Faster Algorithms for Alternating Refinement
Relations

Krishnendu Chatterjee!, Siddhesh Chaubal?, and Pritish Kamath?

1 IST Austria (Institute of Science and Technology Austria)
2 IIT Bombay

—— Abstract
One central issue in the formal design and analysis of reactive systems is the notion of refine-
ment that asks whether all behaviors of the implementation is allowed by the specification. The
local interpretation of behavior leads to the notion of simulation. Alternating transition systems
(ATSs) provide a general model for composite reactive systems, and the simulation relation for
ATSs is known as alternating simulation. The simulation relation for fair transition systems is
called fair simulation. In this work our main contributions are as follows: (1) We present an
improved algorithm for fair simulation with Biichi fairness constraints; our algorithm requires
O(n®-m) time as compared to the previous known O(n%)-time algorithm, where n is the number
of states and m is the number of transitions. (2) We present a game based algorithm for altern-
ating simulation that requires O(m?)-time as compared to the previous known O((n - m)?)-time
algorithm, where n is the number of states and m is the size of transition relation. (3) We present
an iterative algorithm for alternating simulation that matches the time complexity of the game
based algorithm, but is more space efficient than the game based algorithm.

1998 ACM Subject Classification D.2.4 Formal methods
Keywords and phrases Simulation and fair simulation, Alternating simulation, Graph games

Digital Object Identifier 10.4230/LIPIcs.CSL.2012.167

1 Introduction

Simulation relation and extensions. One central issue in formal design and analysis of
reactive systems is the notion of refinement relations. The refinement relation (system A
refines system A’) intuitively means that every behavioral option of A (the implementation)
is allowed by A’ (the specification). The local interpretation of behavorial option in terms of
successor states leads to refinement as simulation [15]. The simulation relation enjoys many
appealing properties, such as it has a denotational characterization, it has a logical charac-
terization and it can be computed in polynomial time (as compared to trace containment
which is PSPACE-complete). While the notion of simulation was originally developed for
transition systems [15], it has many important extensions. Two prominent extensions are as
follows: (a) extension for composite systems and (b) extension for fair transition systems.

Alternating simulation relation. Composite reactive systems can be viewed as multi-
agent systems [16, 9], where each possible step of the system corresponds to a possible move
in a game which may involve some or all component moves. We model multi-agent systems
as alternating transition systems (ATSs) [1]. In general a multi-agent system consists of a set
I of agents, but for algorithmic purposes for simulation we always consider a subset I’ C I
of agents against the rest, and thus we will only consider two-agent systems (one agent is
the collection I’ of agents, and the other is the collection of the rest of the agents). Consider
the composite systems A||B and A’||B, in environment B. The relation that A refines A’
@@@@ © Krishnendu Chatterjee, Siddhesh Chaubal, and Pritish Kamath;

G licensed under Creative Commons License NC-ND
Computer Science Logic 2012 (CSL’12).
Editors: Patrick Cégielski, Arnaud Durand; pp. 167-182

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2012.167
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

168

Faster Algorithms for Alternating Refinement Relations

without constraining the environment B is expressed by generalizing the simulation rela-
tion to alternating simulation relation [2]. Alternating simulation also enjoys the appealing
properties of denotational and logical characterization along with polynomial time comput-
ability. We refer the readers to [2] for an excellent exposition of alternating simulation and
its applications in design and analysis of composite reactive systems. We briefly discuss
some applications of alternating simulation relation. Given a composite system with many
components, the problem of refinement of a component (i.e., a component C' can be replaced
with its implementation C”) without affecting the correctness of the composite system is an
alternating simulation problem. Similarly, refinement for open reactive systems is also an
alternating simulation problem. Finally, graph games provide the mathematical framework
to analyze many important problems in computer science, specially in relation to logic, as
there is a close connection of automata and graph games (see [17, 8] for details). Alternat-
ing simulation provides the technique for state space reduction for graph games, which is a
pre-requisite for efficient algorithmic analysis of graph games. Thus computing alternating
simulation for ATSs is a core algorithmic question in the formal analysis of composite sys-
tems, as well as in the heart of efficient algorithmic analysis of problems related to logic in
computer science.

Fair simulation relation. Fair transition systems are extension of transition systems with
fairness constraint. A liveness (or weak fairness or Biichi fairness) constraint consists of
a set B of live states, and requires that runs of the system visit some live state infinitely
often. In general the fairness constraint can be a strong fairness constraint instead of a
liveness constraint. The notion of simulation was extended to fair transition systems as fair
stmulation [11]. Tt was shown in [11] that fair simulation also enjoys the appealing properties
of denotational and logical characterization, and polynomial time computability (see [11] for
many other important properties and discussion on fair simulation). Again the computation
of fair simulation with Biichi fairness constraints is an important algorithmic problem for
design and analysis of reactive systems with liveness requirements.

Our contributions. In this work we improve the algorithmic complexities of computing fair
simulation with Biichi fairness constraints and alternating simulation. In the descriptions
below we will denote by n the size of the state space of systems, and by m the size of the
transition relation. Our main contributions are summarized below.

1. Fair simulation. First we extend the notion of fair simulation to alternating fair simula-
tion for ATSs with Biichi fairness constraints. There are two natural ways of extending
the definition of fair simulation to alternating fair simulation, and we show that both the
definitions coincide. We present an algorithm to compute the alternating fair simulation
relation by a reduction to a game with parity objectives with three priorities. As a spe-
cial case of our algorithm for fair simulation, we show that the fair simulation relation
can be computed in O(n? - m) time, as compared to the previous known O(n)-time
algorithm of [11]. Observe that m is at most O(n?) and thus the worst case running time
of our algorithm is O(n®). Moreover, in many practical examples systems have constant
out-degree (for examples see [5]) (i.e., m = O(n)), and then our algorithm requires O(n?)
time.

2. Game based alternating simulation. We present a game based algorithm for alternating
simulation. Our algorithm is based on a reduction to a game with reachability objectives,
and requires O(m?) time, as compared to the previous known algorithm that requires
O((n - m)?) time [2]. One key step of the reduction is to construct the game graph in
time linear in the size of the game graph.

3. Iterative algorithm for alternating simulation. We present an iterative algorithm to com-

K. Chatterjee, S. Chaubal, and P. Kamath

pute the alternating simulation relation. The time complexity of the iterative algorithm
matches the time complexity of the game based algorithm, however, the iterative al-
gorithm is more space efficient. (see paragraph on space complexity of Section 4.2 for
the detailed comparision). Moreover, both the game based algorithm and the iterative
algorithm when specialized to transition systems match the best known algorithms to
compute the simulation relation.

We remark that the game based algorithms we obtain for alternating fair simulation
and alternating simulation are reductions to standard two-player games on graphs with
parity objectives (with three priorities) and reachability objectives. Since such games are
well-studied, standard algorithms developed for games can now be used for computation of
refinement relations. Our key technical contribution is establishing the correctness of the
efficient reductions, and showing that the game graphs can be constructed in linear time in
the size of the game graphs. For the iterative algorithm we establish an alternative charac-
terization of alternating simulation, and present an iterative algorithm that simultaneously
prunes two relations, without explicitly constructing game graphs (thus saving space), to
compute the relation obtained by the alternative characterization. Proofs omitted due to
lack of space are available in [4].

