
Termination Criteria for Solving

Concurrent Safety and Reachability Games ∗

Krishnendu Chatterjee† Luca de Alfaro‡ Thomas A. Henzinger§

Abstract

We consider concurrent games played on graphs. At
every round of a game, each player simultaneously and
independently selects a move; the moves jointly deter-
mine the transition to a successor state. Two basic ob-
jectives are the safety objective to stay forever in a given
set of states, and its dual, the reachability objective to
reach a given set of states. We present in this paper
a strategy improvement algorithm for computing the
value of a concurrent safety game, that is, the maximal
probability with which player 1 can enforce the safety
objective. The algorithm yields a sequence of player-
1 strategies which ensure probabilities of winning that
converge monotonically to the value of the safety game.

Our result is significant because the strategy im-
provement algorithm provides, for the first time, a way
to approximate the value of a concurrent safety game
from below. Since a value iteration algorithm, or a
strategy improvement algorithm for reachability games,
can be used to approximate the same value from above,
the combination of both algorithms yields a method for
computing a converging sequence of upper and lower
bounds for the values of concurrent reachability and
safety games. Previous methods could approximate the
values of these games only from one direction, and as
no rates of convergence are known, they did not provide
a practical way to solve these games.

∗A fuller version of the paper with proofs available at [3].
†CE, UC Santa Cruz, email: c krish@eecs.berkeley.edu.
‡CE, UC Santa Cruz, email: luca@soe.ucsc.edu.
§EECS, UC Berkeley, and EPFL, Switzerland, email:

tah@eecs.berkeley.edu.

1 Introduction

We consider games played between two players on
graphs. At every round of the game, each of the two
players selects a move; the moves of the players then
determine the transition to the successor state. A
play of the game gives rise to a path in the graph.
We consider the two basic objectives for the players:
reachability and safety. The reachability goal asks
player 1 to reach a given set of target states or, if
randomization is needed to play the game, to maximize
the probability of reaching the target set. The safety
goal asks player 2 to ensure that a given set of safe
states is never left or, if randomization is required, to
minimize the probability of leaving the safe set. The
two objectives are dual, and the games are determined:
the maximal probability with which player 1 can reach
the target set is equal to one minus the maximal
probability with which player 2 can confine the game
to the complement of the target set [15].

These games on graphs can be divided into two
classes: turn-based and concurrent. In turn-based
games, only one player has a choice of moves at each
state; in concurrent games, at each state both players
choose a move, simultaneously and independently, from
a set of available moves. For turn-based games, the
solution of games with reachability and safety objectives
has long been known. If each move determines a unique
successor state, then the games are PTIME-complete
and can be solved in linear time in the size of the
game graph. If, more generally, each move determines
a probability distribution on possible successor states,
then the problem of deciding whether a turn-based
game can be won with probability greater than a
given threshold p ∈ [0, 1] is in NP ∩ co-NP [5], and
the exact value of the game can be computed by a
strategy improvement algorithm [6], which works well
in practice. These results all depend on the fact that in
turn-based reachability and safety games, both players
have optimal deterministic (i.e., no randomization is
required), memoryless strategies. These strategies are
functions from states to moves, so they are finite in
number, and this guarantees the termination of the
strategy improvement algorithm.

The situation is very different for concurrent games,
where randomization is required even in the special
case in which the transition function is deterministic.
The player-1 value of the game is defined, as usual, as
the sup-inf value: the supremum, over all strategies of
player 1, of the infimum, over all strategies of player 2,
of the probability of achieving the reachability or safety
goal. In concurrent reachability games, player 1 is guar-
anteed only the existence of ε-optimal strategies, which
ensure that the value of the game is achieved within a
specified tolerance ε > 0 [14]. Moreover, while these
strategies (which depend on ε) are memoryless, in gen-
eral they require randomization [8]. For player 2 (the
safety player), optimal memoryless strategies exist [9],
which again require randomization. All of these strate-
gies are functions from states to probability distribu-
tions on moves. The question of deciding whether a
concurrent reachability or safety game has a value at
least p ∈ [0, 1] is in PSPACE; this is shown by reduc-
tion to the theory of the real-closed fields [11], but no
practical algorithms were known.

To summarize: while practical strategy improve-
ment algorithms are available for turn-based reachabil-
ity and safety games, so far no practical algorithms or
even approximation schemes were known for concurrent
games. If one wanted to compute the value of a con-
current game within a specified tolerance ε > 0, one
was reduced to using a binary search algorithm that
approximates the value by iterating queries in the the-
ory of the real-closed fields. Strategy improvement and
value iteration schemes were known for such games, but
they could be used to approximate the value from one
direction only, for reachability goals from below, and for
safety goals from above [9, 2]. Neither scheme is guar-
anteed to terminate. Worse, since no convergence rates
are known for these schemes, they provide no termina-
tion criteria for approximating a value within ε.

In this paper, we present for the first time a strategy
improvement scheme that approximates the value of a
concurrent safety game from below. Strategy improve-
ment algorithms are generally practical, and together
with the known strategy improvement scheme, or the
value iteration scheme, to approximate the value of such
a game from above, we obtain a termination criterion
for computing the value of concurrent reachability and
safety games within any given tolerance ε > 0.

Several difficulties had to be overcome in developing
our scheme. First, while the strategy improvement
algorithm that approximates reachability values from
below [2] is based on locally improving a strategy on the
basis of the valuation it yields, this approach does not
suffice for approximating safety values from below: we
would obtain an increasing sequence of values, but they

would not necessarily converge to the value of the game
(see Example 1). Rather, we introduce a novel, non-
local improvement step, which augments the standard
valuation-based improvement step. Each non-local step
involves the solution of an appropriately constructed
turn-based game. Second, as value iteration for safety
objectives converges from above, while our sequences
of strategies yield values that converge from below, the
proof of convergence for our algorithm cannot be derived
from a connection with value iteration, as was the case
for reachability objectives. We had to develop new
proof techniques both to show the monotonicity of the
strategy values produced by our algorithm, and to show
their convergence to the value of the game.

We also present a detailed analysis of termination
criteria for turn-based stochastic games. Our analysis
is based on (a) the strategy improvement algorithm
for reachability games, and (b) on the bound of the
precision of values for turn-based stochastic games. As
a consequence of our analysis, we obtain an improved
upper bound for termination for turn-based stochastic
games.

