Φ̃3 as the full N + M

particle contribution.

The expressions Φ̃R
1 , Φ̃

R
2 and Φ̃R

3 are all well-defined if we take the formal limit R→ ∞. This
is not true for Φ̃0 which contains the divergent part. Because |ξ(pi +q j, p̂i, q̂ j)|2 is not dependent
of m

m+1 pi −
1

m+1q j we can perform the integration explicitly and obtain

Φ̃R
0 =

∑
(i, j)

∫
|ξR

i, j(pi + q j, p̂i, q̂ j)|2〈χ
i, j
R |Gµ|χ

i, j
R 〉 dp dq

=
∑
(i, j)

∫
χBR(z)

|ξ̂R
i, j(w, p̂i, q̂ j)|2

1
2(m+1)w

2 + m+1
2m z2 + 1

2 p̂2
i + 1

2m q̂2
j + µ

dp̂i dq̂ j dw dz. (1.2.35)
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We used the transformation q j = m
m+1w − z, pi = 1

m+1w + z which allows us to write h0(~p, ~q) as

h0(~p, ~q) =
1

2(m + 1)
w2 +

m + 1
2m

z2 +
1
2

p̂2
i +

1
2m

q̂2
j . (1.2.36)

We can evaluate the integral over z explicitly∫
BR

1
1

2(m+1)w
2 + m+1

2m z2 + 1
2 p̂2

i + 1
2m q̂2

j + µ
dz

=
8πm

m + 1
R − 4π2

( m
m + 1

)3/2
√

1
m + 1

w2 + p̂2
i +

1
m

q̂2
j + 2µ + o(1) (1.2.37)

where the o(1) part vanishes if R→ ∞. Choosing

γR =

(
8πm

m + 1
R + α

2m
m + 1

)−1

(1.2.38)

such that the linear term in R in (1.2.37) cancels with (1.2.33) which allows us to take a formal
limit.

Combining the above statements we define the following limit functional F̃α

D(F̃α) = {ψ | ψ = φ + Gµ
~ξ, φ ∈ H1(R3(N+M)), ξi, j ∈ H1/2(R3(N+M−1)) for 1 ≤ i ≤ N}

F̃α(ψ) = 〈φ|H0φ〉 + µ ‖φ‖2 − µ ‖ψ‖2 +
2m

m + 1
α
∑
(i, j)

∥∥∥ξi, j

∥∥∥2
+

3∑
k=0

Φ̃k(~ξ) (1.2.39)

with ~ξ = (ξi, j)(i, j) and

Gµ
~ξ(p, q) =

∑
(i, j)

ξ(i, j)(pi + q j, p̂i, q̂ j)
h0(p, q) + µ

Φ̃0(~ξ) = 2π2
(

2m
m + 1

)3/2 ∑
(i, j)

∫
R3(N+M−1)

√
1

2(m + 1)
w2 +

1
2

p̂2
i +

1
2m

q̂2
j + µ|ξi, j(w, p̂i, q̂ j)|2 dw dp̂i dq̂ j

Φ̃1(~ξ) = −
∑
(i, j)

N∑
n=1
n, j

∫
ξ̂i, j(pi + q j, p̂i, q̂ j)ξ̂n, j(pn + q j, p̂n, q̂ j)Gµ(p, q) dp dq

Φ̃2(~ξ) = −
∑
(i, j)

M∑
m=1
n, j

∫
ξ̂i, j(pi + q j, p̂i, q̂ j)ξ̂i,m(pi + qm, p̂i, q̂m)Gµ(p, q) dp dq

Φ̃3(~ξ) = −
∑
(i, j)

∑
(m,n)
m,i
n, j

∫
ξ̂i, j(pi + q j, p̂i, q̂ j)ξ̂n,m(pn + qm, p̂n, q̂m)Gµ(p, q) dp dq (1.2.40)

The requirement that ξi ∈ H1/2(R3(N+M−1)) originates from Φ̃0 which is equivalent to the H1/2(R3(N+M−1))
norm. On the other hand this is also sufficient to make the terms Φ̃1, Φ̃2 and Φ̃3 well-defined
which can be seen by a Schur test [20]. We emphasize that even though µ explicitly appears in
the terms of F̃α the quadratic form itself is independent of the choice of µ. As we can choose
φµ and ξ in the D(F̃α) independently, we will frequently drop the subscript µ.
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1.2.3.1 Antisymmetry

So far we did not assume any antisymmetry constraints on the particles. From now on we
demand antisymmetry in the coordinates p and separately in q. From the definition of ξi, j in
(1.2.31) we see using ξ B ξ1,1 ∈ H1/2(R3) ⊗ H1/2

as (R3(N−1)) ⊗ H1/2
as (R3(M−1)) that

ξi, j(pi + q j, p̂i, q̂ j) = (−1) j+iξ(pi + q j, p̂i, q̂ j) (1.2.41)

With H1/2
as we denote the functions in H1/2 which are antisymmetric in all coordinates. Because

Φ̃0 only depends on the absolute value of ξ we get

Φ̃0(~ξ) = 2π2NM
(

2m
m + 1

)3/2 ∫
R3(N+M−1)

√
1

2(m + 1)
w2 +

1
2

p̂2
i +

1
2m

q̂2
j + µ|ξ(w, p̂i)|2 dw d p̂i dq̂ j.

(1.2.42)

For Φ̃1 we get

Φ̃1(~ξ) = −
∑
(i, j)

N∑
n=1
n, j

(−1)i+2 j+n
∫

ξ̂(pi + q j, p̂i, q̂ j)ξ̂(pn + q j, p̂n, q̂ j)Gµ(p, q) dp dq

=
∑
(i, j)

N∑
n=1
n, j

∫
ξ̂(p1 + q1, p̂1, q̂1)ξ̂(p2 + q1, p̂2, q̂1)Gµ(p, q) dp dq

= NM(N − 1)
∫

ξ̂(p1 + q1, p̂1, q̂1)ξ̂(p2 + q1, p̂2, q̂1)Gµ(p, q) dp dq (1.2.43)

using∫
ξ̂(pi + q j, p̂i, q̂ j)ξ̂(pn + q j, p̂n, q̂ j)Gµ(p, q) dp dq

=

∫
ξ̂(p1 + q1, pi, pn, p3, . . . , pi−1, pi+1, . . . , p2, . . . pN , q j, . . . , q j−1, q j+1, . . . , qN)

× ξ̂(p2 + q1, pi, pn, p3, . . . , p1, . . . , pn−1, pn+1, . . . pN , q j, . . . , q j−1, q j+1, . . . , qN)Gµ(p, q) dp dq

= (−1)1+i+n
∫

ξ̂(p1 + q1, p̂1, q̂1)ξ̂(p2 + q1, p̂2, q̂1)Gµ(p, q) dp dq

for i < n and an analogous calculation otherwise. In the same way we obtain

Φ̃2(~ξ) = NM(M − 1)
∫

ξ̂(p1 + q1, p̂1, q̂1)ξ̂(p1 + q2, p̂1, q̂2)Gµ(p, q) dp dq

Φ̃3(~ξ) = −NM(N − 1)(M − 1)
∫

ξ̂(p1 + q1, p̂1, q̂1)ξ̂(p2 + q2, p̂2, q̂2)Gµ(p, q) dp dq (1.2.44)

We note that if we would consider bosons the sign in front of Φ̃1 and Φ̃2 would be inverted.
We define in the following Fα which is the restriction of F̃α to fermionic wavefunctions. The
quadratic form Fα is given by

D(Fα) = {ψ | ψ = φ + Gµξ, φ ∈ H1
as(R

3N) ⊗ H1
as(R

3M),

ξ ∈ H1/2(R3) ⊗ H1/2
as (R3(N−1)) ⊗ H1/2

as (R3(M−1))}

Fα(ψ) = 〈φ|H0φ〉 + µ ‖φ‖2 − µ ‖ψ‖2 + NM

 2m
m + 1

α ‖ξ‖2 +

3∑
k=0

Φk(ξ)

 (1.2.45)
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with Gµξ(p, q) =
∑

(i, j) Gµ(p, q)ξ(pi + q j, p̂i, q̂ j) and

Φ0(ξ) = 2π2
(

2m
m + 1

)3/2 ∫
R3(N+M−1)

√
1

2(m + 1)
w2 +

1
2

p̂2
i +

1
2m

q̂2
j + µ|ξi, j(w, p̂i, q̂ j)|2 dw dp̂i dq̂ j

Φ1(ξ) = (N − 1)
∫

ξ̂(p1 + q1, p̂1, q̂1)ξ̂(p2 + q1, p̂2, q̂1)Gµ(p, q) dp dq

Φ2(ξ) = (M − 1)
∫

ξ̂(p1 + q1, p̂1, q̂1)ξ̂(p1 + q2, p̂1, q̂2)Gµ(p, q) dp dq

Φ3(ξ) = −(N − 1)(M − 1)
∫

ξ̂(p1 + q1, p̂1, q̂1)ξ̂(p2 + q2, p̂2, q̂2)Gµ(p, q) dp dq. (1.2.46)

The latter three terms Φ1,Φ2 and Φ3 are neither positive nor negative and, as they come with
different signs, we expect cancellations between them when investigating the ground state en-
ergy.

Clearly if we are able to show that the singular part is positive for a fixed µ > 0 then we
showed stability as −µ ‖ψ‖2 is bounded from below and the regular part is also positive.

Conversely, let for fixed µ > 0, ξ− be such that
∑4

j=1 Φ j(ξ−) = −γ < 0. We define a
trial function such that φ = 0 and further ψη = η3(N+M)/2Gµξ−(η~x, η~y) = Gη2µξ

η
−(~x, ~y) with

ξ̂
η
−(p0 + pi, p̂i) = η(−3(N+M))/2+2ξ̂−((pi + q j)/η, p̂i/η, q̂ j/η) and ξ− chosen such that ‖ψη‖ = 1.

Using the scaling properties of Φ j we get

Fα(ψη) = η2

 2m
m + 1

α

η

N∑
i=1

‖ξ−‖
2 +

4∑
j=1

Φ j(ξ−) − µ


= η2

(
2m

m + 1
α

η
N ‖ξ−‖2 − γ − µ

)
. (1.2.47)

As Fα(ψη)→ −∞ for η→ ∞ the quadratic form is not bounded from below.
The term Φ0 is positive and to show stability we need to show that it is larger than −Φ1 −

Φ2 − Φ3. In the general case, where N,M ≥ 2, a major difficulty are the strong cancellations
between Φ1,Φ2,Φ3. This is the reason why we will restrict in the next section to the N + 1
model where Φ2 = Φ3 = 0 which significantly simplifies the model.

If we are able to show that the quadratic form is closed, the abstract theory tells us that
there exists a self adjoint Hamiltonian associated to it. To show that the form is closed we
need to prove that the quadratic form is equivalent to the norms appearing in the domain of Fα.
Obviously the regular part is equivalent to ‖φ‖2H1(R3(N+M)). If we show that Φ0 &

∑3
j=0 Φ j & Φ0,

the singular part of the quadratic form is equivalent to the ‖ξ‖2H1/2(R3(N+M−1)) norm. The lower
bound proves stability and is rather difficult whereas the upper bound, i.e. the first inequality,
is easy, and we already needed it to ensure that all terms Φ j are well-defined.

Assuming the stability results we prove in Chapter 2, we will discuss in the end of the
following section the Hamiltonian associated to the quadratic form for the N + 1 model.

1.2.4 The N + 1 model

In the case that we set M = 1 the model reduces significantly as Φ2 = Φ3 = 0. In particular,
we are able to single out the center of mass motion and switch to relative coordinates in a way
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which preserves the antisymmetry. For sake of generality we will work with F̃α but similar
analysis can be done for Fα.

For working with the N + 1 model it is convenient to simplify the notation a bit. We will
drop the index j from ξi, j and label p0 = q1. Further we denote with (x1, . . . , xN) the coordinates
of the N particles and with x0 the coordinate of the distinct particle.

The coordinate transformation we look at transforms x = (x0, x1, . . . , xN)→ (X, y1, . . . , yN) =

y with

X =
mx0 +

∑N
i=1 xi

m + N
yi = xi − x0. (1.2.48)

We denote with (P, k1, . . . , kN) the corresponding momentum variables. The transformation
matrix between these two parameterizations is

X
y1

y2
...

yN


=



m
m+N

1
m+N

1
m+N . . . 1

m+N
−1 1 0 . . . 0
−1 0 1 . . . 0
...

...
...

. . .
...

−1 0 0 . . . 1




x0

x1

x2
...

xN


(1.2.49)

and we denote it by KN (or simply by K).

Lemma 1.2.1.

det(KN) = 1 (1.2.50)

Proof. We will prove the result inductively. For N = 0 the statement is trivial. Let us assume
that it is shown for N. Using the Laplace expansion of the determinant we get

det(KN+1) =
m + N

m + N + 1
det(KN)︸  ︷︷  ︸

=1

+(−1)2N 1
m + N + 1

= 1 (1.2.51)

�

where let p = (p0, p1, . . . , pN) be the coordinates in momentum space. For any function
f (x) we get

f̂ (p) =
1

(2π)3(N+1)/2

∫
eip·x f (x) dx =

1
(2π)3(N+1)/2

∫
eip·K−1y f (K−1y) dy

=
1

(2π)3(N+1)/2

∫
ei(K−1t p)·y f (K−1y) dy ⇒ (F f ) ◦ Kt = F ( f ◦ K−1) (1.2.52)

using x = K−1y and F being the Fourier transformation. In particular, we see that
p0

p1

p2
...

pN


=



m
m+N −1 −1 . . . −1

1
m+N 1 0 . . . 0

1
m+N 0 1 . . . 0
...

...
...

. . .
...

1
m+N 0 0 . . . 1




P
k1

k2
...

kN


(1.2.53)
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and therefore

p0 =
m

m + N
P −

N∑
i=1

ki pi =
1

m + N
P + ki (1.2.54)

We define ψrel(P,~k) = ψ(p0, ~p) and φrel(P,~k) = φ(p0, ~p) and in particular for the case that the
N particles are fermions, ψrel and φrel are anti-symmetric functions in the last N coordinates.
Using the coordinate transformation we can rewrite h0 as

h0(p, p0) =
1

2m

 m
m + N

P −
N∑

i=1

ki

2

+
1
2

N∑
i=1

(
1

m + N
P + ki

)2

=
m + 1

2m

(
m

(m + 1)(m + N)
P2 +

1
m + 1

∑
i, j

ki · k j +

N∑
i=1

k2
i︸                         ︷︷                         ︸

Chrel
0 (~k)

)
(1.2.55)

and

ξ̂i(pi + p0, p̂i) = ξ̂i

 m + 1
m + N

P −
N∑
j,i

k j,
1

m + N
P + k1, . . . ,

1
m + N

P + kN


C

m + 1
2m

ξ̂rel
i (P, k̂i). (1.2.56)

The choice of the prefactor (m+1)/2m is arbitrary but will be convenient in further calculations.
The Fourier transform of hrel

0 we denote by Hrel
0 . In a similar way we introduced Ĝµξi we define

Ĝrel
µ ξ

rel
i (P,~k) B

1

hrel
0 (~k) + µ

ξ̂rel
i (P, k̂i). (1.2.57)

We can express Ĝµξ in relative coordinates

Gµ(p, p0)ξ̂i(p0 + pi, p̂i) =
1

h0(~p, p0) + µ
ξ̂(p0 + pi, p̂i)

=
1

hrel
0 (P,~k) + m

(m+1)(m+N) P
2 + 2m

m+1µ
ξ̂rel

i (P, k̂i)

C Grel
m

(m+1)(m+N) P2+ 2m
m+1µ

ξ̂rel
i (P, k̂i) (1.2.58)

which shows in particular the splitting ψrel = φrel + Grel
µ̃ ξ

rel. We define µ̃ B m
(m+1)(m+N) P

2 + 2m
m+1µ

and use

1
m + 1

w2 + p̂2
i + 2µ =

1
m + 1

 m + 1
m + N

P −
N∑
j,i

k j


2

+

N∑
j,i

(
1

m + N
P + k j

)2

+ 2µ

=
m + 1

m

[
m

(m + 1)2

∑
j,`
j,`,i

k j · k` +
m(m + 2)
(m + 1)2

∑
j,i

k2
j + µ̃

]
(1.2.59)
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on Φ̃0 to obtain

Φ̃0(~ξ) =

∫ N∑
i=1

∫
√

2π2
(

2m
m + 1

)−1/2 (
m + 1

m

)1/2

×

[
m

(m + 1)2

∑
j,`
j,`,i

k j · k` +
m(m + 2)
(m + 1)2

∑
j,i

k2
j + µ̃

]1/2

|ξ̂rel
i (P,~k)|2 dk̂i dP

=
m + 1

2m

∫ N∑
i=1

∫
2π2

 m
(m + 1)2

∑
j,`
j,`,i

k j · k` +
m(m + 2)
(m + 1)2

∑
j,i

k2
j + µ̃


1/2

× |ξ̂rel
i (P,~k)|2 dk̂i dP

C
m + 1

2m

∫
Φ̃rel

0 (ξrel(P, ·)) dP. (1.2.60)

A similar computation for Φ̃1 gives∑
i, j

〈ξ̂i(p0 + pi, p̂i)|Gµξ̂ j(p0 + p j, p̂ j)〉 =
m + 1

2m

∑
i, j

〈ξ̂rel
i (P, k̂i)|Grel

µ̃ ξ̂
rel
j (P, k̂ j)〉

=
m + 1

2m

∫ ∫
ξ̂i(P, k̂i)ξ̂ j(P, k̂ j)

hrel
0 (~k) + µ̃

d~k dP

C
m + 1

2m

∫
Φ̃rel

1 (ξrel(P, ·)) dP. (1.2.61)

The last term of the singular part of F̃α can be expressed by

2m
m + 1

α

N∑
i=1

‖ξi‖
2 =

m + 1
2m

∫
dP

∫
|ξrel

i (P,~k)|2 d~k dP. (1.2.62)

The regular part can be written as

〈φ|(h0 + µ)φ〉 =
m + 1

2m

∫
〈φrel(P, ·)|(hrel

0 + µ̃)φrel(P, ·)〉 dP (1.2.63)

and we can write −µ ‖ψ‖2 as

−µ ‖ψ‖ =

∫ (
−

m + 1
2m

µ̃ +
1

2(m + N)
P2

) ∫
|ψrel(P,~k)|2 d~k dP (1.2.64)

Combining (1.2.60), (1.2.61) and (1.2.64) with (1.2.39) we get

F̃α(ψ) =
m + 1

2m

∫ (
〈φrel(P, ·)|(hrel

0 (~k) + µ̃)φrel(P, ·)〉 − µ̃
∫
|ψrel(P,~k)|2 d~k

+ Φ̃rel
0 (ξrel(P, ·)) + Φ̃rel

1 (ξrel(P, ·))
)

dP

+

∫
1

2(m + N)
P2|ψrel(P,~k)|2 d~k dP. (1.2.65)
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For a fixed P the expression inside the integrals does not depend on the choice of µ̃ and hence
we can view µ̃ as a P independent constant. This motivates the definition of the relative energy
functional, where we drop the center of mass energy, i.e. last term in (1.2.65), as

D(F̃rel
α ) = {ψrel | ψrel = φrel + Grel

µ̃ ξ
rel, φ ∈ H1

as(R
3N), ξrel ∈ H1/2

as (R3(N−1))}

F̃rel
α (ψrel) = 〈φrel|(Hrel

0 + µ̃)φrel〉 − µ̃
∥∥∥ψrel

∥∥∥2

+ N
[
α
∥∥∥ξrel

∥∥∥2
+ T rel

diag(ξrel) + T rel
off(ξrel)

]
(1.2.66)

with

T rel
diag(ξrel) = 2π2

N∑
i=1

∫
R3(N−1)

|ξrel
i (k̂i)|2

√
m

(m + 1)2

∑
t, j,i,t, j

ki · kt +
m(m + 2)
(m + 1)2 k̂2

i + µ̃ d~k

T rel
off(ξrel) = −

∑
i, j

∫
R3(N+1)

ξ
rel
i (k̂i)ξrel

j (k̂ j)

hrel
0 (~k) + µ̃

d~k (1.2.67)

In the case where N = 1 we see that F̃rel
α is equivalent to the 1 + 1 model which was rigorously

introduced in (1.2.15).
For analyzing stability it suffices to discuss this quadratic form F̃rel

α , or better its antisym-
metric restriction Frel

α , as the kinetic energy of the center of mass motion is always positive.
At this point it is not clear that the quadratic form is bounded from below and gives rise to a

self-adjoint operator. We refer to Chapter 2 for rigorous details and will continue in this section
rather formally. Assuming stability we can define Γ as a positive selfadjoint operator given by

T rel
diag(ξrel) + T rel

off(ξrel) = 〈ξrel|Γξrel〉 (1.2.68)

on L2
as(R

3(N−1)).
Using this operator we define the Hamiltonian associated to Frel

α by

D(Hrel
α ) =

{
ψrel ∈ L2

as(R
3N) | ψrel = φrel

µ + Grel
µ ξ,

φrel
µ ∈ H2

as(R
3N), ξrel ∈ D(Γ), φrel

µ �yN=0= (2π)−3/2(−1)N+1(α + Γ)ξrel
}

(1.2.69)

with Hrel
α acting on ψrel ∈ D(Hα) as(

Hrel
α + µ

)
ψrel = (Hrel

0 + µ)φrel
µ . (1.2.70)

The following computation connects Hrel
α to Frel

α . Given ψ ∈ D(Hrel
α ) we get

〈ψrel|(Hrel
α + µ)ψrel〉 = 〈ψrel|(Hrel

α + µ)φrel
µ 〉

= 〈φrel
µ |(H

rel
α + µ)φrel

µ 〉 + 〈G
rel
µ ξ

rel|(Hrel
0 + µ)φrel

µ 〉

= 〈φrel
µ |(H

rel
α + µ)φrel

µ 〉 + 〈ξ
rel|φrel

µ �yN=0〉

= Frel
α (ψrel) + µ

∥∥∥ψrel
∥∥∥2

(1.2.71)

using the boundary condition of the Hamiltonian. We emphasize that φrel
µ and ξrel for a function

ψrel ∈ D(Hrel
α ) cannot be chosen independently of each other. Hence, even though the action

of Hrel
α is rather simple, the real difficulty lies in the boundary condition involving the many-

particle operator Γ.
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1.3 Main Results

1.3.1 The N + 1 model

The results from [11,13] are not completely limited to the three particles case but also show that
there exists a critical mass m∗(N) such that the N +1 system is stable if m > m∗(N). This critical
mass diverges linearly in N which makes it only applicable to systems with small particle
numbers. We recall that a critical mass smaller than one is necessary to show simultaneous
stability of the N + 1 and the 1 + N system.

Our results for the N + 1 system on R3 are covered in Chapter 2. The main theorem will
show that there is a critical mass m̃1 = 0.36 such that the N + 1 model is stable if m ≥ m̃1.
Differently to previous work we manage to take the antisymmetry into account which allows
us to find a critical mass independent of the particle number N.

We will define this critical mass using the quantity Λ(m) which is given by

Λ(m)

= sup
s,K∈R3,Q>0

s2 + Q2

π2(m + 1)
`m(s,K,Q)−1/2

∫
R3

1
t2 `m(t,K,Q)−1/2

×
|(s + AK) · (t + AK)|[

(s + AK)2 + (t + AK)2 + m
m+1 (Q2 + AK2)

]2
−

[
2

(m+1) (s + AK) · (t + AK)
]2 dt (1.3.1)

with A = 1/(m + 2) and

`m(s,K,Q) :=
(

m
(m + 1)2 (s + K)2 +

m
m + 1

(s2 + Q2)
)1/2

. (1.3.2)

We note that it is possible to bound (1.3.1) using the Cauchy-Schwarz inequality (see sec-
tion 2.6) by

Λ(m) ≤
4(m + 1)2(2 + 4m + m2)3/2

√
2π [m(m + 2)]3

(1.3.3)

and in particular Λ(m)→ 0 as m→ ∞.

The following theorem proves stability for the N + 1 system in the case that Λ(m) < 1.

Theorem 2.2.1. For any ξ ∈ H1/2
as (R3(N−1)), µ > 0 and N ≥ 2,

Toff(ξ) ≥ −Λ(m)Tdiag(ξ) (1.3.4)

In particular, if m is such that Λ(m) < 1, then Fα is closed and bounded from below by

Fα(u) ≥

 0 for α ≥ 0

−
(

α
2π2(1−Λ(m))

)2
‖u‖2L2(R3N ) for α < 0

(1.3.5)

for all u ∈ D(Fα).

Proof. See section 2.4. �
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The bound obtained in (1.3.3) is not very good as it does not show that Λ(1) < 1 for m = 1.
Using numerical methods we will show in section 2.7 that for m ≥ m̃1 = 0.36 we get that
Λ(m) ≤ 1. This shows together with Theorem 2.2.1 stability for these masses.

The numerics needed to prove the statement above is limited to a numeric integration and
an optimization on a compact set. The possibility of bounding Λ(m) by an analytic expression
is limited as such bounds quickly increase Λ(m) to the point where the bound is larger than one
for all masses smaller than one.

1.3.2 The finite density problem

Even though Theorem 2.2.1 does show stability for m ≥ m̃1 we do not learn anything about
the effect a point interacting impurity has on the energy. In particular, we see from (1.3.5) that
the ground state energy is independent of the interaction strength if α ≥ 0. The reason for this
is that we work with a zero density model and particles in low energy states tend to spatially
separate.

In [52], see Chapter 3, we avoid these problems by confining the wavefunction to be sup-
ported in a box B = (0, L)3 in all coordinates, giving rise to a finite mean density ρ = N/L3.
This system has a well-defined ground state which allows us to investigate the change in energy
when introducing an impurity.

In the following theorem we show that the change in energy can be bounded uniformly in
N and in particular the bound only depends on ρ and α. With ED

N we denote the ground state
energy of the non-interacting system of N fermions with Dirichlet boundary conditions on B.
As long as the density is fixed we get that ED

N ∼ Nρ2/3.

Theorem 3.2.1. Let ψ ∈ D(Fα), supported in (0, L)3(N+1), with ‖ψ‖ = 1. Let ρ = NL−3, and
assume that Λ(m) < 1. Then

Fα(ψ) ≥ ED
N − const

(
ρ2/3

(1 − Λ(m))9/2 +
α2
−

(1 − Λ(m))2

)
(1.3.6)

where the constant is independent of ψ,m,N, L and α, and α− denotes the negative part of α,
i.e., α− = 1

2 (|α| − α).

Proof. See Chapter 3. �

As the interactions are always attractive the upper bound for Fα(ψ) is trivially ED
N . Hence

the change of energy when introducing a point interacting impurity is of order one in N and
therefore small in comparison to the kinetic energy ED

N .

1.3.3 The 2+2 case

Models for N,M ≥ 2 are inherently more difficult to deal with because of the additional terms
Φ2,Φ3. The easiest model of this kind is the 2 + 2 model where one does not have to take into
account the anti-symmetry of ξ. In [42] a numerical analysis on the 2 + 2 system was done and
in particular for the ground state strong cancellations between Φ1,Φ2 and Φ3 were found. It
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was suggested in [18] that the critical mass for a four body collapse should be the same as for
the one with three bodies.

In Chapter 4, we will confirm that there is a stable mass region for the 2 + 2 problem.
The critical mass we determine is not sharp as we need to use several non optimal bounds. In
particular, we are not able to fully take into account cancellations between Φ1,Φ2 and Φ3. The
question whether there is a mass region where the system is unstable due to four-body bound
states is still open.

For a ∈ R3, b ≥ 0 and m > 0, let Om
a,b be the bounded operator on L2(R3) with integral

kernel

Om
a,b(p1, p2) = (1.3.7)[
(p1 + a)2 + b2

]−1/4 1

p2
1 + p2

2 + 2
m+1 p1 · p2 +

2(2+m)
(m+1)2 a2 + 2m

(m+1)2 b2

[
(p2 + a)2 + b2

]−1/4

Let further
Λ2(m) = −

1
2π2

m + 1
√

m
inf

a∈R3, b≥0
inf spec Om

a,b (1.3.8)

Theorem 4.3.1. For m such that Λ2(m) + Λ2(1/m) < 1, we have

Fα(ψ) ≥

0 α ≥ 0

−α2
(

m+1
m

)3 1
2π4(1−Λ2(m)−Λ2(1/m))2 ‖ψ‖

2
2 α < 0

(1.3.9)

for any ψ ∈ D(Fα).

Proof. See the proof of Theorem 4.3.1 in Chapter 4. �

In particular, we will show that if m such that 0.58 . m . 1.73 then Λ2(m) + Λ2(1/m) < 1
which shows stability for these masses.

As discussed before, the cancellations in the singular part of Fα are very difficult to deal
with. In the case of 2 + 2 particles it is possible to bound Φ0 + Φ3 from below by a positive
quantity. We show that this quantity is large enough to bound the negative part of Φ1 and Φ2.

1.3.4 A Dirichlet form model

In Chapter 5, we will discuss a point interacting model based on a Dirichlet form which was
formerly investigated in [25]. This model is stable in all cases but contains many particle point
interactions which make it physically less realistic. We show that in the thermodynamic limit
the free energy per particle is equal to the non-interacting one. In this sense the model behaves
trivially.

Deriving the two particle point interacting system can be done using multiple approaches.
In section 1.2.1, we have seen that it can be constructed using self adjoint extensions. In [1,
Appendix F] it was shown that one can also formulate the system as a Dirichlet form

E2(φ) =

∫
|∇φ(x)|2

(
1
a −

1
|x|

)
dx∫

|φ(x)|2
(

1
a −

1
|x|

)
dx

(1.3.10)
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as long as the scattering length a is negative. Of particular interest is the unitary case, i.e. a = ∞

which we will generalize below. We note that as a Dirichlet form this system is well-defined [2]
and in particular positive.

An integration by parts gives for ε > 0∫
|x|≥ε

(
1
|x|
−

1
a

)2

|∇φ(x)|2 dx =

∫
|x|≥ε

∣∣∣∣∣∣∇
(

1
|x|
−

1
a

)
φ(x)

∣∣∣∣∣∣2 dx

−

∫
|x|=ε

(
1
|x|
−

1
a

)
1
|x|2
|φ(x)|2dω. (1.3.11)

The last term corresponds to point interactions and is only non-trivial in the limit ε → 0 if
φ vanishes slower than |x|1/2 at the origin. This shows that E2 is indeed a model of point
interactions.

Along the same lines we can extend this model to a many particle system and for simplicity
we restrict to the unitary case. We define

Eg(ψ) =

∑N
i=1

∫
|∇iψ(x)|2g(x) dx∫
|ψ(x)|2g(x) dx

(1.3.12)

with x = (x1, . . . , xN), xi ∈ R
3 and

g(x) =
∑

1≤i< j≤N

1
|xi − x j|

. (1.3.13)

We will restrict ψ to an antisymmetric subspace of some kind. Because this model is always
well-defined, it is possible to allow arbitrary many species of fermions and the number of
species we denote by q. This is very different to the systems we introduced in section 1.2.3
where every system with more than two species is unstable.

With the same argument as in (1.3.11) we get that Eg models a system of N point interacting
particles. It turns out though that the system contains non-local multi-particle point interactions
which are physically undesirable.

In the following we will consider the system described by Eg restricted to wavefunctions
in the box [0, L]3 and we define the density ρ = N/L3. The free energy of the system with an
inverse temperature β > 0 is then given by

Fg(β,N, L) = −T ln sup
{ψk}

〈ψi |ψ j〉g=δi j

∑
k

e−βEg(ψk) (1.3.14)

and the free energy density in the thermodynamic limit with fixed density ρ > 0 as

fg(β, ρ) = lim
N→∞

ρ

N
Fg(β,N, (N/ρ)1/3). (1.3.15)

The non-interacting free energy density is given by

f (β, ρ) = sup
µ∈R

[
µρ −

qT
(2π)3

∫
R3

ln
(
1 + e−β(p2−µ)

)
dp

]
(1.3.16)

In Chapter 5, we will show that both energies per particle are equal and in this sense the
model behaves trivially in the thermodynamic limit.
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Theorem 5.2.1. For any β > 0 and ρ > 0, and any q ≥ 1,

fg(β, ρ) = f (β, ρ) (1.3.17)

Proof. See the proof of Theorem 5.2.1 in Chapter 5. �

We have seen for the two particle case for a finite scattering length that it can be defined
by a Dirichlet form with a weight function of x 7→ |x|−1 − a−1. When we look at the point
interactions between particles with coordinates x1 and x2, the weight function g can be written
as

g(x) =
1

|x1 − x2|
+

∑
1≤i< j≤N
(i, j),(1,2)

1
|xi − x j|

. (1.3.18)

The first part is similar to the |x|−1 of the two particle case and the second part takes the role of
−a−1 and therefore defines an effective scattering length. Assuming there are two interacting
particles beside the pair (1, 2) we see that the second term in (1.3.18) is very large if these
particles are close together. In particular this effect is independent of the distance between
these two pairs. These are the non-local point interactions we discussed above as the strength
of the point interactions can be influenced by particles far away.

Because we consider a thermodynamic limit with density ρ, we expect a mean particle
distance of ρ−1/3. A heuristic calculation gives an effective scattering length of N−5/3ρ−1/3

using (1.3.18). In particular this means that the interactions should be very weak in the ther-
modynamic limit as the effective scattering length formally vanishes. This is what we show
rigorously in Theorem 5.2.1.
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CHAPTER 2

Stability of a fermionic N + 1 particle
system with point interactions

ThomasMoser, Robert Seiringer

Abstract
We prove that a system of N fermions interacting with an additional particle via point
interactions is stable if the ratio of the mass of the additional particle to the one of
the fermions is larger than some critical m∗. The value of m∗ is independent of N and
turns out to be less than 1. This fact has important implications for the stability of the
unitary Fermi gas. We also characterize the domain of the Hamiltonian of this model,
and establish the validity of the Tan relations for all wave functions in the domain.

2.1 Introduction

Models of particles with point interactions are ubiquitously used in physics, as an idealized
description whenever the range of the interparticle interactions is much shorter than other rel-
evant length scales. They were introduced in the early days of quantum mechanics as models
of nuclear interactions [6, 19, 68, 72], but have proved useful in other branches of physics, like
polarons (see [40] and references there) and cold atomic gases [74]. While the two-particle
problem is mathematically completely understood [1], for more than two particles the exis-
tence of a self-adjoint Hamiltonian that is bounded from below and models pairwise point
interactions is a challenging open problem. It is known that such a Hamiltonian can only exist
for fermions with at most two components (or two different species of fermions), due do the
Thomas effect [8, 61, 68, 73].