2 Definitions

In this section we present all the relevant definitions, and the previous best known results.
We present definitions of labeled transition systems (Kripke structures), labeled alternating
transitions systems (ATS), fair simulation, and alternating simulation. All the simulation
relations we will define are closed under union (i.e., if two relations are simulation relations,
then so is their union), and we will consider the maximum simulation relation. We also
present relevant definitions for graph games that will be later used for the improved results.

» Definition 1 (Labeled transition systems (TS)). A labeled transition system (TS) (Kripke
structure) is a tuple K = (X, W, w, R, L), where ¥ is a finite set of observations; W is a
finite set of states and w is the initial state; R C W x W is the transition relation; and
L : W — ¥ is the labeling function that maps each state to an observation. For technical
convenience we assume that for all w € W there exists w’ € W such that (w,w’) € R.

Runs, fairness constraint, and fair transition systems. For a TS K and a state w € W,
a w-run of K is an infinite sequence W = wq, w1y, ws,... of states such that wy = w and
R(w;,w;4+1) for all i > 0. We write Inf(w) for the set of states that occur infinitely often in
the run w. A run of K is a w-run for the initial state @w. In this work we will consider Biichi
fairness constraints, and a Biichi fairness constraint is specified as a set F' C W of Biichi
states, and defines the fair set of runs, where a run w is fair iff Inf(w) N F # 0 (i.e., the
run visits F' infinitely often). A fair transition system K = (K, F') consists of a TS K and a
Biichi fairness constraint 7' C W for K. We consider two TSs K; = (3, Wy, w1y, Ry, Lq) and
Ky = (X, Wy, s, Ry, Lo) over the same alphabet, and the two fair TSs Ky = (K7, Fy) and
Ko = (K3, F3). We now define the fair simulation between Ky and Ko [11].

» Definition 2 (Fair simulation). A binary relation S C Wy x Wa is a fair simulation of Ky

by K5 if the following two conditions hold for all (w1, ws) € Wi X Wa:

1. If S(wl,wg), then Ll(wl) = LQ(U)Q).

2. There exists a strategy 7 : (W; x W)™ x Wi — Wy such that if S(w,ws) and w =
UQ, UL, Usg, - . . 18 a fair wi-run of Ky, then the following conditions hold: (a) the outcome
T[] = uf, uy, uh, . .. is a fair we-run of Ky (where the outcome 7[w] is defined as follows:

169

CSL’'12

170

Faster Algorithms for Alternating Refinement Relations

for all 4 > 0 we have u; = 7((ug, ug), (w1, u}), ..., (wi—1,u;_1),u;)); and (b) the outcome
T[w] S-matches w; that is, S(u;,u;) for all ¢ > 0. We say 7 is a witness to the fair
simulation S.
We denote by =g the maximum fair simulation relation between X and Ko. We say that
the fair TS Ky fairly simulates the fair TS KC; iff (w1, W) €=tair-

We have the following result for fair simulation from [11] (see item 1 of Theorem 4.2
from [11]).

» Theorem 3. Given two fair T'Ss K1 and Ks, the problem of whether Ko fairly simulates
K1 can be decided in time O((|Wh| + [Wa|) - (|R1| + |Rz|) + ([W1| - [Wa|)3).

» Definition 4 (Labeled alternating transition systems (ATS)). A labeled alternating trans-
itions system (ATS) is a tuple K = (X, W, w, A1, As, P, Po, L,), where (i) X is a finite set
of observations; (ii) W is a finite set of states with @ the initial state; (iii) A; is a finite set
of actions for Agent i, for i € {1,2}; (iv) P; : W — 24i \ () assigns to every state w in W
the non-empty set of actions available to Agent i at w, for ¢ € {1,2}; (v) L: W — X is the
labeling function that maps every state to an observation; and (vi) 6 : W x Ay x Ay - W
is the transition relation that given a state and the joint actions gives the next state.

Observe that a TS can be considered as a special case of ATS with Ay singleton (say
Az = {1}), and the transition relation R of a TS is described by the transition relation
§: W x Ay x {L} = W of the ATS.

» Definition 5 (Alternating simulation). Given two ATS, K = (X, W, w, Ay, As, Py, P, L,)

and K' = (X, W', @', A}, AS, Py, Py, L', 0") a binary relation S C W x W' is an alternating

simulation from K to K’ if for all states w and w’ with (w,w’) € S, the following conditions

hold :

1. L(w) = L'(w')

2. For every action a € P;(w), there exists an action a’ € Pj(w’) such that for every action
b € Pj(w'), there exists an action b € Py(w) such that (§(w,a,b),d' (w',a’,V')) € S.

We denote by =<,isim the maximum alternating simulation relation between K and K’. We

say that the ATS K’ simulates the ATS K iff (0, W) €=4itsim-

The following result was shown in [2] (see proof of Theorem 3 of [2]).

» Theorem 6. For two ATSs K and K', the alternating simulation relation =,sim can be
computed in time O(|W |2 - |[W'|? - |Ay| - |A]] - |Az| - | AL)).

In the following section we will present an extension of the notion of fair simulation for
TSs to alternating fair simulation for ATSs, and present improved algorithms to compute
=fair and =,jtsim- Some of our algorithms will be based on reduction to two-player games on
graphs. We present the required definitions below.

Two-player Game graphs. A two-player game graph G = ((V, E), (V1, Va)) consists of a
directed graph (V, E) with a set V of n vertices and a set E of m edges, and a partition
(V1,Va) of V into two sets. The vertices in V; are player 1 vertices, where player 1 chooses
the outgoing edges; and the vertices in Vs are player 2 vertices, where player 2 (the ad-
versary to player 1) chooses the outgoing edges. For a vertex u € V| we write Out(u) =
{ve V| (u,v) € E} for the set of successor vertices of u and In(u) = {v e V| (v,u) € E}
for the set of incoming edges of u. We assume that every vertex has at least one out-going
edge. i.e., Out(u) is non-empty for all vertices u € V.

K. Chatterjee, S. Chaubal, and P. Kamath

Plays. A game is played by two players: player 1 and player 2, who form an infinite path
in the game graph by moving a token along edges. They start by placing the token on an
initial vertex, and then they take moves indefinitely in the following way. If the token is on
a vertex in V7, then player 1 moves the token along one of the edges going out of the vertex.
If the token is on a vertex in V5, then player 2 does likewise. The result is an infinite path
in the game graph, called a play. We write €2 for the set of all plays.