2 Definitions

Notation. For a countable set A, a probability distri-
bution on A is a function δ : A → [0, 1] such that
∑

a∈A δ(a) = 1. We denote the set of probability distri-
butions on A by D(A). Given a distribution δ ∈ D(A),
we denote by Supp(δ) = {x ∈ A | δ(x) > 0} the support
set of δ.

Definition 1. (Concurrent Games) A (two-
player) concurrent game structure G = 〈S, M, Γ1, Γ2, δ〉
consists of the following components:

• A finite state space S and a finite set M of moves
or actions.

• Two move assignments Γ1, Γ2 : S → 2M \ ∅. For
i ∈ {1, 2}, assignment Γi associates with each state
s ∈ S a nonempty set Γi(s) ⊆ M of moves available
to player i at state s.

• A probabilistic transition function δ : S×M×M →
D(S) that gives the probability δ(s, a1, a2)(t) of a
transition from s to t when player 1 chooses at state
s move a1 and player 2 chooses move a2, for all
s, t ∈ S and a1 ∈ Γ1(s), a2 ∈ Γ2(s).

We denote by |δ| the size of transition function,
i.e., |δ| =

∑

s∈S,a∈Γ1(s),b∈Γ2(s),t∈S |δ(s, a, b)(t)|, where

|δ(s, a, b)(t)| is the number of bits required to specify
the transition probability δ(s, a, b)(t). We denote by
|G| the size of the game graph, and |G| = |δ| + |S|. At
every state s ∈ S, player 1 chooses a move a1 ∈ Γ1(s),

and simultaneously and independently player 2 chooses
a move a2 ∈ Γ2(s). The game then proceeds to the
successor state t with probability δ(s, a1, a2)(t), for all
t ∈ S. A state s is an absorbing state if for all a1 ∈ Γ1(s)
and a2 ∈ Γ2(s), we have δ(s, a1, a2)(s) = 1. In other
words, at an absorbing state s for all choices of moves
of the two players, the successor state is always s.

Definition 2. (Turn-based stochastic games) A
turn-based stochastic game graph (21/2-player game
graph) G = 〈(S, E), (S1, S2, SR), δ〉 consists of a finite
directed graph (S, E), a partition (S1, S2, SR) of the
finite set S of states, and a probabilistic transition func-
tion δ: SR → D(S), where D(S) denotes the set of prob-
ability distributions over the state space S. The states
in S1 are the player-1 states, where player 1 decides
the successor state; the states in S2 are the player-2
states, where player 2 decides the successor state; and
the states in SR are the random or probabilistic states,
where the successor state is chosen according to the
probabilistic transition function δ. We assume that for
s ∈ SR and t ∈ S, we have (s, t) ∈ E iff δ(s)(t) > 0, and
we often write δ(s, t) for δ(s)(t). For technical conve-
nience we assume that every state in the graph (S, E)
has at least one outgoing edge. For a state s ∈ S, we
write E(s) to denote the set {t ∈ S | (s, t) ∈ E} of possi-
ble successors. We denote by |δ| the size of the transition
function, i.e., |δ| =

∑

s∈SR,t∈S |δ(s)(t)|, where |δ(s)(t)|
is the number of bits required to specify the transition
probability δ(s)(t). We denote by |G| the size of the
game graph, and |G| = |δ| + |S| + |E|.

Plays. A play ω of G is an infinite sequence ω =
〈s0, s1, s2, . . .〉 of states in S such that for all k ≥ 0,
there are moves ak

1 ∈ Γ1(sk) and ak
2 ∈ Γ2(sk) with

δ(sk, ak
1 , ak

2)(sk+1) > 0. We denote by Ω the set of all
plays, and by Ωs the set of all plays ω = 〈s0, s1, s2, . . .〉
such that s0 = s, that is, the set of plays starting from
state s.

Selectors and strategies. A selector ξ for player i ∈
{1, 2} is a function ξ : S → D(M) such that for all
states s ∈ S and moves a ∈ M , if ξ(s)(a) > 0, then
a ∈ Γi(s). A selector ξ for player i at a state s is a
distribution over moves such that if ξ(s)(a) > 0, then
a ∈ Γi(s). We denote by Λi the set of all selectors
for player i ∈ {1, 2}, and similarly, we denote by Λi(s)
the set of all selectors for player i at a state s. The
selector ξ is pure if for every state s ∈ S, there is
a move a ∈ M such that ξ(s)(a) = 1. A strategy
for player i ∈ {1, 2} is a function π : S+ → D(M)
that associates with every finite, nonempty sequence
of states, representing the history of the play so far,
a selector for player i; that is, for all w ∈ S∗ and s ∈ S,
we have Supp(π(w·s)) ⊆ Γi(s). The strategy π is pure if

it always chooses a pure selector; that is, for all w ∈ S+,
there is a move a ∈ M such that π(w)(a) = 1. A
memoryless strategy is independent of the history of the
play and depends only on the current state. Memoryless
strategies correspond to selectors; we write ξ for the
memoryless strategy consisting in playing forever the
selector ξ. A strategy is pure memoryless if it is both
pure and memoryless. In a turn-based stochastic game,
a strategy for player 1 is a function π1 : S∗ ·S1 → D(S),
such that for all w ∈ S∗ and for all s ∈ S1 we have
Supp(π1(w ·s)) ⊆ E(s). Memoryless strategies and pure
memoryless strategies are obtained as the restriction of
strategies as in the case of concurrent game graphs. The
family of strategies for player 2 are defined analogously.
We denote by Π1 and Π2 the sets of all strategies for
player 1 and player 2, respectively. We denote by ΠM

i

and ΠPM
i the sets of memoryless strategies and pure

memoryless strategies for player i, respectively.

Destinations of moves and selectors. For all states s ∈ S
and moves a1 ∈ Γ1(s) and a2 ∈ Γ2(s), we indicate by
Dest(s, a1, a2) = Supp(δ(s, a1, a2)) the set of possible
successors of s when the moves a1 and a2 are chosen.
Given a state s, and selectors ξ1 and ξ2 for the two
players, we denote by

Dest(s, ξ1, ξ2) =
⋃

a1∈Supp(ξ1(s)),

a2∈Supp(ξ2(s))

Dest(s, a1, a2)

the set of possible successors of s with respect to the
selectors ξ1 and ξ2.