For N ≥ 2, we consider here a system of N (spinless) fermions of mass 1, interacting with
another particle of mass m via point interactions. The latter are characterized by a parameter
α ∈ R, where −1/α is proportional to the scattering length of the pair interaction [1]. Purely
formally, the Hamiltonian of the system can be thought of as

H = −
1

2m
∆x0 −

1
2

N∑
i=1

∆xi + γ

N∑
i=1

δ(x0 − xi) (2.1.1)
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where xi ∈ R
3, and γ represents an infinitesimal coupling constant. Models of this kind have

been studied extensively in the literature (see, e.g., [10–13, 15, 16, 21, 41–43, 45–47, 49, 65,
71]) and can be defined via a suitable regularization procedure. More precisely, the formal
expression (2.1.1) can be given a meaning in terms of a suitable quadratic form [11, 15, 21],
which will be introduced in the next section. However, only in case the quadratic form is
stable, i.e., bounded from below, does it give rise to a unique self-adjoint operator and hence
gives a precise meaning to (2.1.1). We are interested in this question of stability. We shall show
that there exists a critical mass m∗, independent of N, such that stability holds for m > m∗.
The value of m∗ is determined by a two-dimensional optimization problem of a certain analytic
function. A numerical evaluation of the expression yields m∗ ≈ 0.36.

In particular, the system under consideration is stable for m = 1. This latter case is of
particular importance, in view of constructing a model of a gas of spin 1/2 fermions close
to the unitary limit, where the scattering length becomes much larger than the range of the
interactions. For N + 1 such fermions, our result can be interpreted as proving the existence of
such a model in the sector of total spin (N − 1)/2, i.e., 1 less than the maximal value. Of course
stability holds trivially in the sector of total spin (N + 1)/2, since the particles do not interact in
this case due to the total antisymmetry of the spatial part of the wave functions. We note that
stability in other spin sectors is still an open problem, whose solution would be of great interest
because of the relevance of the model for cold atomic gases (see [74] and references there).
For its solution, it is necessary to understand the problem of stability for general systems of
N + M particles mutually interacting via point interactions. In the case N = M = 2, a numerical
analysis suggests stability, see [42] for the case m = 1 and [18] for the full range of mass ratios
where stability for the 2 + 1 problem holds, i.e., for 0.0735 < m < (0.0735)−1 ≈ 13.6 [8].

2.2 Model and Main Results

Because of translation invariance, it is convenient to separate the center-of-mass motion and to
introduce relative coordinates X =

(
mx0 +

∑N
i=1 xi

)
/(m + N), yi = xi − x0 for 1 ≤ i ≤ N in the

usual way. With their aid we can formally write the operator H in (2.1.1) as H = Hcm + m+1
2m Hrel,

where Hcm = −(2(m + N))−1∆X and

Hrel = −

N∑
i=1

∆yi −
2

m + 1

∑
1≤i< j≤N

∇yi · ∇y j + γ̃

N∑
i=1

δ(yi) (2.2.1)

for γ̃ = 2mγ/(m+1). The latter operator acts on purely anti-symmetric functions of N variables
only.

The formal expression (2.2.1) can be given a meaning in terms of a suitable quadratic form
[11, 15, 21], which will be introduced in the next subsection.
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2.2.1 Quadratic Form and Stability

The model under consideration here is defined via a quadratic form Fα as follows. For µ > 0
and qi ∈ R

3, 1 ≤ i ≤ N, let

G(q1, . . . , qN) B

 N∑
i=1

q2
i +

2
m + 1

∑
1≤i< j≤N

qi · q j + µ


−1

(2.2.2)

The quadratic form Fα has the domain

D(Fα) =
{
u ∈ L2

as(R
3N) | u = w + Gξ,w ∈ H1

as(R
3N), ξ ∈ H1/2

as (R3(N−1))
}

(2.2.3)

where Gξ is short for the function with Fourier transform

Ĝξ(q1, . . . , qN) = G(q1, . . . , qN)
N∑

i=1

(−1)i+1ξ̂(q1, . . . , qi−1, qi+1, . . . , qN) (2.2.4)

and the subscript “as” indicates functions that are antisymmetric under permutations. For u ∈
D(Fα), we have

Fα(u) =

〈
w

∣∣∣∣∣−∑N

i=1
∆i −

2
m + 1

∑
1≤i< j≤N

∇i · ∇ j + µ

∣∣∣∣∣ w〉
− µ ‖u‖2L2(R3N )

+ N
(
α ‖ξ‖2L2(R3(N−1)) + Tdiag(ξ) + Toff(ξ)

)
(2.2.5)

where

Tdiag(ξ) B
∫
R3(N−1)

|ξ̂(s, ~q)|2L(s, ~q) ds d~q

Toff(ξ) B (N − 1)
∫
R3N

ξ̂∗(s, ~q)ξ̂(t, ~q)G(s, t, ~q) ds dt d~q (2.2.6)

We introduced ~q B (q1, . . . , qN−2) for short, and the function L is given by

L(q1, . . . , qN−1) B 2π2

m(m + 2)
(m + 1)2

N−1∑
i=1

q2
i +

2m
(m + 1)2

∑
1≤i< j≤N−1

qi · q j + µ


1/2

(2.2.7)

Note that since Gξ < H1(R3N) for ξ , 0, the decomposition of u as u = w + Gξ is unique.
Moreover, while w depends on µ, ξ is independent of the choice of µ.

Clearly Tdiag(ξ) is bounded above and below by ‖ξ‖2H1/2(R3(N−1)), and also Toff(ξ) is bounded
in H1/2(R3(N−1)) (see Sect. 2.3). One readily checks that both D(Fα) and Fα(u) are actually
independent of µ for µ > 0, even though Tdiag(ξ) and Toff(ξ) depend on µ. The domain D(Fα) is
also independent of α ∈ R. Moreover, under the scaling u→ uλ( · ) = λ3N/2u(λ · ) for λ > 0, Fα

changes as Fα(uλ) = λ2Fλ−1α(u). In particular, F0 is homogeneous of order 2 under scaling.

The quadratic form Fα can be obtained as a limit of a suitably regularized version of (2.2.1),
see [15] and [11, Appendix A]. As we shall see in the next subsection, the parameter α equals
−2π2/a, where a denotes the scattering length of the pair interaction. We note that other choices
for quadratic forms are possible in the unitary case α = 0 for small mass m, see [12].
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To state our main result, we define, for any m > 0,

Λ(m) = sup
s,K∈R3,Q>0

s2 + Q2

π2(1 + m)
`m(s,K,Q)−1/2

∫
R3

1
t2 `m(t,K,Q)−1/2

×
|(s + AK) · (t + AK)|[

(s + AK)2 + (t + AK)2 + m
1+m (Q2 + AK2)

]2
−

[
2

(1+m) (s + AK) · (t + AK)
]2 dt

(2.2.8)

where A := (2 + m)−1 and

`m(s,K,Q) :=
(

m
(m + 1)2 (s + K)2 +

m
m + 1

(s2 + Q2)
)1/2

(2.2.9)

A somewhat simpler, equivalent expression for Λ(m), involving only the supremum over two
positive parameters, will be given in Section 2.7. We shall show in Section 2.6 that Λ(m) is
finite, and satisfies the upper bound

Λ(m) ≤
4(1 + m)2(2 + 4m + m2)3/2

√
2π [m(m + 2)]3

(2.2.10)

Note that (2.2.10) implies, in particular, that limm→∞Λ(m) = 0.
Our first main result is the following:

Theorem 2.2.1. For any ξ ∈ H1/2
as (R3(N−1)), µ > 0 and N ≥ 2,

Toff(ξ) ≥ −Λ(m)Tdiag(ξ) (2.2.11)

In particular, if m is such that Λ(m) < 1, then Fα is closed and bounded from below by

Fα(u) ≥

 0 for α ≥ 0

−
(

α
2π2(1−Λ(m))

)2
‖u‖2L2(R3N ) for α < 0

(2.2.12)

for all u ∈ D(Fα).

We note that (2.2.12) follows immediately from (2.2.11) in combination with the simple
estimate Tdiag(ξ) ≥ 2π2√µ‖ξ‖2L2(R3(N−1)). For α < 0, one simply chooses µ = α2(2π2(1 −Λ(m))−2,
using the independence of Fα(u) of µ. As a closed and bounded from below quadratic form, Fα

gives rise to a unique self-adjoint operator [57, Thm. VIII.15] for Λ(m) < 1. We shall describe
it in detail in the next subsection.

The lower bound (2.2.12) is sharp as m → ∞. For α < 0, −(α/2π2)2 equals the binding
energy of the two-particle problem with point interactions. As m→ ∞, only one of the fermions
can be bound, hence the ground state energy becomes independent of N in that limit.

We emphasize that in contrast to the previous work [11,13] we prove a bound on the critical
mass that is independent of N and, in particular, does not grow as N gets large. Also the lower
bound (2.2.12) is independent of N.

We shall prove Theorem 2.2.1 in Section 2.4 below. The right side of (2.2.10) turns out to
be less than 1 for m ≥ 1.76, and hence stability holds in that region. For m = 1, it equals about
2.47, however, and is larger than 1 as a result of the rather crude bounds leading to (2.2.10).

In Section 2.7 we evaluate Λ(m) numerically and show that it satisfies Λ(1) < 1. In fact,
from the numerics we shall see that Λ(m) < 1 if m ≥ 0.36 (see Fig. 2.1). Recall that Fα is known
to be unbounded from below [11, Thm. 2.2] for any N ≥ 2 for m ≤ 0.0735. In particular, the
critical mass for stability satisfies 0.0735 < m∗ < 0.36.
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Figure 2.1: Numerical evaluation of Λ(m) defined in (2.2.8). In the region Λ(m) < 1, we
prove stability of the system. Asymptotically, Λ(m) ≈ 1/(2

√
2m) for large m (and in fact,

approximately within a few percent in the whole region m & 1). For Λ1(m) < 1, we prove
that the domain of the operator Γ in (2.2.13) equals H1

as(R
3(N−1)). Moreover, for Λ2(m) < 1

the boundary condition in (2.2.18) implies that for every function in the domain of Hα one has
ξ ∈ H3/2

as (R3(N−1)).

2.2.2 Hamiltonian

For Λ(m) < 1, Theorem 2.2.1 implies that

Tdiag(ξ) + Toff(ξ) = 〈ξ|Γξ〉 (2.2.13)

defines a positive selfadjoint operator Γ on L2
as(R

3(N−1)), with domain D(Γ) ⊂ H1/2
as (R3(N−1)). In

fact,
Γ ≥ (1 − Λ(m)) L ≥ (1 − Λ(m)) 2π2√µ (2.2.14)

where L is short for the multiplication operator in momentum space defined by (2.2.7).
It is not difficult to see that H1

as(R
3(N−1)) ⊂ D(Γ) (see Sect. 2.3), but this inclusion could

possibly be strict. In fact, it was shown in [46, 47] in the case N = 2 that Γ is not selfadjoint
on H1 for certain small m, but admits a one-parameter family of semi-bounded self-adjoint
extensions. In contrast, the following theorem implies that D(Γ) = H1

as(R
3(N−1)) for larger m,

more precisely for Λ1(m) < 1, which is slightly more restrictive than our regime of stability,
Λ(m) < 1.

To state our result, we define, analogously to (2.2.8), for β ≥ 0 and m > 0,

Λβ(m) = sup
s,K∈R3,Q>0

s2 + Q2

π2(1 + m)

∫
R3

1
t2

(
`m(s,K,Q)(β−1)/2

`m(t,K,Q)(β+1)/2 +
`m(t,K,Q)(β−1)/2

`m(s,K,Q)(β+1)/2

)
×

|(s + AK) · (t + AK)|[
(s + AK)2 + (t + AK)2 + m

1+m (Q2 + AK2)
]2
−

[
2

(1+m) (s + AK) · (t + AK)
]2 dt

(2.2.15)

Note that the integrand in (2.2.15) is increasing and convex in β, hence Λβ(m) is, as a supremum
over such functions, also increasing and convex. We have Λβ(m) ≥ Λ0(m) = 2Λ(m). We shall
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show in Section 2.6 that Λβ(m) is finite for β < 3 and satisfies limm→∞Λβ(m) = 0. In particular,
from the convexity it then follows that Λβ(m) is continuous in β for 0 ≤ β < 3.

Theorem 2.2.2. For any ξ ∈ H1
as(R

3(N−1)), µ > 0 and N ≥ 2,

‖Γξ‖2L2(R3(N−1)) ≥ (1 − Λ1(m)) ‖Lξ‖2L2(R3(N−1)) (2.2.16)

In particular, if Λ1(m) < 1, then D(Γ) = D(L) = H1
as(R

3(N−1)). More generally, for 0 ≤ β ≤ 2,

‖L(β−1)/2Γξ‖2L2(R3(N−1)) ≥
(
1 − Λβ(m)

)
‖L(β+1)/2ξ‖2L2(R3(N−1)) (2.2.17)

for all ξ ∈ H(β+1)/2
as (R3(N−1)).

The proof of Theorem 2.2.2 will be given in Section 2.5. A numerical evaluation of Λβ(m)
yields Λ1(m) < 1 for m ≥ 0.72, while Λ2(m) < 1 for m ≥ 0.82 (see Fig. 2.1).

In terms of D(Γ), the self-adjoint operator Hα defined by the quadratic form Fα in (2.2.5)
can be constructed in a straightforward way following the analogous construction in the two-
dimensional case in [15, Sect. 5] (see also [11, 21, 46, 47, 66]). The result is

D(Hα) =
{
u ∈ L2

as(R
3N) | u = w + Gξ,w ∈ H2

as(R
3N), ξ ∈ D(Γ),w�yN=0= (2π)−3/2(−1)N+1(α + Γ)ξ

}
(2.2.18)

and Hα acts on u ∈ D(Hα) as

(Hα + µ) u =

− N∑
i=1

∆yi −
2

m + 1

∑
1≤i< j≤N

∇yi · ∇y j + µ

 w (2.2.19)

Note that as an H2-function, w has an L2-restriction to the hyperplane yN = 0, and the last
identity in (2.2.18) has to be understood as an identity of functions in L2

as(R
3(N−1)). In fact, the

restriction of the H2-function w to the hyperplane yN = 0 is an H1/2 function, and hence we
conclude that for any u ∈ D(Hα), the corresponding ξ satisfies Γξ ∈ H1/2. The last part of
Theorem 2.2.2 thus implies that for Λ2(m) < 1, ξ is necessarily in H3/2.

The last identity in (2.2.18) encodes the boundary condition satisfied by functions u ∈
D(Hα) at the origin. To see this, consider the behavior of the function Gξ as yN → 0 or,
equivalently, the integral of (2.2.4) over qN in a large ball. A short calculation using (2.2.4)
shows that

lim
K→∞

∫
|qN |<K

(
Ĝξ(q1, . . . , qN) −

1
q2

N

(−1)N+1ξ̂(q1, . . . qN−1)
)

dqN

=

∫
R3

G(q1, . . . , qN)
N−1∑
i=1

(−1)i+1ξ̂(q1, . . . , qi−1, qi+1, . . . , qN)

 dqN

+ (−1)N+1ξ̂(q1, . . . qN−1) lim
K→∞

∫
|qN |<K

(
G(q1, . . . , qN) −

1
q2

N

)
dqN

= (−1)NΓ̂ξ(q1, . . . , qN−1) (2.2.20)

where we have used that

L(q1, . . . , qN−1) = − lim
K→∞

∫
|qN |<K

(
G(q1, . . . , qN) −

1
q2

N

)
dqN (2.2.21)
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We conclude that the boundary condition in (2.2.18) implies that any u ∈ D(Hα) has the asymp-
totic behavior∫

|qN |<K
û(q1, . . . , qN) dqN ≈ (4πK + α) (−1)N+1ξ̂(q1, . . . , qN−1) as K → ∞. (2.2.22)

In particular, u diverges as 2π2/|yN | + α as |yN | → 0, and hence α is to be interpreted as α =

−2π2/a with a the scattering length of the point interaction. A precise formulation of this
divergence in configuration space will be given in Proposition 1 in the next subsection.

As in the case of the corresponding quadratic form, Hα is independent of the parameter
µ used in its construction. Under a unitary scaling of the form Uλψ( · ) = λ3(N+1)/2ψ(λ · ), it
transforms as U−1

λ HαUλ = λ2Hλ−1α. Note that in contrast to D(Fα), the domain D(Hα) does
depend on α.

2.2.3 Tan Relations

In [62–64], Tan derived a number of identities that should hold for any system of particles with
point interactions (see also the review [7] and the references there). These can be experimen-
tally tested, see [30,54,55,60,69]. In this section, we shall present a rigorous version of the Tan
relations for the Hamiltonian Hα constructed in the last subsection. The analysis in this section
does not actually use the self-adjointness and analogous results also hold for the general N + M
system, irrespective of its stability and the self-adjointness of the corresponding Hα. We shall
work with the assumption ξ ∈ H1, however, which is guaranteed to be the case for Λ1(m) < 1,
by Theorem 2.2.2.

In order to state the results, we have to re-introduce the center-of-mass motion. The Hilbert
space for the N + 1 system is thus L2(R3)⊗ L2

as(R
3N), and the form domain of the corresponding

quadratic form, which we denote by Fα, equals

D(Fα) =
{
ψ = φ + Gξ | φ ∈ H1(R3) ⊗ H1

as(R
3N), ξ ∈ H1/2(R3) ⊗ H1/2

as (R3(N−1))
}

(2.2.23)

where

G(k0, k1, . . . , kN) B

 1
2m

k2
0 +

1
2

N∑
i=1

k2
i + µ

−1

, (2.2.24)

Gξ is short for the function with Fourier transform

Ĝξ(k0, k1, . . . , kN) = G(k0, k1, . . . , kN)
N∑

i=1

(−1)i+1ξ̂(k0 + ki, k1, . . . , ki−1, ki+1, . . . , kN) (2.2.25)

and, compared to (2.2.3), we have absorbed a factor m+1
2m into the definition of ξ for simplicity.

For ψ ∈ D(Fα), we have

Fα(ψ) =

〈
φ

∣∣∣∣∣∣∣− 1
2m

∆x0 −
1
2

N∑
i=1

∆xi + µ

∣∣∣∣∣∣∣ φ
〉
− µ ‖ψ‖2L2(R3(N+1))

+ N
(

2m
m + 1

α ‖ξ‖2L2(R3N ) + Tdiag(ξ) + Toff(ξ)
)

(2.2.26)
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where

Tdiag(ξ) B
∫
R3N
|ξ̂(k0, k1,~k)|2L(k0, k1,~k) dk0 dk1 d~k

Toff(ξ) B (N − 1)
∫
R3(N+1)

ξ̂∗(k0 + s, t,~k)ξ̂(k0 + t, s,~k)G(k0, s, t,~k) dk0 ds dt d~k (2.2.27)

and we used ~k = (k2, . . . , kN−1) for short. The function L is given by

L(k0, k1, . . . , kN−1) B 2π2
(

2m
m + 1

)3/2  k2
0

2(m + 1)
+

1
2

N−1∑
i=1

k2
i + µ

1/2

(2.2.28)

Theorem 2.2.1 implies that

Toff(ξ) ≥ −Λ(m)Tdiag(ξ) for all ξ ∈ H1/2(R3) ⊗ H1/2
as (R3(N−1)). (2.2.29)

To see this, one can either mimic the proof of Theorem 2.2.1, or one simply argues as follows.
Displaying the dependence on µ explicitly via a superscript in the expressions for Tdiag/off and
Tdiag/off in (2.2.6) and (2.2.27), respectively, it is straightforward to check that

T
µ

diag/off
(ξ) =

2m
m + 1

∫
R3

T µ̃P
diag/off

(ηP) dP (2.2.30)

where µ̃P = 2m
m+1 (µ + P2

2(m+N) ) and

η̂P(q1, . . . , qN−1) = ξ̂
(

m+1
m+N P −

∑N−1

j=1
q j, q1 + 1

m+N P, . . . , qN−1 + 1
m+N P

)
(2.2.31)

which is in H1/2
as (R3(N−1)) for almost every P ∈ R3. Since the bound (2.2.11) is uniform in µ,

(2.2.29) follows.

Analogously to the discussion in the previous subsection, for Λ(m) < 1 the quadratic form
Tdiag(ξ) + Toff(ξ) defines a positive self-adjoint operator Γ̃ on L2(R3) ⊗ L2

as(R
3(N−1)). Explicitly,

Γ̃ acts as

̂̃Γξ(k0, k1, . . . , kN−1)

= L(k0, k1, . . . , kN−1)ξ̂(k0, k1, . . . , kN−1)

+

N−1∑
j=1

(−1) j+1
∫
R3
G(k0 − s, s, k1, . . . , kN−1)ξ̂(k0 + k j − s, s, k1, . . . , k j−1, k j+1, . . . , kN−1) ds

(2.2.32)

Theorem 2.2.2 implies that the domain D(Γ̃) equals H1(R3)⊗H1
as(R

3(N−1)) in the case Λ1(m) < 1.
The domain of the self-adjoint operatorHα corresponding to the quadratic form Fα is given by
those ψ ∈ D(Fα) where φ ∈ H2(R3) ⊗ H2

as(R
3N), ξ ∈ D(Γ̃) and the boundary condition

φ �xN=x0=
(−1)N+1

(2π)3/2

(
2mα
m + 1

+ Γ̃

)
ξ (2.2.33)
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is satisfied. The HamiltonianHα acts as

(Hα + µ)ψ =

− 1
2m

∆x0 −
1
2

N∑
i=1

∆xi + µ

 φ (2.2.34)

It commutes with translations and rotations, and transforms under scaling in the same way as
discussed for Hα at the end of the previous subsection.

The connection between the boundary condition (2.2.33) and the asymptotic behavior of
ψ ∈ D(Hα) as |xN − x0| → 0 is explored in the following proposition, whose proof will be given
in Section 2.8.

Proposition 1. For any ψ ∈ D(Hα) with ξ ∈ H1(R3N), we have

ψ
(
R + r

1+m , x1, . . . , xN−1,R − mr
1+m

)
=

(
2π2

|r|
+ α

)
2m

m + 1
(−1)N+1

(2π)3/2 ξ(R, x1, . . . xN−1)

+ υ(R, x1, . . . , xN−1, r) (2.2.35)

with υ( · , r) ∈ L2(R3N) for all r ∈ R3, and limr→0 ‖υ( · , r)‖L2(R3N ) = 0.

Proposition 1 immediately implies a two-term asymptotics for the two-particle density

ρ(r) = N
∫
R3N

∣∣∣∣ψ (
R + r

1+m , x1, . . . , xN−1,R − mr
1+m

)∣∣∣∣2 dR dx1 · · · dxN−1 (2.2.36)

as r → 0. In fact, ρ satisfies

ρ(r) =
π

2

(
1
|r|2
−

2
|r|a

)
C + g(r) with lim

r→0
|rg(r)| = 0 (2.2.37)

where a = −2π2/α denotes the scattering length and

C =

(
2m

m + 1

)2

N‖ξ‖2L2(R3N ) (2.2.38)

In the physics literature, C is called the contact [62–64]. It turns out to play a crucial role in
various other relevant quantities, as we shall demonstrate now.

For general ψ ∈ L2(R3)⊗L2
as(R

3N), the momentum densities of the mass m (spin up) particle
n↑(k) and of the mass 1 (spin-down) particles n↓(k) are defined as

n↑(k) =

∫
R3N
|ψ̂(k, k1, . . . , kN)|2 dk1 · · · dkN , n↓(k) = N

∫
R3N
|ψ̂(k0, k, k2, . . . , kN)|2 dk0 dk2 · · · dkN

(2.2.39)
Our rigorous formulation of the Tan relation for the energy is as follows.

Theorem 2.2.3. For ψ ∈ D(Hα) with ξ ∈ H1(R3N), let C be given in (2.2.38), and let

p↑ =
2m

m + 1
‖ξ‖−2

L2(R3N )

∫
R3N

k1|ξ̂(k1, . . . , kN)|2 dk1 · · · dkN , p↓ =
1
m

p↑. (2.2.40)
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Then

k 7→ k2n↑(k) −
C

|k − p↑|2
∈ L1(R3) and k 7→ k2n↓(k) −

C

|k − p↓|2
∈ L1(R3) (2.2.41)

and we have the identity

〈ψ|Hαψ〉 =

∫
R3

[
1

2m

(
k2n↑(k) −

C

|k − p↑|2

)
+

1
2

(
k2n↓(k) −

C

|k − p↓|2

)]
dk −

m + 1
2m
Cα (2.2.42)

Since C, p↑ and p↓ are uniquely determined by the momentum densities via (2.2.41),
Eq. (2.2.42) expresses the energy solely in terms of the momentum densities. The set of possi-
ble momentum densities arising from wave functions ψ ∈ D(Hα) is not known, however, and
can be expected to depend in a complicated way on both α and N.

The contact C thus determines the asymptotic behavior of both n↑(k) and n↓(k), via n↑(k) ≈
n↓(k) ≈ C|k|−4 for large |k|. In fact, up to terms decaying faster than |k|−5, we have for large |k|

n↑(k) + n↓(k) ≈
C

|k|2|k − p↑|2
+

C

|k|2|k − p↓|2
≈

C

|k − P|4
(2.2.43)

for P = 1
2 (p↑ + p↓) = ‖ξ‖−2

L2(R3N )

∫
R3N k1|ξ̂(k1, . . . , kN)|2 dk1 . . . dkN . Note also that due to the fact

that limK→∞

∫
|k|<K

(|k|−2 − |k − p|−2) dk = 0 for any p ∈ R3, one can rewrite the identity (2.2.42)
as

〈ψ|Hαψ〉 = lim
K→∞

∫
|k|<K

[
k2

2m

(
n↑(k) −

C

|k|4

)
+

k2

2

(
n↓(k) −

C

|k|4

)]
dk −

m + 1
2m
Cα (2.2.44)

For any stationary state, the contact C can be computed as the derivative of the energy with
respect to α, by the Feynman-Hellmann principle. In fact, for fixed ψ (and hence fixed ξ),

∂

∂α
Fα(ψ) =

m + 1
2m
C (2.2.45)

Note that it is important to use the quadratic form formulation here, as the domain of Hα

depends on α and hence ψ cannot be fixed when taking the derivative of 〈ψ|Hαψ〉 with respect
to α. Note also the minus sign in front of the last term in (2.2.42); a naive derivative of (2.2.42)
would give the wrong sign!

The L1-property (2.2.41) claimed in Theorem 2.2.3 does not make use of the boundary
condition (2.2.33) satisfied by ψ ∈ D(Hα) and holds more generally, in fact. The identity
(2.2.42) only holds for ψ satisfying (2.2.33), however; i.e., it holds for all functions ψ in the
domain of Hα. (As already mentioned in the beginning of this section, self-adjointness of Hα

on this domain is not actually needed here. In particular, Theorem 2.2.3 holds for all m > 0.)

The equations (2.2.37), (2.2.41), (2.2.42) and (2.2.45) can be interpreted as a rigorous for-
mulation of the Tan relations introduced in [62–64]. There is actually one more relation, a virial
type theorem. It is an immediate consequence of the relation U−1

λ HαUλ = λ2Hλ−1α for scaling
the variables by λ > 0 and we shall not discuss it further here.

The proof of Theorem 2.2.3 will be given in Section 2.9.



36

2.3 Preliminaries

Before giving the proof of the results in the previous section, we collect here a few auxiliary
facts that will be used in the proofs.

Lemma 2.3.1. The operator σ on L2(R3) with integral kernel

σ(s, t) = (s2 + 1)(β−1)/4(t2 + 1)−(β+1)/4 1
s2 + t2 + λs · t + 1

(2.3.1)

is bounded for −2 < λ < 2 and −2 < β < 2.

Proof. We use the Schur test in the form

‖σ‖ ≤
1
2

sup
s

h(s)
∫
R3

h(t)−1 (|σ(s, t)| + |σ(t, s)|) dt (2.3.2)

for any positive function h, which is a consequence of the Cauchy-Schwarz inequality. Since
|λ| < 2, a pointwise estimate of the kernel reduces the problem to the case λ = 0. Choosing
h(t) = (t2 + 1)γ one easily checks that the right side of (2.3.2) is finite if and only if (1 + |β|)/4 <
γ < (5 − |β|)/4. �

In the special case β = 0, Lemma 2.3.1 can be used to show that, for some c > 0, |Toff(ξ)| ≤
c(N − 1)Tdiag(ξ) for all ξ ∈ H1/2

as (R3(N−1)). In particular, Fα is well-defined on its domain (2.2.3).
Similarly, ‖L(β−1)/2Γξ‖L2(R3(N−1)) is finite for ξ ∈ H(β+1)/2

as (R3(N−1)) for 0 ≤ β < 2. For β = 1, this
implies that the domain of Γ contains H1

as(R
3(N−1)).

Lemma 2.3.2. The operator σ on L2(R3) with integral kernel

σ(s, t) =

(
(s2 + ν)(β−1)/4

(t2 + ν)(β+1)/4 +
(t2 + ν)(β−1)/4

(s2 + ν)(β+1)/4

)
1

s2 + t2 + λs · t + 1
(2.3.3)

is bounded and non-negative for −2 < β < 2, ν ≥ 1/2 and −2 < λ ≤ 0.

Proof. Boundedness follows immediately from Lemma 2.3.1. For β = 0, positivity can be
deduced from the integral representation(

t2 + s2 + λs · t + 1
)−1

=

∫ ∞

0
e−r(1+λ/2)t2e−r(1+λ/2)s2

erλ(t−s)2/2e−r dr , (2.3.4)

noting that −2 < λ ≤ 0 and that the Gaussian has a positive Fourier transform. We are thus left
with proving positivity for β , 0. Without loss of generality, we may assume β > 0, since σ is
invariant under the transformation β→ −β. To this aim, we use

x−β/2 = cβ

∫ ∞

0

1
x + r

r−β/2 dr (2.3.5)

with cβ = π−1 sin
(
π
2β

)
for x > 0 and 0 < β < 2 to rewrite the kernel as

σ(s, t) = cβ(s2 + ν)(β−1)/4(t2 + ν)(β−1)/4
∫ ∞

0

(
1

s2 + ν + r
+

1
t2 + ν + r

)
r−β/2

s2 + t2 + λs · t + 1
dr

(2.3.6)
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Let us rewrite the integrand further as

r−β/2
1

s2 + ν + r
1

t2 + ν + r
s2 + t2 + 2(ν + r)
s2 + t2 + λs · t + 1

= r−β/2
1

s2 + ν + r
1

t2 + ν + r

(
1 +

2(ν + r) − 1 − λs · t
s2 + t2 + λs · t + 1

)
(2.3.7)

Using again (2.3.4), as well as 2(ν+r) ≥ 1 and λ ≤ 0, we see that (2.3.7) defines a non-negative
operator. This completes the proof. �

Lemma 2.3.3. Consider the bounded operatorσ on L2(R3) with integral kernel given by (2.3.3)
for −2 < β < 2, ν ≥ 1/2 and 0 ≤ λ < 2. Its positive and negative parts are the operators with
kernels

σ+(s, t) =
1
2

(σ(s, t) + σ(s,−t))

σ−(s, t) = −
1
2

(σ(s, t) − σ(s,−t)) (2.3.8)

respectively.

Proof. Let R denote the reflection operator (Rϕ)(s) = ϕ(−s) for ϕ ∈ L2(R3). The operators
R and σ clearly commute. Moreover, the product σR equals the operator with integral kernel
(2.3.3) and λ replaced by −λ, which was shown to be non-negative in Lemma 2.3.2. One readily
checks that this implies that the positive and negative parts of σ are given by

σ± = ±
1
2
σ (1 ± R) , (2.3.9)

respectively. In fact, clearly σ+σ− = σ−σ+ = 0, and σ± = 1
2σR(1 ± R), which is a product of

two commuting nonnegative operators. �

2.4 Proof of Theorem 2.2.1

We assume N ≥ 3 and define, for fixed ~q ∈ R3(N−2) and −2 < β < 2, an operator τβ on L2(R3)
via the quadratic form

〈ϕ|τβ|ϕ〉 =
1
2

∫
R6
ϕ∗(s)ϕ(t)

(
L(s, ~q)(β−1)/2

L(t, ~q)(β+1)/2
+

L(t, ~q)(β−1)/2

L(s, ~q)(β+1)/2

)
G(s, t, ~q) ds dt (2.4.1)

where L and G are defined in (2.2.7) and (2.2.2), respectively. Let K :=
∑N−2

i=1 qi, and recall that
A = 1/(m + 2). The following observation is key to our further investigation. We shall need it
here for β = 0 only, but state it more generally for later use in the proof of Theorem 2.2.2.

Lemma 2.4.1. The operator τβ defined in (2.4.1) is bounded on L2(R3). Its positive and nega-
tive parts, τβ±, are the operators with integral kernels

τ
β
+(s, t; ~q) =

1
4

(
L(s, ~q)(β−1)/2

L(t, ~q)(β+1)/2
+

L(t, ~q)(β−1)/2

L(s, ~q)(β+1)/2

) (
G(s, t, ~q) + G(s,−t − 2AK, ~q)

)
τ
β
−(s, t; ~q) = −

1
4

(
L(s, ~q)(β−1)/2

L(t, ~q)(β+1)/2
+

L(t, ~q)(β−1)/2

L(s, ~q)(β+1)/2

) (
G(s, t, ~q) −G(s,−t − 2AK, ~q)

)
(2.4.2)

respectively.