Strategies. A strategy for a player is a rule that specifies how to extend plays. Formally,

a strategy « for player 1 is a function a: V* - V7 — V such that for all w € V* and all

v € V1 we have a(w - v) € Out(v), and analogously for player 2 strategies. We write .4 and

B for the sets of all strategies for player 1 and player 2, respectively. A memoryless strategy

for player 1 is independent of the history and depends only on the current state, and can

be described as a function a : Vi3 — V, and similarly for player 2. Given a starting vertex

v € V, a strategy a € A for player 1, and a strategy 5 € B for player 2, there is a unique

play, denoted w(v,a, 8) = (vg,v1,v2,...), which is defined as follows: vy = v and for all

k>0, if vy € V7, then a(vr) = vgt1, and if vy € Vo, then B(vr) = vgy1. We say a play w is
consistent with a strategy of a player, if there is a strategy of the opponent such that given

both the strategies the unique play is w.

Objectives. An objective ® for a game graph is a desired subset of plays. For a play

w = (vg, V1, V2, ...) € Q, we define Inf(w) = {v € V | vy, = v for infinitely many k& > 0} to be

the set of vertices that occur infinitely often in w. We define reachability, safety and parity

objectives with three priorities.

1. Reachability and safety objectives. Given a set T C V of vertices, the reachability
objective Reach(T") requires that some vertex in T be visited, and dually, the safety
objective Safe(F') requires that only vertices in F' be visited. Formally, the sets of
winning plays are Reach(T) = {(vo,v1,v2,...) € Q| 3k >0. v, € T} and Safe(F) =
{{vo,v1,v2,...) € Q| VEk >0. v, € F}. The reachability and safety objectives are dual
in the sense that Reach(T) = Q\ Safe(V \ T').

2. Parity objectives with three priorities. Consider a priority function p : V. — {0,1,2}
that maps every vertex to a priority either 0, 1 or 2. The parity objective requires that
the minimum priority visited infinitely often is even. In other words, the objectives
require that either vertices with priority 0 are visited infinitely often, or vertices with
priority 1 are visited finitely often. Formally the set of winning plays is Parity(p) =
{w | Inf(w) Np~1(0) # 0 or Inf(w) Np~t(1) = 0}.

Winning strategies and sets. Given an objective ® C () for player 1, a strategy a € A is

a winning strategy for player 1 from a vertex v if for all player 2 strategies f € B the play

w(v,a, B) is winning, i.e., w(v,a,) € ®. The winning strategies for player 2 are defined

analogously by switching the role of player 1 and player 2 in the above definition. A vertex

v € V is winning for player 1 with respect to the objective ® if player 1 has a winning

strategy from v. Formally, the set of winning vertices for player 1 with respect to the

objective @ is the set W1(®) ={veV |Jac A V3 € B. w(v,a,) € ®}. Analogously, the
set of all winning vertices for player 2 with respect to an objective ¥ C Q is Wa(¥) =

{veV|3peB. Vac A w,a,p) e T}.

» Theorem 7 (Determinacy and complexity). The following assertions hold.

1. For all game graphs G = ((V,E), (V1,Va)), all objectives ® for player 1 where ® is
reachability, safety, or parity objectives with three priorities, and the complementary
objective U = Q\ @ for player 2, we have W1(®) = V \ Wa(¥); and memoryless winning
strategies exist for both players from their respective winning set [7].

2. The winning set W1(®) can be computed in linear time (O(|V] + |E|)) for reachability

171

CSL’'12

172

Faster Algorithms for Alternating Refinement Relations

and safety objectives ® [12, 3]; and in quadratic time (O(|V| - |E|)) for parity objectives
with three priorities [15].

3 Fair Alternating Simulation

In this section we will present two definitions of fair alternating simulation, show their

equivalence, present algorithms for solving fair alternating simulations, and our algorithms

specialized to fair simulation will improve the bound of the previous algorithm (Theorem 3).

Similar to fair TSs, a fair ATS K = (K, F) consists of an ATS K and a Biichi fairness

constraint F' for K.

To extend the definition of fair simulation to fair alternating simulation we consider the
notion of strategies for ATSs. Consider two ATSs K = (X, W, w, Ay, Aa, Py, Py, L,§) and
K = (&,W w, A, AL P, Py, L 6") and the corresponding fair ATSs K = (K, F) and
K' = (K', F'). We use the following notations:

— 7: (W x W)T — A is a strategy employed by Agent 1 in K. The aim of the strategy
is to choose transitions in K to make it difficult for Agent 1 in KX’ to match them. The
strategy acts on the past run on both systems.

— 7 (W x W)t x A] — A is a strategy employed by Agent 1 in K’. The aim of this
strategy is to match actions in K’ to those made by Agent 1 in K. The strategy acts on
the past run on both the systems, as well as the action chosen by Agent 1 in K.

— & (W x W)t x Ay x A} — Al is a strategy employed by Agent 2 in X’. The aim of
this strategy is to choose actions in K’ to make it difficult for Agent 2 to match them in
K. The strategy acts on the past run of both the systems, as well as the actions chosen
by Agent 1 in K and K'.

— £ (WxW')T x Ap x A x AL, — Aj is a strategy employed by Agent 2 in K. Intuitively,
the aim of this strategy of Agent 2 is to choose actions in K to show that Agent 1 is not
as powerful in K as in K', i.e., in some sense the strategy of Agent 2 will witness that
the strategy of Agent 1 in I does not satisfy certain desired property. The strategy acts
on the past run of both the systems, as well as the actions chosen by Agent 1 in K and
both the agents in K'.

— plw,w', 7,7, &) is the run that emerges in K if the game starts with I on state w,
K’ on state w’ and the agents employ strategies 7, 7/, £ and £’ as described above, and
o (w,w', 7,7 ,£ &) is the corresponding run that emerges in X'.

» Definition 8 (Weak fair alternating simulation). A binary relation S C W x W’ is a weak
fair alternating simulation (WFAS) of K by K’ if the following two conditions hold for all
(w,w") e W x W'
1. If S(w,w’), then L(w) = L' (w').
2. There exists a strategy 7/ : (W x W)t x A} — A for Agent 1 in K’, such that for all
strategies 7 : (W x W/)* — A for Agent 1 in K, there exists a strategy & : (W x W)+ x
Ay x A x Ay — Al for Agent 2 in K, such that for all strategies &' : (W xW')Tx A3 x A} —
A for Agent 2 on K, if S(w,w’) and p(w,w’,7,7',&,£') is a fair w-run of I, then
— p(w,w',7,7,& &) is a fair w'-run of K'; and
— p(w,w',7,7',&, &) S-matches p(w,w’, 7,7, £,&).
We denote by <% the maximum WFAS relation between K and K’. We say that the fair

fairalt

ATS K’ weak-fair-alternate simulates the fair ATS K iff (@, @w') €=xWeak

fairalt*
» Definition 9 (Strong fair alternating simulation). A binary relation S C W x W' is a strong
fair alternating simulation (SFAS) of K by K’ if the following two conditions hold for all
(w,w) e W x W

K. Chatterjee, S. Chaubal, and P. Kamath

1. If S(w,w’), then L(w) = L' (w’).

2. There exist strategies 7/ : (W x W/)T x A; — A for Agent 1 in K" and £ : (W x W’')T x
Ay x A} x Ay — Al for Agent 2 in K, such that for all strategies 7 : (W x W’')T — A;
for Agent 1in K and & : (W x W)t x A x A] — A} for Agent 2 on K, if S(w,w’) and
plw,w',7,7',£,¢") is a fair w-run of K, then

— p(w,w',7,7,£,¢) is a fair w'-run of K'; and
= p(w,w' 7,7, €,E) S-matches p(w,w', 7,7, £,£).