Once a starting state s and strategies π1 and π2

for the two players are fixed, the game is reduced to
an ordinary stochastic process. Hence, the probabilities
of events are uniquely defined, where an event A ⊆ Ωs

is a measurable set of plays. For an event A ⊆ Ωs, we
denote by Prπ1,π2

s (A) the probability that a play belongs
to A when the game starts from s and the players follow
the strategies π1 and π2. Similarly, for a measurable
function f : Ωs → IR, we denote by Eπ1,π2

s (f) the
expected value of f when the game starts from s and
the players follow the strategies π1 and π2. For i ≥ 0,
we denote by Θi : Ω → S the random variable denoting
the i-th state along a play.

Valuations. A valuation is a mapping v : S → [0, 1]
associating a real number v(s) ∈ [0, 1] with each state
s. Given two valuations v, w : S → IR, we write v ≤ w
when v(s) ≤ w(s) for all states s ∈ S. For an event A,
we denote by Prπ1,π2(A) the valuation S → [0, 1] defined
for all states s ∈ S by

(

Prπ1,π2(A)
)

(s) = Prπ1,π2

s (A).
Similarly, for a measurable function f : Ωs → [0, 1], we
denote by Eπ1,π2(f) the valuation S → [0, 1] defined for
all s ∈ S by

(

Eπ1,π2(f)
)

(s) = Eπ1,π2
s (f).

3

Reachability and safety objectives. Given a set F ⊆ S
of safe states, the objective of a safety game consists
in never leaving F . Therefore, we define the set of
winning plays as the set Safe(F) = {〈s0, s1, s2, . . .〉 ∈ Ω |
sk ∈ F for all k ≥ 0}. Given a subset T ⊆ S of target
states, the objective of a reachability game consists in
reaching T . Correspondingly, the set winning plays is
Reach(T) = {〈s0, s1, s2, . . .〉 ∈ Ω | sk ∈ T for some k ≥
0} of plays that visit T . For all F ⊆ S and T ⊆ S, the
sets Safe(F) and Reach(T) is measurable. An objective
in general is a measurable set, and in this paper we
would consider only reachability and safety objectives.
For an objective Φ, the probability of satisfying Φ from
a state s ∈ S under strategies π1 and π2 for players 1
and 2, respectively, is Prπ1,π2

s (Φ). We define the value
for player 1 of game with objective Φ from the state s ∈
S as: 〈〈1〉〉val(Φ)(s) = supπ1∈Π1

infπ2∈Π2
Prπ1,π2

s (Φ); i.e.,
the value is the maximal probability with which player 1
can guarantee the satisfaction of Φ against all player 2
strategies. Given a player-1 strategy π1, we use the
notation 〈〈1〉〉π1

val
(Φ)(s) = infπ2∈Π2

Prπ1,π2

s (Φ). A strategy
π1 for player 1 is optimal for an objective Φ if for all
states s ∈ S, we have 〈〈1〉〉π1

val
(Φ)(s) = 〈〈1〉〉val(Φ)(s). For

ε > 0, a strategy π1 for player 1 is ε-optimal if for all
states s ∈ S, we have 〈〈1〉〉π1

val
(Φ)(s) ≥ 〈〈1〉〉val(Φ)(s) −

ε. The notion of values and optimal strategies for
player 2 are defined analogously. Reachability and
safety objectives are dual, i.e., we have Reach(T) =
Ω \ Safe(S \ T). The quantitative determinacy result
of [15] ensures that for all states s ∈ S, we have
〈〈1〉〉val(Safe(F))(s) + 〈〈2〉〉val(Reach(S \ F))(s) = 1.

Theorem 2.1. (Memoryless determinacy) For all
concurrent game graphs G, for all F ⊆ S and all T ⊆ S,
if F = S \ T , then the following assertions hold.

1. [12] Memoryless optimal strategies exist for the
safety objective Safe(F).

2. [2, 11] For all ε > 0, memoryless ε-optimal strate-
gies exist for the reachability objectives Reach(T).

3. [5] If G is a turn-based stochastic game graph,
then pure memoryless optimal strategies exist for
the reachability objective Reach(T) and the safety
objectives Safe(F).

3 Markov Decision Processes

We present some facts about one-player versions of
concurrent stochastic games, known as Markov decision
processes (MDPs) [10, 1]. For i ∈ {1, 2}, a player-i
MDP (for short, i-MDP) is a concurrent game where,
for all states s ∈ S, we have |Γ3−i(s)| = 1. Given a
concurrent game G, if we fix a memoryless strategy

corresponding to selector ξ1 for player 1, the game is
equivalent to a 2-MDP Gξ1

with the transition function
δξ1

(s, a2)(t) =
∑

a1∈Γ1(s)
δ(s, a1, a2)(t) ·ξ1(s)(a1), for all

s ∈ S and a2 ∈ Γ2(s). Similarly, if we fix selectors
ξ1 and ξ2 for both players in a concurrent game G, we
obtain a Markov chain, which we denote by Gξ1,ξ2

.

MDPs with reachability objectives. Given a
2-MDP with a reachability objective Reach(T) for
player 2, where T ⊆ S, the values can be obtained as the
solution of a linear program [12]. The linear program
has a variable x(s) for all states s ∈ S. The objective
function is min

∑

s∈S x(s) subject to the following con-
straints:

x(s) ≥
∑

t∈S

x(t) · δ(s, a2)(t) for all s ∈ S and a2 ∈ Γ2(s)

x(s) = 1 for all s ∈ T

0 ≤ x(s) ≤ 1 for all s ∈ S

The correctness of the above linear program to compute
the values follows from [10, 12].

4 Strategy Improvement for Safety Games

In this section we present a strategy improvement
algorithm for concurrent games with safety objectives.
The algorithm will produce a sequence of selectors
γ0, γ1, γ2, . . . for player 1, such that:

1. for all i ≥ 0, we have 〈〈1〉〉
γi

val
(Safe(F)) ≤

〈〈1〉〉
γ

i+1

val
(Safe(F));

2. if there is i ≥ 0 such that γi = γi+1, then

〈〈1〉〉
γi

val
(Safe(F)) = 〈〈1〉〉val(Safe(F)); and

3. limi→∞〈〈1〉〉
γi

val
(Safe(F)) = 〈〈1〉〉val(Safe(F)).