38

Proof. Let Q2 :=
∑N−2

i=1 q2
i , and define λ := 2/(m + 1). A simple calculation shows that

G(s − AK, t − AK, ~q)−1 = t2 + s2 + λs · t + C (2.4.3)

where
C = C(~q) =

m
m + 1

(
AK2 + Q2

)
+ µ (2.4.4)

Similarly,

L(s − AK, ~q) = 2π2
(
m(m + 2)
(m + 1)2 s2 + C

)1/2

(2.4.5)

In particular, after a unitary translation by AK, the operator τβ becomes the operator σ with
integral kernel

σ(s, t) =
m + 1
4π2


[
m(m + 2)s2 + (m + 1)2C

](β−1)/4[
m(m + 2)t2 + (m + 1)2C

](β+1)/4 +

[
m(m + 2)t2 + (m + 1)2C

](β−1)/4[
m(m + 2)s2 + (m + 1)2C

](β+1)/4


×

(
t2 + s2 + λs · t + C

)−1
(2.4.6)

After a simple rescaling of the variables by
√

C, this is exactly of the form (2.3.3), with ν =

(m + 1)2/(m(m + 2)) > 1/2 (in fact, > 1). Hence boundedness of σ follows from Lemma 2.3.1.
Moreover, Lemma 2.3.3 applies, which states that the positive and negative parts of σ are given
by

σ± = ±
1
2
σ (1 ± R) , (2.4.7)

where R denotes reflection. Undoing the unitary translation by AK, this leads to the statement
of the lemma. �

For ξ ∈ H1/2
as (R3(N−1)), we define ϕ ∈ L2

as(R
3(N−1)) by ϕ(s, ~q) = L(s, ~q)1/2ξ̂(s, ~q). Then

Tdiag(ξ) = ‖ϕ‖2L2(R3(N−1)), and

Toff(ξ) = (N − 1)
∫
R3N

ϕ∗(s, ~q)ϕ(t, ~q)L(s, ~q)−1/2L(t, ~q)−1/2G(s, t, ~q) ds dt d~q

≥ −(N − 1)
∫
R3N

ϕ∗(s, ~q)ϕ(t, ~q)τ0
−(s, t; ~q) ds dt d~q (2.4.8)

where we simply dropped the positive part of the operator τ0 appearing on the right side. Its
negative part, τ0

−, is explicitly identified in Lemma 2.4.1. To proceed, we use the fact that ϕ is
antisymmetric. We introduce

τ̃−(s, ~q, t, ~̀) = τ0
−(s, t; ~q)δ(~q − ~̀) (2.4.9)

for ~̀ ∈ R3(N−2), and rewrite the term on the right side of (2.4.8) as

(N − 1)
∫
R3N

ϕ∗(s, ~q)ϕ(t, ~q)τ0
−(s, t; ~q) ds dt d~q

=

N−2∑
i=0

∫
R6(N−1)

ϕ∗(s, ~q)ϕ(t, ~̀)τ̃−(qi, q̂i, `i, ˆ̀i) ds dt d~q d~̀ (2.4.10)



39

where q̂i = (q1, . . . , qi−1, s, qi+1, . . . , qN−2) and ˆ̀i = (`1, . . . , `i−1, t, `i+1, . . . , `N−2) for 1 ≤ i ≤
N − 2, as well as q0 = s, q̂0 = ~q, `0 = t, ˆ̀0 = ~̀. To bound this last expression, we use the
Schwarz inequality, as in (2.3.2), to obtain

(2.4.10) ≤ ‖ϕ‖2L2(R3(N−1)) sup
s,~q

h(s, ~q)
N−2∑
i=0

∫
R3(N−1)

h(t, ~̀)−1|τ̃−(qi, q̂i, `i, ˆ̀i)| dt d~̀ (2.4.11)

for any positive function h. Assume that h is symmetric with respect to permutations. Inserting
the special structure (2.4.9), the expression on the right side of (2.4.11) then equals

‖ϕ‖2L2(R3(N−1)) sup
s,~q

h(s, ~q)
N−2∑
i=0

∫
R3

h(t, q̂i)−1|τ0
−(qi, t; q̂i)| dt (2.4.12)

We shall choose h(s, ~q) = s2 ∏N−2
j=1 q2

j in (2.4.12). The resulting bound is then

(2.4.10) ≤ ‖ϕ‖2L2(R3(N−1)) sup
s,~q

N−2∑
i=0

∫
R3

q2
i

t2 |τ
0
−(qi, t; q̂i)| dt

≤ ‖ϕ‖2L2(R3(N−1)) sup
s,~q

(
s2 + Q2

)
max

0≤i≤N−2

∫
R3

1
t2 |τ

0
−(qi, t; q̂i)| dt (2.4.13)

where we again use the notation Q2 =
∑N−2

i=1 q2
i , as in the proof of Lemma 2.4.1. Since for any

1 ≤ i ≤ N − 2, s2 + Q2 is symmetric under exchange of s and qi, we can drop the maximum
over i when taking the supremum over s and ~q, and simply take i = 0 (or any other value of i,
in fact). We thus arrive at

(2.4.10) ≤ ‖ϕ‖2L2(R3(N−1)) sup
s,~q

(
s2 + Q2

) ∫
R3

1
t2 |τ

0
−(s, t; ~q)| dt (2.4.14)

To complete the proof of (2.2.11), we need to show that the term multiplying ‖ϕ‖2L2(R3(N−1)) =

Tdiag(ξ) on the right side of (2.4.14) is bounded by Λ(m). Recall the explicit expression of
τ0
−(s, t; ~q), given in (2.4.2) above. We have

|τ0
−(s, t; ~q)| =

1
π2(1 + m)

(
m

(m + 1)2 (s + K)2 +
m

m + 1
(s2 + Q2) + µ

)−1/4

×

(
m

(m + 1)2 (t + K)2 +
m

m + 1
(t2 + Q2) + µ

)−1/4

×
|(s + AK) · (t + AK)|[

(s + AK)2 + (t + AK)2 + m
1+m (Q2 + AK2) + µ

]2
−

[
2

(1+m) (s + AK) · (t + AK)
]2

(2.4.15)

For an upper bound, we can replace µ by 0. Moreover, we can replace the supremum over
~q ∈ R3(N−2) by a supremum over all Q > 0 and K ∈ R3. This yields (2.2.11).

To complete the proof of Theorem 2.2.1, we have to show that Fα is closed for Λ(m) < 1.
This was already proved in [11, Thm. 2.1], we include the proof here for completeness. Given
a sequence un ∈ D(Fα) with ‖un − um‖L2(R3N ) → 0 and Fα(un − um) → 0 as n,m → ∞, we need
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to show that there exists a u ∈ D(Fα) with limn→∞ ‖un − u‖L2(R3N ) = 0 and limn→∞ Fα(un − u) =

0. We choose any µ > 0 for α ≥ 0, and µ > α2(2π(1 − Λ(m))−2 for α < 0. For such a
choice, writing un = wn + Gξn, the bound (2.2.11) implies that ‖wn − wm‖H1(R3N ) → 0 and
‖ξn − ξm‖H1/2(R3(N−1)) → 0 as n,m → ∞, and hence wn → w and ξn → ξ for some w and ξ,
respectively, in the corresponding norms. Since ‖G(ξn − ξm)‖L2(R3N ) ≤ const‖ξn − ξm‖L2(R3(N−1)),
un converges to u = w + Gξ in L2(R3N). Moreover, since |Fα(un − u)| is bounded from above
by const(‖wn − w‖2H1(R3N ) + ‖ξn − ξ‖

2
H1/2(R3(N−1))) (compare with the remark after Lemma 2.3.1 in

Section 2.3), the result follows. �

Remark 2.4.2. It is worth pointing out that the antisymmetry of the wave functions enters our
proof of stability in three different ways. The first two concern the very definition of the model.
First, there are no point interactions among the N particles of mass 1 themselves, due to the
antisymmetry which forces the wave functions to vanish at particle coincidences. Second, the
term Toff in the definition (2.2.5) of the quadratic form Fα enters with a plus sign, while it would
have a minus sign for bosons. This fact is crucial, as it allows to work with the negative part
of the operator τ0 in (2.4.1) instead of the positive part, which is larger. And third, we use the
symmetry to replace the factor (N − 1) by a sum over particles in (2.4.10).

This last step would also work for bosons, only the symmetry of the absolute value of the
wave functions is important. For the first two points, however, the antisymmetry is crucial. In
the bosonic case, there is instability for any N ≥ 2 and any 0 < m < ∞ [8,61,73] (a fact known
as the Thomas effect [68]). While Toff can be bounded from below by −Tdiag, as Theorem 2.2.1
shows, it is in fact known that Toff(ξ) ≤ Tdiag(ξ) is false for suitable ξ for any m [11].

2.5 Proof of Theorem 2.2.2

Let us define the operator J by Γ = L + J, i.e., Toff(ξ) = 〈ξ|Jξ〉 for ξ ∈ H1
as(R

3(N−1)). For
0 ≤ β < 2, we have

‖L(β−1)/2Γξ‖2L2(R3(N−1)) = ‖L(β+1)/2ξ‖2L2(R3(N−1)) + 〈ξ|(JLβ + LβJ)ξ〉 + ‖L(β−1)/2Jξ‖2L2(R3(N−1))

≥ ‖L(β+1)/2ξ‖2L2(R3(N−1)) + 〈ξ|(JLβ + LβJ)ξ〉 (2.5.1)

for all ξ ∈ H(β+1)/2
as (R3(N−1)). The result (2.2.17) thus follows if we can show that

〈ξ|(JLβ + LβJ)ξ〉 ≥ −Λβ(m)‖L(β+1)/2ξ‖2L2(R3(N−1)) (2.5.2)

With ϕ = L(β+1)/2ξ this reads, equivalently,

〈ϕ|(L−(β+1)/2JL(β−1)/2 + L(β−1)/2JL−(β+1)/2)ϕ〉 ≥ −Λβ(m)‖ϕ‖2L2(R3(N−1)) (2.5.3)

for all ϕ ∈ L2
as(R

3(N−1)). The left side equals

(N − 1)
∫
R3N

ϕ̂∗(s, ~q)ϕ̂(t, ~q)
(

L(t, ~q)(β−1)/2

L(s, ~q)(β+1)/2
+

L(s, ~q)(β−1)/2

L(t, ~q)(β+1)/2

)
G(s, t, ~q) ds dt d~q (2.5.4)

where ~q ∈ R3(N−2) and L and G are defined in (2.2.7) and (2.2.2), respectively.
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The above integral over s and t, for fixed ~q, is the expectation of (twice) the operator τβ

defined in (2.4.1). Lemma 2.4.1 identifies its negative and positive parts. Dropping the latter,
we thus have

(2.5.4) ≥ (N − 1)
∫
R3N

ϕ̂∗(s, ~q)ϕ̂(t, ~q)
(

L(t, ~q)(β−1)/2

L(s, ~q)(β+1)/2
+

L(s, ~q)(β−1)/2

L(t, ~q)(β+1)/2

)
×

1
2

(
G(s, t, ~q) −G(s,−t − 2AK, ~q)

)
ds dt d~q (2.5.5)

The remainder of the proof proceeds in exactly the same way as in the proof of Theorem 2.2.1,
Eqs. (2.4.9)–(2.4.14), and we shall not repeat it here. The result is (2.2.17), for any 0 ≤ β < 2.
The limiting case β = 2 is then obtained by monotone convergence, using that Λβ(m) is convex
and thus continuous in β. (Note that for β = 2, the left side of (2.2.17) need not be finite, a
priori.) �

2.6 Upper Bound on Λβ(m)

In this section we shall prove an upper bound on Λβ(m). While only the case 0 ≤ β ≤ 2 is of
interest here, our bound is actually valid for all 0 ≤ β < 3. We start with proving the bound
(2.2.10) on Λ(m). Recall the definitions of Λ(m) and `m in (2.2.8) and (2.2.9), respectively, as
well as A = (2 + m)−1. We shall use that

`m(s,K,Q) ≥
√

m(m + 2)
m + 1

|s + AK| (2.6.1)

and that [
(s + AK)2 + (t + AK)2 +

m
1 + m

(Q2 + AK2)
]2
−

[
2

(1 + m)
(s + AK) · (t + AK)

]2

≥
m(m + 2)
(1 + m)2

[
(s + AK)2 + (t + AK)2 +

m
1 + m

(Q2 + AK2)
]2

≥
m(m + 2)
(1 + m)2

[
m(2 + m)

2 + 4m + m2 (s2 + t2) +
m

1 + m
Q2

]2

(2.6.2)

Together with the simple bound

|s + AK|1/2|t + AK|1/2 ≤

√
1
2

(s + AK)2 +
1
2

(t + AK)2 (2.6.3)

this gives

Λ(m) ≤
(1 + m)2

√
2π2 [m(m + 2)]3/2

sup
s∈R3,Q>0

∫
R3

1
t2

s2 + Q2[
m(2+m)

2+4m+m2 (s2 + t2) + m
1+m Q2

]3/2 dt

=
4(1 + m)2(2 + 4m + m2)3/2

√
2π [m(m + 2)]3

sup
s∈R3,Q>0

s2 + Q2

s2 + 2+4m+m2

(2+m)(1+m) Q
2

(2.6.4)
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Since 2 + 4m + m2 > (2 + m)(1 + m), the last supremum equals 1, and we obtain the bound
(2.2.10).

The same strategy can be used to derive an upper bound on Λβ(m) in (2.2.15), for β ≤ 1.
Instead of (2.6.3), one uses

|s + AK|(1+β)/2|t + AK|(1−β)/2 + |s + AK|(1−β)/2|t + AK|(1+β)/2 ≤
√

2(s + AK)2 + 2(t + AK)2 (2.6.5)

(which follows from convexity of the exponential function, xy ≤ 1
p xp + 1

qyq for x, y ≥ 0, p > 1,
1
p + 1

q = 1), resulting in

Λβ(m) ≤
4
√

2(1 + m)2(2 + 4m + m2)3/2

π [m(m + 2)]3 for β ≤ 1. (2.6.6)

For 1 < β < 3, we need an upper bound on `m, and we shall simply use

`m(s,K,Q) ≤
√

(s + AK)2 +
m

m + 1
(Q2 + AK2) (2.6.7)

For a lower bound, we shall use (2.6.1) for one power of `m, and

`m(s,K,Q) ≥
√

m
m + 1

(s2 + Q2) (2.6.8)

for the remaining `(β−1)/2
m . This leads to

Λβ(m) ≤
1
π2

(m + 1)(β+7)/4

m(β+5)/4(2 + m)3/2 sup
s∈R3,Q>0

∫
R3

1
t2

(
1

|t|(β−1)/2 +
1

(s2 + Q2)(β−1)/4

)
×

s2 + Q2[
m(2+m)

2+4m+m2 (s2 + t2) + m
1+m Q2

](7−β)/4 dt

=
4
π

(m + 1)(β+7)/4

m3(2 + m)(13−β)/4

(
2 + 4m + m2

)(7−β)/4
(

2
3 − β

+

√
π

2
Γ((5 − β)/4)
Γ((7 − β)/4)

)
(2.6.9)

for 1 < β < 3, where Γ denotes the gamma-function in the last expression. In particular, Λβ(m)
is finite for β < 3, and decays at least like m−1 for large m.

2.7 Numerical Evaluation of Λβ(m)

Recall the definition of Λ(m) in (2.2.8). In order to obtain a numerical value for Λ(m), it is
convenient to simplify this expression a bit. As a first step, we claim that, given s, the supremum
over K in (2.2.8) is attained at some K of the form K = −bs for 0 ≤ b ≤ 1/A = 2 + m. To see
this, we substitute s̃ = s + AK, t̃ = t + AK, and rewrite (2.2.8) as

Λ(m) = sup
s̃,K∈R3,Q>0

(s̃ − AK)2 + Q2

π2(1 + m)

(
m(m + 2)
(m + 1)2 s̃2 +

m
m + 1

(Q2 + AK2)
)−1/4

×

∫
R3

1
(t̃ − AK)2

(
m(m + 2)
(m + 1)2 t̃2 +

m
m + 1

(Q2 + AK2)
)−1/4

×

∣∣∣s̃ · t̃∣∣∣[
s̃2 + t̃2 + m

1+m (Q2 + AK2)
]2
−

[
2

(1+m) s̃ · t̃
]2 dt̃ (2.7.1)
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Since the term on the last line is invariant under the reflection t̃ 7→ −t̃, the integral above is
equal to ∫

R3

t̃2 + A2K2

(t̃2 + A2K2)2 − 4A2(t̃ · K)2

(
m(m + 2)
(m + 1)2 t̃2 +

m
m + 1

(Q2 + AK2)
)−1/4

×

∣∣∣s̃ · t̃∣∣∣[
s̃2 + t̃2 + m

1+m (Q2 + AK2)
]2
−

[
2

(1+m) s̃ · t̃
]2 dt̃ (2.7.2)

When optimizing over the orientation of s̃ and K, the very first factor after the supremum in
(2.7.1) is clearly largest if s̃ and K are antiparallel. That the same is true for the integral (2.7.2)
is the content of the following lemma, whose proof is an easy exercise.

Lemma 2.7.1. Let f and g be measurable functions on [−1, 1] that are non-negative, even, and
increasing on [0, 1]. For a, b ∈ S2, ∫

S2
f (ω · a)g(ω · b) dω (2.7.3)

is largest if a and b are either parallel or antiparallel (as vectors in R3).

Proof. We can represent the functions f and g by their level sets, and write

(2.7.3) =

∫
S2×R2

+

χ{ f>x}(ω · a)χ{g>y}(ω · b) dω dx dy (2.7.4)

The support of the function ω 7→ χ{ f>x}(ω · a) consists of the union of two spherical caps,
centered at ±a, respectively, and similarly for χ{g>y}(ω · b). If ±a is parallel to b, the integral
over S2 in (2.7.4) (for fixed x and y) is clearly largest, since one of the characteristic functions
simply equals 1 on the support of the other in this case. This completes the proof. �

The angular part of the integral in (2.7.2) is exactly of the form (2.7.3). We thus conclude
that we can restrict the supremum in (2.7.1) to the set where K = −κ s̃ for some κ ≥ 0 or,
equivalently, K = −bs for some 0 ≤ b = κ/(1 + κA) ≤ 1/A.

To evaluate Λ(m), we thus have to find the supremum over s̃ ∈ R3, κ ≥ 0 and Q ≥ 0 of

s̃2(1 + κA)2 + Q2

π2(1 + m)

(
m(m + 2)
(m + 1)2 s̃2 +

m
m + 1

(Q2 + Aκ2 s̃2)
)−1/4

×

∫
R3

t̃2 + A2κ2 s̃2

(t̃2 + A2κ2 s̃2)2 − 4A2κ2(t̃ · s̃)2

(
m(m + 2)
(m + 1)2 t̃2 +

m
m + 1

(Q2 + Aκ2 s̃2)
)−1/4

×

∣∣∣s̃ · t̃∣∣∣[
s̃2 + t̃2 + m

1+m (Q2 + Aκ2 s̃2)
]2
−

[
2

(1+m) s̃ · t̃
]2 dt̃ (2.7.5)

After carrying out the angle integration, this becomes

2
s̃2(1 + κA)2 + Q2

π(1 + m)

(
m(m + 2)
(m + 1)2 s̃2 +

m
m + 1

(Q2 + Aκ2 s̃2)
)−1/4

×

∫ ∞

0

t2

t2 + A2κ2 s̃2

(
m(m + 2)
(m + 1)2 t2 +

m
m + 1

(Q2 + Aκ2 s̃2)
)−1/4

×
|s̃|t[

s̃2 + t2 + m
1+m (Q2 + Aκ2 s̃2)

]2

ln(1 − λ1) − ln(1 − λ2)
λ2 − λ1

dt (2.7.6)
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0
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Figure 2.2: Numerical evaluation of the expression (2.7.6) (for s̃2 = 1), whose maximal value
is Λ(1). The maximum is attained at Q = 0 and b ≈ 0.82, and has a value Λ(1) ≈ 0.34.

where

λ1 =
4A2κ2t2 s̃2

(t2 + A2κ2 s̃2)2 , λ2 =
4

(m + 1)2

t2 s̃2

(t2 + s̃2 + m
m+1 (Q2 + Aκ2 s̃2))2 (2.7.7)

By the overall scale invariance, we can set s̃2 = 1, and hence we are left with two parameters
to optimize over, Q ≥ 0 and κ ≥ 0 or, equivalently, 0 ≤ b ≤ 1/A = 2 + m. It is not difficult to
see that (2.7.6) tends to zero as Q→ ∞ (uniformly in b) and thus the optimization is effectively
over a compact set. The result of a numerical integration of (2.7.6) in the case m = 1 is shown
in Figure 2.2. The supremum is attained at Q = 0 and b ≈ 0.82, and equals Λ(1) ≈ 0.34.
In particular, it is less than 1. Moreover, the numerical evaluation yields Λ(m) < 1 for all
m ≥ 0.36, i.e., the critical mass for stability is less than 0.36, as shown in Figure 2.1.

The same analysis applies to Λβ(m) in (2.2.15). For β = 1 and β = 2, the graph of these
functions is plotted in Figure 2.1.

2.8 Proof of Proposition 1

Let ψ ∈ D(Hα), and consider the partial Fourier transform

η(P, k1, . . . , kN−1, r) =
1

(2π)3/2

∫
R3
ψ̂

(
m

1+m P + q, k1, . . . , kN−1,
1

1+m P − q
)

eir·q dq (2.8.1)
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With the aid of (2.2.25) and (2.2.28)–(2.2.33) we can write

η(P, k1, . . . , kN−1, r) =

(
2π2

|r|
+ α

)
2m

m + 1
(−1)N+1

(2π)3/2 ξ̂(P, k1, . . . kN−1)

+

3∑
j=1

κ j(P, k1, . . . , kN−1, r) (2.8.2)

where

κ1(P, k1, . . . , kN−1, r) =
1

(2π)3/2

∫
R3
φ̂
(

m
1+m P + q, k1, . . . , kN−1,

1
1+m P − q

) (
eir·q − 1

)
dq (2.8.3)

and

κ2(P, k1, . . . , kN−1, r)

=
1

(2π)3/2

∫
R3
G

(
m

1+m P + q, k1, . . . , kN−1,
1

1+m P − q
) (

eir·q − 1
)

×

N−1∑
j=1

(−1) j+1ξ̂
(

m
1+m P + q + k j, k1, . . . , k j−1, k j+1 . . . , kN−1,

1
1+m P − q

)
dq (2.8.4)

Introducing the function f (t) = t−1(e−t − 1 + t) for t > 0 we further have

κ3(P, k1, . . . , kN−1, r)

=
(−1)N+1

(2π)3/2 f
(
|r|

2π2

1 + m
2m
L(P, k1, . . . , kN−1)

)
L(P, k1, . . . , kN−1)ξ̂(P, k1, . . . kN−1) (2.8.5)

Since φ ∈ H2(R3(N+1)), one readily checks that limr→0 ‖κ1( · , r)‖L2(R3N ) = 0. Moreover, since
ξ ∈ H1(R3N) by assumption, limr→0 ‖κ3( · , r)‖L2(R3N ) = 0 by dominated convergence, using
limt→0 f (t) = 0. The same holds true for κ2 if we can show that∫
R3
G

(
m

1+m P + q, k1, . . . , kN−1,
1

1+m P − q
) ∣∣∣∣ξ̂ (

m
1+m P + q + k1, k2, . . . , kN−1,

1
1+m P − q

)∣∣∣∣ dq (2.8.6)

is an L2(R3N) function. For this purpose, pick a function ν ∈ L2(R3)⊗ L2
as(R

3(N−1)) and integrate
the expression (2.8.6) against ν(P, k1, . . . kN−1). After a change of integration variables, this
gives∫
R3(N+1)

ν(k0 + kN , k1, . . . , kN−1)G (k0, k1, . . . , kN)
∣∣∣ξ̂ (k0 + k1, k2, . . . , kN)

∣∣∣ dk0 dk1 · · · dkN (2.8.7)

Since ξ ∈ H1(R3N) by assumption, Lemma 2.3.1 (for β = 1) implies that (2.8.7) is finite.
This shows that also ‖κ2( · , r)‖L2(R3N ) goes to 0 as r → 0, and thus completes the proof of
Proposition 1. �
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2.9 Proof of Theorem 2.2.3

We start with n↑. For ψ = φ + Gξ ∈ D(Hα), we have

k2n↑(k) −
C

|k − p↑|2

= k2
∫
R3N
|φ̂(k, k1, k2,~k)|2 dk1 dk2 d~k

− k2N(N − 1)
∫
R3N
G(k, k1, k2,~k)2ξ̂∗(k + k1, k2,~k)ξ̂(k + k2, k1,~k) dk1 dk2 d~k

+ N
∫
R3N

k2G(k, k1, k2,~k)2 −

(
2m

m + 1

)2 1
|k − p↑|2

 |ξ̂(k + k1, k2,~k)|2 dk1 dk2 d~k

+ 2k2N Re
∫
R3N

φ̂∗(k, k1, k2,~k)G(k, k1, k2,~k)ξ̂(k + k1, k2,~k) dk1 dk2 d~k (2.9.1)

where ~k ∈ R3(N−2), as before. We write the right side as
∑4

j=1 M↑

j (k), with M↑

j corresponding to
the term on the jth line on the right side. The first term M↑

1 is clearly in L1(R3). Using (2.2.24)
the second term can be bounded as

|M↑

2(k)| ≤ N(N − 1)
∫
R3N

4m
k2

1 + k2
2

|ξ̂(k + k1, k2,~k)||ξ̂(k + k2, k1,~k)| dk1 dk2 d~k (2.9.2)

After integrating over k and using the Cauchy-Schwarz inequality for the (k,~k) integration, we
get ∫

R3
|M↑

2(k)| dk ≤ N(N − 1)
∫
R3N

4m
k2

1 + k2
2

‖ξ̂( · , k1)‖L2(R3(N−1))‖ξ̂( · , k2)‖L2(R3(N−1)) dk1 dk2

≤ 4mcN(N − 1)2‖ξ‖2H1/2(R3N ) (2.9.3)

where c equals the norm of the operator with integral kernel |k1|
−1/2|k2|

−1/2(k2
1 +k2

2)−1, which can
easily be shown to be finite (and, in fact, equals 2π2 [21, Lemma 2.1]).

Next we shall consider M↑

3(k), which we rewrite as

M↑

3(k) = N
∫
R3N

k2G(k, k1 − k, k2,~k)2 −

(
2m

m + 1

)2 1
|k − p↑|2

 |ξ̂(k1, k2,~k)|2 dk1 dk2 d~k (2.9.4)

Since ξ ∈ L2(R3N), M↑

3 is clearly in L1
loc(R

3) and we only have to investigate its behavior for
large k. If we write

k2G(k, k1 − k, k2,~k)2 −

(
2m

m + 1

)2 1
|k − p↑|2

=

(
2m

m + 1

)2 2
|k|4

k ·
(

2m
m + 1

k1 − p↑

)
+ R↑(k, k1, k2,~k)

(2.9.5)
the first term on the right side gives zero after integration when inserted in (2.9.4), by the
definition of p↑ in (2.2.40). That is,

M↑

3(k) = N
∫
R3N

R↑(k, k1, k2,~k)|ξ̂(k1, k2,~k)|2 dk1 dk2 d~k (2.9.6)
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Moreover, in the region where |k|2 ≥ const(µ + p2
↑
) we have

|R↑(k, k1, k2, . . . , kN)| ≤ const
1
|k|3

µ + p2
↑ +

N∑
j=1

k2
j


1/2

min

1,
1
|k|

µ + p2
↑ +

N∑
j=1

k2
j


1/2 (2.9.7)

for suitable constants. If we integrate R↑ over k in this region we thus obtain an expression that
is bounded from above by const(µ+ p2

↑
+

∑N
j=1 k2

j )
1/2 ln(1 + µ+ p2

↑
+

∑N
j=1 k2

j ), and we conclude,
in particular, that ‖M↑

3‖L1(R3) ≤ const‖ξ‖2H1(R3N ). Finally, using the simple pointwise bound

|M↑

4(k)| ≤ 4mN‖φ̂(k, · )‖L2(R3N )‖ξ‖L2(R3N ) (2.9.8)

and the assumption that φ ∈ H2(R3(N+1)), the Cauchy-Schwarz inequality readily implies that
M↑

4 ∈ L1(R3). This concludes the proof that k2n↑(k) − C|k − p↑|−2 is integrable.
Similarly we have for n↓

k2n↓(k) −
C

|k − p↓|2
=

7∑
j=1

M↓

j (k) =

= Nk2
∫
R3N
|φ̂(k0, k, k2,~k)|2 dk0 dk2 d~k

− k2N(N − 1)(N − 2)
∫
R3N
G(k0, k, k2, . . . , kN)2ξ̂∗(k0 + k2, k, k3, . . . , kN)

× ξ̂(k0 + k3, k, k2, k4, . . . , kN) dk0 dk2 · · · dkN

− 2k2N(N − 1)
∫
R3N
G(k0, k, k2,~k)2ξ̂∗(k0 + k, k2,~k)ξ̂(k0 + k2, k,~k) dk0 dk2 d~k

+ k2N(N − 1)
∫
R3N
G(k0, k, k2,~k)2|ξ̂(k0 + k2, k,~k)|2 dk0 dk2 d~k

+ N
∫
R3N

k2G(k0, k, k2,~k)2 −

(
2m

m + 1

)2 1
|k − p↓|2

 |ξ̂(k0 + k, k2,~k)|2 dk0 dk2 d~k

+ 2k2N Re
∫
R3N

φ̂∗(k0, k, k2,~k)G(k0, k, k2,~k)ξ̂(k0 + k, k2,~k) dk0 dk2 d~k

+ 2k2N(N − 1) Re
∫
R3N

φ̂∗(k0, k, k2,~k)G(k0, k, k2,~k)ξ̂(k0 + k2, k,~k) dk0 dk2 d~k (2.9.9)

The terms M↓

1 , M↓

2 , M↓

3 , M↓

5 and M↓

6 can be treated in the same way as the analogous terms in
(2.9.1) above. Eq. (2.9.6) holds with M↓

5 in place of M↑

3 with R↑ replaced by

R↓(k, k1, k2,~k) = k2G(k1 − k, k, k2,~k)2 −

(
2m

m + 1

)2 1
|k − p↓|2

−

(
2m

m + 1

)2 2
|k|4

k ·
(

2
m + 1

k1 − p↓

)
(2.9.10)

which also satisfies the bound (2.9.7). The expression M↓

4 equals

M↓

4(k) = k2N(N − 1)
∫
R3N
G(k0 − k2, k, k2,~k)2|ξ̂(k0, k,~k)|2 dk0 dk2 d~k (2.9.11)

Performing the integration over k2, one readily checks that

M↓

4(k) ≤ const|k|N(N − 1)
∫
R3N
|ξ̂(k0, k,~k)|2 dk0 d~k (2.9.12)
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which is in L1(R3) since ξ ∈ H1/2(R3N). Finally, using Cauchy-Schwarz in (k, k2,~k),∫
R3
|M↓

7(k)| dk ≤ 4N(N − 1)‖ξ‖L2(R3N )

∫
R3
‖φ̂(k0, · )‖L2(R3N ) dk0 (2.9.13)

which is finite for φ ∈ H2(R3(N−1)), as remarked above. We conclude, therefore, that also
k2n↓(k) − C|k − p↓|−2 is integrable.

Since all the terms in (2.9.1) and (2.9.9) are integrable, we can do the integration over k
term by term. For all the terms except M↑

3 and M↓

5 , we have actually shown that the L1-property
holds even if the respective integrands are replaced by their absolute value, and hence we can
freely use Fubini’s theorem for these terms. In the form (2.9.6) (and the analogous expression
for M↓

5) the same applies to M↑

3 and M↓

5 , in fact.

For the norm of ψ, we shall write

‖ψ‖2L2(R3(N+1)) =

4∑
j=1

n j

= ‖φ‖2L2(R3(N+1)) + 2 Re〈φ|Gξ〉

− N(N − 1)
∫
R3N
G(k0, k1, k2,~k)2ξ̂∗(k0 + k1, k2,~k)ξ̂(k0 + k2, k1,~k) dk0 dk1 dk2 d~k

+ N
∫
R3N
G(k0, k1, k2,~k)2|ξ̂(k0 + k1, k2,~k)|2 dk0 dk1 dk2 d~k (2.9.14)

We have∫
R3

(
1

2m
M↑

1(k) +
1
2

M↓

1(k)
)

dk + µn1 =

〈
φ

∣∣∣∣∣∣∣− 1
2m

∆x0 −
1
2

N∑
i=1

∆xi + µ

∣∣∣∣∣∣∣ φ
〉

(2.9.15)

and ∫
R3

[
1

2m
M↑

2(k) +
1
2

(
M↓

2(k) + M↓

3(k)
)]

dk + µn3 = −NToff(ξ) (2.9.16)

Moreover, we claim that∫
R3

[
1

2m
M↑

3(k) +
1
2

(
M↓

4(k) + M↓

5(k)
)]

dk + µn4 = −NTdiag(ξ) (2.9.17)

To see this, note that we can replace M↑

3(k) by its symmetrized version 1
2 (M↑

3(k) + M↑

3(−k)), and
likewise for M↓

5 . Then (2.9.17) follows from the fact that∫
R3

(
1

4m
(
R↑(k, k1, . . . , kN) + R↑(−k, k1, . . . , kN)

)
+

1
4

(
R↓(k, k1, . . . , kN) + R↓(−k, k1, . . . , kN)

)
+

1
2

∑N

j=2
k2

jG(k1 − k, k, k2, . . . , kN)2
)

dk = −L(k1, . . . , kN) (2.9.18)

which, in turn, uses that ∫
R3

(
2
|k|2
−

1
|k − p|2

−
1

|k + p|2

)
dk = 0 (2.9.19)
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for any p ∈ R3 (which can be proved, e.g., by computing the Fourier transform). Finally,∫
R3

[
1

2m
M↑

4(k) +
1
2

(
M↓

6(k) + M↓

7(k)
)]

dk + µn2

= 2N Re
∫

φ̂∗(k0, k1 − k0, k2,~k)ξ̂(k1, k2,~k) dk0 dk1 dk2 d~k (2.9.20)

In Fourier space, the boundary condition (2.2.33) satisfied by φ reads∫
φ̂(k0, k1 − k0, k2,~k) dk0 =

(
2m

m + 1
αξ̂ + ̂̃Γξ) (k1, k2,~k) (2.9.21)

and hence

(2.9.20) = 2N
(
Tdiag(ξ) + Toff(ξ) +

2m
m + 1

α‖ξ‖2L2(R3N )

)
(2.9.22)

A combination of (2.9.15), (2.9.16), (2.9.17), (2.9.22) with (2.2.26) establishes (2.2.42) and
thus completes the proof of Theorem 2.2.3. �

Remark 2.9.1. The proof of Theorem 2.2.3 does not actually make use of the assumption ξ ∈
H1(R3N), it is only used that

∫
R3N

1 +

N∑
j=1

|k j|
2


1/2

ln

2 +

N∑
j=1

|k j|
2

 |ξ̂(k1, . . . , kN)|2 dk1 · · · dkN < ∞ (2.9.23)

By Theorem 2.2.2, this is actually the case if Λ0(m) = 2Λ(m) < 1 (instead of Λ1(m) < 1) since
then, by continuity, Λβ(m) < 1 for some β > 0, and hence ξ ∈ H(1+β)/2(R3N).
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CHAPTER 3

Energy contribution of a point interacting
impurity in a Fermi gas

ThomasMoser, Robert Seiringer

Abstract
We give a bound on the ground state energy of a system of N non-interacting fermions
in a three dimensional cubic box interacting with an impurity particle via point inter-
actions. We show that the change in energy compared to the system in the absence
of the impurity is bounded in terms of the gas density and the scattering length of the
interaction, independently of N. Our bound holds as long as the ratio of the mass of
the impurity to the one of the gas particles is larger than a critical value m∗∗ ≈ 0.36,
which is the same regime for which we recently showed stability of the system.