We denote by <" the maximum SFAS relation between K and K’. We say that the fair

—fairalt

ATS K' strong-fair-alternate simulates the fair ATS K iff (w, @) €=<5ore.

fairalt

The difference in the definitions of weak and strong alternating fair simulation is in the
order of the quantifiers in the strategies. In the weak version the quantifier order is exists
forall exists forall, whereas in the strong version the order is exists exists forall forall. Thus
strong fair alternating simulation implies weak fair alternating simulation. We will show
that both the definitions coincide and present algorithms to compute the maximum fair
alternating simulation. Also observe that both the weak and strong version coincide with
fair simulation for TSs. We will present a reduction of weak and strong fair alternating
simulation problem to games with parity objectives with three priorities. We now present a
few notations related to the reduction.

Successor sets. Given an ATS K, for a state w and an action a € Pi(w), let
Succ(w,a) = {w' | b € Po(w) such that w’ = d(w, a,b)} denote the possible successors of
w given an action a of Agent 1 (i.e., successor set of w and a). Let Succ(K) =
{Succ(w,a) | w € W,a € Pi(w)} denote the set of all possible successor sets. Note that
[Succ(K)| < [W]-|Ay].

Game construction. Let K = (S, W,w,A,A,P,P,,L,5) and K' =
(S, W' ', A}, AL, P, Py, L', 6") be two ATSs, and let K = (K, F) and K' = (K', F’) be
the two corresponding fair ATSs. We will construct a game graph G = ((V, E), (V1,12))
with a parity objective. Before the construction we assume that from every state w € K
there is an Agent-1 strategy to ensure fairness in K. The assumption is without loss of
generality because if there is no such strategy from w, then trivially all states w’ with same
label as w simulate w (as Agent 2 can falsify the fairness from w). The states in K from
which fairness cannot be ensured can be identified with a quadratic time pre-processing step
in K (solving Biichi games), and hence we assume that in all remaining states in K fairness
can be ensured. The game construction is as follows:

— Player 1 wertices: Vi = {(w,w')|we W,w € W such that L(w) = L'(w')} U
(Succ(K) x Succ(K')) U{®}

— Player 2 vertices: Vo = Succ(K) x W' x {#, $}

— Edges. We specify the edges as the following union: E = E; U E; U E3 U Ef U E3 U Ej5

w'), (Succ(w, a),w’, #)) | (w,w’) € V1,a € Pi(w)}
#),(T,Succ(w',a’))) | (T,w', #) € Va,a’ € Pj(w')}

By = {((w,

(T, w',

(T, T (T,r",$)) | (T, T") € V1, € T'}
(T

(T

By = |

(T,
“8), (")) | (T, 8) € Vo,r € T, L(r) = L' (")}
,r’,$> @) | (T,r',8) € Vo such that Vr € T - L(r) # L'(r")}

<

173

CSL’'12

174

Faster Algorithms for Alternating Refinement Relations

The intuitive description of the game graph is as follows: (i) the player 1 vertices are either
state pairs (w,w’) with same label, or pairs (T,T') of successor sets, or a state ®; and
(ii) the player 2 vertices are tuples (T, w’,><) where T is a successor set in Succ(K), w’ a
state in K’ and € {#,$}. The edges are described as follows: (i) E; describes that in
vertices (w,w’) player 1 can choose an action a € P;(w), and then the next vertex is the
player 2 vertex (Succ(w,a),w’,#); (ii) Eo describes that in vertices (T, w’, #) player 2 can
choose an action @’ € Py (w’) and then the next vertex is (T, Succ(w’, a’)); (iii) F3 describes
that in states (T, T") player 1 can choose a state v’ € T" (which intuitively corresponds to
an action b’ € Pj(w')) and then the next vertex is (T, 7, $); (iv) the edges E} U E? describes
that in states (T,r’,$) player 2 can either choose a state r € T that matches the label of
7’ and then the next vertex is the player 1 vertex (r,r’) (edges E}) or if there is no match,
then the next vertex is ®; and (v) finally Ej5 specifies that the vertex ® is an absorbing
(sink) vertex with only self-loop. The three-priority parity objective ®* for player 2 with the
priority function p is specified as follows: for vertices v € (W x F') N V; we have p(v) = 0;
for vertices v € (F x W\ W x F')NV;) U {®} we have p(v) = 1; and all other vertices
have priority 2. The following proposition establishes the equivalence of the winning set for
player 2 with strong and weak fair alternating simulation.

» Proposition 10. Let Wing = {(w1, wa) | (w1, ws) € V1, (w1, ws) € Wa(P*)} be the winning

< in. ——<weak ___strong
set for player 2. Then we have Winy ==t =< "5 .

» Lemma 11. For the game graph constructed for fair alternating simulation we have |V1|+
[Va| SO(WI[- W [Ax] - [AL]); and |E] < O(W|- [W'] - |Aq] - (JA7] - |Ag| + |Az2])).

The above lemma bounds the size of the game, and we require that the game graph
can be constructed in time quadratic in the size of the game graph and in the following
section we will present a more efficient (than quadratic) construction of the game graph.
Proposition 10, along with the complexity to solve parity games with three priorities gives
us the following theorem. The result for fair simulation follows as a special case and the
details are presented in [4].

» Theorem 12. We have j‘g?faklt:j:;'far;tg, the relation j?::;"lf can be computed in time
O(W 2 - [W'|2 - |AL|? - |AY] - (JAL] - |AL] + |A3]) for two fair ATSs K and K'. The fair
simulation relation =i can be computed in time O(|W| - |W'| - (|W|- |R'| + |W'| - |R]|)) for

two fair TSs K and K'.

» Remark. We consider the complexity of fair simulation, and let n = |W| = |W’| and
m = |R| = |R'|. The previous algorithm of [11] requires time O(n°®) and our algorithm
requires time O(n? - m). Since m is at most n?, our algorithm takes in worst case time
O(n®) and in most practical cases we have m = O(n) and then our algorithm requires O(n?)
time as compared to the previous known O(n®) algorithm.

4 Alternating Simulation

In this section we will present two algorithms to compute the maximum alternating simu-
lation relation for two ATSs K and K’. The first algorithm for the problem was presented
in [2] and we refer to the algorithm as the basic algorithm. The basic algorithm iteratively
considers pairs of states and examines if they are already witnessed to be not in the al-
ternating simulation relation, removes them and continues until a fix-point is reached (see
Theorem 3 of [2]). The correctness of the basic algorithm was shown in [2], and the time
complexity of the algorithm is O(|W|? - |[W'|2 - |Ay| - |A}] - |Az| - |A4]) (see fuller version for
further explanation).