Condition 1 guarantees that the algorithm computes a
sequence of monotonically improving selectors. Condi-
tion 2 guarantees that if a selector cannot be improved,
then it is optimal. Condition 3 guarantees that the value
guaranteed by the selectors converges to the value of the
game, or equivalently, that for all ε > 0, there is a num-
ber i of iterations such that the memoryless player-1
strategy γi is ε-optimal. Note that for concurrent safety
games, there may be no i ≥ 0 such that γi = γi+1, that
is, the algorithm may fail to generate an optimal selec-
tor. This is because there are concurrent safety games
such that the values are irrational [9]. We start with a
few notations

The Pre operator and optimal selectors. Given a
valuation v, and two selectors ξ1 ∈ Λ1 and ξ2 ∈ Λ2,
we define the valuations Preξ1,ξ2

(v), Pre1:ξ1
(v), and

Pre1(v) as follows, for all states s ∈ S:

Preξ1,ξ2
(v)(s)

=
∑

a,b∈M

∑

t∈S

v(t) · δ(s, a, b)(t) · ξ1(s)(a) · ξ2(s)(b)

Pre1:ξ1
(v)(s) = inf

ξ2∈Λ2

Preξ1,ξ2
(v)(s)

Pre1(v)(s) = sup
ξ1∈Λ1

inf
ξ2∈Λ2

Preξ1,ξ2
(v)(s)

Intuitively, Pre1(v)(s) is the greatest expectation of v
that player 1 can guarantee at a successor state of s.
Also note that given a valuation v, the computation of
Pre1(v) reduces to the solution of a zero-sum one-shot
matrix game, and can be solved by linear programming.
Similarly, Pre1:ξ1

(v)(s) is the greatest expectation of v
that player 1 can guarantee at a successor state of s by
playing the selector ξ1. Note that all of these operators
on valuations are monotonic: for two valuations v, w,
if v ≤ w, then for all selectors ξ1 ∈ Λ1 and ξ2 ∈
Λ2, we have Preξ1,ξ2

(v) ≤ Preξ1,ξ2
(w), Pre1:ξ1

(v) ≤
Pre1:ξ1

(w), and Pre1(v) ≤ Pre1(w). Given a valuation
v and a state s, we define by OptSel(v, s) = {ξ1 ∈
Λ1(s) | Pre1:ξ1

(v)(s) = Pre1(v)(s)} the set of optimal
selectors for v at state s. For an optimal selector
ξ1 ∈ OptSel(v, s), we define the set of counter-optimal
actions as follows: CountOpt(v, s, ξ1) = {b ∈ Γ2(s) |
Preξ1,b(v)(s) = Pre1(v)(s)}. Observe that for ξ1 ∈
OptSel(v, s), for all b ∈ Γ2(s) \ CountOpt(v, s, ξ1) we
have Preξ1,b(v)(s) > Pre1(v)(s). We define the set of
optimal selector support and the counter-optimal action
set as follows:

OptSelCount(v, s)

= {(A, B) ⊆ Γ1(s) × Γ2(s) | ∃ξ1 ∈ Λ1(s).

ξ1 ∈ OptSel(v, s) ∧ Supp(ξ1) = A

∧ CountOpt(v, s, ξ1) = B};

i.e., it consists of pairs (A, B) of actions of player 1 and
player 2, such that there is an optimal selector ξ1 with
support A, and B is the set of counter-optimal actions
to ξ1.

Turn-based reduction. Given a concurrent
game G = 〈S, M, Γ1, Γ2, δ〉 and a valuation v
we construct a turn-based stochastic game Gv =
〈(S, E), (S1, S2, SR), δ〉 as follows:

1. The set of states is as follows:

S = S ∪

{(s, A, B) | s ∈ S, (A, B) ∈ OptSelCount(v, s)} ∪

{(s, A, b) | s ∈ S, (A, B) ∈ OptSelCount(v, s), b ∈ B}.

2. The state space partition is as follows: S1 =
S; S2 = {(s, A, B) | s ∈ S, (A, B) ∈
OptSelCount(v, s)}; and SR = S \ (S1 ∪ S2).

3. The set of edges is as follows:

E

= {(s, (s, A, B)) | s ∈ S, (A, B) ∈ OptSelCount(v, s)}

∪ {((s, A, B), (s, A, b)) | b ∈ B}

∪ {((s, A, b), t) | t ∈
⋃

a∈A

Dest(s, a, b)}.

4. The transition function δ for all states in SR is
uniform over its successors.

Intuitively, the reduction is as follows. Given the
valuation v, state s is a player 1 state where player 1
can select a pair (A, B) (and move to state (s, A, B))
with A ⊆ Γ1(s) and B ⊆ Γ2(s) such that there is an
optimal selector ξ1 with support exactly A and the set
of counter-optimal actions to ξ1 is the set B. From a
player 2 state (s, A, B), player 2 can choose any action
b from the set B, and move to state (s, A, b). A state
(s, A, b) is a probabilistic state where all the states
in

⋃

a∈A Dest(s, a, b) are chosen uniformly at random.

Given a set F ⊆ S we denote by F = F ∪ {(s, A, B) ∈
S | s ∈ F} ∪ {(s, A, b) ∈ S | s ∈ F}. We refer to the
above reduction as TB, i.e., (Gv, F) = TB(G, v, F).

Value class of a valuation. Given a valuation v and
a real 0 ≤ r ≤ 1, the value class Ur(v) of value r is
the set of states with valuation r, i.e., Ur(v) = {s ∈ S |
v(s) = r}

Ordering of strategies. We now define the notion of
ordering of strategies. Let G be a concurrent game and
F be the set of safe states. Let T = S \ F . Given
a concurrent game graph G with a safety objective
Safe(F), the set of almost-sure winning states is the
set of states s such that the value at s is 1, i.e.,
W1 = {s ∈ S | 〈〈1〉〉val(Safe(F)) = 1} is the set of
almost-sure winning states. An optimal strategy from
W1 is referred as an almost-sure winning strategy. The
set W1 and an almost-sure winning strategy can be
computed in linear time by the algorithm given in [7].
We assume without loss of generality that all states in
W1 ∪ T are absorbing. We define a preorder ≺ on the
strategies for player 1 as follows: given two player 1
strategies π1 and π′

1, let π1 ≺ π′
1 if the following two

conditions hold: (i) 〈〈1〉〉π1

val
(Safe(F)) ≤ 〈〈1〉〉

π′
1

val
(Safe(F));

and (ii) 〈〈1〉〉π1

val
(Safe(F))(s) < 〈〈1〉〉

π′
1

val
(Safe(F))(s) for

some state s ∈ S. Furthermore, we write π1 � π′
1

if either π1 ≺ π′
1 or π1 = π′

1. We first present an

5

2/3

s0 s1 s3s2

s6 s5

2/3 1/3 1/3

Figure 1: A turn-based stochastic safety game.

example that shows the improvements based only on
Pre1 operators are not sufficient for safety games, even
on turn-based games and then present our algorithm.