3.1 Introduction

Quantum systems of particles interacting with forces of very short range allow for an idealized
description in terms of point interactions. The latter are characterized by a single number, the
scattering length. Originally point interactions were introduced in the 1930s to model nuclear
interactions [5, 6, 19, 68, 72], but later they were also successfully applied to many other areas
of physics, like polarons (see [40] and references there) or cold atomic gases [74].

It was already known to Thomas [68] that the spectrum of a bosonic many-particle system
depends strongly on the range of the interactions, and that an idealized point-interacting system
with more than two particles is inherently unstable, i.e., the energy is not bounded from below.
This collapse can be counteracted by the Pauli principle for fermions with two species (e.g.,
spin states). In this paper we are interested in the impurity problem where there is only one
particle for one of the species.

Given N ≥ 1 fermions of one type with mass 1 and one particle of another type with mass
m > 0, a model of point interactions gives a meaning to the formal expression

−
1

2m
∆y −

1
2

N∑
i=1

∆xi + γ

N∑
i=1

δ(xi − y) (3.1.1)
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for γ ∈ R. We note that because of the antisymmetry constraint on the wavefunctions there
are only interactions between particles of different species. The expression (3.1.1) is ill-defined
in d ≥ 2 dimensions since H1(Rd), the form domain of the Laplacian, contains discontinuous
functions for which the meaning of the δ-function as a potential is unclear. In the following
we restrict our attention to the case d = 3, but we note that also two-dimensional systems
exhibit interesting behavior [15, 16, 27, 28, 35]. For d ≥ 4 there are no point interactions as
the Laplacian restricted to functions supported away from the hyperplanes of interactions is
essentially self-adjoint.

A mathematically precise meaning to (3.1.1) in three dimensions was given in [15, 20, 45]
and we will work with the model introduced there. Our analysis will start from this well-
defined model, but we note that the question whether the model can be obtained as a limit
of Schrödinger operators with genuine interaction potentials of shrinking support is still open.
(See, however, [1] for the case N = 1, and [3] for models in one dimension.)

In this paper we study the energy contribution of the point-interacting impurity. We confine
the N + 1 particles to a box (0, L)3 and investigate the ground state energy of the system. In
particular, our goal is the show that at given mean particle density ρ̄ = N/L3, the difference
between the ground state energies of the interacting and the non-interacting system is bounded
independently of the system size.

Previous work on this model was mostly concerned with stability and hence studied the
model without confinement. For example, it is possible to analyze the 2 + 1 model, i.e,. two
fermions of one kind and one impurity of another kind, in great detail [4, 11–13, 15, 45–48].
It turns out that the mass of the impurity plays an important role for stability. It was shown
in [11] that for the 2 + 1 system there is a critical mass m∗ ≈ 0.0735 such that the system is
stable for m ≥ m∗ and unstable otherwise. This critical mass does not depend on the strength
of the interaction, i.e., the scattering length.

Building on these results it was shown in [50] that a similar statement holds for the N + 1
system. In particular, it was proven that there is a critical mass m∗∗ ≈ 0.36 such that the system
is stable for all m ≥ m∗∗, independently of N. This bound is presumably not sharp and stability
is still open for m ∈ [m∗,m∗∗). Recently also the stability of the 2 + 2 system was proved in a
suitable mass range [53]. The general case with N + M particles still poses an open problem,
however.

In all cases where stability of the system was established, the ground state energy in infinite
volume is actually zero in case the scattering length is negative, and there are no bound states.
For positive scattering length there are bound states, but one still expects that only a finite
number of particles can bind to the impurity. In particular, the ground state energy of the N + 1
system is bounded from below independently of N [50]. Intuitively one would expect that if one
confines the system to a box in order to have a non-zero mean particle density, the interaction
with the impurity should again only affect a finite number of particles, and hence the energy
change compared to the non-interacting system should be O(1), independently of N. This is
what we prove here. We note that it is sufficient to derive a lower bound on the ground state
energy, as point interactions are always attractive, i.e., they lower the energy.

Even for regular interaction potentials, it is highly non-trivial to show that an impurity
causes only an O(1) change to the energy of a non-interacting Fermi gas. For fixed, i.e., non-
dynamical impurities, this was established in [24] as a consequence of a positive density version
of the Lieb-Thirring inequality. The result in [24] applies to systems in infinite volume, as well
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as to systems in a box with periodic boundary conditions. In the appendix we provide an
extension to Dirichlet boundary conditions, since this result will be an essential ingredient in
our proof.

Compared to [24] we face here two additional difficulties: the impurity is dynamic and has
a finite mass, and the interaction with the gas particles is through singular point interactions.
Besides the methods of [24] and [50], a key ingredient in our analysis is a proof of an IMS
type formula for the quadratic form defining the model, which allows for a localization of the
particles into regions close and far away from the impurity. It has the same form as the IMS
formula for regular Schrödinger operators (see [14, Thm. 3.2]), but is much harder to prove.

3.1.1 The point interaction model

We consider a system of N fermions of mass 1, interacting with another particle of mass m > 0.
Let

HN
0 = −

1
2m

∆0 −
1
2

N∑
i=1

∆i (3.1.2)

be the non-interacting part of the Hamiltonian, acting on L2(R3) ⊗ L2
as(R

3N), where L2
as de-

notes the totally antisymmetric functions in ⊗N L2(R3). The N + 1 coordinates we denote by
x0, x1, . . . , xN ∈ R

3 and throughout this paper we will use the notation ~x = (x1, . . . , xN). If we
want to exclude a set of coordinates labeled by A ⊆ {1, . . . ,N} we use x̂A = (xi)i<A and for short
x̂i = x̂{i}. If we want to restrict to certain coordinates we write ~xA = (xi)i∈A.

For µ > 0, we define Gµ as the resolvent of HN
0 in momentum space, i.e.,

Gµ(k0,~k) B
(

1
2m

k2
0 +

1
2
~k2 + µ

)−1

. (3.1.3)

We denote by Fα,N the quadratic form used in [11, 50] describing point interactions between N
fermions and the impurity. Its domain is given by

D(Fα,N) =
{
ψ = φµ + Gµξ | φµ ∈ H1(R3) ⊗ H1

as(R
3N), ξ ∈ H1/2(R3) ⊗ H1/2

as (R3(N−1))
}

(3.1.4)

where Gµξ is defined via its Fourier transform (denoted by a ·̂ ) as

Ĝµξ(k0,~k) = Gµ(k0,~k)
N∑

i=1

(−1)i+1ξ̂(k0 + ki, k̂i) . (3.1.5)

The space H1
as(R

3N) contains all totally antisymmetric functions in H1(R3N). For a given ψ ∈
D(Fα,N) and µ > 0, the splitting ψ = φµ + Gµξ is unique. We point out that while φµ depends on
the choice of µ, ξ is independent of µ. We will call φµ the regular part and ξ the singular part
of ψ. Note that D(Fα,N) is independent of the choice of µ, and so is the quadratic form Fα,N

defined as

Fα,N(ψ) B
〈
φµ

∣∣∣HN
0 + µ

∣∣∣ φµ〉 − µ ‖ψ‖2L2(R3(N+1)) + Tα,µ,N(ξ) (3.1.6)

Tα,µ,N(ξ) B N
(

2m
m + 1

α ‖ξ‖2L2(R3N ) + T µ,N
dia (ξ) + T µ,N

off
(ξ)

)
(3.1.7)
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where

T µ,N
dia (ξ) B

∫
R3N
|ξ̂(~k)|2Lµ,N(~k) d~k (3.1.8)

T µ,N
off

(ξ) B (N − 1)
∫
R3(N+1)

ξ̂∗(k0 + k1, k̂1)ξ̂(k0 + k2, k̂2)Gµ(k0,~k) dk0 d~k (3.1.9)

Lµ,N(~k) B 2π2
(

2m
m + 1

)3/2 (
k2

1

2(m + 1)
+

1
2

k̂2
1 + µ

)1/2

. (3.1.10)

The quadratic form Fα,N describes N fermions interacting with an impurity particle via point
interactions with scattering length a = −2π2/α, with α ∈ R. The non-interacting system is
recovered in the limit α→ +∞.

Notation. Throughout the paper we will use the following notation. We define the relation
. by

x . y ⇐⇒ ∃C > 0: x ≤ Cy (3.1.11)

where C is independent of x and y. In the obvious way we define &. In case that x . y and
y . x we write x ∼ y.

3.2 Main result for confined wavefunctions

Let us assume that suppψ ⊆ BN+1, where B = (0, L)3 for some L > 0. The mean particle
density will be denoted by ρ = N/L3. Let ED

N be the ground state energy of −1
2

∑N
i=1 ∆i for

wavefunctions in H1
as(R

3N) with Dirichlet boundary conditions on ∂B. It equals the sum of the
lowest N eigenvalues of the Dirichlet Laplacian on B, and it is easy to see that

ED
N ∼ Nρ2/3 . (3.2.1)

A natural question is how the interactions affect this energy. From [50, Thm. 2.1] we know that
there is a mass-dependent constant Λ(m) [50, Eq. (2.8)], given in Eq. (3.4.53) below, such that
if Λ(m) < 1 then Fα,N is bounded from below independently of N by

Fα,N(ψ)

‖ψ‖22
≥

m + 1
2m


0 α ≥ 0

−

(
α

2π2(1 − Λ(m))

)2

otherwise.
(3.2.2)

(The additional factor (m+1)/(2m) compared to [50, Thm. 2.1] results from the separation of the
center-of-mass motion used in [50].) It was also shown in [50] that Λ(m) < 1 if m > m∗∗ ≈ 0.36.

For particles confined to the box B with mean density ρ we can show that under the condi-
tion Λ(m) < 1 the correction to ED

N is small, i.e., it is O(1) independently of N. Our main result
is the following.

Theorem 3.2.1. Let ψ ∈ D(Fα,N), supported in (0, L)3(N+1), with ‖ψ‖ = 1. Let ρ = NL−3, and
assume that Λ(m) < 1. Then

Fα,N(ψ) ≥ ED
N − const

(
ρ2/3

(1 − Λ(m))9/2 +
α2
−

(1 − Λ(m))2

)
(3.2.3)

where the constant is independent of ψ,m,N, L and α, and α− denotes the negative part of α,
i.e., α− = 1

2 (|α| − α).
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Thm. 3.2.1 shows that the presence of the impurity affects the ground state energy by a term
that is bounded independently of N. The bound (3.2.3) is an extension of (3.2.2) in the sense
that if we take L→ ∞ in (3.2.3) we recover (3.2.2) up to the value of the constant.

Remark. For α → ∞ one would expect that the optimal lower bound converges to the ground
state energy of the non-interacting Hamiltonian HN

0 with Dirichlet boundary conditions. This
is not the case for (3.2.3) which is independent of α for α ≥ 0.

Using various types of trial states the ground state energy of point-interacting systems is
extensively discussed in the physics literature (see [40] and references there). We note that
with this method it is only possible to derive upper bounds, while Thm. 3.2.1 gives a lower
bound on the ground state energy.

3.2.1 Proof outline

For the proof of Theorem 3.2.1 we first prove in Section 3.3 an IMS type formula, which allows
to localize the impurity in a small box, of side length ` independent of L. In a second step we
localize all of the remaining particles to be either close to the impurity or separated from it.
Doing this we partly violate the antisymmetry constraint on the wavefunctions, which makes
it necessary to first extend the quadratic form Fα,N to F̃α,N . The latter does not require the
antisymmetry, but coincides with Fα,N on D(Fα,N).

In Section 3.4 we give a rough lower bound on the energy in case the wavefunction is
compactly supported in a box (0, `)3. This lower bound is of the order N5/3/`2, as expected, but
with a non-sharp prefactor. We shall introduce a quadratic form Fper

α,N with periodic boundary
conditions and show that it is equivalent to Fα,N for confined wavefunctions. The reason we
work with periodic boundary conditions instead of Dirichlet ones is that it allows to perform
explicit computations in momentum space.

Because the ground state energy of the confined non-interacting N-particle system is strictly
positive, we are allowed to choose µ negative in the definition of Fper

α,N . Applying the method
of [50] then leads to the lower bound on Fper

α,N in Theorem 3.4.1. The downside of working
with Fper

α,N will be that because of the discrete nature of momentum space for periodic functions,
we have to work with sums instead of integrals, and the difference between the sum and the
integral versions will have to be carefully controlled.

In Section 3.5 we give the proof of Theorem 3.2.1. Using the IMS formula of Prop. 2, we
localize the particles either in a small box with side length ` ∼ ρ−1/3 containing the impurity, or
in the large complement. In the small box we use Theorem 3.4.1 for a lower bound, whereas in
the large complement we use Theorem 3.A.3, which is a version of the positive density Lieb-
Thirring inequality in [24] adapted to our setting of Dirichlet boundary conditions, and which
is proved in the appendix. This allows us to improve the rough bound of Thm. 3.4.1 and show
Thm. 3.2.1.

3.3 Properties of the quadratic form

In this section we will first extend the quadratic form Fα,N to functions that are not required
to be antisymmetric in the last N variables. Afterwards we shall discuss how the splitting
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ψ = φµ+Gµξ is affected when multiplying ψ by a smooth function (which need not be symmetric
under permutations). This will be utilized in the last part of this section where an IMS formula
for the (extended) quadratic form is shown.

3.3.1 Extension to functions without symmetry

To prove our main theorem, we want to localize the particles in different subsets of the cube B =

(0, L)3. Hence it is necessary to extend the quadratic form Fα,N by removing the antisymmetry
constraint. To this aim we define

D(F̃α,N) =

ψ = φµ +

N∑
i=1

Gµξi | φµ ∈ H1(R3(N+1)), ξi ∈ H1/2(R3N) ∀ i, 1 ≤ i ≤ N

 (3.3.1)

where
Ĝµξi(k0,~k) = Gµ(k0,~k)ξ̂i(k0 + ki, k̂i) . (3.3.2)

The quadratic form F̃α,N is defined as

F̃α,N(ψ) B
〈
φµ

∣∣∣HN
0 + µ

∣∣∣ φµ〉 − µ ‖ψ‖2L2(R3(N+1)) + T̃α,µ,N(~ξ) (3.3.3)

T̃α,µ,N(~ξ) B
2m

m + 1
α

N∑
i=1

‖ξi‖
2
L2(R3N ) + T̃ µ,N

dia (~ξ) + T̃ µ,N
off

(~ξ) (3.3.4)

where ~ξ = (ξi)N
i=1 and

T̃ µ,N
dia (~ξ) B

N∑
i=1

∫
R3N
|ξ̂i(~k)|2Lµ,N(~k) d~k (3.3.5)

T̃ µ,N
off

(~ξ) B −
∑
i, j

1≤i, j≤N

∫
R3(N+1)

ξ̂∗i (k0 + ki, k̂i)ξ̂ j(k0 + k j, k̂ j)Gµ(k0,~k) dk0 d~k . (3.3.6)

Each ξi in (3.3.2) corresponds to a function supported on the hyperplane x0 = xi. The only
overlap between hyperplanes for i , j is on the set xi = x0 = x j, which implies that

∑N
i=1 ξ̂i(k0 +

ki, k̂i) has a unique decomposition into (ξi)N
i=1, and thus the splitting ψ = φµ+

∑N
i=1 Gµξi is unique.

To stress the dependence on ψ, we will sometimes use the notation φψµ and ξψi below.
In the case that ψ is antisymmetric in the last N coordinates, the uniqueness of the decom-

position ψ = φµ +
∑N

i=1 Gµξi shows that there exists a function ξ ∈ H1/2(R3)⊗H1/2
as (R3(N−1)) such

that ξi = (−1)i+1ξ, and hence
∑N

i=1 Gµξi = Gµξ, defined in (3.1.5). Furthermore we have

T̃ µ,N
dia (~ξ) = NT µ,N

dia (ξ), T̃ µ,N
off

(~ξ) = NT µ,N
off

(ξ) (3.3.7)

in this case, which shows that F̃α,N(ψ) = Fα,N(ψ) for ψ antisymmetric in the last N coordinates.
In particular, F̃α,N is an extension of Fα,N , and for a lower bound it therefore suffices to work
with F̃α,N .

In the following, it will be convenient to introduce the notation

∇̃ B

(
1
√

2m
∇0,

1
√

2
∇1, . . . ,

1
√

2
∇N

)
(3.3.8)

as well as
Hµ B HN

0 + µ = −∇̃2 + µ . (3.3.9)
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3.3.2 Localization of wavefunctions

An important ingredient in the proof of Theorem 3.2.1 will be to localize the particles. For this
purpose we will study in this subsection how the splitting ψ = φ

ψ
µ +

∑N
i=1 Gµξ

ψ
i is affected when

multiplying ψ by a smooth function.

Lemma 3.3.1. For J ∈ C∞(R3(N+1)) bounded and with bounded derivatives, we define J~ξ =

(Jξi)N
i=1 by

(Jξi)(xi, x̂i) = J(xi, ~x)ξi(xi, x̂i) . (3.3.10)

Then ξi 7→ [J,Gµ]ξi B JGµξi − GµJξi is a bounded map from L2(R3N) to H1(R3(N+1)). In
particular

ξ
Jψ
i = Jξψi (3.3.11)

and the regular part φJψ
µ of Jψ is given by

φJψ
µ = Jφψµ +

N∑
i=1

[J,Gµ]ξ
ψ
i . (3.3.12)

Remark. We clarify that J acts on functions on R3(N+1), and in particular on φψµ and Gµξ
ψ
i , as

a multiplication operator, whereas on functions in L2(R3N) it acts as in (3.3.10). Hence the
commutator [J,Gµ] has no meaning here independently of its application on ~ξ, and is only used
as a convenient notation.

Proof. We first argue that [J,Gµ]ξ
ψ
i ∈ H1(R3(N+1)) implies (3.3.11) and (3.3.12). We have

Jψ −
N∑

i=1

GµJξψi = Jφψµ +

N∑
i=1

[J,Gµ]ξ
ψ
i . (3.3.13)

Since Jφψµ and [J,Gµ]ξ
ψ
i are in H1(R3(N+1)), the uniqueness of the decomposition of Jψ into

regular and singular parts implies (3.3.11) and (3.3.12).

It remains to show that [J,Gµ]ξi ∈ H1(R3(N+1)) for ξi ∈ L2(R3N . In order to do so, we shall
in fact show that

[J,Gµ]ξi = H−1
µ [HN

0 , J]Gµξi = H−1
µ (−2∇̃ · (∇̃J) − (∇̃2J))Gµξi , (3.3.14)

where we used the notation introduced in (3.3.8) and (3.3.9). From (3.3.14) the H1 property
readily follows, using that∥∥∥Gµξi

∥∥∥2

L2(R3(N+1))
=

∫
R3(N+1)

Gµ(k0,~k)2|ξ̂i(k0 + ki, k̂i)|2 dk0 d~k .
( m
m + 1

)3/2
µ−1/2 ‖ξi‖

2
L2(R3N ) .

(3.3.15)
In the last step we did an explicit integration over 1

m+1k0 −
m

m+1ki, the variable canonically con-
jugate to x0 − xi.

In order to show (3.3.14), we note that since J is smooth, H−1
µ JHµ is a bounded operator. In

the sense of distributions, we have(
HµGµξi

)
(x0, ~x) = ξi(xi, x̂i)δ(x0 − xi) (3.3.16)
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and hence H−1
µ JHµGµξi = GµJξi. In particular,

[J,Gµ]ξi =
(
J − H−1

µ JHµ

)
Gµξi (3.3.17)

which indeed equals (3.3.14). This completes the proof of the lemma. �

Corollary 3.3.2. Assume that ψ ∈ D(F̃α,N) satisfies suppψ ⊆ Ω0 × · · · ×ΩN , where Ω j ⊆ R
3 for

0 ≤ j ≤ N. Then

supp ξψi ⊆ (Ω0 ∩Ωi) ×Ω1 × · · · ×Ωi−1 ×Ωi+1 × · · · ×ΩN . (3.3.18)

Proof. Let J ∈ C∞(R3(N+1)) such that J(x0, ~x) = 1 for (x0, ~x) ∈ Ω0×· · ·×ΩN . Using Lemma 3.3.1
we get that

ξ
ψ
i (x0, x̂i) = ξ

Jψ
i (x0, x̂i) = J(xi, ~x)ξψi (xi, x̂i) . (3.3.19)

Since this holds for all J with the above property, the claim follows. �

3.3.3 Alternative representation of the singular part

The following Lemma gives an alternative representation of the singular part of the quadratic
form, defined in (3.3.4). It will turn out to be useful in the proof of the IMS formula in the next
subsection.

Lemma 3.3.3. For ~ξ = (ξi)N
i=1 with ξi ∈ H1/2(R3N), the function

I(ν) B
∥∥∥∥∥∑N

i=1
Gνξi

∥∥∥∥∥2

L2(R3(N+1))
− π2

(
2m

m + 1

)3/2 1
√
ν

N∑
i=1

‖ξi‖
2
L2(R3N ) (3.3.20)

is integrable on [µ,∞) for any µ > 0, and we have

T̃α,µ,N(~ξ) =

 2m
m + 1

α + 2π2
(

2m
m + 1

)3/2
√
µ

 N∑
i=1

‖ξi‖
2
L2(R3N ) −

∫ ∞

µ

dνI(ν) . (3.3.21)

Proof. For any 1 ≤ i ≤ N, we have

‖Gνξi‖
2
L2(R3(N+1)) =

∫
R3(N+1)

Gν(k0,~k)2|ξ̂i(k0 + ki, k̂i)|2 dk0 d~k =

=

(
2m

m + 1

)3/2 ∫
R3N

π2√
k2

i
2(1+m) + 1

2 k̂2
i + ν

|ξ̂i(ki, k̂i)|2 dk0 d~k . (3.3.22)

In particular,

‖Gνξi‖
2
L2(R3(N+1)) −

(
2m

m + 1

)3/2
π2

√
ν
‖ξi‖

2
L2(R3N ) ≤ 0 (3.3.23)

and we have

−

∫ ∞

µ

dν
‖Gνξi‖

2
L2(R3(N+1)) −

(
2m

m + 1

)3/2
π2

√
ν
‖ξi‖

2
L2(R3N )


=

∫
R3N
|ξ̂i(~k)|2Lµ,N(~k) d~k − 2π2

(
2m

m + 1

)3/2
√
µ ‖ξi‖

2
L2(R3N ) . (3.3.24)
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For the terms i , j, on the other hand, we have∫ ∞

µ

dν 〈Gνξi|Gνξ j〉 =

∫ ∞

µ

dν
∫
R3(N+1)

ξ̂∗i (k0 + ki, k̂i)ξ̂ j(k0 + k j, k̂ j)Gν(k0,~k)2 dk0 d~k

=

∫
R3(N+1)

ξ̂∗i (k0 + ki, k̂i)ξ̂ j(k0 + k j, k̂ j)Gµ(k0,~k) dk0 d~k . (3.3.25)

Here the exchange of the order of integration is justified by Fubini’s theorem, since the inte-
grand in the first line on the right is absolutely integrable for ξi ∈ H1/2. This completes the
proof. �

3.3.4 IMS formula

In this subsection we will prove the following Lemma.

Proposition 2. Given M ≥ 1 and (Ji)M
i=1 with Ji ∈ C

∞(R3(N+1)) and
∑M

i=1 J2
i = 1, we have

F̃α,N(ψ) =

M∑
i=1

F̃α,N(Jiψ) −
M∑

i=1

∥∥∥(∇̃Ji)ψ
∥∥∥2

(3.3.26)

for all ψ ∈ D(F̃α,N).

Proof. By using the polarization identity, we can extend F̃α,N to a sesquilinear form, denoted
as F̃α,N(ψ1, ψ2). It suffices to prove that

F̃α,N(J2ψ, ψ) + F̃α,N(ψ, J2ψ) − 2F̃α,N(Jψ, Jψ) = −2
∥∥∥(∇̃J)ψ

∥∥∥2
(3.3.27)

for smooth functions J, since then

F̃α,N(ψ) =
1
2

M∑
i=1

(
F̃α,N(J2

i ψ, ψ) + F̃α,N(ψ, J2
i ψ)

) (3.3.27)
=

M∑
i=1

F̃α,N(Jiψ, Jiψ) −
M∑

i=1

∥∥∥(∇̃Ji)ψ
∥∥∥2
.

(3.3.28)

Recall the definition Hµ = HN
0 + µ. The left side of (3.3.27) equals

〈φJ2ψ
µ |Hµ|φ

ψ
µ〉 + 〈φ

ψ
µ |Hµ|φ

J2ψ
µ 〉 − 2〈φJψ

µ |Hµ|φ
Jψ
µ 〉

+ T̃α,µ,N(~ξJ2ψ, ~ξψ) + T̃α,µ,N(~ξψ, ~ξJ2ψ) − 2T̃α,µ,N(~ξJψ, ~ξJψ) (3.3.29)

where we introduced the sesquilinear form T̃α,µ,N(~ξ1, ~ξ2) corresponding to the quadratic form
(3.3.4). We use Lemma 3.3.1 to identify the regular and singular parts of the various wavefunc-
tions. For the quadratic form T̃α,µ,N , we utilize the representation (3.3.21), which together with
(3.3.11) implies that

T̃α,µ,N(~ξJ2ψ, ~ξψ) + T̃α,µ,N(~ξψ, ~ξJ2ψ) − 2T̃α,µ,N(~ξJψ, ~ξJψ)

=

∫ ∞

µ

dν
N∑

i, j=1

(
2〈GνJξ

ψ
i |GνJξ

ψ
j 〉 − 〈GνJ2ξ

ψ
i |Gνξ

ψ
j 〉 − 〈Gνξ

ψ
i |GνJ2ξ

ψ
j 〉
)
. (3.3.30)
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Since GνJξ
ψ
i = H−1

ν JHνGνξ
ψ, as shown in the proof of Lemma 3.3.1, we can rewrite the terms

in the integrand as

2〈GνJξ
ψ
i |GνJξ

ψ
j 〉 − 〈GνJ2ξ

ψ
i |Gνξ

ψ
j 〉 − 〈Gνξ

ψ
i |GνJ2ξ

ψ
j 〉

=
〈
Gνξ

ψ
i

∣∣∣2HνJH−2
ν JHν − H−1

ν J2Hν − HνJ2H−1
ν

∣∣∣Gνξ
ψ
j

〉
. (3.3.31)

Using that (∂/∂ν)Gνξ
ψ
i = −H−1

ν Gνξ
ψ
i as well as [J, [Hν, J]] = 2|∇̃J|2, one readily checks that this

further equals

(3.3.31) = −2
∂

∂ν

〈
Gνξ

ψ
i

∣∣∣[J,Hν]H−1
ν [Hν, J] − |∇̃J|2

∣∣∣Gνξ
ψ
j

〉
. (3.3.32)

The operator Aν B [J,Hν]H−1
ν [Hν, J] − |∇̃J|2 is bounded, uniformly in ν for ν ≥ µ > 0. Since

‖Gνξ
ψ
i ‖2 → 0 as ν → ∞, we have limν→∞〈Gνξ

ψ
i |Aν|Gνξ

ψ
j 〉 = 0. In particular, from (3.3.30)–

(3.3.32) we conclude that

T̃α,µ,N(~ξJ2ψ, ~ξψ) + T̃α,µ,N(~ξψ, ~ξJ2ψ) − 2T̃α,µ,N(~ξJψ, ~ξJψ)

=

N∑
i, j=1

(
2
〈
Gµξ

ψ
i

∣∣∣[J,Hµ]H−1
µ [Hµ, J]

∣∣∣Gµξ
ψ
j

〉
− 2〈Gµξ

ψ
i ||∇̃J|2Gµξ

ψ
j 〉
)
. (3.3.33)

For the regular part, we use (3.3.12) to rewrite the first line in (3.3.29) as

〈φJ2ψ
µ |Hµ|φ

ψ
µ〉 + 〈φ

ψ
µ |Hµ|φ

J2ψ
µ 〉 − 2〈φJψ

µ |Hµ|φ
Jψ
µ 〉

= −2〈φψµ ||∇̃J|2φψµ〉 − 2
N∑

i, j=1

〈[J,Gµ]ξ
ψ
i |Hµ|[J,Gµ]ξ

ψ
j 〉

− 4 Re
N∑

i=1

〈[J,Gµ]ξ
ψ
i |Hµ|Jφψµ〉 + 2 Re

N∑
i=1

〈[J2,Gµ]ξ
ψ
i |Hµ|φ

ψ
µ〉 . (3.3.34)

The second term on the right side equals −2
∑N

i, j=1

〈
Gµξ

ψ
i

∣∣∣[J,Hµ]H−1
µ [Hµ, J]

∣∣∣Gµξ
ψ
j

〉
, as (3.3.14)

shows. Also the last line in (3.3.34) can be evaluated with the aid of (3.3.14), with the result
that

− 4 Re
N∑

i=1

〈[J,Gµ]ξ
ψ
i |Hµ|Jφψµ〉 + 2 Re

N∑
i=1

〈[J2,Gµ]ξ
ψ
i |Hµ|φ

ψ
µ〉

= −4 Re
N∑

i=1

〈Gµξ
ψ
i ||∇̃J|2φψµ〉 . (3.3.35)

In combination, (3.3.33), (3.3.34) and (3.3.35) imply the desired identity (3.3.27). This com-
pletes the proof of the lemma. �

3.4 A rough bound

In this section we give a rough lower bound on the ground state energy of Fα,N when restricted
to wavefunctions ψ ∈ D(Fα,N) that are supported in BN+1 with B = (0, `)3 for some ` > 0.
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This lower bound has the desired scaling in N and `, i.e., it is proportional to N5/3`−2, but
with a non-sharp prefactor. For its proof, we will first reformulate the problem using periodic
boundary conditions, and then apply the methods previously introduced in [50] to show stability
in infinite space.

The statement of the following theorem involves three positive constants cT , cL and cΛ,
which are independent of m,N, ` and α and which will be defined later. In particular, cT is
defined in Eq. (3.4.44), cL in Eq. (3.4.84) and cΛ in Lemma 3.4.8.

Theorem 3.4.1. Let ψ ∈ D(Fα,N) with ‖ψ‖ = 1 and suppψ ⊆ (0, `)3(N+1) or some ` > 0. Given
m > 0 and κ > 0 such that

1 − κ/cT > Λ(m) (3.4.1)

let N0 = N0(m, κ) be defined as

N0(m, κ) =

(
(1 − κ/cT − Λ(m))

m(1 − κ/cT )2

cΛ

)−9/2

. (3.4.2)

For N > N0 we have

Fα,N(ψ) ≥ κN5/3`−2 −
1

4π4

m + 1
2m

[α − cL`
−1]2
−

(1 − κ/cT − Λ(m))2(1 − (N0/N)2/9)2 . (3.4.3)

We note that this result gives a lower bound only for particle numbers N > N0(m, κ). In the
case that N ≤ N0, we can still use (3.2.2), however.

The remainder of this section contains the proof of Theorem 3.4.1. An important role will
be played by a reformulation using periodic boundary conditions. We will start by introducing
the functional F̃per

α,N which is defined for periodic functions. In Lemma 3.4.3 we will show
that it is in fact equivalent to the original quadratic form F̃α,N when applied to wavefunctions
with compact support in BN+1. Working with periodic boundary conditions comes with the
inconvenience of having to work with sums, rather than with integrals, in momentum space. In
particular, this makes the explicit form of the singular part of F̃per

α,N rather complicated; we shall
compare it with the singular part of F̃α,N in Lemma 3.4.5 and bound the difference. It comes
with the big advantage of allowing us to choose µ negative, however, which will be essential
to show a positive lower bound to the energy. We shall use the method of [50] which gives
positivity of the singular part of Fper

α,N for µ ≥ −κN5/3`−2 for small enough κ, under a condition
of the form Λ̃(m, κ) < 1. In Lemmas 3.4.6–3.4.8, we investigate the difference between Λ̃(m, κ)
and Λ(m). In the last subsection we combine these results to prove Theorem 3.4.1.

3.4.1 Periodic boundary conditions

Given ψ ∈ D(F̃α,N) such that suppψ ⊆ BN+1, we extend ψ to a periodic function ψper, defined as

ψper(x0, . . . , xN) = ψ(τ(x0), . . . , τ(xN)) (3.4.4)

with

τ(x) = (τ(x1), τ(x2), τ(x3)), τ(s) B inf ((s + `Z) ∩ R+) for s ∈ R. (3.4.5)
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In the following we shall rewrite the functional F̃α,N(ψ) in terms of ψper. Compared to Dirichlet
boundary conditions, periodic ones have the advantage that one can work easily in the associ-
ated momentum space, similar to the unconfined case. For this purpose, we define the lattice in
momentum space as

L B
2π
`
Z3 . (3.4.6)

The function ψper is then determined by its Fourier coefficients ψ̂per(k0,~k), which can be viewed
as a function LN+1 → C.