K. Chatterjee, S. Chaubal, and P. Kamath

4.1 Improved Algorithm Through Games

In this section we present an improved algorithm for alternating simulation by reduction to
reachability-safety games.

Game construction. Given two ATSs K = (X, W,w, Ay, As, Py, P»,L,§) and K' =
(S, W' w', Ay, AL, P Py L6, we construct a game graph G = ((V, E), (V4,V3)) as fol-

lows:

Player 1 vertices: Vi = (W x W) U (Succ(K) x Succ(K"));
Player 2 vertices: Vo = Succ(K) x W' x {#,$};
Edges: The edge set F is specified as the following union: £ = E; U Ey U Es U Ey

E; = {({w,w"),(Succ(w,a),w #)) | we W,w" € W, ae P (w)}

Ey = {((T,w' #),(T,Succ(w',a’))) | T € Succ(K),w" € W', a" € P{(w')}
By = {(T,T),(T,r",8))| T € Succ(K),T' € Succ(K'),' € T'}

Ey = {(T,7,8),({r,7"))| T € Succ(K),r € W ,reT}

Let T = {{w,w’) | L(w) # L'(w’)} be the state pairs that does not match by the labeling
function, and let F = V' \ T. The objective for player 1 is to reach T (i.e., Reach(T")) and
the objective for player 2 is the safety objective Safe(F). In the following proposition we
establish the connection of the winning set for player 2 and <jsim-

» Proposition 13. Let Winy = {(w,w’) | w € W,w' € W', (w,w’) € Wa(Safe(F))} Then we
have Winy ==jtsim-

The algorithmic analysis will be completed in two steps: (1) estimating the size of the
game graph; and (2) analyzing the complexity to construct the game graph from the ATSs.

» Lemma 14. For the game graph constructed for alternating simulation, we have |Vi| +
(Vo] < O(IW| - [W'| - [A1] - |AY]) and |E] < O(IW |- [W'] - [Aq] - (JAL[- [A5] + [A2])).

Game graph construction complexity. We now show that the game graph can be
constructed in time linear in the size of the game graph. The data strucutre for the game
graph is as follows: we map every vertex in Vi U V5 to a unique integer, and construct the
list of edges. Given this data structure for the game graph, the winning sets for reachability
and safety objectives can be computed in linear time [3, 12]. We now present the details of
the construction of the game graph data structure.

Basic requirements. We start with some basic facts. For two sets A and B, if we have
two bijective functions f4 : A + {0,...,|A| — 1} and fp : B + {0,...,|B| — 1}, then we
can assign a unique integer to elements of A x B in time O(|A| - |B|). Since it is easy to
construct bijective functions for W and W', we need to construct such bijective functions for
Succ(K) and Succ(K') to ensure that every vertex has a unique integer. We will present data
structure that would achieve the following: (i) construct bijective function fx : Succ(K) <
{0,...,|Succ(K)| — 1}; (ii) construct function hx : W x Ay — {0,...,|Succ(K)| — 1} such
that for all w € W and a € Pi(w) we have hi((w,a)) = fix(Succ(w,a)), i.e., it gives
the unique number for the successor set of w and action a; (iii) construct function gx :
{0,1,...,|Succ(K)| — 1} — 2" such that for all T € Succ(K) we have gx (fx (T)) is the list
of states in T. We will construct the same for K’, and also ensure that for all T we compute
9k (fx(T)) in time proportional to the size of T. We first argue how the above functions are
sufficient to construct every edge in constant time: (i) edges in F; can be constructed by
considering state pairs (w,w’), actions a € P;(w), and with the function hg ((w,a)) we add

175

CSL’'12

176

Faster Algorithms for Alternating Refinement Relations

the required edge, and the result for edges Es is similar with the function hg; (ii) edges in
E5 and E, are generated using the function gx that gives the list of states for gx (fx(T))
in time proportional to the size of T. Hence every edge can be generated in constant time,
given the functions, and it follows that with the above functions the game construction is
achieved in linear time. We now present the data structure to support the above functions.

Binary tree data structure. Observe that Succ(K) is a set such that each element is a suc-
cessor set (i.e., elements are set of states). Without efficient data structure the requirements
for the functions fg, hx, and gx cannot be achieved. The data structure we use is a binary
tree data structure. We assume that states in W are uniquely numbered from 1 to |W].
Consider a binary tree, such that every leaf has depth |W]|, i.e., the length of the path from
root to a leaf is |[W|. Each path from the root to a leaf represents a set — every path
consists of a |W| length sequence of left and right choices. Consider a path 7 in the binary
tree, and the path 7 represents a subset W, of W as follows: if the i-th step of 7 is left,
then w; ¢ W, if the i-th step is right, then w; € W,. Thus, Succ(K) is the collection of all
sets represented by paths (from root to leaves) in this tree. We have several steps and we
describe them below.

1. Creation of binary tree. The binary tree BT is created as follows. Initially the tree BT is
empty. For all w € W and all @ € P;(w) we generate the set Succ((w,a)) as a Boolean
array Ar of length |[W| such that Ar[i] = 1 if w; € Succ(w,a) and 0 otherwise. We use
the array Ar to add the set Succ((w,a)) to BT as follows: we proceed from the root,
if Ar[0] = 0 we add left edge, else the right edge, and proceed with Ar[l] and so on.
For every w € W and a € Pj(w), the array Ar is generated by going over actions in
Py(w), and the addition of the set Succ(w,a) to the tree is achieved in O(|W]) time.
The initialization of array Ar also requires time O(|W|). Hence the total time required
is O(|W|-|A1|- (|]W]+ |Az|)). The tree has at most |W| - |A;1| leaves and hence the size
of the tree is O(|W|? - |A1]).

2. The functions fx, gk and hx. Let Lf denote the leaves of the tree BT, and note that
every leaf represents an element of Succ(K). We do a DFT (depth-first traversal) of
the tree BT and assign every leaf the number according to the order of leaves in which
it appears in the DFT. Hence the function fx is constructed in time O(|W|? - |A4]).
Moreover, when we construct the function fx, we create an array GAr of lists for the
function gg. If a leaf is assigned number ¢ by fx, we go from the leaf to the root and
find the set T € Succ(K) that the leaf represents and GAr[i] is the list of states in T
Hence the construction of g takes time at most O(|W|-|A;| - |W]). The function hg
is stored as a two-dimensional array of integers with rows indexed by numbers from 0
to |W| — 1, and columns by numbers 0 to |4;] — 1. For a state w and action a, we
generate the Boolean array Ar, and use the array Ar to traverse BT, obtain the leaf for
Succ((w, a)), and assign hi ((w,a)) = fx(Succ(w,a)). It follows that hx is generated in
time O(|W |- [A;| - (W] + [Az])).

From the above graph construction, Proposition 13, Lemma 14, and the linear time al-

gorithms to solve games with reachability and safety objectives we have the following result

for computing alternating simulation.

» Theorem 15. The relation =<ausim can be computed in time O(|W| - |[W'| - |A1] - (JAY] -
| AL+ |Ag|) + W2 - |Aq| + [W|? - |AL]) for two ATSs K and K'. The relation =asim can be
computed in time O(|W| - |R'| + |W'| - |R|) for two TSs K and K.