Example 1. Consider the turn-based stochastic game
shown in Fig 1, where the 2 states are player 1
states, the 3 states are player 2 states, and © states
are random states with probabilities labeled on edges.
The safety goal is to avoid the state s6. Consider a
memoryless strategy π1 for player 1 that chooses the
successor s0 → s2, and the counter-strategy π2 for
player 2 chooses s1 → s0. Given the strategies π1

and π2, the value at s0, s1 and s2 is 1/3, and since
all successors of s0 have value 1/3, the value cannot
be improved by Pre1. However, note that if player 2
is restricted to choose only value optimal selectors for
the value 1/3, then player 1 can switch to the strategy
s0 → s1 and ensure that the game stays in the value
class 1/3 with probability 1. Hence switching to s0 → s1

would force player 2 to select a counter-strategy that
switches to the strategy s1 → s3, and thus player 1 can
get a value 2/3.

Informal description of Algorithm 1. We now
present the strategy improvement algorithm (Algo-
rithm 1) for computing the values for all states in S\W1.
The algorithm iteratively improves player-1 strategies
according to the preorder ≺. The algorithm starts with

the random selector γ0 = ξ
unif

1 that plays at all states
all actions uniformly at random. At iteration i + 1, the
algorithm considers the memoryless player-1 strategy γi

and computes the value 〈〈1〉〉
γ

i

val
(Safe(F)). Observe that

since γi is a memoryless strategy, the computation of

〈〈1〉〉
γi

val
(Safe(F)) involves solving the 2-MDP Gγi

. The

valuation 〈〈1〉〉
γ

i

val
(Safe(F)) is named vi. For all states

s such that Pre1(vi)(s) > vi(s), the memoryless strat-
egy at s is modified to a selector that is value-optimal
for vi. The algorithm then proceeds to the next iter-
ation. If Pre1(vi) = vi, then the algorithm constructs
the game (Gvi

, F) = TB(G, vi, F), and computes Ai

as the set of almost-sure winning states in Gvi
for the

objective Safe(F). Let U = (Ai ∩ S) \ W1. If U is non-
empty, then a selector γi+1 is obtained at U from an
pure memoryless optimal strategy (i.e., an almost-sure

winning strategy) in Gvi
, and the algorithm proceeds to

iteration i+1. If Pre1(vi) = vi and U is empty, then the
algorithm stops and returns the memoryless strategy γi

for player 1. Unlike strategy improvement algorithms
for turn-based games (see [6] for a survey), Algorithm 1
is not guaranteed to terminate, because the value of a
safety game may not be rational. Proofs omitted due to
lack of space are available in [3].

Lemma 4.1. Let γi and γi+1 be the player-1 selectors
obtained at iterations i and i + 1 of Algorithm 1. Let
I = {s ∈ S \ (W1 ∪ T) | Pre1(vi)(s) > vi(s)}. Let

vi = 〈〈1〉〉
γi

val
(Safe(F)) and vi+1 = 〈〈1〉〉

γi+1

val
(Safe(F)).

Then vi+1(s) ≥ Pre1(vi)(s) for all states s ∈ S; and
therefore vi+1(s) ≥ vi(s) for all states s ∈ S, and
vi+1(s) > vi(s) for all states s ∈ I.

Recall that by Example 1 it follows that improve-
ment by only step 3.2 is not sufficient to guarantee con-
vergence to optimal values. Lemma 4.2 shows that step
3.3 also leads to an improvement. Finally, Theorem 4.2
shows that if improvements by step 3.2 and step 3.3
are not possible, then the optimal value and an optimal
strategy is obtained.

Lemma 4.2. Let γi and γi+1 be the player-1 selectors
obtained at iterations i and i + 1 of Algorithm 1. Let
I = {s ∈ S \ (W1 ∪ T) | Pre1(vi)(s) > vi(s)} = ∅,

and (Ai ∩ S) \ W1 6= ∅. Let vi = 〈〈1〉〉
γ

i

val
(Safe(F)) and

vi+1 = 〈〈1〉〉
γi+1

val
(Safe(F)). Then vi+1(s) ≥ vi(s) for

all states s ∈ S, and vi+1(s) > vi(s) for some state
s ∈ (Ai ∩ S) \ W1.

We obtain the following theorem from Lemma 4.1
and Lemma 4.2 that shows that the sequences of values
we obtain is monotonically non-decreasing.

Theorem 4.1. (Monotonicity of values) For i ≥
0, let γi and γi+1 be the player-1 selectors obtained at
iterations i and i + 1 of Algorithm 1. If γi 6= γi+1, then

〈〈1〉〉
γ

i

val
(Safe(F)) < 〈〈1〉〉

γ
i+1

val
(Safe(F)).

Theorem 4.2. (Optimality on termination)
For i ≥ 0, let vi be the valuation at iteration i
of Algorithm 1 such that vi = 〈〈1〉〉

γi

val
(Safe(F)). If

I = {s ∈ S \ (W1 ∪ T) | Pre1(vi)(s) > vi(s)} = ∅,
and (Ai ∩ S) \ W1 = ∅, then γi is an optimal
strategy for player 1 for the objective Safe(F) and
vi = 〈〈1〉〉val(Safe(F)).

Convergence. We first observe that since pure memo-
ryless optimal strategies exist for turn-based stochas-
tic games with safety objectives (Theorem 2.1), for
turn-based stochastic games it suffices to iterate over

Algorithm 1 Strategy-Improvement Algorithm for Safety Objective

Input: a concurrent game structure G with safe set F .
Output: a strategy γ for player 1.
0. Compute W1 = {s ∈ S | 〈〈1〉〉val(Safe(F))(s) = 1}.

1. Let γ0 = ξunif
1 and i = 0.

2. Compute v0 = 〈〈1〉〉
γ0

val
(Safe(F)).