Corollary 3.3.2 implies that supp ξi ⊆ BN for all 1 ≤ i ≤ N. Hence we can extend it in a
similar way as ψ to a periodic function ξper. In momentum space we can write it as ξ̂per : LN →

C. For periodic functions, Gµψ
per does not make sense anymore, but instead choosing Gper

µ as
the resolvent of the non-interacting Hamiltonian with periodic boundary conditions allows us
to define Gper

µ ξ
per
i by the Fourier coefficients

Ĝper
µ ξ

per
i (k0,~k) = Gµ(k0,~k)ξ̂per

i (k0 + ki, k̂i) . (3.4.7)

In order to motivate the quadratic form introduced below, we note that the expression Lµ,N(~k)
in (3.1.10) originates from the limit

Lµ,N(~k) = lim
R→∞

(
8πmR
m + 1

−

∫
|t|≤R

1

H̃0(k1, t, k̂1) + µ
dt

)
(3.4.8)

where H̃0 is the non-interacting Hamiltonian in momentum space, expressed in terms of center-
of-mass and relative coordinates for the pair (k0, k1), i.e.,

H̃0(s, t, k̂1) B ĤN
0

(
m

m + 1
s + t,

1
m + 1

s − t, k̂1

)
=

1
2(m + 1)

s2 +
1 + m

2m
t2 +

1
2

k̂2
1 . (3.4.9)

More generally, we have

Lemma 3.4.2. Let τ be a non-negative function in C∞0 (R3) such that τ̂(0) = 1, τ̂(p) ≥ 0 for all
p ∈ R3 and ∫

R3
|t|−2τ(t) dt = 4π . (3.4.10)

Then

Lµ,N(~k) = lim
R→∞

[
8πmR
m + 1

−

∫
R3

1

H̃0(k1, t, k̂1) + µ
τ̂(t/R) dt

]
. (3.4.11)

Proof. Let γ = 1
2(m+1)k

2
1 + 1

2 k̂2
1 + µ. Using (3.4.10) we observe that (3.4.11) is equivalent to

lim
R→∞

∫
R3

γ((
1+m
2m

)
t2 + γ

) (
1+m
2m

)
t2
τ̂(t/R) dt = Lµ,N(~k) . (3.4.12)

Since τ̂(0) = 1 and τ̂(t) ≤ 1 for all other t, the result follows from dominated convergence. �
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When replacing integrals by sums, we have to keep in mind that a change of coordinates
from (k0, k1) to s = k0 + k1 and t = m

m+1k1 −
1

m+1k0 changes the domain over which we have to
take the sums. Whereas s ∈ L we have to sum for a fixed s the variable t over Ls B L + ms

m+1 .
Let τ be chosen as in Lemma 3.4.2, and define

Lper
µ,N(~k) B lim

R→∞

8πmR
m + 1

−

(
2π
`

)3 ∑
p∈Lk1

1

H̃0(k1, p, k̂1) + µ
τ̂(p/R)

 . (3.4.13)

We shall see below that this definition is actually independent of τ. For us it will be important
that τ has compact support, hence a sharp cut-off in momentum space would not be suitable.

We shall now define F̃per
α,N with domain

D(F̃per
α,N) =

ψper = φ
per
µ +

N∑
i=1

Gper
µ ξ

per
i | φ

per
µ ∈ H1

per(B
N+1), ξper

i ∈ H1/2
per (BN) ∀ i, 1 ≤ i ≤ N

 ,

(3.4.14)
where H1

per(B
N+1) and H1/2

per (BN) denotes the spaces of functions defined by Fourier coefficients
in `2(L, (1 + p2))⊗(N+1) and `2(L, (1 + p2)1/2)⊗N respectively. The quadratic form is given by

F̃per
α,N(ψper) B

∫
BN+1

(
|∇̃φ

per
µ |

2 + µ|φ
per
µ |

2
)
− µ ‖ψper‖

2
L2(BN+1) + T̃ per

α,µ,N(~ξper) (3.4.15)

T̃ per
α,µ,N(~ξper) B

N∑
i=1

2m
m + 1

α
∥∥∥ξper

i

∥∥∥2

L2(BN )
+ T̃ per,µ,N

dia (~ξper) + T̃ per,µ,N
off

(~ξper) (3.4.16)

where ~ξper = (ξper
i )N

i=1, ∇̃ is defined in (3.3.8), and the singular parts of the quadratic form are
given by

T̃ per,µ,N
dia (~ξper) B

N∑
i=1

(
2π
`3

)3N ∑
~k∈LN

|ξ̂
per
i (~k)|2Lper

µ,N(~k) (3.4.17)

T̃ per,µ,N
off

(~ξper) B −
∑
i, j

1≤i, j≤N

(
2π
`3

)3(N+1) ∑
k0∈L,~k∈LN

ξ̂
per
j
∗
(k0 + k j, k̂ j)ξ̂

per
i (k0 + ki, k̂i)Gµ(k0,~k) . (3.4.18)

We also define Fper
α,N as the restriction of F̃per

α,N to functions antisymmetric in the last N coor-
dinates. Further we define T per,µ,N

dia ,T per,µ,N
off

and T per
α,µ,N in the natural way similar to T µ,N

dia ,T
µ,N
off

and
Tα,µ,N originating from T̃ µ,N

dia , T̃
µ,N
off

and T̃α,µ,N , respectively (compare with (3.1.7) and (3.3.7)).

Lemma 3.4.3. Let ψ ∈ D(F̃α,N) be such that suppψ ⊆ BN+1. Then

F̃per
α,N(ψper) = F̃α,N(ψ) . (3.4.19)

Proof. Recall the splitting of ψ into its regular and singular parts, and similarly for ψper:

ψ = φµ +
∑

i

Gµξi , ψper = φ
per
µ +

∑
i

Gper
µ ξ

per
i . (3.4.20)

Recall also the definition (3.3.9). In the sense of distributions we can apply Hµ to φµ, and in
particular Hµφµ ∈ H−1(R3(N+1)) as φµ ∈ H1(R3(N+1)). In this sense we can write the regular part
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of F̃α,N as 〈φµ|Hµφµ〉. Because suppψ ⊆ BN+1 we have ε B dist(suppψ, ∂B) > 0. Let χ be a
smooth cutoff function such that χ(x) = 1 if x ∈ B0 = [ε/2, `− ε/2]3 and χ(x) = 0 if x ∈ Bc. As
supp(HµGµξ) ⊆ BN+1

0 and suppψ ⊆ BN+1
0 also supp(Hµφµ) ⊆ BN+1

0 , and therefore

〈φµ|Hµφµ〉 = 〈χφµ|Hµφµ〉 . (3.4.21)

We use the identity χφµ = χφ
per
µ + χ

∑N
i=1 Gper

µ ξ
per
i − χ

∑N
i=1 Gµξi as well as the fact that Hµφµ =

Hµφ
per
µ on BN+1

0 to obtain

(3.4.21) = 〈χφ
per
µ |Hµφ

per
µ 〉 +

N∑
i=1

〈χ(Gper
µ ξ

per
i −Gµξi)|Hµφ

per
µ 〉

=

∫
BN+1

(
|∇̃φ

per
µ |

2 + µ|φ
per
µ |

2
)

+

N∑
i=1

〈χ(Gper
µ ξ

per
i −Gµξi)|Hµφ

per
µ 〉 . (3.4.22)

Note that Hµχ(Gper
µ ξ

per
i −Gµξi) is supported on B \ B0, and ψper vanishes on this set. Hence

N∑
i=1

〈χ(Gper
µ ξ

per
i −Gµξi)|Hµφ

per
µ 〉 = −

N∑
i, j=1

〈Gper
µ ξ

per
i −Gµξi|χHµG

per
µ ξ

per
j 〉 . (3.4.23)

We claim that (3.4.23) is equal to the difference T̃ per
α,µ,N(~ξper) − T̃α,µ,N(~ξ). Let τ be given as

in Lemma 3.4.2. We approximate the distribution (χHµG
per
µ ξ

per
j )(x0, ~x) = ξ j(x j, x̂ j)δ(x j − x0) by

the sequence of functions (ξ jτR)(x0, ~x) = ξ j((mx j + x0)/(1 + m), x̂ j)τR(x j − x0) with τR(x) =

R3τ(Rx). We assume that R is large enough such that τR is supported in a ball of radius ε/2,
and hence ξ jτR is supported in BN+1. Because Gper

µ ξ
per
i −Gµξi is actually a smooth function, as

Hµ(G
per
µ ξ

per
i −Gµξi) = 0 on BN+1, we conclude that (3.4.23) is equal to

(3.4.23) = − lim
R→∞

N∑
i, j=1

〈Gper
µ ξ

per
i −Gµξi|ξ jτR〉 . (3.4.24)

For the terms with i , j, we can use dominated convergence in momentum space to conclude
that

lim
R→∞

∑
i, j

〈Gper
µ ξ

per
i −Gµξi|ξ jτR〉 = T̃ µ,N

off
(~ξ) − T̃ per,µ,N

off
(~ξper) . (3.4.25)

For the terms with i = j, we can further write

N∑
i=1

〈Gper
µ ξ

per
i −Gµξi|ξiτR〉

=

N∑
i=1

(
〈Gper

µ ξ
per
i |ξiτR〉 −

8πmR
m + 1

‖ξi‖
2
2

)
−

N∑
i=1

(
〈Gµξi|ξiτR〉 −

8πmR
m + 1

‖ξi‖
2
2

)
. (3.4.26)

Lemma 3.4.2 implies that the limit of the last two terms exists, is independent of the choice of
τ and is equal to T̃ µ,N

dia (~ξ). Because also (3.4.23) does not depend on τ we conclude that

lim
R→∞

N∑
i=1

(
〈Gper

µ ξ
per
i |ξiτR〉 −

8πmR
m + 1

‖ξi‖
2
2

)
(3.4.27)
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exists and is independent of τ. Comparing with (3.4.13) and (3.4.17), we see that it actually
equals T̃ per,µ,N

dia (~ξper). Combining the above, we obtain

〈φµ|Hµφµ〉 =

∫
BN+1

(
|∇̃φ

per
µ |

2 + µ|φ
per
µ |

2
)

+ T̃ per
α,µ,N(~ξper) − T̃α,µ,N(~ξ) . (3.4.28)

This completes the proof of the lemma. �

For fermions, described by wavefunctions ψper that are antisymmetric in the last N variables,
the expression Gper

µ ξper in (3.4.7) is also well defined for negative µ as long as µ > −Eper
N−1, where

Eper
N−1 denotes the ground state energy of the non-interacting Hamiltonian for N − 1 fermions

with periodic boundary conditions on ∂B. (Note than Gµξ, on the other hand, is only defined
for µ > 0.) The following lemma shows that for such µ the quadratic form Fper

α,N is actually
independent of µ.

Lemma 3.4.4. For ψ ∈ D(Fper
α,N), the expression Fper

α,N(ψper) is well-defined and independent of µ
as long as µ > −Eper

N−1.

Proof. We first note that Gper
µ ξper is well defined for µ > −Eper

N−1, because of the antisymmetry of
ξper in the last N −1 variables, which implies that N −1 of the variables (k1, . . . , kN) in Gµ(k0,~k)
in (3.4.7) are actually different. For ν, µ > −Eper

N−1 we have

φ
per
µ = φ

per
ν + Gper

ν ξper −Gper
µ ξper . (3.4.29)

Using the resolvent identity, we see that the regular part of the quadratic form satisfies∫
BN+1

(
|∇̃φ

per
µ |

2 + µ|φ
per
µ |

2
)

=

∫
BN+1

(
|∇̃φ

per
ν |

2 + ν|φ
per
ν |

2
)

+ (µ − ν)
∥∥∥φper

ν

∥∥∥2

+ 2(µ − ν) Re〈Gper
ν ξper|φ

per
ν 〉 + (µ − ν)〈Gper

ν ξper|Gper
ν ξper −Gper

µ ξper〉 .
(3.4.30)

A straightforward computation using the definitions (3.4.13)–(3.4.16) shows that

T per
α,µ,N(ξper) − T per

α,ν,N(ξper) = (µ − ν)〈Gper
ν ξper|Gper

µ ξper〉 . (3.4.31)

Combining both statements yields the desired identity∫
BN+1

(
|∇̃φ

per
µ |

2 + µ|φ
per
µ |

2
)
− µ ‖ψper‖

2
+ T per

α,µ,N(ξper)

=

∫
BN+1

(
|∇̃φ

per
ν |

2 + ν|φ
per
ν |

2
)
− ν ‖ψper‖

2
+ T per

α,ν,N(ξper) . (3.4.32)

�

3.4.2 Approximation by integrals

In the previous subsection we have shown that the original and the periodic formulations of
the energy functionals, F̃α,N and F̃per

α,N , agree if applied to functions ψ compactly supported in
BN+1. One complication in the periodic form is that Lper

µ,N is not given as explicitly as Lµ,N . The
following lemma gives a bound on the difference.
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Lemma 3.4.5. Given µ and ~q such that

Q2
µ B

1
2

N∑
i=2

q2
i + µ > 0 (3.4.33)

we have
|Lper
µ,N(q1, q̂1) − Lµ,N(q1, q̂1)| ≤ c′L

1
Q2
µ`

3 (3.4.34)

where the constant c′L is independent of N, ~q,m, ` and µ.

Proof. We recall the definitions of Lµ,N and Lper
µ,N for some arbitrary τ fulfilling the requirements

of Lemma 3.4.2:

Lµ,N(~q) = − lim
R→∞

(∫
1

H̃0(q1, s, q̂1) + µ
τ̂(s/R) ds −

8πmR
m + 1

)
Lper
µ,N(~q) = − lim

R→∞

(2π
`

)3 ∑
s∈Lq1

1
H̃0(q1, s, q̂1) + µ

τ̂(s/R) −
8πmR
m + 1

 (3.4.35)

with H̃0 defined in (3.4.9). For simplicity we assume that q1 is such that Lq1 = L but all
other cases work analogously as a shift in momentum space only introduces a phase factor in
configuration space, which vanishes when taking absolute values. In the following we denote
f∞(s) = (H̃0(q1, s, q̂1) + µ)−1 and fR(s) = f∞(s)τ̂(s/R) and suppress the dependence on ~q for
simplicity.

We can express the difference between the Riemann sum and the integral using Poisson’s
summation formula(

2π
`

)3 ∑
s∈L

fR(s) −
∫
R3

fR(s) ds =
(2π)3

`3

∑
s∈L

fR(s) − (2π)3/2 f̂R(0) = (2π)3/2
∑
z∈`Z3

z,0

f̂R(z) . (3.4.36)

For short we write γ B 1
2(1+m)q

2
1 + 1

2 q̂2
1 + µ, which is bounded from below by Q2

µ and hence is
positive, by our assumption (3.4.33). The function f∞ and its Fourier transform are given by

f∞(t) =
1

1+m
2m t2 + γ

, f̂∞(z) =

√
π

2
2m

1 + m
e−(

2m
m+1 )1/2 √

γ|z|

|z|
. (3.4.37)

Moreover,
f̂R(z) = (2π)−3/2(R3τ(R · ) ∗ f̂∞)(z) . (3.4.38)

We will show that f̂R(s) is summable over `Z3 \ {0}. In fact for |z| & `,

(2π)3/2| f̂R(z)| =
∫
R3

R3τ(Rw) f̂∞(z − w) dw

≤

∫
|w|>|z|/2

R3τ(Rw) f̂∞(z − w) dw +

∫
|z−w|>|z|/2

R3τ(Rw) f̂∞(z − w) dw

≤ f̂∞(z/2)
∫

R3τ(Rw) dw = f̂∞(z/2) (3.4.39)
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where we assumed that R is large enough such that τ(Rw) = 0 for |w| > |z|/2, and used that∫
τ = 1, which was required by Lemma 3.4.2. As f̂∞ is summable over `Z3 \ {0} we get by

dominated convergence that

lim
R→∞

∑
z∈`Z3\{0}

| f̂R(z)| =
∑

z∈`Z3\{0}

f̂∞(z) . (3.4.40)

We bound the sum over f̂∞(|z|) by

∑
z∈`Z3\{0}

f̂∞(z) =
∑

n∈Z3\{0}

√
π

2
2m

1 + m
e−(

2m
m+1 )1/2 √

γ`|n|

`|n|
.

1
γ`3 (3.4.41)

using ∑
n∈Z3\{0}

e−η|n|/|n| .
∑
n∈N

ne−ηn =
e−η

(1 − e−η)2 ≤
1
η2 (3.4.42)

for η = (2m/(m + 1))1/2√γ`. Combining (3.4.36), (3.4.40) and (3.4.41) and using that γ ≥ Q2
µ,

we conclude that

lim
R→∞

∣∣∣∣∣∣∣ (2π)3

`3

∑
s∈L

fR(s) −
∫
R3

fR(s) ds

∣∣∣∣∣∣∣ ≤ c′L
γ`3 ≤

c′L
Q2
µ`

3 (3.4.43)

for some constant c′L > 0. This completes the proof of the lemma. �

3.4.3 Bound on the singular parts

The strategy for obtaining a lower bound on Fper
α,N is to find a µ such that T per

α,µ,N ≥ 0, in which
case we obtain the lower bound Fper

α,N(ψper) ≥ −µ‖ψper‖2. Hence we want to choose µ as negative
as possible. We shall use the method of [50], which yields the desired positivity of T per

α,µ,N (for
large enough m) as long as µ ≥ −κN5/3`−2 for κ small enough. (More precisely, −µ will be
equal to the right side of (3.4.3).)

If we define Q2 = 1
2

∑N
i=2 q2

i for N > 2, we observe that there exists a constant cT > 0 such
that

Q2 ≥ cT N5/3`−2 (3.4.44)

if all qi ∈ L are different, as required by the antisymmetry constraint. (We note that in compar-
ison with [50] Q2 is defined with an additional factor 1/2 here.) From now on we restrict µ to
satisfy µ ≥ −κN5/3`−2 for some κ < cT . This implies that

Q2
µ = Q2 + µ ≥ (1 − κ/cT )Q2 ≥ (cT − κ)N5/3`−2 . (3.4.45)

In particular, Lemma 3.4.5 yields the bound

T per,µ,N
dia (ξper) ≥

(
2π
`

)3N ∑
~q∈LN

Lµ,N(~q)|ξ̂per(~q)|2 −
1

N5/3`

c′L
cT − κ

‖ξper‖22 (3.4.46)

on the diagonal term of the singular part of Fper
α,N . Following the same steps as in [50] we can

obtain the following lower bound for the off-diagonal term.
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Proposition 3. Assume that µ ≥ −κN5/3`−2 for some κ < cT . Then for all ξ ∈ H1/2(R3) ⊗
H1/2

as (R3(N−1)) we have

T per,µ,N
off

(ξper) ≥ −
Λ̃(m, κ)
1 − κ/cT

(
2π
`

)3N ∑
~q∈LN

Lµ,N(~q)|ξ̂per(~q)|2 (3.4.47)

where

Λ̃(m, κ) B inf
δ>0

sup
s̃,K∈R3

Q2
µ>(cT−κ)N5/3`−2

(
2π
`

)3 ∑
t̃∈L+AK

λs̃,Qµ,K,m,δ(t̃) (3.4.48)

with

λs̃,Qµ,K,m,δ(t̃) B
(s̃ − AK)2 + 2Q2

µ + Nδ`−2

π2(1 + m)

(
m(m + 2)
(m + 1)2 s̃2 +

m
m + 1

(2Q2
µ + AK2)

)−1/4

×
1

(t̃ − AK)2 + δ`−2

(
m(m + 2)
(m + 1)2 t̃2 +

m
m + 1

(2Q2
µ + AK2)

)−1/4

×

∣∣∣s̃ · t̃∣∣∣[
s̃2 + t̃2 + m

1+m (2Q2
µ + AK2)

]2
−

[
2

(1+m) s̃ · t̃
]2 . (3.4.49)

Proof. The proof works in almost the exact same way as in [50], hence we will not spell out
the details. The main difference is that we now have to write sums instead of integrals, and in
particular this implies that we have to choose the weight function h(s, q̂1) (see [50, Eq. (4.12)])
differently, namely as

h(s, q̂1) = (s2 + δ`−2)
N∏

i=2

(q2
i + δ`−2) . (3.4.50)

For comparison δ = 0 was used in [50]. Following the proof in [50, Sect. 4] this choice gives a
lower bound to the off-diagonal term of the form

T per,µ,N
off

(ξper) ≥ −Λ̃δ,µ(m)
(
2π
`

)3N ∑
~q∈LN

Lµ,N(~q)|ξ̂per(~q)|2 (3.4.51)

with a prefactor Λ̃δ,µ(m) equal to

sup
s̃,K∈R3,Q2>cT N5/3`−2

(s̃ − AK)2 + 2Q2 + Nδ`−2

π2(1 + m)

(
m(m + 2)
(m + 1)2 s̃2 +

m
m + 1

(2Q2 + AK2) +
2m

m + 1
µ

)−1/4

×

(
2π
`

)3 ∑
t̃∈L+AK

1
(t̃ − AK)2 + δ`−2

(
m(m + 2)
(m + 1)2 t̃2 +

m
m + 1

(2Q2 + AK2) +
2m

m + 1
µ

)−1/4

×

∣∣∣s̃ · t̃∣∣∣[
s̃2 + t̃2 + m

1+m (2Q2 + AK2) + 2m
m+1µ

]2
−

[
2

(1+m) s̃ · t̃
]2 . (3.4.52)

Since (3.4.45) holds under our assumption on µ, we see that infδ>0 Λ̃δ,µ(m) ≤ (1−κ/cT )−1Λ̃(m, κ),
which yields the desired result. �
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3.4.4 A bound on Λ̃(m, κ)

We will not evaluate Λ̃(m, κ) directly but we will compare it with Λ(m), which is defined in [50,
Eq. (2.8)] and which was already referred to in (3.2.2) above. The expression Λ(m) can be
written as

Λ(m) B sup
s̃,K∈R3

Q2
µ>0

∫
R3
λs̃,Qµ,K,m,0(t̃) dt̃ = sup

s̃,K∈R3

Q2
µ>(cT−κ)N5/3`−2

∫
R3
λs̃,Qµ,K,m,0(t̃) dt̃ . (3.4.53)

The additional constraint on Qµ in the latter supremum has no effect because of the scaling
properties of λs̃,Qµ,K,m,0, specifically λνs̃,νQµ,νK,m,0(νt̃) = ν−3λs̃,Qµ,K,m,0(t̃) for any ν > 0, which
allows to fix one of the parameters when taking the supremum. The expression (3.4.48) differs
from (3.4.53) by the non-zero value of δ, as well as the sum instead of an integral. In the
following lemmas we will compare the two.

The next Lemma gives a pointwise bound on λs̃,Qµ,K,m,δ. For its statement it will be conve-
nient to define C`(s) as the cube with side length 2π/` centered at s ∈ R3, i.e.,

C`(s) =

[
−
π

`
,
π

`

]3
+ s. (3.4.54)

Lemma 3.4.6. For m & 1 we have

λs̃,Qµ,K,m,δ(t̃) .
1
m

1
t5/2

s2 + 2Q2
µ + Nδ`−2

(s2 + 2Q2
µ)1/4

1
s2 + t2 + 2Q2

µ

(3.4.55)

where s̃ = s + AK and t̃ = t + AK for t ∈ L \ {0}. Moreover,

`−3
∑

t̃∈L+AK

max
τ∈C`(t̃)

λs̃,Qµ,K,m,δ(τ) .
1
m

(
1 +

Nδ
`2Q2

µ

+
1

δ`Qµ

+
N

`3Q3
µ

)
. (3.4.56)

Proof. For the pointwise bound (3.4.55) we will proceed similarly to [50, Sect. 6]. Using the
Cauchy-Schwarz inequality we have

|t̃ · s̃| ≤
1
2

[
s̃2 + t̃2 +

m
1 + m

(2Q2
µ + AK2)

]
(3.4.57)

and also[
s̃2 + t̃2 +

m
1 + m

(2Q2
µ + AK2)

]2
−

[
2

(1 + m)
s̃ · t̃

]2

≥
m(m + 2)
(1 + m)2

[
s̃2 + t̃2 +

m
1 + m

(2Q2
µ + AK2)

]2
.

(3.4.58)
By minimizing over K we find that

s̃2 + t̃2 +
m

1 + m
(2Q2

µ + AK2) ≥
m(2 + m)

2 + 4m + m2

[
s2 + t2 + 2Q2

µ

]
(3.4.59)

and
m(m + 2)
(m + 1)2 s̃2 +

m
m + 1

(2Q2
µ + AK2) ≥

m
m + 1

(
s2 + 2Q2

µ

)
. (3.4.60)
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By combining these bounds we get for (3.4.49) the pointwise bound

λs̃,Qµ,K,m,δ(t̃) ≤
(
m + 1

m

)3/2 m2 + 4m + 2
2π2m(m + 2)2

(
s2 + 2Q2

µ + Nδ`−2
)

×
(
s2 + 2Q2

µ

)−1/4 1
t2 + δ`−2

(
t2 + 2Q2

µ

)−1/4 1
s2 + t2 + 2Q2

µ

(3.4.61)

from which (3.4.55) readily follows.
We denote the right side of (3.4.55) by λ>(t) = λ>s,Qµ,K,m,δ(t) and we will write λ(t̃) =

λs̃,Qµ,K,m,δ(t̃) in the following. That is, (3.4.55) reads λ(t̃) . λ>(t). First we treat the term
t̃ = AK in (3.4.56). Using (3.4.61) we can bound

`−3λ(t̃) .
1

mδ`Qµ

s2 + 2Q2
µ + Nδ`−2

s2 + t2 + 2Q2
µ

.
1
m

(
1

δ`Qµ

+
N

`3Q3
µ

)
(3.4.62)

for any t̃ and hence, in particular, for t̃ ∈ C`(AK). For the case 0 , t ∈ L, we note that for
τ1, τ2 ∈ C`(t) the bound |τ1| ≤

√
11|τ2| holds, and hence

λ>(τ1) ≤ 119/4λ>(τ2) . (3.4.63)

In particular, the maximal value of λ> in C`(τ) is dominated by the average value, and therefore

`−3
∑

t̃∈L+AK

max
τ∈C`(t̃)

λ(τ) . `−3
∑
t∈L
t,0

λ>(t) +
1
m

(
1

δ`Qµ

+
N

`3Q3
µ

)

.
∑
t∈L
t,0

∫
C`(t)

λ>(t) dt +
1
m

(
1

δ`Qµ

+
N

`3Q3
µ

)

.

∫
R3
λ>(t) dt +

1
m

(
1

δ`Qµ

+
N

`3Q3
µ

)
. (3.4.64)

As a last step we explicitly evaluate the integral, which results in the bound∫
R3
λ>(t) dt .

1
m

(
1 +

Nδ
`2Q2

µ

)
. (3.4.65)

This completes the proof of the lemma. �

Lemma 3.4.7. For m & 1 we have∣∣∣∣∣∣∣
∫
R3
λs̃,Qµ,K,m,δ(t̃) dt̃ −

(
2π
`

)3 ∑
t̃∈L+AK

λs̃,Qµ,K,m,δ(t̃)

∣∣∣∣∣∣∣ . 1
m

(
1
`Qµ

+
1
δ1/2

) (
1 +

Nδ
`2Q2

µ

+
1

δ`Qµ

+
N

`3Q3
µ

)
.

(3.4.66)

Proof. As in the proof of the previous Lemma, we denote λ(t̃) = λs̃,Qµ,K,m,δ(t̃), and write it as

λ(t̃) = c5((s̃ − AK)2 + 2Q2
µ + Nδ`−2)(c1 s̃2 + c2Q2

µ + c3K2)−1/4

×
1

(t̃ − AK)2 + δ`−2 (c1t̃2 + c2Q2
µ + c3K2)−1/4 |s̃ · t̃|

(s̃2 + t̃2 + c2Q2
µ + c3K2)2 − (c4 s̃ · t̃)2

(3.4.67)
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with appropriate coefficients c1, c2, c3, c4, c5 depending on m. Its gradient equals

∇λ(t̃) = −2
t̃ − AK

(t̃ − AK)2 + δ`−2λ(t̃)︸                        ︷︷                        ︸
I

−
1
2

c1t̃
c1t̃2 + c2Q2

µ + c3K2λ(t̃)︸                          ︷︷                          ︸
II

−
4t̃(s̃2 + t̃2 + c2Q2

µ + c3K2) − 2c2
4 s̃(s̃ · t̃)

(s̃2 + t̃2 + c2Q2
µ + c3K2)2 − (c4 s̃ · t̃)2 λ(t̃)︸                                                  ︷︷                                                  ︸

III

+
s̃

t̃ · s̃
λ(t̃)︸  ︷︷  ︸

IV

. (3.4.68)

We can quantify the difference between the Riemann sum and the integral by∣∣∣∣∣∣∣
∫
R3
λ(t̃) dt̃ −

(
2π
`

)3 ∑
t̃∈L+AK

λ(t̃)

∣∣∣∣∣∣∣ . `−4
∑

t̃∈L+AK

max
τ∈C`(t̃)

|∇λ(τ)| . (3.4.69)

With the aid of the triangle inequality we can treat the terms I − IV separately.

We can bound I as
|I| ≤

2√
(t̃ − AK)2 + δ`−2

λ(t̃) ≤
2`
δ1/2λ(t̃) . (3.4.70)

For the second term we obtain

|II| ≤
1
2

√
c1

c2

1
Qµ

λ(t̃) =
1

23/2

√
m + 2
m + 1

1
Qµ

λ(t̃) .
1

Qµ

λ(t̃) . (3.4.71)

For III, we use similar estimates as in Lemma 3.4.6 to get

|III| .
|t̃| + |s̃|

s̃2 + t̃2 + c2Q2
µ + c3K2λ(t̃) .

1
Qµ

λ(t̃) . (3.4.72)

Finally, for IV we have to proceed slightly differently. If we use

|s̃| ≤
1

2
√

c2Qµ

(s̃2 + t̃2 + c2Q2
µ + c3K2) (3.4.73)

instead of (3.4.57), we see that we can bound |III| from above by Q−1
µ times the right side of

(3.4.61). Using Lemma 3.4.6 we conclude that

(3.4.69) ≤ `−4
∑

t̃∈L+AK

max
τ∈C`(t̃)

(|I| + |II| + |III| + |IV|)

.
1
m

(
1
`Qµ

+
1
δ1/2

) (
1 +

Nδ
`2Q2

µ

+
1

δ`Qµ

+
N

`3Q3
µ

)
. (3.4.74)

Here we have used that the bound (3.4.56) holds also with λs̃,Qµ,K,m,δ replaced by the right side
of (3.4.61), as shown in the proof of Lemma 3.4.6. This completes the proof. �

Lemma 3.4.8. There exists a cΛ > 0 such that

Λ̃(m, κ) ≤ Λ(m) +
1
m

cΛ

(1 − κ/cT )2 N−2/9 (3.4.75)

whenever κ < cT and Λ(m) ≤ 1, where cT is defined in (3.4.44).
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Proof. We first note that Λ(m) ≤ 1 implies m & 1. Moreover, from the definition (3.4.49) we
have

λs̃,Qµ,K,m,δ(t̃) ≤
(
1 +

Nδ
2`2Q2

µ

)
λs̃,Qµ,K,m,0(t̃) . (3.4.76)

Combining this with Lemma 3.4.7 and taking the supremum over s̃, K and Q2
µ ≥ (cT−κ)N5/3`−2,

we obtain

Λ̃(m, κ) − Λ(m) .
1
m

inf
δ>0

sup
Q2
µ≥(cT−κ)N5/3`−2

[
Nδ
`2Q2

µ

+

(
1
`Qµ

+
1
δ1/2

) (
1 +

Nδ
`2Q2

µ

+
1

δ`Qµ

+
N

`3Q3
µ

)]
(3.4.77)

where we also used that Λ(m) . m−1 for m & 1. The supremum over Qµ is clearly achieved for
Q2
µ = (cT − κ)N5/3`−2. For an upper bound, we shall choose δ ∼ N4/9, which yields the desired

bound
Λ̃(m, κ) − Λ(m) .

1
m

(cT − κ)−2N−2/9 . (3.4.78)

�

3.4.5 Proof of Theorem 3.4.1

Using Prop. 3, Eq. (3.4.46) and Lemma 3.4.8, we get the lower bound

N−1T per
α,µ,N(ξper) ≥

(
2mα
m + 1

−
1

N5/3`

c′L
cT − κ

)
‖ξper‖

2

+
1

1 − κ/cT

(
1 − κ/cT − Λ(m) −

cΛN−2/9

m(1 − κ/cT )2

) (
2π
`

)3N ∑
~q∈LN

Lµ,N(~q)|ξper(~q)|2

(3.4.79)

for any 0 < κ < cT and µ ≥ −κN5/3/`2. Note that the coefficient in front of the last sum is
positive for all N > N0(κ,m), defined in (3.4.2). If α is large enough such that also the first term
on the right side of (3.4.79) is non-negative, we conclude that T per

α,µ,N(ξper) ≥ 0.

In case 2mα < (m + 1)c′L(cT − κ)−1N−5/3`−1, on the other hand, we need to dominate the first
term on the right side of (3.4.79) by the second. We use (3.4.44) to obtain the lower bound

Lµ,N(~q) ≥ 2π2
(

2m
m + 1

)3/2

Qµ ≥ 2π2
(

2m
m + 1

)3/2 √
µ + κN5/3`−2 . (3.4.80)

In particular, if we choose

µ = −κN5/3`−2 +
1

4π4

m + 1
2m

(1 − κ/cT )2[α − (2m)−1(m + 1)c′L(cT − κ)−1N−5/3`−1]2
−

(1 − κ/cT − Λ(m) − cΛm−1(1 − κ/cT )−2N−2/9)2 (3.4.81)

we again conclude that T per
α,µ,N(ξper) ≥ 0.

Note that for our choice of µ, satisfying in particular µ ≥ −cT N5/3`−2, we have∫
BN+1

(
|∇̃φ

per
µ |

2 + µ|φ
per
µ |

2
)
≥ 0 (3.4.82)
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for all φper
µ ∈ H1

per(B
N+1) that are antisymmetric in the last N variables. Hence the positivity of

T per
α,µ,N(ξper) implies that Fper

α,N(ψper) ≥ −µ‖ψper‖2. In combination with Lemmas 3.4.3 and 3.4.4,
this completes the proof of Theorem 3.4.1. To simplify its statement, we have additionally used
that

(1− κ/cT )2[α− (2m)−1(m + 1)c′L(cT − κ)−1N−5/3`−1]2
− ≤ [α− (2m)−1(m + 1)c′Lc−1

T `
−1]2
− (3.4.83)

for N ≥ 1, and defined

cL B
m∗∗ + 1

2m∗∗
c′L
cT

(3.4.84)

in Eq. (3.4.3), where m∗∗ ≈ 0.36 is chosen such that m ≥ m∗∗ for Λ(m) ≤ 1. �

3.5 Proof of Theorem 3.2.1

In this section we will give the proof of our main result, Theorem 3.2.1.