The result for the special case of T'Ss is obtained by noticing that for TSs we have both
|V| and |E| at most |W|-|R'|+|W’'|-|R| (see [4] for details), and our algorithm matches the

K. Chatterjee, S. Chaubal, and P. Kamath

complexity of the best known algorithm of [10] for simulation for transition systems. Let us
denote by n = |W| and n’ = |W’| the size of the state spaces, and by m = |W|-|A4;|-|A2| and
m’ = |W’|-|A]] - |A}| the size of the transition relations. Then the basic algorithm requires
O(n-n'-m-m') time, whereas our algorithm requires at most O(m -m’ +n-m+n'-m')
time, and when n = n/ and m = m’, then the basic algorithm requires O((n -m)?) time and
our algorithm takes O(m?) time.

4.2 Iterative Algorithm

In this section we will present an iterative algorithm for alternating simulation. For our al-
gorithm we will first present a new and alternative characterization of alternating simulation
through successor set simulation.

v

Definition 16 (Successor set simulation). Given two ATSs K =
S, W, w, A1, A2, P, Py, L,6) and K' = (S,W, &' A A, P P, L), a relation
~C W x W' is a successor set simulation from K to K', if there exists a companion relation
~9C Succ(K') x Succ(K), such that the following conditions hold:

—~

for all (w,w’) €& we have L(w) = L'(w');
if (w,w’) €22, then for all actions a € P;(w), there exists an action o’ € P{(w’) such that
(Succ(w’, @), Succ(w, a)) €=%; and
if (T",T) €=, then for all ' € T", there exists r € T such that (r,r’) €=.
We denote by =* the maximum successor set simulation.

The following lemma shows that successor set simulation and alternating simulation coin-
cide. We present the iterative algorithm to compute the maximum successor set simulation =*.

» Lemma 17. The following assertions hold: (1) Every successor set simulation is an al-
ternating simulation, and every alternating simulation is a successor set simulation. (2) We
have g*:jaltsim~

We will now present our iterative algorithm to compute =*, and we will denote
by =° the witness companion relation of &=*. Our algorithm will use the following
graph construction: Given an ATS K, we will construct the graph Gx = (Vk,Ek)
as follows: (1) Vg = W U Succ(K), where W is the set of states; and (2) Ex =
{(w,Succ(w,a)) |w e W Aa € Pr(w)}U{(T,r) | T € Succ(K) Ar € T}. The graph Gk can
be constructed in time O(|W|? - |A;|) using the binary tree data structure described earlier.
Our algorithm will use the standard notation of Pre and Post: given a graph G = (V, E),
for a set U of states, Post(U) = {v | Ju € U, (u,v) € E} is the set of successor states of U,
and similarly, Pre(U) = {v | Ju € U, (v,u) € E} is the set of predecessor states. If U = {¢}
is singleton, we will write Post(q) instead of Post({q}). Note that in the graph G for
the state T' € Succ(K) we have Post(T) = {¢| g€ T} = T. Given ATSs K and K’ our
algorithm will work simultaneously on the graphs Gx and G using three data structures,
namely, sim, count and remove for the relation &* (resp. sim?, count® and remove® for the
9). The data structures are as follows: (1) Intuitively sim will be an
overapproximation of =* and will be maintained as a two-dimensional Boolean array so
that whenever the 7, j-th entry is false, then we have a witness that the j-th state wg of K’
does not simulate the i-th state w; of K (similary we have sim® over Succ(K’) and Succ(K)
for the relation =~). (2) The data structure count is two-dimensional array, such that for
a state w’ € W’ and T € Succ(K) we have count(w’,T) is the number of elements in the
intersection of the successor states of w’ and the set of all states that T" simulates according

companion relation &

177

CSL’'12

178

Faster Algorithms for Alternating Refinement Relations

9. and we also have similar array count® for T, w’ elements. (3) Finally, the data

structure remove is a list of sets, where for every w’ € W’ we have remove(w’) is a set such
that every element of the set belongs to Succ(K). Similarly for every T' € Succ(K) we have
remove®(T) is a set of states. Intuitively the interpretation of remove data structure will
be as follows: if T' € Succ(K) belongs to remove(w’), then no element w of T is simulated
by w’. Our algorithm will always maintain sim (resp. sim?) as overapproximation of &=*

(resp. =), and will iteratively prune them. Our algorithm is iterative and we denote by
%)

to sim

prevsim (resp. prevsim®) the sim (resp. sim®) of the previous iteration. To give an intuitive
idea of the invariants maintained by the algorithm (Algorithm 1) let us denote by sim(w)
the set of w’ such that sim(w,w’) is true, and let us denote by invsim(w’) the inverse of
sim(w’), i.e., the set of states w such that (w,w’)-th element of sim is true (similar notation
for invprevsim(w’), invsim®(T") and invprevsim® (T')). The algorithm will ensure the following

invariants at different steps:

1. Forw e W,w' € W and T € Succ(K),T" € Succ(K’),

a. if sim(w,w’) is false, then (w,w’) ¢=*;

b. similarly, if sim® (7", T) is false, then (T",T) ¢=5.
2. For w' € W and T € Succ(K),

a. count(w’,T) = |Post(w’) N invsim®(T)|; and

b. count(T,w") = |Post(T") Ninvsim(w’)| = |T N invsim(w')|
3. For w’' € W and T € Succ(K),

a. remove(w') = Pre(invprevsim(w’)) \ Pre(invsim(w’))

b. remove(T") = Pre(invprevsim®(T')) \ Pre(invsim®(T’)).

The algorithm has two phases: the initialization phase, where the data structures are
initialized; and then a while loop. The while loop consists of two parts: one is pruning
of sim and the other is the pruning of sim® and both the pruning steps are similar. The
initialization phase initializes the data structures and is described in Steps 1, 2, and 3 of
Algorithm 1. Then the algorithm calls the two pruning steps in a while loop. The condition
of the while loop checks whether prevsim and sim are the same, and it is done in constant
time by simply checking whether remove is empty. We now describe one of the pruning
procedures and the other is similar. The pruning step is similar to the pruning step of the
algorithm of [10] for simulation on transition systems. We describe the pruning procedure
PRUNESIMSTRSUCC. For every state w’ € W’ such that the set remove(w’) is non-empty,
we run a for loop. In the for loop we first obtain the predecessors T of w’ in Gk (each
predecessor belongs to Succ(K’)) and an element T' from remove(w’). If sim®(T", T) is true,
then we do the following steps: (i) We set sim® (7", T) to false, because we know that there
does not exist any element w € T such that w’ simulates w. (ii) Then for all s’ that are
predecessors of 77 in G+ we decrement count(s’,T'), and if the count is zero, then we add
s’ to the remove set of T. Finally we set the remove set of w’ to . The description of
PRUNESIMSTR to prune sim is similar.