3. do {
3.1. Let I = {s ∈ S \ (W1 ∪ T) | Pre1(vi)(s) > vi(s)}.
3.2 if I 6= ∅, then

3.2.1 Let ξ1 be a player-1 selector such that for all states s ∈ I,
we have Pre1:ξ1

(vi)(s) = Pre1(vi)(s) > vi(s).
3.2.2 The player-1 selector γi+1 is defined as follows: for each state s ∈ S, let

γi+1(s) =

{

γi(s) if s 6∈ I;

ξ1(s) if s ∈ I.

3.3 else

3.3.1 let(Gvi
, F) = TB(G, vi, F)

3.3.2 let Ai be the set of almost-sure winning states in Gvi
for Safe(F) and

π1 be a pure memoryless almost-sure winning strategy from the set Ai.

3.3.3 if ((Ai ∩ S) \ W1 6= ∅)
3.3.3.1 let U = (Ai ∩ S) \ W1

3.3.3.2 The player-1 selector γi+1 is defined as follows: for s ∈ S, let

γi+1(s) =











γi(s) if s 6∈ U ;

ξ1(s) if s ∈ U, ξ1(s) ∈ OptSel(vi, s),

π1(s) = (s, A, B), B = OptSelCount(s, v, ξ1).

3.4. Compute vi+1 = 〈〈1〉〉
γ

i+1

val
(Safe(F)).

3.5. Let i = i + 1.
} until I = ∅ and (Ai−1 ∩ S) \ W1 = ∅.
4. return γi.

pure memoryless selectors. Since the number of pure
memoryless strategies is finite, it follows for turn-based
stochastic games Algorithm 1 always terminates and
yields an optimal strategy. For concurrent games, we
will use the result that for ε > 0, there is a k-uniform
memoryless strategy that achieves the value of a safety
objective with in ε. We first define k-uniform memory-
less strategies. For a positive integer k > 0, a selector
ξ for player 1 is k-uniform if for all s ∈ S \ (T ∪ W1)
and all a ∈ Supp(π1(s)) there exists i, j ∈ N such that
0 ≤ i ≤ j ≤ k and ξ(s)(a) = i

j
, i.e., the moves in the

support are played with probability that are multiples
of 1

ℓ
with ℓ ≤ k. A memoryless strategy is k-uniform if

it is obtained from a k-uniform selector.

Lemma 4.3. For all concurrent game graphs G, for all
safety objectives Safe(F), for F ⊆ S, for all ε > 0, there
exist k > 0 and k-uniform selectors ξ such that ξ is an
ε-optimal strategy.

Strategy improvement with k-uniform selectors.

We first argue that if we restrict Algorithm 1 such
that every iteration yields a k-uniform selector, for
k > 0, then the algorithm terminates. For k > 0,
the restriction of Algorithm 1 to k-uniform selectors
means that instead of considering all possible selectors
for player 1, the algorithm restricts player 1 to select
among the k-uniform selectors. The basic argument
that if Algorithm 1 is restricted to k-uniform selectors
for player 1, for k > 0, then the algorithm terminates,
follows from the fact that the number of k-uniform
selectors for a given k is finite. A more formal argument
is as follows: if we restrict player 1 to chose between k-
uniform selectors, then a concurrent game graph G can
be converted to a turn-based stochastic game graph,
where player 1 first chooses a k-uniform selector, then
player 2 chooses an action, and then the transition is
determined by the chosen k-uniform selector of player 1,
the action of player 2 and the transition function δ
of the game graph G. Then by termination of turn-

7

based stochastic games it follows that the algorithm
will terminate. Given k > 0, let us denote by zk

i

the valuation of Algorithm 1 at iteration i, where the
selectors for player 1 are restricted to be k-uniform.
This gives us the following lemma.

Lemma 4.4. For all k > 0, there exists i ≥ 0 such that
zk

i = zk
i+1.

Lemma 4.5. For all concurrent game graphs G, for all
safety objectives Safe(F), for F ⊆ S, for all ε > 0, there
exist k > 0 and i ≥ 0 such that for all s ∈ S we have
zk

i (s) ≥ 〈〈1〉〉val(Safe(F))(s) − ε.

Theorem 4.3. (Convergence) For i ≥ 0, let vi be
the valuation obtained at iteration i of Algorithm 1.
Then the following assertions hold.

1. For all ε > 0, there exists i such that for all s we
have vi(s) ≥ 〈〈1〉〉val(Safe(F))(s) − ε.

2. limi→∞ vi = 〈〈1〉〉val(Safe(F)).

Complexity. Algorithm 1 may not terminate in
general; we describe the complexity of each iteration.
For a valuation vi, the computation of Pre1(vi) involves
solution of matrix games with rewards vi; this can
be done in polynomial time using linear programming.
Given vi, if Pre1(vi) = vi, the sets OptSel(vi, s) and
OptSelCount(vi, s) can be computed by enumerating
the subsets of available actions at s and then using
linear-programming. For example, to check whether
(A, B) ∈ OptSelCount(vi, s) it suffices to check both of
these facts:

1. (A is the support of an optimal selector ξ1). there is
an selector ξ1 such that (i) ξ1 is optimal (i.e. for all
actions b ∈ Γ2(s) we have Preξ1,b(vi)(s) ≥ vi(s));
(ii) for all a ∈ A we have ξ1(a) > 0, and for all
a 6∈ A we have ξ1(a) = 0;

2. (B is the set of counter-optimal actions against ξ1).
for all b ∈ B we have Preξ1,b(vi)(s) = vi(s), and
for all b 6∈ B we have Preξ1,b(vi)(s) > vi(s).

All the above checks can be performed by checking feasi-
bility of sets of linear equalities and inequalities. Hence,
TB(G, vi, F) can be computed in time polynomial in size
of G and vi and exponential in the number of moves.
We observe that the construction is exponential only in
the number of moves at a state, and not in the number
of states. The number of moves at a state is typically
much smaller than the size of the state space. We also
observe that the improvement step 3.3.2 requires the
computation of the set of almost-sure winning states of
a turn-based stochastic safety game: this can be done

both via linear-time discrete graph-theoretic algorithms
[4], and via symbolic algorithms [8]. Both of these meth-
ods are more efficient than the basic step 3.4 of the im-
provement algorithm, where the quantitative values of
an MDP must be computed. Thus, the improvement
step 3.3 of Algorithm 1 is in practice not inefficient,
compared with the standard steps 3.2 and 3.4.