Let B = (0, L)3 and B̄ =
⋃M

i B̄i a disjoint decomposition into cubes Bi = (0, `)3 + zi with
zi ∈ R

3. We will choose ` such that L/` ∈ N in which case M = (L/`)3. Let 1/4 > ε > 0 and let
η ∈ C∞0 (Bε(0)) be non-negative, where we denote by Bε(0) the centered ball of radius ε. In the
following we will assume that ε is a fixed constant independent of all parameters (for example
ε = 1/8 works). For x ∈ B, define

Ji(x) =


∫

Bi
η(`−1(x − y)) dy∫

B
η(`−1(x − y)) dy


1/2

. (3.5.1)

Then supp Ji ⊆ Bi + B`ε(0) and Ji(x) = 1 for x ∈ `(ε, 1 − ε)3 + zi. Moreover,
∑M

i=1 J2
i (x) = 1 for

x ∈ B by construction. The derivative of Ji can be bounded uniformly in i and M by a constant
cη depending only on η (and hence ε) as

|∇Ji|
2 ≤

cη
`2 . (3.5.2)

Let ψ ∈ D(Fα,N) be such that suppψ ⊆ BN+1 and ‖ψ‖2 = 1. We use the IMS formula,
Prop. 2, for the quadratic form Fα,N to localize the impurity particle (with coordinate x0). With
Jiψ denoting the function (Jiψ)(x0, ~x) = Ji(x0)ψ(x0, ~x) we obtain

Fα,N(ψ) =

M∑
i=1

Fα,N(Jiψ) −
1

2m

M∑
i=1

∫
|∇Ji(x0)|2|ψ(x0, ~x)|2 dx0 d~x . (3.5.3)

We note that the last term is bounded by

M∑
i=1

∫
|∇Ji(x0)|2|ψ(x0, ~x)|2 ≤

cη
`2

M∑
i=1

∫
∂Ji

|ψ(x0, ~x)|2 dx0 d~x ≤
8cη
`2 (3.5.4)

since ε < 1/2, where ∂Ji = supp |∇Ji|. Recall the definition of the mean density, ρ = NL−3. We
will choose ` ∼ ρ−1/3 which means that (3.5.3) is of the order ρ2/3.
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Figure 3.1: A sketch of the setup, the partitions Ji,Vi, Ṽi and their boxes of support.

In the next step we want to localize the other particles, to be able to distinguish whether they
are close to the impurity or far from it. Because we violate the antisymmetry constraint by doing
so, we will work with the extended quadratic form F̃α,N defined in (3.3.4). Let V ∈ C∞0 (R3)
satisfy 0 ≤ V ≤ 1, with supp V ⊆ [−2ε, 1 + 2ε]3 and V(x) = 1 for x ∈ [−ε, 1 + ε]3. We define
Vi(x) = V((x − zi)/`) and Ṽi(x) B

√
1 − Vi(x)2. Figure 3.1 visualizes this setup.

We localize all the remaining particles using the IMS formula in Prop. 2, with the localiza-
tion functions

(x1, . . . , xN) 7→
∏
j∈A

Vi(x j)
∏
k∈Ac

Ṽi(xk) (3.5.5)

for A ⊆ {1, . . . ,N}, where Ac = {1, . . . ,N} \ A. For short we define

ϕi,A(x0, ~x) B Ji(x0)
∏
k∈A

Vi(xk)
∏
j∈Ac

Ṽi(x j)ψ(x0, ~x) . (3.5.6)

A straightforward calculation using Prop. 2 and the fact that V2
i + Ṽ2

i = 1 shows that

Fα,N(Jiψ) =
∑

A⊆{1,...,N}

F̃α,N
(
ϕi,A

)
−

1
2

N∑
j=1

∫ (
|∇Vi(x j)|2 + |∇Ṽi(x j)|2

) ∣∣∣ϕi,A(x0, ~x)
∣∣∣2 dx0 d~x

 .
(3.5.7)

Here it is necessary to introduce the extended quadratic form F̃α,N since the functions ϕi,A are
not antisymmetric in all N variables (x1, . . . , xN). They are still separately antisymmetric in the
coordinates in A and in the ones in Ac, however.

In the next lemma we will show that the energy F̃α,N(ϕi,A) splits up into a non-interacting
energy for the particles in Ac that are localized away from the impurity, and in a point interacting
quadratic form for particles in A.
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Lemma 3.5.1. We define the functions ϕ~pAc

i,A ∈ L2(R3(|A|+1)) and ϕ
p0,~pA
i,A ∈ L2(R3|Ac |) via their

Fourier transforms as
ϕ̂
~pAc

i,A (p0, ~pA) = ϕ̂i,A(p0, ~p) = ϕ̂
p0,~pA
i,A (~pAc) . (3.5.8)

Then

F̃α,N(ϕi,A) =

∫
Fα,|A|(ϕ

~pAc

i,A ) d~pAc +

∫ 〈
ϕ

p0,~pA
i,A

∣∣∣∣−1
2

∑
i∈Ac

∆i

∣∣∣∣ϕp0,~pA
i,A

〉
d~pA dp0 . (3.5.9)

Proof. We define ξ j and φµ for some µ > 0 using the unique decomposition ϕi,A = φµ +∑N
j=1 Gµξ j. Corollary 3.3.2 implies that ξ j = 0 for j ∈ Ac. Hence

F̃α,N(ϕi,A) =

∫
d~pAc

[ ∫
|φ̂µ(p0, ~p)|2

(
1

2m
p2

0 +
1
2
~p2 + µ

)
d~pA dp0 − µ

∫
|ϕ̂i,A(p0, ~p)|2 d~pA dp0

+
2m

m + 1
α
∑
i∈A

∫
|ξ̂i(pi, p̂i)|2 d~pA +

∑
i∈A

∫
Lµ,N(pi, p̂i)|ξ̂i(pi, p̂i)|2 d~pA

−
∑
i, j∈A
i, j

∫
ξ̂∗i (p0 + pi, p̂i)ξ̂ j(p0 + p j, p̂ j)

1
2m p2

0 + 1
2 ~p

2 + µ
d~pA dp0

]
. (3.5.10)

Following the argumentation in the proof of Lemma 3.4.4 we see that the expression inside the
integral over ~pAc is independent of µ. In particular this allows us to shift µ → µ − ~p2

Ac/2 for
fixed ~pAc , which gives

F̃α,N(ϕi,A) =

∫
d~pAc

[ ∫
|φ̂µ−~p2

Ac
/2(p0, ~p)|2

(
1

2m
p2

0 +
1
2
~p2

A + µ

)
d~pA dp0

−

(
µ −

~p2
Ac

2

) ∫
|ϕ̂i,A(p0, ~p)|2 d~pA dp0

+
2m

m + 1
α
∑
i∈A

∫
|ξ̂i(pi, p̂i)|2 d~pA +

∑
i∈A

∫
Lµ,|A|(pi, ~pA\{i})|ξ̂i(pi, p̂i)|2 d~pA

−
∑
i, j∈A
i, j

∫
ξ̂∗i (p0 + pi, p̂i)ξ̂ j(p0 + p j, p̂ j)

1
2m p2

0 + 1
2 ~p

2
A + µ

d~pA dp0

]
(3.5.11)

where we used the fact that Lµ−~p2
Ac/2,N(pi, p̂i) = Lµ,|A|(pi, ~pA\{i}). The result then follows by noting

that the Fourier transform of the regular part of ϕ~pAc

i,A for fixed ~pAc is equal to φ̂µ−~p2
Ac

( · , ~pAc), and

using the the antisymmetry of ϕ~pAc

i,A . �

We can apply a similar decomposition also to the second term in (3.5.7). For simplicity, let

Wi(x) =
1
2

(
|∇Vi(x)|2 + |∇Ṽi(x)|2

)
. (3.5.12)

Then (3.5.7) and (3.5.9) imply that we can write

Fα,N(Jiψ) =
∑

A⊆{1,...,N}

‖ϕi,A‖
2 [
Ai,A +Bi,A

]
(3.5.13)
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where
Ai,A = ‖ϕi,A‖

−2
∫ (

Fα,|A|(ϕ
~pAc

i,A ) −
〈
ϕ
~pAc

i,A

∣∣∣∣∣∑ j∈A
Wi(x j)

∣∣∣∣∣ϕ~pAc

i,A

〉)
d~pAc (3.5.14)

and
Bi,A = ‖ϕi,A‖

−2
∫ 〈

ϕ
p0,~pA
i,A

∣∣∣∣∣∑ j∈Ac

(
−1

2∆ j + Wi(x j)
)∣∣∣∣∣ϕp0,~pA

i,A

〉
d~pA dp0 . (3.5.15)

To obtain a lower bound on Ai,A we can use Theorem 3.4.1, and for the non-interacting part
Bi,A we use the following proposition. We recall that the energy ED

n on the box B = (0, L)3

was defined in the beginning of Section 3.2 as the ground state energy of the non-interacting
Hamiltonian Hn

0 with Dirichlet boundary conditions.

Proposition 4. For n ∈ N, let φ ∈ H1
as(R

3n) be supported in (0, L)3n, with ‖φ‖2 = 1, and let
1 ≤ i ≤ M. Then

n∑
j=1

∫ (
1
2 |∇ jφ|

2 −Wi(x j)|φ|2
)
≥ ED

n − const
(
n1/3

`L
+ `−2 +

n`
L3

)
. (3.5.16)

Proof. The result follows in a straightforward way from Corollary 3.A.4, which is an adaptation
of the Lieb-Thirring inequality at positive density derived in [24]. We use that | supp(Wi)| . `3

and ‖Wi‖∞ . `
−2. This allows us to bound the right side of (3.A.54) as∫

B

(
n1/3

L
|W |2 + |W |5/2 +

n
L3 |W |

)
.

n1/3

`L
+ `−2 +

n`
L3 (3.5.17)

from which the statement readily follows. �

Since ϕp0,~pA
i,A is an antisymmetric function supported in B|A

c |, Prop. 4 implies that〈
ϕ

p0,~pA
i,A

∣∣∣∣∣∑ j∈Ac

(
−1

2∆ j + Wi(x j)
)∣∣∣∣∣ϕp0,~pA

i,A

〉
≥

(
ED
|Ac | − const

(
ρ̄1/3`−1 + `−2 + ρ̄`

))
‖ϕ

p0,~pA
i,A ‖2

(3.5.18)
where we used |Ac| ≤ N in the error term. To minimize the error we choose ` ∼ ρ−1/3. The
factor on the right side of (3.5.16) then equals ED

N−|A| − const ρ2/3. Because of the condition that
L/` ∈ N we cannot choose ` without restriction but it is always possible to choose a value such
that ` ∼ ρ−1/3. We define eN to be the N-th eigenvalue of the one-particle Dirichlet Laplacian
on B = (0, L)3. Then ED

N−|A| ≥ ED
N − |A|eN . Moreover, we can bound eN . ρ

2/3. In particular,

Bi,A ≥ ED
N − const (|A| + 1) ρ2/3 . (3.5.19)

We proceed with a lower bound on Ai,A. Theorem 3.4.1 can be used for a lower bound on
Fα,|A| only if |A| > N0, with N0 defined in (3.4.2). In case that |A| ≤ 2N0 we use the bound
(3.2.2) originating form [50] instead, which implies that

Fα,|A|(ϕ
~pAc

i,A ) & −
α2
−

(1 − Λ(m))2

∥∥∥∥ϕ~pAc

i,A

∥∥∥∥2
(3.5.20)

using m & 1. In combination with ‖Wi‖∞ . ρ̄
2/3 this gives the lower bound

Ai,A & −
α2
−

(1 − Λ(m))2 − |A|ρ̄
2/3 (3.5.21)
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and hence

Ai,A +Bi,A ≥ ED
N − const

(
α2
−

(1 − Λ(m))2 + (N0 + 1)ρ̄2/3
)

(3.5.22)

in case |A| ≤ 2N0.

For |A| ≥ 2N0, we use the bound in Theorem 3.4.1 on Fα,|A|(ϕ
~pAc

i,A ). Since ϕ~pAc

i,A is an |A| + 1-
particle wavefunction supported in a cube of side length `(1 + 2ε), Theorem 3.4.1 implies that

Fα,|A|(ϕ
~pAc

i,A ) ≥
(
κ
|A|5/3

`2(1 + 2ε)2 − U
)
‖ϕ

~pAc

i,A ‖
2 (3.5.23)

with

U =
1

4π4

m + 1
2m

[α − cL`
−1]2
−

(1 − κ/cT − Λ(m))2(1 − 2−2/9)2 . (3.5.24)

In combination with (3.5.19) and ‖Wi‖∞ . ρ̄
2/3 this yields the bound

Ai,A +Bi,A ≥ ED
N + κ

|A|5/3

`2(1 + 2ε)2 − const (|A| + 1) ρ2/3 − U

≥ ED
N − U − const κ−3/2ρ̄2/3 (3.5.25)

where we have minimized over |A| in the last step, and used that ε . 1 and ` ∼ ρ̄−1/3.

We are still free to choose κ in such a way as to minimize the error terms. We shall choose
κ = cTν(1 − Λ(m)) for some 0 < ν < 1 (e.g., ν = 1/2). Then N0 . (1 − Λ(m))−9/2, and hence
(3.5.22) and (3.5.25) together yield the bound

Ai,A +Bi,A ≥ ED
N − const

(
[α − cL`

−1]2
−

(1 − Λ(m))2 +
ρ2/3

(1 − Λ(m))9/2

)
≥ ED

N − const
(

α2
−

(1 − Λ(m))2 +
ρ2/3

(1 − Λ(m))9/2

)
(3.5.26)

which is valid for all A ⊂ {1, . . . ,N}. In combination with (3.5.3), (3.5.4) and (3.5.13), this
completes the proof of Theorem 3.2.1. �
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Appendices

3.A Lieb-Thirring inequality in a box

In this appendix we will follow the analysis of [24] to show a positive density Lieb-Thirring
inequality for a system of non-interacting fermions in a box with Dirichlet boundary conditions.
When reformulated via a Legendre transformation as a bound on the difference between the
ground state energies with and without an external potential, we will see that this inequality in
particular implies Prop. 4.

Let CL = [−L/2, L/2]3 be the cube in R3 and let Π−L,µ B 11(−∆L ≤ µ), where ∆L denotes
the Dirichlet Laplacian on CL. For short we will just write Π− for Π−L,µ, and Π+ = 1 − Π−. For
a density matrix γ we denote the corresponding density by ργ. Of particular relevance for us
is the density corresponding to Π−, which we denote by ρ0. Differently to the case of periodic
boundary conditions (discussed in [24]), ρ0 is not a constant and is given by

ρ0(x) =
∑

p∈πN3/L
p2≤µ

|φp(x)|2 (3.A.1)

where φp are the eigenvectors of −∆L to the eigenvalues p2, i.e.,

φp(x) =

(
2
L

)3/2 3∏
j=1

cos(p jx j) (3.A.2)

for x = (x1, x2, x3) ∈ R3. Since the absolute value of each eigenvector is pointwise bounded by
(2/L)3/2 we have

ρ0(x) ≤
(

2
L

)3 ∑
p∈πN3/L

p2≤µ

1 ≤
(

2
L

)3 4π
3
µ3/2L3

π3 =
25µ3/2

3π2 . (3.A.3)

Remark. Since the lowest eigenvalue of −∆L equals 3π2L−2, the problem simplifies for µ <
3π2L−2 since the projections Π±L,µ become trivial. In this case we can simply apply the original
Lieb-Thirring inequality [31] to obtain the desired bound. For our application we shall need
µ � L−2, however, hence we shall restrict our attention to µ ≥ 3π2L−2 in the following theorem.

For a real number t we denote its positive part by t+ and its negative part by t−. In particular,
t = t+ − t−.
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Theorem 3.A.1. Let µ ≥ 3π2L−2. Let Q be a self-adjoint operator of finite rank satisfying
−Π−L,µ ≤ Q ≤ 1 − Π−L,µ, with density ρQ. There exist positive constants K̃ and η independent of
µ, L and Q such that

tr(−∆L − µ)Q ≥ K̃
∫

CL

S
(
(|ρQ(x)| − ηL−1µ)+

)
dx (3.A.4)

with
S (ρ) B (µ3/2 + ρ)5/3 − µ5/2 −

5
3
µρ . (3.A.5)

Remark. In [24] a similar result was proven for the Laplacian with periodic boundary condi-
tions and we mostly follow that proof.

Remark. The crucial properties of the function S are its positivity and the fact that S (ρ) be-
haves like µ−1/2ρ2 for small ρ and like ρ5/3 for large ρ. For technical reasons it will also be
convenient that S is convex.

Essential for the proof will be to separate a given Q into Q = (Π+ + Π−)Q(Π+ + Π−) C
Q++ + Q+− + Q−+ + Q−−. The densities associated to Q±± will be denoted by ρ±±. Before we
proceed with the proof of the theorem we show the following Lemma.

Lemma 3.A.2. Assume Π− ≤ Q ≤ 1 − Π−. Then

tr
(
| − ∆L − µ|Q2

)
≤ tr(−∆L − µ)Q . (3.A.6)

Proof. We claim that Q2 ≤ Q++ − Q−−, which follows from the condition on Q. In fact,

−Π− ≤ Q ≤ 1 − Π− ⇒ 0 ≤ Q + Π− ≤ 1 ⇒ (Q + Π−)2 ≤ Q + Π− . (3.A.7)

Expanding the last inequality proves the claim. Hence

tr(|∆L + µ|Q2) ≤ tr(|∆L + µ|Q++) − tr(|∆L + µ|Q−−)
= tr((−∆L − µ)Q++) + tr((−∆L − µ)Q−−) = tr((−∆L − µ)Q) . (3.A.8)

�

Proof of Theorem 3.A.1. We shall treat Q±± separately and combine the various terms at the
end using the convexity of S .

Part 1. Q++, Q−−

We shall follow the method introduced by Rumin in [58]. With the aid of the spectral
projections Pe B 11(|∆L + µ| ≥ e) we have the layer cake representation

|∆L + µ| =

∫ ∞

0
Pe de . (3.A.9)

Let us assume that γ is a smooth enough finite rank operator with 0 ≤ γ ≤ 1. Then

tr |∆L + µ|γ =

∫ ∞

0
de tr(PeγPe) =

∫ ∞

0
de

∫
CL

ρe(x) dx (3.A.10)



79

where ρe denotes the density of the finite rank operator PeγPe. For a bounded measurable set
A we estimate ∫

A
ρe(x) dx = tr(11APeγPe) =

∥∥∥11APeγ
1/2

∥∥∥2

S2

≥
(∥∥∥11Aγ

1/2
∥∥∥
S2
−

∥∥∥11AP⊥e γ
1/2

∥∥∥
S2

)2

+

=

(∫
A
ργ

)1/2

−
∥∥∥11AP⊥e γ

1/2
∥∥∥
S2

2

+

(3.A.11)

where ργ denotes the density of γ and we used the triangle inequality for the Hilbert-Schmidt
norm ‖ · ‖S2 . Because ‖γ‖ ≤ 1 we further get∥∥∥11AP⊥e γ

1/2
∥∥∥2

S2
= tr(11AP⊥e γP⊥e 11A) ≤

∥∥∥11AP⊥e
∥∥∥2

S2
‖γ‖ ≤ |A| f (e) (3.A.12)

with

f (e) B
(

2
L

)3 ∑
p∈πN3/L
|p2−µ|<e

1 =

(
2
L

)3 ∑
n∈N3/2

| 4π
2

L2 n2−µ|<e

1

=

(
2
L

)3 [∣∣∣∣∣N3/2 ∩ B
( L
2π

(µ + e)1/2
)∣∣∣∣∣ − ∣∣∣∣∣N3/2 ∩ B̄

( L
2π

(µ − e)1/2
+

)∣∣∣∣∣] (3.A.13)

where B(R) denotes the centered open ball with radius R and B̄(R) its closure. Here we used

∥∥∥11AP⊥e
∥∥∥2

S2
=

∑
p∈πN3/L
|p2−µ|<e

∫
A
|φp(x)|2 dx ≤ |A|

∑
p∈πN3/L
|p2−µ|<e

sup
x∈A
|φp(x)|2 ≤ |A| f (e) (3.A.14)

where we bounded the eigenfunction φp of −∆L to the eigenvalue p2 by |φp(x)| ≤ (2/L)3/2.
Taking A = B(R) + x with R→ 0 we obtain the pointwise bound

ρe(x) ≥ (
√
ργ(x) −

√
f (e))2

+ . (3.A.15)

Hence we get

tr |∆L + µ|γ ≥

∫
CL

dx
∫ ∞

0
de(

√
ργ(x) −

√
f (e))2

+ =

∫
CL

R(ργ(x)) dx (3.A.16)

with

R(ρ) B
∫ ∞

0

(√
ρ −

√
f (e)

)2

+
de . (3.A.17)

To obtain the desired result we have to analyze R(ρ) in more detail. In the following we will use
C to denote a generic constant, whose value can change throughout the computation. Obviously∣∣∣∣∣∣∣∣N3/2 ∩ B(R)

∣∣∣ − 4π
3

R3
∣∣∣∣∣ . max(1,R2) (3.A.18)
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and the same statement holds if one takes the closure B̄(R) instead of B(R). For 0 < x < 1 and
M > 0, (3.A.18) allows us to bound

|N3/2 ∩ B(M(1 + x)1/2)| − |N3/2 ∩ B̄(M(1 − x)1/2)|

≤
4πM3

3

(
(1 + x)3/2 − (1 − x)3/2

+

)
+ C max(1,M2)

. M3x + max(1,M2) , (3.A.19)

where we used (1 + x)3/2 − (1 − x)3/2
+ . x. Applying (3.A.19) to f (e) for e/µ < 1 we get

f (e) . µ1/2e +
µ

L
(3.A.20)

using that µ & L−2 by assumption. For e ≥ µ we get

f (e) =

(
2
L

)3 ∣∣∣∣∣N3/2 ∩ B
( L
2π

(µ + e)1/2
)∣∣∣∣∣ ≤ C

L3

(
L3(µ + e)3/2

)
≤ Ce3/2 . (3.A.21)

Combining both statements we have thus shown that

f (e) ≤ C
(
µ

L
+ µ1/2e11(e ≤ µ) + e3/211(e > µ)

)
= u + g(e) (3.A.22)

with
g(e) B Ce max(µ1/2, e1/2) , u B C

µ

L
. (3.A.23)

Using the explicit form of g, one readily checks that

R(ρ) =

∫ ∞

0

(√
ρ −

√
f (e)

)2

+
de ≥

∫ ∞

0

(√
ρ −
√

u −
√

g(e)
)2

+
de & S ((ρ − 2u)+) , (3.A.24)

where we have also used that (
√
ρ −
√

u)2
+ ≥

1
2 (ρ − 2u)+. In combination with (3.A.16), this

shows that
tr | − ∆L − µ|γ &

∫
CL

S ((ργ(x) −CL−1µ)+) dx . (3.A.25)

We apply this for γ = Q++ and γ = −Q−− and obtain

tr(−∆L − µ)Q±± &
∫

CL

S
(
(|ρ±±(x)| −CL−1µ)+

)
dx . (3.A.26)

Part 2. Q+−, Q−+

In the next step we want to prove bounds for Q+− and Q−+. We introduce

Π+
0 = 11(µ < −∆L < µ +

√
µ/L) Π−0 = 11(µ −

√
µ/L ≤ −∆L ≤ µ)

Π+
1 = 11(µ +

√
µ/L ≤ −∆L) Π−1 = 11(−∆L < µ −

√
µ/L) (3.A.27)

and split Q+− = (Π+
0 + Π+

1 )Q(Π−0 + Π−1 ) = Q+−
00 + Q+−

10 + Q+−
01 + Q+−

11 . The following three parts of
the proof will treat these terms. We start with Q±00.

Part 3. Q+−
00
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The density of Q+−
00 is equal to

ρ+−
00 (x) =

∑
k∈(πN/L)3

µ<k2<µ+
√
µ/L

∑
j∈(πN/L)3

µ−
√
µ/L≤ j2≤µ

〈φk|Qφ j〉φk(x)φ j(x) . (3.A.28)

Using ‖Q‖ ≤ 1, we can bound this as

|ρ+−
00 (x)| ≤

(∑
k∈(πN/L)3

µ<k2<µ+
√
µ/L

|φk(x)|2
)1/2(∑

j∈(πN/L)3

µ−
√
µ/L≤ j2≤µ

|φ j(x)|2
)1/2

≤

(
2
L

)3 √
|{µ ≤ k2 ≤ µ +

√
µ/L}|

√
|{µ −

√
µ/L ≤ j2 ≤ µ}| ≤ C

µ

L
(3.A.29)

where we applied (3.A.19) in the last step.

Part 4. Q+−
10 ,Q

+−
01

Next we will bound ρ+−
10 . For a general function W (viewed as a multiplication operator),

we have

| tr(WQ+−
10 )| =

∣∣∣∣∣∣tr
(
Π−0 W

Π+
1

| − ∆L − µ|1/2
| − ∆L − µ|

1/2Q
)∣∣∣∣∣∣

≤
√

tr | − ∆L − µ|Q2

∥∥∥∥∥∥Π−0 W
Π+

1

| − ∆L − µ|1/2

∥∥∥∥∥∥
S2

. (3.A.30)

To bound the first factor, we can used Lemma 3.A.2. For the second term we need to use the
specific form of the eigenfunctions for the Dirichlet Laplacian. Using (3.A.2) we get

|〈φp|Wφq〉|
2 =

(
1

2L

)6
∣∣∣∣∣∣∣∣

∑
A,B∈{1,−1}3

Ŵ((A j p j) j − (B jq j) j)

∣∣∣∣∣∣∣∣
2

. L−6
∑

A,B∈{1,−1}3

|Ŵ((A j p j) j − (B jq j) j)|2

(3.A.31)
where (A j p j) j and (B jq j) j denote the vectors obtained by component-wise multiplication. Hence∥∥∥∥∥∥Π−0 W

Π+
1

| − ∆L − µ|1/2

∥∥∥∥∥∥2

S2

=
∑

p,q∈(πN/L)3

µ−
√
µ/L≤p2≤µ

q2>µ+
√
µ/L

|〈φp|Wφq〉|
2

q2 − µ
≤

L
√
µ

∑
p,q∈(πN/L)3

µ−
√
µ/L≤p2≤µ

q2>µ+
√
µ/L

|〈φp|Wφq〉|
2

.
1
L6

L
√
µ

∑
p,q∈(π(Z\{0})/L)3

µ−
√
µ/L≤p2≤µ

q2>µ+
√
µ/L

|Ŵ(p − q)|2

.
1
L6

L
√
µ

∑
q∈(π(Z\{0})/L)3

|Ŵ(q)|2
∑

µ−
√
µ/L≤p2≤µ

1 .
√
µ ‖W‖22 . (3.A.32)

The sum of (3.A.31) is included in the second line of the previous calculation by extending the
sum over p, q ∈ N3 to p, q ∈ (Z \ {0})3, and we have again used (3.A.19) in the last step.
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Choosing for W = (ρ+−
10 )∗ we thus get from (3.A.30)∫

CL

|ρ+−
10 |

2 ≤ Cµ1/2 tr(−∆L − µ)Q . (3.A.33)

In a similar way we can treat ρ+−
01 with the result that also∫

CL

|ρ+−
01 |

2 ≤ Cµ1/2 tr(−∆L − µ)Q . (3.A.34)

Part 5. Q+−
11

Similarly to above we again introduce a multiplication operator W, and estimate∣∣∣tr(WΠ+
1 QΠ−1 )

∣∣∣ ≤ ∥∥∥∥∥∥ Π+
1

|∆L + µ|1/4
W

Π−1

|∆L + µ|1/4

∥∥∥∥∥∥
S2

∥∥∥|∆L + µ|1/4Q|∆L + µ|1/4
∥∥∥
S2 . (3.A.35)

The second factor we bound by∥∥∥|∆L + µ|1/4Q|∆L + µ|1/4
∥∥∥
S2 ≤

∥∥∥|∆L + µ|1/2Q
∥∥∥
S2 = tr(|∆L + µ|Q2)1/2 (3.A.36)

and Lemma 3.A.2. For the first one, we have∥∥∥∥∥∥ Π+
1

|∆L + µ|1/4
W

Π−1

|∆L + µ|1/4

∥∥∥∥∥∥2

S2

=
∑

p,q∈(πN3/L)
p2>µ+

√
µ/L

q2<µ−
√
µ/L

|〈φp|Wφq〉|
2

(µ − q2)1/2(p2 − µ)1/2

≤
C
L6

∑
p,q∈(πZ3/L)
p2>µ+

√
µ/L

q2<µ−
√
µ/L

|Ŵ(q − p)|2

(µ − q2)1/2(p2 − µ)1/2 =
C
L3

∑
k∈(πZ3/L)

Φ(k)|Ŵ(k)|2 ≤ C sup
k

Φ(k) ‖W‖22 (3.A.37)

with
Φ(k) =

1
L3

∑
q∈(πZ3/L)

(q−k)2>µ+
√
µ/L

q2<µ−
√
µ/L

1
(µ − q2)1/2((q − k)2 − µ)1/2 . (3.A.38)

In [24, Proof of Thm. 5.1] it was shown that supk Φ(k) . µ1/2 for µ & L−2. Hence the choice
W = (ρ+−

11 )∗ yields ∫
CL

|ρ+−
11 |

2 . µ1/2 tr((−∆L − µ)Q) . (3.A.39)

Part 6. Combining the above estimates

By combining (3.A.34) and (3.A.39) we obtain

µ−1/2
∫

CL

|ρ+− − ρ+−
00 |

2 ≤ C tr(−∆L − µ)Q . (3.A.40)

Using that |ρ+−
00 | ≤ Cµ/L, as shown in (3.A.29), this further implies that

µ−1/2
∫

CL

(
|ρ+−| −Cµ/L

)2
+ ≤ C tr(−∆L − µ)Q . (3.A.41)
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The integrand in the left side is bounded from below by CS ((|ρ+−| −Cµ/L)+), hence∫
CL

S
(
(|ρ+−| −Cµ/L)+

)
≤ C tr(−∆L − µ)Q . (3.A.42)

Since |ρ+−| = |ρ−+|, the same bound holds for ρ−+ as well. Combining (3.A.26) and (3.A.42)
and using the convexity of S we get

tr(−∆L − µ)Q &
∫

CL

S
(
(|ρ++| + |ρ−−| + |ρ+−| + |ρ−+| −Cµ/L)+

4

)
≥

∫
CL

S
((
|ρQ| −Cµ/L

)
+

4

)
&

∫
CL

S ((|ρQ| −Cµ/L)+) . (3.A.43)

This completes the proof of Theorem 3.A.1. �

By taking a Legendre transform, the result above implies that following potential version
of the Lieb-Thirring inequality.

Theorem 3.A.3. Assume that V is a real-valued function in L5/2([−L/2,−L/2]3), and µ ≥
3π2L−2. Then we have

0 ≥ − tr(−∆L + V − µ)− + tr(−∆L − µ)− −
∫

CL

ρ0V

≥ −K
∫

CL

(
µ1/2|V |2 + |V |5/2 + L−1µ|V |

)
(3.A.44)

with K > 0 independent of L, µ and V.

Remark. In case that µ < 3π2L−2 we have −∆L−µ > 0, and therefore tr(−∆L−µ)− = 0 and also
ρ0 = 0. One can thus obtain a lower bound using the standard Lieb-Thirring inequality [31]
applied to a potential V − µ in this case.

Proof. We start with the identity

− tr(A + B)− = inf
0≤γ≤1

tr(A + B)γ (3.A.45)

for hermitian matrices A and B, where an optimizer is clearly 11(A+B ≤ 0). With P− = 11(A ≤ 0)
and Q = γ − P−, (3.A.45) reads

− tr(A + B)− = inf
−P−≤Q≤1−P−

tr(A + B)Q + tr(A + B)P− . (3.A.46)

Defining P−B = 11(A + B ≤ 0) we equivalently get

tr(A + B)(P−B − P−) = inf
−P−≤Q≤1−P−

tr(A + B)Q . (3.A.47)

This equality can be extended to allow A = −∆ − µ and B = V (see [24, Thm 4.1]). Using this
and applying Theorem 3.A.1 we get

tr(−∆L − µ)− − tr(−∆L + V − µ)− −
∫

CL

ρ0V ≥ inf
ρ

(
K̃

∫
CL

S ((|ρ| − ηL−1µ)+) +

∫
CL

Vρ
)

≥ inf
ρ≥0

(
K̃

∫
CL

S ((ρ − ηL−1µ)+) −
∫

CL

|V |ρ
)

(3.A.48)
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where the infimum in the first line is over functions ρ : R3 → R, while in the second we can
restrict to non-negative functions ρ. We can pull the infimum inside the integral for a lower
bound. Clearly we can assume that ρ ≥ ηL−1µ. Introducing γ = ρ − ηL−1µ we have

inf
γ≥0

(
K̃S (γ) − |V |γ − ηL−1µ|V |

)
= K̃

2
3
µ5/2 + K̃−1|V |µ3/2 −

2
3

(
µ + K̃−1 3|V |

5

)5/2 − ηL−1µ|V | .

(3.A.49)
Using that

x5/2 +
5
2

x3/2y − (x + y)5/2 ≥ −
15
√

xy2

8
− y5/2 (3.A.50)

for x = µ and y = 3K̃−1|V |/5 gives the bound

(3.A.49) & −µ1/2|V |2 − |V |5/2 − L−1µ|V | . (3.A.51)

Plugging this into (3.A.48) proves the Theorem. �

We apply the above theorem for a potential V ∈ L5/2(CL) with V ≤ 0, choosing µ as eN , the
Nth eigenvalue of the Dirichlet Laplacian −∆L. In particular, µ ≥ e1 = 3π2L−2 which allows us
to use Theorem 3.A.3. The ground state energy ED

N for N non-interacting particles confined to
CL was defined in the beginning of Section 3.2 and can be written as ED

N =
∑N

i=1 ei.

We denote by eV
k the kth eigenvalue of −∆L + V , and by EV,D

N the sum of the lowest N
eigenvalues of −∆L + V , i.e., EV,D

N =
∑N

i=1 eV
i . Theorem 3.A.3 implies that

tr(−∆L − µ)− = −ED
N + NeN ≥ tr(−∆L + V − eN)− − R ≥ −EV,D

N + NeN − R (3.A.52)

with
R = const

∫
CL

(
µ1/2|V |2 + |V |5/2 + L−1µ|V |

)
−

∫
CL

ρ0V . (3.A.53)

We used that since V ≤ 0 the operator −∆L + V − eN has at least N non-positive eigenvalues,
and therefore we can get a lower bound on the trace of its negative part by summing only the
first N of them.

From the above calculation, together with ρ0 . µ
3/2 and µ = eN . N2/3/L2, we deduce the

following corollary.

Corollary 3.A.4. Let V ∈ L5/2(CL) with V ≤ 0 and let ED
N denote the ground state energy of

N non-interacting fermions confined to CL. With EV,D
N we denote the ground state energy of the

corresponding Hamiltonian with external potential V. Then

ED
N − EV,D

N .

∫
CL

(
N1/3

L
|V |2 + |V |5/2 +

N
L3 |V |

)
. (3.A.54)
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CHAPTER 4

Stability of the 2 + 2 fermionic system with
point interactions

ThomasMoser, Robert Seiringer

Abstract
We give a lower bound on the ground state energy of a system of two fermions of
one species interacting with two fermions of another species via point interactions.
We show that there is a critical mass ratio m2 ≈ 0.58 such that the system is stable,
i.e., the energy is bounded from below, for m ∈ [m2,m−1

2 ]. So far it was not known
whether this 2 + 2 system exhibits a stable region at all or whether the formation
of four-body bound states causes an unbounded spectrum for all mass ratios, similar
to the Thomas effect. Our result gives further evidence for the stability of the more
general N + M system.