Correctness. Our correctness proof will be in two steps. First we will show that invariant 1
(both about sim and sim®) and invariant 2 (both about count and count®) are true at the
beginning of step 4.1. The invariant 3.(a) (on remove) is true after the procedure call
PRUNESIMSTR (step 4.4) and invariant 3.(b) (on remove®) is true after the procedure call
PRUNESIMSTRSUCC (step 4.3). We will then argue that these invariants ensure correctness
of the algorithm.

Maintaining invariants. We first consider invaraint 1, and focus on invariant 1.(b) (as the
other case is symmetric). In procedure PRUNESIMSTRSUCC when we set sim® (7", T) to false,
we need to show that (T7,T) ¢&°. The argument is as follows: when we set sim®(7”,T)

K. Chatterjee, S. Chaubal, and P. Kamath

Algorithm 1 Iterative Algorithm

Input: K = (X, W, @, A1, Ay, Py, Py, L,5), K' = (S, W', @', A}, A, P, P}, L', 8).
Output: =*.
1. Initialize sim and sim
1.1. for all w € W,w' €¢ W'
prevsim(w, w') < true;
if L(w)= L'(w'), then sim(w,w’) + true;
else sim(w,w’) « false;
1.2. for all T' € Succ(K) and T” € Succ(K’)
prevsim® (T, T) = sim® (T", T) + true;
2. Initialize count and count®:
2.1. for all w’ € W’ and T € Succ(K)
count(w’, T) < |Post(w’) N invsim®(T)| = |Post(w’)];
count® (T, w') + |Post(T") N invsim(w’)|;
3. Initialize remove and remove®:
3.1. for all w’ € W'
remove(w’) Succ(K) \ Pre(invsim(w’));
3.2. for all T' € Succ(K)
remove® (T < 0;
Pruning while loop:
4. while prevsim £ sim
4.1 prevsim <— sim;
4.2 prevsimS +— sim®;
4.3 Procedure PRUNESIMSTRSUCC;
4.4 Procedure PRUNESIMSTR,;
5. return {(w,w’) € W x W' | sim(w,w’) is true};

S,

to false, we know that since T € remove(w’) we have count®(T,w’) = 0 (i.e., Post(T) N
invsim(w’) = (). This implies that for every w € T we have that w’ does not simulate w.
Also note that since count® is never incremented, if it reaches zero, it remains zero. This
proves the correctness of invariant 1.(b) (and similar argument holds for invariant 1.(a)). The
correctness for invariant 2.(a) and 2.(b) is as follows: whenever we decrement count(s’,T) we
have set sim® (7", T') to false, and T’ was earlier both in Post(s’) as well as in invsim®(T’), and
is now removed from invsim® (7). Hence from the set Post(s’) N invsim®(T") we remove the
element 7" and its cardinality decreases by 1. This establishes correctness of invariant 2.(a)
(and invariant 2.(b) is similar). Finally we consider invariant 3.(a): when we add s’ to
remove® (T), then we know that count(s’,T) was decremented to zero, which means 7"
belongs to invprevsim®(T'), but not to invsim® (7). Thus s’ belongs to Pre(invprevsim®(T'))
(since s’ belongs to Pre(T")), but not to Pre(invsim®(T")). This shows that s’ belongs to
remove” (T), and establishes correctness of the desired invariant (argument for invariant
3.(b) is similar).

Invariants to correctness. The initialization part ensures that sim is an overapproximation of
~* and it follows from invariant 1 that the output is an overapproximation of =*. Similarly
we also have that sim® in the end is an overapproximation of &°. To complete the correctness
proof, let sim and sim® be the result when the while loop iterations end. We will now show
that sim and sim® are witnesses to satisfy successor set simulation. We know that when

179

CSL’'12

180

Faster Algorithms for Alternating Refinement Relations

Algorithm 2 Procedure PruneSimStrSucc

1. forall w’ € W’ such that remove(w’) # 0
1.1. forall 7’ € Pre(w’) and T € remove(w’)
1.1.1 if (sim®(T",T))
sim® (17, T) « false;
1.1.1.A. forall (s' € Pre(T"))
count(s’,T) « count(s’,T) — 1;
if (count(s’,T) =0)
remove®(T) < remove® (T) U {s'};
1.2. remove(w’) + 0;

Algorithm 3 Procedure PruneSimStr

1. forall T € Succ(K) such that remove® (T) # ()
1.1. forall w € Pre(T) and w’ € remove® (T')
1.1.1 if (sim(w, w"))
sim(w, w") « false;
1.1.1.A. forall (D € Pre(w))
count® (D, w') + count® (D, w') — 1;
if (count®(D,w’) =0)
remove(w’) <— remove(w’) U {D};
1.2. remove®(T) + 0;

the algorithm terminates, remove(w’) = 0 for every w' € W', and remove®(T) = () for
every T € Succ(K) (this follows since sim = prevsim). To show that sim and sim® are
witness to satisfy successor set simulation, we need to show the following two properties:
(i) If sim(w,w’) is true, then for every a € Pj(w), there exists a’ € P{(w’) such that
sim¥ (Succ(w’, a’), Succ(w, a)) is true. (ii) If sim®(T", T) is true, then for every s € T”, there
exists s € T such that sim(s, s’) is true. The property (i) holds because for every a € P;(w),
we have that count(w’,T) > 0, where T = Succ(w, a), (because otherwise, w’ would have
been inserted in remove(T'), but since remove(T') is empty, consequently sim(w, w’) must have
been made false). Hence we have that Post(w’) N invsim®(T') is non-empty and hence there
exists 7" € Post(w’) such that sim®(7”, T) is true. Similar argument works for (ii). Thus we
have established that sim is both an overapproximation of &* and also a witness successor

set relation. Since =* is the maximum successor set relation, it follows that Algorithm 1
correctly computes &*==,isim (&*==1sim by Lemma 17).

Space complexity. We now argue that the space complexity of the iterative algorithm is
superior as compared to the game based algorithm. We first show that the space taken
by Algorithm 1 is O(|W|* - |Ay] + |[W'|)? - |AL| + W] - [W'| - |Ay| - |A}]). For the iterative
algorithm, the space requirements are, (i) sim and sim® require at most O(|W| - [W’|) and
O(|W| - |W'| -|A1] - |A}]) space, respectively; (ii) count and count® require at most O(|W| -
|W’| - |A1]) space each; (iii) remove and remove® maintained as an array of sets require at
most O(|W| - |W’| - |A1]), space each. Also, for the construction of graphs Gx and Gg-
using the binary tree data structure as described earlier, the space required is at most
O(|W|? -]A1]) and O(|W'|? - |A}|), respectively. As compared to the space requirement of

K. Chatterjee, S. Chaubal, and P. Kamath

the iterative algorithm, the game based algorithm requires to store the entire game graph
and requires at least O(|W|-|W'|-|A1|-|A}|-|A%]) space (to store edges in Es3) as well as space
O(|W|? - |Ay| + |W'|? - |A}]) for the binary tree data structure. The iterative algorithm can
be viewed as an efficient simultaneous pruning algorithm that does not explicitly construct
the game graph (and thus saves at least a factor of |A}| in terms of space). We now show
that the iterative algorithm along with being space efficient matches the time complexity of
the game based algorithm.