5 Termination Criteria

In this section we present termination criteria for strat-
egy improvement algorithms for concurrent games for
ε-approximation, and then present an improved termi-
nation condition for turn-based games.

Strategy improvement algorithm for reachability

objectives. A strategy improvement algorithm for
concurrent reachability games was presented in [2]. We
refer to the strategy improvement algorithm of [2] as
Algorithm 2. Algorithm 2 is simpler than Algorithm 1:
it is similar to Algorithm 1 and in every iteration only
Step 3.2 is executed (and Step 3.3 need not be executed).

Termination for concurrent games. We now
present termination criteria for concurrent games. Ap-
plying Algorithm 2 (of [2]) for player 2, for a reachabil-
ity objective Reach(T), we obtain a sequence of valua-
tions (ui)i≥0 such that (a) ui+1 ≥ ui; (b) if ui+1 = ui,
then ui = 〈〈2〉〉val(Reach(T)); and (c) limi→∞ ui =
〈〈2〉〉val(Reach(T)). Given a concurrent game G with
F ⊆ S and T = S \ F , we apply Algorithm 2 to ob-
tain the sequence of valuation (ui)i≥0 as above, and we
apply Algorithm 1 to obtain a sequence of valuation
(vi)i≥0. The termination criteria are as follows:

1. if for some i we have ui+1 = ui, then we have ui =
〈〈2〉〉val(Reach(T)), and 1 − ui = 〈〈1〉〉val(Safe(F)),
and we obtain the values of the game;

2. if for some i we have vi+1 = vi, then we have 1 −
vi = 〈〈2〉〉val(Reach(T)), and vi = 〈〈1〉〉val(Safe(F)),
and we obtain the values of the game; and

3. for ε > 0, if for some i ≥ 0, we have ui +
vi ≥ 1 − ε, then for all s ∈ S we have
vi(s) ≥ 〈〈1〉〉val(Safe(F))(s) − ε and ui(s) ≥
〈〈2〉〉val(Reach(T))(s) − ε (i.e., the algorithm can
stop for ε-approximation).

Observe that since (ui)i≥0 and (vi)i≥0 are both
monotonically non-decreasing and 〈〈1〉〉val(Safe(F)) +
〈〈2〉〉val(Reach(T)) = 1, it follows that if ui + vi ≥ 1 − ε,
then forall j ≥ i we have ui ≥ uj − ε and vi ≥ vj − ε.
This establishes that ui ≥ 〈〈1〉〉val(Safe(F)) − ε and
vi ≥ 〈〈2〉〉val(Reach(T)) − ε; and the correctness of
the stopping criteria (3) for ε-approximation follows.
We also note that instead of applying Algorithm 2, a

value-iteration algorithm can be applied for reachability
games to obtain a sequence of valuation with properties
similar to (ui)i≥0 and the above termination criteria can
be applied.

Theorem 5.1. Let G be a concurrent game graph with
a safety objective Safe(F). Algorithm 1 and Algorithm 2
for player 2 for the reachability objective Reach(S \ F)
yield two sequences of valuations (vi)i≥0 and (ui)i≥0,
respectively, such that (a) for all i ≥ 0, we have
vi ≤ 〈〈1〉〉val(Safe(F)) ≤ 1 − ui; and (b) limi→∞ vi =
limi→∞ 1 − ui = 〈〈1〉〉val(Safe(F)).

Termination for turn-based games. For turn-based
stochastic games Algorithm 1 and as well as Algorithm 2
terminates. Each iteration of the Algorithm 2 of [2] is
computable in polynomial time, and here we present
a termination guarantee for Algorithm 2. To apply
Algorithm 2 we assume the objective of player 1 to be a
reachability objective Reach(T), and the correctness of
the algorithm relies on the notion of proper strategies.
Let W2 = {s ∈ S | 〈〈1〉〉val(Reach(T))(s) = 0}. Then
the notion of proper strategies and its properties are as
follows.

Definition 3. (Proper strategies and selec-
tors) A player-1 strategy π1 is proper if for all player-2
strategies π2, and for all states s ∈ S\(T ∪W2), we have
Prπ1,π2

s (Reach(T ∪ W2)) = 1. A player-1 selector ξ1 is
proper if the memoryless player-1 strategy ξ1 is proper.

Lemma 5.1. ([2]) Given a selector ξ1 for player 1, the
memoryless player-1 strategy ξ1 is proper iff for every
pure selector ξ2 for player 2, and for all states s ∈ S,

we have Prξ1,ξ2
s (Reach(T ∪ W2)) = 1.

Lemma 5.2. Let G be a turn-based stochastic game with
reachability objective Reach(T) for player 1. Let γ0

be the initial selector, and γi be the selector obtained
at iteration i of Algorithm 2. If γi is a pure, proper
selector, then the following assertions hold: (a) for all
i ≥ 0, we have γi is a pure, proper selector; (b) for all

i ≥ 0, we have ui+1 ≥ ui, where ui = 〈〈1〉〉
γ

i

val
(Reach(T))

and ui+1 = 〈〈1〉〉
γi+1

val
(Reach(T)); and (c) if ui+1 = ui,

then ui = 〈〈1〉〉val(Reach(T)), and there exists i such that
ui+1 = ui.

The above result follows from the result of [2] spe-
cialized for the case of turn-based stochastic games. The
strategy improvement algorithm of Condon [6] works
only for halting games, but Algorithm 2 works if we start
with a pure, proper selector for reachability games that
are not halting. Hence to use Algorithm 2 to compute
values we need to start with a pure, proper selector. We

present a procedure to compute a pure, proper selector,
and then present termination bounds (i.e., bounds on i
such that ui+1 = ui). The construction of pure, proper
selector is based on the notion of attractors defined be-
low.

Attractor strategy. Let A0 = W2 ∪ T , and for i ≥ 0
we have Ai+1 = Ai ∪ {s ∈ S1 ∪ SR | E(s) ∩ Ai 6=
∅} ∪ {s ∈ S2 | E(s) ⊆ Ai}. Since for all s ∈ S \ W2

we have 〈〈1〉〉val(Reach(T)) > 0, it follows that from
all states in S \ W2 player 1 can ensure that T is
reached with positive probability. It follows that for
some i ≥ 0 we have Ai = S. The pure attractor selector
ξ∗ is as follows: for a state s ∈ (Ai+1 \ Ai) ∩ S1 we
have ξ∗(s)(t) = 1, where t ∈ Ai (such a t exists by
construction). The pure memoryless strategy ξ∗ ensures
that for all i ≥ 0, from Ai+1 the game reaches Ai with
positive probability. Hence there is no end-component
C contained in S \ (W2∪T) in the MDP Gξ∗ . It follows
that ξ∗ is a pure selector that is proper, and the selector
ξ∗ can be computed in O(|E|) time. This completes
Algorithm 2 for turn-based stochastic games. We now
present the termination bounds.