4.1 Introduction

Systems of particles interacting via point interactions are frequently used in physics to model
short range forces. In these models the shape of the interaction potential enters only via the
scattering length. Originally point interactions were introduced in the 1930s to model nuclear
interactions [5, 6, 19, 68, 72], and later they were also successfully applied to other areas of
physics like polarons (see [40] and references there) or cold atomic gases [74].

Given N ≥ 1 fermions of one type with mass 1/2 and M ≥ 1 fermions of another type with
mass m/2 > 0, point interaction models give a meaning to the formal expression

−

N∑
i=1

∆xi −
1
m

M∑
j=1

∆y j + γ

N∑
i=1

M∑
j=1

δ(xi − y j) (4.1.1)

for γ ∈ R. Because of the existence of discontinuous functions in H1(Rn) for n ≥ 2, this
expression is ill-defined in dimensions larger than one. In the following we restrict our attention
to the three-dimensional case but we note that the system also exhibits interesting behavior in
two dimensions [15, 16, 28].
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A mathematically precise version of (4.1.1) in three dimensions was constructed in [15,20]
and we will work here with the model introduced there. We note that even though these models
are mathematically well-defined it is not established whether they can be obtained as a limit of
genuine Schrödinger operators with interaction potentials of shrinking support. (See, however,
[1] for the case N = M = 1, and [3] for models in one dimension.)

It was already known to Thomas [68] that systems with point interactions are inherently
unstable for bosons, in the sense that the energy is not bounded from below, if there are at least
three particles involved. It turns out that in the case that the particles are fermions the question
of stability is more delicate as it depends on the mass ratio of the two species, in general.

The case N = M = 1 is completely understood as it reduces to a one particle problem [1].
In this case there exists a one-parameter family of Hamiltonians describing point interactions
parameterized by the inverse scattering length, and they are bounded from below for all masses.

Beside this trivial case also the 2 + 1 case (i.e., N = 2 and M = 1), where the two particles
of the same species are fermions, is well understood [4,11–13,15,45–48,59]. There is a critical
mass ratio m∗ ≈ 0.0735 such that the system is unstable for m < m∗ and stable otherwise. It is
remarkable that this critical mass ratio does not depend on the strength of the interaction, i.e.,
the scattering length. Recently in [4] the spectrum of the 2 + 1 system was discussed in more
detail. Moreover, it was shown in [12, 47] that in a certain mass range other models describing
point interactions can be constructed.

For larger systems of fermions even the question of stability is generally open. In [50] the
stability result for the 2 + 1 case was recently extended to the general N + 1 problem (N ≥ 2
and M = 1). In particular it was shown that there exists a critical mass m1 ≈ 0.36 such that
the system’s energy is bounded from below, uniformly in N, for m ≥ m1. As a consequence of
the 2 + 1 case this N + 1 system is unstable for m < m∗, but the behavior for m ∈ [m∗,m1) is
unknown.

By separating particles one can obtain an upper bound on the ground state energy of the
general N + M problem using the bounds for the N + 1 or the 1 + M problem. We note that
the latter is, up to an overall factor, equivalent to the M + 1 problem with m replaced by its
inverse. Hence the fact that m1 < 1 gives hope that there exists a mass region where the general
N + M system is stable for all N and M. The simplest problem of this kind is the 2 + 2 case. So
far there are only numerical results on its stability available [18, 42]. In particular, the analysis
in [18] suggests that the critical mass for the 2 + 2 case should be equal to m∗, i.e., the one for
the 2 + 1 case.

In this paper we give a rigorous proof of stability for the 2+2 system in a certain window of
mass ratios. We find a critical mass m2 ≈ 0.58 such that the system is stable if m ∈ [m2,m−1

2 ] ≈
[0.58, 1.73]. We note that the critical mass m2 is not optimal and we cannot make any further
statements about the mass range [m∗,m2] ∪ [m−1

2 ,m
∗−1]. The behavior for these masses, and in

particular the question whether m2 = m∗, still represents an open problem.

4.2 The model

For p1, p2, k1, k2 ∈ R
3 and m > 0, let

h0(p1, p2, k1, k2) = p2
1 + p2

2 +
1
m

(
k2

1 + k2
2

)
. (4.2.1)
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We will work with the quadratic form Fα introduced in [20] for 2 + 2 particles. Its form domain
is given by

D(Fα) = {ψ = ϕ + Gµξ | ϕ ∈ H1
as(R

6) ⊗ H1
as(R

6), ξ ∈ H1/2(R9)} (4.2.2)

where, for some (arbitrary) µ > 0, Gµξ is the function with Fourier transform

Ĝµξ(p1, p2, k1, k2) =
∑

i, j∈{1,2}

(−1)i+ j(h0(p1, p2, k1, k2) + µ)−1ξ̂(pi + k j, p̂i, k̂ j) (4.2.3)

and we used the notation that p̂1 = p2, p̂2 = p1 and analogously for k. The space H1
as(R

6)
denotes antisymmetric functions in H1(R3) ⊗ H1(R3). Note that because of the requirement
ϕ ∈ H1(R12) the decomposition ψ = ϕ + Gµξ is unique. Note also that the Hilbert space under
consideration consists of functions that are antisymmetric in the first two and last two variables,
i.e., under both the exchange p1 ↔ p2 and k1 ↔ k2.

For α ∈ R, the quadratic form we consider is given by

Fα(ψ) = H(ϕ) − µ ‖ψ‖22 + 4Tµ(ξ) + 4α ‖ξ‖22 , (4.2.4)

where
H(ϕ) =

∫
R12

(h0(p1, p2, k1, k2) + µ) |ϕ̂(p1, p2, k1, k2)|2 dp1 dp2 dk1 dk2 (4.2.5)

and Tµ(ξ) =
∑3

i=0 φi(ξ), with the φi of the form

φ0(ξ) = 2π2
( m
m + 1

)3/2 ∫
|ξ̂(P, p, k)|2

√
P2

1 + m
+ p2 +

k2

m
+ µ dP dp dk (4.2.6)

φ1(ξ) =

∫
ξ̂∗(p1 + k1, p2, k2)ξ̂(p2 + k1, p1, k2)

h0(p1, p2, k1, k2) + µ
dp1 dp2 dk1 dk2 (4.2.7)

φ2(ξ) =

∫
ξ̂∗(p1 + k1, p2, k2)ξ̂(p1 + k2, p2, k1)

h0(p1, p2, k1, k2) + µ
dp1 dp2 dk1 dk2 (4.2.8)

φ3(ξ) = −

∫
ξ̂∗(p1 + k1, p2, k2)ξ̂(p2 + k2, p1, k1)

h0(p1, p2, k1, k2) + µ
dp1 dp2 dk1 dk2 . (4.2.9)

We note that Fα is independent of the choice of µ > 0. The parameter α corresponds to the
inverse scattering length; more precisely, α = −2π2/a, with a ∈ (−∞, 0) ∪ (0,∞] the scattering
length.

It was shown in [20] that Tµ(ξ) is well-defined on H1/2(R9). To show stability, we need to
prove that it is in fact positive. If, on the contrary, there exists a µ > 0 and a ξ ∈ H1/2(R9) such
that Tµ(ξ) < 0, a simple scaling argument (choosing ϕ = 0 and using the scale invariance of
F0) can be used to deduce that Fα is unbounded from below for all α ∈ R.

The functionals φ0 and φ1 also appear in a similar form in the discussion of the 2 + 1
problem, and φ2 can be seen as the analogous 1 + 2 term. The term φ3 has no analogue in
the 2 + 1 or 1 + 2 systems. Note that none of the φi for 1 ≤ i ≤ 3 has a sign, and we expect
that cancellations occur between them that are important for stability. In our proof below, we
will first bound φ0 + φ3 from below by a positive quantity, which we then use to compensate
separately the negative parts of φ1 and φ2. Since we shall neglect some positive terms, we
cannot expect to obtain a sharp bound. In particular, whether m2 = m∗, as suggested in [18],
cannot be determined using this method.
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4.3 Main result

For a ∈ R3, b ≥ 0 and m > 0, let Om
a,b be the bounded operator on L2(R3) with integral kernel

Om
a,b(p1, p2) =

[
(p1 + a)2 + b2

]−1/4 [
(p2 + a)2 + b2

]−1/4

×
1

p2
1 + p2

2 + 2
1+m p1 · p2 +

2(2+m)
(1+m)2 a2 + 2m

(1+m)2 b2
. (4.3.1)

Let further
Λ(m) = −

1
2π2

1 + m
√

m
inf

a∈R3, b≥0
inf spec Om

a,b . (4.3.2)

Theorem 4.3.1. For m > 0 such that Λ(m) + Λ(1/m) ≤ 1, we have

Tµ(ξ) ≥ (1 − Λ(m) − Λ(1/m))
√

2µ π2
( m
m + 1

)3/2
‖ξ‖22 (4.3.3)

for any ξ ∈ H1/2(R9) and any µ > 0.

This bound readily implies stability for Fα, as the following corollary shows.

Corollary 4.3.2. For m such that Λ(m) + Λ(1/m) < 1, we have

Fα(ψ) ≥

0 α ≥ 0

−α2
(

m+1
m

)3 1
2π4(1−Λ(m)−Λ(1/m))2 ‖ψ‖

2
2 α < 0

(4.3.4)

for any ψ ∈ D(Fα).

Proof. Without loss of generality we can assume that ‖ψ‖2 = 1. Using Theorem 4.3.1 and
H(ϕ) ≥ 0, we get

Fα(ψ) + µ ≥ 4Tµ(ξ) + 4α ‖ξ‖22

≥ 4
[
α + (1 − Λ(m) − Λ(1/m))

√
2µ π2

( m
m + 1

)3/2
]
‖ξ‖22 .

In case α ≥ 0 we obtain Fα(ψ) ≥ −µ , which shows the result as µ > 0 was arbitrary. If α < 0,
we choose

µ = α2
(
m + 1

m

)3 1
2π4(1 − Λ(m) − Λ(1/m))2 , (4.3.5)

which yields the desired result. �

We thus proved stability as long as Λ(m) + Λ(1/m) < 1. To investigate the implication on
m, let us first check what happens for a = 0 and b = 0. An explicit calculation following [11]
shows that

Λ̄(m) := −
1

2π2

1 + m
√

m
inf spec Om

0,0

=
2
π

(1 + m)2
(

1
√

m
−
√

2 + m arcsin
(

1
1+m

))
(4.3.6)

which satisfies Λ̄(m) + Λ̄(1/m) < 1 for 0.139 . m . 7.189. This range of masses is the largest
possible for which our approach can show stability.

While we do not know whether Λ(m) = Λ̄(m), we shall give in Section 4.5 a rough upper
bound on Λ(m) which shows that Λ(m) + Λ(1/m) < 1 for 0.58 . m . 1.73.



89

4.4 Proof of Theorem 4.3.1

We shall split the proof into several steps.

4.4.1 Bound on φ3

We shall rewrite φ3 in (4.2.9) using center-of-mass and relative coordinates for each of the pairs
(p1, k1) and (p2, k2). With P1 = p1+k1, q1 = m

1+m p1−
1

1+mk1, P2 = p2+k2 and q2 = m
1+m p2−

1
1+mk2,

we have

φ3(ξ) = −

∫
dP1 dP2 dq1 dq2

×
ξ̂∗(P1,

P2
1+m + q2,

mP2
1+m − q2)ξ̂(P2,

P1
1+m + q1,

mP1
1+m − q1)

1
1+m

(
P2

1 + P2
2

)
+ 1+m

m

(
q2

1 + q2
2

)
+ µ

. (4.4.1)

By completing the square, we can write, for any positive function w,

φ3(ξ) =

∫
dP1 dP2 dq1 dq2

w(q2, P1, P2)w(q1, P2, P1)

×

1
2 |χw(q2, P1, P2) − χw(q1, P2, P1)|2 − |χw(q2, P1, P2)|2

1
1+m

(
P2

1 + P2
2

)
+ 1+m

m

(
q2

1 + q2
2

)
+ µ

(4.4.2)

where we denote χw(q, P1, P2) = ξ̂(P1,
P2

1+m + q, mP2
1+m − q)w(q, P1, P2). We shall choose

w(q, P1, P2) = q2 + λ2
(

m
(1+m)2

(
P2

1 + P2
2

)
+ m

1+mµ
)

(4.4.3)

for some constant λ ≥ 0. The first term in the numerator on the right side of (4.4.2) is manifestly
positive. Performing the integration over q1, the integral over the second term equals∫

dP1 dP2 dq2

(
−

2π2m
1 + m

) ∣∣∣ξ̂(P1,
1

1+m P2 + q2,
m

1+m P2 − q2)
∣∣∣2

×
q2

2 + λ2
(

m
(1+m)2

(
P2

1 + P2
2

)
+ m

1+mµ
)

λ
√

m
(1+m)2

(
P2

1 + P2
2

)
+ m

1+mµ +

√
q2

2 + m
(1+m)2

(
P2

1 + P2
2

)
+ m

1+mµ

. (4.4.4)

Let us compare this latter expression with φ0 in (4.2.6), which can be rewritten as

φ0(ξ) =
2π2m
m + 1

∫
|ξ̂(P1,

1
1+m P2 + q2,

m
1+m P2 − q2)|2

×

√
q2

2 +
m

(1 + m)2

(
P2

1 + P2
2

)
+

m
1 + m

µ dP1 dP2 dq2 . (4.4.5)

For 0 ≤ λ ≤ 1, one readily checks that

Lλ(P1, P2, q)

:=
√

q2 +
m

(1 + m)2

(
P2

1 + P2
2

)
+

m
1 + m

µ

−
q2 + λ2

(
m

(1+m)2

(
P2

1 + P2
2

)
+ m

1+mµ
)

λ
√

m
(1+m)2

(
P2

1 + P2
2

)
+ m

1+mµ +

√
q2 + m

(1+m)2

(
P2

1 + P2
2

)
+ m

1+mµ

(4.4.6)
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is non-negative. What we have shown here is that

φ0(ξ) + φ3(ξ)

≥
2π2m
m + 1

∫
|ξ̂(P1,

1
1+m P2 + q, m

1+m P2 − q)|2Lλ(P1, P2, q) dP1 dP2 dq (4.4.7)

for any λ ≥ 0.

Note that for λ2 = 1/2, Lλ takes the simple form

L1/
√

2(P1, P2, q) =
1
√

2

√
m

(1+m)2

(
P2

1 + P2
2

)
+ m

1+mµ (4.4.8)

and is, in particular, independent of q.

4.4.2 Bound on φ1

For the term φ1 in (4.2.7), we shall switch to center-of-mass and relative coordinates for the
particles (p1, p2, k1). With P = p1 + p2 + k1, q1 = 1+m

2+m p1 −
1

2+m (p2 + k1) and q2 = 1+m
2+m p2 −

1
2+m (p1 + k1), as well as k = k2 for short, we have

φ1(ξ) =
m

1 + m

∫
dP dq1 dq2 dk

×
ξ̂∗( 1+m

2+m P − q2,
P

2+m + q2, k)ξ̂( 1+m
2+m P − q1,

P
2+m + q1, k)

q2
1 + q2

2 + 2
1+mq1 · q2 + m

(1+m)(2+m) P
2 + 1

1+mk2 + m
1+mµ

. (4.4.9)

Defining
`λ(q, P, k) = Lλ( 1+m

2+m P − q, P
2+m + q + k, mq

1+m + mP
(1+m)(2+m) −

k
1+m ) (4.4.10)

our aim is to obtain a lower bound on the operator on L2(R3) with integral kernel

`λ(q1, P, k)−1/2`λ(q2, P, k)−1/2

×
1

q2
1 + q2

2 + 2
1+mq1 · q2 + m

(1+m)(2+m) P
2 + 1

1+mk2 + m
1+mµ

(4.4.11)

for suitable λ, uniformly in the fixed parameters P and k.

Let us take λ2 = 1/2 for simplicity, in which case we have

`1/
√

2(q, P, k) =

√
m

1 + m

√(
q + 1

2k − m
2(2+m) P

)2
+ 1

4 (P + k)2 + 1+m
2 µ . (4.4.12)

Note also that

m
(1 + m)(2 + m)

P2 +
1

1 + m
k2

=
2m

(1 + m)2

[
2 + m

m

(
1
2k − m

2(2+m) P
)2

+
1
4

(P + k)2
]
. (4.4.13)

With
a = 1

2k − m
2(2+m) P , b2 = 1

4 (P + k)2 + 1+m
2 µ (4.4.14)
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our task is thus to find a lower bound on the operator with integral kernel 1+m
√

m Om
a,b(q1, q2),

defined in (4.3.1). The best lower bound equals −2π2Λ(m), by definition.

To summarize, what we have shown here is that

φ1(ξ) ≥ −Λ(m)
2π2m
m + 1

∫
|ξ̂(1+m

2+m P − q, P
2+m + q, k)|2`1/

√
2(q, P, k) dP dq dk . (4.4.15)

Using (4.4.10), a simple change of variables shows that this is equivalent to

φ1(ξ)

≥ −Λ(m)
2π2m
m + 1

∫
|ξ̂(P1,

P2
1+m + q, mP2

1+m − q)|2L1/
√

2(P1, P2, q) dP1 dP2 dq . (4.4.16)

4.4.3 Bound on φ2

In exactly the same way we proceed with φ2 in (4.2.8), which we rewrite as

φ2(ξ)

=
m

1 + m

∫
dP dq1 dq2 dp

×
ξ̂∗( 1+m

1+2m P − q2, p, q2 + mP
1+2m )ξ̂( 1+m

1+2m P − q1, p, q1 + mP
1+2m )

q2
1 + q2

2 + 2m
1+mq1 · q2 + m

(1+m)(1+2m) P
2 + m

1+m p2 + m
1+mµ

. (4.4.17)

If we now define

˜̀
λ(q, P, p) = Lλ( 1+m

1+2m P − q, p + q + mP
1+2m ,

mp
1+m −

q
1+m −

mP
(1+m)(1+2m) ) (4.4.18)

we need a lower bound on the operator on L2(R3) with integral kernel

˜̀
λ(q1, P, p)−1/2 ˜̀

λ(q2, P, p)−1/2

×
1

q2
1 + q2

2 + 2m
1+mq1 · q2 + m

(1+m)(1+2m) P
2 + m

1+m p2 + m
1+mµ

(4.4.19)

for fixed P and p. By proceeding as in the previous subsection, one readily checks that, for
λ2 = 1/2, its best lower bound is −2π2Λ(1/m), with Λ defined in (4.3.2). In particular, we have

φ2(ξ)

≥ −Λ(1/m)
2π2m
m + 1

∫
|ξ̂(P1,

P2
1+m + q, mP2

1+m − q)|2L1/
√

2(P1, P2, q) dP1 dP2 dq . (4.4.20)
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4.4.4 Combining above bounds

By combining the bounds (4.4.7), (4.4.16) and (4.4.20) from the previous three subsections, we
obtain

Tµ(ξ) =

3∑
j=0

φ j(ξ)

≥ (1 − Λ(m) − Λ(1/m))
2π2m
m + 1

×

∫
|ξ̂(P1,

1
1+m P2 + q, m

1+m P2 − q)|2L1/
√

2(P1, P2, q) dP1 dP2 dq (4.4.21)

with L1/
√

2 defined in (4.4.8). In the case Λ(m)+Λ(1/m) ≤ 1, we can further use L1/
√

2(P1, P2, q) ≥√
mµ/(2(1 + m)) for a lower bound. This completes the proof of Theorem 4.3.1.

4.5 Bound on Λ(m)

Note that Λ(m) ≥ Λ̄(m). To obtain an upper bound, we use the Schur test. We first drop the
positive part of the operator with integral kernel

k(p1, p2) =

[
p2

1 + p2
2 +

2
1 + m

p1 · p2 +
2(2 + m)
(1 + m)2 a2 +

2m
(1 + m)2 b2

]−1

. (4.5.1)

It follows from [50, Lemma 3] that the negative part of this operator has the integral kernel

k−(p1, p2) =
−k(p1, p2) + k(p1,−p2)

2

=
2

1 + m
p1 · p2[

p2
1 + p2

2 +
2(2+m)
(1+m)2 a2 + 2m

(1+m)2 b2
]2
−

4(p1·p2)2

(1+m)2

.

By applying the Cauchy-Schwarz inequality, we obtain, for any positive function h on R3 (pos-
sibly depending on a and b)

Λ(m) ≤
1

π2
√

m
sup
p1,a,b

∫
R3

h(p1)
h(p2)

|p1 · p2|[
p2

1 + p2
2 +

2(2+m)
(1+m)2 a2 + 2m

(1+m)2 b2
]2
−

4(p1·p2)2

(1+m)2

×
[
(p2 + a)2 + b2

]−1/2
dp2 . (4.5.2)

By monotonicity, we can set b = 0, i.e,

Λ(m)≤
1

π2
√

m
sup
p1,a

∫
R3

h(p1)
h(p2)

|p1 · p2|[
p2

1 + p2
2 +

2(2+m)
(1+m)2 a2

]2
−

4(p1·p2)2

(1+m)2

|p2+ a|−1 dp2. (4.5.3)
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We shall choose h to be even, i.e., h(p) = h(−p), in which case we can symmetrize to get

Λ(m) ≤
1

π2
√

m
sup
p1,a

∫
R3

h(p1)
h(p2)

|p1 · p2|[
p2

1 + p2
2 +

2(2+m)
(1+m)2 a2

]2
−

4(p1·p2)2

(1+m)2

×
1
2

(
1

|p2 + a|
+

1
|p2 − a|

)
dp2

≤
1

π2
√

m
sup
p1,a

∫
R3

h(p1)
h(p2)

|p1 · p2|[
p2

1 + p2
2 +

2(2+m)
(1+m)2 a2

]2
−

4(p1·p2)2

(1+m)2

×

√√√ p2
2 + a2(

p2
2 + a2

)2
− 4(p2 · a)2

dp2 . (4.5.4)

To maximize the right side, a wants to be parallel to p1, i.e., a = κp1 for κ ∈ R. This is a direct
consequence of [50, Lemma 5]. We shall choose h(p) = |p|. By scale invariance we can set
|p1| = 1. We then obtain

Λ(m) ≤
4

π
√

m
sup
κ∈R

∫ 1

0
dt

∫ ∞

0
dr

r2t[
1 + r2 +

2(2+m)
(1+m)2 κ2

]2
− 4r2t2

(1+m)2

×

√
r2 + κ2(

r2 + κ2)2
− 4κ2r2t2

. (4.5.5)

We further bound t ≤ 1 in the denominator of the first term in the integrand in (4.5.5), and
use that[

1 + r2 +
2(2 + m)
(1 + m)2 κ

2
]2

−
4r2

(1 + m)2 ≥
m(m + 2)
(1 + m)2

1 + r2 +
2
√

2 + m
(1 + m)

√
m
κ2

2

. (4.5.6)

Since ∫ 1

0
dt t

√
r2 + κ2(

r2 + κ2)2
− 4κ2r2t2

=
1

2r2

√
r2 + κ2 min{1, r2/κ2} (4.5.7)

we therefore get

Λ(m) ≤
2
π

(1 + m)2

m3/2(m + 2)
sup
κ∈R

∫ ∞

0
dr

√
r2 + κ2[

1 + r2 + 2
√

2+m
(1+m)

√
mκ

2
]2 . (4.5.8)

We define cm = 2
√

2 + m/((1 + m)
√

m). After explicitly doing the integral, the bound (4.5.8)
reads Λ(m) ≤ λ(m) := supκ>0 λ(m, κ) with

λ(m, κ) :=
1
π

(1 + m)2

m3/2(m + 2)
1

1 + cmκ2

(
1 +

κ2√
1 + cmκ2

√
1 + κ2(cm − 1)

× ln

 √
1 + cmκ2 +

√
1 + κ2(cm − 1)
κ

 ) . (4.5.9)

For our purpose it is important that λ(1) ≈ 0.427 < 1/2 (see Fig. 4.1). By continuity, this
implies that Λ(m) + Λ(1/m) < 1 for a window of mass ratios around 1. In fact, a numerical
optimization over κ leads to the conclusion that Λ(m) + Λ(1/m) < 1 whenever 0.58 ≈ m2 <
m < m−1

2 ≈ 1.73 (see Fig 4.2).
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Figure 4.1: The function λ(1, κ), with λ(1) = supκ λ(1, κ) ≈ 0.427
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Figure 4.2: Our upper bound on Λ(m) + Λ(1/m), given by λ(m) + λ(1/m)
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CHAPTER 5

Triviality of a model of particles with point
interactions in the thermodynamic limit

ThomasMoser, Robert Seiringer

Abstract
We consider a model of fermions interacting via point interactions, defined via a cer-
tain weighted Dirichlet form. While for two particles the interaction corresponds to
infinite scattering length, the presence of further particles effectively decreases the
interaction strength. We show that the model becomes trivial in the thermodynamic
limit, in the sense that the free energy density at any given particle density and tem-
perature agrees with the corresponding expression for non-interacting particles.

5.1 Introduction

Due to their relevance for cold-atom physics [74], quantum-mechanical models of particles
with zero-range interactions have recently received a lot of attention. Of particular interest is
the unitary limit of infinite scattering length, where one has scale invariance due to the lack of
any intrinsic length scale (see, e.g., [8, 9, 26, 29, 70]). Despite some effort [11, 12, 15, 21, 50],
it remains an open problem to establish the existence of a many-particle model with two-body
point interactions. Such a model is known to be unstable in the case of bosons (a fact known as
Thomas effect [8, 11, 68], closely related to the Efimov effect [17, 61, 73]) and hence can only
exist for fermionic particles. In contrast, the two-body problem is completely understood and
point interactions can be characterized via self-adjoint extensions of the Laplacian on R3 \ {0}
(see [1] for details). These self-adjoint extensions can be interpreted as corresponding to an
attractive point interaction, parametrized by the scattering length a, with interaction strength
increasing with 1/a. For non-positive scattering length, a ≤ 0, the attraction is too weak to
support bound states, while there exists a negative energy bound state for a > 0.

In the case of non-positive scattering length, a ≤ 0, corresponding to the absence of two-
body bound states, point interactions can alternatively be defined via the quadratic form∫

R3

(
1
|x|
−

1
a

)2

|∇ f (x)|2 dx on L2(R3, (|x|−1 − a−1)2dx) (5.1.1)
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The unitary limit corresponds to a−1 = 0. Recall that the scattering length is defined (see,
e.g., [33, Appendix C]) via the asymptotic behavior of the solution to the zero-energy scattering
equation, which in this case is simply equal to |x|−1 − a−1, corresponding to f ≡ 1. To see that
(5.1.1) corresponds to a point interactions at the origin, note that an integration by parts shows
that ∫

|x|≥ε

(
1
|x|
−

1
a

)2

|∇ f (x)|2 dx =

∫
|x|≥ε

∣∣∣∣∣∣∇
(

1
|x|
−

1
a

)
f (x)

∣∣∣∣∣∣2 dx

−

∫
|x|=ε

(
1
|x|
−

1
a

)
1
|x|2
| f (x)|2dω (5.1.2)

for any ε > 0. The last term vanishes as ε→ 0 if f vanishes faster than |x|1/2 at the origin.

We consider here a many-body generalization of (5.1.1), which was introduced in [2]. It
has the advantage of being manifestly well-defined, via a non-negative Dirichlet form. As al-
ready noted above, in general it is notoriously hard to define many-body systems with point
interactions, see [11, 12, 15, 21, 50], due to the inherent instability problems. The model under
consideration here was studied in [25] were it was shown to satisfy a Lieb–Thirring inequal-
ity, i.e., the energy can be bounded from below by a semiclassical expression of the form
C

∫
ρ(x)5/3dx, with ρ the particle density and C a positive constant. Up to the value of C, this

is the same as the inequality for non-interacting fermions used by Lieb and Thirring [31, 34]
in their proof of stability of matter. (For other recent work on Lieb-Thirring inequalities for
interacting particles, see [36–39].)

The model considered here has the disadvantage that the interaction is not purely two-body,
however. In fact, it is a full many-body interaction, its strength depends on the position of all
the particles and is weakened due to their presence. We shall show here that the effects of the
interaction actually disappear in the thermodynamic limit, and the thermodynamic free energy
density agrees with the one for non-interacting fermions.

In the next section, we shall introduce the model and explain our main results. The rest of
the paper is devoted to their proof.

5.2 Model and main results

For N ≥ 2, ~x = (x1, . . . , xN) ∈ R3N , let g : R3N → R denote the function

g(~x) =
∑

1≤i< j≤N

1
|xi − x j|

. (5.2.1)

We consider fermions with q ≥ 1 internal (spin) states, described by wave functions in the
subspaceAN

q ⊂ L2((R3 × {1, . . . , q})N , g(~x)2d~x) of functions that are totally antisymmetric with
respect to permutations of the variables yi = (xi, σi), where xi ∈ R

3 and σi ∈ {1, . . . , q}. For
ψ ∈ AN

q , our model is defined via the quadratic form

Eg(ψ) =

N∑
i=1

∫
R3N

g(~x)2|∇iψ(~y)|2d~y (5.2.2)
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where ∇i stands for the gradient with respect to xi ∈ R
3, and we introduced the shorthand

notation
∫
. . . d~y =

∑
~σ

∫
. . . d~x with ~σ = (σ1, . . . , σN). Since g is a harmonic function away

from the planes {xi = x j} of particle intersection, an integration by parts as in (5.1.2) shows
that (5.2.2) corresponds to a model of point interactions, as Eg(ψ) =

∑N
i=1

∫
|∇igψ|2 in case ψ

has compact support away from these planes. More generally, Eg(ψ) =
∑N

i=1

∫
|∇igψ|2 holds if

ψ vanishes faster than the square root of the distance to the planes of intersection, which is in
particular the case for smooth and completely antisymmetric functions of the spatial variables.
In other words, the model is trivial for q = 1.

For N particles in a cubic box [0, L]3 ⊂ R3, the free energy at temperature T = β−1 > 0 is
defined as usual as

Fg = −T ln tr e−βHg (5.2.3)

where Hg denotes the operator defined by the quadratic form (5.2.2), restricted to functions in
AN

q ∩H1(R3N; g(~x)2d~x) with support in ([0, L]3)N . The latter restriction corresponds to choosing
Dirichlet boundary conditions on the boundary of the cube [0, L]3. Alternatively, one can use
the variational principle [32, Lemma 14.1] to write the free energy as

Fg(β,N, L) = −T ln sup
{ψk}

〈ψi |ψ j〉g=δi j

∑
k

e−βEg(ψk) (5.2.4)

where 〈 · | · 〉g denotes the inner product on L2((R3 × {1, . . . , q})N , g(~x)2d~x),

〈ψi|ψ j〉g =

∫
R3N

g2(~x)ψi(~y)ψ j(~y)d~y, (5.2.5)

and the supremum is over all finite sets of orthonormal functions inAN
q with support in ([0, L]3)N .

We are interested in the thermodynamic limit

fg(β, ρ) = lim
N→∞

ρ

N
Fg(β,N, (N/ρ)1/3) (5.2.6)

where ρ > 0 denotes the particle density.

In the non-interacting case corresponding to taking g ≡ 1, the free energy density can be
evaluated explicitly, and is given by [67]

f (β, ρ) = sup
µ∈R

[
µρ −

qT
(2π)3

∫
R3

ln
(
1 + e−β(p2−µ)

)
dp

]
(5.2.7)

Our main result shows that the two functions, fg and f , are actually identical.

Theorem 5.2.1. For any β > 0 and ρ > 0, and any q ≥ 1,

fg(β, ρ) = f (β, ρ) (5.2.8)

We shall actually prove a stronger result below, namely a lower bound on Fg(β,N, L) for fi-
nite N which agrees with the corresponding expression for non-interacting particles, F(β,N, L),
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to leading order in N, with explicit bounds on the correction term. Note that the corresponding
upper bound is trivial, since for functions φ ∈ C∞0 ((R3 × {1, . . . , q})N)

Eg(φ/g) =

N∑
i=1

∫
|∇iφ(~y)|2 d~y (5.2.9)

and hence Fg(β,N, L) ≤ F(β,N, L). Moreover, as already noted above one has Fg(β,N, L) =

F(β,N, L) for q = 1, since functions in AN
1 vanish whenever xi = x j for some i , j. Hence it

suffices to consider the case q ≥ 2.

Theorem 5.2.1 also holds true for the ground state energy, i.e., β = ∞, where f (∞, ρ) =
3
5 (6π2/q)2/3ρ5/3. The proof of the equality (5.2.8) in this case is actually substantially easier, as
the analysis of the entropy in Section 5.6 is not needed.

Intuitively, the result in Theorem 5.2.1 can be explained via a comparison of (5.2.2) with
(5.1.1). Effectively, the scattering process between two particles, i and j, say, corresponds to a
non-zero scattering length of the form

−
1

aeff

=
∑
{k,l},{i, j}

1
|xk − xl|

. (5.2.10)

In the limit of large particle number, the sum of these other terms diverges, corresponding to an
effective scattering length zero, i.e., no interactions.

A minor modification of the proof shows that Theorem 5.2.1 also holds for a model where
the function 1/|x| in (5.2.1) is replaced by 1/|x| − 1/a for a ≤ 0, corresponding to a two-body
interaction with negative scattering length a. This only increases the effective scattering length
aeff .

From Theorem 5.2.1 we conclude that the model (5.2.2) is not suitable to describe a gas
of fermions with point interactions, as it becomes trivial in the thermodynamic limit. No
non-trivial models that are proven to be stable for arbitrary particle number exist to this date,
however. Such non-trivial models are not expected to be given by a Dirichlet form of the
type (5.2.2), since such forms are naturally well-defined even in the bosonic case, where point-
interaction models are known to become unstable due to the Thomas effect [8,11,17,61,68,73].

In the remainder of this paper, we shall give the proof of Theorem 5.2.1. We start with a
short outline of the main steps in the next section.

5.3 Outline of the proof

In the first step in Section 5.4 we shall localize particles in small boxes. This part of the
Dirichlet–Neumann bracketing technique is quite standard, but it does not directly allow us
to reduce the problem to fewer particles, as the interactions depend on the location of all the
particles, including the ones in different boxes. Still this step allows us to compare our model
with the corresponding one for non-interacting fermions, by utilizing a suitable version of the
Hardy inequality to quantify the effect of the deviation of the weight function g in (5.2.1)
from being a constant. This analysis is done in Section 5.5. Note that the relevant constant
to compare g with depends on the distribution of the particles in the various boxes, hence the
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importance of the first step. An important point in the analysis is a control on the particle
number distribution, which is obtained in Prop. 5.