Time complezity. The data structures for sim (also sim®) and count (also count®) are as
9 as a list of lists (i.e., it is a list of sets, and
sets are stored as lists). It is easy to verify that all the non-loop operations take unit cost,

described earlier. We store remove and remove

and thus for the time complexity, we need to estimate the number of times the different
loops could run. Also the analysis of the initialization steps are straight forward, and we
present the analysis of the loops below: (1) The while loop (Step 4) of Algorithm 1 can
run for at most |W| - [W’| iterations because in every iteration (except the last iteration)
at least one entry of sim changes from true to false (otherwise the iteration stops), and sim
has |W| - |W'|-entries. (2) The forall loop (Step 1) in Algorithm 2 can overall run for at
most |W’|- |W| - |A1| iterations. This is because elements of remove(w’) are from Succ(K)
and elements T from Succ(K) are included in remove(w’) at most once (when count® (T, w’)
is set to zero, and once count®(T,w’) is set to zero, it remains zero). Thus remove(w’) can
be non-empty at most |Succ(K)| times, and hence the loop runs at most |W| - |A;| times
for states w’ € W’. (3) The forall loop (Step 1.1) in Algorithm 2 can overall run for at
most |[W'| - |A}] - |AL| - |[W] - |Ay| iterations. The reasoning is as follows: for every edge
(T",w") € Gk and T € Succ(K) the loop runs at most once (since every T is included in
remove(w’) at most once). Hence the number of times the loop runs is at most the number
of edges in Gk (at most |W'| - |A]] - |A%]) times the number of elements in Succ(K) (at
most |[W]-|A1|). Thus overall the number of iterations of Step 1.1 of Algorithm 2 is at most
|[W'|-|AL] - [W] -]A1|. (4) The forall loop (Step 1.1.1.A) in Algorithm 2 can overall run for
at most |[W'| - |A]| - |A5] - |[W]| - |A1] iterations because every edge (s',7") in Gg+ would be
iterated at most once for every T € Succ(K) (as for every T, T’ we set sim®(T,T") false at
most once, and the loop gets executed when such an entry is set to false). The analysis of
the following items (5), (6), and (7), are similar to (2), (3), and (4), respectively. (5) The
forall loop (Step 1) in Algorithm 3 can overall run for at most |W| - |A;1] - |W’| iterations,
because remove® (T') can be non-empty at most |W’| times (i.e., the number of different 7T is
at most |Succ(K)| = |[W]-|A1|). (6) The forall loop (Step 1.1) in Algorithm 3 can overall
run for at most |W| - |Az| - |Az| - |W’| iterations because every edge (w,T’) in Gk can be
iterated over at most once for every w’ (the number of edges in G is |W|-|A4;] - |A42| and
number of states w’ is at most |W’|). (7) The forall loop (Step 1.1.1.A) in Algorithm 3
can overall run for at most |W|- |A1] - |A2| - [W’| iterations because every edge (w, D) in
Gk would be iterated over at most once for every w’ € W’. Adding the above terms, we
get that the total time complexity is O (|W|- [W'| - [Aq| - (|A}] - |45] + |A2])), i.e., the time
complexity matches the time complexity of the game reduction based algorithm. We also
remark that for transition systems (TSs), the procedure PRUNESIMSTRSUCC coincides with
PRUNESIMSTR and our algorithm simplifies to the algorithm of [10], and thus matches the
complexity of computing simulation for T'Ss.

» Theorem 18. Algorithm 1 correctly computes =ausim in time O(|W| - [W'| - |Aq] - (JAY] -
| A5] + [Ao]) + W [Ar] + W[- | A7)

181

CSL’'12

182

Faster Algorithms for Alternating Refinement Relations

5 Conclusion

In this work we presented faster algorithms for alternating simulation and alternating fair
simulation which are core algorithmic problems in analysis of composite and open reactive
systems, as well as state space reduction for graph games (that has deep connection with
automata theory and logic). Moreover, our algorithms are obtained as efficient reductions
to graph games with reachability and parity objectives with three priorities, and efficient
implementations exist for all these problems (for example, see [14] for implementation of
games with reachability and parity objectives, and [6] for specialized implementation of
games with parity objectives with three priorities).

Acknowledgements. The research was supported by Austrian Science Fund (FWF) Grant No
P 23499-N23 on Modern Graph Algorithmic Techniques in Formal Verification, FWF NFN Grant
No S11407-N23 (RiSE), ERC Start grant (279307: Graph Games), and Microsoft faculty fellows

award.

—— References

1 R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal logic. JACM,
49:672-713, 2002.

2 R. Alur, T.A. Henzinger, O. Kupferman, and M.Y. Vardi. Alternating refinement relations.
In CONCUR’98, LNCS 1466, pages 163-178. Springer, 1998.

3 C. Beeri. On the membership problem for functional and multivalued dependencies in
relational databases. ACM Trans. on Database Systems, 5:241-259, 1980.

4 K. Chatterjee, S. Chaubal, and P Kamath. Faster algorithms for alternating refinement
relations. CoRR, abs/1201.4449, 2012.

5 E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

6 L. de Alfaro and M. Faella. An accelerated algorithm for 3-color parity games with an
application to timed games. In CAV, pages 108-120, 2007.

7 E.A. Emerson and C. Jutla. Tree automata, mu-calculus and determinacy. In FOCS’91,
pages 368-377. IEEE, 1991.

8 Y. Gurevich and L. Harrington. Trees, automata, and games. In STOC’82, pages 60-65.
ACM Press, 1982.

9 J. Y. Halpern and R. Fagin. Modeling knowledge and action in distributed systems. Dis-
tributed Computing, 3:159-179, 1989.

10 M.R. Henzinger, T.A. Henzinger, and P.W. Kopke. Computing simulations on finite and
infinite graphs. In FOCS, pages 453-462. IEEE, 1995.

11 T.A. Henzinger, O. Kupferman, and S. Rajamani. Fair simulation. I & C., 173:64-81,
2002.

12 N. Immerman. Number of quantifiers is better than number of tape cells. JCSS, 22:384-406,
1981.

13 M. Jurdzinski. Small progress measures for solving parity games. In STACS’00, pages
290-301. LNCS 1770, Springer, 2000.

14 M. Lange and O. Friedmann. The pgsolver collection of parity game solvers. 2009.

15 R. Milner. An algebraic definition of simulation between programs. In Second International
Joint Conference on Artificial Intelligence, pages 481-489. The British Computer Society,
1971.

16 L.S. Shapley. Stochastic games. Proc. Nat. Acad. Sci. USA, 39:1095-1100, 1953.

17 W. Thomas. Languages, automata, and logic. In G. Rozenberg and A. Salomaa, edit-
ors, Handbook of Formal Languages, volume 3, Beyond Words, chapter 7, pages 389-455.
Springer, 1997.

	Introduction
	Definitions
	Fair Alternating Simulation
	Alternating Simulation
	Improved Algorithm Through Games
	Iterative Algorithm

	Conclusion