Termination bounds. We present termination bounds
for binary turn-based stochastic games. A turn-based
stochastic game is binary if for all s ∈ SR we have
|E(s)| ≤ 2, and for all s ∈ SR if |E(s)| = 2, then
for all t ∈ E(s) we have δ(s)(t) = 1

2 , i.e., for all
probabilistic states there are at most two successors and
the transition function δ is uniform.

Lemma 5.3. Let G be a binary Markov chain with |S|
states with a reachability objective Reach(T). Then for
all s ∈ S we have 〈〈1〉〉val(Reach(T)) = p

q
, with p, q ∈ N

and p, q ≤ 4|S|−1.

Lemma 5.4. Let G be a binary turn-based stochastic
game with a reachability objective Reach(T). Then for
all s ∈ S we have 〈〈1〉〉val(Reach(T)) = p

q
, with p, q ∈ N

and p, q ≤ 4|SR|−1.

From Lemma 5.4 it follows that at iteration i of
Algorithm 2 either the sum of the values either increases
by 1

4|SR|−1 or else there is a valuation ui such that
ui+1 = ui. Since the sum of values of all states can
be at most |S|, it follows that algorithm terminates in
at most |S| · 4|SR|−1 steps. Moreover, since the number
of pure memoryless strategies is at most

∏

s∈S1
|E(s)|,

the algorithm terminates in at most
∏

s∈S1
|E(s)| steps.

It follows from the results of [16] that a turn-based
stochastic game graph G can be reduced to a equivalent
binary turn-based stochastic game graph G′ such that
the set of player 1 and player 2 states in G and G′ are
the same and the number of probabilistic states in G′ is

9

O(|δ|), where |δ| is the size of the transition function in
G. Thus we obtain the following result.

Theorem 5.2. Let G = 〈(S, E), (S1, S2, SR), δ〉 be a
turn-based stochastic game with a reachability objective
Reach(T). Algorithm 2 computes the values in G in time
O

(

min{
∏

s∈S1
|E(s)|, 2O(|δ|)} · poly(|G|)

)

; where poly is
polynomial function.

The results of [13] presented an algorithm for turn-
based stochastic games that works in time O(|SR|! ·
poly(|G|)). The algorithm of [13] works only for turn-
based stochastic games, for general turn-based stochas-
tic games the complexity of the algorithm of [13] is bet-
ter. However, for turn-based stochastic games where
the transition function at all states can expressed in
constant bits we have |δ| = O(|SR|). In these cases
the reachability strategy improvement algorithm (that
works for both concurrent and turn-based stochastic
games) works in time 2O(|SR|) · poly(|G|) as compared
to the time 2O(|SR|·log(|SR|) · poly(|G|) of the algorithm
of [13].

Acknowledgements. This research was supported in
part by the NSF grants CCR-0132780, CNS-0720884,
and CCR-0225610, and by the Swiss National Science
Foundation. We thank the anonymous referees for
useful comments that helped us improve the proofs and
the paper.

References

[1] D.P. Bertsekas. Dynamic Programming and Optimal

Control. Athena Scientific, 1995. Volumes I and II.
[2] K. Chatterjee, L. de Alfaro, and T.A. Henzinger. Strat-

egy improvement in concurrent reachability games. In
QEST’06: Quantitative Evaluation of Systems. IEEE
Computer Society Press, 2006.

[3] K. Chatterjee, L. de Alfaro, and T.A. Henzinger.
Termination criteria for solving concurrent safety and
reachability games. CoRR, abs/0809.4017, 2008.

[4] K. Chatterjee, M. Jurdziński, and T.A. Henzinger.
Simple stochastic parity games. In CSL’03: Computer

Science Logic, volume 2803 of LNCS, pages 100–113.
Springer, 2003.

[5] A. Condon. The complexity of stochastic games.
Information and Computation, 96(2):203–224, 1992.

[6] A. Condon. On algorithms for simple stochastic games.
In Advances in Computational Complexity Theory, vol-
ume 13 of DIMACS Series in Discrete Mathematics

and Theoretical Computer Science, pages 51–73. Amer-
ican Mathematical Society, 1993.

[7] L. de Alfaro and T.A. Henzinger. Concurrent omega-
regular games. In LICS’00: Symposium on Logic in

Computer Science, pages 141–154. IEEE Computer
Society Press, 2000.

[8] L. de Alfaro, T.A. Henzinger, and O. Kupferman.
Concurrent reachability games. Theoretical Computer

Science, 386(3):188–217, 2007.
[9] L. de Alfaro and R. Majumdar. Quantitative solution

of omega-regular games. Journal of Computer and

System Sciences, 68:374–397, 2004.
[10] C. Derman. Finite State Markovian Decision Pro-

cesses. Academic Press, 1970.
[11] K. Etessami and M. Yannakakis. Recursive concur-

rent stochastic games. In ICALP 06: Automata, Lan-

guages, and Programming, volume 4052 of LNCS, pages
324–335. Springer, 2006.

[12] J. Filar and K. Vrieze. Competitive Markov Decision

Processes. Springer-Verlag, 1997.
[13] H. Gimbert and F. Horn. Simple stochastic games with

few random vertices are easy to solve. In FoSSaCS’08:

Foundations of Software Science and Computational

Structures, volume 4962 of LNCS, pages 5–19, 2008.
[14] P.R. Kumar and T.H. Shiau. Existence of value

and randomized strategies in zero-sum discrete-time
stochastic dynamic games. SIAM J. Control and

Optimization, 19(5):617–634, 1981.
[15] D.A. Martin. The determinacy of Blackwell games.

The Journal of Symbolic Logic, 63(4):1565–1581, 1998.
[16] U. Zwick and M.S. Paterson. The complexity of mean

payoff games on graphs. Theoretical Computer Science,
158:343–359, 1996.