In Section 5.6 we shall give a rough bound on the entropy for large energy, which will allow
us to conclude that that to compute the free energy (5.2.4), it suffices to consider only states
with energy E . N ln N. We do this by applying the localization technique to very small boxes,
with side length decreasing with energy, in order to have to consider effectively only the ground
states in each small box.

In the low energy sector, corresponding to energies E . N ln N, our bounds in Section 5.5
allow to make a direct comparison of our model with non-interacting fermions. This compari-
son is detailed in Section 5.7. For this purpose, we shall choose much larger boxes than in the
previous step, very slowly increasing to infinity with N in order for finite size effects to vanish
in the thermodynamic limit. Finally, Section 5.8 collects all the results in the previous sections
to give the proof of Theorem 5.2.1.

Throughout the proof, we shall use the letter c for universal constants independent of all
parameters, even though c might have different values at different occurrences. Similarly, we
use cη for functions of η = βρ2/3 that are uniformly bounded for η > ε for any ε > 0. Note that
the free energy for noninteracting particles in (5.2.7) satisfies the scaling relation

f (β, ρ) = ρ5/3 f (η, 1) , η = βρ2/3 , (5.3.1)

and η→ ∞ corresponds to the zero-temperature limit.

5.4 Particle localization in small boxes

Given an integer m ≥ 2, we shall divide the cube [0, L]3 into M = m3 disjoint cubes of side
length ` = L/m, denoted by {Bi}

M
i=1. In order to obtain a lower bound on Eg, we introduce

Neumann boundary conditions on the boundary of each box Bi.
Specifically, given a vector ~n = {n1, . . . , nM} of nonnegative integers with

∑M
j=1 n j = N, let

Bsym(~n) denote the subset of [0, L]3N where exactly n j particles are in B j, for all 1 ≤ j ≤ M.
More precisely, if

B(~n) = Bn1
1 × · · · × BnM

M (5.4.1)

and, for general A ⊂ R3N and π ∈ S N (the permutation group of N elements)

π(A) = {~x : π−1(~x) ∈ A} , π(~x) := (xπ(1), . . . , xπ(N)) (5.4.2)

we have
Bsym(~n) =

⋃
π∈S N

π(B(~n)) (5.4.3)

Then clearly
1 =

∑
~n

χBsym(~n)(~x) (5.4.4)

for almost every ~x ∈ [0, L]3N . Correspondingly one can write for any ψ ∈ AN
q supported in

[0, L]3N

ψ(~y) =
∑
~n

χBsym(~n)(~x)ψ(~y) C
∑
~n

ψ~n(~y) . (5.4.5)
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Note that each ψ~n is a function inAN
q with the property that it is non-zero only if exactly n j par-

ticles are in B j for any 1 ≤ j ≤ M. In particular, the functions appearing in the decomposition
on the right side of (5.4.5) all have disjoint support.

Conversely, given a set of functions ψ~n ∈ AN
q supported in Bsym(~n), we can define ψ ∈ AN

q
via (5.4.5). Hence there is a one-to-one correspondence between functions in AN

q and sets of
functions ψ~n. We now redefine our energy functional Eg as

E`g(ψ) =
∑
~n

N∑
i=1

∫
Bsym(~n)

g(~x)2|∇iψ
~n(~y)|2d~y (5.4.6)

This coincides with the definition (5.2.2) in case ψ ∈ H1((R3 × {1, . . . , q})N , g(~x)2d~x), but is
more general since it allows for wave functions that are discontinuous at the boundaries of the
B j, effectively introducing Neumann boundary conditions there.

Note that with the definition (5.4.6) above, we have

E`g(ψ) =
∑
~n

E`g(ψ~n) for ψ =
∑
~n

ψ~n (5.4.7)

In particular, the corresponding operator is diagonal with respect to the direct sum decomposi-
tion of AN

q into functions supported on Bsym(~n), and hence the min-max principle implies the
bound

sup
{ψk}

〈ψi |ψ j〉g=δi j

∑
k

e−βEg(ψk) ≤
∑
~n

sup
{ψ~nk }

〈ψ~ni |ψ
~n
j 〉g=δi j

∑
k

e−βE
`
g(ψ~nk ) (5.4.8)

where on the right side it is understood that each ψ~nj is supported in Bsym(~n).
As a final step in this section we want to simplify the problem by getting rid of the anti-

symmetry requirement for particles localized in different boxes. There exists a simple isometry
between functions ψ~n in AN

q and functions whose support is on the smaller set B(~n) in (5.4.1),
where x1, . . . , xn1 ∈ B1, xn1+1, . . . , xn1+n2 ∈ B2, etc., and which are antisymmetric only with
respect to permutations of the yi corresponding to xi in the same box. This isometry is simply

ψ~n 7→

 N!∏M
j=1 n j!

1/2

χB(~n)ψ
~n (5.4.9)

Note that the normalization factor is chosen such that both sides have the same norm, and the
left side can be obtained from the right by a suitable antisymmetrization over all variables yi.
Moreover, both functions yield the same value when plugged into E`g. Let AN,`

q (~n) denote the
set {χB(~n)ψ : ψ ∈ AN

q }, i.e., functions supported in B(~n) that are antisymmetric in the variables
corresponding to the same box. The bound (5.4.8) and the above observation imply that

Fg(β,N, L) ≥ −T ln
∑
~n

sup
{ψk∈A

N,`
q (~n)}

〈ψi |ψ j〉g=δi j

∑
k

e−βE
`
g(ψk) (5.4.10)

5.5 Energy and norm bounds

Our goal in this next step to derive a lower bound on E`g(ψ) for ψ ∈ AN,`
q (~n), i.e., functions

supported in B(~n), and to compare the norm of such a ψ with the standard, unweighted L2
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norm. For this purpose, we shall need a certain version of the Hardy inequality, which will be
derived in the next subsection.

5.5.1 Hardy inequalities

Recall the usual Hardy inequality∫
R3
|∇ f (x)|2dx ≥

1
4

∫
R3

| f (x)|2

|x|2
dx (5.5.1)

for functions f ∈ Ḣ1(R3). We shall need a local version of (5.5.1) on balls.

Lemma 5.5.1. Let B` ⊂ R
3 denote the open centered ball with radius `. For any f ∈ H1(B`)

2
∫

B`
|∇ f (x)|2dx +

9
2`2

∫
B`
| f (x)|2dx ≥

1
4

∫
B`

| f (x)|2

|x|2
dx (5.5.2)

Proof. We apply the Hardy inequality (5.5.1) to the function h(x) = f (x)[1 − |x|/`]+, where
[ · ]+ denotes the positive part. For the right side of (5.5.1) we obtain

1
4

∫
B`

|h(x)|2

|x|2
dx =

1
4

∫
B`

| f (x)|2

|x|2

(
1 −

2|x|
`

+
|x|2

`2

)
dx

≥
1 − ε

4

∫
B`

| f (x)|2

|x|2
dx −

1 − ε
4ε`2

∫
B`
| f (x)|2dx (5.5.3)

for any ε > 0. For the left side of (5.5.1) a simple Schwarz inequality yields∫
B`
|∇h(x)|2dx ≤ (1 + δ)

∫
B`
|∇ f (x)|2dx +

1 + δ

δ`2

∫
B`
| f (x)|2dx (5.5.4)

for δ > 0. In combination we obtain the desired inequality (5.5.2) by choosing ε = 1/6 and
δ = 2/3. �

For later use we need a version of Lemma 5.5.1 on cubes with arbitrary location relative to
the singularity.

Lemma 5.5.2. Let C` = [0, `]3. For any y ∈ R3 and any f ∈ H1(C`),

c0

∫
C`

|∇ f (x)|2dx +
c1

`2

∫
C`

| f (x)|2dx ≥
1
4

∫
C`

| f (x)|2

|x − y|2
dx (5.5.5)

with c0 ≤ 16 and c1 ≤ 144.

The stated bounds on the constants c0 and c1 are presumably far from optimal, but suffice
for our purpose.
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Proof. If y < C`, we can replace it by the point in C` closest to y. This can only increase the
right side. Hence we may assume that y ∈ C`. Let B denote the ball of radius `/2 around y.
Then

1
4

∫
C`\B

| f (x)|2

|x − y|2
dx ≤

1
`2

∫
C`\B
| f (x)|2 dx (5.5.6)

Define a function f̃ by extending f to [−`, 2`]3 as

f̃ (x1, x2, x3) = f (τ(x1), τ(x2), τ(x3)) (5.5.7)

where

τ(x) B


−x x ∈ [−`, 0]
x x ∈ [0, `]
2` − x x ∈ [`, 2`]

(5.5.8)

Then f̃ ∈ H1([−`, 2`]3). Since B ⊂ [−`, 2`]3, we get with the aid of the Hardy inequality (5.5.2)
on B (with `/2 in place of `)

1
4

∫
C`∩B

| f (x)|2

|x − y|2
dx ≤

1
4

∫
B

| f̃ (x)|2

|x − y|2
dx

≤ 2
∫

B
|∇ f̃ (x)|2dx +

18
`2

∫
B
| f̃ (x)|2dx

≤ 8
(
2
∫

C`∩B
|∇ f (x)|2dx +

18
`2

∫
C`∩B
| f (x)|2dx

)
(5.5.9)

In the last step, we used that B intersects, besides C`, at most 7 other translates of C`, and that
the intersection of B with these translates are, when reflected back to C`, contained in C` ∩ B
(see Fig. 5.1). In combination, (5.5.6) and (5.5.9) imply (5.5.5). �

Figure 5.1: Two-dimensional illustration of the reflection technique used in the proof of Lemma
5.5.2. The box C` and two of its neighbor boxes are shown, as well as the ball B around y ∈ C`.
Using the extended function f̃ we can mirror C` \ B back into C` ∩ B. There are at most 8
reflected components in three dimensions, the worst case being if the ball B intersects with a
corner of C`.
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5.5.2 A lower bound on E`g

Let ψ be an L2((R3 × {1, . . . , q})N , g(~x)2d~y)-normalized function in AN,`
q (~n), defined just above

(5.4.10). Let d jk denote the distance between boxes B j and Bk. For ~x ∈ B(~n), we can bound

g(~x) ≥
∑

1≤ j<k≤M

n jnk

d jk + 2
√

3`
+

M∑
j=1

n j(n j − 1)

2
√

3`
≥ K− +

V

4
√

3`
(5.5.10)

where

K− =
∑

1≤ j<k≤M
d jk>0

n jnk

d jk + 2
√

3`
and V =

M∑
j=1

n j(n j + m j − 1) (5.5.11)

Here mk denotes the total number of particles in the 26 neighboring boxes of Bk. The bound
(5.5.10) immediately leads to the lower bound

E`g(ψ) ≥
(
K− +

V

4
√

3`

)2

E`(ψ) (5.5.12)

for ψ ∈ AN,`
q (~n), where E` on the right side stands for the energy functional for noninteracting

particles, corresponding to g ≡ 1 in (5.4.6).

5.5.3 Bounds on norms

In the following, it will be necessary to compare the norm ‖ · ‖g = 〈 · | · 〉
1/2
g with the standard L2

norm ‖ · ‖ without weight. For ψ ∈ AN,`
q (~n), the bound (5.5.10) immediately implies the lower

bound

‖ψ‖g ≥

(
K− +

V

4
√

3`

)
‖ψ‖ (5.5.13)

To obtain a corresponding upper bound, we proceed as follows. For given i, corresponding
to xi ∈ Bk for some box Bk, let N[i] be the set of js with j , i such that x j is either in the
same box Bk or in one of the 26 neighboring boxes touching Bk. With mk as defined above,
|N[i]| = nk + mk − 1 for xi ∈ Bk. Then

g(~x) ≤
1
2

N∑
i=1

∑
j∈N[i]

1
|xi − x j|

+ K+ with K+ =
∑

1≤ j<k≤M
d jk>0

n jnk

d jk
(5.5.14)

for ~x ∈ B(~n). The Cauchy-Schwarz inequality implies

‖ψ‖2g ≤ (1 + ε)K2
+‖ψ‖

2 +
(
1 + ε−1

) V
4

N∑
i=1

∑
j∈N[i]

∫
|ψ(~y)|2

|xi − x j|
2 d~y (5.5.15)

for any ε > 0, where V is defined in (5.5.11). In the last term, we use the Hardy inequality
(5.5.5) for the integration over xi, and obtain

‖ψ‖2g ≤
[
(1 + ε)K2

+ +
c1

`2

(
1 + ε−1

)
V2

]
‖ψ‖2

+
(
1 + ε−1

)
c0V

N∑
i=1

|N[i]|
∫
|∇iψ(~y)|2 d~y (5.5.16)

If we reinsert g(~x)2 into the last integrand using (5.5.10), we thus obtain the following lemma.
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Lemma 5.5.3. For ψ ∈ AN,`
q (~n), we have the bounds(

K− +
V

4
√

3`

)2

‖ψ‖2 ≤ ‖ψ‖2g ≤ (1 + ε)
[
K2

+ +
c1

ε`2 V2
]
‖ψ‖2

+
(1 + ε−1)c0V(
K− + V

4
√

3`

)2

N∑
i=1

|N[i]|
∫
|∇iψ(~y)|2g(~x)2 d~y (5.5.17)

for any ε > 0, where K± and V are defined in (5.5.11) and (5.5.14), respectively.

5.5.4 A bound on the number of particles in a box

Let again ψ be a wavefunction inAN,`
q (~n) and let us assume it is normalized, i.e., ‖ψ‖g = 1. We

have the following a priori bound.

Proposition 5. There exists a constant κ > 0 such that for any normalized ψ ∈ AN,`
q (~n) and any

` > 0 we have

E`g(ψ) ≥
κ

q2/3

M∑
j=1

[
n j − q

]5/3

+

`2 (5.5.18)

Here [ · ]+ = max{0, · } denotes the positive part. The bound (5.5.18) allows us to conclude
that for all normalized ψ ∈ AN,`

q (~n) with E`g(ψ) < E we have n j ≤ q for all j if we choose ` such
that E`2q2/3 ≤ κ. Furthermore, for large E`2 we get the bound max j n j . q2/5(E`2)3/5.

Proof. We use Lemma 3 from [25] which states that for a subset A ⊆ {1, . . . ,N} corresponding
to particles xk ∈ B j for k ∈ A,∑

i∈A

∫
B|A|j

g(~x)2|∇iψ(~y)|2d~yA ≥
κ̃

`2

[
|A| − q

]
+

∫
B|A|j

g(~x)2|ψ(~y)|2dyA (5.5.19)

for some κ̃ > 0 independent of A, ` and ψ. Here ~yA is short for {yi}i∈A. Integrating this over the
{y j} j<A and summing over j yields (5.5.18) with the exponent 5/3 replaced by 1, and κ = κ̃q2/3.

To raise the exponent from 1 to 5/3, we partition B j into µ3 disjoint cubes {Ck}k of side
length `/µ for some integer µ ≥ 1. We use the identity

1 =
∑
Q⊆A

∏
s∈Q

χCk(xs)
∏
t∈Qc

χCc
k
(xt) (5.5.20)

for ~xA ∈ B|A|j , where Qc denotes A \ Q and Cc
k = B j \ Ck. By plugging (5.5.20) into (5.5.19) we

obtain ∑
i∈A

∫
B|A|j

g(~x)2|∇iψ(~y)|2d~yA =
∑
i∈A

µ3∑
k=1

∫
B|A|j

χCk(xi)g(~x)2|∇iψ(~y)|2d~yA

=
∑
i∈A

µ3∑
k=1

∑
Q⊆A

∫
B|A|j

∏
s∈Q

χCk(xs)
∏
t∈Qc

χCc
k
(xt)χCk(xi)g(~x)2|∇iψ(~x)|2d~xA

=

µ3∑
k=1

∑
Q⊆A

∑
i∈Q

∫
B|A|j

∏
s∈Q

χCk(xs)
∏
t∈Qc

χCc
k
(xt)g(~x)2|∇iψ(~x)|2d~xA (5.5.21)
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For the integration over {ys}s∈Q we can again use (5.5.19), with suitably rescaled variables to
replace the integration over B j with the one over Ck. (Note that g is homogeneous of order −1
and satisfies the simple scaling property g(λ~x) = λ−1g(~x) for λ > 0.) This yields the bound

(5.5.21) ≥
µ3∑

k=1

∑
Q⊆A

µ2κ̃

`2
(|Q| − q)

∫
C |Q|k

d~yQ

∫
Cc

k
(|A|−|Q|)

d~yQc g(~x)2|ψ(~y)|2

=
µ2κ̃

`2 (|A| − µ3q)
∫

B|A|j

g(~x)2|ψ(~y)|2d~yA (5.5.22)

In the last step, we used again the identity (5.5.20) as well as

|A| =
µ3∑

k=1

∑
Q⊆A

|Q|
∏
s∈Q

χCk(xs)
∏
t∈Qc

χCc
k
(xt) (5.5.23)

Since the left side of (5.5.22) is obviously non-negative, we can replace |A| −µ3q by its positive
part on the right side.

It remains to choose µ. If we ignore the restriction that µ ≥ 1 is an integer, we would choose
µ = (2/5)(|A|/q)1/3 to obtain the desired coefficient ∝ |A|5/3/q2/3. It is easy to see that

sup
µ∈N

µ2
[
|A| − µ3q

]
+
≥

c
q2/3

[
|A| − q

]5/3
+ (5.5.24)

for some universal constant c > 0. This proves the desired bound, with κ = κ̃c. �

5.6 A bound on the entropy

In this section we shall use the estimates above to give a rough bound on

Ng(E) = tr χHg<E , (5.6.1)

that is, the maximal number of orthonormal functions in AN
q with Eg(ψ) < E, for some (large)

E. Its logarithm is, by definition, the entropy. Using the localization technique described in
Section 5.4, the min-max principle implies that

Ng(E) ≤
∑
~n

N~n
g (E) (5.6.2)

where N~n
g (E) is the maximal number of orthonormal functions in AN,`

q (~n) with E`g(ψ) < E.
Given E, we shall choose ` small enough such E`2q2/3 ≤ κ, with κ the constant in Prop. 5. As
remarked there, this implies that n j ≤ q for all 1 ≤ j ≤ M.

We will actually show that if E`2 is small enough, then the spectral gap for an excitation is
larger than E, and hence N~n

g (E) is simply equal to the dimension of the space of ground states.

Lemma 5.6.1. There exists a universal constant c > 0 such that if we choose E`2 ≤ c, then

N~n
g (E) =

M∏
j=1

(
q
n j

)
(5.6.3)
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Proof. With the aid of (5.5.12) we have

E`g(ψ) ≥
(
K− +

V

4
√

3`

)2

E`(ψ) (5.6.4)

for ψ ∈ AN,`
q (~n). The ground states of the operator corresponding to the quadratic form E`

are all constant, i.e., they are simply products of anti-symmetric functions of the spin variables
corresponding to each box, and have zero energy. The spectral gap above the ground state
energy is given by (π/`)2. With P0 denoting the projection in L2(B(~n), d~y) onto the ground state
space, we thus have

E`(ψ) ≥
π2

`2 ‖(1 − P0)ψ‖2 (5.6.5)

In order to bound the norm on the right side from below in terms of the weighted ‖ · ‖g norm,
we shall use Lemma 5.5.3. In (5.5.17), we can simply bound

N∑
i=1

|N[i]|
∫
|∇iψ(~y)|2g(~x)2 d~y < E ‖ψ‖2g

N∑
i=1

|N[i]| = EV ‖ψ‖2g (5.6.6)

to obtain
‖ψ‖2g ≤

[
(1 + ε)K2

+ +
c1

`2

(
1 + ε−1

)
V2

]
‖ψ‖2 + 48c0

(
1 + ε−1

)
E`2‖ψ‖2g (5.6.7)

for any ε > 0 and any ψ ∈ AN,`
q (~n) with E`g(ψ) < E‖ψ‖2g. If E`2 is small, we can take ε = 1 to

conclude that
‖ψ‖2g ≤ c

[
K2

+ + V2`−2
]
‖ψ‖2 (5.6.8)

Moreover, note that K+ ≤ (1 + 2
√

3)K−, since d jk > 0 actually implies d jk ≥ `. We thus also
have that

‖ψ‖2g ≤ c
(
K− +

V

4
√

3`

)2

‖ψ‖2 (5.6.9)

Applying this to (1 − P0)ψ in (5.6.5) and inserting the resulting bound in (5.6.4) we obtain

E`g(ψ) ≥ c`−2 ‖(1 − P0)ψ‖2g (5.6.10)

Finally, note that the ground states of E`g and E` actually agree, up to a multiplicative normal-
ization constant. Hence, if ψ is orthogonal to a ground state with respect to the inner product
〈 · | · 〉g, then

‖(1 − P0)ψ‖2g = ‖ψ‖2g + ‖P0ψ‖
2
g ≥ ‖ψ‖

2
g (5.6.11)

This concludes the proof. �

In combination with (5.6.2), Lemma 5.6.1 yields the bound

Ng(E) ≤
∑
~n

M∏
j=1

(
q
n j

)
=

(
qM
N

)
≤

(qMe
N

)N

(5.6.12)

for E`2 ≤ c. We recall that the number of boxes is M = (L/`)3 = N/(ρ`3), which is large for
E`2 ∼ 1 and E � L−2. Hence we get the upper bound

Ng(E) ≤
(
c

qE3/2

ρ

)N

(5.6.13)

for a suitable constant c > 0. This bound readily implies the following proposition.
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Proposition 6. Let {E j} j denote the eigenvalues of the Hamiltonian Hg associated to the quadratic
form Eg in (5.2.2) onAN

q . For given η = βρ2/3 there exists a cη > 0 such that if Ē ≥ cηβ−1N ln N
then ∑

E j≥Ē

e−βE j ≤ 2 e−
1
2βĒ (5.6.14)

Proof. We have ∑
E j≥Ē

e−βE j ≤
∑
k≥0

Ng((k + 2)Ē)e−(k+1)βĒ (5.6.15)

and thus the result follows if

Ng((k + 2)Ē)e−(k+ 1
2 )βĒ ≤

1
2k (5.6.16)

for all k ≥ 0. Using the bound (5.6.13) one easily checks that this is the case under the stated
condition on Ē for suitable η. �

For evaluating the free energy, we can thus limit our attention to eigenvalues E j satisfying
βE j ≤ cηN ln N for suitable cη > 0. We shall show in the next section that in this low energy
sector the eigenvalues are well approximated by the corresponding ones for non-interacting
particles.

5.7 Comparison with non-interacting particles in the low-
energy sector

We shall now investigate the bounds derived in Section 5.5 more closely and apply them to the
low energy sector, where Eg(ψ) ≤ E‖ψ‖2g for some E . N ln N. We again localize the particles
into boxes, this time with much larger `, however. We start with the estimate on the ratio of the
norm ‖ψ‖g to the standard, non-weighted L2 norm ‖ψ‖.

Proposition 7. Let ψ ∈ AN,`
q (~n) satisfy E`g(ψ) ≤ E‖ψ‖2g for some E with E`2 & 1 for large N.

Then

1 ≥
(
K− +

V

4
√

3`

)2
‖ψ‖2

‖ψ‖2g
≥ 1 − δ (5.7.1)

with
δ ≤ c

[
q1/5(E`2)3/10N−1/3(ρ`3)−1/6 + q2/5(E`2)11/10N−7/6(ρ`3)−1/3

]
(5.7.2)

with K− and V defined in (5.5.11).

We note that δ is small if

E`2 � min{N10/9(ρ`3)5/9,N35/33(ρ`3)10/33} (5.7.3)

which gives us freedom to choose ` large while E . N ln N. We will choose ` ∼ Nν for rather
small ν below, in which case the first term in (5.7.2) will be dominating.
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Proof. The first bound in (5.7.1) follows immediately (5.5.17). For the lower bound, we use

N∑
i=1

|N[i]|
∫
|∇iψ(~y)|2g(~x)2 d~y ≤ 27n̄E‖ψ‖2g (5.7.4)

in (5.5.17), where we denote n̄ = max j n j. We can also bound V ≤ 27n̄N and

K− +
V

4
√

3`
≥

N(N − 1)

2
√

3L
(5.7.5)

The second bound in (5.5.17) thus becomes[
1 −

(
1 + ε−1

)
c0

12L2(27n̄)2

N(N − 1)2 E
]
‖ψ‖2g ≤

[
(1 + ε)K2

+ +
c1

`2

(
1 + ε−1

)
V2

]
‖ψ‖2 (5.7.6)

for arbitrary ε > 0. By assumption E`2 is not small, hence we have n̄ ≤ cq2/5(E`2)3/5, as
remarked after Proposition 5.

It remains to estimate the ratio K−/K+. We distinguish the contribution to the sum coming
from d jk < r

√
3` and d jk ≥ r

√
3`, respectively, for some large integer r to be chosen below.

We have

K+ − K− =
∑

1≤ j<k≤M
d jk>0

n jnk

d jk

2
√

3`

d jk + 2
√

3`

≤ n̄
∑

1≤ j<k≤M
0<d jk<r

√
3`

n j

d jk

2
√

3`

d jk + 2
√

3`
+

(
1 +

r
2

)−1 ∑
1≤ j<k≤M
d jk≥r

√
3`

n jnk

d jk
(5.7.7)

≤ c
n̄rN
`

+

(
1 +

r
2

)−1
K+ (5.7.8)

By optimizing over r as well as ε and using that n̄ ≤ cq2/5(E`2)3/5 we arrive at the desired
result. �

In combination with (5.5.12), Proposition 7 yields the lower bound

E`g(ψ)

‖ψ‖2g
≥
E`(ψ)
‖ψ‖2

(1 − δ) (5.7.9)

for ψ ∈ AN,`
q (~n) in the low energy sector E`g(ψ) < E. This allows us to compare our model di-

rectly with non-interacting particles. Note that the eigenfunctions of the operator corresponding
to the quadratic form on the right side are tensor products over different boxes and, in partic-
ular, the eigenvalues are simply sums over the corresponding eigenvalues of free fermions in
each box. The bound (5.7.9) does not directly give us lower bounds on the eigenvalues of Hg,
except for the lowest one, however. To complete the proof, we have to estimate the difference
between the inner product 〈 · | · 〉g and the standard inner product on L2, denoted by 〈 · | · 〉 in the
following.
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We define the multiplication operator

G =

(
K− +

V

4
√

3`

)−1

g(~x) (5.7.10)

which is larger or equal to 1 by (5.5.10). The bound (5.5.12) thus reads

E`g(ψ)

‖ψ‖2g
≥
E`(ψ)
‖Gψ‖2

=
〈φ|G−1HG−1|φ〉

‖φ‖2
(5.7.11)

where we introduced φ = Gψ and denoted by H the Hamiltonian for non-interacting particles,
i.e., the Laplacian on B(~n) with Neumann boundary conditions. Note that the orthogonality
condition 〈ψ j|ψk〉g = 0 is equivalent to 〈φ j|φk〉 = 0. Given some E0 > 0, we define the cut-off

Hamiltonian

Hc = H θ(E0 − H) , (5.7.12)

with θ denoting the Heaviside step function. This is clearly a bounded operator with ‖Hc‖ ≤ E0.
Obviously

〈φ|G−1HG−1|φ〉 ≥
∥∥∥H1/2

c G−1φ
∥∥∥2

(5.7.13)

which we further bound as∥∥∥H1/2
c G−1φ

∥∥∥2
≥

(∥∥∥H1/2
c φ

∥∥∥ − ∥∥∥H1/2
c (1 −G−1)φ

∥∥∥)2

≥
∥∥∥H1/2

c φ
∥∥∥2
− 2

∥∥∥H1/2
c φ

∥∥∥ ∥∥∥H1/2
c

∥∥∥ ∥∥∥(1 −G−1)φ
∥∥∥

≥
∥∥∥H1/2

c φ
∥∥∥2
− 2E0

∥∥∥(1 −G−1)φ
∥∥∥ ‖φ‖ (5.7.14)

Now ∥∥∥(1 −G−1)φ
∥∥∥ ≤ ∥∥∥(1 −G−2)1/2φ

∥∥∥ ≤ δ1/2 ‖φ‖ (5.7.15)

where we used G ≥ 1 in the first and Proposition 7 in the second step. We conclude that

E`g(ψ)

‖ψ‖2g
≥
〈φ|Hc − 2E0δ

1/2|φ〉

‖φ‖2
(5.7.16)

under the conditions stated in Proposition 7.

5.8 Convergence of the free energy

We now have all the necessary tools to complete the proof of Theorem 5.2.1. Proposition 6
implies that if we choose Ē = cηβ−1N ln N for a suitable constant cη > 0, then

Fg(β,N, L) ≥ −T ln

2 e−
1
2βĒ + sup

{ψk∈A
N
q }

〈ψi |ψ j〉g=δi j

Ng(Ē)∑
k=1

e−βEg(ψk)

 (5.8.1)
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Here Ng(Ē) denotes the number of states with energy below Ē, which was estimated in (5.6.13).
We can write, alternatively,

sup
{ψk}

〈ψi |ψ j〉g=δi j

Ng(Ē)∑
k=1

e−βEg(ψk) = sup
{ψk},Eg(ψk)<Ē
〈ψi |ψ j〉g=δi j

∑
k

e−βEg(ψk) (5.8.2)

By localizing into small boxes of side length ` with Neumann boundary conditions, as detailed
in Section 5.4, we further have by the min-max principle

(5.8.2) ≤
∑
~n

sup
{ψ∈AN,`

q (~n)},E`g(ψ)≤Ē
〈ψi |ψ j〉g=δi j

∑
k

e−βE
`
g(ψk) (5.8.3)

If we choose Ē`2 & 1, we can apply the bound (5.7.16) from the previous subsection. It implies

(5.8.3) ≤ e2βE0δ
1/2

∑
~n

sup
{φ∈GAN,`

q (~n)}, 〈φk |Hc |φk〉≤Ē+2E0δ
1/2

〈φi |φ j〉=δi j

∑
k

e−β〈φk |Hc |φk〉 (5.8.4)

with δ defined in Proposition 7. If we choose E0 such that Ē + 2E0δ
1/2 ≤ E0, which is possible

for δ < 1/4, we can drop the cutoff in Hc and replace Hc by H, the Laplacian on (
⋃

j B j)N

with Neumann boundary conditions. To obtain an upper bound on (5.8.4), we can then further
neglect the bound on 〈φk|H|φk〉, and sum over all eigenvalues. We obtain

(5.8.4) ≤ e2βE0δ
1/2

e−βF(β,N,L,`) (5.8.5)

where F(β,N, L, `) denotes the free energy of non-interacting fermions in
⋃

j B j (with Neumann
boundary conditions on the boundaries of the B j). In particular, in combination (5.8.1)–(5.8.5)
imply

Fg(β,N, L) ≥ F(β,N, L, `) − 2E0δ
1/2 − T ln

(
1 + 2 e−

1
2βĒe−2βE0δ

1/2
eβF(β,N,L,`)

)
(5.8.6)

We will choose ` & 1, in which case F(β,N, L, `) ∼ N and hence the last term in (5.8.6)
is, in fact, exponentially small in N, since Ē ∼ N ln N. To complete the proof, it suffices to
observe that

F(β,N, L, `) ≥ F(β,N, L) − cη
Nρ1/3

`
(5.8.7)

which is an easy exercise. To minimize the total error, we shall choose

` ∼ ρ−1/3N1/63 (ln N)−23/21 (5.8.8)

to obtain
Fg(β,N, L) ≥ F(β,N, L) − cηρ2/3N62/63 (ln N)23/21 (5.8.9)

This completes the proof of Theorem 5.2.1.

Acknowledgments

Financial support by the Austrian Science Fund (FWF), project Nr. P 27533-N27, is gratefully
acknowledged.



111

Bibliography

[1] S. Albeverio, F. Gesztesy, R. Hoegh-Krohn, H. Holden, P. Exner, Solvable models in
quantum mechanics, American Mathematical Soc., (1988).

[2] S. Albeverio, R. Høegh-Krohn, L. Streit, Energy forms, Hamiltonians, and distorted
Brownian paths, J. Math. Phys. 18, pp. 907–917 (1977).

[3] G. Basti, C. Cacciapuoti, D. Finco, A. Teta, The three-body problem in dimension one:
From short-range to contact interactions (2018).

[4] S. Becker, A. Michelangeli, A. Ottolini, Spectral properties of the 2+1 fermionic trimer
with contact interactions, arXiv:1712.10209, (2017).

[5] H. Bethe, R. Peierls, Quantum theory of the diplon, Proc. R. Soc. Lond. Ser. A 148, pp.
146–156 (1935).

[6] H. Bethe, R. Peierls, The Scattering of Neutrons by Protons, Proc. R. Soc. Lond. Ser. A
149, pp. 176–183 (1935).

[7] E. Braaten, Universal Relations for Fermions with Large Scattering Length, in [74], pp.
193–231.

[8] E. Braaten, L. Platter, Exact Relations for a Strongly Interacting Fermi Gas from the
Operator Product Expansion, Phys. Rev. Lett. 100, p. 205301 (2008).

[9] E. Burovski, N. Prokof’ev, B. Svistunov, M. Troyer, Critical temperature and thermody-
namics of attractive fermions at unitarity, Phys. Rev. Lett. 96, p. 160402 (2006).

[10] Y. Castin, C. Mora, L. Pricoupenko, Four-body Efimov effect, Phys. Rev. Lett. 105,
(2010).

[11] M. Correggi, G. Dell’Antonio, D. Finco, A. Michelangeli, A. Teta, Stability for a System
of N Fermions plus a different Particle with Zero-Range Interactions, Rev. Math. Phys.
24, p. 1250017 (2012).

[12] M. Correggi, G. Dell’Antonio, D. Finco, A. Michelangeli, A. Teta, A Class of Hamiltoni-
ans for a Three-Particle Fermionic System at Unitarity, Math. Phys. Anal. Geom. 18, pp.
1–36 (2015).

[13] M. Correggi, D. Finco, A. Teta, Energy lower bound for the unitary N + 1 fermionic
model, Eur. Phys. Lett. 111, p. 10003 (2015).



112

[14] H. Cycon, R. Froese, W. Kirsch, B. Simon, Schrödinger operators, (Springer 1987).

[15] G. F. Dell’Antonio, R. Figari, A. Teta, Hamiltonians for systems of N particles interacting
through point interactions, Ann. Inst. Henri Poincaré 60, pp. 253–290 (1994).
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